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1. Introduction: 
 

Brachial plexus injuries usually occur at birth (Obstetrical Brachial Plexus Injury; OBPI ) or 

in traffic accidents (Adult Brachial Plexus Injury; ABPI). They are usually induced by a high 

energy trauma but partial injuries can develop even by a blunt trauma to the shoulder as a 

result of a complicated clavicular fracture or shoulder dislocation. Direct and open injuries of 

the brachial plexus are rare. 

Clinical symptoms vary according to the type and the degree of the injury. Particularly serious 

is the avulsion injury where spinal roots are torn out from the spinal cord. In these cases, 

conventional peripheral nerve reconstruction methods can not be applied.  

The incidence of brachial plexus injuries in newborns is 1-2 per 1000 live births (Gilbert, 

1993). The most frequent etiological causes are macrosomic fetus, shoulder dystocia at 

delivery and prolonged labor, but it can occur in the case of premature birth and caesarean 

delivery as well (Slooff, 1995; Dyachenko et al., 2006). In severe cases it is accompanied by 

other injuries such as clavicular or vertebral fractures, epiphyseolysis of the humerus and 

Horner’s syndrome (Alfonso et al., 2006). In the majority of cases traction with scar 

formation develops. In 15% of all cases truncal disruption or avulsion occurs, which requires 

surgical repair (Bahm, 2003). According to clinical symptoms, upper (Erb-Duchenne), lower 

(Klumpke) or total paresis are distinguished (Geutjens et al., 1996; Jennett et al., 2002). The 

diagnosis and surgical indication are essentially based on clinical examinations and the Tassin 

criteria (Gilbert et al., 1987).  

 

Post-traumatic brachial plexus paralysis is usually caused by high-velocity and high impact 

motor vehicle accidents that occur in the young productive population (Alnot, 1995). 

Avulsion injuries of the brachial plexus result in the most devastating palsies of the affected 

upper extremity. The prognosis is grave and the functional results are of limited degree. These 

injuries are usually associated with polytrauma and as a result the diagnosis is often late. 

Previously we gained experience in MRI mapping of the supra-ganglionic region (Nagy et al., 

1997), (it is the intravertebral course of spinal root from the spinal cord to the spinal 

ganglion). Modern devices give the chance of reliable investigation on the infraganglionic 
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part of the brachial plexus, which courses from the spinal ganglion to the level of clavicule 

(Rankine, 2004). On the basis of our experience, recently we preferred and used myeloCT in 

the diagnostics of avulsion injuries (Hems et al., 1999; Simonka et al., 2005). We do not use 

MRI examination to follow the changes of denervated muscle in the daily practice (West et 

al., 1994).  

Exploration of the brachial plexus is performed from the frontal supraclavicular approach, 

which can be extended to include the infraclavicular part with or without a clavicular 

osteotomy. This latter method can be useful in cases with neurolysis and grafting or with 

associated injury of the subclavian or axillary artery (Millesi, 1977). The suggested surgery in 

the early nerve reconstructive period can be neurolysis (removing the scar or reactive tissue 

from a peripheral nerve or nerve root), or in cases of truncal injuries nerve suture or grafting 

(bridging the nerve gap with autologous segment of peripheral nerve). In serious avulsion 

injury these interventions can not be applied as the injury occurs more proximally. Depending 

on the type of injury, root avulsion may affect the anterior horn and/or the posterior horn of 

the spinal cord (Nagano, 1998; Terzis & Kostas, 2006). Avulsion injury causing a true 

sensory lesion alone does not occur typically (Vekris & Soucacos, 2001).  

Currently in C5-C6-C7 avulsion injuries we can apply neurotization to restore the most 

important functions such as the upper arm abduction and elbow flexion. In case of 

neurotization, reinnervation of the injured muscle is performed with the peripheral part of a 

functioning motor pathway (phrenic nerve, accessory spinal nerve, Th3-Th6 intercostal nerve, 

motor branch of ulnar nerve), or with a peripheral nerve graft (usually the sural nerve). In our 

experience restoration of abduction can be most successfully achieved by connecting the 

distal part of the accessory spinal nerve to the suprascapular nerve. To regain the biceps 

function we performed mostly an intercostal nerve to musculocutaneous nerve anastomosis 

(Bahm et al., 2005).  

When functional muscle reinnervation was made possible by anatomical reinnervation, after 

the process of nerve recovery first the muscle tone develops. Then motion triggered by the 

original innervation stimulus recovers. Finally, voluntary motion appears (Kanamaru et al., 

1999).  

Additionally a large group of secondary surgical interventions can be performed for brachial 

plexus injuries, mostly done as a palliative procedure, several years after the initial trauma to 
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restore at least some of the lost functions (Berger & Brenner, 1995; Mohammed, 1998; 

Ruhmann et al., 1999). 

 

After a brachial plexus injury reconstruction corresponding to the original intact state is not 

possible, especially if complicated with avulsion of one of the cervical roots. Surgical 

intervention usually comprises a series of surgeries, first to stabilize the shoulder and to 

reconstruct abduction in the shoulder and flexion in the elbow function. In addition to this, a 

distal tendon transfer and arthrodesis may be necessary (Ochiai et al., 1995).  

Although brachial plexus injuries divided into the same categories, individual results vary due 

to the differences in accompanied injuries, postoperative physiotherapeutic possibilities and 

the motivation of the patient. 

Efficiency of the surgical intervention can be assessed by the degree of stability or 

reinnervation. On the whole, results can be assessed by a grading score which indicates the 

state of the limb: BMRC scale M0-M5, Seddon score, Constant score, Mallet score (Bae et 

al., 2003).  

 

It is well established that avulsion injury in the experimental animal models induce cell death 

of the affected motoneurons (Chan et al., 2001; Chan et al., 2002; Gu et al., 2004). It has been 

postulated that this motoneuron loss can be prevented by blocking the NMDA receptors and 

other cell membrane channels contributing to the cell damage following an excitotoxic injury. 

It has been recently shown that the NMDA receptor antagonist riluzole is able to rescue 

injured motoneurons destined to death in adults (Nógrádi & Vrbová, 2001). However, it was 

not clear, how long the avulsed motoneurons could be left untreated without losing their 

capacity to reinnervate peripheral targets. 

Not all of the motoneurons die instantaneously after an avulsion, some of them can be rescued 

if the ventral root is reinserted into the spinal cord (Nógrádi & Vrbová, 1996; Hems et al., 

1999; Chai et al., 2000; Nógrádi & Vrbová, 2001). This reimplantation represents an 

interesting surgical strategy for the treatment of brachial plexus avulsion injuries but is not 

always possible because of the physical distance between the spinal cord and the avulsed 

rootlets. Some experiments have shown that this gap can be bridged by the use of a synthetic 

tube (Liu et al., 1997; Liu et al., 1998; Kassar-Duchossoy et al., 2001). Other data have 
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shown that implantation of peripheral nerve grafts after spinal root avulsion greatly enhances 

the motoneuron survival (Bertelli & Mira, 1994; Gu et al., 2004).  

 

After successful reimplantation or proximal nerve reconstruction, the muscle remains 

denervated for some time. This period of time depends on the time of axon regeneration and 

the course of reinnervation process. It is well-known that the innervation is essential for the 

normal development, and for the regeneration of skeletal muscles, also (Pette & Staron, 1990; 

Pette & Vrbová, 1992). Denervated muscles show impaired regeneration capacities (Sesodia 

& Cullen, 1991) which is most pronounced in the second part of regeneration, i. e. the newly 

formed primitive fibres are not able to differentiate to reach their original size.  

Clinically, nerve-reconstruction surgery (reinnervation) could help in the recovery of skeletal 

muscles after a nerve injury, at least partially (Kirjavainen et al., 2007). However, muscle 

function does not full returning after the high level injury of the mixed type peripheral nerve, 

even if the microsurgical nerve reconstruction was successful. This is probably caused by the 

loss of axon adaptation after microsurgery and by the limited regeneration of the reinnervated 

muscles. However, the regeneration capacities of denervated/reinnervated muscles have not 

been investigated at the morphological/molecular level yet. 

The snake venom notexin causes complete necrosis to skeletal muscle followed by a 

regeneration process. This regeneration process has been thoroughly characterized in the last 

decade in normal and dystrophic skeletal muscles (Sewry et al., 1992; Dux et al., 1993; 

Wilson et al., 1994a; Wilson et al., 1994b; Zádor et al., 1996; Zádor et al., 1998; Mendler et 

al., 1998a; Mendler et al., 1998b; Zádor et al., 1999; Mendler et al., 2000; Zádor et al., 2001). 

The many aspects of this model has been already described allows to make comparison 

between the regeneration process of normally innervated muscles and that of 

denervated/reinnervated ones (Pintér et al., 2003) 
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Figure 1.Schematic drawing of the right brachial plexus; modified figure taken from Alnot & 

Narakas.A., (1996). 
 

 

2. Aims: 
 

1, To establish the clinically relevant methods, suitable for the functional recovery of upper 

limb following an avulsion injury. 

2, To determine the number of surviving and reinnervating motoneurons following avulsion 

injury when the excitotoxic environment of motoneurons has been considerably reduced. 

3, To determine the possible maximum delay at which the NMDA receptor antagonist riluzole 

is still effective following ventral root avulsion injury. 

4, To establish the degree of regenerative capacity of the reinnervated muscle after a necrosis 

induced by injection notexin. 
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3. Materials and methods 
 

Clinical studies 

 

Since 1994, we have been treating patiens with brachial plexus injury at Department of 

Traumatology, Albert Szent-Györgyi Medical and Pharmaceutical Centre Faculty of 

Medicine, University of Szeged, including surgical interventions of brachial plexus injuries in 

newborns and adults, primary nerve and secondary reconstruction surgery, as well as surgery 

of the shoulder girdle tunnel syndromes and Thoracic Outlet Syndrome (TOS).  

The present thesis work is based on the 287 operations I performed within this period. (Fig.2) 

 

Brachial plexus injury 176

TOS 69

Shoulder girdle tunnel 33

Tumor 9

 
 

Figure 2. Cases of brachial plexus surgery performed between 1994 and 2007 

Supraclavicular lesions which account for 81% of all cases in our experience may be grouped 

as follow (Table 1): 

 

Types of palsies OBPI % ABPI % 

C5C6 or C5C6C7 56 22 

C8Th1 8-10 2-3 

Total 34 74-76 

 

Table 1. Types of palsies in our experience 
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Experimental models 

 

Ethical issues 

 

The experiments were carried out with the approval of the Committee for Animal 

Experiments, University of Szeged regarding the care and use of animals for experimental 

procedures. All the procedures were carried out according to the Helsinki Declaration on 

Animal Rights. Adequate care was taken to minimize pain and discomfort. 

 

Surgery 

 

All the operations were carried out under deep chloralhydrate anaesthesia (4%, 1ml/100 g 

body weight). The operations were performed under aseptic circumstances. 

 

Avulsion model 

 

Sprague-Dawley rats (200-250 gr) were used in the avulsion study groups. In the first 

experimental setup the left L4 ventral root was avulsed from the cord and then the L4 ventral 

root were reimplanted dorsolaterally into the spinal cord. Four of these animals remained 

untreated while the other groups of animals were treated with riluzole for 3 weeks. The intact 

animals were used for counting the L4 motoneuron pool. 

 

In the other groups of animals the right C6 ventral root was avulsed from the spinal cord. The 

animals were divided into five groups. Group I.: the untreated controls served only to 

determine the number of motoneurons in the C6 spinal segment, Group II.: avulsion only, 

Group III.:the avulsed root was reimplanted dorsolaterally into the spinal cord, Group IV.: 

after avulsion, peripheral nerve grafts were implanted to bridge the spinal cord and the 

surrounding muscle, Group V.: the avulsed roots were reimplanted dorsolaterally into the 

spinal cord and treated immediately with riluzole (Fig.3).  
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Figure 3. Schematic draw of experimental model at the C6 level. 

 

Lumbar model 

Laminectomy was performed at the level of T13-L1 vertebrae, the dura was opened and the 

left L4 ventral root was pulled out leaving the dorsal roots intact. Then the cut end of the 

ventral root was gently inserted into the dorsolateral part of the spinal cord (Nógrádi & 

Vrbová, 1996; Nógrádi & Vrbová, 2001). The spinal cord was covered with the remaining 

dura, the wound was closed and the animals were allowed to recover. 
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Cervical model 

Laminectomy was performed at the level of C4-C6 vertebrae, the dura mater was opened, the 

right C6 dorsal root was cut, the ventral root was avulsed by traction with a fine hook 

controlled under a surgical microscope. The avulsed ventral root was gently inserted into the 

dorsolateral part of the spinal cord. The ipsilateral common peroneal nerve was dissected and 

approx. 2 cm part of it was removed. This peripheral nerve graft was used in group IV. The 

end of the graft was inserted into the dorsolateral part of the spinal cord, the other end inserted 

into the rectus capitis posterior major muscle. The spinal cord was covered with the remaining 

dura mater, the wound was closed and the animals were allowed to recover. 

