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ABSTRACT 

PROFILE STRUCTURES OF THIN MULTILAYER FILMS BY X-RAY 

DIFFRACTION USING DIRECT AND REFINEMENT METHODS OF ANALYSIS 

Victor Skita 
J. Kent Blasie

Meridional x-ray diffraction data from Langmuir-Blodgett 

multilayers containing two to ten molecular monolayers of arachidic 

acid were analyzed by two . independent .. methods. A Patterson 

function deconvolution technique uniquely provided the electron 

density profile (8A resolution) of the average, symmetric bilayer 

repeated in · the multilayer. · This average· · bilayer appeared to 

disorder as the number of bilayers in the multilayer decreased. A 

refinement technique, which does not assume a centrosymmetric 

structure or the existence of a unit cell, uniquely provided the 

profile structure of the multilayer itself.· ··In particular it could 

distinguish the individual monolayers . in the multilayer. Meridional 

x-ray scattering data from Langmuir-Blodgett multilayers composed of

arachidic acid and either 'myristic acid or polymerized 10,u 

pentacosadiynoic acid were also analyzed by the refinement 

technique. It found that only the last monolayer in the depostion 

sequence (ie. the surface monolayer) was disordered and that 

ordering of the surface monolayer can be induced by the deposition 

of an additional monolayer. In addition, · an · application of 

Langmuir-Blodgett multilayer thin films and their characterization by 

x-ray scattering is discussed with regards to the structural study of

membrane-membrane interactions and the triggering of cellular 

components of the immune system. 
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CHAPTER ONE: INTRODUCTION

X-ray diffraction from oriented fatty acid (CHs-[CH3]n-COOH)

multilayers was observed and first interpreted by Muller [1-1] and

Muller and Shearer [1-2] in 1923. They concluded that a "complete

[structural] solution" was not plausible at that time, and settled for

calculating the average methyl (-CH,) to carboxyl (-COOH) spacing

from their powder patterns.

Fatty acid monolayers were first deposited onto solid glass

subtrates by, Katherine Blodgett [1-3, 1-4] and later by Blodgett and

Langmuir [1-5]. X-ray diffraction studies of these Langmuir-Blodgett

films deposited onto metal [1-6] and glass [1-7] substrates soon

followed. Holley and Bernstein [1-8] speculated Langmuir-Blodgett

films could be used to study the correlation between the number of

cooperating Langmuir-Blodgett monolayers with the experimental line

widths observed in the diffraction patterns.

In a series of papers Irving Langmuir and Vincent Schafer

discuss the fabrication of· Langmuir-Blodgett films that either

incorporate proteins during the film deposition process [1-9, 1-10] or

by conditioning the surface of an Langmuir-Blodgett. film· so as to

adsorb proteins from solution [1-10, 1-11, 1-12]. They used optical

methods to measure the thickness of their protein (urease, pepsin,

albumin, or cholesterol) layers. More recently, McLean [1-13] outlined

the procedure for the fabrication (via the Lanifmuir-Blodgett

technique) of stable polar substrates using diacetylene containing

molecules.
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Kopp et al. [1-14] have pointed out that membrane proteins

should ideally be studied at an interface between between high

dielectric (water) and low dielectric (membrane) phases.

Investigations on the functional interactions between biological cells

[1-15], and on antibody-antigen interactions [1-16, 1-17] use

Langmuir-Blodgett films as a model system. The study of

transmembrane potentials [1-18], for instance, which depend critically

on the orientation of the membrane proteins could be enhanced by

fabricating appropriate Langmuir-Blodgett protein films. The detailed

structural study and analysis of simple Langmuir-Blodgett systems

composed of only a few molecular monolayers is critical if one wishes

to study the structural-functional relationship of membrane proteins

in Langmuir-Blodgett films.

X-ray diffraction can in principle be used to investigate the

structure of these simple, very thin multilayer films containing only a

few molecular monolayers deposited on solid substrates by the

Langmuir-Blodgett technique. One would like to ascertain whether

the structures of the individual monolayers differ from one another

and particularly whether the substrate perturbs certain individual

monolayers in the multilayer film. Previous analyses of the

meridional x-ray diffraction from such multilayer films have employed

either a non-unique modeling of the multilayer electron density

profile to fit the observed diffraction data [1-19] or direct methods

(multilayer profile Patterson function deconvolution [1-20] and

counter-ion isomorphous replacement [1-21]) to uniquely derive the

2



electron density profile of the average, symmetric bilayers or bilayer

pairs repeated in the multilayer. Most methods of unambiguous

structural analysis employing x-ray scattering are limited in that

they require (or assume) the repetition of some average structural

unit (unit cell) in a periodic array of effectively infinite extent.

This study is composed of two parts. In part one meridional

x-ray diffraction data from multilayers containing one, two, three and

five bilayers of arachidic acid deposited on alkylated glass substrates

was collected. Data from these multilayers were analyzed by two

independent methods for comparative purposes. A Patterson function

deconvolution technique [1-20] provided uniquely the electron density

profiles (SA resolution) of the average, symmetric bilayer as a

function of the number of times N (N = 2, 3, 5) it was repeated in

the multilayer. A box-refinement technique [1-22, 1-23] for the

homologous series of multilayer structures N = 1, 2, 3 uniquely

provided the electron density profile (SAresolution) of the multilayer

itself, namely of each individual monolayer as a function of its

position in the three multilayers.

The second part consists of studying Langmuir-Blodgett

multilayers composed of monolayers of different amphiphilic

macromolecular species each have different chain lengths. Direct

methods assuming a repeating unit cell could thus not be employed;

rather a variant of the box refinement technique was used to study

these mixed multilayer systems.
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CllAPTER TWO: GENERAL THEORY

Part I. Introduction
The general theory presented herein attempts to concisely review

scattering theory. and then extend the basic concepts to diffraction

from both infinite and finite one-dimensional systems. The quantum

mechanical derivation of scattering is well known; the formalism used

in based largely on Eugen Merzbacher's approach [2-1] and somewhat

on that of Gordon Baym [2-2]. The extension of general scattering

theory to x-radiation comes from Boseman and Bagchi [2-3] and John

Coley [2-4]. The discussion of diffraction from an infinite system is

based on Ashcroft and Mermin [2-5] and Coley [2-4]. Diffraction from

a finite system is discussed in detail by Hoseman and Bagchi [2-3].

and to a lesser extent by Coley [2-4].
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Part II. Scattering Theory

Scattering involves the bombardment of atoms in a target with a

beam of particles. These particles are scattered by the target atoms

and are detected as an intensity. This intensity varies with

scattering angle. Quantum mechanically, we wish to derive the

eigenfunctions of the scattered beam; this being directly related to

the observed intensities, or likelihood of finding a particle at a

certain place.

