
New Datasets for Bug Prediction
and a Method for Measuring

Maintainability of Legacy Software
Systems

Zoltán Tóth
Department of Software Engineering

University of Szeged

Szeged, 2019

Supervisor:

Dr. Rudolf Ferenc

A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

OF THE UNIVERSITY OF SZEGED

University of Szeged
Ph.D. School in Computer Science

“Well, writing novels is incredibly simple: an author sits
down. . . and writes.”

— Christopher Hopper

Preface

As a child I always loved having challenging problems. In the beginning, I mainly loved
puzzles in math. Later, in elementary school, we had informatics and we were taught
Comenius Logo, a graphical programming language. Our teacher gave us the following
problem: “Draw a house with a door and a window, the height and width of which is
defined by parameters”. It was easy to draw the door and the window with a constant
factor. When I finished this task, the teacher asked whether I could have managed to
have a roof on that house. That was a much harder problem to figure out since I had
no clue how long the diagonal of a square was in 7th class (square root is taught in 8th
class). Well okay, no problem, let’s try what happens if I go with the turtle to some
point and then turn 90 degrees right and draw a line with the exact same length. The
roof sometimes ended too early, sometimes it went way over the top left corner, but
finally I figured out a fairly good approximation for

√
2 by hand.

Maybe this success led me toward programming and motivated me to learn how
different mathematical formulas could be implemented in a program. During the pro-
cess of deepening my knowledge in computer science I realized that it is not enough to
use already discovered laws, but I want to participate in investigations and contribute
to the human knowledge. And now here I am, working on my PhD dissertation, which
I hope will help better understanding the connections of laws in computer science.

It comes as no surprise, but I could not have managed to get here without the
help of others. First, I would like to thank my supervisor, Dr. Rudolf Ferenc, for
his guidance and for reinforcing me when I was full of doubts. He showed me that
being enthusiastic and dedicated to a research area always pays off but one must never
give up. This way of thinking should be applied to every other aspect of my life as
well. I would also like to thank Dr. Tibor Gyimóthy, the former head of the Software
Engineering Department, for supporting me on my way to becoming a PhD student,
and for providing me with interesting research topics. Many thanks to my co-authors
and my colleagues, namely Dr. István Siket, Péter Gyimesi, and Gergely Ladányi, who
helped me overcome technical problems and gave me many great ideas. Many thanks
to Edit Szűcs for her stylistic and grammatical comments on this thesis.

Last, but not least I wish to express my gratitude to my beloved family including
my first lady, Dorka and my one and only little princess, Olivia. I greatly appreciate
my mother for pushing me forward and giving me so much support during the years.

Zoltán Tóth, 2019

iii

Contents

Preface iii

1 Introduction 1

I New Datasets and a Method for Creating Bug Prediction
Models for Java 3

2 Public Bug Datasets 5
2.1 PROMISE . 5
2.2 Bug Prediction Dataset . 6
2.3 Eclipse Bug Dataset . 6
2.4 Bugcatchers Bug Dataset . 6
2.5 Additional datasets . 6

3 A New Public Bug Dataset and Its Evaluation in Bug Prediction 9
3.1 Overview . 9
3.2 Related Work . 10
3.3 Approach . 12
3.4 The Selected Projects and the Dataset 13
3.5 Evaluation . 15
3.6 Summary . 19

4 A Unified Public Bug Dataset and Its Assessment in Bug Prediction 21
4.1 Overview . 21
4.2 Data Collection . 23
4.3 Data Processing . 24

4.3.1 Metrics Calculation . 25
4.3.2 Dataset Unification . 25

4.4 Original and Extended Metrics Suites 29
4.4.1 Original Metric Suites . 29
4.4.2 Unified Bug Dataset . 30
4.4.3 Comparison of the Metrics . 31

4.5 Evaluation . 36
4.5.1 Datasets and Bug Distribution 36
4.5.2 Summary Meta Data . 37
4.5.3 Functional Criteria . 38

4.6 Threats to Validity . 43
4.7 Summary . 44

v

II Methodology for Measuring Maintainability of RPG Soft-
ware Systems 47

5 Brief Introduction to the RPG Programming Language 49

6 Evaluation of Existing Static Analysis Tools 51
6.1 Overview . 51
6.2 Related Work . 52
6.3 RPG Program Analyzer Tools . 53

6.3.1 SourceMeter for RPG . 53
6.3.2 SonarQube RPG . 53
6.3.3 SourceMeter for SonarQube Plugin 53

6.4 Comparative evaluation . 55
6.4.1 Comparison of Source Code Metrics 55
6.4.2 Comparison of Coding Rules . 56
6.4.3 Comparison of Duplicated Code Sections 59

6.5 Discussion . 60
6.5.1 Summary of results . 60
6.5.2 Effect on Quality Indices . 61
6.5.3 Threats to Validity . 61

6.6 Summary . 62

7 Integrating Continuous Quality Monitoring Into Existing Workflow –
A Case Study 65
7.1 Overview . 65
7.2 Related work . 66

7.2.1 Quality Assurance for RPG . 66
7.2.2 Quality Model . 67

7.3 Approach . 67
7.3.1 Integration with QualityGate 70

7.4 Case Study . 70
7.4.1 Initial Phase . 70
7.4.2 Integration Phase . 71
7.4.3 Refactoring Phase . 72
7.4.4 Discussion Phase . 76

7.5 Threats to Validity, Limitations . 77
7.6 Summary . 77

8 Redesign of Halstead’s Complexity Metrics and Maintainability Index
for RPG 79
8.1 Overview . 79
8.2 Related Work . 80
8.3 Computing Halstead Metrics and Maintainability Index for RPG 81
8.4 Evaluating the usefulness of Halstead’s and MI metrics 84

8.4.1 Extend Quality Model For RPG 88
8.5 Threats to Validity . 88
8.6 Summary . 89

9 Conclusions 91

vi

Appendices 93

A Summary in English 95

B Magyar nyelvű összefoglaló 101

Bibliography 111

vii

List of Tables

3.1 The selected projects . 13
3.2 F-measures at class level . 16
3.3 F-measures at file level . 17
3.4 Bug coverage at class level . 18
3.5 Bug coverage at file level . 19

4.1 Basic statistics about the public bug datasets 24
4.2 Merging results – Class level datasets 26
4.3 Merging results – File level datasets . 27
4.4 Metrics used in PROMISE dataset . 29
4.5 Metrics used in Eclipse Bug Dataset 30
4.6 Product metrics used in Bug Prediction Dataset 30
4.7 Metrics used in GitHub Bug Dataset 31
4.8 Number of elements in the merged systems 32
4.9 Comparison of the common class level metrics (Bug Prediction dataset) 34
4.10 Comparison of file level metrics on Bugcatchers 35
4.11 Comparison of file level metrics on Eclipse 36
4.12 Summary Meta Data . 37
4.13 Weighted F-Measure values in independent training at class level. . . . 39
4.14 Wighted F-Measure values in independent training at file level. 40
4.15 Cross training (PROMISE) . 41
4.16 Cross training (GitHub – Class level) 41
4.17 Cross training (Bug prediction dataset) 42
4.18 Cross training (GitHub – File level) . 42
4.19 Cross training (Bugcatchers) . 42
4.20 Cross training (Eclipse) . 43

6.1 System level metric values . 55
6.2 Defined Metrics . 56
6.3 Rules implemented in both tools . 58
6.4 Rules implemented only in SourceMeter (without metrics-based rules) . 59
6.5 Rules implemented only in SonarQube 59
6.6 Overall comparison results . 61

7.1 Description of the nodes in the RPG Quality Model. 69
7.2 Basic statistics of the benchmark systems. 71
7.3 Basic statistics of the LG submodule before and after the refactoring. . 72

8.1 List of source code elements to be counted as operators 82
8.2 List of source code elements to be counted as operands 82

ix

8.3 List of the used Halstead metrics . 83
8.4 List of the used Maintainability Index metrics 83
8.5 Correlation between metrics (Program Level) 85
8.6 Correlation between metrics (Subroutine Level) 86
8.7 Factor loadings . 88

A.1 Thesis contributions and supporting publications 100

B.1. A tézispontokhoz kapcsolódó publikációk 107

x

List of Figures

3.1 The relationship between the bugs and release versions 12
3.2 Number of entries distribution . 14

4.1 Fault distribution (classes) . 36
4.2 Fault distribution (files) . 36

6.1 SonarQube dashboard . 54
6.2 SourceMeter for RPG SonarQube plugin dashboard 54
6.3 SourceMeter source code view with Metrics panel integrated in SonarQube 55
6.4 Distribution of common and unique coding rules 57
6.5 Quality indexes based on SourceMeter for RPG analyzer (left) and

SonarQube RPG analyzer (right) – computed using all coding rules . . 62
6.6 Quality indexes based on SourceMeter for RPG analyzer (left) and

SonarQube RPG analyzer (right) – computed using common coding
rules only . 62

7.1 RPG quality model ADG . 68
7.2 Process chain of the approach. 71
7.3 Low-level quality results. 72
7.4 High-level quality results. 72
7.5 Maintainability quality timeline. 73
7.6 McCC quality timeline. 74
7.7 WarningP1 quality timeline. 74

8.1 Eigenvalues and variability of principal components (Program level) . . 87
8.2 Eigenvalues and variability of principal components (Subroutine level) . 87

Listings

5.1 RPG IV sample code . 50

7.1 Using avoid operation in a subroutine 75
7.2 Eliminate avoid operation rule violation 75
7.3 Missing error handling on File Specification 75
7.4 Eliminate missing error handling on File Specification 76

xi

To my beloved family...

“Research is to see what everybody has seen,
and to think what nobody else has thought.”

— Albert Szent-Györgyi

1
Introduction

Software systems have become more complex over the years. We developed additional
abstraction levels to leverage the complexity developers have to face. We are now
using high level programming languages to ease the writing of such complex tasks.
Since humans are involved as the most important factor in the software development
process, software will have faults. In the beginning of the 21st century, software bugs
cost the United States economy approximately $60 billion a year [111]. In 2016, that
number is $1.1 trillion [3]. The industrial sector often gives up on software quality due
to time pressure. A great example is the Boeing scandal in 2019. The MCAS system
that automatically adjusts the plane’s flight trajectory was faulty in its software. It
was more than just a software bug, pilots were not educated as they should had been
to handle this fault in the system. Still, the most crucial factor was the software bug
itself, which caused the death of 356 innocents [2].

The later the phase in which the bug is fixed, the more it costs. Eliminating defects
in an early stage is the ideal scenario. Testing could serve as one of the best tools for
this purpose. However, testing should involve automated checks, where it is possible
to reveal defective candidates early and keep costs low. The research work behind this
thesis aims to help in locating future defects with the help of bugs fixed in the past,
moreover, to provide a methodology for measuring the maintainability (which is one
of the most important quality characteristics) of software systems.

In this respect, the thesis encapsulates two main topics: the construction and evalu-
ation of new bug datasets and introducing a methodology for measuring maintainability
of RPG software systems. These topics both emphasize the importance of software
quality and try to give state-of-the-art solutions in the fight against software faults.

Public bug datasets have been present for a long time. In spite of the fact that bug
prediction related studies have been rapidly growing in recent years, there are only a
few datasets available. Bug datasets are usually constructed from open-source projects
that managed to store issues with the appropriate issue tracking methods. This way,
the source code elements of the systems could be mapped with the corresponding
bug(s) [102]. Datasets are usually constructed at file or class level. The entries of the
datasets are characterized somehow, in order to describe the bugs. One possible way

1

Chapter 1. Introduction

is to calculate static software product metrics for each entry. Currently, open-source
projects are hosted on the popular GitHub platform. We created a new, state-of-
the-art public bug dataset, the GitHub bug dataset, which includes a wide range of
static source code metrics (more than 50) to characterize the bugs. Moreover, we also
gathered all existing bug datasets and built a unified dataset on top of them. During
this process, we pointed out the inconsistencies in the datasets, and we also showed
how different results could be obtained by using another tool for the static analysis.
We demonstrated the power of the built datasets by showing their capabilities in bug
prediction.

Measuring maintainability in RPG systems is a narrowed research area, which also
applies generally in the domain of legacy systems. A large amount of the systems
used in the banking sector still run on IBM mainframes, hence they use the RPG
programming language as well. Finding and eliminating bugs in these software systems
could be a matter of national interest. Contrarily, research tends not to reflect the
importance of providing novel techniques for monitoring the quality of such legacy
systems. However, the industry could adapt different methodologies and solutions
from other domains, since usually there is a lack of underlying tools to support the
analysis of legacy systems. We did not only develop a methodology for measuring
the maintainability, but also provided the appropriate tools needed to overcome these
barriers.

The thesis consists of two main parts, which are also the two thesis points, based
on the research areas we described.

We introduce new datasets and their assessments in bug prediction in the first part,
which includes 3 chapters. Chapter 2 briefly introduces the most important public bug
datasets and positions them in the field. In Chapter 3, we construct and evaluate a
new bug dataset while keeping the weak points of existing ones in mind. Refreshing
and validating the most important public bug datasets, we put them into one unified
dataset to ease their joint use in the future. The unification and the assessment of this
dataset is described in Chapter 4.

The second part, which consists of 4 chapters, deals with the question of main-
tainability in RPG legacy systems. Chapter 5 introduces the main concepts and an
overall impression of the RPG programming language. In Chapter 6, we compare state-
of-the-art RPG static source code analysis tools, which includes our own toolchain as
well. Chapter 7 presents an applied methodology for measuring maintainability in RPG
systems, and also describes the experiences collected during a case study in which we
successfully integrated this methodology into the development cycle of a mid-ranged
software company named R&R Software Ltd. We end this part by showing a possible
extension of the previous methodology in Chapter 8.

Chapter 9 sums up the thesis, while in appendices A and B, brief summaries of
the thesis are shown in English and in Hungarian, respectively. The appendices, fur-
thermore, contain the thesis points, as well as the author’s contributions, and the
underlying publications.

2

Part I

New Datasets and a Method for
Creating Bug Prediction Models for

Java

“Let he who has a bug free software cast the
first stone.”

— Assaad Chalhoub

2
Public Bug Datasets

Publishing datasets as public resources for the scientific community is not a new idea
[113, 68]. Many papers have dealt with bug datasets and used some kind of bug predic-
tion approaches as demonstrations [42]. Notwithstanding the numerous studies dealing
with bug prediction, the number of publicly available bug datasets are incredibly low
and neglected. We mainly focus on the datasets which include source code elements
(file, class, method) with bug occurrences and characterize the code elements with their
static source code metrics (such as LOC - Logical Lines of Code, complexity metrics,
etc.).

Researchers often use a dataset created for their own purposes, but these datasets
are not published for the community. Public datasets, however, could increase the
number of replicable studies which would increase the quality of bug prediction models.
With this goal in mind, we collect the public bug datasets and we briefly introduce
them in this chapter. Later on, some of them will be investigated in detail in the
following chapters.

2.1 PROMISE

PROMISE (a.k.a. tera-PROMISE) [68] is one of the largest research data repositories
in software engineering. It is a collection of many different datasets, including the
NASA MDP (Metric Data Program) dataset, which was used by numerous studies in
the past. However, one should always mistrust the data that comes from an external
source [84, 40, 92, 41]. The repository is created to encourage repeatable, verifiable,
refutable, and improvable predictive models of software engineering. This is essential
for maturation of any research discipline. One main goal is to extend the repository
to other research areas as well. The repository is community based, thus anybody
can donate a new dataset or public tools, which can help other researchers in building
state-of-the-art predictive models. PROMISE provides the datasets under categories
like code analysis, testing, software maintenance, and it also has a category for defects.

5

Chapter 2. Public Bug Datasets

2.2 Bug Prediction Dataset
The Bug prediction dataset [36] contains data extracted from 5 Java projects by using
inFusion and Moose to calculate the classic C&K metrics for class level. The source of
information was mainly CVS, SVN, Bugzilla and Jira from which the number of pre-
and post-release defects were calculated. D’Ambros et al. also extended the source
code metrics with change metrics, which, according to their findings, could improve
the performance of the fault prediction methods.

2.3 Eclipse Bug Dataset
Zimmerman et al. [113] mapped defects from the bug database of Eclipse 2.0, 2.1, and
3.0. The resulting data set lists the number of pre- and post-release defects on the
granularity of files and packages that were collected from the BUGZILLA bug tracking
system. They collected static code features using the built-in Java parser of Eclipse.
They calculated some features at a finer granularity; these were aggregated by taking
the average, total, and maximum values of the metrics. Data is publicly available and
was used in many studies since then. Last modification on the dataset was submitted
on March 25, 2010.

2.4 Bugcatchers Bug Dataset
Hall et al. presented the Bugcatchers [45] Bug Dataset, which operates with bad smells
(solely), and found that coding rule violations have a small but significant effect on
the occurrence of faults at file level. The Bugcatchers Bug Dataset contains bad smell
information about Eclipse, ArgoUML, and some Apache software systems for which
the authors used Bugzilla and Jira as the sources of the data.

2.5 Additional datasets
There are additional datasets that are good candidates to experiment with. However,
we focused on investigating the datasets that characterize source code elements with
static source code metrics. There are recent datasets that would have matched with
our plans, however, they have been published after we had done our investigations. We
will show some of these datasets and also briefly introduce them.

Software-artifact Infrastructure Repository, or simply SIR is a repository of soft-
ware related artifacts meant to support rigorous controlled experimentation with pro-
gram analysis and software testing techniques, and education in controlled experimen-
tation. SIR focuses on the bugs from the perspective of software testing, thus the
included information is reflecting this approach.

iBugs [35] provides a bug repository with data extracted from real projects with
the main purpose of bug localization. As the authors stated, iBugs is a collection of
datasets to complement the SIR repository. While SIR mainly contains datasets with
seeded (artificially injected) faults, iBugs tries to do the same with real software defects.
However, this dataset is still approaching the bugs from the testing perspective (test
coverage matrices are used as characterization).

6

Chapter 2. Public Bug Datasets

The ELFF dataset [93] is a recent one that fulfills the need for more method level
bug datasets. The ELFF dataset includes 23 open-source project which were analyzed
with JHawk. The projects were mined from SourceForge and are the final contestants
from a set of 50,000 candidates.

The Had-oops! dataset [47] is constructed with a new approach presented by Har-
man et al. They analyzed 8 consecutive Hadoop versions and investigated the impact
of chronology on fault prediction performance. They used Support Vector Machines
(SVMs) with a genetic algorithm (for configuration) to build prediction models at class
level. For a given version, they constructed a prediction model from all the previous
versions and a model from the current version only and compared which one performed
better. Results are not straightforward since they found early versions preferable in
many cases as opposed to models built on recent versions. Moreover, using all versions
is not always better than using only the current version to build a model from.

The Mutation-aware fault prediction dataset is a result of an experiment
carried out by Bowes et al. on using mutation metrics as independent variables for
fault prediction [22]. They used 3 software systems from which 2 projects (Eclipse
and Apache) were open-source and one was closed. They used the popular PITest (or
simply, PIT [31]) to obtain the set of mutation metrics that were included in the final
dataset. Besides the mutation metrics, some static source code metrics (calculated by
JHawk [1]) were also included in the dataset for comparison purposes. This dataset is
also built at class level.

Defects4J is a well-known dataset, also with the goal of providing a dataset for
ensuring comparable, reproducible research studies [57]. The dataset includes real
bugs with the corresponding fixing commits and with information about the passing
and failing tests. Currently, 6 open-source projects are included with a total of 438 real
software bugs. Fixing commits are manually pruned or cleaned to exclude unimportant
refactorings or feature additions. Bugs that should be fixed by modifying configuration
files, documentations, or test files are also ignored.

Awesome-MSR1 is a curated repository for sharing datasets and tools to con-
duct evidence-based, data-driven research on software systems. The naming ’MSR’
comes from the Mining Software Repositories (MSR) conference series. Awesome-
MSR collects different repositories related to the aforementioned topics as well, such
as PROMISE, SIR, FLOSSmole. Besides repositories, it lists standalone datasets like
Defects4J. Different tools that can be used to characterize datasets are also listed. For
instance, different static analyzer tools are enumerated.

1https://github.com/dspinellis/awesome-msr

7

https://github.com/dspinellis/awesome-msr

“If debugging is the process of removing bugs,
then programming must be the process of
putting them in.”

— Edsger Dijkstra

3
A New Public Bug Dataset and Its

Evaluation in Bug Prediction

3.1 Overview
Software systems are likely to fail occasionally, that is obviously unwanted both for the
end users and for the software developers. Keeping the software quality at a high-level
is more important than ever, since customers define the reputation of the used subject
system. Open-source software development paved its way, and has become a corner-
stone in the domain of evaluating research ideas and techniques dealing with computer
science [98]. These publicly available systems gather a huge amount of historical data
stored, for example, in version control systems or bug tracking systems. Researchers
have been using the opportunity, given by these public information sets, to prove the
power of their approaches for a long time [6, 76, 113]. In spite of this fact, only a
few publicly available bug datasets are presented to take role as a basis for further
investigations (we listed these datasets in Chapter 2). Many authors do not make the
corpus used in their studies public, thus the experiments are not repeatable [59].

Why on earth would anybody want to construct yet another bug dataset if we have
already some out there? In our research work, we made an exhaustive investigation
to gather all the existing public bug datasets. Unfortunately, these datasets mainly
operate with classic C&K [29] metrics and contain accumulated information about
bugs at a pre-release or post-release time. Our goal is to include a wider range of
metrics, including the number of different coding rule violations and additional code
clone metrics as well.

None of these datasets consist of data obtained from GitHub, they mostly gathered
them from Bugzilla, Jira, SVN or SourceForge. We conducted an experiment using
GitHub as the source of information (both for version control and for bug tracking).
GitHub is the absolute trend for hosting open-source projects, thus we can gather
information about actively developed, modern, community based software systems.

Not only programming languages, but the way of thinking as a programmer are all
actors in the software evolution process. New constructions in programming languages

9

Chapter 3. A New Public Bug Dataset and Its Evaluation in Bug Prediction

force developers to think in a different way. This leads to committing different mistakes
nowadays than they have in the past. The only way to avoid this pitfall is to keep public
datasets curated, up to date, and to include new systems from different domains.

Our study tries to endorse the use of public datasets for addressing different research
questions, such as the ones relating to bug prediction, by showing the power of our
automatically generated bug dataset in the bug prediction domain. We have developed
a toolchain that automatically gathers different information about publicly available
projects to build a bug dataset. We selected 15 Java projects from different domains
to ensure the generality of the constructed dataset. The characteristics of these open-
source projects were extracted from GitHub1 that hosts millions of projects, using a
static source code analyzer tool called SourceMeter.2 We analyzed these projects that
include more than 3.5 million lines of code, and more than 114 thousand of commits
in total. From the analyzed commit set, we detected almost 6 thousand commits
that referenced at least one bug (inducing a bug fix intention) according to the SZZ
algorithm [102]. We used release versions of the systems and created bug datasets for
approximately six-months-long intervals.

To show the usefulness of the gathered information, we experimented with 13 ma-
chine learning algorithms and achieved quiet promising results. For class level, the best
algorithms resulted in higher than 0.7 F-measure values. For file level, we achieved sim-
ilar, if a little lower, values. Almost full bug coverage can be reached by using these
models by tagging only 31% of the source code elements as buggy. We defined two
research questions, which are the following:

RQ 1: Is the constructed dataset usable for bug prediction? Which algorithms or
algorithm families perform the best in bug prediction?
RQ 2: Which machine learning algorithms or algorithm families perform the best in
bug coverage?

The remainder of this chapter is organized as follows. Section 3.2 enumerates the
most important research papers dealing with bug prediction techniques, especially the
ones focusing on the mining of software repositories (for related bug datasets please
refer to Chapter 2). In Section 3.3, we propose our approach and show how our dataset
is constructed, and what kind of data entries are stored in it. Next, we introduce the
set of selected projects in Section 3.4. Section 3.5 presents the power of the constructed
dataset by evaluating different results of the applied machine learning algorithms. Fi-
nally, we summarize and conclude the results we obtained in this research.

3.2 Related Work
ReLink[107] is developed to explore missing links between changes committed in version
control systems and fixed bugs. This tool could be helpful for any software engineering
research that is based on the linkage data, such as software defect prediction. ReLink
mines and analyzes information like bug reporter, description, comments, date from
bug dataset and then tries to pair the bug with the appropriate source code files based
on the set of source code information extracted from a version control system.

1https://github.com
2https://www.sourcemeter.com

10

https://github.com
https://www.sourcemeter.com

Chapter 3. A New Public Bug Dataset and Its Evaluation in Bug Prediction

The history of version control systems shows us the concerned files and their changed
lines only, but software engineers are also interested in which source code elements (e.g.
classes or methods) are affected by a change or a bug [103]. In our study, we presented
a method for tracking low level source code elements’ (class, method) positions in files
by processing version control system log information [116]. This method helps to keep
source code positions up-to-date during the processing of commits.

Kalliamvakou et al. mined GitHub repositories to investigate their characteristics
and their qualities [58]. They presented a detailed study discussing different project
characteristics, such as (in)activity. Further research questions were involved – whether
a project is standalone or a part of a more massive system. Results have shown that the
extracted data set can serve as good input for various investigations, however, one must
use them with mistrust and always verify the usefulness and reliability of the mined
data. It is a good practice to choose projects with many developers and commits,
moreover, one should keep in mind that the most important point is to choose projects
that fit your own purpose well. In our case, we have tried to create a dataset that is
reliable (some manual validation is performed) and general enough for testing different
bug prediction techniques.

Bird et al. presented a study on distributed version control systems, thus the paper
focuses mainly on Git [20]. They examined the usage of version control systems and
the available set of data (such as whether the commits are removable, modifiable,
movable) gathered by the type of usage (with respect of differentiating central and
distributed systems). The main purpose of this paper was to draw attention to pitfalls
and help researchers to avoid such pitfalls during the processing and analysis of mined
Git information set.

Many research papers have shown that using a bug tracking system improves the
quality of the developed software system. Bangcharoensap et al. introduced a method
to locate the buggy files in a software system very quickly using the bug reports man-
aged by the bug tracking system [12]. The presented method contains three different
approaches to rank the fault-prone files, namely:

• Text mining: ranks files based on the textual similarity between a bug report
and the source code itself.

• Code mining: ranks files based on prediction of the potential buggy module using
source code product metrics.

• Change history: ranks files based on prediction of the fault-prone module using
change process metrics.

They used the gathered project data collected on the Eclipse platform to investigate
the efficiency of the proposed approaches. Finally, they showed that these three ways
are suitable for locating buggy files. Furthermore, bug reports with short description
and many specific words greatly increase the effectiveness of finding the weak points
(the files) of the system.

Not only the above presented method can be used to predict the occurrence of a
new bug, but a significant change in source code metrics can also be a clue that the
relevant source code files contain a potential bug or bugs [42]. Couto et al. presented
a paper that shows the possible relationship between changed source metrics (used
as predictors) and bugs [33]. They described an experiment to discover more robust
evidence towards causality between software metrics and the occurrences of bugs.

We constructed our dataset with the above mentioned techniques in mind.

11

Chapter 3. A New Public Bug Dataset and Its Evaluation in Bug Prediction

3.3 Approach
In this section, we describe how the dataset is constructed. The process is a kind of
toolchain, so we will introduce our method phase-by-phase.

We first downloaded the data from GitHub (cloning of the selected repositories),
then we processed the raw data to obtain statistical measurements on the projects
(these statistics are presented later, in Section 3.4). At this point we selected the
relevant software versions to be analyzed by the static source code analyzer. We tried
to mark six-month-long intervals for all projects and find the nearest release versions on
which an analysis should be performed. After the source code analysis, we performed
the dataset building step. We detected the references between the commits and the
bugs by using the SZZ algorithm [102]. GitHub also provides the linkage between issues
and commits. These links are determined from the messages of the commits. With
the use of these links, we accumulated the bug related source code elements (faulty
classes). A source code element is bug related, if it was modified in a commit that
references the issue (it has to be modified in order to fix the bug).

Our dataset creation process is similar to traditional ones described in various
studies [68, 36, 113]. Let us consider a few bugs that were closed (see Figure 3.1).

Figure 3.1. The relationship between the bugs and release versions

There are 3 versions of the system and we have 2 bugs in the software. Reporting a
bug means that it was revealed in the system, but it may have been present in the
system for a long time. We considered the most recent release before the date of the
report, and supposed that the bug is present in the system at that time and not in the
next release if it was fixed until. Other traditional datasets, contrarily, gather buggy
source code elements not for the preceding release version, but for the succeeding one,
noting that the source code element was faulty in pre-release state. This is the main
difference in the construction process between our and other traditional datasets. In
this manner, let us see how this construction works in case of the example. We fixed
bug A before version 2, which means bug A is present in the system in version 1, but
not in version 2. The same is true for bug B, however, bug B was finally fixed after
version 2, thus bug B also appears in the output of version 2, not only in version A. At
this point, bug A is already fixed, which causes it not to appear in version B. These
examples show how our dataset creation algorithm behaves when the lifecycle of a bug
overlaps a selected release version.

For the construction of the dataset we used the so-called traditional approach that
means we collected release versions with approximately six-month-long time intervals

12

Chapter 3. A New Public Bug Dataset and Its Evaluation in Bug Prediction

for every project. We used six-month-long intervals, since enough bugs and versions
are present for such long time intervals. Based on the age of a project, the number
of selected release versions could differ for each project. We selected the release ver-
sions manually from the list of releases located on the projects’ GitHub pages. It is a
common practice that projects use the release tag on a newly branched (from master)
version of the source code. Since we only use the master branch as the main source
of information, we had to perform a mapping when the hash id of the selected release
was not representing a commit located in the master. Developers usually branch from
master and then tag the branched version as release version, so our mapping algorithm
detects when (time stamp) the release tag was applied on a version and searches for
the last commit in the master branch that was made right before this timestamp.

We created a dataset for each of the selected release versions. Since bug tracking
was not always used from the beginning of the projects, we could not assign any bug
information to some of these earlier release versions. Also, the changing developer
activity could result in a lack of bug reports and, consequently, bug fixing commits are
rare. All of these factors play a role in the created datasets varying in the number of
bugs.

3.4 The Selected Projects and the Dataset
To select projects for the dataset construction, we examined many projects on GitHub.
We considered a number of criteria during our searching process. First of all, we
searched for Java language projects, especially larger ones, since these are more suitable
for this kind of analysis. It was also important to have an adequate number of commits
and to have many issues which are labeled as bugs. Moreover, it is desired to have
enough references to the appropriate bug report from the description of the commits.
In addition, we preferred the currently active projects. We found many projects during
our search, which would have fulfilled most aspects, but, in many cases, developers
used an external bug tracker system, so it would have been more difficult to process
them and it would have made the automatic extraction process more complex.

Table 3.1. The selected projects

Project Domain kLOC NC NBR Class File DB
Files

Android Universal I. L. Android library 13 996 89 639 478 12
ANTLR v4 Language processing 85 3,276 111 2,353 2,029 10
Broadleaf Commerce E-commerce framework 283 9,292 652 17,433 14,703 22
Eclipse p. for Ceylon IDE 165 6,847 666 4,512 2,129 1
Elasticsearch Search engine 677 13,778 2,108 54,562 23,252 24
Hazelcast Computing platform 515 16,854 2,354 25,130 14,791 18
jUnit Test framework 36 2,053 74 5,432 2,266 16
MapDB Database engine 83 1,345 175 2,740 962 12
mcMMO Game 42 4,552 657 1,393 1,348 12
Mission Control T. Monitoring platform 204 975 37 6,091 1,904 6
Neo4j Database engine 648 32,883 439 32,156 18,306 18
Netty Networking framework 282 6,780 1,039 11,528 8,349 18
OrientDB Database engine 380 10,197 174 11,643 9,475 12
Oryx Machine learning 47 363 36 2,157 1,400 8
Titan Database engine 119 3,830 121 5,312 3,713 12

Total 3,579 114,021 8,732 183,078 105,105 210

13

Chapter 3. A New Public Bug Dataset and Its Evaluation in Bug Prediction

The selected 15 software systems are listed in Table 3.1 with several additional
statistics. The first column shows the name of the projects (the corresponding GitHub
links are enumerated in the public downloadable package). The next column is the main
domain of these systems. We can see that there is a large variance between the projects
regarding the domain that strengthens the generality of the constructed dataset. The
next three columns are the thousand Lines of Code, the Number of Commits and the
Number of Bug Reports, respectively, on the master branch measured in May of 2015.
Class and File columns show the number of source code elements in the system at that
time. DB Files gives the number dataset files for the system. For instance, the Android
Universal Image Loader project has 12 DB Files in total, which means that there are
6 selected release versions and we constructed both a class and a file level dataset for
these release versions.

These datasets are in CSV format (comma separated values) for the sake of ease
of use. The first row in the CSV files contains header information, such as unique
identifier, source code position, source name, metric names, rule violation groups, and
number of bugs. The actual data in the rest of the lines follows this order. Each line
represents a source code element (class, file). In total, we selected 105 release versions
for the 15 projects, and created 210 datasets files for six-month-long intervals. The last
three columns in Table 3.1 present the number of entries constructed for each project.

Figure 3.2. Number of entries distribution

For a better visualization, Figure 3.2 depicts the above mentioned entry numbers
on a bar chart. Some projects have an outstanding number of class and file entries,
however, we are going to present results on every project one-by-one by evaluating the
best machine learning algorithms for different release versions. Out of the total 183,078
class level entries, Elasticsearch has 54,562 in 12 datasets, which is not surprising if we
consider the size of the project (677 kLOC). However, Neo4J has the most commits
(twice as much as the second project which is Hazelcast), it has considerably less bug
reports that results in a smaller dataset. In general, the bigger the project and the
more bug reports a project has the bigger dataset it results in.

14

Chapter 3. A New Public Bug Dataset and Its Evaluation in Bug Prediction

3.5 Evaluation
In this section, we will give a detailed investigation in order to answer our research
questions.

RQ 1: Is the constructed dataset usable for bug prediction? Which algorithms or algo-
rithm families perform the best in bug prediction using our newly created bug dataset?

We evaluated our dataset by applying machine learning algorithms for all of the
constructed datasets. The bug information in our dataset is present as the number
of bugs. To apply machine learning classification, first we grouped the source code
elements into two classes based on the occurrence of bugs in them. Instances with
non-zero bug cardinality form a class (defective elements) and instances with zero bug
number constitute the second separate class (non-defective elements), in other words,
we labeled the source code elements as buggy or not buggy.

If we look at the ratio between the number of defective and the number of non-
defective elements, we may notice that there are way more non-defective elements in
a software version than defective. Considering that we are planning to apply machine
learning algorithms, this could distort the results, because the non-buggy instances can
get more emphasis during the training phase. To deal with this issue, we applied a
random undersampling method to equalize the learning corpus [49, 99]. We randomly
selected elements from the non-buggy class to match the size of the buggy category.
This way we got a training set with the same number of positive and negative instances.
We repeated this kind of learning (with random undersampling) 10 times and calculated
an average. For the training, we used 10-fold cross validation and compared the results
based on precision, recall, and F-measure metrics where these metrics are defined in
the following way:

precision = TP

TP + FP

recall = TP

TP + FN

F −measure = 2 · precision · recall
precision+ recall

where TP (True Positive) is the number of classes/files that were predicted as faulty
and observed as faulty, FP (False Positive) is the number of classes/files that were
predicted as faulty, but observed as not faulty, FN (False Negative) is the number
of classes/files that were predicted as non-faulty, but observed as faulty. We carried
out the training with the popular machine learning library called Weka.3 It contains
algorithms from different categories, for instance Bayesian methods, support vector
machines, and decision trees. We used the following 13 algorithms:

• NaiveBayes (Bayes)
• NaiveBayesMultinomial (Bayes)
• Logistic (Function)
• SGD (Function)
3http://www.cs.waikato.ac.nz/ml/weka/

15

Chapter 3. A New Public Bug Dataset and Its Evaluation in Bug Prediction

• SimpleLogistic (Function)
• SMO (Function)
• VotedPerceptron (Function)
• DecisionTable (Rule)
• OneR (Rule)
• PART (Rule)
• J48 – C4.5 (Tree)
• RandomForest (Tree)
• RandomTree (Tree)
We analyzed software versions with six-month intervals from 15 projects. In total,

we selected 105 release versions. 80 of these versions contain bug information, which is
the consequence of our applied method, as it was shown in Section 3.3. There can be
versions, especially the last selected ones, where no bug information could be obtained.
5 out of the 80 versions contain too few buggy elements to apply machine learning. We
ended up with 75 suitable versions for the training on class level. On file level, we got
only 72, because in one buggy file there could be more than one buggy class, thus the
size of the training set for a specific version could differ based on the granularity of the
dataset.