 

Riluzole treatment 

Animals were treated with riluzole (-2-amino 6-trifluoromethoxy-benzothiazole-), (kind gift 

from Tocris Cookson Ltd, Langford, UK) 4mg/kg./for 3 weeks. Riluzole treatment 

started either immediately on the day of surgery or 5, 10, 14 and 16 days following surgery 

(n=5 in each group). The drug was injected intraperitoneally daily for 1 week and every 

second day for the next 2 weeks. Four animals remained untreated. This treatment protocol 

was based on the successful riluzole treatment described earlier (Nógrádi and Vrbová, 2001). 

 

Retrograde labelling and immunohistochemistry 

Three months after the surgery the animals were deeply anaesthetized with chloralhydrate. On 

the operated side the ventral ramus of the left L4 spinal nerve was sectioned and the proximal 

stump of the nerve covered with few crystals of Fast Blue (FB, Illing Plastics GmbH, 

Breuberg, Germany). 

Three days after application of fluorescent dyes the animals were anaesthetized and perfused 

transcardially with 4% paraformaldehyde in a 0.1 mol/l phosphate buffer (pH 7.4).  

The lumbar portion of the spinal cords, with the reimplanted ventral root were removed and 

kept in fixative for 4 h. The tissues were then immersed in 30% sucrose. Serial 25 µm thick 

cryostat sections were cut, mounted on gelatinized slides and examined in an Olympus BX50 

fluorescence microscope (Olympus, Tokyo, Japan).  

The retrogradely labelled cells were counted. To avoid double counting the same neuron 

present in two consecutive sections the retrogradely labelled neurons were mapped with the 
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aid of an Olympus (Olympus, Tokyo, Japan) drawing tube, and their locations were compared 

to that of labelled motoneurons in the previous section. 

 

Three spinal cords from each group were processed further for choline acetyltransferase 

(ChAT) immunohistochemistry. Sections processed for ChAT immunohistochemistry were 

preincubated in 3% normal goat serum for 1 h, then incubated with a polyclonal goat anti-

ChAT antibody (Chemicon, Hofheim, Germany, 1:200) overnight at 4 °C. The immune 

reaction was completed using the avidin– biotin technique (reagents were purchased 

from Vector Laboratories, Burlingame, CA, USA) and finally tyramide-amplified with the 

Cyanine3 TSA kit (Tyramide Signal Amplification, PerkinElmer, Zaventem, Belgium). The 

number of ChAT-stained motoneurons was also determined in the pools where retrogradely-

labelled cells were found both on the operated and control sides. Some sections were stained 

with cresyl violet to assess the morphology of the spinal cord. Sections were photographed 

using an Olympus DP70 digital camera mounted on the microscope. 

 

The retrograde labelling and the immunohistochemical process was carried out in the C6 

avulsion/reimplantation model on the same way. The only difference was in Group IV, where 

the distal portion of the implanted peripheral nerve was sectioned and labelled. 

 

Muscle regeneration model 

 

Male Wistar rats (250 gr) were used in the muscle regeneration model. The left sciatic nerve 

was exposed at the proximal third of the thigh by splitting the gluteal muscles. In the first 

group of animals, approx. a 12 mm long nerve segment was resected and used as an 

autologous nerve graft. The coaptation sites were sutured by 10/0 nylon epineural sutures. In 

the second group of rats  reinnervation was achieved by making simple sutures at the 

proximal cutting level. In the third group of animals approx. 12 mm long nerve segment was 

removed without nerve reconstruction. Based on preliminary experiments, 3 month after 

microsurgery the soleus muscles of denervated, sutured and grafted animals were removed 

and compared to the contralateral normal muscles. In the fourth group of (grafted) rats, 

muscle necrosis was induced by the injection of notexin (20 µg im.). 1, 3, 5, 7, 10, 21 28 and 
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35 days after the injection, soleus muscles of both the injected and the contralateral hindlimbs 

were removed and weighed (Dux et al., 1993).  

Morphology: Cryostat sections of 15 µm thickness were stained with haematoxylin-eosin 

(HE) for light microscopy. Some samples of regenerated, grafted soleus muscles were also 

processed for standard electronmicroscopy (EM). Ultrathin sections cut in an ultramicrotome 

were investigated with a JEOL JEM-1010 (Jeol,Tokyo,Japan) electron microscope. 

Dynamics of motor endplate formation: Control and regenerated muscles were stained by the 

method of Tago based on the Acethylcholinesterase-activity (AChE) of the endplate (Tago et 

al., 1986) 

 

Statistical analysis 

 

The non-parametric Mann-Whitney U test, the one-way ANOVA test and paired t-test were 

used to compare the data. 
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4. Results: 
 

4a: Clinical results: 

 

Clinical results of the typical treatment of C5-C6-C7 avulsion injuries:  

In this section typical avulsion injury cases are presented with varying symptoms and clinical 

approach. 

 

Treatment of left C5-C6 obstetric brachial plexus root avulsion injury  

 

Status:  

Erb Duchenne paresis on the left side at delivery, no spontaneous recovery of shoulder 

abduction and elbow flexion after an observation period of three months. 

 

Surgery:  

1. Supraclavicular exposure, neurotization of the accessory spinal nerve to suprascapular 

nerve in order to restore shoulder abduction at the age of 3 months. 

2. At the age of 10 months Th3-Th4 neurotization of the intercostal nerve to the 

musculocutaneous nerve in order to restore biceps function. In both cases the use of sural 

nerve graft was necessary. 

 

Result:  
Active elbow flexion range of motion 0–160 degree, motor activity M5, shoulder abduction 

110 degree motor activity M5 on the left side 5 years after surgery (Fig.4). 
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A B

 
 
Figure 4. Elbow flexion (A) and shoulder abduction (B) on the left side 5 years after surgery 
 

Conclusion:  

In the diagnosis of obstetric brachial plexus injury evaluation of the clinical features and the 

associated injuries, in addition to the  examination of motion according to Katona`s method 

(Katona, 1997) and assessment of video records are sufficient. Indications for surgical 

intervention can be set up according to the Tassin criteria (Gilbert et al., 1987). To alleviate 

the severe symptoms caused by the neonatal injury it is firmly suggested to perform an early 

surgical correction by the age of three months (Kirjavainen et al., 2007). The intercostal 

neurotization at the age of 6-12 months, as a second-stage procedure can be performed. In the 

course of intercostal neurotization motor nerves exposed in the midaxillary line are used, with 

a graft in all cases (Hentz & Meyer, 1991).  

 

 

Treatment of a C5-C6-C7 right side brachial plexus avulsion injury, sustained at 1.5 years 

of age from a traffic accident 

 

Status:  

Brachial plexus root avulsion injury from road traffic accident is extreme rare at this age of 

life. The right handed 1.5 years old girl had no voluntary activity in proximal arm muscles, 

the humerus in internal rotation, the forearm in prone position was seen. No active wrist, 
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thumb and finger extension was found. Sensation was normal over the palmar surface of the 

hand. MRI finding was: C5-C6-C7 root avulsion. 

 

Surgery:  

1. Supraclavicular exposure, accessory spinal nerve to supraclavicular nerve neurotization to 

restore shoulder abduction.  

2. Th3-Th4 intercostal nerve to musculocutaneus nerve neurotization to restore biceps 

function. 

3. Distal humeral osteotomy for positioning of the forearm. 

4. Boyes surgery to restore selective hand movements because of high radial nerve injury. 

 

Result:  

Voluntary elbow flexion, thumb extension and palm pinch after the series of surgeries (Fig.5). 

A B

C DD

 
Figure 5. Elbow flexion (A), thumb extension (B), index extension (C), palm pinch,writing (D). Functional 

results 13 years after surgery 

 

Conclusion: 

In superior, middle trunk avulsion injuries, the accessory spinal to suprascapular nerve, or 

intercostal to musculocutaneus nerve neurotization is recommended. If intercostal 

neurotization is carried out an osteotomy of the humerus is necessary later to establish the 

optimal plane of elbow flexion.This is performed on the distal metaphysis. Boyes’ surgery 

should be chosen in childhood for the treatment of proximal radial nerve palsy. It is true, that 

there are more efficient surgical processes for pro-supination and wrist extension than this, 
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but with Boyes’ procedure the creation of isolated thumb and forefinger motion, key, and 

palm grasp can be achieved.  

 

 

C5-C6-C7 Left sided avulsion injury in an adult patient, sustained in a traffic accident  

 

Clinical feature: 

A 27 year old left-handed man was involved in a road traffic accident with C5-C6-C7 root 

avulsed injury. Shoulder girdle and biceps muscles were paralyzed. Neurosurgical therapy 

was not a standard procedure for brachial plexus lesions at the time of the injury. After an 

observation period of six months no recovery of nerve function was found. 

 

Surgery: 

1. Spinal accessory to supraclavicular nerve neurotization 

2. Th3-Th4 intercostal to musculocutaneous nerve neurotization to restore biceps function. 

 

Result: 

Shoulder stability and voluntary elbow flexion, range of motion 0–90 degree, muscle activity 

M3, 2 years after surgery (Fig.6). 

 

A B

 
 

Figure 6. Shoulder stability (A) and elbow flexion (B) 2 years after surgery 
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Conclusion:  

In adulthood, the biceps muscle denervation period is much longer after neurotization, 

because the large distance between the proximal functioning nerve stump and the muscle. 

Therefore the results are modest, even if we perform so-called distal intercostal neurotization 

following the motor nerves to the parasternal region. It is better to apply the phrenic or the 

lower part of the accessory spinal nerve.  

This can be performed by partial transfer of the motor branch of the ulnar nerve. If adequate 

conditions are present, functional free muscle flap transfer gives a better outcome (Shin et al., 

2004).  

 

Series of surgeries to restore valuable hand function 9 years after having suffered a C5-C6-

(C7) right sided avulsion injury in an adult patient  

 

Status: 

19 years old right handed man was involved in a motorbike accident with C5-C6-(C7) root 

avulsion injury combination with brain contusion, maxillar fracture and shock. Flail of 

shoulder, disability of elbow flexion with valuable hand function was found 9 years after the 

injury. 

 

Surgery: 

1. Glenohumeral arthrodesis to restore shoulder stability. 

2. Greater pectoral to biceps brachii muscle motor transfer, applying fascia lata strip 

3. Steindler flexor plasty for augmentation of elbow flection  

 

Result: 

The abduction is 60 degree motor power M5, elbow flexion 10–100 degree motor power M5 

2 years after surgeries (Fig.7). 
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A B

 
Figure 7. Upper extremity abduction after glenohumeral arthrodesis (A), elbow flexion after greater pectoral 

muscle and Steidler flexorplasty (B). 
 

Conclusion: 

After C5-C6-C7 avulsion injury, valuable hand function is wasted because of instability of the 

glenohumeral joint, and the loss of elbow flexion. Arthrodesis of the glenohumeral joint 

restores the balance of the trunk, and furthermore assures approximately 60 degrees of 

abduction. The previously applied uni- or rather bipolar latissimus dorsi flaps to restore biceps 

function gave poor results. Transfer of greater pectoral muscle assured higher amplitude and 

muscle strength. If a Steindler procedure is performed after GH arthrodesis, the positioning of 

the forearm flexors is remarkably important because the humerus is not able to accommodate 

losses in pro-supination with an axial rotation (Brunelli et al., 1995; Beaton et al., 1995; Saul 

et al., 2003). 

 

Surgery to enhance shoulder stability, and to restore elbow flexion 16 years after a C5-C6-

(C7) obstetric brachial plexus avulsion injury 

 

Status:  

Erb Duchenne paresis developed at delivery because of shoulder dystocia on the left side. 

Shoulder girdle muscles atrophy, flail glenohumerale joint and disability of biceps muscle 

function were found at the age of 16. In contrast valueable hand function was seen: good wrist 

balance, total finger motion and skin sensibility were present. 

 



 18

Surgery: 

1. Functioning gracilis free muscle flap transfer to biceps 

 

Result:  

Shoulder stability and voluntary elbow flexion was present 6 month after the surgery. Range 

of motion: 0–150 degree, motor activity M4 (Fig.8). 