Certain assumptions are made. 1) The effect of the scattering

center on the particles can be represented by a potential VCr)which

falls to zero within a finite region of the scattering center. This

would exclude a pure Coulombic field. a) The scattering is elastic

(ie. without energy loss or gain by the projectile) 3) The incident

particles do not interact with each other.

The Hamiltonianis given by:

.x = .xo + VCr)

(II-I)

The incident particles can be represented by a wave packet of

the form:

(11-2)

where +(k) is the momentumdistribution. It is assumed that +(k) is

centered on k = kg, and is non-zero in the vicinity of ko• Note, +(k)

and t(r,O) are related by a Fourier transform.

7



If +(r,O) can be expanded in terms of its eigenfunctions +n(r}:

+(r,O) = L cn+n(r)
n

then +(r,t) is given by:

(II-3)
n

Equation (II-3) describes the eigenfunctions of the HamiltonianJI.

and not JL The eigenfunctions for .... are the solution of a free

particle with eigenvalues En. However, if we can find a solution

+k(r) that satisfies Schrodinger's equation:

(II-4)

equation (11-2) after substituting +k for the free particle solution,

exp[ik·r), would yield:

(II-5)

From equation (II-3) we would then obtain:

+(r,t) = I +(k) exp[-ik·r.-i~t] +k{r) d'k (11-6)

where *'~ =
The problem then reduces to finding an appropriate wave

function +k(r) that satisfies equation (II-4).

Solving (II-4) for +k(r) after SUbstituting (II-I) yields:

8



(V2 + k2 )1k = U(r)1k

~E"a
(11-7)

where

and U(r)

Equation (II-7) is solved by solving the homogenous equation:

(va + k2 )1k = 0 (II-B)

and then finding the particular solution. The solution to (II-B) is

just. the wave function for a free particle:

(11-9)

To find the particular solution, let us consider t.he family of

functions defined by:

(va + k2 ) G(r,r') = -4w6(r-r')

where G(r,r') is known as Green's function.

By inspection, the solution to the inhomogenous equation (II-7)

is:

?k(r) = -1/4w J U(r') G(r-r') ?k(r') d'r' (II-IO)

This can verified by substituting (11-10) into equation (11-7).

9



U(r)tk = -1/4w J (Va + ka ) U(r') x

G(r-r') tk(r') d3r'

U(r)tk = J 6(r-r') U(r') tk(r') d3r'

QED

We must now find an appropriate Green's function. G(r,r') can

be defined in terms of the Fourier transform of g(k').

G(r-r') = J g(k') exp[ik'·(r-r')] d3k' (11-11)

Multiplying the left and right side of (II-ll) by (va + ka) and

using the definition of Green's function yields:

-4w6(r-r') = J g(k') va exp[ik'·(r-r')] d3k' +

kl J g(k') exp[ik'·(r-r')] d3k' (11-12)

Substituting the Dirac delta function:

6(r) = (1/2w)3 J exp[ik'·r] d3k~

into (II-12) and letting r' = 0 (tor convenience) yields:

-4w(1/2w)3 J exp[ik'·r] d3k'=

I g(k') [kJ-k·2] exp[ik'·r] d3k'

Thus

g(k') = 2!a [k" - k2]-a

10



and

Integrating over the angles yields:

G(r) =
+.
JeXP[ik'rJ dk'
k·2 - k2.-.

The above integral has singularities at k' = *k. By choosing an

appropriate contour and using the residue theorem we can solve for

Green's function:

G(r) = exp[ikrJ
r

For r' ~ 0 we have a more generalized result:

G(r,r') = exp[iklr-r'I]
Ir-r' I (II-13)

Substituting (11-13)into (11-10)yields the particular

solution:

~ = -1/4w I U(r') exp[iklr-r'IJ ~k(r') d3r'rk,pt lr-r'l r

The sum of the homogeneous solution (11-9) and the particular

solution is the general solution to equation (II-IO):

11



1/4w I U(r') exp[iklr-r'l] 1k(r') d3r'lr-r'l

It we assume that we observe the scattering far from the target

(ie. the Fraunhofer condition, namely r: e-c r ) the following

approximation can be made.

klr-r'l = kr - k~·r' +

klr-r'l ~ kr - k~·r'
+ •••

Let k' = k~
then klr-r'l ~ kr - k'·r'

Substituting into the general solution yields the well-known

asymptotic solution:

1/4w I U(r') exp[!krl II

exp[-ik'·r'l] 1k(r') d3r'

. exp[ikr] II

4wr

12



where
(9_'" Jfk(k') = - ~ exp[-ik'or'] U(r')tk(r') d3r'

(11-14)

Substituting (II-14) into equation (II-6) yields:

t(r,t) = J +(k) exp[-ikor.-i~t] x

Since CJ =

= 2: [ko + (k - k.)]
fa= 2p [2k.ok - k08 + (k - k.)2]

If we assume (k - k.)2 -+ 0 (ia. the wave packet does not

spread appreciably- when it is displaced by the macroscopic distance

r0)' we obtain from the above expansion of ~:

CJ - "- [2k ok - k 2]2p 0 0

then-i[kor. - ~t] = -ikor. - i 2: [2k.ok - ko8]t

= -ikor - i(!k ·kt) + i_!k at• p 0 2p 0

13



where Vo =

and ~ = ..l!V2o 2\ 0

Equation (11-15) can now be rewritten:

1(r.t) = J +(k) exp[-iko(ro+vot) + iWot] •

[ 1 [ik] + eXP[!kr] fle(k') ] )I(271')' exp or

d'k

1(r.t) = J [ +(k) exp[-iko(r.+v.t) + i~ot] •

(2!)' J [ +(k) exp[iwot] •

exp[i(kr-k·(ro+vot)] ~ flc(k')] d3k (11-16)

With the help of equation (II-G) for r .... r - v.t we

obtain:

14



Since we assumed +(k) differs from zero only for k • k. then:

kr = k • k r

and kr - k·(r. + v.t) - k • k.r - k·(r. + v.t)

- k •(k.r - r. + v.t)

Substituting kr from above in (II-16) and comparing the result to

equation (II-2) yields:

(II-17)

Equation (II-17) applies itself to an eaay physical interpretation

of the scattering problem. The first term, aaide from a phase factor

(exp[i~ot]) ia just the initial wave packet displaced without change in
H
i1

shape; the second term is a radially expanding replica of the initial

wave packet as aeen by the acatterer, reduced in amplitude by a

factor fk(k' )/r. fk(k') is known aa the scattering amplitude.

