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Abstract: This paper discusses the external consensus problem for non-identical networked multi-agent systems (NMAS) with 

network data loss, considering uniform consecutive data losses (CDL) induced by long periods of transmission failure. A gain 

error ratio (GER) formula is proposed to determine the appropriate value of coupling gain between agents in order to minimize 

the computed prediction error caused by the prediction process. Consequently, the consensus performance with prediction 

control strategy can be improved. The effectiveness of the proposed formula is demonstrated through simulation.   
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1. INTRODUCTION 

In recent years, networked multi-agent systems (NMAS) has attracts significant interest within the control research community. 

This can be seen by numerous published findings which has been markedly active and it has been increasing over the last few 

years. NMAS has given great advantages over the conventional wired control structure with the utilization of the network 

communication, for example, higher flexibility and modularity. This circumstance has started the enthusiasm of researchers to 

utilize the NMAS structure in various multi-disciplinary applications. However, the utilization of network communication in 

the NMAS has certainly introduces inherent constraints such as network delay and data losses which caused by limited 

bandwidth and overhead in the network communication. Many studies have been focused only on the presence of network 

delay while occurrence of data losses generally is not completely explored. Along these lines, in this paper, only data loss will 

be considered. Though that cooperation among NMAS agents is performed through a shared network communication, it may 

be tough to guarantee that all transmitted data will be successfully received by the neighboring agent(s).  

In practical applications, because the network communication condition is highly dependent upon the rate of usage, it will 

be not ceaselessly stable; the network can sometimes be coincidentally disabled for a few moments. It is thus common for 

transmitted data to be lost sometimes. When data is delayed for a long period of time (surpassing the maximum allowable 

network delay), it is recognized as circumstance of data dropout. The impact of data losses and the maximum allowable 

consecutive data losses need to be verified to guarantee stable NMAS performance. The significance impact could be seen 

when data loss is happened for a long period which might result in substantial consecutive data losses.  

Consensus is one sort of the cooperative control over NMAS which involves various agents communicated with one another 

which will meet towards a common value upon request. The event of data losses over NMAS will significantly degrade the 

consensus performance. Many efforts have been devoted to compensate the data loss impacts for NMAS and to enhance the 

consensus convergence performance which can be found in [1-5]. However, very little effort has been made to investigate 

about coupling gain and its positive impact on consensus convergence performance if the optimum value is applied. 

In this paper, the model predictive control with Gain Error Ratio (GER) formula is presented. The comparison between 

coupling gain based-GER and without GER in solving the data loss problem is given. The aim of this work is to show the 

advantages of applying the optimum coupling gains in solving the external consensus problem with data loss compensation. 

Only basic mathematical calculation is required. To explore the capability of GER formula, uniform consecutive data loss is 

considered.  

 

2. PROBLEM FORMULATION  

2.1 Preliminaries Theory 

Let 𝒢 = (𝒱, ℰ, 𝐴) be an undirected graph of order n with the set of nodes or agents 𝒱 = {𝜈1 , 𝜈2, . . , 𝜈𝑛} and edges, ℰ ⊆ 𝒱 × 𝒱. 

An edge from i to j is denoted by 𝑒 = (𝜈𝑖, 𝜈𝑗) indicate that agent j can receive information from agent i and vice versa. In 
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undirected graph, an edge from i to j and j to i has no exact direction which has positive unweighted adjacency matrix, 𝑎𝑖𝑗 =

𝑎𝑗𝑖 = 1 for all i,j. No self-loop is allowed, hence 𝑎𝑖𝑖 = 𝑎𝑗𝑗 = 0. The set of neighbour agent i is denoted by 𝑁𝑖 =

{𝑗 ∈  𝒱: (𝑗, 𝑖) ∈  ℰ}. The Laplacian matrix 𝐿 with respect to undirected graph 𝒢 can be simply obtained as  

nnijlL  ][
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However, in this work, the Laplacian matrix L has non-zero elements because every agent is interconnected to one another. 

Obviously, row-sums of 𝐿 will be zero. Therefore, zero eigenvalue of L, 𝜆1 = 0  will be the smallest eigenvalue if and only if  

𝒢 has a spanning tree and 𝒢 is strongly connected. The second smallest eigenvalue of 𝐿, 𝜆2 > 0 if and only if the 𝒢 is connected. 