A B

 
Figure 8. Elbow flexion before (A) and after (B) surgery 

 

Conclusion: 

In the presence of conditions requiring microvascular transplantation, the most rapid and 

efficient intervention is a functional gracilis free muscle flap transfer. Motion amplitude of the 

gracilis muscle assures the best function. In cases of high energy injury, angiographic 

evaluation is important before the planning of the surgery. The muscle artery is sutured onto 

the thoraco-acromial artery, and the vein onto the cephalic vein. The nerve can be sutured 

onto the lower part of the accessory spinal or phrenic nerve (Baliarsing et al., 2002; Hattori et 

al., 2002; Pintér et al., 2007).  
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4b Experimental results 

 

Avulsion model 

 

Determination of the average number of retrogradely labelled motoneurons at the L4 and 

C6 spinal levels 

 

First, the number of resident motoneurons in the L4 and C6 motoneuron pools was assessed 

applying by retrograde tracers to the ventral ramus of the L4 and C6 spinal nerves. The 

average number of retrogradely labelled motoneurons was 1164±29 (S.E.M.), in the L4 and 

875,5±20,7 (S.E.M.) in the C6 spinal segment. The labelled motoneurons were localized 

mainly in the lateral motoneuron column of the spinal segment  

 

Riluzole treatment increases the number of surviving motoneurons in rats after 

reimplantation of the ventral root in avulsed L4 and C6 spinal root 

 

The effect of riluzole treatment following L4 avulsion and reimplantation was studied in the 

next series of experiments. In animals where riluzole was applied immediately after L4 

avulsion and reimplantation, 763±36 (S.E.M.) 65% retrogradely labelled motoneurons were 

found, indicating that more than half of the total population of L4 motoneurones survived and 

these cells were able to grow axons into the L4 ventral root. (Table 2) 

 

Intact L4 motoneurons 1164±29 (S.E.M.) 

L4 avulsion and reimplantation 20.4±1.6 (S.E.M.) 

L4 avulsion and reimplantation + Riluzole treatment 

started immediately after surgery 

763±36 (S.E.M.) 

 

Table 2. Number of retrogradely labelled motoneurons at the L4 spinal segment in various 

experimental groups 
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In animals treated with riluzole immediately after C6 avulsion and reimplantation 573,5 ±8,63 

(S.E.M.) retrogradely labelled motoneurons were found indicating that 65.5 % of the total 

population of C6 motoneurons survived (Fig.9). 

 

 

 
 

Figure 9. Motoneuron numbers after surgical procedure at the C6 level Bar chart shows the number 

of retrogradely labelled neurons in various procedures. Note that 65,5% of the motoneurons found in the intact 

C6 motoneuron pool (1) are rescued by riluzole treatment following C6 ventral root avulsion and reimplantation 

(5) The results of the avulsed root reimlantation (3) and sural nerve graft implantation (4) did not differ 

significantly from each other (P>0.05, ANOVA). 

 

Reimplantation of avulsed roots or peripheral nerve graft rescues injured motoneurons 

 

In those animals where the avulsed C6 root was reimplanted into the dorsolateral part of the 

spinal cord, the number of surviving motoneurons was 211.3±14.8 (S.E.M.; 24,1 %),(Fig.9). 
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In the other group where the peripheral nerve autograft was reimplanted after C6 avulsion and 

the other end was implanted into the neighbouring muscle, the number of retrogradely 

labelled motoneurons was 274,6 ±27.8, (S.E.M.; 31,4 %) No significant difference was found 

between the results of the two surgical procedures. This can be of high clinical importance in 

human cases. From a surgical-technical point of view it is more simple and safer to implant a 

peripheral nerve than to reimplant an avulsed root (Fig.9). 

 

Delayed riluzole administration is able to rescue injured motoneurons at the L4 level 

 

The effect of riluzole treatment starting at various time points following L4 avulsion and 

reimplantation was studied in the next series of experiments. Riluzole treatment started either 

immediately or 5, 10, 14 and 16 days after the operation and lasted for 3 weeks. In animals 

where riluzole was applied immediately after L4 avulsion and reimplantation, 763±36 

(S.E.M.) retrogradely labelled motoneurons were found indicating that more than half of the 

total population of L4 motoneurons survived and was able to grow axons into the L4 ventral 

root. Riluzole treatment commencing 5 or 10 days after L4 avulsion and reimplantation 

resulted in similar numbers of retrogradely labelled motoneurons [815±50.6 (S.E.M.) and 

772±39.1 (S.E.M.), respectively]. Although the number of surviving motoneurons 

appeared somewhat higher in these two groups, there was no significant difference in 

surviving motoneuron numbers compared to the group where riluzole treatment started 

immediately after operation. In contrast, significant decrease in the number of retrogradely 

labelled motoneurons was noticed when riluzole treatment started 14 or 16 days after L4 

avulsion and reimplantation (Fig.10). In these cases fewer retrogradely labelled motoneurons 

were found [67±3.9 (S.E.M.) and 52±3 (S.E.M.), respectively]. The numbers of retrogradely 

labelled motoneurons in these latter groups were not significantly different from each other, 

but they were different from the ones obseved in the avulsion + reimplantation only group. 
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Figure 10. Bar chart shows the number of retrogradely labelled neurons in various experiments. Note that 65% 

of the motoneurons found in the intact L4 motoneuron pool (A) are rescued by riluzole treatment following L4 

ventral root avulsion and reimplantation (C) when compared with survival of injured motoneurons without 

treatment (B). Similar survival was found when riluzole treatment started 5 or 10 days after avulsion injury (D 

and E), but the survival dramatically decreased when riluzole treatment started 14 or 16 days after L4 ventral 

root avulsion (F and G). * Significant difference between B and A, C, D, E (Mann-Whitney U test, P=0.029). ** 

Significant difference between B and F, G and between F, G and C, D, E (Mann-Whitney U test, P=0.016). 
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Expression of ChAT in injured and regenerating motoneurons 

 

We compared the expression of ChAT a motoneuron marker  with that of FB-labelled 

reinnervating cells. In control rats all the retrogradely labelled motoneurons in the dorsolateral 

motoneuron pool were ChAT immunoreactive. There were occasionally ChAT 

immunoreactive motoneurons in the ventromedial pool only which remained unlabelled with 

FB (Fig. 11A–B). Similar colocalization was found in groups, which received the first riluzole 

treatment immediately, 5 or 10 days following avulsion and reimplantation, however, in these 

animals there were some ChAT immunoreactive cells which were not retrogradely labelled. 

Accordingly, in these animals the proportion of ChAT positive motoneurons on the operated 

side (% of operated/control side) was somewhat higher than that of FB-labelled motoneurons 

(% of operated side/intact pool) [5 days delay: FB+ vs. ChAT+ = 70±4.3 vs. 90.7±2.1 

(%±S.E.M.); 10 days delay: FB+ vs. ChAT+ = 66.3±3.3 vs. 85.4±2.4 (%±S.E.M.)]. In animals 

with more delayed start of riluzole treatment (14 or 16 days after operation) considerable 

numbers of ChAT positive motoneurons were located in the motoneuron pools but only few 

of these were retrogradely labelled, i.e. the proportion of ChAT positive neurons on the 

operated side was significantly higher than that of FB-labelled motoneurons [14 days delay: 

FB+ vs. ChAT+ =5.76±0.34 vs. 41.4±2.1 (%±S.E.M.); 16 days’ delay: FB+ vs. ChAT+ 

=4.5±0.26 vs. 38.3±2.5 (S.E.M.); Fig.11 I–J, ]. However, the ChAT+ motoneurons on the 

operated side appeared degenerated with less-developed dendritic tree and displayed weaker 

ChAT imunoreactivity than ChAT+ motoneurons on the intact side (Fig.11 L–M). 
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Fig. 11. Transverse sections of spinal cord taken from (A and B): intact L4 spinal cord segment with 

retrogradely labeled motoneurons and ChAT immunoreactive neurons, respectively. (C–E) Spinal cord with 

ventral root avulsion and reimplantation followed by riluzole treatment 5 days after surgery (empty arrows in D 

point to ChAT+/FB¯cells). (F–H) Spinal cord with ventral root avulsion and reimplantation followed by riluzole 

treatment 10 days after surgery (empty arrows in G point to ChAT+/FB¯ cells). (I–K) Spinal cord with ventral 

root avulsion and reimplantation followed by riluzole treatment 16 days after surgery. Surviving and 
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reinnervating motoneurons were retrogradely labeled with FB and the same sections processed for ChAT 

immunohistochemistry. Note the low number of retrogradely labeled cells in I and the somewhat higher number 

of surviving cells of the same field in J (arrow points to the same cell). (L, M) These figures show that the 

surviving ChAT positive cells (riluzole treatment was delayed for 16 days after reimplantation) appear 

degenerated with shrunken dendritic trees on the operated side (L) as compared with the motoneurons on the 

intact side of the same section (M). In E, H and K ChAT immunoreactive neurons on the control side are shown 

to demonstrate the difference between operated and intact sides of the same section. Scale bar=100 µm. 

 

Muscle regeneration model 

 

Muscle recovery not complete at 3 months after reinnervation 

 
Based on muscle weight and morphology (HE, AChE-staining), muscle recovery was not 

complete after 3 months (Fig.12, Fig.13). These results according to Ijkema-Paassen et al., 

(2001b) who described that even after 21 weeks, both muscle- and endplate-morphology were 

still abnormal. 

 

 
Figure12. Muscle weights of denervated and reinnervated (sutured, grafted) soleus muscles at 3 

months after operation 
Colums represent mean values ±S.E.M. of data obtained from 3–4 animals in each group, asterisks show 

significant differences compared to untreated contralateral muscles (Paired t-test, ***P < 0.001, **P < 0.01, 

*P < 0.05). Reinnervated muscles differed significantly from their contralateral ones, and also from the 

denervated muscles (P < 0.001, ANOVA). Muscle weights of the sutured and grafted muscles did not differ 

significantly from each other (P > 0.05, ANOVA). 
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The morphology of sutured and grafted soleus muscles is similar at the level of light 

microscopy  
 

After 3 months of reinnervation, sutured and grafted soleus muscles did not show remarkable 

differencies at the level of light microscopy (Fig 13 BFCG). Therefore, we used grafted 

muscles for inducing regeneration since this latter technique proved to be clinically more 

relevant. 
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Figure 13. Fiber and motor endplate morphology of normal, reinnervated and denervated soleus 

muscles of rat 3 months after microsurgery. 
After removal of the muscles, cryostat sections of 15µm thickness were either stained with haematoxylin-eosin 

(HE) or the motor endplate formation was checked by staining for acetylcholinesterase (AChE) activity of the 

endplates. HE staining of normal A, grafted B, sutured C and denervated D muscles, respectively. AChE staining 

of normal E, grafted F, sutured G and denervated H muscles, respectively. In grafted muscles we detected 

atrophied fibers and more connective tissue (B insert) besides fibers of close to normal morphology (B). This 

difference was also evident in the variability of the size of motor endplates (F and F insert).The morphology of 

sutured muscles was similar to that of grafted muscles, here we show regions with atrophied fibers interspersed 

among normal ones (C asterisks) with variable endplate morphology (G). Denervated muscles showed general 

atrophy (D) and only diffuse, if any, AChE-activity (H). Magnification 200x. 
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Notexin-induced regeneration of reinnervated (grafted) muscles show differencies 

compared to that of normal muscles.  

 

After 3-5 days of regeneration, connective tissue seemed to be more abundant troughtout the 

regeneration process accompanied by pronounced variability of fibre size. Although motor 

endplates reappeared at similar time (on day 5 after necrosis) than those of normal 

regenerated muscles, their morphology seemed to be more variable even at late stages of 

regeneration (Fig.14, Fig.15). 

