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Abstract – This paper presents the methodologies use in determining the 

PID value of an Antilock Brake System (ABS) of a Malaysian made 

passenger vehicle. The research work involves experimental work for data 

acquisitions, development of braking model, parameter tuning for both 

simulation model parameter and PID values search. A Malaysian made 

car is equipped with instrumentation used to collect vehicle behaviour 

during normal and hard braking manoeuvres. The data collected are the 

vehicle’s stopping distance and longitudinal speed. The data during the 

normal braking are used to validate a two degree of freedom (2 DOF) of 

vehicle’s braking model, while the data collected during the hard braking 

are used to search for the PID value used to control the operation of the 

ABS system. The developed simulation model of a braking system 

correlates well with the experimental data and the tuning done on the PID 

algorithm indicates that the ABS is controlled by the PI system. 
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1.0 INTRODUCTION 

The concept of Antilock Brake System (ABS) was introduced in early 1900s by introducing 

modulated hydraulic braking pressure with main objective in preventing tire fully locked and 

wheel slippage.  

Nowadays, the ABS has become a mandatory safety feature in most automotive market 

regulations due to the proven testament in preventing tire locked-up during emergency braking 

events as encountered on slippery road condition or during panic response by driver (Bosch, 

1994). In ensuring the steer-ability of vehicle in any emergency conditions, it is important to 

prevent tire locked-up so that the vehicle is remain responsive to steering input intervention to 

avoid any catastrophic accident. It is also known that the ability of ABS in enhancing stopping 

distance especially on low road friction surface such as wet and slippery conditions (Garrick et 

al., 1998; Brosnan et al., 2012).  
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Railways and aircraft industries are the pioneer application of preliminary ABS concept 

in 1900s. The application of ABS is crucial in aircraft landing valve system to achieve shortest 

stopping distance on any runways surface condition and length. Boeing Corporation was the 

first company that applied ABS for its commercial aircraft in 1947 (Altrock & Krause, 1994). 

However due to uneconomical ABS technology cost for medium margin industry, it is taken a 

decade for its first application in automotive industry. Only later in 1954, the first introduction 

of ABS, supplied by French aircraft supplier was seen in Lincoln’s model but with limited 

number of production units (Petersen, 2003). More automotive companies later introduced the 

ABS feature in their exclusive models in late 60’s such as Chrysler, Cadillac and Ford. The 

early production stage of ABS technology utilized vacuum based actuated modulators and 

conventional analogue computers (Peterson, 2003). It was reported to be commercially 

unsuccessful by Wellstead and Pettit (1997).  

The quantum change in ABS technology development was only seen in late 70’s through 

the introduction of electronically-controlled base system by BMW and Mercedes. Further 

development of ABS technology by automotive vendors took place in 1985 when Audi, BMW 

and Mercedes used Bosch’s ABS system in their models whilst, Teves ABS system by Ford 

and General Motors (Petersen, 2003). In late 80’s, ABS application can be normally found in 

luxury and sports car segments as exclusive feature. However due to technology evolution and 

awareness on vehicle safety system, it was then be a common and mandatory feature in current 

automotive markets with more additional advance features introduced to the base ABS 

foundation such as traction control, Electronic Stability Control (ESC), hill assist, etc.  

In general, there are two types of algorithms that are commonly used in controlling ABS 

system operation: (a) acceleration-control based, and (b) slip-control based. In the acceleration-

control based, it is implemented by controlling the wheel slip by using wheel’s 

acceleration/deceleration which is computed by deriving the wheel angular velocity data. 

However, a major disadvantage of this method is significant vibrations which existed during 

braking (Pedro et. al., 2003). As for the slip-based control algorithm, it involves by keeping the 

actual slip rate at an optimal target slip using continuously computed slip data computed form 

the vehicle’s velocity and wheel’s speed. 

Various researchers have suggested different approaches in controlling the operation of 

the ABS system. Most of the current mass production of ABS controllers are based on linear 

or non-linear algorithms. Solyom (2002) used PI and PID control with gain scheduling based 

on the vehicle speed while Jiang and Gao (2001) showed that nonlinear PID controller achieved 

better braking performance than conventional PID controller. Buckholtz (2002) considered 

sliding mode-type approaches to the wheel slip. 

This paper explains on the methodologies used in determining the parameters value for 

the ABS algorithm used to control the operation of an ABS system in a mass-produced 

passenger vehicle. 