2.2 Uniform CDL 

 

A uniform CDL is the data losses that occurring at uniform intervals. This type of data losses condition can be represented 

by data loss simulation model which consists of basic blocks in MATLAB SIMULINK as in Figure 1. 

 

 
Figure 1. Data loss simulation model for uniform CDL 

 

The output of data loss simulation model can be expressed as: 

 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝐶𝐷𝐿;  𝑂𝑢𝑡 =  {
0 𝑖𝑓 𝑟𝑠 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒
𝐼𝑛 𝑖𝑓 𝑟𝑠 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒

 

 

where 𝐼𝑛 is the input to the data loss simulation model which is the prediction sequence of agent j and threshold value is the 

pre-set value. The switch acts as a network transmission line to replicate the scenarios of the network operating with and 

without data loss. The switch propagates one of two inputs (either loss (0) or no-loss (In)) triggered by the value of the control 

input 𝑟𝑠 . The pre-set value is the value of the control input 𝑟𝑠  at which the switch flips to its other input. The control input 𝑟𝑠  
is represented by a set of repeating sequence signal to generate the situation of uniform CDL. 

2.3 External Consensus Law 

 

There are three common methods used to solve the data loss problem such as zero input, past value and predicted value. In 

this paper, the external consensus law based on predicted value is proposed which can be described as follows: 

 

𝑢𝑖(𝑘)

=

{
  
 

  
 
𝐺1(𝑧

−1)(𝐾𝑟(𝑅(𝑘) − 𝑦1(𝑘)) −∑𝐾1𝑗 (𝑦1(𝑘) − (1 − 𝛼𝑗1)𝑦𝑗(𝑘|𝑘 − 𝑝) − 𝛼𝑗1𝑦𝑗(𝑘))

𝑛

𝑗=2

)    𝑓𝑜𝑟 𝑖 = 1             

−𝐺𝑖(𝑧
−1)(∑𝐾𝑖𝑗 (𝑦𝑖(𝑘) − (1 − 𝛼𝑗𝑖)𝑦𝑗(𝑘|𝑘 − 𝑝) − 𝛼𝑗𝑖𝑦𝑗(𝑘))

𝑛

𝑗=1

)                                           𝑓𝑜𝑟 𝑖 = 2,3, … , 𝑛

 

 

 

(1) 

 

where 𝐾𝑟  and 𝐾𝑖𝑗  are the best calculated constant coupling gains using the proposed GER formula which will be explained in 

section 2.5. The external reference input is denoted by 𝑅(𝑘), 𝑢𝑖(𝑘) is the control input, 𝑦𝑖(𝑘) and 𝑦𝑗(𝑘) are the measured 

outputs of agents i and j respectively and 𝑛 represents the number of NMAS agents. The number of CDL is denoted by p.  

 

During the loss period, the prediction output 𝑦𝑗(𝑘|𝑘 − 𝑝) that has been stored at agent i will be applied. The occurrence of 

data loss is assumed to be uniform among agents where all the agents are subject to the same data loss. The proposed consensus 

protocol in (1) is said to solve the external consensus problem if and only if lim
𝑘→∞

‖𝑅(𝑘) − 𝑦1(𝑘)‖ = 0 and 

lim
𝑘→∞

‖𝑦𝑖(𝑘) − 𝑦𝑗(𝑘)‖ = 0 if there exist coupling gains for 𝑖 = 1, 2, … , 𝑛. 
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2.4 Predictive Control  

Using the algorithm in [6], the prediction sequence is generated up to the possible maximum CDL 𝑝𝑚𝑎𝑥 . For 𝑖 = 1, 2, … , 𝑛, 

the prediction sequence is computed by agent i before the data is transmitted to other agent(s). The other agent(s) that receive 

the prediction sequence will store the sequence data and use it whenever a failure in transmission occurs.  

The predictions sequence of agent i from time 𝑘 − 𝑝 + 1 to 𝑘 for 𝑙𝑐𝑠 = 1,2, … , 𝑝𝑚𝑎𝑥 can be summarized in terms of general 

equation in (2) and (3). From both equations, it can be seen that both the prediction sequence signal and the current signal 

available at time 𝑘 − 𝑝 are required for the computation to be successful.  