Equation (11-14)can be rewritten in terms of V(r'):

15·

i.
i

I
I

I
I
I

where VCr')

This not an explicit expression for fk(k") aince ?k is in the

integrand. The tirat-order Born approximation replaces ?k(r') with a

plane wave:



(II-IS)
to yield:

fk(k') - ;Wi2 J exp[-ik"r'] VCr') exp[ik'r'] d'r'
(II-19)

In the first Born approximation the scattering amplitude is

proportional to the matrix element of the s&attering potential between

an incoming and an outgoing plane waves. Scattering can thus be

looked upon as a perturbation of the incident particle by some

potential distribution. This approximation is valid for weak potentials

and high incident energies.

Equation (II-19) can be rewritten to yield:

let 2wq = -(k' - k)
then

(II-20)

Equation (II-20) is a general solution to scattering of a particle

wave by a potential. It is valid for neutrons, electrons, and x-rays.

For x-rays we can substitute for the reduced mass p (equation

II-21) to yield (II-22).

"p = A = pc

16



h
p = cA (II-21)

fk(q) - - _!_ f VCr') exp[2niq·r'] d'r'CAt- (II-22)

Since the scattering potential is proportional to the electron

density distribution, -per'), for x-ray scattering we obtain:

F(q) • f per') exp[2niq·r·] d'r'

where F(q) is called the structure factor or structure amplitude and

is equal to fk(q). Substituting r for r: for simplicity yields:

F(q) • f per) exp[2niq·r] d'r (II-23)

Equation (11-23) states that the structure factor is proportional

to the Fourier transform of the electron density distribution.

Inversely the Fourier transform of the structure factor is

proportional to the electron density distribution (II-24).

per) • f F(q)exp[-2niq·r] d'q (II-24)

From an experimental point of view, it is the differential cross

section (which represents the number of scattering particles in a

given area de per solid angle ao) which is most interesting. The

differential cross section is proportional to what is measured in a

scattering experiment, and is given by:

(II-25)

17



The ratio of the observed intensity I(q) to the total incident

beam intensity lo(q) (ia. ff*) is equal to the differential cross

section; therefore, the observed intensity is proportional to the

structure factor multiplied by its complexconjugate.

I(q) • r(q) • F*(q) (11-26)

Substituting equation (II-25) with the understanding that I(q)

represents a relative intensity (thus eliminating the proportional

symbol) yields:

I(q) = Ip(r') exp[2wiq'r'] d3r' x

Ip(r)exp(-2wiq'r] d3r

If we choose r: = r + u and integrate over d3 u, he above

expression becomes:

I(q) = Ip(r+u) exp[2wiq'(r+u)]d3u x

Ip(r) exp[-2wiq'r]d3r

Rearranging yields:

= I exp[-2wiq·u] [ I p(r)p(r+U)d3~] •
d3u (11-27)

If we let:

P(u) = I p(r)p(r+u)d3r

18



= (II-28)

where P(u) is called the Patterson function. The tt * " in equation

(11-28) denotes the convolution operator. The Patterson function is

thus the autocorrelation of the electron density function.

Substituting P(u) into (11-27) and letting u ...... r (for

consistency) yields:

l(q) = J Per) exp[2wiq·rJ d'r (II-29)

Equation (II-29) states that the intensity function is proportional

to the Fourier transform of the Patterson function. Inversely, the

Fourier transform of the intensity function is proportional to the

Patterson' function (equation 30).

Per) = J l(q) exp[-2wiq·rJ dSq (II-30)

The projection of a three dimension electron density distribution

onto a two-dimensional electron density distribution is given by

equation (II-31). The electron density distribution is said to be

projected onto the y-z plane. '

p(y,z) = J per) dx

Substituting equation (II-25) into (II-31) yields:

(II-31)

p(y,z) = J [ J F(q)exp[-2ni(qxx+qyy+qzz) d'q ] dx

Rearranging the integrand

19



p(y,z) = J F(q)exp[-2ni(qyy+qzz)] x

[ Jexp[-2niqxx] dx ] dqxdqydqz

and using the definition of the delta function

we obtain:

p(y,z) = J [ J F(q)exp[-2wi(qyy+qzz)]6(qx) dqx] x
dqydqz

Evaluating the integral over x yields equation (11-32).

p(y,Z) = J F(O,qy;qz)exp[-2ni(qyy+qzz)] dqydqz
(11-32)

Thus, the Fourier transform ot the structure factor in the qy-qz

plane is just the projection ot the electron density distribution onto

the y-z plane. From (II-32) we can directly write the inverse

Fourier transform.

(II-33)

The Fourier transform of the electron density distribution projected

onto the y-z plane is the structure factor in the qx-qy plane.

The above procedure is applied a second time to calculate the

The two dimensional electron density distribution is

projected onto the z axis by integrating along the y axis. The

20



resulting one dimensional electron density distribution is called the

electron density profile p(z).

p(z) = J p(y,z) dy (II-34)

Substituting equation (II-32) yields:

p(z) = J [ J F(O,qy,qz)exp[-2ni(qyy+qzz) x

dqydqz] dy

Rearranging the equation and substituting for the delta function.

p(z) = J F(O,qy,qz)exp[-2niqzZ] •

[ Jexp[-2niqyy] dy] dqydqz

Integrating over y yields:

p(z) (II-3S)

Thus, the electron density profile is the Fourier transform of the

structure factor along qz. Consequently, the inverse Fourier

transform yields:

F(O,O,qz) = J p(z)exp[2niqzZ]dz (II-36)
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F(O,O,qz) is commonly also referred as F(O,O,') or F(O,O,q..L.).For

simplicity let us replace F(O,O,qz)with F(qz) with the understanding

that F(qz) is not analogous to p(z) (in as much as p(z) is a

projection of a three-dimensional distribution onto the z-axis), but

merely represent.s the structure factor along the qz-axis.

Rewriting equations (II-~5), (II-36) and extending the above

formalism to equations (II-29), (II-30), (II-26), (11-28) result in the

basic equations of one-dimensional scattering theory (II-37), (II-38),

(II-39), (II-40), (II-41), (II-42).

F(qz) = J p(z) exp[2wiqzz] dz

J F(qz) exp[-2wiqzz] dqz

f P(z) exp[2wiqzZ] dz

(II-37)

p(z) = (II-38)

= (11-39)

P(z) = f I(qz) exp[-2wiqzZ] dqz

F(qz) F*(qz)

(II-40)

(II-41)

(II-42)

I(qz) =
P(z) = p(z) * p(-z)

Since

2wq • k - k' (II-43)

and the magnitude of the incoming (incident) wave vector is the same

as that of the outgoing (scattered) wave vector (ie. elastic

scattering):
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k = k'

we can derive an expression for the magnitude of q where 29 is the

angle between the incident and scattered waves.