Class level First, we investigated whether the class level datasets are suitable for
bug prediction purposes. Presenting the results for all 15 projects using all 13 machine
learning algorithms would end up in a giant table that human eyes would not be able
to process, or at least could not focus on the most relevant parts. Consequently, we
only present the best algorithms here to make it easier to overview and find the best
ones. Furthermore, for each project we selected the interval which has the most buggy
dataset entries to ensure the suitable size of the training corpus. Then, we used 10-fold
cross-validation for that interval as described earlier. We chose the algorithms simply

Table 3.2. F-measures at class level

Project SGD Simple
Logistic SMO PART Random

Forest

Android Universal I. L. 0.6258 0.5794 0.5435 0.6188 0.7474
ANTLR v4 0.7586 0.7234 0.7379 0.7104 0.8066
Broadleaf Commerce 0.8019 0.8084 0.8081 0.7813 0.8210
Eclipse p. for Ceylon 0.6891 0.7078 0.6876 0.7283 0.7503
Elasticsearch 0.7197 0.7304 0.7070 0.7171 0.7755
Hazelcast 0.7128 0.7189 0.6965 0.7267 0.7659
jUnit 0.7506 0.7649 0.7560 0.7262 0.7939
MapDB 0.7352 0.7667 0.7332 0.7421 0.7773
mcMMO 0.7192 0.6987 0.7203 0.6958 0.7418
Mission Control T. 0.7819 0.7355 0.7863 0.6862 0.8161
Neo4j 0.6911 0.7156 0.6835 0.6731 0.6767
Netty 0.7295 0.7437 0.7066 0.7521 0.7937
OrientDB 0.7485 0.7359 0.7310 0.7194 0.7823
Oryx 0.8012 0.7842 0.8109 0.7754 0.8059
Titan 0.7540 0.7558 0.7632 0.7301 0.7830

Avg. 0.7346 0.7312 0.7248 0.7189 0.7758

16

Chapter 3. A New Public Bug Dataset and Its Evaluation in Bug Prediction

Table 3.3. F-measures at file level

Project Logistic Simple
Logistic PART J48 Random

Forest

Android Universal I. L. 0.5983 0.6230 0.6632 0.6215 0.6214
ANTLR v4 0.7638 0.7941 0.7443 0.8267 0.7645
Broadleaf Commerce 0.7244 0.7206 0.7736 0.7797 0.7875
Eclipse p. for Ceylon 0.6664 0.6403 0.7141 0.7026 0.6837
Elasticsearch 0.6303 0.6280 0.6718 0.7025 0.7169
Hazelcast 0.6883 0.6980 0.6742 0.6790 0.6946
jUnit 0.6950 0.6530 0.6142 0.6613 0.6591
MapDB 0.7466 0.7337 0.7702 0.7790 0.8158
mcMMO 0.6864 0.6717 0.6583 0.6509 0.6951
Mission Control T. 0.7039 0.6700 0.6287 0.6573 0.7049
Neo4j 0.6621 0.7154 0.6766 0.6504 0.7150
Netty 0.6483 0.6549 0.6646 0.6823 0.7120
OrientDB 0.6868 0.6772 0.7157 0.7182 0.7234
Oryx 0.5537 0.5687 0.6500 0.6569 0.7331
Titan 0.6590 0.6813 0.6595 0.6407 0.6919

Avg. 0.6742 0.6753 0.6853 0.6939 0.7146

by calculating the averages of F-measure values and considered the best 5 algorithms.
Table 3.2 presents the F-measure values for these 5 algorithms at class level. As one
can observe, values can differ significantly project by project, which can be caused
by various reasons, such as the size of the constructed dataset. For instance, let us
consider the Android Universal Image Loader and the Broadleaf Commerce projects.
The Android project is the smallest in size, Broadleaf is one of the middle-sized projects.
Android has 639 class level entries in total (6 DB files), however Broadleaf has 17,433
entries (11 DB files), which is more suitable for being a training corpus. Nevertheless,
if we take a closer look at the results, we can see that the best F-measure values also
occurred in small projects such as in Oryx or MCT, ergo we cannot generalize this
conjecture to be true; however, further investigations should be done to prove that.
Tree-, function- and rule-based models performed the best in this scenario. F-measure
values are up to 0.8210, which is a promising result. Before answering the first research
question, let us investigate the results at file level as well.

File level File level is different in some aspects from class level. For example, a
completely distinct set of metrics (and also fewer) are calculated for file level entries.
The best file level machine learning results are shown in Table 3.3. At first glance, one
can see that the results are in a wider range than in the case of class level. However,
RandomForest has the highest F-measure values in case of files too. Furthermore, an-
other tree based algorithm (J48) also performs nicely in this case. Two function-based
(Logistic and SimpleLogistic) and one rule-based algorithm are in the top. Considering
these results, we can answer our research question.
Answering RQ 1: Considering F-measure values for the chosen releases we can
state that such datasets are suitable for bug prediction. In the bug prediction domain,
the RandomForest performed the best in addition to function and rule based machine
learning algorithms, thus one should consider these first to build prediction models using
our datasets.

17

Chapter 3. A New Public Bug Dataset and Its Evaluation in Bug Prediction

After having insight into the bug prediction results, another question is put into
words. The algorithms could perform better regarding recall, if they mark more class-
es/files buggy, of course with a decrease in precision. It is an important aspect to see
how many bugs are covered by the marked classes/files, and what proportion of class-
es/files were marked as buggy. In other words, we investigate the precision and recall
values in terms of bug coverage, and see how the F-Measure values are constructed.
RQ 2: Which machine learning algorithms or algorithm families perform the best in
bug coverage?

Contrary to the investigation for the previous research question, in this context we
cannot perform the same evaluation since we used random under sampling to equalize
the number of buggy and non-buggy source code elements for the learning corpus, thus
not all entries are included in the evaluation. For bug coverage, we used the previously
built 10 models (for the balanced training sets - with random under sampling, and
having the average as the result) and evaluated them on the whole dataset (without
random under sampling). During the evaluation, we used majority voting for an el-
ement (if more than five models predict the element as faulty then we tagged it as
faulty, otherwise we tagged it as non-faulty).

Table 3.4. Bug coverage at class level

Project Naive
Bayes PART J48 Random

Forest
Random

Tree

Android Universal I. L. 0.71 (0.21) 1.00 (0.39) 1.00 (0.47) 1.00 (0.42) 1.00 (0.42)
ANTLR v4 0.93 (0.20) 1.00 (0.35) 1.00 (0.26) 1.00 (0.27) 1.00 (0.27)
Broadleaf Commerce 0.60 (0.19) 1.00 (0.30) 0.94 (0.29) 1.00 (0.28) 1.00 (0.31)
Eclipse p. for Ceylon 0.79 (0.14) 1.00 (0.34) 0.98 (0.27) 1.00 (0.32) 1.00 (0.36)
Elasticsearch 0.86 (0.14) 1.00 (0.33) 1.00 (0.32) 1.00 (0.32) 1.00 (0.32)
Hazelcast 0.85 (0.14) 0.99 (0.32) 0.99 (0.31) 1.00 (0.31) 1.00 (0.32)
jUnit 0.82 (0.15) 1.00 (0.26) 1.00 (0.29) 1.00 (0.27) 1.00 (0.24)
MapDB 1.00 (0.25) 1.00 (0.29) 1.00 (0.21) 1.00 (0.26) 1.00 (0.26)
mcMMO 0.72 (0.18) 1.00 (0.40) 1.00 (0.39) 1.00 (0.41) 1.00 (0.36)
Mission Control T. 0.80 (0.21) 1.00 (0.22) 1.00 (0.32) 1.00 (0.18) 1.00 (0.17)
Neo4j 1.00 (0.14) 1.00 (0.34) 1.00 (0.27) 1.00 (0.36) 1.00 (0.39)
Netty 0.82 (0.18) 0.98 (0.34) 0.98 (0.32) 0.98 (0.35) 0.98 (0.33)
OrientDB 0.83 (0.18) 1.00 (0.31) 1.00 (0.32) 1.00 (0.31) 1.00 (0.33)
Oryx 0.92 (0.26) 1.00 (0.30) 0.93 (0.25) 1.00 (0.28) 1.00 (0.30)
Titan 0.66 (0.11) 0.94 (0.29) 0.94 (0.29) 0.94 (0.29) 0.94 (0.32)

Avg. 0.82 (0.18) 0.99 (0.32) 0.99 (0.31) 1.00 (0.31) 1.00 (0.31)

Table 3.4 and Table 3.5 show the bug coverage values (ratio of covered bugs) and
the ratio of how many classes or files have been tagged as faulty to obtain that bug
coverage ratio. Trees are performing the best, if we only consider the bug coverage,
however, they tagged more than 31% of the source code elements as buggy in average.
NaiveBayes is the other end of the story, since it has the lowest average in bug coverage
values (0.82 can be acceptable), but tags the smallest amount of entries as buggy. Same
results occurred at file level, but here we present some other algorithms (not the best
five) to show the differences in machine learning algorithms. We can state that our
dataset is useful for finding bugs in software systems with high bug coverage ratio, still
tagging only a fair amount of entries as buggy.

18

Chapter 3. A New Public Bug Dataset and Its Evaluation in Bug Prediction

Table 3.5. Bug coverage at file level

Project Random
Forest

Decision
Table SGD Logistic Naive

Bayes

Android Universal I. L. 1.00 (0.46) 1.00 (0.68) 0.46 (0.10) 0.81 (0.27) 0.81 (0.33)
ANTLR v4 1.00 (0.32) 0.91 (0.30) 0.91 (0.20) 0.91 (0.24) 0.82 (0.18)
Broadleaf Commerce 1.00 (0.33) 0.88 (0.34) 0.78 (0.21) 0.80 (0.24) 0.69 (0.14)
Eclipse p. for Ceylon 1.00 (0.39) 1.00 (0.42) 0.76 (0.21) 0.83 (0.25) 0.65 (0.11)
Elasticsearch 1.00 (0.39) 0.94 (0.35) 0.82 (0.19) 0.83 (0.24) 0.73 (0.16)
Hazelcast 1.00 (0.38) 0.95 (0.37) 0.87 (0.21) 0.89 (0.28) 0.80 (0.12)
jUnit 1.00 (0.44) 0.94 (0.30) 0.83 (0.25) 0.83 (0.31) 0.89 (0.20)
MapDB 1.00 (0.33) 1.00 (0.36) 0.93 (0.19) 0.97 (0.28) 0.90 (0.25)
mcMMO 1.00 (0.42) 0.93 (0.44) 0.81 (0.27) 0.82 (0.29) 0.75 (0.21)
Mission Control T. 1.00 (0.25) 1.00 (0.38) 1.00 (0.24) 1.00 (0.24) 1.00 (0.19)
Neo4j 1.00 (0.30) 1.00 (0.38) 1.00 (0.24) 1.00 (0.25) 0.80 (0.12)
Netty 1.00 (0.44) 0.99 (0.60) 0.85 (0.34) 0.88 (0.36) 0.73 (0.14)
OrientDB 1.00 (0.41) 0.97 (0.49) 0.95 (0.42) 0.92 (0.38) 0.79 (0.14)
Oryx 1.00 (0.43) 1.00 (0.66) 0.64 (0.17) 0.73 (0.32) 0.36 (0.09)
Titan 1.00 (0.37) 1.00 (0.45) 1.00 (0.64) 0.89 (0.38) 0.72 (0.11)

Avg. 1.00 (0.38) 0.97 (0.43) 0.84 (0.26) 0.87 (0.29) 0.76 (0.17)

Answering RQ 2: Tree based machine learning algorithms performed best in this
scenario, with the highest bug coverage ratio. At class level, circa 31% of the elements
were tagged as buggy, but the F-measure values are still high (averaged higher than
0.77). For file level, the values are lower (more entries have to be marked as buggy and
the F-measure values are about 0.71), but in total the results are very similar to class
level.

Since there is a lack of space to introduce wide tables here, we present our whole
set of results as an online appendix together with the full bug dataset at the following
URL: http://www.inf.u-szeged.hu/~ferenc/papers/GitHubBugDataSet/

3.6 Summary
In this chapter, we proposed an approach for creating a bug dataset for selected release
versions of 15 projects in an automatic way using the popular source code hosting
platform named GitHub. We gathered the 15 Java projects from different domains to
fulfill the need of generality. After constructing six-month-long release intervals, we
collected bugs and the corresponding source code elements and organized them into
datasets. Our dataset is differentiated from the previous ones by gathering data from
GitHub, the approach for constructing the dataset is slightly different from previous
ones, and we also included a wider set of static source code metrics. We made our
new bug dataset public to augment the set of available datasets with a recent one. We
applied 13 machine learning algorithms to investigate whether the dataset is usable for
bug prediction purposes. We experienced quite good results for tree based algorithms
(Random Forest, J48, Random Tree) with respect of F-measure values and bug coverage
ratios. In case of F-measure, we could reach higher than 0.8 values in some cases at
class level (averaged 0.77), and little lower, but similar values could be granted at
file level (averaged 0.71). Perfect or nearly-perfect bug coverage could be reached by
tagging around 31% of the source code elements as buggy in case of RandomTree and

19

http://www.inf.u-szeged.hu/~ferenc/papers/GitHubBugDataSet/

Chapter 3. A New Public Bug Dataset and Its Evaluation in Bug Prediction

RandomForest, which are quite promising results. The same is true for file level as well,
however, more entries have to be marked as buggy to achieve perfect bug coverage. If
precision is preferred over recall then using Naive Bayes could be a good option.

20

“I don't care if it works on your machine! We
are not shipping your machine!”

— Vidiu Platon

4
A Unified Public Bug Dataset and Its

Assessment in Bug Prediction

4.1 Overview
Finding and eliminating bugs in software systems has always been one of the most
important issues in software engineering. Software testing is often limited because of
the given resources, thus a more focused resource allocation should be applied. Bug
localization is conducted when we want to find the exact locations of the occurring
bugs. Bug localization is a crucial and very expensive part of software engineering,
therefore, many researches have examined this topic and several different approaches
were proposed that tried to reduce costs and create more powerful methods [106].

Bug or defect prediction is a process by which we try to learn from mistakes com-
mitted in the past and build a prediction model to leverage the location and amount of
future bugs. Many research papers were published on bug prediction, that introduced
new approaches that aimed to achieve better precision values [112, 109, 44, 101]. Un-
fortunately, a reported bug is rarely associated with the source code lines that caused
it or with the corresponding source code elements (e.g. classes, methods). Therefore,
to carry out such experiments, bugs have to be associated with source code (or with
classes or methods) which in and of itself is a difficult task (this is where bug localiza-
tion steps in). It is necessary to use a version control system and a bug tracking system
properly during the development process, and even in this case it is still challenging to
associate bugs with the problematic source code locations.

Although several algorithms were published on how to associate a reported bug
with the relevant, corresponding defective source code [34, 105, 28], only few such
bug association experiments were carried out. Furthermore, not all of these studies
published the bug dataset or even if they did, closed source systems were used which
limits the verifiability and reusability of the bug dataset. In spite of these facts, several
bug datasets (containing information about open-source software systems) were pub-
lished and made publicly available for further investigations or to replicate previous
approaches [100, 90].

21

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

The main advantage of these bug datasets is that if someone wants to create a
new bug prediction model or validate an existing one, it is enough to use a previously
created bug dataset instead of building a new one, which is very resource consuming. It
is common in these bug datasets that all of them store some specific information about
the bugs, such as the containing source code element(s) with their source code metrics
or any additional bug related information. Since different bug prediction approaches
try to use various sources of information as predictors (independent variables), different
bug datasets are constructed. Defect prediction approaches and hereby bug datasets
can be categorized into larger groups based on the captured characteristics [37]:

• Datasets using process metrics [73, 75].
• Datasets using source code metrics [15, 23, 96].
• Datasets using previous defects [62, 82].

Different bug prediction approaches use various public or private bug datasets.
Although these datasets seem very similar, they are often very different in some aspects,
which is also true within the categories mentioned above. As in previous chapters, we
will focus solely on datasets that use static source code metrics. Since this category
itself has grown so immense, it is worth studying it as a separate unit. This category
also has many dissimilarities between the existing datasets, including the granularity
of the data (source code elements can be files, classes, or methods, depending on the
purpose of the given research or on the capabilities of the tools used to extract data)
and the representation of element names (different tools may use different notations).
For the same reason, the set of metrics can be different as well. Even if the name
or the abbreviation of a metric calculated by different tools is the same, it can have
different meanings because it can be defined or calculated in a slightly different way.
The bug related information given for a source code element can also be contrasting.
An element can be labeled with whether or not it contains a bug, but it can also show
how many bugs are related to that given source code element. From the information
content perspective, it is less important, but not negligible that the format of the files
containing the data can be CSV (Comma Separated Values), XML, or ARFF (which
is the input format of Weka [43]), and these datasets can be found on different places
on the Internet.

A constructed dataset can represent a good input for machine learning algorithms
to build prediction models [14, 66, 70]. Some researchers argued that the used dataset is
not as important as the applied machine learning algorithm [69]. However, the selection
of software metrics from which a prediction model is built can severely influence the
accuracy and the complexity of the model [86].

Finally, there is usually a lack of information about the reliability and no specifi-
cation is given on how a given dataset should be used. On the other hand, it would
be a difficult task and would require a lot of effort to validate the metric values and
the number of bugs, especially for systems where the source code is not available for
the public. In spite of all these drawbacks, researchers should consider using these bug
datasets first, and not create new, specialized ones if it is possible. They can build new
ones if needed, but first they should be attentive and try to use public datasets and
further improve them. Our contributions can be listed as follows:

• Collection of the bug datasets and the source code of included projects.
• Unification of the collected bug datasets.

22

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

• Extension of the metrics suites.
• Assessment of the datasets.
• Making the results publicly available.

4.2 Data Collection
Gathered datasets were briefly introduced in Chapter 2. In the remaining of this chap-
ter, we will go into the details and see how we collected and analyzed these datasets.
Data collection can be divided into two parts, the first part is the collection and the
evaluation of the literature review papers in the subject area. In the second part, we
used the literature review papers, and the case studies presented in them, to collect
the bug datasets themselves with the corresponding source code.

Collecting literature review papers Starting from the early 70’s [88, 52] a large
number of studies were introduced in connection with software faults. According to Yu
et al. [110], 729 studies were published until 2005 and 1564 until 2015 on bug prediction
(the number of studies has doubled in 10 years). From time to time, the enormous
number of new publications in the topic of software faults made it unavoidable to
collect the most important advances in literature review papers. By using the existing
literature review papers, we were able to focus on the empirical aspects of the collected
datasets.

Collecting bug datasets We went through the union of the references used in the
review studies and filtered out the relevant papers based on keywords, title, abstract
and the introduction. Then we collected all available information about the used bug
datasets located in the remaining set of scientific papers. We took into consideration
the following properties:

• Basic information (authors, title, date, publisher).
• Accessibility of the bug dataset (public, non public, partially public).
• Availability of the source code.

The latter two were extremely important when investigating the datasets, since we
could not construct a unified dataset without obtaining the appropriate underlying
data. As we collected the literature review papers, we created a list of the found
datasets and repositories. Furthermore, we included a few additional papers which
were published recently, so they were not included in any previous literature review.
We considered the following list to check whether a dataset meets our requirements:

• the dataset is publicly available,
• source code is accessible for the included systems,
• source code elements are characterized by static source code metrics,
• bug information is provided,
• bugs are associated with the relevant source code elements,
• included projects were written in Java,
• the dataset provides bug information at file/class level, and

23

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

• the source code element names are provided and unambiguous (the referenced
source code is clearly identifiable).

If any condition was missing then we had to exclude the subject system or the
whole dataset from the study. The list of found public datasets were enumerated in
Chapter 2. In our research, we could only include the following datasets:

• PROMISE [68]
• Eclipse Bug Dataset [113]
• Bug Prediction Dataset [36]
• Bugcatchers Bug Dataset [45]
• GitHub Bug Dataset [118] (our own dataset which we presented in Chapter 3)

Some datasets were only excluded from the unification because they were published
after our study was already in progress. In the following sections, we will describe the
chosen datasets in more details and investigate each dataset’s peculiarities and we will
also look for common characteristics, but before doing so, we will show some basic
statistics about the datasets. Table 4.1 describes the size of the datasets and also
presents the number of software systems included. Number of versions included in the
datasets are also shown. For instance, the Eclipse Bug Dataset includes 3 versions of
Eclipse. We used the cloc1 program to measure the Lines of Code. We only considered
Java files and we also neglected blank lines.

Table 4.1. Basic statistics about the public bug datasets

Dataset Systems Versions Lines of Code
PROMISE 14 45 2,805,253
Eclipse Bug Dataset 1 3 3,087,826
Bug Prediction Dataset 5 5 1,171,220
Bugcatchers Bug Dataset 3 3 1,833,876
GitHub Bug Dataset 15 105 1,707,446

4.3 Data Processing
Although the found public datasets have similarities (e.g. containing source code met-
rics and bug information), they are very inhomogeneous. For example, they contain
different metrics, which were calculated with different tools and for different kinds of
code elements. The file formats are different as well, therefore, it is very difficult to
use these datasets together. Consequently, our aim was to transform them into a uni-
fied format and to extend them with source code metrics that are calculated with the
same tool for each system. In this section, we will describe the steps we performed to
produce the unified bug dataset.

First, we transformed the existing datasets to a common format. This means that
if a bug dataset for a system consists of separate files we conflated them into one
file. Next, we changed the CSV separator in each file to comma (,) and renamed

1https://www.npmjs.com/package/cloc

24

https://www.npmjs.com/package/cloc

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

the number of bug column in each dataset to ’bug’ and the source code element col-
umn name to ’filepath’ or ’classname’ depending on the granularity of the dataset.
Finally, we transformed the source code element identifier into the standard form (e.g.
org.apache.tools.ant.AntClassLoader).

4.3.1 Metrics Calculation
The bug datasets contain different kinds of metric sets, which were calculated with
different tools, therefore, even if the same metric name appears in two or more different
datasets, we cannot be sure they mean exactly the same metric. To eliminate this
deficiency, we analyzed all the systems with the same tool. For this purpose, we used the
free and open-source OpenStaticAnalyzer(OSA)2 static source code analyzer tool that
is able to analyze Java systems (among other languages). It calculates more than 50
different kinds (size, complexity, coupling, cohesion, inheritance, and documentation) of
source code metrics for packages and class-level elements, about 30 metrics for methods,
and a few ones for files. OpenStaticAnalyzer detects code duplications (Type-1 and
Type-2 clones) as well, and calculates code duplication metrics for packages, classes,
and methods. OpenStaticAnalyzer has two different kinds of textual outputs: the first
one is an XML file that contains, among others, the whole structure of the source code
(files, packages, classes, methods), their relationships and the metric values for each
element (e.g. file, class, method). The other output format is CSV. Since different
elements have different metrics, there is one CSV file for each kind of element (one for
packages, one for classes, and so on).

For calculating the new metric values we needed the source code itself. Since all
datasets belonged to a release version of a given software, therefore, if the software
was open-source and the given release version was still available, we could manage to
download and analyze it. This way, we obtained two results for each system: one from
the downloaded bug datasets and one from the OpenStaticAnalyzer analysis.

4.3.2 Dataset Unification
We merged the original datasets with the results of OSA by using the “unique identi-
fiers” of the elements (Java standard names at class level and paths at file level). More
precisely, the basis of the unified dataset was our source code analysis result and it was
extended with the data of the given bug dataset. This means that we went through
all elements of the bug dataset and if the “unique identifier” of an element was found
in our analysis result then these two elements were conjugated (paired the original
dataset entry with the one found in the result of OSA), otherwise it was left out from
the unified dataset. Table 4.2 and Table 4.3 show the results of this merging process:
column OSA shows how many elements OpenStaticAnalyzer found in the analyzed
systems, column Orig. presents the number of elements originally in the datasets, and
column Dropped tells us how many elements of the bug datasets could not be paired,
and so they were left out from the unified dataset. Although these numbers are very
good, we had to “modify” a few systems to achieve this, but there were cases where we
simply could not solve the inconsistencies. The details of the source code modifications
and main reasons for the dropped elements were the following:

2https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer

25

https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

Table 4.2. Merging results – Class level datasets

Dataset Name OSA Orig. Dropped

PROMISE

Ant 1.3 530 125 0
Ant 1.4 602 178 0
Ant 1.5 945 293 0
Ant 1.6 1,262 351 0
Ant 1.7 1,576 745 0
Camel 1.0 734 339 0
Camel 1.2 1,348 608 13 (+5)
Camel 1.4 2,339 872 0 (+31)
Camel 1.6 3,174 965 0 (+38)
Ckjm 1.8 9 10 1
Forrest 0.6 159 6 0
Forrest 0.7 76 29 0
Forrest 0.8 53 32 0
Ivy 1.4 421 241 0
Ivy 2.0 637 352 0
JEdit 3.2 552 272 0
JEdit 4.0 647 306 0
JEdit 4.1 722 312 0
JEdit 4.2 888 367 0
JEdit 4.3 1,181 492 0
Log4J 1.0 180 135 0
Log4J 1.1 217 109 0
Log4J 1.2 410 205 0
Lucene 2.0 758 195 1
Lucene 2.2 1,394 247 1
Lucene 2.4 1,522 340 1
Pbeans 1 38 26 0
Pbeans 2 77 51 0
Poi 1.5 472 237 0
Poi 2.0 667 314 0
Poi 2.5 780 385 0
Poi 3.0 1,508 442 0
Synapse 1.0 319 157 0
Synapse 1.1 491 222 0
Synapse 1.2 618 256 0
Velocity 1.4 275 196 0
Velocity 1.5 377 214 1
Velocity 1.6 458 229 1
Xalan 2.4 906 723 0
Xalan 2.5 992 803 0
Xalan 2.6 1,217 885 0
Xalan 2.7 1,249 909 0
Xerces 1.2 564 440 0
Xerces 1.3 596 453 0
Xerces 1.4 782 588 42

Bug
Prediction
Dataset

Eclipse JDT Core 3.4 2,486 997 0
Eclipse PDE UI 3.4.1 3,382 1,497 6
Equinox 3.4 742 324 5
Lucene 2.4 1,522 691 21
Mylyn 3.1 3,238 1,862 457

GitHub
Bug

Dataset

Android U. I. L. 1.7.0 84 73 0
ANTLR v4 4.2 525 479 0
Elasticsearch 0.90.11 6,480 5,908 0
jUnit 4.9 770 731 0
MapDB 0.9.6 348 331 0
mcMMO 1.4.06 329 301 0
MCT 1.7b1 2,050 1,887 0
Neo4j 1.9.7 6,705 5,899 0
Netty 3.6.3 1,300 1,143 0
OrientDB 1.6.2 2,098 1,847 0
Oryx 562 533 0
Titan 0.5.1 1,770 1,468 0
Eclipse p. for Ceylon 1.1.0 1,651 1,610 0
Hazelcast 3.3 3,765 3,412 0
Broadleaf C. 3.0.10 2,094 1,593 0

Sum All 76,623 48,242 624

26

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

Table 4.3. Merging results – File level datasets

Dataset Name OSA Orig. Dropped
Eclipse
Bug

Dataset

Eclipse 2.0 6,751 6,729 0
Eclipse 2.1 7,909 7,888 0
Eclipse 3.0 10,635 10,593 0

Bugcatchers
Bug

Dataset

Apache Commons 491 191 0
ArgoUML 0.26 Beta 1,752 1,582 3
Eclipse JDT Core 3.1 12,300 560 25

GitHub
Bug

Dataset

Android U. I. L. 1.7.0 63 63 0
ANTLR v4 4.2 411 411 0
Elasticsearch 0.90.11 3,540 3,035 0
jUnit 4.9 308 308 0
MapDB 0.9.6 137 137 0
mcMMO 1.4.06 267 267 0
MCT 1.7b1 1,064 413 0
Neo4j 1.9.7 3,291 3,278 0
Netty 3.6.3 914 913 0
OrientDB 1.6.2 1,503 1,503 0
Oryx 443 280 0
Titan 0.5.1 981 975 0
Ceylon for Eclipse 1.1.0 699 699 0
Hazelcast 3.3 2,228 2,228 0
Broadleaf C. 3.0.10 1,843 1,719 0

Sum All 57,530 43,772 28

Camel 1.2: In the org.apache.commons.logging there were 13 classes in the origi-
nal dataset that we did not find in the source code. There were 5 package-info.java
files in the system, but these files never contain any Java classes, since they are used
for package level Javadoc purposes, therefore, OpenStaticAnalyzer did not find such
classes.
Camel 1.4: Besides the 7 package-info.java files, the original dataset contained infor-
mation about 24 Scala files (they are also compiled to byte code), therefore, OpenStat-
icAnalyzer did not analyze them.
Camel 1.6: There were 8 package-info.java and 30 Scala files.
Ckjm 1.8: There was a class in the original dataset that did not exist in version 1.8.
Forrest-0.8: There were two different classes that appeared twice in the source code,
therefore, we deleted the 2 copies from the etc/test-whitespace subdirectory.
Log4j: There was a contribs directory which contained the source code of different
contributors. These files were put into the appropriate sub-directories as well (where
they belonged according to their packages), which means that they occurred twice in
the analysis and this prevented their merging. Therefore, in these cases we analyzed
only those files that were in their appropriate subdirectories and excluded the files
found in the contribs directory.
Lucene: In all three versions, there was an org.apache.lucene.search.RemoteSearchable
_Stub class in the original dataset that did not exist in the source code.
Velocity: In versions 1.5 and 1.6 there were two org.apache.velocity.app.event.imple-
ment.EscapeReference classes in the source code, therefore, it was impossible to conju-
gate them by using their “unique identifiers” only.
Xerces 1.4.4: Although the name of the original dataset and the corresponding pub-
lication state that this is the result of Xerces 1.4.4 analysis, we found that 256 out of

27

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

the 588 elements did not exist in that version. We examined a few previous and fol-
lowing versions as well, and it turned out that the dataset is much closer to 2.0.0 than
to 1.4.4, because only 42 elements could not be conjugated with the analysis result of
2.0.0. Although version 2.0.0 was still not matched perfectly, we did not find a “closer
version”, therefore, we used Xerces 2.0.0 in this case.
Eclipse JDT Core 3.4: There were a lot of classes which appeared twice in the
source code: once in the “code” and once in the “test” directory, therefore we deleted
the test directory.
Eclipse PDE UI 3.4.1: The missing 6 classes were not found in its source code.
Equinox 3.4: Three classes could not be conjugated, because they did not have a
unique name (there are more classes with the same name in the system) while two
classes were not found in the system.
Lucene 2.4 (BPD): 21 classes from the original dataset were not present in the source
code of the analyzed system.
Mylyn 3.1: 457 classes were missing from our analysis that were in the original
dataset, therefore, we downloaded different versions of Mylyn, but still could not find
the matching source code. We could not achieve better result without knowing the
proper version.
ArgoUML 0.26 Beta: There were 3 classes in the original dataset that did not exist
in the source code.
Eclipse JDT Core 3.1: There were 25 classes that did not exist in the analyzed
system.
GitHub Bug Dataset: Since OpenStaticAnalyzer is the open-source version of
SourceMeter, the tool we used to construct the dataset presented in Chapter 3, we
could easily merge the results. However, the class level bug datasets contained ele-
ments having the same “unique identifier” (since class names are not the standard Java
names in that case), so this information was not enough to conjugate them. Luckily,
the paths of the elements were also available and we used them as well, therefore, all
elements could be conjugated. Since we performed a machine learning step on the
versions that contain the most bugs, we decided to select these release versions and
present the characteristics of these release versions. We also used these versions of the
systems to include in the unified bug dataset.

As a result of this process, we obtained a unified bug dataset which contains all of
the public datasets in a unified format, furthermore, they were extended with the same
set of metrics provided by the OpenStaticAnalyzer tool. The last lines of Table 4.2
and Table 4.3 show that only 1.29% (624 out of 48,242) of the classes and 0.06% (28
out of 43,772) of the files could not be conjugated, which means that only 0.71% (652
out of 92,014) of the elements were left out from the unified dataset.

In many cases, the analysis results of OpenStaticAnalyzer contained more elements
than the original datasets. Since we did not know how the bug datasets were produced,
we could not give an exact explanation for the differences, but we list some possible
causes:

• In some cases, we could not find the proper source code for the given system
(e.g. Xerces 1.4.4 or Mylyn), so two different, but close versions of the same
system might be conjugated.

• OpenStaticAnalyzer takes into account nested, local, and anonymous classes,
while some datasets simply associated Java classes with files.

28

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

4.4 Original and Extended Metrics Suites
In this section we present the metrics proposed by each dataset. Additionally, we will
show a metrics suite that is used by the unified dataset we have constructed.

4.4.1 Original Metric Suites
The authors [68] calculated the metrics of the PROMISE dataset with the tool called
ckjm. All metrics, except McCabe’s Cyclomatic Complexity (CC), are class level met-
rics. Besides the CK metrics they also calculated some additional metrics shown in
Table 4.4.

Table 4.4. Metrics used in PROMISE dataset

Name Abbr.
Weighted methods per class WMC
Depth of Inheritance Tree DIT
Number of Children NOC
Coupling between object classes CBO
Response for a Class RFC
Lack of cohesion in methods LCOM
Afferent couplings Ca
Efferent couplings Ce
Number of Public Methods NPM
Lack of cohesion in methods (by Henderson-Sellers) LCOM3
Lines of Code LOC
Data Access Metric DAM
Measure of Aggregation MOA
Measure of Functional Abstraction MFA
Cohesion Among Methods of Class CAM
Inheritance Coupling IC
Coupling Between Methods CBM
Average Method Complexity AMC
McCabe’s cyclomatic complexity CC
Maximum McCabe’s cyclomatic complexity MAX_CC
Average McCabe’s cyclomatic complexity AVG_CC
Number of files (compilation units) NOCU

In the Eclipse Bug Dataset, there are two types of predictors. By parsing the
structure of the obtained abstract syntax tree, they calculated the number of nodes
for each type in a package and in a file (e.g. the number of return statements in a
file) [113]. By implementing visitors to the Java parser of Eclipse, they also calculated
various complexity metrics at method, class, file, and package level. Then they used
avg, max, total avg, total max aggregation techniques to accumulate to file and package
level, which are the final outputs of their approach. The complexity metrics used in
the Eclipse dataset are listed in Table 4.5.

The Bug Prediction Dataset collects product and change (process) metrics. The
authors [36] produced the corresponding product and process metrics at class level.
Besides the classic CK metrics, they calculated some additional object-oriented metrics
that are listed in Table 4.6.

The Bugcatchers Bug Dataset is a bit different from the previous datasets, since it
does not contain traditional software metrics, but the number of bad smells for files.
They used five bad smells, which are the following: Data Clumps, Message Chains,
Middle Man, Speculative Generality, and Switch Statements. Besides, in the CSV file,

29

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

Table 4.5. Metrics used in Eclipse Bug Dataset

Name Abbr.
Number of method calls FOUT
Method lines of code MLOC
Nested block depth NBD
Number of parameters PAR
McCabe cyclomatic complexity VG
Number of field NOF
Number of method NOM
Number of static fields NSF
Number of static methods NSM
Number of anonymous type declarations ACD
Number of interfaces NOI
Number of classes NOT
Total lines of code TLOC
Number of files (compilation units) NOCU

Table 4.6. Product metrics used in Bug Prediction Dataset

Name Abbr.
Number of other classes that reference the class FanIn
Number of other classes referenced by the class FanOut
Number of attributes NOA
Number of public attributes NOPA
Number of private attributes NOPRA
Number of attributes inherited NOAI
Number of lines of code LOC
Number of methods NOM
Number of public methods NOPM
Number of private methods NOPRM
Number of methods inherited NOMI

there are four source code metrics (blank, comment, code, codeLines), which are not
explained in the corresponding publication [45].