 

 
 

Figure 14 Muscle weights of reinnervated (grafted) soleus muscles regenerating from notexin-

induced necrosis 
Columns represent mean values ±S.E.M. of data obtained from 3–4 animals at each stage of regeneration (1–28: 

days after notexin administration), asterisks show significant differences compared to untreated contralateral 

muscles (Paired t-test, ***P < 0.001, **P < 0.01, *P < 0.05). By day 3 after notexin treatment, the muscles 

became significantly smaller than their untreated counterparts. Thereafter, muscle weights increased until the end 

of the examined period of regeneration, but even at that time they were smaller than the contralateral ones. 
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Figure 15. Fiber and motor endplate morphology of reinnervated (grafted) rat soleus muscles 

regenerating from notexin-induced necrosis. 
After removal of the muscles, cryostat sections of 15 µm thickness were either stained with haematoxylin-eosin 

(HE) or the motor endplate formation was checked by staining for acetylcholinesterase (AChE) activity of the 

endplates. A–F: HE staining of muscles 1, 3, 5, 10, 28, and 35 days after notexin injection, respectively. G–L: 

AChE staining of muscles 1, 3, 5, 10, 28, and 35 days after notexin injection, respectively. Notexin induced 

complete necrosis by day 1 (A) destroying virtually all fibers. Three days after notexin injection mononucleated 

cells filled up the injured muscle (B). Most of the mononucleated cells had already fused to form new myotubes 

by day 5 (C). From this stage on, however, connective tissue seemed to be more abundant throughout the 
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regeneration process (C–F, asteriks). Abnormal and pronounced variability of the fibre size is the characteristic 

feature of the 7- and 10 day-regenerated muscles (D, arrow shows smaller fibers). Even after 28 and 35 days of 

regeneration, the fibre size variability was still present (E, F arrows show smaller fibers) and more than 80% of 

the fibers still contained centrally located nuclei. Notexin treatment destroyed all the motor endplates by day 1 

(G) and any signal of motor enplate formation was not seen until day 3 (H). The first new motor endplates 

reappeared by day 5 after necrosis (I), at a similar time to those of normally innervated regenerated muscles. 

However, their morphology seemed to be more variable even at late stages of regeneration (J, K, L) showing 

smaller and in some cases fragmented motor endplates (J, L inserts). Magnification 200x, except Fig. 15A 

(magnification 40x). 

 

Regenerated grafted muscle shows abnormalities at the ultrastructural level 

 

At the ultrastructural level, regenerated grafted muscle showed serious abnormalities of 

mitochondria by 35 days after notexin treatment (Fig 16). Since the ultrastructural 

morphology of the regeneration has not been characterized completely yet, we do not know 

whether this finding is the consequence of the impaired reinnervation or it is also a 

characteristic feature of the normal regeneration. 

 

 
 

Figure 16 Ultrastructural morphology of a 35 day-regenerated, reinnervated (grafted) soleus 

muscle. 
A Note the abnormal morphology of the mitochondria (arrowheads), many of them are phagocytosed by 

macrophages (arrow). B Besides normal sarcomeric arrangement, note the ”splitting” of some myofibrils 

(arrowheads). 
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5. Discussion 
 

Avulsion of the nerve roots is usually caused by road traffic accident in adults, and obstetric 

complications in children. They represent usually a major component of severe brachial 

plexus injuries (Bahm et al., 2007)  

These conditions are widely regarded as untreatable. Until recently the current microsurgical 

treatment was based on nerve transfer and neurotization with limited functional recovery 

(Merrell et al., 2001). As a palliative procedure, tendon transfer is used to restore at least 

some of the lost functions.  

Numerous experimental models and clinical surgery results have shown that axons of 

motoneurons can regrow into the reimplanted spinal root and induce functional recovery. 

After avulsion of the anterior root, the axons of the motoneurons are able to grow from the 

CNS (Cullheim et al., 1999) towards the periphery. Scar tissue evolving after trauma is made 

up of CNS cell elements (oligodendrocytes and astrocytes), but few axons are able to grow 

and penetrate it. By microscopic examination of the scar, a trabecular system made of 

astrocyte spurs, leptomeningeal cells invading the white matter were found, whereas in the 

expanded extracellular space, large amounts of collagen is deposited. Axons leading to ventral 

roots as well as (during the first three weeks) inflammatory cells can also be found. The 

Schwann cells do not enter the spinal cord, in the CNS area the axons are surrounded by a 

myelin-pod of oligodendrocyte origin, i.e. more numerous glial spurs expand into the 

proximal part of the ventral root (Hallin et al., 1999).  

 

The reimplantation represents an interesting surgical strategy for the treatment of brachial 

plexus injuries but it is not always possible because of the physical distance between the 

spinal cord and the avulsed rootlets. Some experiments have shown that this gap can be 

bridged by the use of a synthetic tube (Liu et al., 1997; Liu et al., 1998; Kassar-Duchossoy et 

al., 2001), or by peripheral nerve grafts and this procedure reportedly enhances motoneuron 

survival (Bertelli & Mira, 1994; Gu et al., 2004).  
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After peripheral nerve injury, most of the motoneurons die in newborn mammals, whereas 

they survive in the adult spinal cord (Koliatsos et al., 1994; Greensmith & Vrbová, 1996) 

However, after avulsion of an anterior root, motoneuron death occurs in adult animals, too.  

The hypothesis is that axotomy performed close to the cell body severely affects the 

motoneuron’s integrity and increases the vulnerability of the cell to excitotoxic effects. 

Possible reasons for cell death include the traumatic insult to the nervous tissue, hypoxia-

ischemia, toxins and hypoglycaemia. The usual process, how cell-destructive mechanisms 

lead to the death of the cell can be conduted in the followings: Changes in cell-membrane 

permeability induces cytoskeleton desintegration, activation of catabolic enzymes, free 

radicals are released and levels of intracellular calcium increases. During the excitotoxic 

reaction, similar changes can be observed. Excitotoxicity is a term used to express the 

neurotoxic ability of  glutamate and similar excitatory aminoacids (e.g. aspartate, NMDA, 

cysteine, homocysteine). Regardless of the cause of neuronal cell death, this process seems to 

be common (Choi, 1992), and the excitotoxicity can possibly be held responsible for the 

injury of the motoneurons after avulsion as well (Mentis et al., 1993).  

 

Riluzole the most potent antiexcitotoxic drug is applied in the treatment of ALS. Riluzole 

blocks the volgate activated Na+-, K+- and Ca2+ -channels and inhibits the presynaptic 

glutamate release (Doble, 1996).  

In our earlier study, it has been proven that riluzole is able to rescue injured motoneurons 

destined to die following an avulsion injury. 

The present results confirm and expand our earlier experimental findings (Nógrádi and 

Vrbová, 2001) that injured adult motoneurons destined to die due to avulsion of their axons in 

the ventral root can be rescued by treatment with riluzole. The rescued motoneurons not only 

survive but a considerable number of these cells extend their axons into the reimplanted 

ventral root. These axons regenerate, reach their target muscles and are able to improve the 

recovery of the denervated muscles and the locomotor performance of the denervated hind 

limb (Nógrádi and Vrbová, 2001). In addition to confirming these earlier findings the present 

study shows that treatment with riluzole can be delayed for up to 10 days while remains still 

effective in rescuing almost the same number of reinnervating motoneurons as when the 

treatment started immediately after the operation. Only when riluzole treatment started 14–16 
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days after the operation did no longer induce the repopulation of endoneuronal sheaths with 

axons of regenerating motoneurons. 

Although in these delayed treatment groups the reinnervating motoneuron numbers were very 

low, they were still 2.5- and 3-times higher than in the untreated group. Functional data 

indicated that this relatively low motoneuron number was able to prevent the complete 

atrophy of the affected muscles. The present results showed that after avulsion and 

reimplantation of the ventral root some cholinergic neurons, that have features of 

motoneurons were present in the spinal cord even 3 months after the operation, but after  

treatment with riluzole delayed for more than 10 days they were no longer able to extend 

axons into the L4 ventral root. This is in agreement with the results of Gu et al. (2004) where 

many surviving motoneurons were located in the cervical spinal cord after avulsion and 

reimplantation of the ventral root, but only some of these were able to extend their axons into 

the reimplanted ventral root. Recently Hoang et al. (2006) have clearly shown that only 53% 

of surviving preganglionic parasympathetic neurons and 64% of  surviving motoneurons in 

the L6 spinal segment reinnervate the avulsed and reimplanted L6 ventral root. 

The present finding shows a very abrupt decline of the ability of the motoneurons to extend 

their axons into the ventral root after treatment with riluzole delayed for more than 10 days. It 

is possible that treatment with riluzole not only rescues the motoneurons from cell death but 

maintains these cells in a condition that enables them to regenerate their axons given the right 

conditions. Apparently, after a delay of 14–16 days the number of reinnervating motoneurons 

dramatically drops while still numerous ChAT immunoreactive motoneurons are present in 

the ventral horn. Accordingly, there is a clear division between neural survival and 

reinnervation, i.e. not all surviving (ChAT+) neurons are able to send their axons into the 

vacated endoneural sheaths. The present finding that surviving cholinergic cells are found in 

the ventral horn even 3 months after injury suggests that given the appropriate stimulus such 

as having access to a fresh, recently axotomized nerve conduit may induce these dormant 

motoneurons to regenerate. It is possible that riluzole treatment combined with a fresh conduit 

may then be effective for even longer periods of time. Future experiments should be able to 

elucidate the optimal conditions for the survival and function of damaged neurons. The 

present results show that treatment with riluzole is able to induce damaged motoneurons to 

survive and regenerate their axons up to 10 days after injury, are promising and with 
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refinements of the technique they inspire hope that it may be possible to restore function of 

various peripheral nerve injuries close to the cell body even after long delays of surgical 

intervention. 

 

In the reinnervation study our aim was to characterize the muscle regeneration capacity of 

reinnervated muscles. Up to now, no data were available in the literature in this regard. It is 

well known that denervated muscles have impaired regenerative capacity, which is most 

pronounced during the second phase of regeneration, i.e. the newly formed primitive fibers 

are not able to differentiate to reach their normal size (Sesodia & Cullen, 1991). Still, it is 

debated whether satellite cells, the main sources of muscle regeneration (Mauro, 1961; 

Bischoff, 1993; Asakura et al., 2002) are inactivated by denervation (Maier et al., 2002), or 

on the contrary, they become more active upon denervation (Nnodim, 2001; Wang et al., 

2002). 

Our morphological results are in line with the original hypothesis that the regenerative 

capacities of reinnervated muscles might be impaired. One reason could be that since 

reinnervation is not complete, satellite cells of more atrophied regions might be of lower 

activity than those of the normal ones. However, the question seems to be even more 

complicated. Ijkema-Paassen described that reinnervated muscles show high proportion of 

endplates of abnormal morphology (Ijkema-Paassen et al., 2001a; Ijkema-Paassen et al., 

2001b), which we could also confirm in our experiments. Yet we do not know whether this 

pattern of “abnormality” will be recapitulated in the course of regeneration when the newly 

formed endplates are established after complete necrosis. In theory, it cannot be ruled out that 

the necrotized muscle sends cues for the reinnervating axons which might modify the 

reinnervation pattern of the regenerating reinnervated muscle. If so, it could well be that the 

fiber-type composition also shows changes after regeneration of reinnervated muscles. 

Investigation of the myosin and SERCA (Sarco/Endoplasmic Reticulum Ca2+-ATPase) 

isoforms at both mRNA and protein levels and their expression pattern in tissue sections, 

compared to normally innervated regenerated muscles (Zádor et al., 1998; Mendler et al., 

1998a; Zádor et al., 2001), might at least partly answer this question. Indeed, we found very 

recently a dramatic slow to fast fiber-type transition in reinnervated soleus muscles and an 

even more fast transformation of the fibers after regeneration with the presence of the fastest 
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IIB fibers as well. These findings- together with morphological data- strengthen our 

hypothesis that regeneration is impaired in reinnervated muscles. The change of complex cues 

coming either from axons and/or from regenerating muscles might be responsible for this 

phenomenon. Possible misregulation might involve myogenic regulatory factors (MRFs) and 

myostatin (Mendler et al., 1998b; Mendler et al., 2000), or any element of the calcium-

calcineurin signaling cascade of which investigations are among our further plans.  

On the other hand, investigation of high sciatic nerve transection gives the model of mixed 

nerve reinnervation, together with the further impairment of ambient muscles. To exclude the 

possible role of mechanical inactivity of the whole hindlimb as well as the mixed 

reinnervation of soleus muscle, we have just developed a selective reinnervation model which 

might ensure more standard condition for analyzing regeneration process after reinnervation 

of the specific soleus nerve. 

 

Clinical consequences: 

 

It is clinically very relevant that rescued motoneurons of the affected spinal segment(s) 

following brachial plexus injury can be efficiently guided to the denervated muscles. For 

future therapeutic considerations it seems feasible, that patients with severed brachial plexus 

injury should first undergo riluzole treatment and then the connection between the injured and 

rescued motoneurons and the peripheral nerves is established. Our experimental studies 

suggest that it is not the method of connecting the spinal cord to the peripheral targets but the 

number of regenerating motoneurons what determines the functional outcome of such a 

reconstructive surgery. 
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6. The following new findings are presented in this thesis:  
 

 

1. We have worked out a therapeutic strategy to induce as much functional recovery in the 

various forms of brachial plexus injury as possible. Further functional improvement is 

possible only if the results of our experimental studies are introduced in clinical use. 