2'11'Q= 2ksin9 (II-44)

Given:
k • 1

1t

= ~
A

then Iq I (in units of reciprocal length) is given by:

q = 28in9-A (II-45)
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Part 111. Diffraction fro. Infinite Systeas
Scattering from an electron density distribution (in the case of

x-rays) which is composed of a repeating subunit (or unit cell) is

known as diffraction. Diffraction maximaresult from the constructive

interference of particle waves scattered from the individual

scattering centers. For a Bravais lattice with lattice vectors given

by:

R (11-46)

where ai, a2, as are the primitive vectors of the Bravais lattice, and

(k - k~) • R = 2nm (11-47)

nil nar ns are integers, the· condition for constructive interference

requires:

where m is an integer. This condition can be written in a more

conventional form:

exp[i(k - k~) • R] = 1

The above expression is the von Laue formulation of diffraction by a

crystal.

The reciprocal lattice vector is defined as:

Q (11-48)

lattice and k.,k:"ks are integers. The primitive vectors of the

and bub.,bs are the primitive vectors of the reciprocal Bravais

reciprocal lattice are defined in terms of the primitive vectors
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al ,a2,as as follows:

= aa x al
al · (a2 x as)

al x a,
al · (a2 • as)

a, x al
al · (a2 x as)

(II-49)

= (II-50)

= (II-51)

In addition:

at • bJ = 6tJ

where 6t J is the Kronecker delta:

6t J = 0 i~J I'

6t j = 1 i=J

(II-52)

Diffraction "can be easily visualized by a geometric construction

known as Ewald's sphere of reflection (see figure 1). Let us define

the origin in reciprocal space to be the point 0 and the reciprocal

coordinate axes to be defined by the unit vectors ;x,By,;z' Construct

a sphere of radius II). whose surface intersects the reciprocal origin

and whose center is point c. This is Ewald's sphere. Let rt

represents the incident wave given by k/271'. Our reciprocal lattice

has coordinate axes defined by unit vectors q.,qy,qz ; its origin must

coincide with point o. k/271' (the scattered vector) is represented by

If q = Q, then the condition for constructive interference

the vector rt where s must be a point on the surface of the Ewald's

sphere if the scattering is elastic. q therefore is represented by the

vector n.
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(equation II-47) is fulfilled since (with II-43, II-48, II-52):

(k - k') • R = 2w Q • R

= 2W(D1k181·bl + Daka8a·ba
+ D,k,8s·bs)

= 2711D

m must be an integer since nuna,n, and kukuk, are integers. In

other words, constructive interference from the lattice planes (in real

space) perpendicular to the reciprocal lattice vector Q requires the

surface of Ewald's sphere to intersect the reciprocal lattice point

defined by the reciprocal lattice vector Q. These lattice planes are

indexed by kl ,ka,k, as is the reflection produced by the constructive

interference.

Generally the reciprocal, lattice points do not intersect the

surface of Ewald's sphere! for any q, and the condition for

constructive interference is· not met. For monochromatic light

sources there are three options to overcome this problem. One can
!;",

reciprocal lattice (ie. rotate the crystal), or rotate both the light

rotate Ewald's sphere (ie. rotate the light source), rotate the

source and the crystal. In practice, the second option is the most

practical. •i
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Consider the following electron density distribution for a one

dimensional crystal of periodicity d in the z direction:



+-
p(qz) = L6(Z-'d)-- (II-53)

Using equation (II-37) to yield (see appendix I):

-
F(qz) = L6(qz- a )-. (II-54)

From the above expression, F(qz) ~ 0 if and only it qz='/d.

If we use equation (II-45), we have F(qz) ~ 0 it and only if:

2sin9, =
x

Thus we have a reciprocal lattice of periodicity lid. The above

2dsin9, = '" (II-55)

expression can be rearranged to give· Bragg's law in its usual form:

In terms of Ewald's sphere of reflection (figure 1) we need only

consider the Sx-Sz plane it we choose the incident beam in the Sx

direction. l1t thus lies along the Sx axis. We define the angle

between ;x and qx to be tJ. By rotating the crystal around the qy

axis we are able to intersect the reciprocal lattice points (located at

27

lId) with Ewald's sphere at point s, This is a function of both (OCS

and tJ. (OCS by definition is equal to 29 (equation II-43). Since we

are rotating only about the CIy axis, the angle between Bz and qz is

also tJ. Simple geometry leads us to conclude that "'=9; '" and 29 are

said to be coupled (ie. they are not independent variables). This

forms the basis of the so called 9 - 29 scan. For ",=0 the only



reciprocal lattice point to intersect the surface of Ewald's sphere is

the origin ('=0); thus 28=0-. The reciprocal lattice will intersect the

surface of Ewald's sphere at the origin and at qz='/d if we rotate

the crystal around the qy axis until G1=G1,i this corresponds to (ocs =

reflections. Let us begin by defining our Bravais lattice vector

We can instead use von Laue's formulation for diffraction from an

infinite crystal to solve the problem of the one dimensional crystal

aligned along the z axis. We start by constructing a simple three

dimensional crystal and consider the reciprocal lattice vectors for

kl=k3=0 and ks='. Thus we choose to observe only the (00')

(equation II-46):

R = nlal + Daa2+ Dsas

where al = x

a2 = Y..
as = z

and Ds = d

thus
A .. A

R = DIX+ DaY+ dz

"
For constructive interference to occur (le. q = Q) we have from

Equations (11-48) through (II-51) let us define our reciprocal

lattice vector.

Q =

equations (II-43) and (II-47):
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27r R • Q = 21rJ11 (m=integer)

Substituting for Q and R, we conclude that , must be an integer.

With the help of equations (II-43) and (II-45) we again obtain

Bragg's law:

The reflection observed for:

~, = 9, = sin-1 [ ~~ ]

corresponding to

[ 2nd]29, = 2sin-1

arises from the constructive interference from the family of real

space planes perpendicular to Q. Thus, constructive interference

between the (00') lattice planes, where the distance between the

planes is d/'. gives rise to the (00'> reflection.
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Figure 1

The intersection of Ewald's sphere of reflection with the sx-sz is

shown. A one-dimensional reciprocal lattice along the qz is rotated

by an angle" with respect to the ~z axis, causing the 1=10reciprocal

lattice point to intersect the surface of the Ewald sphere. The von

Laue conditions for constructive interference are thus satisfied tor

1=10. Refer to the text for a complete discussion.
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figure 1
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EWALD1S SPHERE OF REFLECTION
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Part IV. Diffraction fro. Finite Systa.s

The meridional intensity function for a multilayer composed of N

repeated unit cells containing a bilayer with a unit cell translation

vector along the z direction of magnitude d is given by the following

equation:

(II-56)

where
+.