 

𝑦𝑖(𝑘 − 𝑝 + 𝑙𝑐𝑠|𝑘 − 𝑝)

= − ∑ 𝑎𝑖𝑓𝑦𝑖(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠|𝑘 − 𝑝)

𝑚𝑖𝑛{𝑛𝑎𝑖,𝑙𝑐𝑠−1}

𝑓=1

− ∑ 𝑎𝑖𝑓𝑦𝑖(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠)

𝑛𝑎𝑖

𝑓=𝑙𝑐𝑠

+ 𝑏𝑖0�̂�𝑖(𝑘 − 𝑝|𝑘 − 𝑝)

+ ∑ 𝑏𝑖𝑓�̂�𝑖(𝑘 − 𝑓 − 1 − 𝑝 + 𝑙𝑐𝑠|𝑘 − 𝑝) + ∑ 𝑏𝑖𝑓𝑢𝑖(𝑘 − 𝑓 − 1 − 𝑝 + 𝑙𝑐𝑠)

𝑚𝑏𝑖

𝑓=𝑙𝑐𝑠−1

𝑚𝑖𝑛{𝑚𝑏𝑖,𝑙𝑐𝑠−1}

𝑓=0

 

 

 

 

(2) 

�̂�𝑖(𝑘 − 𝑝 + 𝑙𝑐𝑠|𝑘 − 𝑝)

=

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
− ∑ 𝑐1𝑓�̂�1(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠|𝑘 − 𝑝)

𝑚𝑖𝑛{𝑛𝑐1,𝑙𝑐𝑠−1}

𝑓=1

− ∑ 𝑐1𝑓

𝑛𝑐1

𝑓=𝑙𝑐𝑠

𝑢1(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠)                                                                   

+ 𝐾𝑟𝐷1(𝑧
−1)𝑅(𝑘 − 𝑝 + 𝑙𝑐𝑠)   − ∑ 𝑑1𝑓𝐾𝑟𝑦1(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠|𝑘 − 𝑝)

𝑚𝑖𝑛{𝑛𝑑1,𝑙𝑐𝑠−1}

𝑓=0

                                                                 

− ∑ 𝑑1𝑓

(

 
 
𝐾1𝑗∑(

𝑛

𝑗=2
𝑗≠𝑖

𝑦1(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠|𝑘 − 𝑝) − �̅�𝑗(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠|𝑘 − 𝑝))

)

 
 

𝑚𝑖𝑛{𝑛𝑑1,𝑙𝑐𝑠−1}

𝑓=0

                                             

− ∑ 𝑑1𝑓𝐾𝑟𝑦1(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠)

𝑛𝑑1

𝑓=𝑙𝑐𝑠

                                                                                                                                                   

− ∑ 𝑑1𝑓

(

 
 
𝐾1𝑗∑(

𝑛

𝑗=2
𝑗≠𝑖

𝑦1(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠) − �̅�𝑗(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠))

)

 
 

𝑛𝑑1

𝑓=𝑙𝑐𝑠

                         𝑓𝑜𝑟 𝑖 = 1                                         

− ∑ 𝑐𝑖𝑓�̂�𝑖(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠|𝑘 − 𝑝)

𝑚𝑖𝑛{𝑛𝑐𝑖,𝑙𝑐𝑠−1}

𝑓=1

− ∑ 𝑐𝑖𝑓

𝑛𝑐𝑖

𝑓=𝑙𝑐𝑠

𝑢𝑖(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠)                                                                     

− ∑ 𝑑𝑖𝑓

(

 
 
𝐾𝑖𝑗∑(

𝑛

𝑗=1
𝑗≠𝑖

𝑦𝑖(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠|𝑘 − 𝑝) − �̅�𝑗(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠|𝑘 − 𝑝))

)

 
 

𝑚𝑖𝑛{𝑛𝑑𝑖,𝑙𝑐𝑠−1}

𝑓=0

                                               

− ∑ 𝑑𝑖𝑓

(

 
 
𝐾𝑖𝑗∑(

𝑛

𝑗=1
𝑗≠𝑖

𝑦𝑖(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠) − �̅�𝑗(𝑘 − 𝑓 − 𝑝 + 𝑙𝑐𝑠))

)

 
 

𝑛𝑑𝑖

𝑓=𝑙𝑐𝑠

      𝑓𝑜𝑟 𝑖 =  2,3, … , 𝑛                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3) 

 

 

 

2.5 Gain Error Ratio (GER) Formula 

  

The coupling gains 𝐾𝑟  and 𝐾𝑖𝑗  can be calculated based on below equations: 

 

𝐾𝑟 =
∑ |𝑟(𝑘) − 𝑦1(𝑘)|1 𝑐𝑦𝑐𝑙𝑒
𝑒𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
𝑘=1𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