The GitHub Bug Dataset used the SourceMeter static analyzer to calculate the
static source code metrics, including software product metrics, code clone metrics,
and rule violation metrics. The rule violation metrics were not used in our research,
therefore, Table 4.7 shows only the list of the software product and code clone metrics.

4.4.2 Unified Bug Dataset
The unified dataset contains all the datasets with their original metrics and with further
metrics that we calculated with OpenStaticAnalyzer. The set of metrics calculated by
OpenStaticAnalyzer concurs with the metric set of the GitHub Bug Dataset because
SourceMeter is a product based on the free and open-source OpenStaticAnalyzer tool.
Therefore, all datasets in the Unified Bug Dataset are extended with the metrics listed
in Table 4.7 except the GitHub Bug Dataset, because it contains the same metrics
originally.

In spite of the fact, that several of the original metrics can be matched with the
metrics calculated by OpenStaticAnalyzer, we decided to keep all the original metrics
for every system included in the unified dataset, because they can differ in their defi-
nitions or in the way of their calculation. One can simply use the unified dataset and
discard the metrics that were calculated by OpenStaticAnalyzer if they only want to

30

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

Table 4.7. Metrics used in GitHub Bug Dataset

Name Abbr. Name Abbr.
API Documentation AD Number of Local Public Methods NLPM
Clone Classes CCL Number of Local Setters NLS
Clone Complexity CCO Number of Methods NM
Clone Coverage CC Number of Outgoing Invocations NOI
Clone Instances CI Number of Parents NOP
Clone Line Coverage CLC Number of Public Attributes NPA
Clone Logical Line Coverage CLLC Number of Public Methods NPM
Comment Density CD Number of Setters NS
Comment Lines of Code CLOC Number of Statements NOS
Coupling Between Object classes CBO Public Documented API PDA
Coupling Between Obj. classes Inv. CBOI Public Undocumented API PUA
Depth of Inheritance Tree DIT Response set For Class RFC
Documentation Lines of Code DLOC Total Comment Density TCD
Lack of Cohesion in Methods 5 LCOM5 Total Comment Lines of Code TCLOC
Lines of Code LOC Total Lines of Code TLOC
Lines of Duplicated Code LDC Total Logical Lines of Code TLLOC
Logical Lines of Code LLOC Total Number of Attributes TNA
Logical Lines of Duplicated Code LLDC Total Number of Getters TNG
Nesting Level NL Total Number of Local Attributes TNLA
Nesting Level Else-If NLE Total Number of Local Getters TNLG
Number of Ancestors NOA Total Number of Local Methods TNLM
Number of Attributes NA Total Number of Local Public Attr. TNLPA
Number of Children NOC Total Number of Local Public Meth. TNLPM
Number of Descendants NOD Total Number of Local Setters TNLS
Number of Getters NG Total Number of Methods TNM
Number of Incoming Invocations NII Total Number of Public Attributes TNPA
Number of Local Attributes NLA Total Number of Public Methods TNPM
Number of Local Getters NLG Total Number of Setters TNS
Number of Local Methods NLM Total Number of Statements TNOS
Number of Local Public Attributes NLPA Weighted Methods per Class WMC

work with the original metrics. Furthermore, this provides an opportunity to confront
the original and the OpenStaticAnalyzer metrics.

Instead of presenting all the definitions of the metrics here, we give an external
resource to show metric definitions because of a lack of space. All the metrics and
their definitions can be found in the Unified Bug Dataset file reachable in the following
URL: http://www.inf.u-szeged.hu/~ferenc/papers/UnifiedBugDataSet.

4.4.3 Comparison of the Metrics
In the unified dataset, each element has a number of metrics, but these values were
calculated by different tools, therefore, we assessed them in more detail to get answers
to questions like the following ones:

• Do two metrics with the same name have the same meaning?
• Do metrics with different names have the same definition?
• Can two metrics with the same definition be different?
• What are the root causes of the differences if the metrics share the definition?
Three out of the five datasets contain class level elements, but unfortunately, for

each dataset a different analyzer tool was used to calculate the metrics (see Table 4.12).
To be able to compare class level metrics calculated by all the tools used, we needed at

31

http://www.inf.u-szeged.hu/~ferenc/papers/UnifiedBugDataSet

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

Table 4.8. Number of elements in the merged systems

Name Merged Remained
elements

Bug Prediction Dataset 11,370 4,167
Eclipse Bug Dataset 25,295 25,210
Bugcatchers bug Dataset 14,543 2,305

least one dataset for which all metrics of all three tools are available. We were already
familiar with the usage of the ckjm tool, so we chose to calculate the ckjm metrics for
the Bug Prediction dataset. This way, we could assess all metrics of all tools, because
the Bug Prediction dataset was originally created with Moose, so we have extended it
with the OpenStaticAnalyzer metrics, and also – for the sake of this comparison – with
ckjm metrics.

In the case of the three file level datasets, the used analyzer tools were unavailable,
therefore, we could only compare the file level metrics of OpenStaticAnalyzer with the
results of the other two tools separately on Eclipse and Bugcatchers Bug datasets.

In each comparison, we merged the different result files of each dataset into one,
which contained the results of all systems in the given dataset and deleted those ele-
ments that did not contain all metric values. The resulting spreadsheet files can also
be found at: http://www.inf.u-szeged.hu/~ferenc/papers/UnifiedBugDataSet.
Table 4.8 shows how many classes or files were in the given dataset and how many of
them remained.3 We calculated the basic statistics (minimum, maximum, average, me-
dian, and standard deviation) of the examined metrics and compared them. Besides,
we calculated the pairwise differences of the metrics for each element and examined its
basic statistics as well. Furthermore, we performed a dependent, paired t-test to see
if the calculated metrics of the different tools are the same, or they are significantly
different. In our test, the H0 hypothesis means that the two metric samples are equal
and H1 means that they are statistically different. Our t-test formula is the following:

t = X̄D − µ
SD√
n

, where X̄D is the mean difference (the average of the differences), µ shows what we
expect when the null hypothesis is true. In our case this is 0 to mark that no difference
is present between the two samples. SD√

n
is the average variation, which is the standard

error of the difference scores: SD is the standard deviation, and n gives the size of the
sample. We used 95% confidence level in the tests to calculate the p-values.

Class level metrics The unified bug dataset contained the class level metrics of
OpenStaticAnalyzer and Moose on Bug Prediction dataset. We downloaded the Java
binaries of the systems in this dataset and used ckjm version 2.2 to calculate the metrics.
The first difference is that while OpenStaticAnalyzer and Moose calculate metrics on

3The big differences between the number of merged and remained elements is explained in Sec-
tion 4.3.2, see Table 4.2 and Table 4.3.

32

http://www.inf.u-szeged.hu/~ferenc/papers/UnifiedBugDataSet

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

source code, ckjm uses Java bytecode and takes “external dependencies” into account,
therefore, we expected differences, for instance, in the coupling metric values.

We compared the metric sets of the three tools and found that, for example, CBO
and WMC have different definitions. On the other hand, efferent coupling metric is a
good example for the metric which is calculated by all three tools, but with different
names (see Table 4.9, CBO row). In the following paragraphs, we only examine those
metrics whose definitions coincide in all three tools even if their names differ. Table 4.9
shows these metrics where the Metric column contains the abbreviation of the most
widely used name of the metric. The Tool column presents the analyzer tools, in the
Metric name column, the metric names are given using the notations of the different
datasets. The “tool1−tool2” means the pairwise difference where, for each element, we
extracted the value of tool2 from the value of tool1 and the name of this “new metric” is
diff. The rest of the columns present the basic statistics of the metrics and the p-values
(where it is appropriate). Next, we will analyze their values one metric at a time.

WMC: This metric expresses the complexity of a class as the sum of the complexity
of its methods. In its original definition, the method complexity is deliberately not
defined exactly; and usually the uniform weight of 1 is used. In this case, this variant
of WMC is calculated by all three tools. Its basic statistics are more or less the same
and the pairwise values of OpenStaticAnalyzer and ckjm are also close to each other
(see OSA−ckjm row), but they very much differ from Moose. Among the Moose
results, there were several very low values where the other tools found a great number
of methods and that caused the extreme difference (e.g. the max. value of OSA−Moose
is 420).

CBO: In this definition, CBO counts the number of classes the given class depends
on. Although it is a coupling metric, it counts efferent (outer) couplings, therefore, the
metric values should have been similar. On the other hand, based on the statistical
values and the pairwise comparison, we can say that these metrics differ significantly.
The reasons can be, for example, that ckjm takes into account “external” dependencies
(e.g. classes from java.util) or it counts coupling based on generated elements (e.g. gen-
erated default constructor), but further investigation would be required to determine
all causes.

CBOI: It counts those classes that use the given class. Although, the basic statistics
of OSA and ckjm are close to each other, its pairwise comparison suggests that they are
different. Moreover, the metrics values of Moose are very different. The main reason
can be, for example, that OSA found two times more classes, therefore, it is explicable
that more classes use the given class or ckjm takes into account the generated classes
and connections as well that exist in the bytecode, but not in the source code.

RFC: all three tools defined this metric in the same way but the comparison shows
that the metric values are very different. The reasons for this are mainly the same as
in case of the CBO metric.

DIT: Although the statistical values “hardly” differ compared to the previous ones,
these values are usually small (as the max. values show), therefore, these differences are
quite large. From the minimal values we can see that Moose probably counts Object
too as the base class of all Java classes, while the other two tools neglect this.

NOC: The values of Moose and ckjm are close to each other. This is the only case,
when the null hypothesis could be accepted, which means that the Moose and ckjm
tools calculate the metric the same way.

LOC: Lines of code should be the most unambiguous metric, but it also differs a

33

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

Table 4.9. Comparison of the common class level metrics (Bug Prediction dataset)

Metric Tool Metric name Min Max Avg Med Dev p-value

WMC

OSA NLM 0 426 11.04 7 18.12 -
Moose Methods 0 403 9.96 6 14.38 -
ckjm WMC 1 426 11.96 7 18.49 -
OSA−Moose diff -4 420 1.08 0 9.40 1.42E-13
OSA−ckjm diff -48 0 -0.91 0 1.94 3.73E-183
Moose−ckjm diff -421 4 -1.99 -1 9.57 2.21E-40

CBO

OSA CBO 0 214 8.86 5 12.25 -
Moose fanOut 0 93 6.22 4 7.79 -
ckjm Ce 0 213 13.78 8 16.88 -
OSA−Moose diff -32 161 2.65 2 7.61 1.94E-105
OSA−ckjm diff -120 83 -4.91 -1 9.72 4.53E-208
Moose−ckjm diff -160 32 -7.56 -4 11.84 0.00E+00

CBOI

OSA CBOI 0 607 9.38 3 26.14 -
Moose fanIn 0 355 4.69 1 14.30 -
ckjm Ca 0 611 7.64 2 22.13 -
OSA−Moose diff -18 607 4.69 1 16.55 6.96E-72
OSA−ckjm diff -100 189 1.74 0 11.02 3.85E-24
Moose−ckjm diff -611 146 -2.95 -1 15.30 7.35E-35

RFC

OSA RFC 0 600 22.82 12 34.53 -
Moose rfc 0 2,603 50.62 23 108.06 -
ckjm RFC 2 684 38.93 23 49.72 -
OSA−Moose diff -2,095 600 -27.80 -8 83.70 8.47E-97
OSA−ckjm diff -327 12 -16.11 -9 22.72 0.00E+00
Moose−ckjm diff -673 2,049 11.69 -1 75.42 2.76E-23

DIT

OSA DIT 0 8 1.31 1 1.63 -
Moose dit 1 9 2.08 2 1.44 -
ckjm DIT 0 5 0.38 0 0.60 -
OSA−Moose diff -3 0 -0.76 -1 0.43 0.00E+00
OSA−ckjm diff -5 8 0.94 1 1.96 6.97E-188
Moose−ckjm diff -4 9 1.70 2 1.79 0.00E+00

NOC

OSA NOC 0 107 0.73 0 3.27 -
Moose noc 0 49 0.64 0 2.55 -
ckjm NOC 0 107 0.64 0 2.95 -
OSA−Moose diff -3 97 0.08 0 1.68 1.43E-03
OSA−ckjm diff 0 42 0.09 0 1.15 4.32E-07
Moose−ckjm diff -97 34 0.01 0 1.81 7.84E-01

LOC

OSA LLOC 2 8,746 131.99 56 357.39 -
Moose LinesOfCode 0 7,341 124.01 51 306.54 -
ckjm LOC 4 26,576 399.42 147 1142.60 -
OSA−Moose diff -1,068 7,824 7.98 3 157.69 1.09E-03
OSA−ckjm diff -19,150 112 -267.43 -91 791.30 5.34E-100
Moose−ckjm diff -26,541 198 -275.41 -93 879.89 1.11E-86

NPM

OSA NLPM 0 404 7.23 4 13.67 -
Moose PublicMethods 0 387 6.42 4 11.28 -
ckjm NPM 0 404 7.48 5 13.64 -
OSA−Moose diff -4 236 0.81 0 6.55 1.47E-15
OSA−ckjm diff -8 0 -0.25 0 0.45 1.75E-236
Moose−ckjm diff -237 3 -1.06 0 6.55 2.97E-25

lot. Although this metric has several variants and it is not defined exactly how Moose
and ckjm counts it, we used the closest one from OpenStaticAnalyzer based on the
metric values. The very large value of ckjm is surprising, but it counts this value from
the bytecode, therefore, it is not easy to validate. Besides, OpenStaticAnalyzer and

34

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

Moose have different values, in spite of the fact that both of them calculate LOC from
source code. The 0 minimal value of Moose is also interesting and suggests that either
Moose used a different definition or the algorithm was not good enough.

NPM: The number of public methods metrics of OpenStaticAnalyzer and ckjm
are really close to each other, while Moose has different results in this case as well.
However, the average difference is around 1, which can be caused by counting implicit
methods (constructors, static init blocks) or not.

Considering the p-values, we can conclude that none of the metrics are calculated
the same way except NOC (highlighted in the table). The comparison of the three
tools revealed that, even though, they calculate the same metrics, the results are very
divergent. A few of its reasons can be that ckjm calculates metrics from bytecode while
the other two tools work on source code, or ckjm takes into account external code as
well while OSA does not. Besides, we could not compare the detailed and precise
definitions of the metrics to be sure that they are really calculated in the same way,
therefore, it is possible that they differ slightly which causes the differences.

File level metrics Bugcatchers, Eclipse, and GitHub Bug Dataset are the ones that
operate at file level (GitHub Bug Dataset contains class level too). Unfortunately,
we could make only pairwise comparisons between file level metrics, since we could
not replicate the measurements used in the Eclipse Bug Dataset (custom Eclipse JDT
visitors were used) and in the Bugcatchers Bug Dataset (unknown bad smell detector
was used).

In case of Bugcatchers Bug Dataset, we compared the results of OpenStaticAna-
lyzer and the original metrics which were produced by a code smell detector. Since
OpenStaticAnalyzer only calculates a narrow set of file level metrics, Logical Lines of
Code (LLOC) is the only metric we could use in this comparison. Table 4.10 presents
the result of this comparison. Min, max, and median values are likely to be the same.
Moreover, the average difference between LLOC values is less than 1 with a standard
deviation of 6.05 which could be considered as insignificant in case of LLOC at file
level, however, the t-test showed the opposite, i.e. these metrics values are signifi-
cantly different. There is an additional common metric (CLOC) which is not listed in
Table 4.10 since OpenStaticAnalyzer returned 0 values for all the files. This possible
error in OpenStaticAnalyzer makes it superfluous to examine CLOC in further detail.

Table 4.10. Comparison of file level metrics on Bugcatchers

Metric Tool Met. name Min Max Avg Med Dev p-value

LLOC
OSA LLOC 3 5,774 93.33 41 221.16 -
Smell Detector code 3 5,774 92.34 40 219.06 -
OSA−Smell Detector diff -11 130 0.98 0 6.05 8.42E-15

In case of the Eclipse Bug Dataset, LLOC values are the same in most of the cases
(see Table 4.11). OpenStaticAnalyzer counted one extra line in 10 cases out of 25,210
which is a negligible difference (as t-test also confirms this statement). Unfortunately,
there is a serious sway in case of the McCabe’s Cyclomatic Complexity. There is a
case where the difference is 299 in the calculated values which is extremely high for
this metric. We investigated these cases and found that OpenStaticAnalyzer does not
include the number of methods in the final value. There are many cases when Open-
StaticAnalyzer gives 1 as a result while the Eclipse Visitor calculates 0 as complexity.

35

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

It is probable that OpenStaticAnalyzer counts class definitions but not method defini-
tions which could be specious. There are cases where OpenStaticAnalyzer has higher
complexity values. It turned out that OpenStaticAnalyzer took the ternary operator
(?:) into consideration, which is correct, since these statements also form conditions.
Both calculation techniques seem to have some minor issues or at least we have to say
that the metric definitions of cyclomatic complexity differ.

Table 4.11. Comparison of file level metrics on Eclipse

Metric Tool Metric name Min Max Avg Med Dev p-value

LLOC
OSA LLOC 3 5,228 122.59 52 230.02 -
Visitor TLOC 3 5,228 122.59 52 230.02 -
OSA−Visitor diff -7 1 0.0001 0 0.048 6.96E-01

McCC
OSA McCC 1 1,198 19.55 5 48.27 -
Visitor VG_sum 0 1,479 28.06 10 60.35 -
OSA−Visitor diff -299 123 -8.50 -4 15.83 0.00E+00

4.5 Evaluation
In the previous sections we described how we collected the bug datasets. We also gave
a brief overview on how they have been used in literature and how we unified them.
In this section, we will continue with further, detailed evaluation of the datasets.

4.5.1 Datasets and Bug Distribution
We gathered basic statistics about the projects, which includes the number of source
code elements, the number of source code elements that contains at least one bug, the
percentage of source code elements that contains at least one bug, the number of total
bugs in the project, the size of the systems in thousands of logical lines of code, and
the number of bugs per thousand lines in a system. These tables are too large in size,
thus we attached the appropriate statistics at class and file level in the downloadable
Unified Bug Dataset package. There are systems in the datasets with a wide variety
of sizes from 2,636 Logical Lines of Code (LLOC) up to 1,594,471. There are projects

0

5

10

15

20

25

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 4.1. Fault distribution (classes)

0

1

2

3

4

5

6

7

8

9

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 4.2. Fault distribution (files)

36

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

with very high (Xalan 2.7: 98.79%) and very low percentages (MCT: 0.48%) of buggy
source code elements.

Figure 4.1 and Figure 4.2 show the distribution of the percentages of faulty source
code elements for classes and files respectively. The percentages are shown horizontally.
The first column means the number of systems (part of a dataset) that have between 0
and 10 percentages of their source code elements buggy (0 included, 10 excluded). In
case of the systems that give bug information at class level, this number is 11 (5 at file
level). In a project, usually 10%-40% of the source code elements contain at least one
bug. Although there are fewer projects with file granularity, their fault distribution is
similar to the class distribution, except the fact that there is no project whose files are
more than 60% buggy.

4.5.2 Summary Meta Data
Table 4.12 lists some properties of the datasets, which show the circumstances of the
unified dataset, rather than the data content. Our focus is on how the datasets were
created, how reliable the used tools and the applied methods were. Since most of the
information in the table was already described in previous sections (Analyzer, Granu-
larity, Metrics, and Release), in this section we will only describe the Bug information
row.

The Bug Prediction Dataset used the commit logs of SVN and the modification
time of each file in CVS to collect co-changed files, authors and comments. Then they
linked the files with bugs from Bugzilla and Jira using the bug id from the commit
messages. Finally, they verified the consistency of timestamps. They filtered out inner
classes and test classes.

The PROMISE dataset used Buginfo to collect whether an SVN or CVS commit
is a bugfix or not. Buginfo uses regular expressions to detect commit messages that
contain bug information.

The bug information of the Eclipse Bug Dataset was extracted from the CVS repos-
itory and from Bugzilla. In the first step, they identified the corrections or fixes in the
version history by looking for patterns which are possible references to bug entries in
Bugzilla. In the second step, they mapped the bug reports to versions using the version
field of the bug report. Since the version of a bug report can change during the life

Table 4.12. Summary Meta Data

Bug
Prediction
Dataset

PROMISE Eclipse
Bug Dataset

Bugcatchers
Bug

Dataset

GitHub
Bug

Dataset

Analyzer inFusion
Moose ckjm

Visitors written
for Java parser

of Eclipse

Bad Smell
Detector SourceMeter

Granularity Class Class File File Class,
File

Bug
information

CVS, SVN,
Bugzilla, Jira SVN, CVS CVS, Bugzilla CVS, SVN,

Bugzilla, Jira GitHub

Metrics CK,
process metrics CK

Complexity,
Structure of

abstract syntax
tree

Bad Smell

CK,
Complexity,

Clone,
Rule violation

Release post pre pre & post pre post

37

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

cycle of a bug they used the first version.
The Bugcatchers Bug Dataset followed the methodology of Zimmermann et al.

(Eclipse Bug Dataset). They developed an Ant script that uses the SVN and CVS
plugins to checkout the source code and associate each fault with a file.

In case of the GitHub bug dataset, we gathered the relevant versions to be analyzed
from GitHub as we described in Chapter 3. Since GitHub can handle references between
commits and issues, it was quite handy to use this information to match commits with
bugs. We collected the number of bugs located in each file/class for the selected release
versions (about 6 month long time intervals).

4.5.3 Functional Criteria
We evaluated the strength of bug prediction models we can build with the Weka [43]
machine learning software using the dataset. For each subject software system in the
Unified Bug Dataset, we created 3 versions of ARFF files (which is the default input
format of Weka) for the experiments (containing only the original, only OpenStatic-
Analyzer, and both set of metrics as predictors). In these files, we transformed the
original bug occurrence values into two classes as follows: 0 bug → non buggy class,
at least 1 bug occurrence → buggy class. Using these ARFF files we could run several
tests about the effectiveness of fault prediction models built based on the dataset.

Capabilities of the original and the extended metrics suite

As described in Section 4.4, we extended the original datasets with the source code
metrics of the OpenStaticAnalyzer tool and we created a unified bug dataset. We
compared the bug prediction capabilities of the original metrics, the OpenStaticAna-
lyzer metrics, and the extended datasets. First, we handled each system individually,
so we trained and tested on the same system data using ten-fold cross-validation. To
build the bug prediction models, we used the J48 (C4.5 decision tree) algorithm with
default parameters. We only used J48 since we did not focus on finding the best ma-
chine learning method, but we wanted rather to show a comparison of the different
predictors’ capabilities with this one algorithm (which has shown its power in case of
the GitHub Bug Dataset). Using different machine learning algorithms (e.g. neural
networks) might provide different results.

The weighted F-measure results can be seen in Table 4.13 for classes and in Ta-
ble 4.14 for files. The tables contain two average values since the GitHub bug dataset
used SourceMeter, which is based on OpenStaticAnalyzer to calculate the metrics. The
results of OpenStaticAnalyzer and the Merged metrics would be the same. This could
distort the averages, so we decided to detach this dataset from others when calculating
the averages.

Results for classes need some deeper explanation for clear understanding. There
are a few missing values, since there were less than 10 data entries; not enough to
do the ten-fold cross-validation on (Ckjm and Forrest-0.6). The data cannot be used
individually because of the lack of bug occurrences in them. The averages of the
F-measure values let us conclude that there is no significant difference between the
predictor sets (at least by using only J48), and there is only a slight increase when
we use the original and the OSA metric together. Furthermore, there is no significant
difference if we consider the systems one at a time either. However, we could achieve
higher F-measure values in average in case of the GitHub Bug Dataset.

38

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

Table 4.13. Weighted F-Measure values in independent training at class level.

Dataset Original OSA Merged
Eclipse JDT Core 3.4 0.665 0.819 0.817
Equinox 3.4 0.727 0.764 0.790
Lucene 2.4 BPD 0.891 0.878 0.879
Mylyn 3.1 0.932 0.806 0.813
PDE UI 3.4.1 0.856 0.820 0.816
Ant 1.3 0.799 0.846 0.827
Ant 1.4 0.724 0.717 0.726
Ant 1.5 0.887 0.854 0.871
Ant 1.6 0.775 0.752 0.745
Ant 1.7 0.794 0.788 0.788
Camel 1.0 0.943 0.946 0.932
Camel 1.2 0.626 0.673 0.686
Camel 1.4 0.805 0.806 0.814
Ckjm - - -
Forrest 0.6 - - -
Forrest 0.7 0.793 0.676 0.676
Forrest 0.8 0.891 0.907 0.907
Ivy 1.4 0.897 0.915 0.899
Ivy 2.0 0.855 0.835 0.847
Jedit 3.2 0.727 0.703 0.724
Jedit 4.0 0.774 0.766 0.780
Jedit 4.1 0.747 0.778 0.781
Jedit 4.2 0.866 0.847 0.849
Jedit 4.3 0.967 0.965 0.780
Log4J 1.0 0.776 0.835 0.781
Log4J 1.1 0.739 0.743 0.849
Log4J 1.2 0.892 0.885 0.963
Lucene 2.0 0.610 0.659 0.634
Lucene 2.2 0.584 0.655 0.661
Lucene 2.4 0.698 0.656 0.663
Pbeans 1 0.813 0.769 0.813
Pbeans 2 0.727 0.686 0.740
Poi 1.5 0.743 0.753 0.782
Poi 2.0 0.851 0.841 0.831
Poi 2.5 0.787 0.809 0.789
Poi 3.0 0.768 0.768 0.764
Synapse 1.0 0.830 0.843 0.839
Synapse 1.1 0.758 0.767 0.749
Synapse 1.2 0.738 0.734 0.733
Velocity 1.4 0.827 0.824 0.856
Velocity 1.5 0.706 0.728 0.778
Velocity 1.6 0.703 0.774 0.748
Xalan 2.4 0.802 0.807 0.794
Xalan 2.5 0.654 0.693 0.699
Xalan 2.6 0.751 0.730 0.747
Xalan 2.7 0.994 0.992 0.992
Xerces 1.2 0.815 0.824 0.823
Xerces 1.3 0.860 0.837 0.836
Xerces 1.4 0.938 0.804 0.932
Average 0.794 0.793 0.799
Android U. I. L. 1.7.0 0.749 0.742 -
ANTLR v4 4.2 0.944 0.922 -
Broadleaf C. 3.0.10 0.898 0.881 -
Eclipse p. for Ceylon 1.1.0 0.942 0.939 -
Elasticsearch 0.90.11 0.871 0.874 -
Hazelcast 3.3 0.876 0.878 -
jUnit 4.9 0.927 0.928 -
MapDB 0.9.6 0.911 0.886 -
mcMMO 1.4.06 0.791 0.776 -
MCT 1.7b1 0.993 0.993 -
Neo4j 1.9.7 0.985 0.985 -
Netty 3.6.3 0.809 0.802 -
OrientDB 1.6.2 0.868 0.862 -
Oryx 0.889 0.898 -
Titan 0.5.1 0.922 0.926 -
Average 0.892 0.886 -

39

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

Table 4.14. Wighted F-Measure values in independent training at file level.

Dataset Original OSA Merged
Apache Commons 0.779 0.454 0.712
Argo UML 0.26 Beta 0.899 0.832 0.880
Eclipse JDT Core 3.1 0.827 0.528 0.638
Eclipse 2.0 0.682 0.670 0.694
Eclipse 2.1 0.749 0.750 0.745
Eclipse 3.0 0.728 0.735 0.727
Average 0.777 0.662 0.733
Android U. I. L. 1.7.0 0.611 0.624 -
ANTLR v4 4.2 0.900 0.849 -
Broadleaf C. 3.0.10 0.862 0.823 -
Eclipse p. for Ceylon 1.1.0 0.879 0.874 -
Elasticsearch 0.90.11 0.775 0.778 -
Hazelcast 3.3 0.829 0.796 -
jUnit 4.9 0.800 0.801 -
MapDB 0.9.6 0.784 0.766 -
mcMMO 1.4.06 0.731 0.794 -
MCT 1.7b1 0.977 0.978 -
Neo4j 1.9.7 0.985 0.985 -
Netty 3.6.3 0.677 0.732 -
OrientDB 1.6.2 0.739 0.751 -
Oryx 0.771 0.861 -
Titan 0.5.1 0.894 0.894 -
Average 0.814 0.820 -

Results at file level are quite similar to class level results in terms of weighted F-
measure. OpenStaticAnalyzer metrics did well on the GitHub Bug Dataset, but the
original set of metrics are better when considering all the other file level datasets.
The reason for this might be that, currently, there are only a few file level metrics
provided by OpenStaticAnalyzer, and a possible contradiction in metrics can decrease
the training capabilities (we saw that even LLOC values are very different).

Cross training and testing inside each dataset

As a second functional criteria, we trained a model using only one system from a
dataset and tested it on all systems in the dataset. The result of the cross training
is an NxN matrix where the rows and the columns of the matrix are the systems of
the dataset and the value in the ith row and jth column shows how well the prediction
model performed, which was trained on the ith system and evaluated on the jth one.

We used the OpenStaticAnalyzer metrics to test this criterion, but the bug occur-
rences are derived from the original datasets which are transformed to buggy and non
buggy labels. The matrix for the whole Unified Bug Dataset would be too large to show
here, thus we will only present submatrices. A submatrix for the PROMISE dataset
(only one version presented for each project) can be seen in Table 4.15. The values
of the matrix are weighted F-measure values, provided by the J48 algorithm. Higher
F-measure values are indicated with darker colors, however, it is important to note that
the coloring is done for each table individually (we introduce cross training for other
datasets as well in the followings). Absolute white is the color for the lowest value (not
necessarily 0.0) and the deepest gray encodes the highest value (not necessarily 1.0).
Patterns are hardly noticeable, however, we can observe that there are some systems
on which it is better to perform the training step. We can see matching coloring in rows
that confirm this statement. For example, it is better to train the model on Log4J 1.0,
than on PBeans-1. It does not match our expectations that different versions of the

40

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

Table 4.15. Cross training (PROMISE)

Project an
t
1.
3

ca
m
el

1.
0

ck
jm

1.
8

fo
rr
es
t
0.
6

iv
y
1.
4

je
di
t
3.
2

lo
g4
j1

.0

lu
ce
ne

2.
0

pb
ea
ns

1

po
i1

.5

sy
na

ps
e
1.
0

ve
lo
ci
ty

1.
4

xa
la
n
2.
4

xe
rc
es

1.
2

ant-1.3 0.967 0.830 0.776 0.776 0.785 0.784 0.794 0.754 0.718 0.706 0.674 0.660 0.659 0.596
camel-1.0 0.755 0.762 0.719 0.719 0.732 0.731 0.747 0.701 0.660 0.648 0.618 0.604 0.608 0.532
ckjm-1.8 0.307 0.442 0.488 0.488 0.481 0.482 0.496 0.496 0.500 0.503 0.507 0.514 0.511 0.505
forrest-0.6 0.767 0.741 0.697 0.697 0.712 0.710 0.728 0.681 0.637 0.623 0.587 0.573 0.576 0.496
ivy-1.4 0.807 0.756 0.714 0.714 0.733 0.735 0.748 0.707 0.671 0.658 0.622 0.610 0.613 0.540
jedit-3.2 0.733 0.746 0.719 0.718 0.728 0.751 0.750 0.721 0.696 0.691 0.678 0.665 0.664 0.589
log4j-1.0 0.753 0.731 0.722 0.722 0.733 0.734 0.741 0.718 0.703 0.696 0.677 0.672 0.671 0.627
lucene-2.0 0.750 0.718 0.696 0.696 0.697 0.698 0.700 0.685 0.672 0.671 0.665 0.655 0.656 0.620
pbeans-1 0.320 0.319 0.352 0.353 0.350 0.345 0.329 0.341 0.355 0.363 0.375 0.378 0.378 0.393
poi-1.5 0.394 0.538 0.555 0.555 0.550 0.554 0.578 0.569 0.564 0.573 0.575 0.576 0.572 0.557
synapse-1.0 0.772 0.745 0.706 0.706 0.720 0.720 0.734 0.691 0.652 0.638 0.604 0.594 0.596 0.516
velocity-1.4 0.223 0.209 0.232 0.233 0.229 0.229 0.252 0.267 0.277 0.280 0.298 0.321 0.316 0.343
xalan-2.4 0.792 0.767 0.718 0.718 0.732 0.741 0.760 0.721 0.684 0.677 0.655 0.642 0.653 0.604
xerces-1.2 0.734 0.723 0.677 0.677 0.692 0.693 0.711 0.671 0.632 0.618 0.587 0.576 0.579 0.526

same project do not show higher values (can be seen in the full attached matrix). There
are also white lines in the matrix. Generally, these systems do not contain enough bug
information to build efficient bug prediction models.

Table 4.16. Cross training (GitHub – Class level)

Train/Test

A
nd

ro
id

U
ni
ve
rs
al

I.
L.

A
N
T
LR

v4

Br
oa
dl
ea
f

C
om

m
er
ce

Ec
lip

se
p.

fo
r
C
ey
lo
n

El
as
tic

se
ar
ch

H
az
el
ca
st

jU
ni
t

M
ap

D
B

m
cM

M
O

M
iss

io
n

C
on

tr
ol

T
.

N
eo
4j

N
et
ty

O
rie

nt
D
B

O
ry
x

T
ita

n

Android Universal I. L. 0.943 0.885 0.772 0.822 0.813 0.821 0.827 0.827 0.825 0.836 0.868 0.859 0.852 0.850 0.853
ANTLR v4 0.611 0.929 0.785 0.852 0.843 0.842 0.847 0.847 0.845 0.862 0.893 0.882 0.876 0.874 0.876
Broadleaf Commerce 0.635 0.877 0.934 0.928 0.870 0.859 0.863 0.862 0.860 0.873 0.894 0.886 0.880 0.879 0.879
Eclipse p. for Ceylon 0.611 0.894 0.781 0.867 0.847 0.847 0.851 0.851 0.848 0.864 0.895 0.884 0.879 0.877 0.879
Elasticsearch 0.642 0.868 0.835 0.875 0.922 0.900 0.902 0.900 0.897 0.904 0.914 0.904 0.897 0.895 0.895
Hazelcast 0.635 0.876 0.792 0.831 0.828 0.861 0.864 0.863 0.861 0.871 0.888 0.879 0.872 0.871 0.872
jUnit 0.644 0.849 0.774 0.837 0.819 0.813 0.821 0.822 0.821 0.835 0.867 0.858 0.854 0.853 0.854
MapDB 0.670 0.852 0.799 0.855 0.852 0.853 0.857 0.859 0.858 0.871 0.894 0.884 0.879 0.877 0.878
mcMMO 0.642 0.879 0.793 0.855 0.845 0.849 0.853 0.853 0.853 0.866 0.888 0.880 0.874 0.873 0.875
Mission Control T. 0.611 0.890 0.773 0.843 0.836 0.836 0.840 0.840 0.838 0.856 0.890 0.879 0.872 0.870 0.872
Neo4j 0.611 0.890 0.774 0.843 0.836 0.836 0.841 0.840 0.838 0.856 0.890 0.878 0.871 0.869 0.871
Netty 0.644 0.873 0.787 0.848 0.834 0.831 0.837 0.836 0.834 0.847 0.874 0.876 0.869 0.867 0.868
OrientDB 0.611 0.845 0.800 0.857 0.835 0.841 0.846 0.846 0.845 0.859 0.888 0.878 0.884 0.882 0.882
Oryx 0.712 0.874 0.787 0.845 0.837 0.840 0.845 0.845 0.843 0.857 0.879 0.870 0.865 0.866 0.868
Titan 0.611 0.895 0.787 0.849 0.840 0.843 0.847 0.847 0.845 0.859 0.890 0.880 0.874 0.872 0.878

Table 4.16 shows the cross training values for the GitHub Bug Dataset. Values in
the diagonal are higher in this case, as expected. Testing on Android Universal Image
Loader is the weakest point in the matrix, as it is clearly visible. However, the values
are not critical, the lowest value is 0.611, which can be acceptable. Elasticsearch did
well in the role of a training set. This is probably because of the size of the system,
the high amount of bugs, and the adequate number of entries in the dataset.