= [ cJ [ qz - -a ] * I B ( qz) I 2•=-. (II-57) .

and

Fuc(qz) = unit cell profile structure factor

ILn(qz)12 = the reciprocal lattice or interferance function for
the multilayer profile

= Fourier transform of the multilayer profile box
function

= incident beam-shape function

The Fourier transform of· equations (II-56) and (II-57) (using

equation II-38) yields the multilayer profile Patterson function

(equation II-58) (i.e. the multilayer profile autocorrelation function)

and the multilayer profile lattice autocorrelation function respectively

(equation II-59).

Pml(Z) = [[Puc(z) * Puc(-z)] * in2(z) ] • w(z)

(II-58)

and
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=
+.
~(z-nd) • b2(z)

n=-· (II-59)

where

Puc(z) = average unit cell electron density profile

b(z) = multilayer profile box function

w(z) = Fourier transform of the beam-shape function

and ln2(z) and b2(z) represent the autocorrelation of In(z) and

b(z) respectively.

For our multilayer composed of N repeated unit cells with its unit

cell translation vector along the z direction of magnitude d:

Puc(z) = 0 for Izl > d/2-·

and

b(z) = 1 for -Nd/2 < z ~ Nd/2
= 0 otherwise

Substituting equation (11-42) into (II-58) yields:

(11-60)

From the above definition of b(z) we can calculate IB(qz)12 to

obtain:

+Nd/2
IB(qz)12 = [ J exp[2wiqzz] dz ]2

-Nd/2
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= (Nd)2 [ sin nNdqz]2
nNdqz

The multilayer reciprocal lattice function ILn(qz) I2 (equation

II-57) is therefore just the superposition of sincl (7fNdqz) placed at

multiples of the reciprocal lattice vector lid. has

principal maxima at qz = '/d. Between adjacent principal maxima

ILn(qz) 12 has N-I local minima located at multilples of lINd, and N-2

local (auxiliary or secondary) maxima located approximately half way

between the local minima.

As the number of bilayers increases to large N, the Fourier

transform of the multilayer profile box function [B(qz)] approaches a

Dirac delta function. 'The reciprocal lattice or interference function

in turn approaches an infinite series of delta functions spaced at lid

along the qz-axis. The intensity function (equation II-56) is then

simply the modulus squared of the unit cell structure" factor

"sampled" at lid along qz, convoluted with the beam-shape function.

This is simply the Bragg diffraction limit.

For reasonably finite N the intensity function is composed of

diffraction maxima centered near the Bragg limit; the diffraction

maxima may be shifted since the unit cell structure factor modulus

squared is sampled by a superpostion of sincl(7fNdqz) (appendix II).

The intensity function may also contain distinct secondary maxima

depending on Nand W(qz)' The diffraction maxima broaden as N

decreases due to sinc2(7fNdqz) as well.
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As the number of bilayers decreases to N = 1, there is a

corresponding broadening and shifting of the diffraction maxima, at

which point I(qz) is no longer sampled [I Ln(Qz) I2 --+ constant] and

the observed intensity represents the modulus squared of the unit

cell or bilayer structure factor convoluted with the beam-shape

function.

From the equation (II-60) it can be seen that Pml (z) is

pseudoperiodic in d, and decays to zero at Iz I = Nd. This is not

surprising since the multilayer autocorrelation function for a finite

multilayer must of course also be finite. The finite size or extent of

the multilayer is mathematically incorporated into the above. formalism

through b(z). The Fourier transform of SI (z) gives rise to the sinc2

in the multilayer interference function which broadens the principal

maximaand is responsible for the appearance of secondary maximain

the intensity function. Sampling of the unit cell profile structure

factor modulus squared by·· the sinc2 also shifts the diffraction

maximafrom the Bragg limit positions (appendix II).
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CHAPTER TBIlKE: SAMPLE PREPARATION AND X-RAY METHODS

Part I. Multilayer Preparation

MuItilayers samples were prepared by depositing successive

monolayers of various carboxylic acids using the Langmuir-Blodgett

technique [1-4] onto a flat glass substrate which was made

hydrophobic by covalently binding an octadecyltrichlorosilane (OTS)

monolayer to its surface [3-1]. The arachidic and myristic acids

(Aldrich) had been zone refined with 50 zone passes at a rate of 1

cm/hr and the purity ( >99.995%)of the center fraction confirmed by

Dsa measurements (Dupont 990). Triple distilled water was used in

all stages ot the preparation, including distillation over KMn04 to

remove organic contaminants.

The Lauda (Messgeriite-Werk, FRG)Langmuir system used for the

deposition process consists of a trough having dimensions of 700 mm

x 150 mm • 6 mm (l,'W,d), a movable barrier perpendicular to the

long-axis of the trough, a stationary barrier parallel to the movable

barrier, a film balance, and electronics to drive the movable barrier,

measure the surface pressure, and to monitor the temperature of the

system. The stationary barrier separates the reference surface from

the surface on which the monolayer of interest is spread (film

surface). The monolayer is contained within the area defined by the

two long axes of the trough and the stationary and movable barriers,

with the maximumsurface area of the film surface being ... 560 cm2•

The film balance measures the differential pressure on the stationary

barrier. This differential pressure is the result of the net force
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exerted on the stationary barrier by the reference and film surfaces.

As a monolayer is compressed by the movable barrier, the differential

pressure· measured by the film balance increases. A feedback

mechanism adjusts the position of the movable barrier to maintain a

constant surface pressure during the deposition process.

Prior to deposition, the trough is clean with chloroform. After

twenty minutes (ample time·for all the chloroform to evaporate) the

trough is filled with triple distilled water. The water surface

between the barriers is first aspirated to remove any surface

impurities, and then "compressed"; surface impurities result in a

non-zero differential surface pressure measured between the

reference surface and the film surface. Impurities resulting in

pressures of < 1.0 dyne/em for a film surface of "'15 cm2 are

acceptable.