2. It has been shown that avulsed cervical and lumbar motoneurons destined to die can be 

rescued to the same extent when applying riluzole immediately following the injury. 

3. Injured motoneurons survive for approx. 12-14 days following avulsion and they are able to 

reinnervate peripheral targets even if riluzole traetment is delayed up to 10 days. 

4. There is no difference in motoneuron reinnervation capacity in cases when the avulsed 

ventral root was reimplanted or a peripheral nerve bridge was established. 

5. We have presented evidence that there is no difference in muscle regeneration when motor 

axons were guided to the muscle via a direct peripheral nerve suture or nerve graft. 

6. The regeneration following notexin induced muscle necrosis after reinnervation, is 

morphologically different from normal muscle regeneration. 
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The regeneration of skeletal muscles is a suitable model to study the development
and differentiation of contractile tissues. Neural effects are one of the key factors in
the regulation of this process. In the present work, effects of different reinnervation
protocols (suture or grafting) were studied upon the regenerative capacity of rat
soleus muscles treated with the venom of the Australian tiger snake, notexin, which
is known to induce complete necrosis and subsequent regeneration of muscles. Mor-
phological and motor endplate analysis indicated that the regenerative capacity of
denervated, and thereafter surgically reinnervated muscles remains impaired com-
pared to that of normally innervated muscles, showing differences in the muscle size,
fiber type pattern and motor endplate structure, even 35 days after the notexin injec-
tion. A lack or deficiency of secreted neural factors, deterioration of satellite cells
and/or incomplete recovery of the sutured or grafted nerves may be the cause of
these discrepancies in the regeneration process.

The functional diversity of skeletal muscle
fibers is deeply rooted in their innervation
pattern (Pette & Staron, 1990; Pette &
Vrbová, 1992). Loss of innervation not only
by experimental denervation, but also by acci-
dents leads to general morphological and

physiological deterioration of the affected fi-
bers (Sunderland & Ray, 1950; Gutmann &
Zelena, 1962; Borisov et al., 2001; Germi-
nario et al., 2002). The superficial localiza-
tion, mass and mechanical activities expose
skeletal muscles and their motoneurons to
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different types of injuries. Injury of the
brachial plexus may occur in newborns (dur-
ing delivery) as well as in young adults in (mo-
torcycle) accidents (Mackinnon, 1993; Alnot,
1995). Microsurgical protocols allow early
nerve reconstruction aiming at regaining ac-
tive muscle function soon after the injury.
The injured part of the nerve is either re-
placed by a peripheral nerve (grafting), or less
frequently by simple suture, or in some cases
the so-called free muscle transplantation is
recommended as an alternative (Berger &
Brenner, 1995; Doi et al., 1998). Even after a
good nerve reconstruction, the muscle func-
tion remains impaired in high-level mixed-
type nerve injuries. The reason for this im-
pairment can be in part the relatively late
neurotisation (3–6 months after the injury),
by which time the denervated muscle fibers
are severely atrophied. Moreover, the regen-
eration of the nerve and the reinnervation of
the muscles normally need weeks or months,
and afterwards adaptic axon losses may
disable the perfect reinnervation (Alnot,
1995).
Injured skeletal muscle fibers undergo al-

most complete regeneration provided their
satellite cell content was unharmed. The ex-
perimentally induced muscle regeneration
processes are suitable for characterization of
the events and regulation during muscle de-
velopment and differentiation (Lefaucheur &
Sebille, 1995; Saito & Nonaka, 1994). The
Australian tiger snake venom notexin is one
of the most frequently used inducers of mus-
cle necrosis for subsequent regeneration
studies (Harris et al., 1975; Harris & John-
son, 1978; Preston et al., 1990; Grubb et al.,
1991; Davis et al., 1991; Vater et al., 1992).
The regeneration process following notexin

administration has been thoroughly charac-
terized in the last decade, in normal and
dystrophic skeletal muscles (Sewry et al.,
1992; Dux et al., 1993; Wilson et al., 1994a;
1994b; Zádor et al., 1996; 1998; 1999; 2001;
Mendler et al., 1998a; 1998b; 2000). Molecu-
lar events of the regeneration process, such

as expression of myogenic regulatory factors
and some growth factors (myostatin, TNF-�),
formation of new motor endplates with
reinnervation, expression and re-establish-
ment of myosin and SERCA isoform distribu-
tion were analysed. Introduction of antisense
RNAs or expression vectors into the regener-
ating muscles allowed the modulation of the
regeneration model (Zádor et al., 2002; Zádor
& Wuytack, 2003).
The regenerated muscle achieved its normal

morphology by the 28th day post notexin in-
jection, although some nuclei were still in a
central position in the fibers (Harris et al.,
1975; Harris & Johnson, 1978; Whalen et al.,
1990; Sesodia & Cullen, 1991). In regenerated
soleus muscles the typical slow myosin
isoform and sarcoplasmic reticulum structure
were recovered (Whalen et al., 1990; Sesodia
& Cullen, 1991), although myosin and SERCA
isoform composition become more uniform
(Davis et al., 1991; Mendler et al., 1998b;
Zádor et al., 1998). The complete recovery of
the metabolic capacity in regenerated mus-
cles ensured the background for functional
activity (Sesodia et al., 1994). Although
electrophysiological studies indicated that re-
generated muscles were able to produce nor-
mal action potentials and contractions as
soon as the newly formed motor endplates ob-
tained their mature form (Grubb et al., 1991;
Whalen et al., 1990), in the functional sense
the recovery did not seem to be complete.
Louboutin et al. (1995) reported that the am-
plitudes of contractions in the regenerated
muscle remained strongly dependent on the
external Ca2+ concentration, a feature typical
of neonatal muscles, instead of normal adult
muscle fibers.
In the present work we explored the

notexin-induced muscle regeneration of
denervated/reinnervated rat soleus. In this
first phase of experiments morphological
changes were characterized at the light and
electron microscopic levels. Moreover, the dy-
namics of motor endplate formation was fol-
lowed during the regeneration of reinner-
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vated muscles, compared to those regenerat-
ing with normal innervation. We also com-
pared the effects of different nerve recon-
struction techniques (suture or grafting) at
the morphological level.

MATERIALS AND METHODS

Treatment of animals. Adult male Wistar
rats (250–280 g) were anesthetized with
intraperitoneal injection of Nembutal. The
left sciatic nerve was exposed at the proximal
part of the thigh by splitting the gluteal mus-
cle.
Reinnervation protocols. In the first

group of animals, an approx. 12 mm nerve
segment was resected and used as an
autologous nerve graft. The coaptation sites
were sutured by 10/0 nylon epineural su-
tures. The second group of rats was
reinnervated by making simple suture at the
proximal cutting level.
Control animals. In the third group of ani-

mals, a nerve segment of more than 30 mm was
removed without doing nerve reconstruction.
Based on preliminary experiments, at

3 months after microsurgery the soleus mus-
cles of the denervated, sutured or grafted ani-
mals from both the uni- and contralateral
sides were removed and further processed for
morphological analysis. Each group of ani-
mals contained at least 3–4 animals.
Induction of regeneration. In the fourth

group of rats, that had been reinnervated by
grafting, muscle necrosis was induced to the
soleus muscle by intramuscular injection of
20 �g of notexin in physiological NaCl solu-
tion. This amount of notexin was chosen
since it is known to induce complete necrosis
to the muscle (Mendler et al., 1998a) (see Fig.
3A). At 1, 3, 5, 7, 10, 21, 28 and 35 days after
injection, animals were sacrified by an over-
dose of Nembutal injection, and soleus mus-
cles of both the injected and the contralateral
hindlimbs were removed, weighed and fur-
ther processed for morphological analysis. At

each stage of regeneration 3–4 animals were
examined.
Preparation and staining of tissue sec-

tions. Soleus muscles of all groups of animals
(denervated, reinnervated by graft or by su-
ture, reinnervated and regenerated muscles)
were processed for light microscopical analy-
sis. Cryostat sections of 15 �m thickness were
either stained with haematoxylin-eosin (HE)
or the motor endplate formation was checked
by using the method of Tago (Tago et al.,
1986) staining the acetylcholinesterase
(AChE) activity of the endplates. Some sam-
ples of grafted-regenerated soleus muscles
were also processed for standard electron-
microscopy (EM).

RESULTS AND DISCUSSION

In denervated rat soleus muscles we de-
tected pronounced and uniform atrophy
(Figs. 1 and 2D) and only diffuse, if any,
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Figure 1. Muscle weights of denervated and
reinnervated (sutured or grafted) rat soleus mus-
cles 3 months after microsurgery.

Colums represent mean values ±S.E.M. of data ob-
tained from 3–4 animals in each group, asterisks show
significant differences compared to untreated contral-
ateral muscles (Paired t-test, ***P < 0.001, **P < 0.01,
*P < 0.05). Reinnervated muscles differed significantly
from their contralateral ones, and also from the
denervated muscles (P < 0.001, ANOVA). Muscle
weights of the sutured and grafted muscles did not dif-
fer significantly from each other (P > 0.05, ANOVA).



AChE activity showing no motor endplate for-
mation (Fig. 2H). The weights of reinnervated
soleus muscles were significantly higher than
of the denervated ones (P < 0.001, ANOVA),
but they did not reach the values of the
contralateral untreated muscles even after
3 months of reinnervation (Fig. 1). In all of
the investigated reinnervated muscles we
found atrophied fibers either in groups, char-
acterized by more pronounced connective tis-
sue as well (Fig. 2B insert), or interspersed
(Fig. 2C) among fibers which had close to nor-
mal diameter and morphology (Fig. 2A, B, C).
In line with these findings, the morphology of
motor endplates was variable, they were
smaller and of unmatured character in the re-
gions of the atrophied fibers (Fig. 2F insert,
G). Others also described (Ijkema-Paassen et
al., 2001b, Wang et al., 2002) that rat soleus
muscles did not regain their normal size and
endplate morphology even after 21 weeks of
reinnervation. Moreover, the normally slow
type muscle was transformed into a predomi-
nantly fast phenotype (Ijkema-Paassen et al.,
2001a; 2001b; Wang et al., 2002). The fast
type tibialis anterior muscles showed better
recovery in all the aspects investigated, sug-
gesting that the fiber type composition, and
consequently, the initial innervation pattern
of a given muscle can ultimately influence the
efficiency of the reinnervation later on. How-
ever, there were no data in the literature
whether different microsurgical techniques,
i.e. suture versus graft have different effects
on muscle recovery. We found that the
weights of sutured and grafted muscles did
not differ significantly from each other
(P > 0.05, ANOVA; Fig. 1) and the morphol-
ogy was similar in both cases, at least at the
light microscopical level (Fig. 2B, C, F, G).
Therefore, we used grafted muscles for the re-
generation studies since this technique
proved to be clinically more relevant.
The regeneration process of grafted muscles

showed differences compared to that of nor-
mal muscles, although — similar to the nor-
mally innervated ones — notexin induced

complete necrosis by day 1 (Fig. 3A). By this
time muscle weights did not decrease (Fig. 4)
probably because of the pronounced oedema.
Three days after notexin injection the mus-
cles were significantly smaller than the un-
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Figure 2. Fiber and motor endplate morphology
of normal, reinnervated and denervated rat
soleus muscles 3 months after microsurgery.

After removal of the muscles, cryostat sections of 15
�m thickness were either stained with haemato-
xylin-eosin (HE) or the motor endplate formation was
checked by staining for acetylcholinesterase (AChE)
activity of the endplates. A–D: HE staining of normal,
grafted, sutured and denervated muscles, respectively.
E–H: AChE staining of normal, grafted, sutured and
denervated muscles, respectively. In grafted muscles
we detected atrophied fibers and more connective tis-
sue (B insert) besides fibers of close to normal mor-
phology (B). This difference was also evident in the
variability of the size of motor endplates (F and F in-
sert). The morphology of sutured muscles was similar
to that of grafted muscles, here we show regions with
atrophied fibers interspersed among normal ones (C
asterisks) with variable endplate morphology (G).
Denervated muscles showed general atrophy (D) and
only diffuse, if any, AChE-activity (H). Magnification
200�.



treated ones (Fig. 4), and mononucleated cells
filled up the whole cross-section area of the in-
jured muscle (Fig. 3B). Like in the normally
innervated muscles, most of the mono-
nucleated cells had already fused to form new
myotubes by day 5 (Fig. 3C). From this stage
on, however, connective tissue seemed to be
more abundant in the reinnervated muscles
throughout the regeneration process (Fig.
3C–F). Abnormal and pronounced variability
of the fibre size was the characteristic feature
of the 7 and 10 day-regenerated/reinnervated
muscles (Fig. 3D). Even after 28 and 35 days
of regeneration (Fig. 3E, F), the fibre size
variability was still present and more than

80% of the fibers still contained centrally lo-
cated nuclei, much more than found in nor-
mally innervated regenerated muscles
(Mendler et al., 1998a). These findings, to-
gether with the significantly lower muscle
weights at this late stage of regeneration (Fig.
4), suggest that a significant number of fibers
were not able to perfectly regenerate/differ-
entiate.
Although notexin treatment destroyed all

the motor endplates by day 1 (Fig. 3G, H), the
first new motor endplates reappeared at a
similar time (by day 5 after necrosis, Fig. 3I)
as those of normally innervated regenerated
muscles. However, their morphology seemed
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Figure 3. Fiber and motor endplate morphology
of reinnervated (grafted) rat soleus muscles re-
generating from notexin-induced necrosis.