Table 4.17 shows the results of cross training for the Bug Prediction Dataset. Eclipse
JDT Core passed the other systems in terms of training, which is unequivocally shown
with the deep gray color in the table. Equinox performed the worst in the role of being
a training set. The weighted F-measure values are relatively high, but the GitHub Bug
Dataset generally has better values.

The above described results were calculated for class level datasets. Let us now con-
sider the file level results. The three file level datasets are the GitHub, the Bugcatchers

41

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

Table 4.17. Cross training (Bug prediction dataset)

Train/Test Eclipse
JDT Core 3.4 Equinox 3.4 Lucene

2.4 BPD Mylyn 3.1 PDE UI 3.4.1

Eclipse JDT Core 3.4 0.961 0.878 0.874 0.848 0.839
Equinox 3.4 0.451 0.570 0.614 0.664 0.641
Lucene 2.4 BPD 0.754 0.706 0.792 0.808 0.809
Mylyn 3.1 0.730 0.702 0.753 0.818 0.815
PDE UI 3.4.1 0.733 0.695 0.748 0.769 0.822

and the Eclipse bug datasets.
The GitHub Bug Dataset results can be seen in Table 4.18. As in the case of class

level, the Android Universal Image Loader project performed the worst in the role of
being the test set. Broadleaf, Hazelcast, and MapDB seemed to be the most powerful
training sets, probably because of their size and the adequate number of bug entries.
The class level dataset performed better than the file level one, which is likely because
of the wider set of metrics defined for classes.

Table 4.18. Cross training (GitHub – File level)

Train/Test A
nd

ro
id

U
ni
ve
rs
al

I.
L.

A
N
T
LR

v4

Br
oa
dl
ea
fC

om
m
er
ce

Ec
lip

se
p.

fo
r
C
ey
lo
n

El
as
tic

se
ar
ch

H
az
el
ca
st

jU
ni
t

M
ap

D
B

m
cM

M
O

M
iss

io
n
C
on

tr
ol

T
.

N
eo
4j

N
et
ty

O
rie

nt
D
B

O
ry
x

T
ita

n

Android Universal I. L. 0.920 0.791 0.736 0.724 0.707 0.724 0.727 0.726 0.724 0.725 0.753 0.746 0.743 0.743 0.749
ANTLR v4 0.595 0.817 0.771 0.797 0.781 0.784 0.785 0.784 0.782 0.790 0.840 0.825 0.816 0.815 0.820
Broadleaf Commerce 0.631 0.832 0.836 0.842 0.803 0.803 0.803 0.803 0.800 0.806 0.848 0.835 0.826 0.825 0.829
Eclipse p. for Ceylon 0.595 0.841 0.797 0.828 0.804 0.805 0.805 0.806 0.803 0.809 0.850 0.835 0.829 0.828 0.832
Elasticsearch 0.595 0.817 0.771 0.797 0.781 0.784 0.785 0.784 0.782 0.790 0.840 0.825 0.816 0.815 0.820
Hazelcast 0.595 0.819 0.775 0.799 0.783 0.790 0.791 0.790 0.788 0.796 0.843 0.828 0.819 0.818 0.822
jUnit 0.722 0.813 0.759 0.767 0.759 0.766 0.769 0.768 0.766 0.771 0.802 0.793 0.788 0.788 0.793
MapDB 0.622 0.847 0.808 0.822 0.813 0.814 0.815 0.816 0.814 0.819 0.855 0.843 0.837 0.836 0.839
mcMMO 0.710 0.806 0.800 0.786 0.770 0.780 0.782 0.781 0.782 0.780 0.791 0.784 0.779 0.778 0.782
Mission Control T. 0.595 0.821 0.773 0.797 0.782 0.785 0.785 0.785 0.782 0.792 0.841 0.826 0.818 0.817 0.821
Neo4j 0.595 0.817 0.771 0.797 0.781 0.784 0.785 0.784 0.782 0.790 0.840 0.825 0.816 0.815 0.820
Netty 0.682 0.818 0.773 0.795 0.774 0.783 0.784 0.784 0.784 0.789 0.827 0.824 0.818 0.817 0.819
OrientDB 0.595 0.817 0.771 0.797 0.781 0.784 0.785 0.784 0.782 0.790 0.840 0.825 0.816 0.815 0.820
Oryx 0.637 0.830 0.768 0.795 0.787 0.789 0.791 0.790 0.787 0.794 0.839 0.825 0.816 0.818 0.822
Titan 0.595 0.817 0.771 0.797 0.781 0.784 0.785 0.784 0.782 0.790 0.840 0.825 0.816 0.815 0.820

The cross training results of the Bugcatchers Bug Dataset can be seen in Table 4.19.
These results are lower than in the case of the GitHub Bug Dataset. ArgoUML is the
system that is the easiest to evaluate on. Eclipse JDT Core performed the worst in the
role of training set, however, it has better F-Measure values in the role of test data,
but still a bit low. Apache Commons is the weakest as being the test data.

Table 4.19. Cross training (Bugcatchers)

Train/Test Apache ArgoUML Eclipse JDT Core 3.1
Apache 0.510 0.800 0.676
ArgoUML 0.436 0.795 0.665
Eclipse JDT Core 3.1 0.388 0.234 0.308

The results of Eclipse Bug Dataset are shown in Table 4.20. The 2.0 version is the
weakest one amongst the projects from the testing perspective. This is perhaps caused

42

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

by the fact that this version contains the least number of bug entries. Contrarily, the
weakest model is built from version 3.0.

Table 4.20. Cross training (Eclipse)

Train/Test Eclipse 2.0 Eclipse 2.1 Eclipse 3.0
Eclipse 2.0 0.709 0.705 0.700
Eclipse 2.1 0.638 0.712 0.725
Eclipse 3.0 0.604 0.676 0.701

We also performed a full cross-system experiment involving all systems from all
datasets. This matrix is, however, too large to present here, consequently, it can be
found online: http://www.inf.u-szeged.hu/~ferenc/papers/UnifiedBugDataSet.
Minor differences can be observed for the datasets when considering the training capa-
bilities. At class level, the GitHub and the Bug Prediction datasets performed better
than the projects of the PROMISE dataset in the overall cross training. PROMISE
is averaging 0.636 weighted F-measure, which is lower than the average of the GitHub
Bug Dataset and the Bug Prediction Dataset with about 0.08. However, it is impor-
tant to note that all the small projects are located in the PROMISE dataset and their
training capabilities are limited because of their few bug entries.

Eclipse JDT Core performs the worst as a training set, and also showed poor results
as testing data, but Apache Commons is even worse in this role at file level. The
GitHub Bug Dataset is the most consistent dataset, only Android Universal Image
Loader performed poor as a testing set. It seems that most of the projects could be
used for prediction purposes, which is a good sign for the Unified Bug Dataset.

To sum up the previous findings, we can hardly tell whether the file or the class
level metrics are better predictors. It may seem like file level metrics performed slightly
better than class level predictors, however, we could not build sophisticated prediction
models from the far more smaller metrics suite.

4.6 Threats to Validity
First of all, we accepted the collected datasets “as is”, which means that we did not
validate the data, we just used them to create the unified dataset and to examine the
bug prediction capabilities of the different bug datasets. Since the bug datasets did
not contain the source code, neither a step-by-step instruction on how to reproduce
the bug datasets, we had to accept them, even if there were a few notable anomalies
in them. For example, Camel 1.4 contains classes with LOC metrics of 0, or in the
Bugcatchers dataset, there are two MessageChains metrics, and, in several cases, the
two metric values are different.

Although, the version information was available for each system, in some cases
there were notable differences between the result of OSA and the original result in the
corresponding bug dataset. Even if the analyzers would parse the classes in different
ways, the number of files should have been equal. If the analysis result of OSA contains
the same number of elements or more, and (almost) all elements from the corresponding
bug dataset could be paired, we can say that the unification is acceptable, because all
elements of the bug dataset were put into the unified dataset. On the other hand, for
a few systems, we could not find the proper source code version and we had to leave
out a notable number of elements from the unified dataset.

43

http://www.inf.u-szeged.hu/~ferenc/papers/UnifiedBugDataSet

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

Many systems were more than 10 years old when the actual Java version was 1.4
and these systems were analyzed according to that standard. The Java language has
evolved a lot since then and we analyzed all systems according to the latest standard,
which might have caused minor but negligible mistakes in the analysis results.

We used a heuristic method based on name matching to conjugate the elements
of the datasets. Although there were cases where the conjugation was unsuccessful,
we examined these cases manually and it turned out that the heuristics worked well
and the cause of the problem originated from the differences of the two datasets (in
Section 4.3 all cases are listed). We examined the successful conjugations as well and all
of them were correct. Even though the heuristics could not handle elements having the
same name during the conjugation, only a negligible amount of such cases happened.

Even when the matching heuristics worked well, the same class name could have
different meanings in different datasets. For example, OpenStaticAnalyzer handles
nested, local, and anonymous classes as different elements, while other datasets did
not take into account such elements. Even more, the whole file was associated with its
public class. This way, a bug found in a nested or inner class is associated with the
public class in the bug datasets, but during the matching, this bug will be associated
with the wrong element of the more detailed analysis result of OpenStaticAnalyzer.

4.7 Summary
There are several public bug datasets available in the literature, which characterize
the bugs with static source code metrics. Our aim was to create one public unified
bug dataset, which contains all the publicly available ones in a unified format. This
dataset can provide researchers real value by offering a rich bug dataset for their new
bug prediction experiments.

We considered five different public bug datasets, those are the PROMISE dataset,
the Eclipse Bug Dataset, the Bug Prediction Dataset, the Bugcatchers Bug Dataset,
and the GitHub Bug Dataset. We gave detailed information about each dataset, which
contains, among others, their size, enumeration of the included software systems, used
version control, and bug tracking systems.

We developed and executed a method on how to create the unified set of bug
data, which encapsulates all the information that is available in the datasets. Different
datasets use different metric suites, hence we collected the Java source code for all
software systems of each dataset, and analyzed them with one particular static source
code analyzer (OpenStaticAnalyzer) in order to have a common and uniform set of
code metrics (bug predictors) for every system as well. We constructed the unified bug
dataset from the gathered public datasets at file and class level and made this unified
bug dataset publicly available to anyone for future use.

We evaluated the datasets according to summary meta data and functional criteria.
Summary meta data includes the investigation of the used static analyzer, granularity,
bug tracking and version control system, the set of used metrics, etc. As functional
criteria, we compared the prediction capabilities of the original metrics, the unified
ones, and both together. We used the J48 decision tree algorithm from Weka to build
and evaluate bug prediction models per projects in the unified bug dataset. As an
additional functional criterion, we used different software systems for training and for
testing the models, also known as cross project training. We performed this step on
all the systems of the various datasets. Our experiments showed that the unified bug

44

Chapter 4. A Unified Public Bug Dataset and Its Assessment in Bug Prediction

dataset can be used effectively in bug prediction.
We encourage researchers to use this large and public unified bug dataset in their

experiments and we also welcome new public bug datasets.

45

Part II

Methodology for Measuring
Maintainability of RPG Software

Systems

“The question of whether a computer can think
is no more interesting than the question of
whether a submarine can swim.”

— Edsger W. Dijkstra

5
Brief Introduction to the RPG

Programming Language

Before deep diving into different software quality assurance techniques for RPG legacy
systems, a short background should be given about the RPG language itself and its
basic concepts. Since legacy systems are understood by only a few, the programming
languages used in them are no exceptions. As we will focus on the software quality
of RPG legacy systems, we will give a brief description about the basic principles the
language follows.

The RPG programming language is a popular language employed widely in IBM i
mainframes nowadays. Legacy mainframe systems that evolved and survived the past
decades are usually data intensive and even business critical applications. There are
many legacy systems written for mainframe computers. These systems include critical
elements such as bulk data processing, statistics, and transaction handling. In 1988,
IBM introduced the very robust AS/400 platform, which became very popular at the
end of the century (it was later renamed to IBM i). It has its own programming envi-
ronment called ILE (Integrated Language Environment), which allows using programs
written in ILE compatible languages, like the RPG programming language (Reporting
Program Generator). Business applications developed for the IBM i platform usually
use the RPG high-level programming language. In spite of the fact that the language
was introduced in 1959, RPG is still widely used nowadays, and it is continuously
evolving. It stands close to database systems and it is usually used for processing large
amount of data. RPG is often used in the banking sector, since they do not want to
change/migrate their systems because of the risk they would have to take.

Over the years, the data-intensive RPG language has evolved in many aspects. RPG
III (released in 1978) already provided subroutines, modern structured constructs such
as DO, DO-WHILE, IF. A great break-through was performed in 1994, when the first
version of RPG IV was released. With the release of RPG IV, developers obtained
new features like free-form blocks or definition specifications, and the set of avail-
able operations was extended as well. RPG supports different groups of data types,
namely character data types (Character, Indicator, Graphic, UCS-2), numeric data

49

Chapter 5. Brief Introduction to the RPG Programming Language

types (Binary Format, Float Format, Integer Format, Packed-Decimal Format, Un-
signed Format, Zoned-Decimal Format), date, time and timestamp data types, object
data type (user can even define Java objects), and one can define pointers to variables,
procedures and programs. In RPG IV there are two types of functions. The first one is
called subroutine which takes no parameter and has a limited visibility and usability.
Procedures are more flexible constructs since they can have parameters and they can
be called from other programs.

Listing 5.1. RPG IV sample code
....+....1....+....2....+....3....+....4....+....5....+..

H DATEDIT (* DMY /)
FEMPLOYEE IF E K DISK
D Pay S 8P 2

* Prototype Definition for subprocedure CalcPay
D CalcPay PR 8P 2
D Rate 5P 2 VALUE
D Hours 10U 0 VALUE
D Bonus 5P 2 VALUE

/free
chain trn_number emp_rec ;
if %found(emp_rec);

pay = CalcPay (emp_rate : trn_hours : trn_bonus);
endif;

/end -free

Listing 5.1 shows a sample RPG IV code fragment. The code snippet presents
some features and capabilities of the RPG language. From the beginning, RPG uses
the column dependent source format. In this way, programming requires the code
elements to be placed in particular columns. For instance, the character in the 6th
column means the specification type. In Listing 5.1, there are Control (H), File (F),
and Definition (D) specifications. Calculation specifications (column-dependent) can
be added to perform an appropriate sequence of operations. This specification is the
one in which most of the processing is done. Since RPG IV, it is possible to use
the free-form blocks for column-independent calculations. In this sample, payment is
calculated by a procedure named CalcPay (prototype declaration can be found in the
sample, but the definition is not presented here). In this chapter, our point is not to
present all RPG language capabilities, but just to show the reader what it looks like.
For details, see the ILE RPG Programmer’s Guide on IBM’s website 1.

In this thesis point, we will focus on the analysis and the maintainability of RPG
programs. At this point, the reader might ask, why anybody would want to do some-
thing like this. This is not a made up topic; it is based on true industrial needs. We
managed to address various RPG related research topics with the support of the Hun-
garian national grant GOP-1.1.1-11-2012-0323. In this grant, we cooperated with the
R&R Software Ltd. who was the one with the industrial need of analysis on RPG
software systems.

1https://tinyurl.com/yctgq6ax

50

https://tinyurl.com/yctgq6ax

“The most important property of a program
is whether it accomplishes the intention of its
user.”

— C.A.R. Hoare

6
Evaluation of Existing Static Analysis Tools

6.1 Overview

Rapid development life cycles provided by 4GL languages resulted in a number of large
software systems decades ago, that are mostly considered legacy systems nowadays.
On the other hand, the role of quality assurance of these data intensive and often
business critical systems is increasingly important. The IBM i platform – initially
called AS/400 platform – became very popular towards the end of the last century.
Business applications developed for the IBM i platform usually use the RPG high-level
programming language (Reporting Program Generator), which is still widely employed,
supported and evolving. In the early days of the appearance of 4GL (like RPG), several
studies were published in favour of their use. The topics of these studies are mostly
focused on predicting the size of a 4GL project and its development effort, for instance
by calculating function points [104] or by combining 4GL metrics with metrics for
database systems [85]. In the literature, only a few papers are available considering
the software quality of these languages [63, 48, 79], while the main focus of current QA
tools and techniques is on the more popular object-oriented languages.

In this chapter, we compare two state-of-the-art tools for RPG quality measure-
ments by analyzing the capabilities of static analyzers. Several measurable aspects of
the source code may affect higher level quality attributes, however, this comparison is
based on five important aspects: analysis success, analysis depth, source code metrics,
coding rule violations, and code duplications. The toolchain named SourceMeter for
RPG is our product and we wanted to have an exhaustive comparison with other RPG
analyzers. The quality of the static analyzer is key for further investigations, thus we
needed to find the best tool available for that purpose.

This chapter is organized as follows. Related research is outlined in Section 6.2.
Section 6.3 introduces our subject analyzer tools capable of measuring RPG quality.
In depth comparison of the tools in terms of source code metrics, coding rule violations
and clones is presented in Section 6.4, while the findings are discussed in Section 6.5.
Finally, we conclude our work and list some threats to validity.

51

Chapter 6. Evaluation of Existing Static Analysis Tools

6.2 Related Work

Numerous studies have been published in the last decades focusing on different soft-
ware metrics. Chidamber and Kemerer introduced a number of object oriented metric
definitions [29]. Basili et al. validated these metrics by applying them on early software
defect prediction [16]. A revalidation was done by Gyimothy et al. [42] to present fault
prediction technique results of the open source Web and e-mail suite called Mozilla.
Despite the fact that RPG is not located in OO domain, these studies are cornerstones
for further investigations on software metrics.

At present, RPG and other early programming languages like COBOL are used by
a narrowed set of developers since RPG programs cannot be run on personal computers
(only via remote connection) and mainly newer languages are tutored, such as Java,
JavaScript, Python, etc. Thus, much effort was put into researches dealing with effec-
tive migration mechanisms to transform RPG legacy programs into an object oriented
environment, however there is no golden hammer or universal tool that can handle all
the migration tasks and problems. A smaller step is presented by Canfora et al. that
transforms RPG II and RPG III into RPG IV programs [27]. A migration technology
was also proposed to handle COBOL legacy systems as Web-based applications [38] by
applying wrapping techniques on them.

Research papers dealing with software metrics are commonly applied on widely
used programming languages like C, C++ [108, 39], Java [26], C# [65, 50]. The Magic
4GL language has similar attributes to RPG, with similar need for quality assurance
solutions ([78, 77]). Only a few studies focus on software metrics specialized for RPG.
Hartman focused on McCabe and Halstead metrics [48] because of their usefulness in
identifying modules containing a high number of errors. Another early research paper
also focuses on the characteristics of programs written in RPG [79]. Naib conducted an
experiment using environmental (varying with time) and internal (McCabe, Halstead,
LOC that do not vary with time) factors and constructed a regression model to predict
errors in the given systems. Bakker and Hirdes analyzed mainly legacy systems with
more than 10 million lines of code written in COBOL, PL/I, C, C++, and RPG (1.8
million lines of code). They found that maintenance problems highly correlate with
design issues. They recommended to re-design and re-structure rather than re-build
applications since it is better worth it. Further maintenance difficulties, including
improvement and extension, can occur, so a flowchart extraction method was made
by Suntiparakoo and Limpiyakorn [97] that can serve as a quality assurance item
supporting the understanding of RPG legacy code in maintenance processes. One can
see that many approaches use software metrics as a low level component to produce or
model a higher level characteristic (e.g fault-prone modules) describing a given system.
Low level metrics can be applied for a wide variety of software quality purposes such
as using quality models to characterize whole systems (often includes benchmarking).
Different models have been proposed based on ISO/IEC 25010 [54], and its ancestor
called ISO/IEC 9126 [53] to serve these purposes.

Due to focusing on high level characteristics, the above mentioned studies pay little
attention to different low level software metrics and rules. In the following sections we
will propose two state-of-the-art RPG static source code analyzers and compare their
functionalities from the perspective of the users.

52

Chapter 6. Evaluation of Existing Static Analysis Tools

6.3 RPG Program Analyzer Tools
In this section, we provide in depth comparison of two software products for quality
centric static analysis of RPG programs. Source code based quality measurements
usually consider several aspects of the code, from which the most popular ones are ar-
chitecture & design, comments, coding rules, potential bugs, complexity, duplications,
and unit tests. The RPG language is not provided with such an extensive free tool
support as in the case of object-oriented languages. In our comparison, we selected two
recently announced and partially free / low cost software quality tools: SourceMeter
for RPG version 7.0 and SonarQube RPG (version 4.5.4). Although the categorization
of quality attributes are different in these tools, we found them comparable, as the
results of the SourceMeter toolchain are integrated into the SonarQube framework.

6.3.1 SourceMeter for RPG
SourceMeter [95] is an innovative tool built for the precise static source code analysis
of projects implemented in languages like Java, C/C++, Python or RPG [63]. This
tool makes it possible to find the weak spots of a system under development from the
source code itself without the need for simulating live conditions.

SourceMeter can analyze source code conforming to RPG/400 and RPG IV versions,
including free-form as well. The input of the analysis can be specified as a raw source
code file or a compiler listing. In case of using raw source code as an input, the
analyzer could not calculate some code metrics, and detect various rule violations
because the raw source contains less information than the compiler listing (for instance,
cross references are detected using compiler listing entries). As it is recommended, we
used compiler listing inputs in our work. For constructing RPG compiler listing files,
we use RPG compiler with version V6R1M0.

SourceMeter is essentially a command line toolchain to flexibly produce raw results
of static analysis. Visualization and further processing of these results are done in
other tools like the QualityGate [87] software quality management platform and the
SourceMeter plugin to integrate data into the SonarQube framework.

6.3.2 SonarQube RPG
SonarQube [94] is an open source quality management platform with several extensi-
bility possibilities. In this platform, the concrete static analyzers of various program-
ming languages are implemented as plugins as well. As it supports several languages,
the depth and type of analysis results depend on the actual toolchain. The main start-
ing point of the user interface is the so called Dashboard, however the interface can
also be highly extended and customized. Figure 6.1 shows the SonarQube RPG dash-
board, where all aspects of quality are represented. The SonarQube RPG analyzer is
a commercial plugin, however, trial licence is available. The plugin supports the RPG
IV language. However, no possibility is present to perform an analysis on RPG III
(RPG/400) programs or to handle free-form code blocks in RPG IV.

6.3.3 SourceMeter for SonarQube Plugin
SourceMeter is bundled with a free SonarQube RPG analyzer plugin. The plugin
conforms to the analysis process of the SonarQube and provides necessary data for

53

Chapter 6. Evaluation of Existing Static Analysis Tools

Figure 6.1. SonarQube dashboard

the integration. This way, analysis results (metrics, code clones, rule violations) of
SourceMeter can be re-used and the SonarQube framework provides the user interface
and the management layer of quality data.

In Figure 6.2, the dashboard can be seen with an analysis result done by SourceMe-
ter. Results are different from the ones shown in Figure 6.1, for example, more coding
rules and clones are found by the SourceMeter. In addition, there are several additional
metrics, which are not presented in the dashboard, but can be found in the detailed
views of SonarQube. The plugin provides, among others, a SourceMeter menu item
with custom dashboard and an extended source code view with a metrics panel showing
hands-on metric information next to the actual code element as shown in Figure 6.3.

Figure 6.2. SourceMeter for RPG SonarQube plugin dashboard

54

Chapter 6. Evaluation of Existing Static Analysis Tools

Figure 6.3. SourceMeter source code view with Metrics panel integrated in SonarQube

6.4 Comparative evaluation
We conducted experiments using 179 RPG programs containing around 100k lines of
code. These programs belong to a software development company specialized for IBM i
mainframe applications. While these programs are considered typical in their purpose,
they are influenced by the coding style and the tradition of the company.

6.4.1 Comparison of Source Code Metrics
The SourceMeter tool provides a large variety of metrics at four levels of program
elements: system, program, procedure, and subroutine levels. The SonarQube model
is restricted to file level metrics, which we treat as program level metrics. In addition,
system level summary is also available. On the other hand, the extensibility mechanism
of SonarQube makes it possible to incorporate additional metrics into the user interface
(as shown in Figure 6.3).

Table 6.1. System level metric values

Files LOC Functions Statements Duplications Complexity

SonarQube 179 97,903 4,020 73,597 0.2% 16,667
SourceMeter 179 103,373 4,193 95,175 2.2% 18,296
Difference 0 5,470 173 21,578 - 1,629
3 files 0 5,289 173 5054 - 1,113

Abs. Diff. 0 2 (181-179) 0 16524 - 516

Table 6.1 shows the high level metric values of the analyzed system, which metrics
are available in both tools. Each tool is able to calculate the number of files, lines of
code, number of functions, number of statements, the percentage of duplicated code
portion, and the global complexity. Considering the indicated values, one can see that
many of them are not the same. Further investigations showed that SonarQube could
not analyze three files, thus the metric values are also not calculated and aggregated.
Metric values that are calculated for these three files by SourceMeter is also shown
in the table. SourceMeter counts the last empty line into the LOC metric, so abso-
lute difference can be caused by the distinct calculating methods used by each tool,
moreover, it is based on there being no previous unified baselines when dealing with
software metrics related to RPG programming language. Different operations can be
taken into consideration when calculating complexity or number of statements.

We summarized the available metrics of both tools in Table 6.2. SourceMeter
definitely operates with a more comprehensive set of metrics. SourceMeter handles
subroutines as basic code elements and propagates the calculated metric values to

55

Chapter 6. Evaluation of Existing Static Analysis Tools

Table 6.2. Defined Metrics

Level Category SourceMeter for RPG SonarQube RPG

System

Coupling TNF TNF

Documentation TCD, TCLOC, TDLOC -

Complexity - McCC

Size TLLOC, TLOC, TNOS, TNPC,
TNPG, TNSR, TNNC, TNDS TNOS, TNSR, TLOC, TLLOC

Program/File

Coupling TNOI, NF, TNF, NIR, NOR -

Documentation CD, CLOC, DLOC, TCD,
TCLOC, TDLOC CLOC, CD

Complexity NL, NLE McCC

Size
LLOC, LOC, NOS, NUMPAR,
TLLOC, TLOC, TNOS, TNPC,
TNSR, NNC, TNNC, NDS, TNDS

TNSR, TNOS,LOC, LLOC

Procedure

Coupling NOI, TNOI, NF -

Documentation CD, CLOC, DLOC, TCD,
TCLOC, TDLOC -

Complexity McCC, NL, NLE -

Size
LLOC, LOC, NOS, NUMPAR,
TLLOC, TLOC, TNOS, TNSR,
NNC, NDS

-

Subroutine

Coupling NII, NOI -

Documentation CD, CLOC, DLOC -

Complexity McCC, NL, NLE -

Size LLOC, LOC, NOS -

higher levels (procedures and programs can contain subroutines). SonarQube focuses
only on file (program) and system levels and also works with a narrowed set of metrics.
For detailed descriptions of the computed metrics we refer to the websites and user’s
guides of the tools.

6.4.2 Comparison of Coding Rules
The lists of coding rules of the two analysis tools have a significant common part. Fig-
ure 6.4 shows the distribution of coding rules between each of the following categories:
common rules checked by both tools, SourceMeter-only rules, SonarQube-only rules.
SourceMeter also provides a set of rules for validating metric values by specifying an
upper and/or lower bound for each metric shown in Table 6.2. Precisely set values
can help developers focus on code segments that are possible weak spots. SonarQube
does not support rules like this. Many rules are implemented in both tools (31% ≈
30 rules), which confirms that a similar set of rules are considered important by the
developers of each tool.

Table 6.3 shows a comparison of the implemented rules in both tools. Based on the
different implementation, many rule violation occurrence numbers are not equal. In the
following sections, we mainly wanted to focus on the rule violation occurrence values
that differ. The rule dealing with comment density is not the same in these tools, since
SourceMeter desires comment lines after x lines, where x is an upper threshold, on the

56

Chapter 6. Evaluation of Existing Static Analysis Tools

Figure 6.4. Distribution of common and unique coding rules

contrary, SonarQube only examines the Comment density metric (CD) of a program.
None of the tools found any subroutines without documentation. The reason for this is
that the RPG sources are generated from compiler listing files that contain comments,
since the compiler automatically places comments before subroutines. In the given
source files, no naming convention was applied on subroutine names, so SourceMeter
detects all the 4193 subroutines (found), except the one whose name starts with SR
which is expected by the rule. However, the list contains the *INZSR subroutines
(172), which is not correct, since the initialization subroutine must be named exactly
like that and should be skipped. The remaining 173 rule violations come from the
three unanalyzed files. Copyright checks are not sufficient by SonarQube (found no
violation), contrary to SourceMeter that found 28 cases when copyright is not located
in the source code. Some random cases were validated manually and SourceMeter
triggers correctly. Nesting different control flow statements – like do, do-while, if,
select – too deeply may result in complexity problems. SonarQube located 264 deep
nesting cases, while SourceMeter detected 352. A possible reason for this can be
the different parameter setting for the maximum nesting level. SourceMeter should
use a better default parameter for subroutine complexity since it detects numerous
subroutines with high complexity. "/EJECT" compiler directive should be used after F,
D, and C specification sections. We empirically validated the fact that SonarQube does
not detect all the possibilities (after C specifications, it does not require an /EJECT
directive). When dealing with unused subroutines, SonarQube counts the initialization
subroutine as one of the never called ones, although it is called automatically (there are
cases when explicit call is used). SonarQube detects commented out code sections, but
SourceMeter locates commented out statements. SourceMeter explores avoid ("testn"
– occurred 4 times) and forbidden ("leave" operation – occurred once) operations (only
the priority differs) and does not use a particular rule only for GOTO operation.
SonarQube handles all occurrences of ’0’ or ’1’ as a possible rule violation and asks
the developer to change it for *ON or *OFF (not only for indicators that causes many
false positive violations). SourceMeter requires the presence of *NODEBUGIO option
in the header as well, not only the *SRCSTMT keyword. Missing error handling
rule violations differ only because of the three unanalyzed files. "Code blocks (IF,

57

Chapter 6. Evaluation of Existing Static Analysis Tools

Table 6.3. Rules implemented in both tools

Group by
SonarQube SC Occ. SonarQube Rule Description SM Occ. Group by

SourceMeter

0 Source files should have a sufficient density
of comment lines

185 Documentation

0 Subroutines should be documented 0 Documentation
convention 3847 Subroutine names should comply with a

naming convention
4192 Naming

0 Copyright and license headers should be
defined

28 Security

0 "E" (externally described) indicator should
be found in F spec lines

0 Design

7 Numeric fields should be defined as odd
length packed fields

7 Design

brain-overload 264 Control flow statements "IF", "FOR",
"DO", ... should not be nested too deeply

352 Design

brain-overload 31 Subroutines should not be too complex 1,454 Design
1 Line count data should be retrieved from

the file information data structure
1 Design

convention 334 "/EJECT" should be used after "F", "D"
and "C" specification sections

520 Basic

305 The first parameter of a "CHAIN/READx"
statement should be a "KLIST"

315 Design

unused 227 Unused subroutines should be removed 80 Unused Code
unused 130 Sections of code should not be "commented

out"
185 Unused Code

0 Certain operation codes should not be used 4 + 1 Basic
brain-overload 0 "GOTO" statement should not be used 0 Basic
cwe, security 0 Debugging statements "DEBUG(*YES)"

and "DUMP" should not be used
0 Basic

0 The correct "ENDxx" statement should al-
ways be used

0 Basic

0 "IF" statements should not be conditioned
on Indicators

0 Basic

cwe 0 All opened "USROPN" files should be ex-
plicitly closed

0 Basic

3 An indicator should be used on a "CHAIN"
statement

1 Basic

1111 Standard figurative constants *ON, *OFF
and *BLANK should be used in place of
’1’, ’0’ and ’ ’

17 Basic

0 The "*SRCSTMT" header option should
be used

4 Basic

error-handling 699 Error handling should be defined in F spec 749 Basic
cert 0 "IF ELSEIF" constructs shall be termi-

nated with an "ELSE" clause
0 Basic

brain-overload 643 "WHEN" clauses should not have too many
lines

308 Size

brain-overload 58 Files should not have too many lines 120 Size
brain-overload 55 "DO" blocks should not have too many

lines
17 Size

brain-overload 145 "IF" blocks should not have too many lines 151 Size
0 "/COPY" should be avoided 1 Design

brain-overload 0 Subroutines should not have too many
lines

0 Size

DO, Files, WHEN clauses) containing too many lines" rules possibly have different
occurrence values, since the default parameter differs. SourceMeter has a similar rule
for limiting the usage of the /COPY compiler directive, but it operates with a nesting
level limit (currently one level of copy is allowed). However, SonarQube does not detect
the forbidden copy operations.

Table 6.4 presents the SourceMeter-only rules. Rules can be found like subroutine
circular call detection, different naming conventions, constantly false conditional state-

58

Chapter 6. Evaluation of Existing Static Analysis Tools

Table 6.4. Rules implemented only in SourceMeter (without metrics-based rules)

SourceMeter Rule Description Group by
SourceMeter Occ.

Uncommented conditional operation Documentation 4,629
File uses prefixed name Naming 0
Too short name Naming 22
Too long name Naming 271
Character variable names should begin with ’$’. Naming 0
Numeric variable names should begin with ’#’. Naming 0
Lower case letter in the name of called program or procedure Naming 0
Large static array Design 33
Circular reference between subroutines Design 1
Variable only referenced from an unused subroutine Unused Code 18
Conditional expression is always false Unused Code 1
Numeric operands of MOVE(L) are not compatible Type 2
Call operand is a variable Basic 3
Complete Conditional Operation Needed Basic 179

ments (like 1 equals to 2). A bad programming practice is when a variable is given as
an operand of call operation since it makes the debugging process more difficult.

Table 6.5 shows the list of SonarQube-only rules and the number of triggers. Some
rules have a very high trigger value. Uppercase form was not used in 107,768 cases that
can seriously distort the technical dept information (however, any rule can be turned
on or off).

Table 6.5. Rules implemented only in SonarQube

SonarQube Rule Description Group by
SonarQube Occ.

Variables used in only one subprocedure should not be global pitfall 0
"/COPY" statements should include specification letters convention 185
"CONST" should be used for parameters that are not modified 2
Columns to be read with a SELECT statement should be clearly defined sql 0
Comment lines should not be too long convention 9,891
Expressions should not be too complex brain-overload 86
LIKE keyword should be used to define work fields 703
Nested blocks of code should not be left empty bug 32
Operation codes and reserved words should be in upper case convention 107,768
Prototypes should be used convention, obsolete 1,423
Record formats should be cleared before each use bug 973
Source files should not have any duplicated blocks 2
SQL statements should not join too many tables performance, sql 0
Subprocedures should be used instead of subroutines obsolete 4,019
Subprocedures should not reference global variables brain-overload 0
The data area structure for "IN" should be defined in D spec lines. 148
Parameters of "CALL"/"CALLB" statements should be defined as "PLIST" 68
Non-input files should be accessed with the no lock option 0
Unused variables should be removed unused 14
String literals should not be duplicated 2872

6.4.3 Comparison of Duplicated Code Sections
SonarQube contains a rule for noting suspicious duplicated code sections. Sonar can
show duplicated lines in the source files, however, no grouping can be obtained that
makes it hard to understand code clones. Sonar only deals with Type-1 clones that
means the traditional copy-paste programming habit, so, every character must be the

59

Chapter 6. Evaluation of Existing Static Analysis Tools

same in the clone instances. A clone class encapsulates the same code portions (clone
instances) from different source locations into a group. SonarCube considered 0.2%
of the whole RPG code as code duplication (2 duplicated section with 141 lines).
SourceMeter has a poor display technique in Sonar environment, namely no highlight-
ing on affected lines is done. In a different context, SourceMeter supports a kind of
well-defined format for marking various clone classes and the relevant code instances.
The tool is also capable of finding Type-2 clones (e.g variable names may differ) that
is confirmed by the found 2.2% of code fragment that play a role in code duplications.
Its clone detection algorithm tries to match similar code sections (syntax-based) based
on source code elements (subroutine, procedure). On the contrary, SonarQube only
uses textual similarities to detect clones, but no structural information is used in clone
detection. For example, clone instances containing one and a half subroutines may be
produced, however, they should be split into two clone instances (holds more infor-
mation when considering refactoring). Another advantage of SourceMeter is that it
accepts parameters such as the minimum lines of code contained by a clone instance.