2.0 MODELLING OF 2-DOF BRAKING MODEL  

A 2 DOF of vehicle’s wheel model is used in this study where it consists of a vehicle’s linear 

dynamics and wheel’s rotational dynamics. Figure 1 shows the 2 DOF of vehicle’s braking 

model. 
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Figure 1: 2 DOF braking model 

The linear dynamics of a vehicle during braking condition can be formulated as follows: 

v
M

t
F

w
N

V                                                                                 (1) 

where V  is vehicle linear deceleration, Ft is traction force and Mv is mass of vehicle. The 

vehicle linear acceleration is equal to the difference between total traction force acting at tire 

contact patch, divided by vehicle mass. Meanwhile, traction force is the average friction force 

of driving wheels for acceleration and the average friction force of all wheels for deceleration. 

The total traction force is equal to the product of average friction force, Ft and the number of 

wheels, Nw. The traction force model is crucial (Drakunov et al., 1995) and has been used in 

many studies. The assumption of nonlinear function of relative slip (λ) on traction force of each 

wheel during braking condition has been considered in this study. Traction force calculation is 

given by: 

AvNF
t
                                                                              (2) 

where 𝑁𝑣 is wheel normal load, A is correctional gain for coefficient of friction and μ is 

coefficient of friction for road surface. Figure 2 shows the relationship between coefficient of 

friction and wheel slip ratio, S. 

 

Figure 2: Typical friction curve characteristic (Petersen, 2003) 
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The normal load is described by standard Newtonian equation of motion given by: 

L
FgtmvN                                                                           (3) 

where, mt is quarter vehicle mass. The longitudinal force due to weight transfer during braking, 

FL is formulated by: 

V
L

cghvM
F

L


2
                                                                           (4) 

where, Mv is vehicle mass, hcg is height of vehicle’s centre of gravity, L is wheelbase length. 

The rotational dynamics of the wheel is given by: 

wJ

b
TtFwRaT 

                                                                       (5) 

where,   is wheel angular acceleration,  Jw is moment of inertia of wheel about the axis of 

rotation, Tb is the brake torque applied to the wheel, Ft is wheel’s traction force. 

The total torque acting on the wheel is divided by the moment of inertia of the wheel 

giving the wheel angular acceleration (deceleration). The total torque consists of shaft torque 

from the engine, which is opposed by the brake torque and the torque components due to the 

tire traction force. The engine torque is assumed to be zero (0) during braking. The longitudinal 

slip ratio, S of the tire during braking condition is determined by: 

𝜆 =
𝜔𝑅𝑤−𝑉

𝜔𝑅𝑤
                                                               (6) 

Figure 3 shows the braking model developed in the Matlab/Simulink environment. 

 

Figure 3: 2 DOF braking model developed in Matlab/Simulink environment 



© Journal of the Society of Automotive Engineers Malaysia 
www.journal.saemalaysia.org.my 
 

  

 

 
232 

 

3.0 EXPERIMENTAL SETUP AND MODEL VALIDATIONS  

For the purpose of validation and determining the parameter values for the braking model and 

the PID values used in the PID algorithm, the results from the simulation model will be 

compared with experimental data. For these purposes, the vehicle’s longitudinal speed and 

stopping distance will be used as the main responses and to be collected during the experiment 

measurements. The vehicle’s longitudinal speed and stopping distance were measured using a 

GPS system, connected to a Racelogic VBOX 3i which acted as a data logger system for the 

data collection.  

There were two types of tests conducted in validating the braking model of the studied 

passenger vehicle. 

 The first test involves a normal braking test which requires a normal braking effort 

by the driver until the vehicle stop, while 

 The second test requires a hard braking (sudden braking) by the driving which will 

operates the vehicle’s ABS. 

Both tests were conducted on a 575m straight track with the speed before braking effort 

is 105km/h. 

4.0 PID CONTROLLER AS THE ABS ALGORITHM  

The PID algorithm is assumed to be used to control the operation of the ABS system of the 

studied vehicle due to the facts of algorithm’s simplicity and only requires a small processing 

capability (Fu et al., 2012). The PID is the most common control algorithm (Bera et al., 2011) 

which is being widely used in the process control due to its advantages of requiring small 

amount of processing capability, good in real time response, easy to implement etc. 

The PID controller, functions by estimating the corrections that need to be made base on 

the errors obtained from the actual model with the desired input. The PID algorithm is given 

by:  

        𝑢(𝑡) = 𝐾𝑃. 𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
+ 𝐾𝐷

𝑑𝑒(𝑡)

𝑑𝑡
                                          (7) 

where, u(t) is the control output, Kp is the proportional gain, KI is the integral gain, KD is the 

derivative gain; et is the error between model and reference value; t is the time or instantaneous 

time; τ is the variable of integration.  