After removal of the muscles, cryostat sections of 15
�m thickness were either stained with haemato-
xylin-eosin (HE) or the motor endplate formation was
checked by staining for acetylcholinesterase (AChE)
activity of the endplates. A–F: HE staining of muscles
1, 3, 5, 10, 28, and 35 days after notexin injection, re-
spectively. G–L: AChE staining of muscles 1, 3, 5, 10,
28, and 35 days after notexin injection, respectively.
Notexin induced complete necrosis by day 1 (A) de-
stroying virtually all fibers. Three days after notexin
injection mononucleated cells filled up the injured mus-
cle (B). Most of the mononucleated cells had already
fused to form new myotubes by day 5 (C). From this
stage on, however, connective tissue seemed to be
more abundant throughout the regeneration process
(C–F, asteriks). Abnormal and pronounced variability
of the fibre size is the characteristic feature of the 7-
and 10 day-regenerated muscles (D, arrow shows
smaller fibers). Even after 28 and 35 days of regenera-
tion, the fibre size variability was still present (E, F ar-
rows show smaller fibers) and more than 80% of the fi-
bers still contained centrally located nuclei. Notexin
treatment destroyed all the motor endplates by day 1
(G) and we did not see any signal of motor enplate for-
mation until day 3 (H). The first new motor endplates
reappeared by day 5 after necrosis (I), at a similar time
to those of normally innervated regenerated muscles.
However, their morphology seemed to be more vari-
able even at late stages of regeneration (J, K, L) show-
ing smaller and in some cases fragmented motor
endplates (J, L inserts). Magnification 200�, except
Fig. 3A (magnification 40�).



to be more variable even at late stages of re-
generation showing smaller and in some
cases fragmented motor endplates coupled to
smaller/less regenerated fibers (Fig. 3J, K, L
with inserts).

At the ultrastructural level, grafted regener-
ated muscles showed serious abnormalities of
mitochondria by day 35 after notexin treat-
ment (not shown).
In this work, our aim was to characterize the

muscle regeneration capacity of reinnervated
muscles. Up to now, no data were available in
the literature in this regard. It is well known
that denervated muscles have impaired re-
generative capacity, which is most pro-
nounced during the second phase of
regeneration, i.e. the newly formed primitive
fibers are not able to differentiate to reach
their normal size (Sesodia & Cullen, 1991).

Still, it is debated whether satellite cells, the
main sources of muscle regeneration (Mauro,
1961; Bishoff, 1993; Asakura et al., 2002), are
inactivated by denervation (Maier et al.,
2002), or on the contrary, they become more
active upon denervation (Nnodim, 2001).
This author found in the specific androgen de-
pendent levator ani muscle of male rats that
the activation of satellite cells caused by
denervation could be prevented by castration,
indicating that the effects of denervation can
be modulated by other (humoral) factors as
well.
Our morphological results are in line with

the original hypothesis that the regenerative
capacities of reinnervated muscles might be
impaired. One reason could be that since
reinnervation is not complete, satellite cells
of more atrophied regions might be of lower
activity (number?) than those of the normal
ones. However, the question seems to be even
more complicated. As cited earlier, other
groups (Ijkema-Paassen et al., 2001b) de-
scribed that reinnervated muscles show high
proportion of endplates of abnormal morphol-
ogy, which we could also confirm in our exper-
iments. Yet we do not know whether this pat-
tern of “abnormality” will be recapitulated in
the course of regeneration when the newly
formed endplates are established after com-
plete necrosis. In theory, it cannot be ruled
out that the necrotized muscle sends cues for
the reinnervating axons which might modify
the reinnervation pattern of the regenerating
reinnervated muscle. If so, it could well be
that the fiber-type composition also shows
changes after regeneration of reinnervated
muscles. Investigation of the myosin and
SERCA isoforms at both mRNA and protein
levels and their expression pattern in tissue
sections, compared to normally innervated re-
generated muscles (Zádor et al., 1998; 1999;
Mendler et al., 1998b), would at least partly
answer this question. Moreover, the regula-
tory molecules like myogenic regulatory fac-
tors or myostatin (Mendler et al., 1998a;
2000; Zádor et al., 1999) involved in the differ-
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Figure 4. Muscle weights of reinnervated
(grafted) rat soleus muscles regenerating from
notexin-induced necrosis.

Columns represent mean values ±S.E.M. of data ob-
tained from 3–4 animals at each stage of regeneration
(1–28: days after notexin administration), asterisks
show significant differences compared to untreated
contralateral muscles (Paired t-test, ***P < 0.001,
**P < 0.01, *P < 0.05). By day 3 after notexin treat-
ment, the muscles became significantly smaller than
their untreated counterparts. Thereafter, muscle
weights increased until the end of the examined period
of regeneration, but even at that time they were
smaller than the contralateral ones.



entiation of the fibers, or any element of the
calcium-calcineurin signaling cascade may
also show changes, which we would also like
to explore in further experiments.

We would like to thank Dr. Ernõ Zádor for
his helpful advices in planning the experi-
ments.
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bstract—The effect of delayed 2-amino-6-trifluoromethoxy-
enzothiazole (riluzole) treatment on injured motoneurons
as studied. The L4 ventral root of adult rats was avulsed and

eimplanted into the spinal cord. Immediately after the oper-
tion or with a delay of 5, 10, 14 or 16 days animals were
reated with riluzole (n�5 in each group) while another four
nimals remained untreated. Three months after the opera-
ion the fluorescent dye Fast Blue was applied to the proximal
nd of the cut ventral ramus of the L4 spinal nerve to retro-
radely label reinnervating neurons. Three days later the
pinal cords were processed for counting the retrogradely
abeled cells and choline acetyltransferase immunohisto-
hemistry was performed to reveal the cholinergic cells in the
pinal cords. In untreated animals there were 20.4�1.6
�S.E.M.) retrogradely labeled neurons while in animals
reated with riluzole immediately or 5 and 10 days after ven-
ral root avulsion the number of labeled motoneurons ranged
etween 763�36 and 815�50 (S.E.M.). Riluzole treatment
tarting at 14 and 16 days after injury resulted in significantly
ower number of reinnervating motoneurons (67�4 and 52�3
.E.M., respectively). Thus, riluzole dramatically enhanced

he survival and reinnervating capacity of injured motoneu-
ons not only when treatment started immediately after injury
ut also in cases when riluzole treatment was delayed for up
o 10 days.

These results suggest that motoneurons destined to die
fter ventral root avulsion are programmed to survive for
ome time after injury and riluzole is able to rescue them
uring this period of time. © 2006 IBRO. Published by
lsevier Ltd. All rights reserved.

ey words: reinnervation, spinal motoneuron, survival, ven-
ral root avulsion.

here is much evidence that reducing the excitatory input
o injured neurons enhances their chances of survival. In
he case of motoneurons NMDA receptor antagonists are
nown to rescue cells destined to die after neonatal nerve
njury (Mentis and Vrbová, 1993). Moreover, adult injured

Corresponding author. Tel: �36-62-545726; fax: �36-62-546118.
-mail address: nogradi@opht.szote.u-szeged.hu (A. Nógrádi).
bbreviations: ChAT, choline acetyltransferase; EDL, extensor digito-
f
um longus; FB, Fast Blue; riluzole, 2-amino-6-trifluoromethoxy-ben-
othiazole; TA, tibialis anterior.

306-4522/07$30.00�0.00 © 2006 IBRO. Published by Elsevier Ltd. All rights reser
oi:10.1016/j.neuroscience.2006.09.046

431
otoneurons can also be rescued by reducing excitation by
-amino-6-trifluoromethoxy-benzothiazole (riluzole) (Nógrádi
nd Vrbová, 2001).

Riluzole is a compound that acts to block voltage-
ctivated Na�, K� and Ca2� channels and to inhibit pre-
ynaptic glutamate release (Doble, 1996). Riluzole report-
dly reduces the damage to neurons caused by ischemia

n the spinal cord (Lang-Lazdunski et al., 1999) and pro-
ects motoneurons destined to die in vitro after exposure
o glutamate agonists (Estevez et al., 1995). Moreover,
iluzole apparently increased survival of a subset of ALS
atients with bulbar onset (Bensimon et al., 1994; Mein-

nger et al., 1997) and it is still the most promising drug
or the treatment of ALS (Gordon, 2005; McGeer and
cGeer, 2005).

Although adult motoneurons do not die if their axons
re injured at some distance from the cell body, they are
nable to survive injury caused close to the cell body by
vulsion of their axons shortly after they leave the spinal
ord via the ventral roots (Greensmith and Vrbová, 1996).
entral root avulsion causes death of almost all neonatal
nd adult motoneurons damaged in this way (Chai et al.,
000; Chan et al., 2001, 2002; Gu et al., 2004; Nógrádi and
rbová, 1996, 2001). However, these cells do not die

nstantaneously, and some of them can be rescued if the
entral root is re-inserted into the spinal cord (Chai et al.,
000; Chan et al., 2002; Nógrádi and Vrbová, 1996, 2001).
ew axons of the damaged motoneurons then enter this
onduit and are able to regenerate all the way to the
uscle (Cullheim et al., 2002; Nógrádi and Vrbová, 1996;
ergerot et al., 2004). It could be that the extent of the

escue of the damaged motoneurons depends on the
peed at which they die, or on the delay that prevents their
xons from reaching the reimplanted ventral root. Several
ttempts have been made to rescue adult motoneurons
ith avulsed axons, including therapy with neurotrophic

actors (Blits et al., 2004; Novikov et al., 1995; Haninec et
l., 2003; Wu et al., 2003). Since the damaged motoneu-
ons are likely to die as a result of their increased sensi-
ivity to excitatory influences they are thought to be res-
ued by neutralizing excitatory effects. We have in a pre-
ious study treated animals immediately after ventral root
vulsion and its reimplantation with systemic administra-
ion of riluzole (Nógrádi and Vrbová, 2001). This treatment
escued the vast majority of the injured motoneurons, and
llowed their axons to regenerate into the implant. In these
tudies the treatment of riluzole was started immediately
fter the injury was inflicted, probably before the program

or cell death was set in motion. Therefore most of the cells
ved.
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ere able to regenerate their axons into the implanted
entral root, and avoid cell death.

Both from a clinical and theoretical point of view it is
mportant to establish whether it is possible to rescue the
njured cells at a later time after injury. From previous
esults it appears that in the rat, damaged neurons may
urvive in the CNS for up to 15–16 days (Koliatsos et al.,
994). The aim of our study was to see whether these

surviving’ cells can be rescued and are able to perform
heir normal function, i.e. to reinnervate the reimplanted
entral root.

Our results are encouraging, for they show that for
uite some time the injured cells are capable of recovery if
rotected by riluzole.

EXPERIMENTAL PROCEDURES

ltogether 32 Sprague–Dawley rats (weight at time of surgery:
80–200 g) were used in this study. In 29 animals the left L4
entral root was avulsed from the cord and then the L4 ventral root
as reimplanted dorsolaterally into the spinal cord. Four of these
nimals remained untreated while the other five groups of animals
ere treated with riluzole for 3 weeks. Three intact animals were
sed for counting the L4 motoneuron pool. The operated animals
urvived for 3 months and then the ventral ramus of the left L4
pinal nerve was labeled with the fluorescent dye Fast Blue (FB,
lling Plastics GmbH, Breuberg, Germany).