(∑ |𝑟(𝑘) − 𝑦1(𝑘)|1 𝑐𝑦𝑐𝑙𝑒
𝑒𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
𝑘=1𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 + ∑ ∑ |𝑦1(𝑘) − 𝑦𝑗(𝑘)|𝑛𝑜 𝑙𝑜𝑠𝑠)

𝑒𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
𝑘=1𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

𝑛
𝑗=2
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𝐾𝑖𝑗 =

{
 
 

 
 

∑ |𝑦𝑖(𝑘)−𝑦𝑗(𝑘)|𝑛𝑜 𝑙𝑜𝑠𝑠
𝑒𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
𝑘=1𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

(∑ |𝑟(𝑘)−𝑦𝑖(𝑘)|1 𝑐𝑦𝑐𝑙𝑒
𝑒𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
𝑘=1𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 +∑ ∑ |𝑦𝑖(𝑘)−𝑦𝑗(𝑘)|𝑛𝑜 𝑙𝑜𝑠𝑠

)
𝑒𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
𝑘=1𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

𝑛
𝑗=2

                                        
𝑓𝑜𝑟 𝑖 = 1 
        𝑗 ∈  𝑁1

             

∑ |𝑦𝑖(𝑘)−𝑦𝑗(𝑘)|𝑛𝑜 𝑙𝑜𝑠𝑠
𝑒𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
𝑘=1𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

(∑ ∑ |𝑦𝑖(𝑘)−𝑦𝑗(𝑘)|𝑛𝑜 𝑙𝑜𝑠𝑠
)

𝑒𝑛𝑑 𝑠𝑎𝑚𝑝𝑙𝑒
𝑘=1𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒

𝑛
𝑗=1

                                                                                            
𝑓𝑜𝑟 𝑖 = 2,3, … , 𝑛

𝑗 ∈  𝑁𝑖    
 

 (4) 

 

where k refers to the k-th sample. These error values can be obtained using the values of 𝑟(𝑘), 𝑦𝑖(𝑘), and 𝑦𝑗(𝑘) for 𝑖 =

1, 2, … , 𝑛 and 𝑗 ∈ 𝑖 ∪ 𝑁𝑖 from the NMAS consensus result with prediction without coupling gains for uniform CDL through 

simulations. The result shows a repetitive pattern for every cycle (loss + no-loss) during its steady-state condition as shown an 

example of 16 CDL in Figure 2. Thus, to simplify this method, any one cycle during the steady-state period is chosen to 

calculate 𝐾𝑟  and 𝐾𝑖𝑗 . For examples, referring to Figure 2, samples 100 to 119 are taken as one cycle during the steady-state 

period.   

 
Figure 2. Consensus performance with prediction only for 16 CDL 

 

Within these 20 samples (1 cycle), there are loss and no-loss situation at different samples. For 16 CDL, a no-loss situation 

occurs at samples 100 to 103 and a loss situation occurs at samples 104 to 119. Thus, the values of 𝑟(𝑘), 𝑦𝑖(𝑘), and 𝑦𝑗(𝑘) at 

the specified sample are used to calculate the error ratio as follows: 

 

  𝐾𝑟 =
∑ |𝑟(𝑘)−𝑦𝑖(𝑘)|
120
𝑘=101

(∑ |𝑟(𝑘)−𝑦𝑖(𝑘)|
120
𝑘=101 +∑ ∑ |𝑦𝑖(𝑘)−𝑦𝑗(𝑘)|)

105
𝑘=101

𝑛
𝑗=2

 

 

𝐾𝑖𝑗 =

{
 

 
∑ |𝑦𝑖(𝑘)−𝑦𝑗(𝑘)|
105
𝑘=101

(∑ |𝑟(𝑘)−𝑦𝑖(𝑘)|
120
𝑘=101 +∑ ∑ |𝑦𝑖(𝑘)−𝑦𝑗(𝑘)|)

105
𝑘=101

𝑛
𝑗=2

                   
            𝑓𝑜𝑟 𝑖 = 1 
        𝑗 ∈  𝑁1

                                                  

∑ |𝑦𝑖(𝑘)−𝑦𝑗(𝑘)|
105
𝑘=101

(∑ ∑ |𝑦𝑖(𝑘)−𝑦𝑗(𝑘)|)
105
𝑘=101

𝑛
𝑗=1

                                                                 
𝑓𝑜𝑟 𝑖 = 2,3, … , 𝑛

𝑗 ∈  𝑁𝑖    
                                       

                     (5) 

 

During losses, only the stored (prediction) value is used and thus the actual error value is not available. However, since 

the connection between the external reference input  𝑟(𝑘) and Agent 1 is not subject to loss, the error for the whole cycle is 

considered. For random CDL, the coupling gains calculated using (4) can be applied as long as the maximum value of CDL is 

known.   