Figure 4 shows the layout of the PID-controlled ABS implemented in Matlab/Simulink 

environment. Where the PID function is to estimate sufficient braking torque that need to be 

applied to the wheel so that the slip ratio, S will be no more than 0.2 (by referring to Figure 2, 

the coefficient of frictions will drop if the slip ratio is more than 0.2. The estimated value from 

the PID algorithm is considered as an ideal case, where the estimation of the braking torque 

will be applied directly into the braking model. 



© Journal of the Society of Automotive Engineers Malaysia 
www.journal.saemalaysia.org.my 
 

  

 

 
233 

 

 

Figure 4: PID-controlled ABS 

4.1 Parameter Tuning 

Two level of parameter tuning were done in this study. The first level involves parameter tuning 

in search for the parameter values for the braking model, while the second level involves 

parameter tuning for the PID algorithm. The first level involves the search for two parameter 

values which are the values for wheel inertia value, Jw and the correction gain for the friction 

coefficient, A respectively. The second level of tuning involves the tuning for P, I and D values 

in the PID algorithm. 

The tuning for both levels were done manually for in depth understanding on how each 

parameter value affects model’s behaviours. The tuning was done by minimizing the root-

mean-square (RMS) error between the simulation and experimental results of both stopping 

distance and stopping velocity. The RMS value is given by: 

dttu
T

RMS
2

)(
1
                                                                        (8) 

where, T is the total simulation time and u(t) is the response signal data. The selection of 

parameter value is based on a minimum error of RMS values, between the simulation and 

experimental data which is given by: 

𝑅𝑀𝑆𝑒𝑚𝑖𝑛 = |𝑅𝑀𝑆𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑅𝑀𝑆𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡|                                           (9) 

where, T is the total simulation time and u(t) is the response signal data. The selection of 

parameter value is based on a minimum error of RMS values, between the simulation and 

experimental. 

5.0 RESULTS AND DISCUSSION  

Figures 5 to 8 show the validation results between the simulation and experimental results, for 

both stopping distance and stopping velocity during the normal braking an ABS braking 

conditions. It can be seen in general that the operation of the installed ABS in general are 

capable of improving the stopping distance and stopping time by 22.2 percent and 18 percent, 

respectively. 
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The manual tuning, which were done based on the method in Section 4, for searching the 

values for wheel inertial value, Jw and t correctional gain for friction coefficient, A gives a good 

correlation between the simulation results and the experimental results (refer to Figure 5 and 

Figure 6). The manual tuning done during the first level gives the value of 2.054 kg/m2 for the 

wheel inertial parameter, while for the correctional gain for the friction coefficient, A the value 

obtained is 0.87. 

 

Figure 5: Stopping distance response validation (ABS ‘OFF’) 

The values obtained during the first level of tuning were used in the second level of 

tuning, which involves the tuning for the PID values. The tuning for the PID values were done 

manually where its starts with the initial guess for P, while the value for I and D are set to 0. 

Initial value of P was set to 500 with an increment of 50 for each iterations. The tuning is 

stopped and the last value for P is selected when the RMS error (Equation 9) between the 

simulation and experimental data is the lowest. The tuning of P value affects the magnitudes 

of the stopping distance and stopping velocity. 

 

Figure 6: Stopping velocity response validation (ABS ‘OFF’) 
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The tuning for the I value, starts by fixing the P value which was previously selected. 

The initial value for I is set to 10 with an increment of 10 for each repetition done. As for the 

D value, the tuning done revealed that it does not give any changes in the RMS error between 

the simulation and experimental data, indicating that the D value does not effecting the ABS 

system operations. Figure 7 and Figure 8 show good correlation between the simulation and 

the experimental results. The value of P and I used in producing the correlations shown in 

Figures 7 and 8 are 5950 and 500, respectively. 

 

Figure 7: Stopping distance response validation (ABS ‘ON’) 

 

Figure 8: Stopping velocity response validation (ABS ‘ON’) 

6.0 CONCLUSIONS 

A 2 DOF of vehicle’s braking model has been developed where some of its parameters were 

tuned in order to obtain a similar response with the experimental data (stopping distance and 

stopping velocity). Two levels of tuning were done, where the first level involves the tuning 

for the wheel’s inertial value and correctional gain for the coefficient of friction, A. As for the 

second level of tuning which involves the PID value search for the PID algorithm used to 

control the operation of the ABS system, it were found only the tuning of P and D values affect 
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the braking’s model behaviour. The value of P and I, obtained from the tuning done were 5950 

and 500, respectively, while the value for D is 0. As a recommendation for potential future 

works, the validated braking model could be used to study other algorithms that can control the 

operation of the ABS as well as considering an actual case of ABS which is by considering the 

modelling and integration of a hydraulic system in the braking model. 
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