The experiments were carried out with the approval of the
ommittee for Animal Experiments, University of Szeged regard-

ng the care and use of animals for experimental procedures. All
he procedures were carried out according to the Helsinki Decla-
ation on Animal Rights. Adequate care was taken to minimize
ain and discomfort. Efforts were made to minimize the number of
nimals used.

urgery

ll the operations were carried out under deep chloral hydrate
nesthesia (4%, 1 ml/100 g body weight) and sterile precautions.
aminectomy was performed at the level of T13–L1, the dura was
pened and the left L4 ventral root was pulled out leaving the
orsal roots intact. Then the cut end of the ventral root was gently

nserted into the dorsolateral part of the spinal cord (Nógrádi and
rbová, 1996, 2001). The spinal cord was covered with the re-
aining dura, the wound was closed and the animals were al-

owed to recover.

iluzole treatment

nimals were treated with riluzole (kind gift of Tocris Cookson
td., Langford, UK; 4 mg/kg) for 3 weeks. Riluzole treatment
tarted either immediately on the day of surgery or 5, 10, 14 and
6 days following surgery (n�5 in each group). The drug was

njected intraperitoneally daily for 1 week and every second day
or the next 2 weeks. Four animals remained untreated. This
reatment protocol was based on the successful riluzole treatment
escribed in our earlier paper (Nógrádi and Vrbová, 2001). The
ose of riluzole was established from data obtained from our
arlier and other laboratories’ experiments (Lang-Lazdunski et al.,
999; Nógrádi and Vrbová, 2001; Schwartz and Fehlings, 2001,
002; Wahl et al., 1993). It has also been reported that 5 mg/kg
iluzole administered i.p. in rats produces a significant riluzole
evel in the brain (Maltese et al., 2005).

etrograde labeling and immunohistochemistry

hree months after the surgery the animals were deeply anesthe-

ized with chloral hydrate. On the operated side the ventral ramus m
f the left L4 spinal nerve was sectioned and the proximal stump
f the nerve covered with few crystals of FB. Three days after the
pplication of fluorescent dye the animals were reanaesthetized
nd perfused transcardially with 4% paraformaldehyde in 0.1 mol/l
hosphate buffer. The lumbar part of the spinal cords, with the
eimplanted ventral root was removed and kept in fixative for 4 h.
he tissues were then immersed in 30% sucrose. Serial 25 �m

hick cryostat sections were cut, mounted on gelatinized slides
nd examined in an Olympus BX50 fluorescence microscope
Olympus, Tokyo, Japan). The number of retrogradely labeled
ells was counted. To avoid double counting of the same neuron
resent in two consecutive sections, the retrogradely labeled neu-
ons were mapped with the aid of an Olympus drawing tube, and
heir location was compared with that of labeled neurons in the
revious section. All sections from the L4 motoneuron pool were
sed.

Three spinal cords from each group were then further pro-
essed for choline acetyltransferase (ChAT) immunohistochemis-
ry. Sections processed for ChAT immunohistochemistry were
reincubated in 3% normal goat serum for 1 h, then incubated with
polyclonal goat anti-ChAT antibody (Chemicon, Hofheim, Ger-
any, 1:200) overnight at 4 °C. The immune reaction was com-
leted by using the avidin–biotin technique (reagents were pur-
hased from Vector Laboratories, Burlingame, CA, USA) and
nally tyramide-amplified with the Cyanine3 TSA kit (Tyramide
ignal Amplification, PerkinElmer, Zaventem, Belgium). The num-
er of ChAT-stained motoneurons in the pools where retrograde-

y-labeled cells were found was also determined both on the
perated and control sides. Some sections were stained with
resyl Violet to assess the morphology of the spinal cord. Sec-

ions were photographed using an Olympus DP70 digital camera
ounted on the microscope. Digital images were resized and their

ontrast and brightness adjusted.
After completing the experiments the extensor digitorum lon-

us (EDL) and tibialis anterior (TA) muscles were removed and
eighed.

tatistical analysis

he non-parametric Mann-Whitney U test and the one-way
NOVA test were used to compare the groups of data.

RESULTS

ehavioral observations and muscle weights

ll the animals survived the surgery and the subsequent
iluzole treatment.

The behavior of the operated animals was monitored
very week. Initially all animals developed a partial paral-
sis in the operated hindlimb. Operated animals that were
ot treated with riluzole dragged their hindlimb during walk-

ng and were unable to dorsiflex their ankle joint at any
ime. In contrast all the animals treated with riluzole before
4 days after surgery started to recover from paralysis
uring the 3rd and 4th week following surgery, but com-
lete recovery took several more weeks. By the end of the
urvival period they were able to walk almost normally and
uring locomotion flexed their ankle joint. None of these
reated rats dragged their operated hind leg during move-
ent.

Table 1 summarizes the results of the muscle weight
osses of EDL and TA muscles. The weights are expressed
s a percentage of the muscle on the control unoperated
ide. It is apparent from the table that the decrease in

uscle weights was much more severe in the untreated
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nimals than in animals that received riluzole. Note that the
ecrease in muscle weights was greater when treatment
as delayed and started only 14–16 days after the oper-
tion.

eneral observations on the morphology
f spinal cords

n Cresyl Violet–stained specimens the morphology and
he integrity of the spinal cords could be studied. In all
xperimental groups fewer motoneurons appeared to be in
he operated ventral horn of the L4 segment and some
liosis could be observed at the site of root avulsion.

otoneuron loss following L4 ventral root avulsion

irst the number of resident motoneurons in the L4
otoneuron pool was assessed by retrograde labeling
f the ventral ramus of the L4 spinal nerve. The average
umber of retogradely labeled motoneurons was
164�29 (S.E.M.; Fig. 1). The motoneurons were local-

zed mainly in the lateral motoneuron column of the L4
pinal segment (Fig. 2A). The avulsion and the reim-
lantation of the L4 ventral root resulted in a dramatic
ecrease in surviving motoneuron numbers, only
0�1.6 survived (Fig. 1, bar B).

These motoneurons were found throughout the length
f the L4 spinal segment and a marked autofluorescence

ndicated the presence of gliotic scar at the place of lost
otoneurons.

urvival of injured motoneurons following riluzole
reatment initiated at various time points
fter avulsion

he effect of riluzole treatment starting at various time
oints following L4 avulsion and reimplantation was stud-

ed in the next series of experiments. Riluzole treatment
tarted either immediately or 5, 10, 14 and 16 days after
he operation and lasted for 3 weeks. In animals where
iluzole was applied immediately after L4 avulsion and
eimplantation, 763�36 (S.E.M.) retrogradely labeled mo-
oneurons were found indicating that more than half of the
otal population of L4 motoneurons survived and was able
o grow axons into the L4 ventral root. Riluzole treatment
ommencing 5 or 10 days after L4 avulsion and reimplan-
ation resulted in similar numbers of retrogradely labeled
otoneurons [815�50.6 (S.E.M.) and 772�39.1 (S.E.M.),

espectively]. Although the number of surviving motoneu-
ons appeared somewhat higher in these two groups, there

able 1. Muscle weight loss following riluzole treatment

elay of riluzole treatment Immediate 5 Days

DL weight loss (SEM) 9�1.5 9.8�1.16
A weight loss (SEM) 15.4�1.8 17�1.15

Table 1 summarizes the results of the muscle weight losses of EDL
eight on the control unoperated side. It is apparent that the decreas
nimals that received riluzole. Note that the decrease in muscle weigh
he operation.
as no significant difference in surviving motoneuron num- b
ers compared with the group where riluzole treatment
tarted immediately after operation. In contrast, significant
ecrease in the number of retrogradely labeled motoneu-
ons was noticed when riluzole treatment started 14 or 16
ays after L4 avulsion and reimplantation (Figs. 1 and 3).
n these cases fewer retrogradely labeled motoneurons
ere found [67�3.9 (S.E.M.) and 52�3 (S.E.M.), respec-

ively]. The numbers of retrogradely labeled motoneurons
n these latter groups were not significantly different from
ach other.

Fig. 3 shows the loss of motoneurons in each group
reated at various time intervals after the operation. It
llustrates the steep decline in motoneuron survival be-
ween groups treated 10 and 14 days after the operation.
evertheless, a significant difference was found between

he numbers of labeled motoneurons in the untreated
roup and in the animals which received riluzole treatment

mmediately or 5 and 10 days after surgery (P�0.016).
Whether the inability of motoneurons to extend axons

o the ventral root in spite of riluzole treatment started after
4 days of injury could be explained by motoneuron death
uring this time interval, or by other factors was tested by

nvestigating whether any motoneurons were left in the
ppropriate part of the spinal cord after avulsion and reim-
lantation of the ventral root.

xpression of ChAT in injured and
egenerating motoneurons

e compared the localization of ChAT with that of FB-
abeled reinnervating cells. In control rats all the retro-
radely labeled motoneurons in the lateral motoneuron
ools were ChAT immunoreactive and there were occa-
ionally ChAT immunoreactive motoneurons in the ventro-
edial pool only which remained unlabeled with FB (Fig.
A–B). Similar colocalization was found in groups, which
eceived the first riluzole treatment immediately or 5 and
0 days following avulsion and reimplantation, however, in
hese animals there were some ChAT immunoreactive
ells which were not retrogradely labeled. Accordingly, in
hese animals the proportion of ChAT positive motoneu-
ons on the operated side (% of operated/control side) was
omewhat higher than that of FB-labeled motoneurons
% of operated side/intact pool) [5 days’ delay: FB� vs.
hAT��70�4.3 vs. 90.7�2.1 (%�S.E.M.); 10 days’ de-

ay: FB� vs. ChAT��66.3�3.3 vs. 85.4�2.4 (%�S.E.M.),
ig. 4]. In animals with more delayed start of riluzole treat-
ent (14 and 16 days after operation) considerable num-

0 Days 14 Days 16 Days Untreated

9.9�2 24.3�1.3 21.7�1.8 39.1�4.5
8.5�2.2 30.7�2.8 29.3�4.9 48.5�5.3

muscles. The weights are expressed as a percentage of the muscle
cle weights was much more severe in the untreated animals then in
eater when treatment was delayed and started only 14–16 days after
1

1

and TA
e in mus
ts was gr
ers of ChAT positive motoneurons were located in the
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otoneuron pools but only few of these were retrogradely
abeled, i.e. the proportion of ChAT positive neurons on
he operated side was significantly higher than that of
B-labeled motoneurons [14 days’ delay: FB� vs.
hAT��5.76�0.34 vs. 41.4�2.1 (%�S.E.M.); 16 days’
elay: FB� vs. ChAT��4.5�0.26 vs. 38.3�2.5 (S.E.M.);
ig. 2I–J, Fig. 4]. However, the ChAT� motoneurons on the
perated side appeared degenerated with less-developed
endritic tree and displayed weaker ChAT immunoreactivity
han ChAT� motoneurons on the intact side (Fig. 2L–M).