While SonarQube shows duplicated code locally in the inspected program, SourceMe-
ter extends its capabilities with a separate code duplication view, where clone instances
belonging to the same clone class can be investigated easily.

6.5 Discussion
In this section, we are summarizing and concluding our results. Then we show some
insights about the quality indices in terms of the previously presented aspects (metrics,
coding rule violations and code clones).

6.5.1 Summary of results
Analysis success and depth The program analysis went almost without problems
with both tools. While SourceMeter successfully analyzed all source files, SonarQube
RPG failed to analyze three of them. Although this is not considered as a blocker
problem in its use. On the other hand, SonarQube works at file level, while SourceMeter
analyzer works at finer levels of details (like procedure, subroutine level), which provides
a more detailed view of the analyzed system.

Source code metrics SourceMeter provides a wider range of metrics, and works
even at procedure and subroutine levels. SonarQube provides a limited set of metrics,
which restricts the building of further higher level models on top of low level metrics.

Coding rules The set of common or similar coding rules is large in size. SonarQube
has slightly more unique rules implemented, but SourceMeter provides a wide set for
validating metric value based rules. Generally, the tools are balanced in functionality.

Code duplications SourceMeter found significantly more duplicated code fragments
with better granularity. SourceMeter detects Type-2 clones (syntax-based), SonarQube
only deals with copy-pasted clones. SourceMeter extends SonarQube with an improved
display of code clones.

60

Chapter 6. Evaluation of Existing Static Analysis Tools

Table 6.6. Overall comparison results

Aspect Result Note

Analysis success Balanced SonarQube failed to analyze some input files
Analysis depth SourceMeter SourceMeter provides statistics in lower levels
Code metrics SourceMeter SourceMeter provides much more metrics
Coding rules Balanced Large common set, balanced rule-sets
Code duplications SourceMeter SourceMeter found more duplicated code blocks

Table 6.6 summarizes our findings with a short explanation of the result of our
experiments. During the comparison of our subject tools, we experienced that coding
rules for the RPG language in general need to be evolved, compared to similar solutions
of other popular languages. Given that both tools appeared recently on the market,
we foresee extended versions in the future.

6.5.2 Effect on Quality Indices
Low level, measurable attributes, such as code metrics, rule violations and code du-
plications contribute to higher level code quality indices. Such quality indices give an
overall picture of the analyzed project, helping stakeholders to take actions in case of
low or decreasing quality. SonarQube operates with two concepts to assess higher level
quality: technical debt and SQALE rating.

Technical debt is a metaphor for doing things in a quick but dirty way, which makes
future maintenance harder. If the debt is not paid back (e.g. software quality is not
considered as an important aim in the development process), it will keep accumulating
interest – similarly to a financial debt. In case of SonarQube, the technical debt is
measured purely based on coding rule violations. Each coding rule has an estimated
time to correct it. The overall technical debt is the sum of the estimated correction
time of all rule violation instances. The SQALE rating is based on the technical debt,
as such, it is based on coding rules as well. Hence, other quality attributes, like various
metrics (e.g. complexity, coupling) and code duplications do not affect these quality
indices. We provide dashboard data of quality indices computed in case of all rules
checked (Figure 6.5) and the dashboard for an analysis when only the common rules
were active (Figure 6.6). On the other hand, we recommend quality model that rely
on more quality attributes, like the QualityGate [87] models.

6.5.3 Threats to Validity
We identified a few threats to validity in our study. The validation of the results was
done manually on selected metrics/rules. The initial plan was to export the whole
list of rule violations and filter, at least the common results, automatically. While
SourceMeter is a command line tool-chain that can produces csv outputs, we did not
manage to obtain the full list from SonarQube. It is possible to obtain a report from
SonarQube, but that is not a complete list of rule violations. Although exhaustive
manual validation is not feasible, the current study involves three aspects of quality
measurements. We believe these three aspects are of high importance (technical debt

61

Chapter 6. Evaluation of Existing Static Analysis Tools

Figure 6.5. Quality indexes based on SourceMeter for RPG analyzer (left) and Sonar-
Qube RPG analyzer (right) – computed using all coding rules

Figure 6.6. Quality indexes based on SourceMeter for RPG analyzer (left) and Sonar-
Qube RPG analyzer (right) – computed using common coding rules only

is computed based on only one aspect), however, adding other viewpoints or even
dynamic analysis results would increase the validity of the results. The measured RPG
programs belong to the same domain and are implemented by developers of the same
software house who followed the coding policies of the company. Further experiments
are needed with larger RPG codebase from various domains and developers. Although
we identified this threat, we note that the measured RPG programs are part of legacy,
data intensive applications typical in IBM i mainframes.

6.6 Summary
In this chapter, we experimented with the static analyzers of quality management tools
for the RPG programming language employed on the IBM i mainframe. We compared
the SourceMeter for RPG command line toolchain together with its SonarQube plugin
to the RPG analyzer of the SonarQube framework. Five important aspects of quality
measurements were examined: analysis success, analysis depth, source code metrics,
coding rules, and code duplications. SonarQube can not handle some source files,
moreover, the depth of analysis is limited to system and file level. SourceMeter can
perform analysis in finer granularity (procedures, subroutines). We found that, from
the metrics point of view, the SourceMeter tool provides a much wider range of possi-
bilities, while the handling of coding rules is balanced, since the common set of coding
rules is relatively large. SonarQube detects clones using copy-paste (Type-1) clones,

62

Chapter 6. Evaluation of Existing Static Analysis Tools

SourceMeter can detect Type-2 clones since it uses a syntax-based mechanism and also
takes into consideration the bounds of source code elements (subroutines, procedures).

Technical Dept and SQALE rating are higher level quality attributes provided by
the SonarQube platform. Unfortunately, these quality metrics only based on the coding
rule violations, which can distort the overall quality of the system. We suggest and
will present possible solutions for this problem in the following chapters in which we
will use SourceMeter for the purpose of calculating low level quality attributes.

63

“Before software can be reusable it first has to
be usable.”

— Ralph Johnson

7
Integrating Continuous Quality Monitoring

Into Existing Workflow – A Case Study

7.1 Overview
The IBM i mainframe was designed to manage business applications for which reliability
and quality are matters of national security. The RPG programming language is the
most frequently used one on this platform. The maintainability of the source code has
a big influence on the development costs, which is probably the reason why it is one of
the most attractive, observed and evaluated quality characteristic of all. For improving,
or at least preserving, the maintainability level of software, it is necessary to evaluate
it regularly. In this chapter, we present a quality model based on the ISO/IEC 25010
international standard for evaluating the maintainability of software systems written
in RPG. As an evaluation step of the quality model, we show a case study in which
we explain how we integrated the quality model as a continuous quality monitoring
tool into the business processes of a mid-size software company, which has more than
twenty years of experience in developing RPG applications.

Our main contribution in this work is the introduction of a continuous quality
management approach specialized to RPG. According to our best knowledge, no or
only very little effort was invested into researching state-of-the-art quality assurance
techniques for RPG. To explore RPG source code and detect components which carry
high risks, we used the SourceMeter for RPG static code analyzer tool, which seemed
to have a deeper analysis capability as shown in Chapter 6. As we have presented, the
analyzer provides three types of measurements, which are the following:

• Software Metrics: A software metric in this context is a measure of some property
of the source code [29]. There is a growing need in software development to define
quantitative and objective measurements, so software metrics are calculated for
RPG language elements (namely for subroutines, procedures, programs, and for
the whole system).

65

Chapter 7. Integrating Continuous Quality Monitoring Into Existing Workflow – A
Case Study

• Rule violations: Rule violations [21] can reveal code segments that are prone to
errors. These can be coding problems that are introduced e.g. accidentally or
because of low-skill programmers, and code smells that can be symptoms in the
source code that possibly mean a deeper design problem in the code and can
cause incorrect operation at a later stage. Code smells are not equal to bugs,
but their presence increases the risk of bugs or failures in the future. Rules are
defined for RPG to indicate the existence of possible code smells. Furthermore,
coding rules are excellent means for defining company coding standards.

• Code duplications: Duplicated code segments usually come from the very pro-
ductive, but at the same time dangerous source code copy-paste habit. Code
duplications [18] could be handled as a code smell; however, they cover an im-
portant separable part of quality assurance.

We used these low-level measurements as an input to provide a diagnosis about an
RPG system. This diagnosis, which characterizes the quality of a whole RPG system,
is provided by the ISO/IEC 25010 [54] standard based, new quality model introduced
in this chapter. Building and testing a quality model like this needs specialists in
this specific domain. So, the company called R&R Software1 (mid-sized company with
more than 100 software developers) was involved to help the calibration and evaluation
of the quality model with their deep knowledge in developing software systems written
in RPG. They clarified the importance of each quality aspect, and also provided a
collection of industrial programs written in RPG. As a validation of our approach, we
show in a case study how we managed to integrate our method into their development
processes, and how they used it for refactoring purposes.

The chapter is organized as follows. In the next section, we summarize some re-
lated studies. Next, we briefly describe our approach in Section 7.3. Afterwards, in
Section 7.4 we present a case study, which shows how our approach works in a real life
situation. In Section 7.5, we collect some limitations and threats to validity. Finally,
in Section 7.6 we sum up our findings.

7.2 Related work
In this section we provide an overview about the most important studies about software
quality measurement and its relationship with RPG static code analysis.

7.2.1 Quality Assurance for RPG
Papers focusing on legacy systems and/or RPG quality analysis are rarely published,
however, there are some notable research papers presented during the decades. Kan
et al. [60] were dealing with software quality management in AS/400 environment.
They identified the key elements of the quality management method, such as customer
satisfaction, product quality, continuous process improvement and people. Based on
empirical data, the progress in several quality parameters of the AS/400 software sys-
tem were examined. They presented a quality action road map that describes the
various quality actions that were deployed.

1http://www.rrsoftware.hu/

66

Chapter 7. Integrating Continuous Quality Monitoring Into Existing Workflow – A
Case Study

Bakker and Hirdes [8] described some project experiences using software product
metrics. They analyzed more than 10 million lines of code in COBOL, PL/I, Pascal,
C, C++, and RPG (about 1.8 million lines of code). The goals of the projects written
in RPG were maintenance and risk analysis. They found that the problems in legacy
systems are caused by the design, not by the structure of the code. Furthermore,
re-designing and re-structuring existing systems are less costly and safer solutions to
these problems than re-building.

7.2.2 Quality Model
Once we have quality indicators, like software metrics, which are capable to charac-
terize the software quality from various points of view, it is necessary to standardize
this information somehow [4]. This is the reason why the ISO/IEC 25010 [54], and
its ancestor, the ISO/IEC 9126 [53] international standards have been created. The
research community reacted quickly to the appearance of these standards, and several
papers have been published in connection to them. Jung and Kim [56] validated the
structure of the ISO/IEC 9126 standard based on the answers of a widespread survey.
They focused on the connections between the subcharacteristics and the characteris-
tics. They grouped subcharacteristics together based on the high correlation in their
values according to the evaluators. The authors found that most of the evolved groups
referred to a characteristic defined by the standard.

Since the standards do not provide details about how these characteristics can
be determined, numerous adaptations and various solutions have been developed for
calculating and assessing the values of the defined properties in the standard [9, 7, 13].

Many research papers use benchmarking and quality models to provide higher level
information about software systems. Benchmarking in software engineering is proven
to be an effective technique to determine how good a metric value is. Alves et al. [5]
presented a method to determine the threshold values more precisely based on a bench-
mark repository [32] holding the analysis results of other systems. The model has a
calibration phase [7] for tuning the threshold values of the quality model in such a way
that for each lowest level quality attribute they get a desired symmetrical distribution.
They used the 〈5, 30, 30, 30, 5〉 percentage-wise distributions over 5 levels of quality. To
convert the software metrics into quality indices we also used a benchmark with a large
amount of evaluations, but we applied it in a different way. During the calibration,
instead of calculating threshold values we approximate a normal distribution function
called benchmark characteristic, which is used to determine how good a software is.

7.3 Approach
In this section, we provide a brief overview about the probabilistic software quality
model called ColumbusQM [9] and show how we implemented the general approach for
the RPG language.

The ISO/IEC 25010 international standard defines the product quality character-
istics that are widely accepted both by industrial experts and academic researchers.
These characteristics are: functional suitability, performance efficiency, compatibility,
usability, reliability, security, maintainability and portability. In this study, we fo-
cused on maintainability because of its obvious and direct connection with the costs
of altering the behavior of the software. The standard defines the subcharacteristics

67

Chapter 7. Integrating Continuous Quality Monitoring Into Existing Workflow – A
Case Study

of maintainability as well, but it does not provide further details on how we could
calculate these characteristics and subcharacteristics.

The basic idea behind the ColumbusQM is splitting the complex problem of calcu-
lating a high-level quality characteristic into less complex sub-problems. In the quality
model, the relations between the lower level metrics, which can be readily obtained
from the source code, and the higher level quality characteristics can be described with
an acyclic directed graph, called the attribute dependency graph (ADG). The developed
ADG for RPG language is shown in Figure 7.1.

Figure 7.1. RPG quality model ADG

The black nodes in the model are defined by the ISO/IEC 25010 international
standard, the white nodes are the source code metrics calculated by the SourceMeter
for RPG tool, and finally, the gray nodes are the inner nodes defined by us to help
revealing the dependencies in the model. We call the source code metric nodes as Sensor
nodes and the other nodes as Aggregated nodes. Table 7.1 contains the descriptions of
all nodes.

An essential part of the approach, besides the quality model, is the benchmark,
which contains several RPG systems. By comparing the system with the applications
from the benchmark, the approach converts the low-level source code metrics into
quality indices. For the edges of the ADG, a survey was prepared. In this survey, the
developers were asked to assign weights to the edges, based on how they felt about the
importance of the dependency.

68

Chapter 7. Integrating Continuous Quality Monitoring Into Existing Workflow – A
Case Study

Table 7.1. Description of the nodes in the RPG Quality Model.

Sensor nodes

CC Clone coverage. The percentage of copied and pasted source code parts, computed for the
subroutine, procedure, program, and the system itself.

CLOC

Comment Lines of Code. Number of comment and documentation code lines of the subrou-
tine/procedure/program. Subroutines’ CLOC are not added to the containing procedure’s
CLOC. Similarly, subroutines’ and procedures’ CLOC are not added to the containing pro-
gram’s CLOC.

CD Comment Density. The ratio of comment lines compared to the sum of its comment and log-
ical lines of code (CLOC and LLOC). Calculated for subroutines, procedures, and programs.

LLOC

Logical Lines of Code. Number of code lines of the subroutine/procedure/program, excluding
empty and comment lines. In case of a procedure, the contained subroutines’ LLOC is not
counted. Similarly, in case of a program, the contained subroutines’ and procedures’ LLOC
is not counted.

McCC

McCabe’s Cyclomatic Complexity [67] of the subroutine/procedure. The number of decisions
within the specified subroutine/procedure plus 1, where each if, else-if, for, do, do-while, do-
until, when, on-error counts once. Subroutines’ McCC are not added to the containing
procedure’s McCC.

NLE

Nesting Level Else-If. Complexity of the subroutine/procedure/program expressed as the
depth of the maximum embeddedness of its conditional and iteration block scopes, where in
the if-else-if construct only the first if instruction is considered. The following RPG language
items are taken into consideration: if, for, do, do-while, do-until, select, and monitor. The
else-if, else, when, other, and on-error operations do not increase the value of the metric;
however, they can contain elements defined above, which increase NLE. Subroutines’ NLE
are not added to the containing procedure’s NLE. Similarly, subroutines’ and procedures’
NLE are not added to the containing program’s NLE.

NII Number of Incoming Invocations. Number of other subroutines which directly call the sub-
routine.

NOI Number of Outgoing Invocations. Number of other subroutines which are directly called by
the subroutine.

Warning P1 The number of critical rule violations in the subroutine/procedure/program. They can be
potential root causes of system faults.

Warning P2 The number of major rule violations in the subroutine/procedure/program. Serious coding
issues which makes the code hard to understand, and can decrease efficiency.

Warning P3 The number of minor rule violations in the subroutine/procedure/program. These are only
minor coding style issues, makes the source code harder to comprehend.

Aggregated nodes

Changeability The capability of the software product to enable a specified modification to be implemented,
where implementation includes coding, designing and documenting changes.

Complexity Represents the overall complexity of the source code. It is represented by the McCabe’s
Cyclomatic Complexity and the Nested level of the subroutines.

Comprehensibility Expresses how easy it is to understand the source code. It involves the complexity, docu-
mentation and size of the source code.

Documentation Expresses how well the source code is documented. It is represented by the density and the
amount comment lines of code in a subroutine.

Fault proneness Represents the possibility of having a faulty code segment. Represented by the number of
minor, major and critical rule violations.

Stability The capability of the software product to avoid unexpected effects from modifications of the
software.

Aggregated nodes defined by the ISO/IEC 25010 standard

Maintainability Degree of effectiveness and efficiency with which a product or system can be modified to
improve it, correct it or adapt it to changes in environment, and in requirements.

Analyzability
Degree of effectiveness and efficiency with which it is possible to assess the impact on a
product or system of an intended change to one or more of its parts, or to diagnose a product
for deficiencies or causes of failures, or to identify parts to be modified.

Modifiability Degree to which a product or system can be effectively and efficiently modified without
introducing defects or degrading existing product quality.

Testability
Degree of effectiveness and efficiency with which test criteria can be established for a system,
product or component and tests can be performed to determine whether those criteria have
been met.

Reusability The degree to which an asset can be used in more than one system, or in building other
assets.

69

Chapter 7. Integrating Continuous Quality Monitoring Into Existing Workflow – A
Case Study

7.3.1 Integration with QualityGate

Since our intention was to provide valuable information for the managers and devel-
opers on a daily basis, it was necessary to integrate our approach into a continuous
quality management tool. The SourceMeter for RPG tool and the ColumbusQM ap-
proach was integrated into a tool called QualityGate [11]. As a comprehensive software
quality management platform, QualityGate is capable of calculating quality values us-
ing the ColumbusQM from source code, using a wide range of software quality metrics
provided by the SourceMeter for RPG tool. It is empowered by a built-in quality
model conforming to the ISO/IEC 25010 standard and has a benchmark containing
analysis data from a large number of RPG systems. This makes it possible to calculate
objective quality attributes and estimate upcoming development costs [10].

7.4 Case Study

In this section, we present our empirical results about how we managed to integrate
the introduced quality model for RPG approach and the QualityGate tool suite into
the life of a mid-sized software company.

We organized the case study into four consecutive phases. In the first, initial phase,
we calibrated the SourceMeter for RPG tool and created a benchmark and a quality
model for RPG. In the next, integration phase, we prepared the IBM i mainframe to
regularly generate spool files and upload them into a subversion repository. In the
refactoring phase, a software module was improved based on the guidelines of the
approach. Finally, the last part of the case study is the discussion phase, where we
discussed our experiences about the approach.

7.4.1 Initial Phase

In the initial phase, we personalized our approach to the R&R Software company.
First, we went through every software metric, rule violation and clone property and
calibrated them in cooperation with RPG experts.

We created a survey to set the priorities of each rule violation. Developers classified
each rule violation as minor, major or critical. We also implemented some new rule
violations, which seemed useful based on their opinions. We also asked them to set
the limits of specific metric based rule violations, for example, what is the interval for
Nesting Level (NLE) value which is considered acceptable for a subroutine.

To build a benchmark, we used large, real-life RPG modules provided by the com-
pany. The basic statistics about the modules can be found in Table 7.2. The table
shows that the modules vary between 18K and 129K in total logical lines of code (TL-
LOC) with thousands of subroutines. Since we planned to compare the results of the
given application to another applications, we used these four modules as benchmark.

Finally, we created and weighted a quality model in cooperation with the RPG
experts at R&R company. This quality model was presented earlier in this chapter
and can be seen in Figure 7.1.

70

Chapter 7. Integrating Continuous Quality Monitoring Into Existing Workflow – A
Case Study

Table 7.2. Basic statistics of the benchmark systems.

System TLLOC Program num. Subroutine num.
AB 128,146 264 5,355
IV 18,378 62 850
LG 65,655 163 2,336
PR 129,484 288 5,944

7.4.2 Integration Phase
In the second phase, we integrated our approach into their IBM i programming envi-
ronment. The flowchart of the whole approach is shown in Figure 7.2.

Figure 7.2. Process chain of the approach.

First of all, we had to program the IBM i mainframe to generate the spool files from
the chosen system on a daily basis. Spool files are the result of the RPG compilation
and, besides the source files, they contain several useful information about the compi-
lation. SourceMeter for RPG supports both spool files and raw source files, but since
spool files contain more information it is recommend to use them. After the spool file
generation is finished, the IBM i starts a script that uploads the spool files to an SVN
version control system.

We used an extendable open source continuous integration server called Jenkins2
to analyze every version in the subversion repository. Jenkins makes it possible to
extend the build system with various plugins. We implemented a Jenkins plugin, which
provides a user interface where the user can set the specific properties of the evaluation,
like the used quality model, subversion repository, or frequency of the analysis. By
using the plugin, when a new version is committed to the subversion repository, Jenkins
automatically downloads the source files and executes the SourceMeter for RPG tool
and right after it uploads the results to the database of QualityGate.

2https://jenkins.io/

71

Chapter 7. Integrating Continuous Quality Monitoring Into Existing Workflow – A
Case Study

Finally, QualityGate shows the quality of the evaluated versions on different time-
line and spider charts. On the timelines, the developers can choose a specific version
and find the root cause for why the given quality characteristic has been changed.

7.4.3 Refactoring Phase
As a result of the previous phases, the continuous quality monitoring tool was ready
to be used. R&R selected a part of the LG module for refactoring, which they wanted
to improve. The basic statistics before and after the refactoring of this submodule
can be seen in Table 7.3. As it was hoped and expected, during the refactoring the
overall maintainability of the module increased. The number of critical rule violations
(WarningP1) halved and only about one third of the major rule violations (WarningP2)
remained in the code. The clone coverage of the module did not change, since no effort
was put into reducing clones. Also, the developers did not reduce the number of minor
rule violations (WarningP3).

Table 7.3. Basic statistics of the LG submodule before and after the refactoring.

Property Before refactoring After refactoring
TLLOC 5,266 5,319
Program num. 9 9
Subroutine num. 226 233
Maintainability 4.87 5.41
WarningP1 num. 109 53
WarningP2 num. 238 80
WarningP3 num. 262 262
Clone Coverage 0.17 0.17

Figure 7.3. Low-level quality results. Figure 7.4. High-level quality results.

The initial low and high-level quality results of the submodule can be seen in Fig-
ure 7.3 and Figure 7.4. The maintainability of this system before the refactoring was
4.87 on the scale of [0,10] (larger is better). Since the average is 5, this means the initial

72

Chapter 7. Integrating Continuous Quality Monitoring Into Existing Workflow – A
Case Study

maintainability of the selected LG submodule is slightly under the average (based on
the benchmark). Based on Figure 7.3, we can assume that this is mostly because of
the NII, NOI, McCC and NLE metrics, because their goodness value is the lowest in
the model. According to the RPG quality model, the metrics influence the goodness of
the Complexity and Reusability aggregated nodes, e.g. Complexity is calculated from
McCC and NLE, and it also has a very low 3.38 goodness value.

Figure 7.5. Maintainability quality timeline.

The business process of a refactoring task is quite simple with QualityGate. The
lead developer needs to find a coding issue based on the guidelines of the approach.
This issue can be, for example, a badly maintainable subroutine, a rule violation or a
code duplication. The next step is to assign the issue as a ticket to a suitable developer
with some comment. Finally, the developer has to fix the specified issue. At the time
the developer committed the fix for the issue, the new version will be uploaded to
QualityGate. If the issue was a rule violation or a code duplication, the validation of
the fix is done automatically, since it disappeared from the new version.

The progress of the maintainability quality characteristic of the system during the
whole refactoring process can be seen in Figure 7.5. As it was expected, the main-
tainability of the submodule increased with almost every new version. After a week
of refactoring, the quality of the submodule went above 5. It means it became more
maintainable than the average according to the benchmark. As we can see in Fig-
ure 7.5, at this time the color of the timeline changed from red to green, meaning the
quality of the system reached a specific threshold value. This previously set threshold
value determines whether the system is in NO-GO or GO state. This way, managers
can easily set the target quality of a specific application.

In Figure 7.6, we can see that no effort was put into improving the McCC complexity
of the module in the first week of the refactoring. Although, at the end of the refactoring
process it increased by 0.5, it remained still under 3. The complexity of the system is
still critical, but during the refactoring its goodness increased from 3.38 to 3.69.

In Table 7.3, we saw that the number of critical rule violations (WarningP1) de-
creased a lot during the refactoring. This improvement can be seen on the quality
timeline of the WarningP1 node in Figure 7.7. If we compare it with the maintainabil-
ity timeline, we can see that fixing critical rule violations had an important role in the
two highest improvements on the maintainability timeline. These improvements were
mainly caused by the elimination of rule violations.

73

Chapter 7. Integrating Continuous Quality Monitoring Into Existing Workflow – A
Case Study

Figure 7.6. McCC quality timeline.

Figure 7.7. WarningP1 quality timeline.

In the followings, two simple cases will be shown to demonstrate the refactoring
mechanism applied on the elimination of rule violations. Companies have different
standards for the allowed set of operations to be used in the code. Since the given
set can differ from company to company, the list of operations to avoid in code is
customizable. At R&R Software, ADDDUR is one of the operations to avoid. Using
such an operation is forbidden according to the company’s standard.

Look at the code snippet from the LG module, shown in Listing 7.1. A subroutine
definition can be seen named fk0601. In the first step, a checking subroutine is called,
then, if no error was found in the date format, an assignment is done, and finally
another check is performed by calling ckfm01. The ADDDUR operation adds the
duration specified in the second operand called factor 2 (“7:*days” which means that
the number of days is increased by seven) to a date or time and places the resulting
Date, Time or Timestamp in the result field (@@date). Since the ADDDUR operation
is on the avoid operation list, a critical rule violation will occur pointing to the relevant
code location.

To eliminate ADDDUR from the code, refactoring should be performed on the
code. In Listing 7.2 the same fk0601 subroutine is shown with some modifications.
After checking whether the date is in the desired format, the two eval and the adddur
operations were combined into one single eval operation that has the same functionality.

74

Chapter 7. Integrating Continuous Quality Monitoring Into Existing Workflow – A
Case Study

Listing 7.1. Using avoid operation in a subroutine
....+....1....+....2....+....3....+....4....+....5....+..

C fk0601 begsr
C exsr ckdtfr

* No error --> Process
C *in99 ifeq *off
C eval @@date = %date(wsdtfr)
C adddur 7:* days @@date
C eval wsdtfr = %dec(@@date)
C exsr ckfm01
C endif
C endsr

Listing 7.2. Eliminate avoid operation rule violation
....+....1....+....2....+....3....+....4....+....5....+..

C fk0601 begsr
C exsr ckdtfr

* No error --> Process
C *in99 ifeq *off
C eval wsdtfr = %dec (% date(←↩

wsdtfr)
+% days←↩

(7))
C exsr ckfm01
C endif

Another critical rule violation is when a programmer does not specify an error
handling subroutine on a File Specification line, thus error(s) that occur during file
management will not be handled correctly. In Listing 7.3, a file named lro1000c is
specified as an external file and also a fully procedural file is stored on a local disk for
only input purposes (in this program). A line continuation is added with a keyword
rename to reference the file more easily from code. In this case, to handle input errors
on file lro1000c, we need to add another keyword that is infsr. The given parameter
of the infsr keyword is the name of the subroutine that will handle occurring input
errors. The corrected source snippet can be seen in Listing 7.4. A keyword has been
added that marks srinfs as the error handling subroutine.

Listing 7.3. Missing error handling on File Specification
....1....+....2....+....3....+....4....+....5....+...

Flro1000c if e k disk
F rename(rorc:←↩

ro1000cr)

75

Chapter 7. Integrating Continuous Quality Monitoring Into Existing Workflow – A
Case Study

Listing 7.4. Eliminate missing error handling on File Specification
....1....+....2....+....3....+....4....+....5....+...

Flro1000c if e k disk
F infsr(srinfs)
F rename(rorc:←↩

ro1000cr)

By eliminating these critical rule violations, it is very likely that the quality of the
system will improve. Nevertheless, as we have seen, the quality index is calculated
from a wide set of metrics. Consider a case when a programmer is told to eliminate
a code clone. So, the developer extracts the cloned code parts into a procedure and
calls it from the right places where formerly the clones were located (assume that
clone instances were located in two subroutines). In this case, the value of the CC
(Clone Coverage) metric will be lower, but the NOI (Number of Outgoing Invocations)
values will increase for both subroutines. To sum up, improving one characteristic of
the system does not necessarily result in the improvement of the quality index of the
system.

7.4.4 Discussion Phase
The last phase was the discussion phase, where we concluded our experiences about
the approach in a workshop. Altogether they found our approach useful, easy to adapt
and use. We organized their opinions into the following four points.

• According to them, one of the most important features of the approach is that
they were able to check the RPG coding conventions inside the company using
the precisely calibrated rule violations and metrics. This feature helped them to
force their developers to avoid undesirable solutions. This makes the source code
more maintainable, since when a few months later a different developer would
like to maintain the code part it will be much easier.

• The customization of the approach can be done easily. QualityGate provides
user interfaces to create new benchmarks and quality models. In the future, they
would like to use this feature to validate and upgrade their source code generator
with a quality model which is not designed for maintainability, but for their
special task.

• The best time to use the method is before testing, since the tool could help prevent
unnecessary test cycles by revealing possible faults. Another good occasion to
use the method is when a new project is started or an application needs to be
upgraded.

• A long term benefit of using this approach is that developers will learn what the
common patterns for solving different problems are and what constructs should
be avoided. This way, not only the company will benefit using the approach, but
the developers as well.

76

Chapter 7. Integrating Continuous Quality Monitoring Into Existing Workflow – A
Case Study

7.5 Threats to Validity, Limitations
Overall, the results are promising, but we have to highlight the limitations and the
threats to validity of our approach as well.

One major limitation of our approach is generalizability, since the entire process was
designed within a cooperation with one software company. The quality model reflects
their and our opinion, the benchmark was created from their software systems and they
designed several rule violations. The approach can be used in other companies as well,
but it is highly recommended to create a new benchmark and calibrate the weights of
the used quality model.

The validation of our method was based only on the opinions of the developers about
the improvement of one submodule. Examining more refactoring processes, collecting
exact values, and running statistical tests would have provided more precise results,
but only a few developers were working on the refactoring project and we could not
run such tests because of the lack of data.

A big question about software metrics and rule violations affects the reliability of
our approach as well. We know that they are useful, they have proven to be good
indicators for some aspects of software quality, but maintainability is still a subjective,
high-level characteristic, and we cannot be sure that we took every important aspect
into consideration.

7.6 Summary
In this chapter, we introduced a software quality model for the RPG programming
language, which conforms to the ISO/IEC 25010 international standard, and integrated
it into the continuous software quality monitoring tool called QualityGate. We used
software metrics, rule violations, and code duplications to estimate the maintainability
of RPG software systems and to reveal various source code issues.

As a validation of our approach, we presented a case study in cooperation with the
R&R Software development company. We organized the case study into four phases.
In the initial phase we calibrated the parameters of the tools, and in the second phase
we set up the IBM i compiler to generate spool files into a subversion repository on a
daily basis. The third phase of the case study was to refactor one of their submodules
chosen by the company. Finally, as a conclusion, we discussed their experiences in
using our approach.

Based on the opinions of the developers, the industrial application of our method
was a success. During the refactoring phase, the number of critical and major rule
violations were halved. Despite the fact that the complexity goodness of the examined
system is still under the average, its maintainability value increased and crossed the
baseline value, so the state of the project had changed from NO-GO to GO.

77

“Avoid complexities. Make everything as simple
as possible. ”

— Henry Maudslay

8
Redesign of Halstead’s Complexity Metrics

and Maintainability Index for RPG

8.1 Overview
ISO 25010 standard describes maintainability as one of the eight quality characteristics.
Maintainability has become the most important trait related to quality, as the cost of
maintaining a software system adds up to 40-60% of the total costs of a software[24,
83]. This is why researchers focus on maintainability and try to discover relationships
between maintainability and different characteristics of the system.

There are numerous business applications having their core written in RPG. Main-
tainability of legacy business applications are likely to be more important. More effort
should be put into research studies that deal with legacy systems’ maintainability to
prevent software erosion.

Halstead metrics are the first complexity measures that were defined by Maurice
Halstead[46]. He thought that many characteristics of a software system can be ex-
pressed by only using the number of operands and operators occurred in a software.
Halstead complexity metrics were first calculated for IBM RPG systems in 1982 pre-
sented by Hartman[48]. At that time, the calculation was performed on RPG II and
RPG III systems that are very rare nowadays.

In this chapter, we propose a definition of Halstead complexity metrics for newer
versions of RPG, namely IBM RPG/400 and RPG IV. RPG IV brought new core lan-
guage features that makes the calculation of Halstead complexity metrics absolutely
different than before. Free-form block (column independent) constructions have the
most impact on the methodology. We extended our static analysis tool, SourceMeter,
to calculate Halstead complexity measures for RPG. We used this tool to calculate
the metrics for 348 RPG programs containing 7475 subroutines. We also applied four
Maintainability Index (MI) metrics that are widely used to express the overall main-
tainability of a software. For instance, Microsoft’s Visual Studio is currently using
a Maintainability Index definition to provide an overall maintainability/quality mea-
surement for a system. Maintainability Index depends upon Halstead’s Volume, which

79

Chapter 8. Redesign of Halstead’s Complexity Metrics and Maintainability Index for
RPG

motivates us to investigate the Halstead’s Complexity metrics to get a deeper insight
into how they are related to other software metrics. Similarly, maintainability models
are constructed to gain an overall maintainability score by aggregating low-level metric
values. In chapter 7, we defined a quality model for RPG[115].

To determine which metrics form groups that have strong inner connections, re-
searchers often use the concept of Principal Component Analysis (PCA). PCA is also
used to reveal hidden connections in the dataset and to reduce the dimensionality of the
data. Based on the Principal Component Analysis, we determined how our previous
model could be extended to involve more metrics, thus ensuring a stronger descriptive
behavior of our maintainability model.

The rest of this chapter is structured as follows. In Section 8.2, we present the
most important studies that are related to our research domain. In Section 8.3, we
present the definitions of the used metrics. Section 8.4 shows the results of the Principal
Component Analysis and we make suggestions for extending the quality model. Finally,
we end the chapter with enumerating the threats to validity and summarizing the
results.

8.2 Related Work
In this section, we present the most important studies that relate to static source
code analysis in RPG systems and software metrics defined for RPG language. In
the literature there is a lack of studies that focus on RPG legacy software systems,
hence we can only enumerate a very limited number of papers that have RPG related
research topics. We can hardly identify groups of research areas when RPG is in
the spotlight. The first studies that are related to IBM RPG are from 1982. Naib
investigates internal (not varying with time - McCabe, Halstead, Lines of Code) and
external (varying with time - number of users) metrics on two large RPG packages
to see whether the metrics have correlation with error rates.[79]. Different internal
measures are calculated at module level for which Naib used Hartman’s counting tool
to support the identification of fault-prone RPG II and RPG III modules[48]. Hartman
used the original definitions to calculate McCabe’s Cyclomatic Complexity[67] and the
Halstead’s complexity metrics[46].