The carboxylic acids used in this study are solubilised in

chloroform [lmg/ml). A monolayer (2.025 x 1017 molecules) is spread

upon the clean (see above) water surface between the stationary and

movable barriers, and stabilized for three minutes to allow for the

chloroform to evaporate. Routinely a pressure versus surface area

isotherm of the carboxylic acid is measured to ascertain the purity of

the carboxylic acid. The shape and collapse pressure of the isotherm

are very reliable indicators .as to the quality of the film. After the

monolayer film collapses, the water surface is cleaned by aspiration

and a second film is spread. After the film is stabilized and

compressed to a given constant pressure, it is allowed to equilibrate
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for twenty minutes.

Figure ·..2

[CHs-(CH2)la-COOH]

shows the

(bottom)

isotherms

(top).

for arachidic

pentacosadiynoic

These isotherms

acid

acidand 10,12

are

characteristic of the two compounds, with 10,12 pentacosadiynoic acid

[3-2] exhibiting a broad sigmoidal-like isotherm with a collapse

pressure of 57 dyne/em and the arachidic acid exhibiting a sharper

curve with a collapse pressure of 61 dyne/em.

The multilayers used in the first part of this study consist of a

homologous series of arachidic acid multilayers. The arachidic acid

monolayer was kept at a constant surface pressure of 20 dyne/em

and a temperature of 11.5·0 during the deposition; the subphase was

a ImMOdCI:asolution of pH < 6.0. The substrate was dipped through

the monolayer at a rate of 3.0 mm/min.

Since the OTS covered substrate is hydrophobic (due to· the

covalently attached alkane chains), a monolayer of arachidic acid is

deposited onto the substrate surface as the substrate is lowered

through the· arachidic acid monolayer into the sub-phase. As the

specimen (its surface now hydrophilic from the fatty acid carboxyl

groups) is raised from f.he sub-phase through the arachidic acid

monolayer, a second monolayer of fatty acid is deposited onto the

substrate, leaving a hydrophobic surface. This process may be

repeated several times to create a variable number N of arachidic

acid bilayers. The multilayer specimens in this study consisted of

one, two, three and five arachidic acid bilayers.
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----------------------

Two sets> of multilayers were used in the second study. They

were 1) finite sequences of arachidic acid (A) and myristic acid

[CHs-(CH2) sa-COOH] (M) monolayers and 2) finite sequences of arachidic

acid and 10,12 pentacosadiynoic acid (D) monolayers. The carboxylic

acid monolayers were deposited at a temperature of 17.5·0 at a

constant surface pressure of 15 dyne/cm for the myristic acid and 20

dyne/cm for the arachidic acid and the 10,12 pentacosadiynoic acid;

the subphase was a 1 mMOdOl2 solution of pH < 6.0.

The first set of multilayers consist of two arachidic acid

monolayers deposited onto the glass-OTS substrate followed by the

deposition of either a) two arachidic acid monolayers to yield two

arachidic acid bilayers (AAAA),b) one arachidic acid monolayer

followed by a myristic acid inonolayer to yield three arachidic acid

monolayers and one myristic acid monolayer (AAAM),or c) two

myristic acid monolayers to yield an arachidic acid bilayer followed

by a myristic acid bilayer (AAMM).

The second set consists of a DDDAmultilayer. The insert (upper

right) in figure 2 shows partial isotherms for 10,12 pentacosadiynoic

acid (left) and arachidic acid (right) for this deposition. After three

monolayers of 10,12 pentacosadiynoic acid were deposited onto the

glass-OTS substrate, the film surface was aspirated and cleaned,

while the multilayer (glaas-OTS subtrate plua three monolayers of

10,12 pentacosadiynoic acid) were below the film surface. A

monolayer of arachidic acid was then spread onto the water surface

and equilibrated. As the multilayer was raised from beneath the
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surface e- the final arachidic acid monolayer was deposited onto the

multilayer.

Following deposition the 10,12 pentacosadiynoic acid monolayers

in the DDDAmultilayer were polymerized with uv light to form

diacetylene polymer (the polyene polymer chains being perpendicular

to the monomer hydrocarbon chains) [3-2, 3-3].

After data was collected on the DDDAmultilayer it was washed

for three minutes in 10 mMNaOHto remove the surface arachidic acid

monolayer. The resulting DDDmultilayer was then further studied.
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Figure 2

Isotherms for arachidic acid [CH,-(CHa) .. -COOH] (top) and 10,12

pentacosadiynoic acid [CH,-(CHa)lI-C.C-C.C-(CHa).-COOH] (bottom) are

shown. The pressure where each film collapsed in indicated by the

diagonal arrows at the top of each isotherm. The insert shows

partial isotherms of 10,12 pentacosadiynoic acid (left) and arachidic

acid (right) obtained during the deposition of the DDDAmultilayer.
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Part II. X-Ray Diffraction Methods

Meridional x-ray diffraction was observed as a function of qz

[Iqz I • (2sin9)/"] (II-45) corresponding to elastic momentumtransfers

parallel to the z-axis perpendicular to the substrate plane," The

incident x-ray beam defines an angle omega (tJ) with the substrate

plane (x-y).

The multilayers were positioned on the tJ axis of a two-axis

diffractometer with a low impedance, position-sensitive linear detector

(PSD) [3-4, 3-5] mounted on the 28 axis. The linear detector was

aligned along the qz direction. An Elliott GX-6 rotating anode x-ray

generator was used to produce OuKx-rays at a target loading of ...

2.5 KW/mmt. Nickel filters were used to select the OuKcxline ("=1.54

A) which was Une focused parallel to the multilayer plane with

Frank's optics [3-6, 3-7]. X-ray beam width and the PSD system

resolution result in a 4qz resolution of .... 003A-I. The tull beam

line height (3 mm)was accepted by the PSD over the entire qz range

tor the multilayer specimens investigated due to their small mosaic

spread (see below).

Specimens were kept at room temperature (23-25-0) and at a

relative humidity of < 0.1% in a sealed canister. Helium paths with

thin aluminum toil windows were used to reduce air scattering along

the incident and scattered beam paths.

Omega scans (4Co1 = .02-) consisting of two minute exposures per

omega value were done on each specimen over an omega range from ...

•5 to 6.5 degrees. Each full scan took approximately 10 hours and
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was controlled by a Digital Equipment Corporation PDP 11/24 computer.

The sum ot these exposures form a composite pattern which

represents the meridional intensity function I(O,O,qz)' As the value

of omega is decreased below ... 0.8-, specular scattering due to the

glass-OTS surface predominates and begins to saturate the detector.

Scattering in this region of momentum transfer space arises only

from the substrate and the interference between arachidic acid

bilayers and the substrate. Due to this intense specular scattering

from the substrate, the intensity functions were truncat.ed for qz <

... O.OlA-I. Thus the electron density profiles derived represent

relative and not absolute electron densities.