DISCUSSION

he present results confirm and expand our earlier exper-
mental findings (Nógrádi and Vrbová, 2001) that injured
dult motoneurons destined to die due to avulsion of their

ig. 1. Bar chart shows the number of retrogradely labeled neurons in
otoneuron pool (A) are rescued by riluzole treatment following L4 ven
otoneurons without treatment (B). Similar survival was found when

urvival dramatically decreased when riluzole treatment started 14 or 1
and A, C, D, E (Mann-Whitney U test, P�0.029). ** Significant differe
�0.016).
xons in the ventral root can be rescued by treatment with w
iluzole. The rescued motoneurons not only survive but a
onsiderable number of these cells extend their axons into
he reimplanted ventral root. These axons regenerate,
each their target muscles and are able to improve the
ecovery of the denervated muscles and the locomotor
erformance of the denervated limb (Nógrádi and Vrbová,
001). In addition to confirming these earlier findings the
resent study shows that treatment with riluzole can be
elayed for up to 10 days and still be effective in rescuing
lmost the same number of reinnervating motoneurons as
hen the treatment started immediately after the opera-

ion. Only when treatment started 14–16 days after the
peration did riluzole no longer induce the repopulation of
ndoneuronal sheaths with axons of regenerating mo-
oneurons. It was found that considerably more muscle

experiments. Note that 65% of the motoneurons found in the intact L4
vulsion and reimplantation (C) when compared with survival of injured
eatment started 5 or 10 days after avulsion injury (D and E), but the
ter L4 ventral root avulsion (F and G). * Significant difference between
een B and F, G and between F, G and C, D, E (Mann-Whitney U test,
various
tral root a
riluzole tr
6 days af
eight was spared in these latter two groups than in
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ntreated animals. Although in these delayed treatment
roups the reinnervating motoneuron numbers were very

ig. 2. Transverse sections of spinal cord taken from (A and B): inta
mmunoreactive neurons, respectively. (C–E) Spinal cord with ventra
urgery (empty arrows in D point to ChAT�/FB� cells). (F–H) Spinal c
0 days after surgery (empty arrows in G point to ChAT�/FB� cells). (I–

reatment 16 days after surgery. Surviving and reinnervating motoneu
hAT immunohistochemistry. Note the low number of retrogradely lab
eld in J (arrow points to the same cell). (L, M) These figures show tha
fter reimplantation) appear degenerated with shrunken dendritic trees
f the same section (M). In E, H and K ChAT immunoreactive neurons
nd intact sides of the same section. Scale bar�100 �m.
ow, they were still 2.5- and 3-times higher than in the p
ntreated group. This suggests that this relatively low mo-
oneuron number was able to prevent the complete atro-

inal cord segment with retrogradely labeled motoneurons and ChAT
lsion and reimplantation followed by riluzole treatment 5 days after
entral root avulsion and reimplantation followed by riluzole treatment
l cord with ventral root avulsion and reimplantation followed by riluzole
e retrogradely labeled with FB and the same sections processed for
in I and the somewhat higher number of surviving cells of the same

viving ChAT positive cells (riluzole treatment was delayed for 16 days
perated side (L) as compared with the motoneurons on the intact side
ntrol side are shown to demonstrate the difference between operated
ct L4 sp
l root avu
ord with v
K) Spina
rons wer
eled cells
t the sur
on the o
on the co
hy of the affected muscles.
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It is possible that the failure of riluzole to induce re-
opulation of the reimplanted ventral root by regenerating
xons after delayed treatment may be related to cell death,
hich has been reported to occur about 14 days after the
vulsion of the ventral root (Koliatsos et al., 1994; Piehl et
l., 1998; Hammarberg et al., 2000). However, in the
bove experiments the time course of cell death was stud-

ed after avulsion of the ventral root, but not after its avul-
ion and reimplantation. The present results indicate that
fter avulsion and reimplantation of the ventral root cho-

inergic neurons, that have features characteristic of mo-
oneurons are present in the spinal cord even 3 months
fter the operation, but after delayed treatment with riluzole
hey were no longer able to extend axons into the L4
entral root. This is in agreement with the results of Gu et
l. (2004) where many surviving motoneurons were located

n the cervical spinal cord after avulsion and reimplantation of
he ventral root, but only some of these were able to extend
heir axons into the reimplanted ventral root. Recently Hoang
t al. (2006) have clearly shown that only 53% of surviving
reganglionic parasympathetic neurons and 64% of surviving
otoneurons in the L6 spinal segment reinnervate the
vulsed and reimplanted L6 ventral root.

The present finding shows a very abrupt decline of the
bility of the motoneurons to extend their axons into the
entral root after treatment with riluzole. Riluzole is a po-
ent neuroprotective drug widely used in experimental isch-
mic and traumatic conditions to improve functional recov-
ry following such insults to the CNS (Lang-Lazdunski et
l., 1999; Schwartz and Fehlings, 2001, 2002). Its protec-
ive action might be due to the fact that riluzole blocks Na�

ig. 3. The graph shows the number of retrogradely labeled motoneur
n the number of retrogradely labeled cells when treatment was delay
nd Ca2� channels and these actions reduce the excitabil- t
ty of the injured neurons. It is therefore possible that
reatment with riluzole not only rescues the motoneurons
rom cell death but maintains these cells in a condition that
nables them to regenerate their axons given the right
ondition. Apparently, after a delay of 14–16 days the
umber of reinnervating motoneurons dramatically drops
hile still numerous ChAT immunoreactive motoneurons
re present in the ventral horn. Accordingly, there is a clear
ivision between survival and reinnervation, i.e. not all
urviving (ChAT�) neurons are able to send their axons

nto the vacated endoneural sheaths.
This sudden demise of the ability of riluzole to maintain

he cells in a state where they not only survive but also
xtend their axons into a viable conduit of the reimplanted
entral root could be explained by additional factors related
o the fact, that a) a peripheral nerve conduit deteriorates
ith time after axotomy and is less able to support regen-
ration of axons after delayed reinnervation (Sulaiman and
ordon, 2000) and b) the motoneurons’ ability to grow
xons also declines with time. Thus the ineffectiveness of
he delayed treatment is likely to be a combination of all
hese factors. The present finding that surviving cholinergic
ells are found in the ventral horn even 3 months after

njury suggests that given the appropriate stimulus such as
aving access to a fresh, recently axotomized nerve con-
uit may induce these dormant motoneurons to regener-
te. It is possible that riluzole treatment combined with a fresh
onduit may then be effective for even longer periods of time.
uture experiments should be able to elucidate the optimal
onditions for the survival and function of damaged neurons.

The present results that treatment with riluzole is able

wing various delay in treatment with riluzole. Note the steep decrease
re than 10 days.
o induce damaged motoneurons to survive and regener-
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te their axons up to 10 days after injury, are promising
nd with refinements of the technique they inspire hope
hat it may be possible to restore function of various pe-
ipheral nerve injuries close to the cell body even after long
elays of surgical intervention.
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Könyök flexió helyreállítása musculus gracilis microvasculáris funkcionális izomlebeny 
átültetésével C5C6 ( C7 ) szülési plexus brachialis sérülés után 16 évvel. 
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Esetismertetés 
 
 
 
Összefoglalás:  
 
A C5 C6 felső plexus brachialis sérülés esetén a megmaradt jó kézfunkció csak akkor 
érvényesül ha a váll és a könyök stabilizáló, pozicionáló képessége helyreállítható vagy 
kialakítható. Felső truncus sérülés után a korai szakban a könyök flexió helyreállítására 
idegrekonstrukció vagy neurotizáció végezhető. Később vállízületi arthrodesis, ínáthelyezés 
vagy funkcionális izomlebeny átültetés adhat eredményt. A szerzők egy  C5 C6 ( C7) szülési 
plexus brachialis sérülés után 16 évvel végzett műtét eredményeit mutatják be: musculus 
gracilis funkcionális izomlebeny  transzplantációt végeztek , az izmot a nervus spinal 
accessorius felhasználásával neurotizálták. 10 -110 fokos  könyökízületi mozgást értek el. 
 
Kulcsszavak: plexus brachialis sérülés, funkcionális szabad izom lebeny, nervus spinal 
accessorius 
 
 
 
 
 
 
 
 
 
 
 

 1



Esetismertetés: 
 

Anamnesis:  
 
K.S. 16 évvel korábban bal oldali szülési plexus brachialis sérülést szenvedett. A  40. 
gestatios hétre 2900 gr súllyal született a köldökzsinór a nyakára volt tekerdve. 
Születéskor észlelték bal oldali felső tipusú ( C5 C6 és részleges C7) sérülését. Korai 
idegreconstrukciós műtét nem történt. 16 éves korában teljes értékű kéz mellett a 
vállízület elülső instabilitása és a könyökflexió hiánya volt észlelhető. 
 
Státusz: 
 
A bal vállöv megrövidült. A musculus trapeziusban az izomerő M5. A musculus 
supraspinatus, a musculus infraspinatus és a musculus deltoideus atrophiás. A humerus fej  
subluxált. A glenohumerális ízületben és a könyökízületben is teljes passzív 
mozgástartomány van. Az alkar és a kéz funkciója teljes. 
 
Terápia: 
 
Az ellenoldali combról vett ér- és idegnyeles musculus gracilissal funkcionális szabad 
izom transzplantációt végzünk. Az érnyél kb. 4 cm-es volt, az ideg 5 cm-es. Az izom 
eltávolítása előtt az izom inas szakaszaiba öltött hosszjelző fonalat helyeztünk be. A 
felkaron a musculus biceps felett subcutan tunnelt készítettünk. Az áthúzott gracilis izmot 
a könyök felett a biceps izom distalis inába fűztük.  Proximalisan a kb. 1,5 mm-es 
átmérőjű artériát az ennél vastagabb arteria thoracoacromiálisra kötöttük side – to – end 
anasztomózissal  A vénát a vena cephalikával anasztomizáltuk. A proximalis 
izomszakaszt a kulcscsont distalis szakasza alatt áthúztuk. A hosszjelző fonal segítségével 
100 fokos könyökflexiós helyzetben tensio alatt önmagához öltöttük. A jelzőfonalat 
eltávolítottuk. Az ideget a nervus spinal accessorius infraclavicularis szakaszára varrtuk. 
Az áthelyezett izom szelektív ingeráram kezelését végeztük. 
 
 
Eredemény: 
 
Műtét után 4 hónappal a könyökízületben  10 - 110 fokos aktív mozgás van. Izomerő M4. 
A váll stabilistása növekedett. Az önálló életvitelhez szükséges tevékenység  pl. 
öltözködés , tisztálkodás lehetségessé vált. A felsővégtag funkciójának javulásával a 
fiatalember pályaválasztási lehetőségei is bővültek 
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1. árba 16 éves bal oldali szülési plexus brachialis sérült. Bal oldalon aktív könyökflexió    
  nincs.  
 

               
 
2.,3.ábra Funkcionális eredmény a musculus gracilis izomlebeny transzplantáció után  4                 
  hónappal: A bal könyökízületben 10 – 110 fokos aktív mozgás. 

 
 
 
 
 
 
 
 
Megbeszélés: 
 
Szülési plexus brachialis sérülés létrejöhet az élveszületések 1-2 ezrelékében.  Oka 
rendszerint téraránytalanság elhúzódó vajúdás, vállkifejtési nehézség.( 5 ) Ritkán koraszülés 
és császármetszés során is létrejöhet. ( 1 ) A C5-Th1 karidegfonat sérülés általában négy 
csoportba sorolható: vongálódás, hegesedés, truncalis szakadás, avulsió. A klinikai képet 
súlyosbítja ha a köldökzsinór a nyakra vagy a vállra tekeredik. Az esetek döntő többségében 
elegendő a korai komplex  fizioterápiás kezelés ( 8 ), kis hányadában – kb. az esetek 15 % -
ban  válhat szükségessé sebészi beavatkozás. Korai idegrekonstrukciós műtétet végzünk 3 – 6  
hónapos korban, ami lehet neurolysis, idegvarrat, graft, vagy funkció helyreállítást ez 
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rendszerint neurotizáció: pl. n. spinal accessorius – n. suprascapularis, nn. intercostalis- n. 
musculocutaneus . ( 2 ) 
Későbbi életkorban , 6 – 14 éves kor között , vállövi és felsővégtagi funkció javító 
beavatkozás válhat szükségessé. Ilyen műtétet végezhetünk spontán idegregeneráció után 
kialakult állapot , rendszerint contractura miatt és a korábban idegrekonstrukción átesett 
betegeknél is. A beavatkozás lehet : ínhosszabbítás, ínáthelyezés, szabad izom 
transzplantáció. ( 2 )  Ezekben a műtétekben közös probléma, hogy a nagyon korai időszak 
izomtónus zavarából eredően csont és ízületi deformitás is kialakul.  
A musculus gracilis ér-idegnyeles mikrovascularis átültetésével 120 fokos flexió is elérhető. ( 
4 ) Ez az izom egyebek mellett kiválóan alkalmazható kiesett biceps izom funkció pótlására ( 
3 ), elegendő amplitudóval rendelkezik a könyökflexió helyreállításához. Legtöbb esetben az 
éranastomosist az arteria thoracoacromialisra és a vena cephalikára készítjük az ideget a 
nervus spinal accessorius infraclaviculais szakaszára varrjuk. Az izom az új helyén gyorsan 
adaptálódik. Jó funkció az izom megfelelő hosszának és feszülésének beállításával érhető el.  
(6) 
 
 
Következtetés: 
 
C5 C6 szülési plexus brachialis sérülés után az értékes kéz képessége korlátozódik a vállövi 
és könyökízületi instabilitás és aktív mozgás kiesése miatt. Ezért a korai időszakban  – 
lehetőleg 6 hónapon belül - , idegrekonstrukciót végzünk.  
Akkor is van lehetőség a funkció helyreállítására ha bármilyen okból a korai rekonstrukció 
nem történt meg. A vállízület dinamikus vagy statikus stabilizálása mellett pectoralis major 
plasztika, uni- vagy bipolaris latissimus dorsi plasztika, triceps to biceps plasztika vagy 
Steindler flexorplasztika révén érhető el könyökflexió. 
Azonban a plexus brachialis sebészetben és a microvascularis szövetátültetésben való 
jártasság esetén, a musculus gracilis funkcionális izomlebeny transzplantáció gyorsabban 
vezethet eredményre. 
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