The usefulness of metrics are mostly accepted, however, sometimes the metrics are
criticized rather to pinpoint the weaknesses and add a gentle indication to change or
modify the directions of the research areas [91]. These kind of studies often reflect the
misuse of metrics in different models. Halstead’s complexity metric family as being
one of the first complexity metric set is sometimes handled as a golden hammer [25]
that is obviously a bad practice. Consequently, more metrics were defined and used
for empirical analysis to show different characteristics of the subject systems [72, 17].
For evaluating new complexity metrics, sometimes different frameworks are used [71].
Maintainability Index (MI) was first introduced by Oman et al. in 1994 [80, 30]. MI was
designed to express the maintainability of a system (as its name reflects) with a single
value. Its power has become its weakness, since it does not provide any information on
how the metric value was made up (maybe only one lower level metric is critical) or what
changes should be made to improve the system’s maintainability [51]. As ISO 25010
describes, maintainability is a derived quality indicator which comprises modularity,
reusability, analyzability, modifiability, and testability. However, Maintainability Index
is an ideal measurement when one would like to compare the overall maintainability

80

Chapter 8. Redesign of Halstead’s Complexity Metrics and Maintainability Index for
RPG

of different software systems. Maintainability models were proposed to overcome the
above mentioned problems [74, 61] and soon more complex quality models were being
created [81, 89, 9].

Bakota et al. presented a probabilistic software quality model where the overall
maintainability is derived from analyzability, changeability, stability, testability [9].
They used the ISO 9126 standard, which is the ancestor of ISO 25010, thus this model
has become quite outdated and needs to be updated, however, it is still usable. In
case of RPG, we have proposed a similar quality model in Chapter 7 which is based
on the results of the probabilistic software quality model. In this chapter, we would
like to give recommendations for extending the RPG quality model to involve more
measurements that reflect the overall quality of a system in a more precise way.

8.3 Computing Halstead Metrics and Maintainabil-
ity Index for RPG

Halstead Complexity metrics[46] are likely to be forgotten, which is undeserving in
many cases. For instance, Maintainablity Index[30] shows the strength of Halstead’s
metrics. Coleman et al. used Halstead’s Effort metric amongst others to derive the
original Maintainability Index (MI) metric. At that time, Halstead’s volume and effort
metrics were considered to be the best indicators for predicting the maintainability of
a software system.

To produce the necessary metric values, we first present the list of definitions for
Halstead metrics. Let us consider the following notations:

• η1 = number of distinct operators

• η2 = number of distinct operands

• N1 = total number of operators

• N2 = total number of operands

Now we have the definitions of the four basic metrics we will use in our further
formulas, however, there is no intention or concept that describes what should be
considered as an operand and an operation. This problem can cause inconsistencies
between research papers since they use different interpretations. Furthermore, the
calculation of operands and operators can significantly differ by programming languages
(mainly coming from the dissimilarities of the languages). Fortunately, in case of RPG
we do not have to dig deep to figure out how different source code elements should
be treated. We calculated the Halstead’s complexity metrics similarly to how it was
presented by Hartman for RPG III, thus we concentrate on the peculiarities of RPG
IV. Now we will present the different source code elements that should be included in
the calculations.

Table 8.1 summarizes the source code elements in different RPG versions to be
counted as operators. Calculation specification is the place where we can specify the
operations to be done on the given operands. In RPG IV, we use free-form to avoid
column-sensitive programming. In the free-form section, we can use different operators
such as infix operators (+,-,*,/, < ,>, . . .), member selection (data structure field
select), array subscription (to get elements from an array), parentheses (to modify the

81

Chapter 8. Redesign of Halstead’s Complexity Metrics and Maintainability Index for
RPG

Table 8.1. List of source code elements to be counted as operators

Specification name Construct name RPG version
Calculation Operator RPG/400 RPG IV

Free-form (C) Infix expressions RPG IV
Free-form (C) Member Selection RPG IV
Free-form (C) Array Subscript RPG IV
Free-form (C) Parentheses RPG IV
Free-form (C) Prefix Expressions RPG IV

operation precedence), and also prefix operations. Most of the free-form statements
can be written in calculation specifications, some cannot.

Table 8.2. List of source code elements to be counted as operands

Specification name Construct name RPG version
Calculation Factor 1 RPG/400 RPG IV
Calculation Factor 2 RPG/400 RPG IV
Calculation Result Field RPG/400 RPG IV
Definition (Variable) Name RPG IV
Input Program Field RPG/400, RPG IV
Input Data Structure RPG/400, RPG IV
Input Data Structure Subfield RPG/400, RPG IV
Input External Record RPG/400, RPG IV
Input External Field RPG/400, RPG IV
Input Data Structure RPG/400, RPG IV
Input Data Structure RPG/400, RPG IV
Input Named Constant RPG/400

Free-form Literal RPG IV
Free-form Identifier RPG IV
Output Output External Record RPG/400, RPG IV
Output Output External Field RPG/400, RPG IV
Output Output Program Field RPG/400, RPG IV

Table 8.2 shows the RPG constructions to be counted as operands. When we use
an operator in Calculation Specification we have to specify operand(s) (if needed) to
perform the operation on. These operands should be specified in columns named factor
1 and factor 2. The result of the operation is stored in the given result field. In RPG
IV we can use Definition Specification to define variables and constants. We use Input
and Output Specification to declare the appropriate input and output data structures
and their fields (also constants in RPG/400). In RPG IV we can also use literals and
identifiers in free-form section which are also counted as operands.

Table 8.3 introduces the Halstead metrics that are aggregated from the basic ones
(η1, η2, N1, N2). Table 8.4 presents the different variants of Maintainability Index (MI)
metrics.

In RPG, we have 3 levels of abstraction, namely subroutine, procedure, and pro-
gram. We can define a subroutine by writing code between the BEGSR and ENDSR

82

Chapter 8. Redesign of Halstead’s Complexity Metrics and Maintainability Index for
RPG

Table 8.3. List of the used Halstead metrics

Metric Name Formula

Program Vocabulary (HPV) η = η1 + η2

Program Length (HPL) N = N1 +N2

Calculated Program Length (HCPL) N̂ = η1 · log2 η1 + η2 · log2 η2

Volume (HVOL) V = N × log2 η

Difficulty (HDIF) D = η1

2 ×
N2

η2

Effort (HEFF) E = D × V

Time required to program (HTRP) T = E

18
Number of delivered bugs (HNDB) B = E

2
3

3000

Table 8.4. List of the used Maintainability Index metrics

MI variant Formula

Original (MI) 171− 5.2× ln(HV OL)− 0.23×McCC − 16.2× ln(LLOC)

SEI (MISEI) 171 − 5.2 × log2(HV OL) − 0.23 ×McCC − 16.2 × log2(LLOC) + 50 ×
sin(
√

2.4 ∗ CD)

Visual Studio
(MIMS) max(0, 100×171− 5.2× ln(HV OL)− 0.23×McCC − 16.2× ln(LLOC)

171)

SourceMeter
(MISM)

max(0, 100 × (171− 5.2× log2(HV OL)− 0.23×McCC

171 −
16.2× log2(LLOC) + 50× sin(

√
2.4 ∗ CD)

171))

operation codes. To call a subroutine we have to use the EXSR operation and spec-
ify the name of the subroutine to be called. Unlike subroutines, procedures can be
prototyped and have parameters, thus supporting a more flexible way to reuse code
portions. Programs are larger building blocks that encapsulate subroutines and proce-
dures as well. In this chapter, we will only examine subroutines and programs because
we accessed a limited set of source code files that mainly contains subroutines instead
of procedures.

83

Chapter 8. Redesign of Halstead’s Complexity Metrics and Maintainability Index for
RPG

8.4 Evaluating the usefulness of Halstead’s and MI
metrics

Principal Component Analysis (PCA) [55] is widely used in many domains to accom-
plish dimensionality reduction and uncover patterns from the data [19, 64]. PCA
determines which dimensions are the most important ones and which ones represent
the most variation in the data. PCA takes a dataset (a set of metrics in our case)
as input and outputs principal components (uncorrelated dimensions) that span the
direction of the 1st, 2nd, 3rd, . . . largest variations.

We have performed PCA both at program (RPG file) and subroutine level to see
the difference between these levels if any exists. We investigated 348 RPG programs
(185 RPG IV and 163 RPG/400 programs) and 7475 RPG subroutines.

We first present the correlation matrices that can be seen in Table 8.5 and Table 8.6.
We included the Halstead, Maintainability Index metrics, and the sensor metrics that
are used by the quality model in the correlation matrix to investigate the relation-
ship between them. Values in the tables are mapped with color codes to help better
understand the correlations between metrics. The color interpolation has three base
points: -1, 0, 1. The greater the correlation between two metrics (negative or posi-
tive correlation) the grayer the cell is (1 and -1 values imply dark gray color). White
means that two variables are not correlated. One can see clear groups of metrics that
correlation coefficients are very high inside the group. In case of programs, Halstead
metrics form such a group, which is not surprising since many of them are calculated
with the help of others, furthermore, all metrics can be derived from the four basic ones
(See Table 8.3). Maintainability Index metrics have the same characteristics. Their
lowest correlation is 0.946 (program level) and 0.997 (subroutine level) that are both
very high values. High correlation is caused by the fact that each variant has almost
the same core in their formula. A relatively high correlation can be seen in case of the
different warnings (avg. correlation: 0.774) at program level, but the same cannot be
said about subroutines.

It is promising that the correlations between Halstead metrics and warnings are
high (avg. correlation is 0.812) since we can use the Halstead metrics to predict warn-
ings in the system (at program level). Unfortunately, no valuable correlation was found
at subroutine level between these metrics. The Halstead complexity metrics are also
highly correlated with the McCC metric (we use the Program Complexity (PC) termi-
nology at program level), which means that each complexity measure can express the
other. This is partly true at subroutine level since HCPL, HPL, HPV and HVOL have
poor correlations with McCC. At program level, the McCabe’s Complexity metric can
also be used to express the warnings in the system, since it has 0.836 avg. correlation
coefficient with the warning metrics.

PCA constructs 25 dimensions (factors) from 26 dimensions that is not the best
case scenario. However, using the first ten factors will give back 96.865 (program level)
and 96.366 (subroutine level) percent of the total variability. Figure 8.1 and Figure 8.2
depict the eigenvalues for all the 25 factors and the cumulative variability at program
level and subroutine level respectively. The cumulative variability is slightly steeper
in case of programs; meaning that we can reconstruct the original data by using less
dimensions (factors).

84

Chapter 8. Redesign of Halstead’s Complexity Metrics and Maintainability Index for
RPG

Ta
bl
e
8.
5.

C
or
re
la
tio

n
be

tw
ee
n
m
et
ric

s
(P

ro
gr
am

Le
ve
l)

V
ar
ia
bl
es

CC
H
CP

L
H
D
IF

H
EF

F
H
N
D
B

H
PL

H
PV

H
TR

P
H
VO

L
M
I

M
IM

S
M
IS
EI

M
IS
M

N
LE

PC
N
O
I

CD
CL

O
C

TC
D

LL
O
C

W
ar
ni
ng

In
fo

Cl
on
e
M
et
ric

Ru
le
s

Co
m
pl
ex
ity

M
et
ric

Ru
le
s

Co
up
lin
g
M
et
ric

Ru
le
s

D
oc
.M

et
ric

Ru
le
s

Si
ze

M
et
ric

Ru
le
s

C
C

1
0,
07

3
0,
16

2
0,
03

3
0,
06

7
0,
06

6
0,
08

7
0,
03

3
0,
05

5
-0
,1
86

-0
,1
86

-0
,1
56

-0
,1
49

0,
09

9
0,
06

1
0,
07

4
0,
08

3
0,
20

7
0,
00

9
0,
14

5
0,
43

5
0,
48

5
0,
05

8
0,
02

0
0,
00

7
0,
07

9
H
C
P
L

0,
07

3
1

0,
81

1
0,
89

1
0,
94

7
0,
97

0
0,
99

6
0,
89

1
0,
96

5
-0
,6
98

-0
,6
98

-0
,6
62

-0
,6
67

0,
52

1
0,
95

1
0,
21

5
0,
07

6
0,
46

1
-0
,4
17

0,
51

3
0,
78

5
0,
71

2
0,
88

9
0,
83

4
0,
78

9
0,
93

3
H
D
IF

0,
16

2
0,
81

1
1

0,
73

6
0,
86

5
0,
84

1
0,
83

5
0,
73

6
0,
81

2
-0
,6
73

-0
,6
73

-0
,6
10

-0
,6
27

0,
64

5
0,
83

6
0,
34

6
0,
16

2
0,
46

3
-0
,4
00

0,
25

3
0,
77

1
0,
72

0
0,
77

4
0,
66

9
0,
61

9
0,
82

9
H
E
FF

0,
03

3
0,
89

1
0,
73

6
1

0,
96

7
0,
95

3
0,
85

8
1,
00

0
0,
96

6
-0
,4
64

-0
,4
64

-0
,4
38

-0
,4
47

0,
37

0
0,
94

9
0,
08

2
0,
05

7
0,
50

2
-0
,2
55

0,
33

4
0,
74

5
0,
67

5
0,
87

1
0,
82

5
0,
81

5
0,
84

7
H
N
D
B

0,
06

7
0,
94

7
0,
86

5
0,
96

7
1

0,
99

2
0,
93

3
0,
96

7
0,
99

0
-0
,5
78

-0
,5
78

-0
,5
39

-0
,5
51

0,
48

1
0,
98

4
0,
17

2
0,
09

1
0,
51

0
-0
,3
30

0,
34

6
0,
81

3
0,
74

4
0,
91

0
0,
85

0
0,
81

3
0,
91

1
H
P
L

0,
06

6
0,
97

0
0,
84

1
0,
95

3
0,
99

2
1

0,
95

6
0,
95

3
0,
99

8
-0
,6
06

-0
,6
06

-0
,5
67

-0
,5
78

0,
48

3
0,
98

7
0,
18

9
0,
09

0
0,
51

5
-0
,3
50

0,
37

9
0,
81

8
0,
74

6
0,
91

8
0,
86

6
0,
82

1
0,
92

8
H
P
V

0,
08

7
0,
99

6
0,
83

5
0,
85

8
0,
93

3
0,
95

6
1

0,
85

8
0,
94

6
-0
,7
40

-0
,7
40

-0
,7
00

-0
,7
06

0,
55

4
0,
93

5
0,
25

6
0,
08

8
0,
45

1
-0
,4
42

0,
52

1
0,
78

6
0,
71

5
0,
87

1
0,
81

3
0,
76

4
0,
93

7
H
T
R
P

0,
03

3
0,
89

1
0,
73

6
1,
00

0
0,
96

7
0,
95

3
0,
85

8
1

0,
96

6
-0
,4
64

-0
,4
64

-0
,4
38

-0
,4
47

0,
37

0
0,
94

9
0,
08

2
0,
05

7
0,
50

2
-0
,2
55

0,
33

4
0,
74

5
0,
67

5
0,
87

1
0,
82

5
0,
81

5
0,
84

7
H
V
O
L

0,
05

5
0,
96

5
0,
81

2
0,
96

6
0,
99

0
0,
99

8
0,
94

6
0,
96

6
1

-0
,5
79

-0
,5
79

-0
,5
43

-0
,5
54

0,
45

9
0,
98

6
0,
16

2
0,
08

1
0,
51

4
-0
,3
32

0,
38

0
0,
80

6
0,
73

3
0,
91

9
0,
86

9
0,
82

7
0,
91

8
M
I

-0
,1
86

-0
,6
98

-0
,6
73

-0
,4
64

-0
,5
78

-0
,6
06

-0
,7
40

-0
,4
64

-0
,5
79

1
1,
00

0
0,
94

6
0,
95

0
-0
,6
31

-0
,5
72

-0
,4
82

-0
,1
21

-0
,3
60

0,
65

4
-0
,6
80

-0
,5
40

-0
,4
92

-0
,5
46

-0
,4
32

-0
,4
86

-0
,7
16

M
IM

S
-0
,1
86

-0
,6
98

-0
,6
73

-0
,4
64

-0
,5
78

-0
,6
06

-0
,7
40

-0
,4
64

-0
,5
79

1,
00

0
1

0,
94

6
0,
95

0
-0
,6
31

-0
,5
72

-0
,4
82

-0
,1
21

-0
,3
60

0,
65

4
-0
,6
80

-0
,5
40

-0
,4
92

-0
,5
46

-0
,4
32

-0
,4
86

-0
,7
16

M
IS
E
I

-0
,1
56

-0
,6
62

-0
,6
10

-0
,4
38

-0
,5
39

-0
,5
67

-0
,7
00

-0
,4
38

-0
,5
43

0,
94

6
0,
94

6
1

0,
99

5
-0
,5
78

-0
,5
35

-0
,4
21

0,
20

9
-0
,2
54

0,
74

3
-0
,7
01

-0
,4
96

-0
,4
49

-0
,5
11

-0
,4
06

-0
,5
12

-0
,6
70

M
IS
M

-0
,1
49

-0
,6
67

-0
,6
27

-0
,4
47

-0
,5
51

-0
,5
78

-0
,7
06

-0
,4
47

-0
,5
54

0,
95

0
0,
95

0
0,
99

5
1

-0
,5
93

-0
,5
46

-0
,4
38

0,
18

0
-0
,2
69

0,
74

3
-0
,6
65

-0
,5
07

-0
,4
59

-0
,5
20

-0
,4
15

-0
,5
10

-0
,6
82

N
LE

0,
09

9
0,
52

1
0,
64

5
0,
37

0
0,
48

1
0,
48

3
0,
55

4
0,
37

0
0,
45

9
-0
,6
31

-0
,6
31

-0
,5
78

-0
,5
93

1
0,
47

2
0,
38

0
0,
13

3
0,
27

6
-0
,4
61

0,
31

8
0,
44

3
0,
39

8
0,
57

0
0,
36

6
0,
33

7
0,
55

4
P
C

0,
06

1
0,
95

1
0,
83

6
0,
94

9
0,
98

4
0,
98

7
0,
93

5
0,
94

9
0,
98

6
-0
,5
72

-0
,5
72

-0
,5
35

-0
,5
46

0,
47

2
1

0,
16

4
0,
08

8
0,
47

9
-0
,3
19

0,
35

2
0,
79

6
0,
72

4
0,
91

5
0,
86

5
0,
80

7
0,
91

1
N
O
I

0,
07

4
0,
21

5
0,
34

6
0,
08

2
0,
17

2
0,
18

9
0,
25

6
0,
08

2
0,
16

2
-0
,4
82

-0
,4
82

-0
,4
21

-0
,4
38

0,
38

0
0,
16

4
1

0,
16

5
0,
28

2
-0
,2
65

0,
13

5
0,
16

3
0,
14

2
0,
16

5
0,
06

8
0,
11

2
0,
31

4
C
D

0,
08

3
0,
07

6
0,
16

2
0,
05

7
0,
09

1
0,
09

0
0,
08

8
0,
05

7
0,
08

1
-0
,1
21

-0
,1
21

0,
20

9
0,
18

0
0,
13

3
0,
08

8
0,
16

5
1

0,
30

5
0,
30

1
-0
,0
94

0,
11

0
0,
11

1
0,
08

4
0,
05

9
-0
,1
02

0,
10

9
C
LO

C
0,
20

7
0,
46

1
0,
46

3
0,
50

2
0,
51

0
0,
51

5
0,
45

1
0,
50

2
0,
51

4
-0
,3
60

-0
,3
60

-0
,2
54

-0
,2
69

0,
27

6
0,
47

9
0,
28

2
0,
30

5
1

-0
,0
52

0,
17

1
0,
58

4
0,
57

4
0,
43

2
0,
42

8
0,
38

4
0,
49

6
T
C
D

0,
00

9
-0
,4
17

-0
,4
00

-0
,2
55

-0
,3
30

-0
,3
50

-0
,4
42

-0
,2
55

-0
,3
32

0,
65

4
0,
65

4
0,
74

3
0,
74

3
-0
,4
61

-0
,3
19

-0
,2
65

0,
30

1
-0
,0
52

1
-0
,5
11

-0
,2
28

-0
,1
78

-0
,3
45

-0
,2
22

-0
,4
55

-0
,4
60

LL
O
C

0,
14

5
0,
51

3
0,
25

3
0,
33

4
0,
34

6
0,
37

9
0,
52

1
0,
33

4
0,
38

0
-0
,6
80

-0
,6
80

-0
,7
01

-0
,6
65

0,
31

8
0,
35

2
0,
13

5
-0
,0
94

0,
17

1
-0
,5
11

1
0,
27

2
0,
22

5
0,
38

5
0,
25

1
0,
46

7
0,
44

9
W
ar
ni
ng

In
fo

0,
43

5
0,
78

5
0,
77

1
0,
74

5
0,
81

3
0,
81

8
0,
78

6
0,
74

5
0,
80

6
-0
,5
40

-0
,5
40

-0
,4
96

-0
,5
07

0,
44

3
0,
79

6
0,
16

3
0,
11

0
0,
58

4
-0
,2
28

0,
27

2
1

0,
99

2
0,
73

7
0,
71

5
0,
59

9
0,
74

8
C
lo
ne

M
et
ri
c
R
ul
es

0,
48

5
0,
71

2
0,
72

0
0,
67

5
0,
74

4
0,
74

6
0,
71

5
0,
67

5
0,
73

3
-0
,4
92

-0
,4
92

-0
,4
49

-0
,4
59

0,
39

8
0,
72

4
0,
14

2
0,
11

1
0,
57

4
-0
,1
78

0,
22

5
0,
99

2
1

0,
65

4
0,
65

7
0,
51

6
0,
66

8
C
om

pl
ex
it
y
M
et
ri
c
R
ul
es

0,
05

8
0,
88

9
0,
77

4
0,
87

1
0,
91

0
0,
91

8
0,
87

1
0,
87

1
0,
91

9
-0
,5
46

-0
,5
46

-0
,5
11

-0
,5
20

0,
57

0
0,
91

5
0,
16

5
0,
08

4
0,
43

2
-0
,3
45

0,
38

5
0,
73

7
0,
65

4
1

0,
78

8
0,
80

1
0,
85

7
C
ou

pl
in
g
M
et
ri
c
R
ul
es

0,
02

0
0,
83

4
0,
66

9
0,
82

5
0,
85

0
0,
86

6
0,
81

3
0,
82

5
0,
86

9
-0
,4
32

-0
,4
32

-0
,4
06

-0
,4
15

0,
36

6
0,
86

5
0,
06

8
0,
05

9
0,
42

8
-0
,2
22

0,
25

1
0,
71

5
0,
65

7
0,
78

8
1

0,
65

7
0,
75

5
D
oc
.
M
et
ri
c
R
ul
es

0,
00

7
0,
78

9
0,
61

9
0,
81

5
0,
81

3
0,
82

1
0,
76

4
0,
81

5
0,
82

7
-0
,4
86

-0
,4
86

-0
,5
12

-0
,5
10

0,
33

7
0,
80

7
0,
11

2
-0
,1
02

0,
38

4
-0
,4
55

0,
46

7
0,
59

9
0,
51

6
0,
80

1
0,
65

7
1

0,
78

0
Si
ze

M
et
ri
c
R
ul
es

0,
07

9
0,
93

3
0,
82

9
0,
84

7
0,
91

1
0,
92

8
0,
93

7
0,
84

7
0,
91

8
-0
,7
16

-0
,7
16

-0
,6
70

-0
,6
82

0,
55

4
0,
91

1
0,
31

4
0,
10

9
0,
49

6
-0
,4
60

0,
44

9
0,
74

8
0,
66

8
0,
85

7
0,
75

5
0,
78

0
1

85

Chapter 8. Redesign of Halstead’s Complexity Metrics and Maintainability Index for
RPG

Table
8.6.

C
orrelation

between
m
etrics

(Subroutine
Level)

V
ariables

CC
H
CPL

H
D
IF

H
EFF

H
N
D
B

H
PL

H
PV

H
TR

P
H
VO

L
M
I

M
IM

S
M
ISEI

M
ISM

M
cCC

N
LE

N
II

N
O
I

CD
CLO

C
LLO

C
W
arning

Info

Clone
M
etric

Rules

Com
plexity

M
etric

Rules

Coupling
M
etric

Rules

D
oc. M

etric
Rules

Size
M
etric

Rules

C
C

1
-0,089

-0,047
-0,016

-0,045
-0,064

-0,102
-0,016

-0,058
0,100

0,100
0,105

0,105
-0,026

-0,135
0,015

0,027
0,142

-0,026
-0,063

0,825
0,902

-0,023
0,026

-0,021
-0,050

H
C
P
L

-0,089
1

0,358
0,607

0,728
0,954

0,982
0,607

0,952
-0,684

-0,684
-0,680

-0,666
0,306

0,188
-0,092

0,132
-0,509

0,859
0,952

0,265
0,101

0,268
0,076

0,301
0,671

H
D
IF

-0,047
0,358

1
0,636

0,798
0,438

0,455
0,636

0,353
-0,689

-0,688
-0,691

-0,690
0,743

0,650
0,031

0,167
-0,633

0,316
0,451

0,280
0,123

0,622
0,050

0,384
0,358

H
E
FF

-0,016
0,607

0,636
1

0,922
0,740

0,601
1,000

0,710
-0,492

-0,487
-0,481

-0,462
0,701

0,228
-0,018

0,104
-0,332

0,600
0,734

0,281
0,116

0,388
0,080

0,347
0,580

H
N
D
B

-0,045
0,728

0,798
0,922

1
0,827

0,763
0,922

0,768
-0,722

-0,720
-0,716

-0,704
0,750

0,387
-0,031

0,158
-0,553

0,680
0,828

0,352
0,145

0,537
0,087

0,444
0,690

H
P
L

-0,064
0,954

0,438
0,740

0,827
1

0,925
0,740

0,989
-0,669

-0,668
-0,662

-0,645
0,408

0,162
-0,099

0,098
-0,475

0,888
0,995

0,298
0,121

0,301
0,067

0,331
0,722

H
P
V

-0,102
0,982

0,455
0,601

0,763
0,925

1
0,601

0,901
-0,798

-0,798
-0,795

-0,784
0,387

0,289
-0,088

0,177
-0,630

0,831
0,928

0,290
0,115

0,336
0,094

0,331
0,679

H
T
R
P

-0,016
0,607

0,636
1,000

0,922
0,740

0,601
1

0,710
-0,492

-0,487
-0,481

-0,462
0,701

0,228
-0,018

0,104
-0,332

0,600
0,734

0,281
0,116

0,388
0,080

0,347
0,580

H
V
O
L

-0,058
0,952

0,353
0,710

0,768
0,989

0,901
0,710

1
-0,580

-0,579
-0,573

-0,554
0,330

0,111
-0,094

0,074
-0,393

0,883
0,983

0,263
0,105

0,240
0,054

0,288
0,670

M
I

0,100
-0,684

-0,689
-0,492

-0,722
-0,669

-0,798
-0,492

-0,580
1

1,000
0,998

0,997
-0,584

-0,543
0,061

-0,292
0,893

-0,591
-0,687

-0,318
-0,151

-0,472
-0,144

-0,347
-0,528

M
IM

S
0,100

-0,684
-0,688

-0,487
-0,720

-0,668
-0,798

-0,487
-0,579

1,000
1

0,998
0,998

-0,580
-0,543

0,061
-0,292

0,894
-0,591

-0,686
-0,317

-0,151
-0,471

-0,143
-0,347

-0,528
M
ISE

I
0,105

-0,680
-0,691

-0,481
-0,716

-0,662
-0,795

-0,481
-0,573

0,998
0,998

1
1,000

-0,574
-0,549

0,058
-0,271

0,914
-0,566

-0,680
-0,309

-0,143
-0,469

-0,130
-0,368

-0,519
M
ISM

0,105
-0,666

-0,690
-0,462

-0,704
-0,645

-0,784
-0,462

-0,554
0,997

0,998
1,000

1
-0,568

-0,552
0,058

-0,273
0,916

-0,551
-0,663

-0,308
-0,143

-0,469
-0,129

-0,367
-0,515

M
cC

C
-0,026

0,306
0,743

0,701
0,750

0,408
0,387

0,701
0,330

-0,584
-0,580

-0,574
-0,568

1
0,531

0,066
0,333

-0,474
0,307

0,428
0,296

0,120
0,663

0,232
0,383

0,393
N
LE

-0,135
0,188

0,650
0,228

0,387
0,162

0,289
0,228

0,111
-0,543

-0,543
-0,549

-0,552
0,531

1
0,062

0,261
-0,587

0,101
0,198

0,092
-0,007

0,591
0,082

0,185
0,050

N
II

0,015
-0,092

0,031
-0,018

-0,031
-0,099

-0,088
-0,018

-0,094
0,061

0,061
0,058

0,058
0,066

0,062
1

0,091
0,019

-0,119
-0,092

-0,014
-0,008

0,068
0,053

0,016
-0,102

N
O
I

0,027
0,132

0,167
0,104

0,158
0,098

0,177
0,104

0,074
-0,292

-0,292
-0,271

-0,273
0,333

0,261
0,091

1
-0,124

0,248
0,127

0,200
0,137

0,266
0,655

0,035
0,073

C
D

0,142
-0,509

-0,633
-0,332

-0,553
-0,475

-0,630
-0,332

-0,393
0,893

0,894
0,914

0,916
-0,474

-0,587
0,019

-0,124
1

-0,268
-0,493

-0,187
-0,062

-0,385
-0,036

-0,371
-0,327

C
LO

C
-0,026

0,859
0,316

0,600
0,680

0,888
0,831

0,600
0,883

-0,591
-0,591

-0,566
-0,551

0,307
0,101

-0,119
0,248

-0,268
1

0,890
0,303

0,158
0,237

0,169
0,109

0,652
LLO

C
-0,063

0,952
0,451

0,734
0,828

0,995
0,928

0,734
0,983

-0,687
-0,686

-0,680
-0,663

0,428
0,198

-0,092
0,127

-0,493
0,890

1
0,305

0,125
0,324

0,083
0,340

0,722
W
arningInfo

0,825
0,265

0,280
0,281

0,352
0,298

0,290
0,281

0,263
-0,318

-0,317
-0,309

-0,308
0,296

0,092
-0,014

0,200
-0,187

0,303
0,305

1
0,961

0,288
0,162

0,201
0,311

C
lone

M
etric

R
ules

0,902
0,101

0,123
0,116

0,145
0,121

0,115
0,116

0,105
-0,151

-0,151
-0,143

-0,143
0,120

-0,007
-0,008

0,137
-0,062

0,158
0,125

0,961
1

0,093
0,093

0,045
0,087

C
om

plexity
M
etric

R
ules

-0,023
0,268

0,622
0,388

0,537
0,301

0,336
0,388

0,240
-0,472

-0,471
-0,469

-0,469
0,663

0,591
0,068

0,266
-0,385

0,237
0,324

0,288
0,093

1
0,208

0,325
0,275

C
oupling

M
etric

R
ules

0,026
0,076

0,050
0,080

0,087
0,067

0,094
0,080

0,054
-0,144

-0,143
-0,130

-0,129
0,232

0,082
0,053

0,655
-0,036

0,169
0,083

0,162
0,093

0,208
1

0,000
0,066

D
oc.

M
etric

R
ules

-0,021
0,301

0,384
0,347

0,444
0,331

0,331
0,347

0,288
-0,347

-0,347
-0,368

-0,367
0,383

0,185
0,016

0,035
-0,371

0,109
0,340

0,201
0,045

0,325
0,000

1
0,340

Size
M
etric

R
ules

-0,050
0,671

0,358
0,580

0,690
0,722

0,679
0,580

0,670
-0,528

-0,528
-0,519

-0,515
0,393

0,050
-0,102

0,073
-0,327

0,652
0,722

0,311
0,087

0,275
0,066

0,340
1

86

Chapter 8. Redesign of Halstead’s Complexity Metrics and Maintainability Index for
RPG

Figure 8.1. Eigenvalues and variability of principal components (Program level)

Figure 8.2. Eigenvalues and variability of principal components (Subroutine level)

Factors are constructed from the original metrics with linear combination. It is im-
portant to examine the so called factor loadings which give us the linear combinations
for each factor. We analyzed the factor loadings for only the first five factors since they
retrieve 88.204 and 83.814 percent of the whole variability at program and subroutine
level respectively, thus analyzing the most dominant factors is enough to detect the
most dominant original metrics. Table 8.7 shows the factor loadings for the first five
factors, both at program and subroutine levels. Values higher than 0.7 are highlighted.
It is clearly visible that the first factors are made up from many metrics to capture
the maximum possible variability. Both in case of program and subroutine levels, the
Halstead metrics are the most prominent ones that contribute with the largest weights
meaning that they are the most descriptive metrics. Maintainability Index variants are
combined with negative weights, but they are also significant ones. Further dominant
metrics are different at program and subroutine level. The McCabe Cyclomatic Com-
plexity is as strong as the warning occurrence metrics at program level. At subroutine
level, the CD, CLOC and LLOC metrics are stronger besides the Halstead and MI
metrics which are absolutely dominating.

87

Chapter 8. Redesign of Halstead’s Complexity Metrics and Maintainability Index for
RPG

Table 8.7. Factor loadings

Program Subroutine
F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

CC 0,153 -0,078 0,616 0,663 0,017 -0,047 -0,081 0,947 -0,081 -0,167
HCPL 0,969 0,082 -0,090 -0,028 0,072 0,853 -0,397 -0,100 -0,193 0,069
HDIF 0,874 0,020 0,166 -0,109 -0,249 0,725 0,442 0,014 0,291 -0,199
HEFF 0,891 0,358 -0,151 -0,009 0,049 0,774 -0,198 0,035 0,530 -0,044
HNDB 0,955 0,260 -0,070 -0,039 -0,035 0,928 -0,052 0,010 0,328 -0,079
HPL 0,966 0,230 -0,074 -0,038 -0,007 0,888 -0,426 -0,064 -0,026 0,030
HPV 0,971 0,022 -0,055 -0,040 0,051 0,906 -0,245 -0,102 -0,237 0,046
HTRP 0,891 0,358 -0,151 -0,009 0,049 0,774 -0,198 0,035 0,530 -0,044
HVOL 0,956 0,259 -0,099 -0,030 0,016 0,827 -0,508 -0,071 -0,021 0,053
MI -0,771 0,580 -0,136 0,068 -0,127 -0,892 -0,285 0,065 0,305 0,032
MIMS -0,771 0,580 -0,136 0,068 -0,127 -0,891 -0,286 0,066 0,309 0,032
MISEI -0,736 0,643 0,071 -0,102 0,010 -0,887 -0,297 0,076 0,312 0,058
MISM -0,745 0,631 0,049 -0,072 0,034 -0,877 -0,313 0,076 0,323 0,061
NLE 0,602 -0,326 0,186 -0,240 -0,288 0,463 0,664 -0,097 0,035 -0,049
McCC 0,947 0,260 -0,090 -0,042 -0,020 0,678 0,393 0,092 0,478 0,044
NOI 0,297 -0,430 0,377 -0,422 -0,281 0,258 0,315 0,203 -0,036 0,782
CD 0,072 0,215 0,627 -0,516 0,412 -0,724 -0,439 0,155 0,348 0,215
CLOC 0,537 0,185 0,455 -0,065 0,150 0,771 -0,455 0,008 -0,108 0,247
NII - - - - - -0,059 0,182 0,047 0,208 0,123
LLOC 0,516 -0,502 -0,180 0,185 0,549 0,899 -0,393 -0,059 -0,033 0,046
Warning Info 0,837 0,206 0,314 0,306 -0,110 0,397 -0,012 0,897 -0,088 -0,095
Clone Metric Rules 0,768 0,209 0,379 0,362 -0,125 0,188 -0,029 0,948 -0,162 -0,129
Complexity Metric Rules 0,899 0,202 -0,101 -0,068 -0,033 0,538 0,453 0,089 0,311 0,055
Coupling Metric Rules 0,813 0,332 -0,106 -0,008 -0,028 0,156 0,191 0,201 0,028 0,829
Doc. Metric Rules 0,808 0,126 -0,312 0,053 0,081 0,439 0,125 0,002 0,199 -0,244
Size Metric Rules 0,947 0,021 -0,030 -0,105 0,001 0,705 -0,330 -0,011 0,056 0,001

8.4.1 Extend Quality Model For RPG

Consider the maintainability model presented in Figure 7.1.We can enhance the ex-
pressiveness of the model by involving further metrics based on the results of the
Principal Component Analysis. PCA showed that the Halstead complexity metrics
form an independent group that captures the most information of the system (has
the largest weights in factor loadings). Considering the correlation matrix we suggest
to involve the HNDB metric into the model to contribute to the calculation of fault
proneness since it has the largest correlation coefficients with the warning occurrences.
Furthermore, we suggest to include the HPV metric to contribute to the Complexity
aggregated node since it has low correlation with the McCabe’s cyclomatic complexity
in case of subroutines, but it has a large weight in the linear combination in factor
loading (dominant metric) thus McCabe’s complexity, NLE and HPV forms a unit
together to describe the overall Complexity.