 

3. SIMULATION RESULTS 

3.1 Predictive controller with GER formula for uniform CDL 

 

In this section, a numerical example is given to illustrate the effectiveness of the proposed GER formula. Consider NMAS 

in a fixed topology with n =3 indexed by 1, 2 and 3 respectively. The dynamics of agent i (i = 1, 2, 3) are described by the 

system model in (6), where 

 

𝑃1(𝑧
−1) =  

0.06354𝑧−1 + 0.00497𝑧−2

1 − 0.9692𝑧−1
 

 

  (6) 

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

Samples

W
at

er
 L

ev
el

 (
cm

)

 

 

external reference input

y1

y2

predicted value during 16 CDL with loss and no-loss situation



APPLICATIONS OF MODELLING AND SIMULATION, 1(1), 2017, 22-28 

26 

 

𝑃2(𝑧
−1) =  

0.08345𝑧−1 + 0.0222𝑧−2

1 − 0.7184𝑧−1 + 0.01505𝑧−2
 

 

𝑃2(𝑧
−1) = 𝑃3(𝑧

−1)  
 

The transfer functions of virtual local controllers for all agents are obtained by employing the Proportional-Integral (PI) 

controller. The transfer functions are  

 

𝐺𝑐1(𝑧
−1) =  

1.35 − 1.31𝑧−1

1 − 𝑧−1
 

 

𝐺𝑐2(𝑧
−1) =  

1 − 0.6𝑧−1

1 − 𝑧−1
 

 

𝐺𝑐2(𝑧
−1) = 𝐺𝑐3(𝑧

−1)  

 

  (7) 

 

The consensus performance for NMAS with 3 agents is illustrated in Figure 3 with corresponding control gains are tabulated 

in Table 1. 

 

 
Figure 3. External consensus for NMAS with 3 agents at 16 CDL using NPCA-GER 

 

 

 

Table 1. Calculated control gains 𝐾𝑟  and 𝐾𝑖𝑗  using GER formula for 3 agents 

Control gains 16 CDL 

𝐾𝑟  0.87 

𝐾12 0.065 

𝐾13 0.065 

𝐾21 1 

𝐾23 0 

𝐾31 1 

𝐾32 0 
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From Figure 3, it can be concluded that there is a huge improvement in the consensus performance with application of 

NPCA-GER. The prediction error has been significantly minimized for every agent. Since the model of Agent 2 and 3 is 

similar, output difference between these two agents is zero. Consequently, the calculated control gains 𝐾23 and 𝐾32 are also 

zero.   

 

3.2 Comparison of calculated coupling gains at different cycle 

 

Any steady-state cycle of the NMAS with prediction can be used to calculate the coupling gain. Even though the value of 

the gain will be slightly different for each cycle (as shown in Table 2), the consensus performance is almost identical as shown 

in Figure 4. Table 2 shows an example of calculated control gains for 16 uniform CDL at different steady-state cycle.  

 

 

Table 2. Control gains at different cycle for 16 uniform CDL 

Cycle Samples (101-120) Samples (201-220) Samples (321-340) 

𝑲𝒓 0.945 0.941 0.95 

𝑲𝟏𝟐 0.055 0.059 0.05 

𝑲𝟐𝟏 1 1 1 
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Figure 4. Consensus performance with 3 different set of gains for 16 uniform CDL (y-axis is water level (cm) 

and x-axis is number of samples) 

 

Suitable cycle for GER formula is not fixed and depending on the user preference and design. In this paper, in all uniform 

CDL cases, cycle is fixed to 20 samples. If 9 uniform CDL in considered, this means 9 samples lost and 11 samples not lost in 

the cycle. The same condition is considered for 3, 13, 15 and 16 with uniform CDL.  

 

4. CONCLUSION 

This paper investigates the advantageous of having suitable coupling gain in solving the external consensus problem in the 

occurrence of large consecutive data loss. With the introduction of the GER, the external consensus performance of the non-

identical NMAS consensus has increased by solving the imprecise long prediction computation process.  
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