A plot of the integrated intensity of a diffraction maximumat qz

... lId, where I is an integer and d is the average periodicity in

Angstroms ot the multilayer projected onto the z-axis, versus omega

gives a "rocking curve" for diffraction maximum I whose FWHMis a

measure of the mosaic spread of the multilayer. Rocking curves for

I = 1, 2, 3 for N=5 and I = 2, 3 for N=l are shown in figure 3,

where N refers to the number of arachidic acid bilayers in the

multilayer. The rocking curve for the first maximumtor N=l could

not be' measured as accurately since the specular scattering

contributes considerable intensity in the region of momentumtransfer

space qz ... lId for this multilayer.

Each rocking curve is a composite ot a strong, narrow feature at

GI=eh for diffraction maxima , centered on a weak, broad feature

extending over O·SCJs29h• The measured mosaic spread for the narrow
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feature in each rocking curve is "'0.13· and is "'1.50· for the broad

feature. The narrow features in the rocking curves are most likely

due to the well-oriented domains of the multilayers and the broad

features are probably a result of misoriented components. The

relative contribution of oriented versus misoriented domains in the

multilayers remain fairly constant for N=1 to 5. The measured mosaic

spread of the specular scattering from a OTS-glass substrate alone is

"'O.OS· since the beam is focused along qz at the face of the detector.

Hence, beam convergence at the specimen contributes to the measured

mosaic spread of the multilayers.

As mentioned above, specular scattering due to the OTS-glass

substrate predominates the meridional intensity function at qz ~ '"

0.02A-l. It is possible to fit the intensity function derived from an

OTS-glass sample with two exponentials over the range of qz utilized

in these studies. A quickly decaying exponential can be fit to the

very low angle OTS-glass specular scattering, while a slowly decaying

exponential function can be fit to the higher angle part of the

intensity function to correct for substrate background scattering

(figure·4). Similar exponentials were used to correct the meridional

intensity functions of the one, two, three and five bilayer multilayer

specimens. ,The first observable dittract.ion maximaof the intensity

function for the one. bilayer specimen appears as a shoulder at

qz"'0.02A-l on the more intense specular scattering at smaller qzo

This shoulder. can be resolved by subtracting the quickly decaying

exponential ot the specular scattering from the intensity function of
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the one bilayer sample. The intensity functions for the two, three

and five bilayer samples exhibit a much better resolved first order

diffraction maximum. This occurs since the contribution to the

intensity function from the multilayer increases quadratically with the

number of bilayers, while· the contribution from the specular

scattering stays nearly the same. This background scattering

correction causes unavoidable errors in determining the relative

magnitude and shape of the first diffraction maximumespecially for

the one bilayer specimen. Data from one bilayer samples collected

with a SIT two-dimensional detector [3-8, 3-9] using synchrotron

radiation aided in the background scattering correction for the one

bilayer data due to the very different two-dimensional shapes of the

diffraction maxima observed from the specimen and the specular

scattering from the substrate.

A Lorentz correction of qz was applied to the intensity function

to correct for the oscillation of the multilayer in the CJ-scan [2-3].

Since the specimens have a thickness ranging between ... 50A and

300A,no absorption correction is required for the'" range used. The

qz Lorentz correction fixes the origin in momentum transfer space,

errors in which will change the relative magnitudes of the diffraction

maxima in the corrected intensity function, Io(qz). For the two,

three and five bilayer data sets, a plot of the diffraction order

number versus the center of mass of the meridional diffraction

maximumin channels gives a reasonable first estimate of the origin

as the x-intercept, while a good approximation of the average
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periodicity of the multilayer profile can be deduced from the slope.
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Figure 3A and 3B

The rocking curves for the five bilayer multilayer are shown in

figure 3A with the solid line the rocking curve for '=1 (attenuated

by a factor of 10), the dotted line the rocking curve for '=2, and the

dashed line the rocking curve for '=3. The rocking curves for the

one bilayer multilayer are shown in figure 3B with the dotted line

the rocking curve for '=2 and the dashed line the rocking curve for

'=3.
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Figure 4

The solid line shows the OTS-scattering observed as a function

or relative CJ, fitted with two exponential functions (dotted line). For

CJ < ... 0.2- scattering from the OTS-glass substrate exceeds 10· cps.

The detector is count rate limited and begins saturate at a count

rate above ... 1.5 lC 10· cps.
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CHAPTER roUR: ImSULTS

Part I. Arachidic Acid Multilayers

Figure 5 shows the corrected meridional intensity functions for

the one, two, three and five bilayer arachidic acid specimens. Note

that as the number of bilayers decreases the diffraction maxima

broaden, until continuous diffraction is observed for N = ·1. This

broadening of the diffraction maxima are a direct result of B(qz)

(equation II-57) and consequently of b(z) (equation II-59). Also

observe that as N decreases, diffraction maxima two and three, and

diffraction maximafour and five, shift together. (Appendix II)

The Patterson or multilayer autocorrelation functions for the one,

two, three, and five bilayer specimens are shown in figure 6. The

Patterson function must also be sensitive to the total size or extent

of the multilayer along the z-axis and to a first approximation are

pseudoperiodic and decay nearly linearly to zero at z = *Nd. This

property of Pili1(z) was used iteratively to refine the origin of Io(qz).

Oscillations· in the Patterson functions for z ~ *Nd are a result of

errors in determining the magnitude and shape of the first maximum

in the corrected intensity functions and the truncation of the data

for qz< O.OIA-l due to the intense specular scattering from the

substrate in that region of reciprocal space.

As can be seen in the aforementioned figures the intensity and

Patterson functions are very sensitive to the number N of bilayers in

a given multilayer thin film for sufficiently small N relative to W(qz).
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Figure 5

The Lorentz qz-corrected, meridional intensity functions for one, two,

three, and five bilayer arachidic acid multilayers (from top to bottom)

are shown by the solid line. The first maxima of the corrected

intensity functions have been scaled to unity. The dotted lines (for

N = 1, 2, 3) represent intensity functions calculated from the

multilayer electron density profiles derived by the box refinement

technique.
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Figure 6

The multilayer profile Patterson functions for one, two, three, and

five bilayer arachidic acid multilayers (from top to bottom) are shown

by the solid lines. The dotted lines (for N = 1, 2, 3) represent the

multilayer profile Patterson functions calculated from the multilayer

electron density profiles obtained by the box refinement procedure.
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Part II. Arachidic Acid, Myristic Acid, and 10, 12 Pentacosdiynoic
Acid Mixed Multilayers

Figure 7 shows the corrected intensity functions for the AAAA,

AAAM,and AAMMmultilayer films. All the corrected intensity

functions in figure 7 are indicative of asymmetric multilayer profiles

of finite size or extent. The non-zero minima between diffraction

maxima indicate that the profiles are asymmetric (see discussion in

appendix V) while the broad shape of the maxima results from their

finite extent. The meridional x-ray diffraction from multilayers

composed of periodic sequences of monolayers should contain the

most pronounced constructive and destructive interference effects.