8.5 Threats to Validity

It is a very challenging task to find any open source software system written in RPG
(since RPG is used in business applications). Consequently, it is hard to gather RPG
source code sets from different domains that would guarantee the generalizability. We
only have source code from one company we have previously introduced in Chapter 7,
and they mostly use subroutines that obviously limits the generalizability.

88

Chapter 8. Redesign of Halstead’s Complexity Metrics and Maintainability Index for
RPG

8.6 Summary
We have applied the Halstead Complexity metrics for RPG/400 and RPG IV program-
ming languages that has never been done before. Furthermore, we have a prototype
implementation for these metrics. We also worked out four different Maintainability
Index variants in our static source code analyzer. We performed a Principal Com-
ponent Analysis on 348 RPG programs and on 7475 subroutines and we investigated
the relationships between the calculated metrics. We experienced that the Halstead’s
complexity metrics form a disjoint group that can be used to characterize the warn-
ing occurrences in the system at program level. Moreover, Halstead metrics can be
involved in a maintainability model to improve its usefulness and compactness. We
suggest using the Halstead’s Program Vocabulary (HPV) and the Halstead’s Number
of Delivered Bugs metrics in the model, since these two metrics expand the model the
best based on our observations.

89

“When you reach the end of your rope, tie a
knot in it and hang on.”

— Franklin D. Roosevelt

9
Conclusions

In this thesis, we discussed two main topics, these being the construction of new bug
datasets with their evaluation in bug prediction, and a methodology for measuring
maintainability in legacy systems written in the RPG programming language.

In case of bug datsets, we collected existing public bug datasets that use static
software product metrics to characterize the bugs. These datasets often operate with
the set of classic Chidamber & Kemerer object oriented metrics but nothing more. The
available set of projects are quite old, since they were part of older datasets. These
datasets encapsulate data gathered from various platforms, such as SourceForge, Jira,
Bugzilla, CVS, and SVN. GitHub, being a trend for hosting open-source projects, was
a good candidate to gather new projects from. We constructed a new dataset in order
to overcome these deficiencies and to propose a new dataset with up-to-date bug data.
Moreover, we presented a method for unifying public bug datasets, thus they share
common metrics as descriptors. We showed how heterogeneous different datasets can
be by comparing their metric suites. We also presented the capabilities of built bug
prediction models in the case of the newly created GitHub Bug Dataset and in the case
of the Unified Bug Dataset as well. We suggest that researchers should first try using
existing bug datasets, and only if none of them conforms to their needs, construct a
new customized dataset for their very specific requirements.

In the field of maintainability in RPG systems, we first introduced an in-depth
comparison of state-of-the-art static source code analyzers for RPG systems. We pro-
vided a methodology on how to properly measure the maintainability, which is the
most dominant characteristic of software quality, for RPG legacy systems. We also
performed a case study, in which we successfully integrated our methodology into a
mid-sized company’s development lifecycle. Finally, we showed how the measuring of
maintainability can be further improved by involving Halstead’s Complexity Metrics
in the model we built.

91

Chapter 9. Conclusions

Future Work
Despite the results we achieved, there are numerous possibilities for extending our
work.

In the case of bug datasets, we are planning to make our bug dataset extraction
tool open-source, so anybody will be able to use or even improve our method. We
plan to do more experiments with our models on other projects. We will try to identify
(with statistical methods) connections between the usefulness of the datasets and other
descriptors, such as the size of the projects or the amount of reported bugs. We would
like to keep the unified bug dataset up-to-date and extend it with public datasets which
were published recently (i.e. Had-oops dataset[47], Mutation bug dataset[22], ELFF
dataset[93]) and others, which will be published in the future.

There are possible future works in the area of RPG quality assurance, as well.
Having a more diverse set of benchmark programs is always desirable. Collecting more
source code from more companies would also provide a great opportunity to investigate
the behavior of Halstead’s metrics at procedure level and a larger benchmark would also
be beneficial for testing the quality model itself. Additional low level quality attributes
could help in making a more exhaustive comparison and they could also make the
quality model better and more general. In the case of the quality model, we would like
to create domain specific benchmarks, since it can further improve the quality and the
confidence of them. Collecting more votes on the edges (finer weight adjustment) of
the quality model can also improve the generality of our method. Since we are able
to measure the quality of the original and the migrated versions of a legacy system, it
would be interesting to study their quality differences and using these experiences to
provide better migration algorithms.

Epilogue
I have always been very keen on promoting quality as the most important aspect since
I have started programming. Often, it is not satisfying to have a working prototype
as soon as possible. The code will soon become unmanageable and hard to maintain.
The old phrase: “Learn from your and from others’ mistakes” tends to be true as
we can train strong bug prediction models by revisiting mistakes committed in the
past. Scanning through discussions under issues made me understand the importance
of writing high quality code, and the advantages of quality control. As my code began
to be cleaner and more flexible, this approach was applied in my daily life as well. I
have become stricter with myself not to choose the easier way but to provide quality
results at the end.

92

Appendices

93

A
Summary in English

Considering any aspect of life where humans are involved, it is more likely for faults to
occur regularly. The thesis focuses on two main topics that emphasize the importance
of finding and eliminating software defects in an early stage. In the first part, we
present new public bug datasets in order to help building bug prediction models and
locate bugs early. The second part presents a more crucial domain (often used in the
banking sector) and provides a detailed methodology for measuring the maintainability
of RPG software systems. The resulting statements are grouped into two major thesis
points. The relation between the underlying supporting publications and the thesis
points is shown in Table A.1.

I. New Datasets and a Method for Creating Bug Prediction Models for
Java
The contributions of this thesis point – related to public bug datasets for Java –
are discussed in chapters 2, 3, and 4.
A New Public Bug Dataset and Its Evaluation in Bug Prediction The focus of this
research area was to investigate the possible imperfections of the existing public
bug datasets (which use static source code metrics to characterize the entries in
the datasets), and to create a new bug dataset that solves these imperfections.
In spite of the fact that the trend of hosting open-source projects points in the
direction of GitHub, none of the existing datasets used it as the source of in-
formation. Available bug datasets are quite old, hence the systems included are
aged as well. Furthermore, existing datasets often operate with a narrowed set
of software metrics. Based on our findings, we constructed a new dataset for
15 projects selected from GitHub. We collected bug data in an automatic way
and created 6-month-long time intervals for every project and accumulated bug
information for these chosen releases. Contrary to previous bug datasets, we
aggregated bugs for the preceding release versions not for the succeeding ones.
We performed our dataset creation both at file and class level. Besides the bug
dataset being our main contribution, we evaluated its bug prediction capabilities
by building 13 different prediction models using this dataset. Tree-based machine

95

Appendix A. Summary in English

learning algorithms seemed to perform the best in this task, which is proven by
the high F-Measure values. We achieved a 0.77 average at class level, and 0.71 at
file level. File level results are lower due to the narrow set of source code metrics.
We also investigated the bug coverage to extend our findings. A nearly perfect
bug coverage could also be achieved by tagging about 31 percent of the source
code elements as faulty both at class and file level. If precision is preferred over
recall then using Naive Bayes could be a good option.
A Unified Public Bug Dataset and Its Assessment in Bug Prediction During the
process of collecting existing public bug datasets, we realized that there is a
need to validate the built bug prediction methods on a larger and more general
dataset, thus we identified a goal to unite all the public bug datasets into a larger
one. Starting with a literature review, we performed an exhaustive search for all
available public bug datasets. We collected 5 candidates, which includes our own
GitHub Bug Dataset, and merged them into one grandiose dataset. We used an
open-source static source code analyzer, named OpenStaticAnalyzer (OSA), to
extract more than 50 static source code metrics for all the systems included in
the dataset. This way, we obtained a uniform metric suite for the whole dataset,
in which we kept the original bug numbers for each entry (pairing the original
entries with the results of OSA was based on standard class names and filenames).
We investigated the root causes of the inability to match entries from the original
datasets with the results of OSA. One major cause was the presence of entries in
the original datasets which are not real Java source files (Scala sources or package-
info files). We were unable to match 624 class level entries and 28 file level entries
out of 48,242 and 43,772 entries, respectively. This means that only 0.71% (652
out of 92,014) of the elements were left out from the unified dataset. We also
pointed out that the metric definitions and the metric namings can severely
differ between datasets. Even in the case of Logical Lines of Code, the metric
values significantly differed, which is due to using byte code and source code
based analyzer tools in different datasets. We evaluated the datasets according
to summary meta data and functional criteria. Summary meta data includes the
investigation of the used static analyzer, granularity, bug tracking and version
control system, the set of used metrics, etc. As functional criteria, we compared
the prediction capabilities of the original metrics, the unified ones, and both
together. We used the J48 decision tree algorithm (an implementation of C4.5)
from Weka to build and evaluate bug prediction models per projects with 10-fold
cross validation in the Unified Bug Dataset. As an additional functional criterion,
we used different software systems for training and for testing the models, also
known as cross project training. We performed this step on all the systems of
the various datasets. Results achieved on the GitHub Bug Dataset are the most
consistent ones, and altogether, our experiments showed that the Unified Bug
Dataset can be used effectively in bug prediction, achieving higher than 0.8 F-
measure values in cross project learning.
This thesis point focuses on the public bug datasets and on their enhancement.
We created a state-of-the-art, source code metric based bug dataset, the GitHub
Bug Dataset. As a following step, we joined 5 public datasets and included
them in one large dataset to provide a strong input for future bug prediction
models that use static source code metrics as predictors. Both datasets were
made available for the public.

96

Appendix A. Summary in English

The Author’s Contributions
The author designed the methodology for extracting bug information from GitHub
and the idea behind the construction of the GitHub bug dataset. He performed
the literature review in the field of public bug datasets, and collected all relevant
datasets and their characteristics. He took part in the process of defining criteria
for the projects to be included in the GitHub bug dataset. In case of the Unified
Bug Dataset, the author constructed all statistics for the gathered datasets and
projects. Moreover, performing static source code analysis on the subject systems
is also the author’s work. Collecting and comparing the metric suites, as well as
gathering the summary meta data on datasets are the author’s own results. The
author also participated in the building of bug prediction models for the GitHub
bug dataset and for the Unified Bug Dataset as well. The author formed the
final machine learning results for both datasets, and the conclusions were drawn
by him.

♦ Zoltán Tóth, Péter Gyimesi, and Rudolf Ferenc. A Public Bug Database
of Github Projects and Its Application in Bug Prediction. In Proceedings of
the 16th International Conference on Computational Science and Its Appli-
cations (ICCSA 2016), Beijing, China. Pages 625-638, Published in Lecture
Notes in Computer Science (LNCS), Volume 9789, Springer-Verlag. July,
2016.

♦ Rudolf Ferenc, Zoltán Tóth, Gergely Ladányi, István Siket, and Tibor
Gyimóthy. A Public Unified Bug Dataset for Java. In Proceedings of the
14th International Conference on Predictive Models and Data Analytics in
Software Engineering, PROMISE’18. Oulu, Finland. Pages 12–21, ACM.
October, 2018.

II. Methodology for Measuring Maintainability of RPG Software Systems
The contributions of this thesis point – related to measuring maintainability in
RPG systems – are discussed in chapters 5, 6, 7, and 8. Giving a solution for
analyzing RPG software systems was an industrial need. We performed this
research in consortium with R&R Software Ltd. who has a long history in de-
veloping RPG software systems. They drew attention to the need for an RPG
static source code analyzer and a methodology to properly measure maintain-
ability of RPG systems. The research artifacts described in this thesis point were
supported by the Hungarian national grant GOP-1.1.1-11-2012-0323.
Comparison of Static Analysis Tools for Quality Measurement of RPG Programs
The goal of this research was to give an exhaustive comparison about state-of-
the-art RPG static source code analyzers. The research is focused on the data
obtained using static analysis, which is then aggregated to higher level quality at-
tributes. SourceMeter is a command line toolchain capable of measuring various
source attributes like software metrics, coding rule violations, and code clones.
This toolchain is of our own development. SonarQube is a quality management
platform with RPG language support. To facilitate the objective comparison, we
used the SourceMeter for RPG plugin for SonarQube, which seamlessly integrates
into the framework, extending its capabilities. This way, the interface of the tools
under examination was the same, hence the comparison was easier to perform.

97

Appendix A. Summary in English

We collected 179 RPG source code files to be the input of the comparison. The
evaluation is built on analysis success and depth, source code metrics, coding
rules and code duplications. SourceMeter could analyze all the systems success-
fully, while SonarQube was unable to handle 3 source files, because there were
unsupported language constructs in the files (e.g. free-form blocks). SourceMeter
outputs entries at four levels: System, Program (File), Procedure, and Subrou-
tine. Contrarily, SonarQube only works with System and File levels. SonarQube
gives a limited set of metrics, while SourceMeter also calculates static source
code metrics at a finer granularity (procedure and subroutine levels). There is a
large common set of coding rule violations, but both tools support rules which
are not handled by the other. SourceMeter provides metric-based rules as well,
which are triggered when the calculated metric values for a specific source code
element exceed or fall behind a given acceptable metric interval. In case of detect-
ing code clones or duplicates, SonarQube can identify copy-pasted code clones
or Type-1 clones. SourceMeter uses the Abstract Syntax Tree (AST) as an in-
put for clone detection, hence it can detect Type-2 clones (for instance, using
different identifiers will not bypass the detector). After evaluating both tools,
we investigated the effect of low level characteristics on higher level attributes,
namely the quality indices. We used technical debt and SQALE metrics, which
are provided by the SonarQube platform and are using the coding rule viola-
tions heavily, but not other low-level characteristics (source code metrics or code
duplications), thus these indicators can not reflect or express the overall quality
of the system well. We found that SourceMeter is more advanced in analysis
depth, product metrics and finding duplications, while their performance on cod-
ing rules and analysis success is rather balanced. Considering all these factors,
we chose to apply SourceMeter in following research areas, which use low-level
quality characteristics to calculate sophisticated high-level quality indices.

Integrating Continuous Quality Monitoring Into Existing Workflow – A Case
Study The goal of this research was to create a general and flexible quality model
for the RPG programming language, which we then applied in our case study.
Having a good quality model means having metrics at a higher level with strong
descriptive capabilities such as Quality Index and Maintainability Index. Our
constructed quality model is based on the ISO/IEC 25010 standard and focuses
on maintainability as the main component of quality (thus quality model and
maintainability model expressions used interchangeably). The model includes
reusability, analysability, modifiability, and testability as the subcharacteristics
contributing to maintainability. These characteristics are made up from low-level
quality attributes, which are provided by SourceMeter. After defining a quality
model, we carried out the case study, in which we integrated our quality model
into the development cycle of a mid-sized company, named R&R Software Ltd.
After fine tuning the SourceMeter for RPG tool (e.g. setting up parameters for
metric based rules, determining forbidden operations) and the quality model as
well (determining the weights in the model), we constructed a benchmark in the
initial phase. In the second, integration phase, we adapted a method to seam-
lessly integrate the continuous quality monitoring into the development cycle of
the company. Commits automatically trigger source code analysis, the results of
which are stored in a database for long term access. The company intended to
increase the quality of a specific module, thus a refactoring phase was applied,

98

Appendix A. Summary in English

in which some developers eliminated critical and major rule violations from the
system. Doing so, the maintainability of the selected module increased contin-
uously almost from commit to commit. In the discussion phase, we concluded
that the maintainability characteristic of the chosen module had increased and
had acquired the GO state, since it passed the baseline value. Based on the
opinions of the developers and the management, the industrial application of
our method was a success. They were able to check coding conventions inside
the company, which forces developers to avoid undesirable solutions and to learn
common practices for solving different problems. Furthermore, they found it easy
to customize our approach (creating benchmark, weighting the edges of the qual-
ity model). According to the developers, this maintenance work could be done
effectively, because of the guidance of the SourceMeter and QualityGate tools.
Redesign of Halstead’s Complexity Metrics and Maintainability Index for RPG
This research is intended to extend the quality model capabilities by applying
further metrics into the model. We first proposed the definitions of the Hal-
stead’s complexity metrics for RPG/400 and RPG IV. There is no standard way
to calculate these metrics, since different programming languages contain differ-
ent language constructs that can be either operands and operators. In case of
RPG, we extended former definitions for RPG II and RPG III to be complete
for RPG/400 and RPG IV, where many new language features were introduced.
Next, we examined the Halstead’s complexity metrics and four Maintainability
Index metrics in detail to get more insight about how they correlate with other
software product metrics and how we could use them to improve the capabilities
of the quality model to better describe the system under investigation. To do so,
we used Principal Component Analysis (PCA) to show the dimensionality and
behavior of these metrics. We found that Halstead’s complexity metrics form a
strong metric group that can be used to reveal more details about RPG soft-
ware systems. As a final statement, we suggest to involve the Halstead’s Number
of Delivered Bugs (HNDB) metric into the model to contribute to the calcula-
tion of fault proneness since it has the largest correlation coefficients with the
warning occurrences. Furthermore, we also recommend including the Halstead’s
Program Vocabulary (HPV) metric to contribute to the Complexity aggregated
node, since it has low correlation with the McCabe’s cyclomatic complexity in
case of subroutines, but it has a large weight in the linear combination in factor
loading (dominant metric), thus McCabe’s complexity, NLE and HPV forms a
unit together to describe the overall complexity of the system.
This thesis point involves investigating, comparing, evaluating, and extending
different static source code analyzers and methods for the RPG programming
language. SourceMeter seemed to perform better in case of the calculation of
software metrics, code clones, and it also performed a deeper and finer analy-
sis. We built a quality model for RPG that uses the results of SourceMeter.
Integrating a continuous quality monitoring into a development cycle of a mid-
sized company was successful. Motivated by this success, we wanted to further
investigate and improve the quality model itself by recommending Halstead’s
Complexity metrics to be included in the model. The final proposition, which is
based on a Principal Component Analysis, suggests to involve HNDB (Halstead’s
Number of Delivered Bugs) and HPV (Halstead’s Program Vocabulary) metrics
into the model.

99

Appendix A. Summary in English

The Author’s Contributions
The author led the effort of implementing the SourceMeter for RPG toolchain
that is capable of parsing and analyzing RPG/400 and RPG IV programs.
SourceMeter for RPG serves as the basis for the comparison and for the quality
model as well. He collected the most relevant studies related to quality assurance
in RPG software systems. He gathered the RPG source code to be analyzed in
the comparison research and which was also a benchmark in the case study. He
also ran the static analyzers and collected their results which he later compared
exhaustively. He participated in the organization and the implementation of the
case study. Making suggestions about the extension of the quality model and
performing the Principal Component Analysis are also the author’s work. The
publications related to this thesis point are:

♦ Zoltán Tóth, László Vidács, and Rudolf Ferenc. Comparison of Static
Analysis Tools for Quality Measurement of RPG Programs. In Proceed-
ings of the 15th International Conference on Computational Science and
Its Applications (ICCSA 2015), Banff, Alberta, Canada. Pages 177–192,
Published in Lecture Notes in Computer Science (LNCS), Volume 9159,
Springer-Verlag. June, 2015.

♦ Gergely Ladányi, Zoltán Tóth, Rudolf Ferenc, and Tibor Keresztesi. A
Software Quality Model for RPG. In: 2015 IEEE 22nd International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER). Pages.
91–100. IEEE (2015)

♦ Zoltán Tóth. Applying and Evaluating Halstead’s Complexity Metrics
and Maintainability Index for RPG. In Proceedings of the 17th Interna-
tional Conference on Computational Science and Its Applications (ICCSA
2017), Trieste, Italy. Pages 575-590, Published in Lecture Notes in Com-
puter Science (LNCS), Volume 10408, Springer-Verlag. July, 2017.

Table A.1 summarizes the main publications and how they relate to our thesis points.

№ [118] [114] [119] [115] [117]
I. ♦ ♦

II. ♦ ♦ ♦

Table A.1. Thesis contributions and supporting publications

100

B
Magyar nyelvű összefoglaló

Az élet bármely területén, ahol az emberek is szerves részét képezik a folyamatok-
nak, ott nagyobb valószínűséggel fognak hibák rendszeresen jelentkezni. Ennek tük-
rében, jelen disszertáció két fő területre fókuszál, melyek hangsúlyozzák a szoftver
hibák korai felderítésének és eliminálásának fontosságát. Az első szekcióban új hiba
adatbázisok kerülnek bemutatásra, melyek használatával hatékony hiba előrejelző mo-
delleket építhetünk, így segítve a hibák korai felderítését. A második szekcióban egy
módszertant ismertetünk, melynek segítségével RPG rendszerek karbantarthatóságát
mérhetjük, melyek általában banki rendszerek mélyén ketyegnek, így ezek feltérképe-
zése kritikus fontosságú. A szekciókban megfogalmazott állítások egyben a disszertáció
két tézispontját is alkotják. A tézispontokhoz tartozó publikációkat a B.1. táblázat
foglalja össze.

I. Új adatbázisok hiba előrejelző modellek építéséhez
A tézispontban a Java környezetű publikus hiba adatbázisokkal foglalkozunk,
melynek eredményeit a 2., 3. és 4. fejezetek tárgyalják.
Új publikus hiba adatbázis és kiértékelése a hiba előrejelzésben: Ennek a kutatás-
nak a középpontjában a létező – statikus forráskód metrikákat használó – pub-
likus hiba adatbázisok gyenge pontjainak feltérképezése állt, illetve ezek alapján
egy új hiba adatbázis megalkotása, mely a gyenge pontokat vagy hiányosságot
foltozza be. Annak ellenére, hogy a nyílt forráskódú rendszerek közkedvelt hoszt
platformja a GitHub, egyetlen egy létező hiba adatbázis sem használja azt for-
rásként. Az elérhető adatbázisok igencsak korosnak számítanak, így az általuk
tartalmazott projektet is idősek. Továbbá ezek az adatbázisok gyakran csak egy
szűk forráskód metrikahalmazzal dolgoznak. Az észrevételeink alapján elkészí-
tettünk egy új hiba adatbázist, mely 15 nyílt forráskódú, GitHub-on hosztolt
projektet foglal magában. A hibákat leíró adatokat automatizált úton állítottuk
elő. Az egyes projektekhez körülbelül 6 hónap hosszú időintervallumokat alkot-
tunk, melyek kezdő- és végpontjai egy-egy hivatalos kiadással esnek egybe, és a
hiba információkat ezeken az intervallumokon akkumuláltan gyűjtöttük össze. A
létező adatbázisokhoz képest fontos különbség, hogy a hiba adatokat nem a hiba

101

B. függelék. Magyar nyelvű összefoglaló

kijavítását követő verzióhoz propagáltuk, hanem a megelőző kiadási verzióhoz.
Az így előállított adatbázis mind osztály és fájl szinten nyújt információkat. Az
elkészült hiba adatbázis mellett – mely a fő kontribúciónk is egyben – kiértékeltük
az adatbázis hiba előrejelző képességeit, melyhez 13 gépi tanulási modellt építet-
tünk és futtattunk. A tanulási feladatban a fa-alapú algoritmusok bizonyultak a
legsikeresebbnek, melyet a magas F-measure értékek támasztanak alá. 0,77-es és
0,71-es átlagos F-measure értéket sikerült elérnünk, rendre osztály és fájl szin-
ten. A fájl szintű értékek alacsonyabbak, mivel ezen a szinten kevesebb forráskód
metrika áll a rendelkezésünkre, így kevésbé szofisztikált modelleket tudtunk csak
építeni. Ahhoz, hogy átfogó eredményeket kapjunk, a modellek hiba lefedettsé-
gi képességét is megvizsgáltuk. Közel tökéletes lefedettséget tudtunk elérni úgy,
hogy a forráskód elemek mindössze 31%-át jelöltük meg hibásként mind osztály,
mind fájl szinten. Amennyiben a precision érték fontosabb, mint a recall, akkor
érdemesebb lehet a Naive Bayes módszert használni a hiba előrejelzéshez.

Egységesített hiba adatbázis és annak felhasználása hiba előrejelzéshez : A létező
hiba adatbázisok feltérképezése közben megfogalmazódott bennünk egy igény, mi-
szerint szükség volna egy egységesített hiba adatbázisra, annak érdekében, hogy
a hiba előrejelző módszereket egy sokkal általánosabb, sokrétűbb adathalmazon
értékelhessük ki. Így egy kimerítő szakirodalom kutatásba kezdtünk, hogy az
összes lehetséges hiba adatbázist felderítsük. 5 jelöltet sikerült találnunk, melyek
között a saját GitHub hiba adatbázisunk is megtalálható. Ezeket az adatbáziso-
kat fésültük össze egy nagy és egységes hiba adatbázisba. Az OpenStaticAnalyzer
(OSA) nyílt forráskódú statikus elemzőt használtuk, hogy a több, mint 50 stati-
kus metrikát kinyerjük a különböző rendszerekre. A létrejövő hiba adatbázisban,
így a kiszámított metrikák halmaza egységes lett, ugyanakkor a forráskód ele-
mekhez meghagytuk az eredeti hibaszámokat (az eredeti elemeket az új elemzés
eredményeivel a standard Java osztály nevek alapján, míg a fájlokat egyszerű-
en a nevük alapján párosítottuk). A forráskód elemek párosítása közben fellépő
anomáliákat manuális ellenőriztük az okok felderítéséhez. Az egyik fő ok az olyan
elemek jelenléte az eredeti adatbázisokban, melyek nem is igazi Java forráskódot
tartalmazó állományok (Scala forrásfájlok, package-info fájlok). 624 osztály és 28
fájl szintű adatbázis bejegyzést nem tudtunk párosítani az új megfelelőjükkel.
Az arányok végett, 48 242 osztály és 43 722 fájl szintű bejegyzés volt megta-
lálható az eredeti adatbázisokban. Ez összességében azt jelenti, hogy az elemek
0,71%-át (652 a 92 014-ből) kellett kihagynunk az egységesített hiba adatbázis-
ból. Az egységesítés folyamata közben megvizsgáltuk az eredeti és az új metrika
halmazok közötti átfedéseket (a közös metrikákat), hogy képet kapjunk azok kü-
lönbözőségeiről. Feltártuk a különböző nevezéktani, illetve definíciós eltéréseket
is egyaránt. Szignifikáns eltéréseket találtunk a legegyszerűbb metrikák között
is – mint amilyen például a logikai kódsorok száma (LLOC) – mely az elemző-
eszközök eltéréséből fakad, ugyanis egyes eszközök forráskódon dolgoznak, míg
mások a bájt kódot használják fel bemenetként. Az adatbázisokat megvizsgáltuk
a meta adatok szempontjából is, illetve funkcionális követelmények alapján is. A
meta adatok tartalmazzák a használt statikus elemzőt, a granularitást (osztály
vagy fájl szintű elemeket tartalmaz az adatbázis), a használt hiba- és verzióköve-
tő rendszert, illetve a számított forráskód metrikák halmazát. Egy funkcionális
követelményként összehasonlítottuk az eredeti és az új metrikák hiba előrejelző
képességét, illetve azt is megvizsgáltuk, hogy ehhez képest együttesen hogyan

102

B. függelék. Magyar nyelvű összefoglaló

teljesítenek. A vizsgálathoz a J48 döntési fát (a C4.5 döntési fa egy implemen-
tációja) használtuk a Weka gépi tanulási keretrendszerből. A hiba előrejelző mo-
delleket külön-külön tanítottuk az egyes projekteken, melynek során 10-szeres
keresztvalidációt alkalmaztunk. Egy további funkcionális követelményként külön-
böző rendszereket használtunk fel tanításhoz, mind pedig kiértékeléshez, melyet
kereszt projektes tanításnak nevezünk. A hiba adatbázisban szereplő összes pro-
jekt párosításra elvégeztük ezt a kísérletet. Az eredmények közül a GitHub hiba
adatbázis projektjeire vett részhalmaz a leginkább konzisztens. Összességében a
kísérletek megmutatták, hogy az egységes hiba adatbázis hatékonyan használha-
tó hiba előrejelzéshez, melyet az elért magas F-measure értékek (0,8 és a fölötti)
támasztanak alá.

Jelen tézispont a publikus hiba adatbázisokra és azok kiterjesztésére fókusz-
ál. Létrehoztunk egy korszerű, statikus forráskód metrikákat használó, publikus
adatabázist, a GitHub hiba adatbázist. Következő lépésként, 5 publikusan elérhe-
tő hiba adatbázist egyesítettünk egy nagy közös adatbázisba, annak érdekében,
hogy egy erős alapot biztosítsunk a statikus forráskód metrika alapú hiba elő-
rejelző modellek építéséhez és teszteléséhez. A tézispontban bemutatott új hiba
adatbázisok nyilvánosan elérhetőek.

A szerző hozzájárulása

A disszertáció szerzője tervezte meg a GitHub-ról történő hiba adatok kinyeré-
sére irányuló módszert, illetve az ezen adatokból történő GitHub hiba adatbázis
felépítésének módszerét. A szerző kutatta fel a publikus hiba adatbázisokkal kap-
csolatos szakirodalmat, illetve gyűjtötte össze az adatbázisokhoz tartozó minden-
nemű információt. A GitHub hiba adatbázisba beválogatni kívánt projektekkel
kapcsolatos elvárások megfogalmazásában is aktívan szerepet vállalt. A szerző
készítette el a statisztikákat az egységesített hiba adatbázisban szereplő összes
projekthez. Ezenfelül, a statikus forráskód elemzését is ő végezte el az egységes
hiba adatbázisban található projektekre. A különböző adatbázisokban használt
metrika halmazok összegyűjtése és összehasonlítása, továbbá a meta adatok fel-
térképezése a szerző saját munkáját képezik. A szerző aktívan részt vett továbbá
a hiba előrejelző modellek építésében, mind a GitHub, mind az egységesített hiba
adatbázisok esetében. A végső gépi tanulások eredményeit a szerző állította elő,
továbbá az azokból levonható következtetéseket is ő fogalmazta meg. A tézispont-
hoz tartozó alátámasztó publikációk a következőek:

♦ Zoltán Tóth, Péter Gyimesi, and Rudolf Ferenc. A Public Bug Database
of Github Projects and Its Application in Bug Prediction. In Proceedings of
the 16th International Conference on Computational Science and Its Appli-
cations (ICCSA 2016), Beijing, China. Pages 625-638, Published in Lecture
Notes in Computer Science (LNCS), Volume 9789, Springer-Verlag. July,
2016.

♦ Rudolf Ferenc, Zoltán Tóth, Gergely Ladányi, István Siket, and Tibor
Gyimóthy. A Public Unified Bug Dataset for Java. In Proceedings of the
14th International Conference on Predictive Models and Data Analytics in
Software Engineering, PROMISE’18. Oulu, Finland. Pages 12–21, ACM.
October, 2018.

103

B. függelék. Magyar nyelvű összefoglaló

II. Egy módszertan az RPG szoftverrendszerek karbantarthatóságának
mérésére
A tézispontban az RPG hatyaték rendszerek karbantarthatóságának mérésével
foglalkozunk, melynek eredményeit a 5., 6., 7. és 8. fejezetek tárgyalják. Az RPG
rendszerek elemzése valós ipari igényen alapszik. Ezen kutatást az R&R Software
Kft.-vel közösen vittük véghez, amely cég rendkívül nagy múlttal rendelkezik
az RPG rendszerek tervezésében és megvalósításában. A cég vetette fel igényét
az RPG nyelvű rendszereik statikus forráskód elemzésére, illetve a rendszerek
karbantarthatóságának szofisztikált és megbízható mérésére. A tézispontban ta-
lálható kutatási eredményeket a GOP-1.1.1-11-2012-0323 témaszámú pályázat
keretein belül készítettük el.
Szoftverminőség méréshez használható RPG statikus forráskód elemzők összeha-
sonlítása: A kutatás célja, hogy a jelenlegi legkorszerűbb RPG statikus forráskód
elemzőket mélyrehatóan és objektíven összehasonlítsa. A kutatási terület a sta-
tikus elemzőkből kinyert adatokra fókuszál, amelyeket később magasabb szintű
minőségleíró attribútumok meghatározására használhatunk. A SourceMeter egy
saját fejlesztésű parancssori eszköz, mely a forráskód különböző tulajdonságait
adja eredményül, mint például statikus forráskód metrikákat, kódolási szabálysér-
téseket és kód duplikációkat. A SonarQube egy minőség menedzsment platform,
mely rendelkezik RPG nyelvi támogatással is. Az objektív összehasonlítás meg-
könnyítése érdekében, a SourceMeter for RPG SonarQube-os beépülő modulját
(plugin) használtuk, amely kiterjeszti a SonarQube funkcionalitását a Source-
Meter képességeivel. Ilyen módon a vizsgált rendszerek egy közös interfésszel
rendelkeztek, amely jelentősen megkönnyítette az összehasonlítás elvégzését. Az
összehasonlítás bementét 179 rendszer képezte. Az összehasonlításban szereplő
szempontok között megtalálható az elemzés sikeressége és mélysége, a forráskód
metrikák halmaza, a támogatott kódolási szabálysértések halmaza, illetve a kód
duplikációk felfedezésének képessége. A SourceMeter eszköz gond nélkül elemezte
az összes forráskódot, míg a SonarQube esetében 3 fájlt nem sikerült a rendszer-
nek analizálni, mivel azok nem támogatott nyelvi konstrukciókat tartalmaztak
(például free-form blokkot). A SourceMeter 4 szinten szolgáltatja az eredménye-
ket: rendszer, program (fájl), procedúra és szubrutin szinten. A SonarQube ehhez
képest csak rendszer és fájl szinteket támogat. A SonarQube limitált mennyiségű
statikus forráskód metrikát szolgáltat a SourceMeterhez képest, mely utóbbi a
metrikákat alacsonyabb szinteken is számolja (szubrutin és procedúra). A közö-
sen támogatott szabályok halmaza nagy, továbbá mindkét eszköz biztosít olyan
kódolási szabályokat, melyeket a másik nem. A SourceMeter eszköz rendelkezik
metrika-alapú szabályokkal is, melyek alapján szabálysértést generál a rendszer,
ha egy adott forráskód elemhez tartozó metrika értéke kisebb vagy nagyobb,
mint az engedélyezett intervallum alsó vagy felső végpontja. A SonarQube esz-
köz képes az 1-es típusú kód klónok felderítésére, melyek másolás és beillesztés
technikával jöttek létre. A SourceMeter ugyanakkor egy absztrakt szintaxis fát
(Abstract Syntax Tree - AST) épít, mely a klón detektálás bemenetét képezi,
így az képes a 2-es típusú klónok felderítésére is (például a különböző válto-
zónevek használatával nem lehet megkerülni a klón megtalálását). Az eszközök
kiértékelése után, az alacsony szintű karakterisztikák magasabb szintű jellem-
zőkre gyakorolt hatását vizsgáltuk meg a platformon, azaz a minőségi indexeket
vettük górcső alá. A technical dept és a SQALE metikákat vettük figyelembe,

104

B. függelék. Magyar nyelvű összefoglaló

melyeket a SonarQube szolgáltat. Ezen jellemzők erősen építenek a szabálysérté-
sekre, viszont más alacsony szintű jellemzőket (a forráskód metrikákat és a kód
duplikációkat) nem vesznek figyelembe, így ezek a jellemzők nem képesek megfe-
lelő módon tükrözni a rendszer teljes minőségét. A SourceMeter eszközt találtuk
fejlettebbnek az elemzés mélységében, a metrikák és a kód klónok tekintetében,
míg a kódolási szabályok és az elemzés sikerességét tekintve teljesítményük közel
azonos. Ezen faktorokat tekintve a SourceMeter eszközt válaszottuk ki arra a
célra, hogy alacsony szintű jellemzőket biztosítson a szofisztikáltabb, magasabb
szintű tulajdonságok meghatározásához.

Folyamatos minőség monitorozás integrácója egy meglévő fejlesztési folyamatba
– egy esettanulmány: A kutatás célja egy olyan általános és rugalmas minőség
modell megalkotása az RPG nyelvre, melyet aztán sikeresen alkalmazhatunk az
esettanulmányunkban. Egy jó minőség modell egyet jelent olyan magas szintű
tulajdonságokkal, mint amilyenek a minőségi index vagy a karbantarthatósági
index, melyek többet árulnak el a rendszerről. A kreált minőség modell az ISO/I-
EC 25010-es szabványon alapszik, melyben a karbantarthatóság, mint kulcs té-
nyező játszik szerepet egy rendszer minőségének meghatározásában (ilyen módon
a minőség modell és karbantarthatóság modell kifejezéseket felváltva használjuk
a karbantarthatósági modellre, mely valójában csak egy részét képezi a legfel-
sőbb szintű minőség jellemzőnek). A modell erősen épít az újrafelhasználhatósá-
gára, elemezhetőségére, módosíthatóságára és tesztelhetőségére, mint altulajdon-
ságokra, melyek meghatározzák a rendszer tényleges karbantarthatóságát. Ezek
a magasabb szintű jellemzők az alacsony szintú tulajdonságokat használják fel,
melyeket a SourceMeter szolgáltat. A minőség modell definiálása után, kivite-
leztünk egy esettanulmányt, melyben a modellt beépítettük egy közepes méretű
szoftverfejlesztő cég, az R&R Software Kft., fejlesztési folyamataiba. Az inicia-
lizációs fázisban a SourceMeter finomhangolása (például a metrika alapú szabá-
lyok lehetséges intervallumainak beállítása, tiltott operációk meghatározása) és
a minőség modell paraméterezése után (súlyok meghatározása), létrehoztunk egy
benchmark-ot. A második, integrációs fázisban adaptáltuk a minőség monitoro-
zó módszerünket, mely észrevétlenül épül be a vállalat fejlesztési folyamataiba.
Az új változtatások során (commit) automatikusan lefut a forráskód elemzés,
melynek eredményeit adatbázisban tároljuk, biztosítva azok hosszú távú elérhe-
tőséget. A vállalat egy megadott modul minőségén szeretett volna javítani, így
egy refaktorálási fázisban a vállalat néhány fejlesztője csökkentette a rendszer-
ben lévő kritikus és súlyos szabálysértések számát. Ezen tevékenység segítette,
hogy a rendszer karbantarthatósága verzióról verzióra növekedhessen. Az értéke-
lés fázisban levonhattuk a konklúziót, mely szerint a karbantarthatóság javult a
kiválasztott modulon, így elérve a „GO” állapotot, vagyis a megadott minimális
karbantarthatósági szintet, amellyel a rendszer már kiadható. A vállalat fejlesz-
tői és menedzserei szerint a módszerünk ipari környeztben történő alkalmazása
sikeresnek bizonyult. A vállalaton belül sikeresen tudták ellenőrizni a kódolási
konvenciók követését, amely kikényszeríti, hogy a fejlesztők elkerüljenek bizonyos
rossz megoldásokat, helyettük bevett technkikákat tanuljanak meg és alkalmaz-
zák azokat a gyakori problémákra. Ezen felül a megközelítésünket kellőképpen
rugalmasnak és testre szabhatónak találták (például a benchmark létrehozás és
a minőség modell súlyozása gyorsan megtanulható). A fejlesztők szerint a kar-
bantartási munkálatokat hatékonyan tudták elvégezni, melyet a SourceMeter és

105

B. függelék. Magyar nyelvű összefoglaló

QualityGate eszközöknek köszönhetnek.

Halstead komplexitás metrikák és a karbantarthatósági index alkalmazása RPG
környezetben: A kutatás célja, hogy a minőség modellbe további lehetséges jel-
lemzőket vonjunk be, melyek továbbfejlesztik a modell kifejező képességét. Első
lépésként meg kellett határoznunk a Halstead komplexitás metrikák RPG/400
és RPG IV környezetre értelmezhető definícióját. Sajnos nincs standard módja
ezen metrikák számításának, mivel a különböző programozási nyelvek különbö-
ző nyelvi konstrukciókat tartalmaznak, melyekről sokszor nehéz megállapítani,
hogy operandusként avagy operátorként számoljuk őket. RPG esetében egy ko-
rábbi definíciós halmaz már létezett az RPG II és RPG III nyelvekre, így ezeket
terjesztettük ki az RPG/400-ban és az RPG IV-ben bemutatott számos újabb
nyelvi konstrukcióra. Következő lépésként megvizsgáltuk a Halstead komplexitás
metrikákat, illetve a karbantarthatósági index négy variánsát, hogy ezek milyen
korrelációban állnak a többi metrikával (melyek a minőség modellben szerepel-
nek), továbbá kerestük ezen metrikák alkalmazhatőságát a minőség modell kiter-
jesztésére, hogy az még jobban le tudja írni a szóban forgó rendszer minőségét.
Ehhez a feladathoz főkomponens analízist (Principal Component Analysis - PCA)
alkalmaztunk. Az analízis során azt tapasztaltuk, hogy a Halstead komplexitás
metrikák egy erősen összefüggő csoportot alkotnak a metrikák halmazán belül,
továbbá jól felhasználhatóak az elemzett rendszer jobb leírásához. Végső konk-
lúzióként a Halstead Number of Delivered Bugs (HNDB) metrikát javasoljuk
belevenni a minőség modellbe, azon belül is a hibahajlam (fault proneness) belső
pont gyermekeként, mivel a legnagyobb korrelációs együtthatót a lehetséges hi-
bákkal (warning) produkálta ez a metrika. A HNDB metrika mellett a Halstead
Program Vocabulary (HPV) metrikát is ajánlatos belevenni a minőség modell
komplexitás belső pontja alá, mivel alacsony korrelációt mutat a McCabe-féle
komplexitás metrikával (szubrutinok szintjén), ugyanakkor nagy súllyal szerepel
a faktoranalízis lineáris kombinációjának első, azaz legdominánsabb komponnen-
sében. Ilyen módon a rendszer komplexitását a McCabe-féle komplexitás, az NLE
(elágazások egymásba ágyazottsága) és a HPV metrikák megfelelő súlyozásával
alkotott kombinációja alkotnák, melyek összességében jobban, több szemszögből
írnák le a rendszert.

Ez a tézispont az RPG programozási nyelven készült rendszerekre alkalmazha-
tó statikus forráskód elemezőkkel és arra épülő minőségbiztosítási módszerek-
kel foglalkozik. A SourceMeter eszköz bizonyult megfelelő választásnak a stati-
kus szoftver metrikák, a kód klónok, valamint az elemzés mélysége, részletessége
szempontjából, így annak eredményeit használtuk fel a magasabb szintű minősé-
gi jellemzők kinyerésére. Ezen magasabb szintű jellemzők előállítása végett egy
minőség modell definiáltunk az RPG nyelvre. A folyamatos minőség monitorozás
integrációja – egy közepes méretű vállalat fejlesztési folyamataiba – sikeresnek
bizonyult. Az integráció sikerességén felbuzdulva, tovább szerettük volna javíta-
ni a karbantarthatóság mérésére adott módszerünket, így ajánlásokat tettünk a
minőség modell továbbfejlesztésére. A főkomponens analízis eredményei alapján
megfogalmaztunk egy végső javaslatot, mely szerint a HNDB (Halstead Number
of Delivered Bugs) és a HPV (Halstead Program Vocabulary) metrikákat ajánl-
juk a modellbe építeni, mivel ezek növelik a leghatékonyabban annak minőségleíró
képességét a vizsgált lehetséges metrikák közül.

106

B. függelék. Magyar nyelvű összefoglaló

A szerző hozzájárulása
A SourceMeter for RPG statikus forráskód elemző kifejlesztése, melynek segítsé-
gével RPG/400-as és RPG IV-es rendszereket is elemezhetünk a szerző munkája.
Ez az elemző eszköz képezi az egyik legfontosabb alapját az összehasonlításnak,
illetve a minőség modellnek is egyaránt. A szerző gyűjtötte össze és dolgozta
fel az RPG szoftver rendszerek minőségbiztosításával foglalkozó szakirodalmat.
Az elemző eszközök összehasonlításához, illetve a benchmark építéshez használt
programokat a szerző gyűjtötte össze. Az összes statikus elemzést a szerző vé-
gezte el, illetve azok eredményeit a szerző gyűjtötte össze és dolgozta fel (mind
a statikus elemzők összehasonlításánál, mind a minőség modell kiterjesztésénél).
Részt vett továbbá az esettanulmány megszervezésében és kivitelezésében. A fő-
komponens analízis elvégzése és annak eredményei alapján a minőség modell ki-
terjesztésére vonatkozó javaslatok megfogalmazása a szerző munkáját képezik. A
téziponthoz kapcsolódó alátámasztó publikációk:

♦ Zoltán Tóth, László Vidács, and Rudolf Ferenc. Comparison of Static
Analysis Tools for Quality Measurement of RPG Programs. In Procee-
dings of the 15th International Conference on Computational Science and
Its Applications (ICCSA 2015), Banff, Alberta, Canada. Pages 177–192,
Published in Lecture Notes in Computer Science (LNCS), Volume 9159,
Springer-Verlag. June, 2015.

♦ Gergely Ladányi, Zoltán Tóth, Rudolf Ferenc, and Tibor Keresztesi. A
Software Quality Model for RPG. In: 2015 IEEE 22nd International Confe-
rence on Software Analysis, Evolution and Reengineering (SANER). Pages.
91–100. IEEE (2015)

♦ Zoltán Tóth. Applying and Evaluating Halstead’s Complexity Metrics
and Maintainability Index for RPG. In Proceedings of the 17th Interna-
tional Conference on Computational Science and Its Applications (ICCSA
2017), Trieste, Italy. Pages 575-590, Published in Lecture Notes in Computer
Science (LNCS), Volume 10408, Springer-Verlag. July, 2017.

A tézispontokat és a kapcsolódó publikációkat a B.1. táblázat összegzi.

№ [118] [114] [119] [115] [117]
I. ♦ ♦

II. ♦ ♦ ♦

B.1. táblázat. A tézispontokhoz kapcsolódó publikációk

107

Acknowledgement

This thesis was supported by the EU-funded Hungarian national grant GINOP-2.3.2-
15-2016-00037 titled “Internet of Living Things”.

109

Bibliography

[1] JHawk. http://www.virtualmachinery.com/jhawkprod.htm, 2018. Accessed:
2018-01-25.

[2] Boeing Scandal. https://www.theguardian.com/commentisfree/2019/apr/
07/boeing-737-max-regulation-corporate-america, 2019. Accessed: 2019-
05-20.

[3] CrossBrowserTesting. https://crossbrowsertesting.com/blog/
development/software-bug-cost/, 2019. Accessed: 2019-05-20.

[4] Tiago L Alves, Pedro Silva, and Miguel Sales Dias. Applying ISO/IEC 25010
Standard to prioritize and solve quality issues of automatic ETL processes. IEEE
International Conference on Software Maintenance (ICSM 2014), pages 573–576,
2014.

[5] Tiago L. Alves, Christiaan Ypma, and Joost Visser. Deriving Metric Thresholds
from Benchmark Data. In Proceedings of the 26th IEEE International Conference
on Software Maintenance (ICSM 2010), 2010.

[6] Erik Arisholm and Lionel C Briand. Predicting fault-prone components in a java
legacy system. In Proceedings of the 2006 ACM/IEEE international symposium
on Empirical software engineering, pages 8–17. ACM, 2006.

[7] Robert Baggen, Katrin Schill, and Joost Visser. Standardized Code Quality
Benchmarking for Improving Software Maintainability. In Proceedings of the
Fourth International Workshop on Software Quality and Maintainability (SQM
2010), 2010.

[8] Ger Bakker and Fred Hirdes. Recent industrial experiences with software product
metrics. In Objective Software Quality, pages 179–191. Springer, 1995.

[9] Tibor Bakota, Péter Hegedűs, Péter Körtvélyesi, Rudolf Ferenc, and Tibor Gy-
imóthy. A probabilistic software quality model. In Software Maintenance (ICSM),
2011 27th IEEE International Conference on, pages 243–252. IEEE, 2011.

[10] Tibor Bakota, Péter Hegedűs, Gergely Ladányi, Péter Körtvélyesi, Rudolf Ferenc,
and Tibor Gyimóthy. A Cost Model Based on Software Maintainability. In
Proceedings of the 28th IEEE International Conference on Software Maintenance
(ICSM 2012), Riva del Garda, Italy, 2012. IEEE Computer Society.

111

http://www.virtualmachinery.com/jhawkprod.htm
https://www.theguardian.com/commentisfree/2019/apr/07/boeing-737-max-regulation-corporate-america
https://www.theguardian.com/commentisfree/2019/apr/07/boeing-737-max-regulation-corporate-america
https://crossbrowsertesting.com/blog/development/software-bug-cost/
https://crossbrowsertesting.com/blog/development/software-bug-cost/

Bibliography

[11] Tibor Bakota, Péter Hegedűs, István Siket, Gergely Ladányi, and Rudolf Ferenc.
QualityGate SourceAudit: A Tool for Assessing the Technical Quality of Soft-
ware. In Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), 2014 Software Evolution Week-IEEE Conference on, pages 440–445.
IEEE, 2014.

[12] P. Bangcharoensap, A. Ihara, Y. Kamei, and K. Matsumoto. Locating source
code to be fixed based on initial bug reports - a case study on the eclipse project.
In Empirical Software Engineering in Practice (IWESEP), 2012 Fourth Interna-
tional Workshop on, pages 10–15, Oct 2012.

[13] J. Bansiya and C.G. Davis. A Hierarchical Model for Object-Oriented Design
Quality Assessment. IEEE Transactions on Software Engineering, 28:4–17, 2002.

[14] Vera Barstad, Morten Goodwin, and Terje Gjøsæter. Predicting source code
quality with static analysis and machine learning. In NIK, 2014.

[15] Victor R Basili, Lionel C. Briand, and Walcélio L Melo. A validation of object-
oriented design metrics as quality indicators. IEEE Transactions on software
engineering, 22(10):751–761, 1996.

[16] V.R. Basili, L.C. Briand, and W.L. Melo. A validation of object-oriented de-
sign metrics as quality indicators. Software Engineering, IEEE Transactions on,
22(10):751 –761, oct 1996.

[17] Dilek Baski and Sanjay Misra. Metrics suite for maintainability of extensible
markup language web services. IET software, 5(3):320–341, 2011.

[18] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lor-
raine Bier. Clone detection using abstract syntax trees. In Proceedings. In-
ternational Conference on Software Maintenance (Cat. No. 98CB36272), pages
368–377. IEEE, 1998.

[19] Brett A Becker and Catherine Mooney. Categorizing compiler error messages with
principal component analysis. In 12th China-Europe International Symposium on
Software Engineering Education (CEISEE 2016), Shenyang, China, 28-29 May
2016, 2016.

[20] Christian Bird, Peter C Rigby, Earl T Barr, David J Hamilton, Daniel M German,
and Prem Devanbu. The promises and perils of mining git. In 2009 6th IEEE
International Working Conference on Mining Software Repositories, pages 1–10.
IEEE, 2009.

[21] Cathal Boogerd and Leon Moonen. Assessing the Value of Coding Standards:
An Empirical Study. In Proceedings of the 24th IEEE International Conference
on Software Maintenance (ICSM 2008), pages 277–286. IEEE, 2008.

[22] David Bowes, Tracy Hall, Mark Harman, Yue Jia, Federica Sarro, and Fan Wu.
Mutation-aware fault prediction. In Proceedings of the 25th International Sym-
posium on Software Testing and Analysis, pages 330–341. ACM, 2016.

112

Bibliography

[23] Lionel C. Briand, John W. Daly, and Jurgen K Wust. A unified framework
for coupling measurement in object-oriented systems. IEEE Transactions on
software Engineering, 25(1):91–121, 1999.

[24] Frederick P Brooks Jr. The mythical man-month (anniversary ed.). 1995.

[25] William H Brown, Raphael C Malveau, Hays W McCormick, and Thomas J
Mowbray. AntiPatterns: refactoring software, architectures, and projects in cri-
sis. John Wiley & Sons, Inc., 1998.

[26] Magiel Bruntink and Arie Van Deursen. Predicting class testability using object-
oriented metrics. In Source Code Analysis and Manipulation, 2004. Fourth IEEE
International Workshop on, pages 136–145. IEEE, 2004.

[27] Gerardo Canfora, Andrea De Lucia, and Giuseppe A Di Lucca. An incremental
object-oriented migration strategy for rpg legacy systems. International Journal
of Software Engineering and Knowledge Engineering, 9(01):5–25, 1999.

[28] Peggy Cellier, Mireille Ducassé, Sébastien Ferré, and Olivier Ridoux. Multiple
fault localization with data mining. In SEKE, pages 238–243, 2011.

[29] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design.
Software Engineering, IEEE Transactions on, 20(6):476 –493, jun 1994.

[30] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics to
evaluate software system maintainability. Computer, 27(8):44–49, 1994.

[31] H. Coles. PITest Mutation Framework. http://pitest.org/, 2018. Accessed:
2018-01-25.

[32] José Pedro Correia and Joost Visser. Benchmarking Technical Quality of Software
Products. In Proceedings of the 15th Working Conference on Reverse Engineering
(WCRE 2008), pages 297–300, Washington, DC, USA, 2008. IEEE Computer
Society.

[33] C. Couto, C. Silva, M.T. Valente, R. Bigonha, and N. Anquetil. Uncovering
causal relationships between software metrics and bugs. In Software Maintenance
and Reengineering (CSMR), 2012 16th European Conference on, pages 223–232,
March 2012.

[34] Valentin Dallmeier and Thomas Zimmermann. Automatic extraction of bug lo-
calization benchmarks from history. In Proc. Int’l Conf. on Automated Software
Eng, pages 433–436. Citeseer, 2007.

[35] Valentin Dallmeier and Thomas Zimmermann. Extraction of bug localization
benchmarks from history. In Proceedings of the twenty-second IEEE/ACM in-
ternational conference on Automated software engineering, pages 433–436. ACM,
2007.

[36] Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive comparison
of bug prediction approaches. In 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), pages 31–41. IEEE, 2010.

113

http://pitest.org/

Bibliography

[37] Marco D’Ambros, Michele Lanza, and Romain Robbes. Evaluating defect predic-
tion approaches: a benchmark and an extensive comparison. Empirical Software
Engineering, 17(4-5):531–577, 2012.

[38] Andrea De Lucia, Rita Francese, Giuseppe Scanniello, and Genoveffa Tortora.
Developing legacy system migration methods and tools for technology transfer.
Softw. Pract. Exper, 38:1333–1364, 2008.

[39] R. Ferenc, I. Siket, and T. Gyimothy. Extracting facts from open source software.
In Software Maintenance, 2004. Proceedings. 20th IEEE International Conference
on, pages 60 – 69, sept. 2004.

[40] David Gray, David Bowes, Neil Davey, Y Sun, and Bruce Christianson. Reflec-
tions on the nasa mdp data sets. IET software, 6(6):549–558, 2012.

[41] David Gray, David Bowes, Neil Davey, Yi Sun, and Bruce Christianson. The
misuse of the nasa metrics data program data sets for automated software defect
prediction. In Evaluation & Assessment in Software Engineering (EASE 2011),
15th Annual Conference on, pages 96–103. IET, 2011.

[42] Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. Software Engineer-
ing, IEEE Transactions on, 31(10):897–910, 2005.

[43] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H Witten. The weka data mining software: an update. ACM
SIGKDD explorations newsletter, 11(1):10–18, 2009.

[44] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. A
systematic literature review on fault prediction performance in software engineer-
ing. IEEE Transactions on Software Engineering, 38(6):1276–1304, 2012.

[45] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. Some code smells have a
significant but small effect on faults. ACM Transactions on Software Engineering
and Methodology (TOSEM), 23(4):33, 2014.

[46] Maurice Howard Halstead. Elements of software science, volume 7. Elsevier New
York, 1977.

[47] Mark Harman, Syed Islam, Yue Jia, Leandro L Minku, Federica Sarro, and Kom-
san Srivisut. Less is more: Temporal fault predictive performance over multiple
hadoop releases. In International Symposium on Search Based Software Engi-
neering, pages 240–246. Springer, 2014.

[48] Sandra D Hartman. A counting tool for rpg. In ACM SIGMETRICS Performance
Evaluation Review, volume 11, pages 86–100. ACM, 1982.

[49] Haibo He, Edwardo Garcia, et al. Learning from imbalanced data. Knowledge
and Data Engineering, IEEE Transactions on, 21(9):1263–1284, 2009.

[50] Péter Hegedűs. A probabilistic quality model for c#-an industrial case study.
Acta Cybern., 21(1):135–147, 2013.

114

Bibliography

[51] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measur-
ing maintainability. In Quality of Information and Communications Technology,
2007. QUATIC 2007. 6th International Conference on the, pages 30–39. IEEE,
2007.

[52] J Horning, H Lauer, P Melliar-Smith, and Brian Randell. A program structure
for error detection and recovery. Operating Systems, pages 171–187, 1974.

[53] ISO/IEC. ISO/IEC 9126. Software Engineering – Product quality. ISO/IEC,
2001.

[54] ISO/IEC. ISO/IEC 25000:2005. Software Engineering – Software product Qual-
ity Requirements and Evaluation (SQuaRE) – Guide to SQuaRE. ISO/IEC, 2005.

[55] I.T. Jolliffe. Principal Component Analysis. Springer-Verlag New York, 2 edition,
2002.

[56] Ho-Won Jung, Seung-Gweon Kim, and Chang-Shin Chung. Measuring Software
Product Quality: A Survey of ISO/IEC 9126. IEEE Software, pages 88–92, 2004.

[57] René Just, Darioush Jalali, and Michael D Ernst. Defects4j: A database of exist-
ing faults to enable controlled testing studies for java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis, pages
437–440. ACM, 2014.

[58] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. The promises and perils of mining github. In
Proceedings of the 11th working conference on mining software repositories, pages
92–101. ACM, 2014.

[59] Y. Kamei and E. Shihab. Defect prediction: Accomplishments and future chal-
lenges. In 2016 IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), volume 5, pages 33–45, March 2016.

[60] Stephen H Kan, SD Dull, DN Amundson, Richard J. Lindner, and RJ Hedger.
AS/400 software quality management. IBM Systems Journal, 33(1):62–88, 1994.

[61] Matinee Kiewkanya, Nongyao Jindasawat, and Pornsiri Muenchaisri. A method-
ology for constructing maintainability model of object-oriented design. In Qual-
ity Software, 2004. QSIC 2004. Proceedings. Fourth International Conference on,
pages 206–213. IEEE, 2004.

[62] Sunghun Kim, Thomas Zimmermann, E James Whitehead Jr, and Andreas
Zeller. Predicting faults from cached history. In Proceedings of the 29th in-
ternational conference on Software Engineering, pages 489–498. IEEE Computer
Society, 2007.

[63] Gergely Ladányi, Zoltán Tóth, Rudolf Ferenc, and Tibor Keresztesi. A software
quality model for rpg. In Proceedings of the 22nd IEEE International Conference
on Software Analysis, Evolution, and Reengineering (SANER 2015), pages 91–
100. IEEE, March 2015.

115

Bibliography

[64] Anuradha Lakshminarayana and Timothy S Newman. Principal component anal-
ysis of lack of cohesion in methods (lcom) metrics. Technical Report TRUAH-
CS-1999-01, 1999.

[65] Michele Lanza and Radu Marinescu. Object-oriented metrics in practice: us-
ing software metrics to characterize, evaluate, and improve the design of object-
oriented systems. Springer Science & Business Media, 2007.

[66] Ruchika Malhotra, Shivani Shukla, and Geet Sawhney. Assessment of defect
prediction models using machine learning techniques for object-oriented systems.
In Reliability, Infocom Technologies and Optimization (Trends and Future Direc-
tions)(ICRITO), 2016 5th International Conference on, pages 577–583. IEEE,
2016.

[67] Thomas J McCabe. A complexity measure. IEEE Transactions on software
Engineering, (4):308–320, 1976.

[68] Tim Menzies, Bora Caglayan, Zhimin He, Ekrem Kocaguneli, Joe Krall, Fay-
ola Peters, and Burak Turhan. The promise repository of empirical software
engineering data, June 2012.

[69] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code at-
tributes to learn defect predictors. IEEE transactions on software engineering,
33(1), 2007.

[70] Ayse Tosun Misirli, Ayse Bener, and Resat Kale. Ai-based software defect pre-
dictors: Applications and benefits in a case study. AI Magazine, 32(2):57–68,
2011.

[71] Sanjay Misra, Ibrahim Akman, and Ricardo Colomo-Palacios. Framework
for evaluation and validation of software complexity measures. IET software,
6(4):323–334, 2012.

[72] Sanjay Misra, Murat Koyuncu, Marco Crasso, Cristian Mateos, and Alejandro
Zunino. A suite of cognitive complexity metrics. Computational Science and Its
Applications–ICCSA 2012, pages 234–247, 2012.

[73] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of
the efficiency of change metrics and static code attributes for defect prediction. In
Proceedings of the 30th international conference on Software engineering, pages
181–190. ACM, 2008.

[74] S Muthanna, Kostas Kontogiannis, Kumaraswamy Ponnambalam, and B Stacey.
A maintainability model for industrial software systems using design level met-
rics. In Reverse Engineering, 2000. Proceedings. Seventh Working Conference on,
pages 248–256. IEEE, 2000.

[75] Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures
to predict system defect density. In Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on, pages 284–292. IEEE, 2005.

116

Bibliography

[76] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to
predict component failures. In Proceedings of the 28th international conference
on Software engineering, pages 452–461. ACM, 2006.

[77] Csaba Nagy, László Vidács, Rudolf Ferenc, Tibor Gyimóthy, Ferenc Kocsis, and
István Kovács. Magister: Quality assurance of magic applications for software
developers and end users. In IEEE International Conference on Software Main-
tenance (ICSM 2010), pages 1–6. IEEE, Sep 2010.

[78] Csaba Nagy, László Vidács, Rudolf Ferenc, Tibor Gyimóthy, Ferenc Kocsis, and
István Kovács. Complexity measures in 4gl environment. In Computational
Science and Its Applications - ICCSA 2011, Lecture Notes in Computer Science,
volume 6786 of Lecture Notes in Computer Science, pages 293–309. Springer,
2011.

[79] Farid A Naib. An application of software science to the quantitative measure-
ment of code quality. In ACM SIGMETRICS Performance Evaluation Review,
volume 11, pages 101–128. ACM, 1982.

[80] Paul Oman and Jack Hagemeister. Construction and testing of polynomials
predicting software maintainability. Journal of Systems and Software, 24(3):251–
266, 1994.

[81] Maryoly Ortega, María Pérez, and Teresita Rojas. Construction of a systemic
quality model for evaluating a software product. Software Quality Journal,
11(3):219–242, 2003.

[82] Thomas J Ostrand, Elaine J Weyuker, and Robert M Bell. Predicting the location
and number of faults in large software systems. Software Engineering, IEEE
Transactions on, 31(4):340–355, 2005.

[83] Girish Parikh and Nicholas Zvegintzov. The world of software maintenance.
Tutorial on Software Maintenance, pages 1–3, 1983.

[84] Jean Petrić, David Bowes, Tracy Hall, Bruce Christianson, and Nathan Baddoo.
The jinx on the nasa software defect data sets. In Proceedings of the 20th In-
ternational Conference on Evaluation and Assessment in Software Engineering,
page 13. ACM, 2016.

[85] Mario Piattini, Coral Calero, and Marcela Genero. Table oriented metrics for
relational databases. Software Quality Control, 9(2):79–97, 2001.

[86] Shruthi Puranik, Pranav Deshpande, and K Chandrasekaran. A novel machine
learning approach for bug prediction. Procedia Computer Science, 93:924–930,
2016.

[87] QualityGate quality management platform. http://www.quality-gate.com,
2015.

[88] Brian Randell. System structure for software fault tolerance. IEEE Transactions
on Software Engineering, 10(2):220–232, 1975.

117

Bibliography

[89] Adnan Rawashdeh and Bassem Matalkah. A new software quality model for
evaluating cots components. Journal of Computer Science, 2(4):373–381, 2006.

[90] Gregorio Robles. Replicating msr: A study of the potential replicability of papers
published in the mining software repositories proceedings. In Mining Software
Repositories (MSR), 2010 7th IEEE Working Conference on, pages 171–180.
IEEE, 2010.

[91] Martin Shepperd and Darrel C Ince. A critique of three metrics. Journal of
Systems and Software, 26(3):197–210, 1994.

[92] Martin Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn Mair. Data quality:
Some comments on the nasa software defect datasets. IEEE Transactions on
Software Engineering, 39(9):1208–1215, 2013.

[93] Thomas Shippey, Tracy Hall, Steve Counsell, and David Bowes. So you need
more method level datasets for your software defect prediction?: Voila! In Pro-
ceedings of the 10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’16, pages 12:1–12:6, New York, NY, USA,
2016. ACM.

[94] SonarQube quality management platform. https://www.sonarqube.org/, 2019.

[95] SourceMeter. http://www.sourcemeter.com, 2019.

[96] Ramanath Subramanyam and Mayuram S. Krishnan. Empirical analysis of ck
metrics for object-oriented design complexity: Implications for software defects.
Software Engineering, IEEE Transactions on, 29(4):297–310, 2003.

[97] K. Suntiparakoo and Y. Limpiyakorn. Flowchart knowledge extraction on rpg
legacy code. Advanced Science and Technology Letters, 29:258–263, 2013.

[98] Georg Von Krogh and Eric Von Hippel. The promise of research on open source
software. Management science, 52(7):975–983, 2006.

[99] Shuo Wang and Xin Yao. Using class imbalance learning for software defect
prediction. Reliability, IEEE Transactions on, 62(2):434–443, 2013.

[100] Elaine J Weyuker, Robert M Bell, and Thomas J Ostrand. Replicate, replicate,
replicate. In Replication in Empirical Software Engineering Research (RESER),
2011 Second International Workshop on, pages 71–77. IEEE, 2011.

[101] Elaine J Weyuker, Thomas J Ostrand, and Robert M Bell. Comparing the
effectiveness of several modeling methods for fault prediction. Empirical Software
Engineering, 15(3):277–295, 2010.

[102] Chadd Williams and Jaime Spacco. Szz revisited: verifying when changes induce
fixes. In Proceedings of the 2008 workshop on Defects in large software systems,
pages 32–36. ACM, 2008.

[103] Chadd C Williams and Jeffrey K Hollingsworth. Automatic mining of source
code repositories to improve bug finding techniques. Software Engineering, IEEE
Transactions on, 31(6):466–480, 2005.

118

Bibliography

[104] G.E. Witting and G.R Finnie. Using artificial neural networks and function
points to estimate 4GL software development effort. Australasian Journal of
Information Systems, 1(2), 1994.

[105] W Eric Wong, Vidroha Debroy, and Dianxiang Xu. Towards better fault local-
ization: A crosstab-based statistical approach. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 42(3):378–396, 2012.

[106] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A sur-
vey on software fault localization. IEEE Transactions on Software Engineering,
42(8):707–740, 2016.

[107] Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. Relink:
recovering links between bugs and changes. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of soft-
ware engineering, pages 15–25. ACM, 2011.

[108] Michalis Xenos, D Stavrinoudis, K Zikouli, and D Christodoulakis. Object-
oriented metrics-a survey. In Proceedings of the FESMA, pages 1–10, 2000.

[109] Zhiwei Xu, Taghi M Khoshgoftaar, and Edward B Allen. Prediction of software
faults using fuzzy nonlinear regression modeling. In High Assurance Systems
Engineering, 2000, Fifth IEEE International Symposim on. HASE 2000, pages
281–290. IEEE, 2000.

[110] Zhe Yu, Nicholas A Kraft, and Tim Menzies. How to read less: Better ma-
chine assisted reading methods for systematic literature reviews. arXiv preprint
arXiv:1612.03224, 2016.

[111] M. Zhivich and R. K. Cunningham. The real cost of software errors. IEEE
Security Privacy, 7(2):87–90, March 2009.

[112] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and
Brendan Murphy. Cross-project defect prediction: a large scale experiment on
data vs. domain vs. process. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering, pages 91–100. ACM, 2009.

[113] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects
for eclipse. In Predictor Models in Software Engineering, 2007. PROMISE’07:
ICSE Workshops 2007. International Workshop on, pages 9–9. IEEE, 2007.

119

Bibliography

Corresponding Publications of the Author

[114] Rudolf Ferenc, Zoltán Tóth, Gergely Ladányi, István Siket, and Tibor Gyimóthy.
A public unified bug dataset for java. In Proceedings of the 14th International
Conference on Predictive Models and Data Analytics in Software Engineering,
PROMISE’18, pages 12–21, Oulu, Finland, Oct 2018. ACM.

[115] Gergely Ladányi, Zoltán Tóth, Rudolf Ferenc, and Tibor Keresztesi. A software
quality model for rpg. In 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), pages 91–100, Montreal, QC,
Canada, March 2015.

[116] Z. Tóth, G. Novák, R. Ferenc, and I. Siket. Using version control history to
follow the changes of source code elements. In 2013 17th European Conference
on Software Maintenance and Reengineering, pages 319–322, March 2013.

[117] Zoltán Tóth. Applying and evaluating halstead’s complexity metrics and main-
tainability index for rpg. In 17th International Conference on Computational
Science and Its Applications (ICCSA 2017), volume 10408, pages 575–590, Tri-
este, Italy, July 2017. Lecture Notes in Computer Science (LNCS).

[118] Zoltán Tóth, Péter Gyimesi, and Rudolf Ferenc. A public bug database of github
projects and its application in bug prediction. In 16th International Conference
on Computational Science and Its Applications (ICCSA 2016), volume 9789,
pages 625–638, Beijing, China, July 2016. Lecture Notes in Computer Science
(LNCS).

[119] Zoltán Tóth, László Vidács, and Rudolf Ferenc. Comparison of static analy-
sis tools for quality measurement of rpg programs. In 15th International Con-
ference on Computational Science and Its Applications (ICCSA 2015), volume
9159, pages 177–192, Banff, AB, Canada, June 2015. Lecture Notes in Computer
Science (LNCS).

120

	Preface
	Introduction
	I New Datasets and a Method for Creating Bug Prediction Models for Java
	Public Bug Datasets
	PROMISE
	Bug Prediction Dataset
	Eclipse Bug Dataset
	Bugcatchers Bug Dataset
	Additional datasets

	A New Public Bug Dataset and Its Evaluation in Bug Prediction
	Overview
	Related Work
	Approach
	The Selected Projects and the Dataset
	Evaluation
	Summary

	A Unified Public Bug Dataset and Its Assessment in Bug Prediction
	Overview
	Data Collection
	Data Processing
	Metrics Calculation
	Dataset Unification

	Original and Extended Metrics Suites
	Original Metric Suites
	Unified Bug Dataset
	Comparison of the Metrics

	Evaluation
	Datasets and Bug Distribution
	Summary Meta Data
	Functional Criteria

	Threats to Validity
	Summary

	II Methodology for Measuring Maintainability of RPG Software Systems
	Brief Introduction to the RPG Programming Language
	Evaluation of Existing Static Analysis Tools
	Overview
	Related Work
	RPG Program Analyzer Tools
	SourceMeter for RPG
	SonarQube RPG
	SourceMeter for SonarQube Plugin

	Comparative evaluation
	Comparison of Source Code Metrics
	Comparison of Coding Rules
	Comparison of Duplicated Code Sections

	Discussion
	Summary of results
	Effect on Quality Indices
	Threats to Validity

	Summary

	Integrating Continuous Quality Monitoring Into Existing Workflow – A Case Study
	Overview
	Related work
	Quality Assurance for RPG
	Quality Model

	Approach
	Integration with QualityGate

	Case Study
	Initial Phase
	Integration Phase
	Refactoring Phase
	Discussion Phase

	Threats to Validity, Limitations
	Summary

	Redesign of Halstead’s Complexity Metrics and Maintainability Index for RPG
	Overview
	Related Work
	Computing Halstead Metrics and Maintainability Index for RPG
	Evaluating the usefulness of Halstead's and MI metrics
	Extend Quality Model For RPG

	Threats to Validity
	Summary

	Conclusions

	Appendices
	Summary in English
	Magyar nyelvű összefoglaló

	Bibliography