Such interference effects should be diminished in the diffraction from

multilayers composed of non-periodic sequences of monolayers. The

AAAAmultilayer to first approximation is periodic composed of two

arachidic acid bilayers; diffraction from the multilayer consequently

contains stronger interference effects than the AAAMand AAMM

multilayers. The AAAMmultilayer corrected intensity function is

similar to the AAAAmultilayer corrected intensity function except for

the somewhat lesser relative magnitudes of the diffraction maxima at

higher qz. The corrected intensity function for the AAMMmultilayer

differs considerably from the corrected intensity functions of the

AAAMand AAAAmultilayers with diffraction maximaof lesser relative

magnitudes at higher qz and less-defined diffraction minima.

Autocorrelation functions for the AAAA, AAAM, and AAMM

multilayers are shown in figure 8. These typical multilayer profile
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autocorrelation functions decay monotonically to essentially zero for Z

> Zmax which defines the extent of the multilayer profiles. Zmax was

found to be 96A, 10BA, and 116A for the AAMM,AAAM,and AAAA

multilayers respectively.

contain small amplitude

The multilayer autocorrelation functions

low-frequency oscillations around the

zero-baseline for Z > zilla" due to errors in the corrected intensity

functions for qz S "'0.02A-1• These errors are a consequence of the

background scattering correction.

The corrected intensity functions for the DDDA and DDD

multilayer thin films are shown in figure 9. Since the DDDA

multilayer to first approximation is composed of two bilayers, the

corrected intensity function exhibits some of the features of a N=2

diffraction pattern. One observes only scattering (ie. no

interference) from the DDDmultilayer since it is not composed of

repeating unit cells. Note the absence of distinct zero-minima in the

corrected intensity function for the DDDmultilayer.

The multilayer autocorrelation functions for the DDDAand the

DDDmultilayers are shown in figure 10. The autocorrelation function

calculated for the DDDA multilayer has pronounced positive

correlations for Z ... ZIIIU ("'UOA) while the autocorrelation function

calculated tor the DDDmultilayer has only negative correlations for z

... zmax (90A).
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Figure 7

The background and Lorentz-qz corrected intensity functions for the

AAMM(top), AAAM(middle), and AAAA(bottom) multilayers are shown.

Due to the relatively low signal to noise ratio of the AAMMand AAAM

intensity functions when compared to the AAAAintensity function,

the AAMMand AAAMintensity functions were smoothed.
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Figure 8

The Patterson functions for the AAMM(top), AAAM(middle), and AAAA

(bottom) multilayers. Note the shift to larger absolute Z ot the

positive correlation at Iz I ... BOA as the multilayer increases in

overall size (top to bottom).
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Figure 9

The corrected intensity functions for the DDDAmultilayer (top) and

the DDDmultilayer (bottom) are shown. The scattering from the

DDDAmultilayer has some of the characteristics of the diffraction

observed from a two bilayer multilayer for qz < .075A-'. Note in

particular the zero or nearly zero minima between the maxima for qz

< .075A-'. Scattering from the DDDmultilayer is continuous over the

full range of qz measured.

66



od:~~----~~~~--~--~~--~------r-----~
0.000 0.025 O.O~O 0.07S 0.100 0.12S 0.lS0RECIPROCAL ANGSTROMS

INTENSITY FUNCTIONSDDD~ (top) v.rsus DDD (bOttOM)

67



Figure 10

The Patterson functions for the DDDA(upper) and the DDD (lower)

multilayers are compared. Note the disappearance of the positive

correlation at Iz I ... 110Ain the DDDPatterson function.
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CBAPTER FIVE: ANALYSIS

Part I. Arachidic AcidMultilayers

It. is possible to uniquely reconstruct the unit cell Patterson

[Puc(z)] provided that the Patterson function for the multilayer

profile is bounded (appendix III) [2-3, 5-1, 5-2]. If one assumes Puc

to be centrosymmetric around an origin [i.e. puc(z) = puc(-z)] the

unit cell Patterson [Puc(z)] in turn can be deconvoluted uniquely' to

give the electron density profile [puc(z)] for the unit cell (or the

average bilayer in the multilayer) by a recursive deconvolution

method (appendix IV) [1-20, 2-3, 5-2]. Since the recursive

deconvolution propagates errors, the final electron density profile is

obtained by phasing (appendix V) the Lorentz-corrected intensity

function [Io(qz)] and selecting the best phase combination which is

most consistent with the electron density profile for the unit cell

derived by the recursive deconvolution method.

Figure 11 shows the unit cell Patterson function for the two,

three and five bilayer multilayers reconstructed from the multilayer

Patterson function using the method of linear equations (appendix

III). The linear equations were applied from 0 < z < d.

Figure 12 shows the electron density profiles for the average

bilayer for the two, three, and five bilayer multilayers derived by

the unit cell Patterson recursive deconvolution outlined above.

Errors in these profiles propagate from right to left: hence the

asymmetry of the functions.

Figure 13 shows the electron density profiles for the average
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bilayer for the two, three and five bilayer multilayers derived by the

correctly phased Fourier synthesis (appendix V). All three rather

typical electron density profiles exhibit a peak region of relatively

high electron density for 0.0 S Iz I S 4.5A containing the -COOB polar

headgroups, plateau regions of intermediate relative electron density

near the mean for 4.5A , IzI '12.0A containing the hydrocarbon

chain [-(CHa) .. -] groups, and trough regions of relatively low

electron density for 21.0A , Iz I , 29.5A containing the terminal

methyl groups (-CBs). For these bilayers, the multilayer periodicity

is the methyl group separation across the bilayer profile. Note the

close similarity in detail of the profiles derived by recursive

deconvolution and those derived by the correctly phased Fourier

synthesis.

As N decreases, there iss a corresponding decrease in the

multilayer periodicity of the average bilayer profiles as evidenced by

the decrease in the methyl group separation distance across the

bilayer profile. For N = 5, 3, 2, the periodicities are 55.9A,54.4Aand

52.9A respectively. In addition to a decrease in multilayer

periodicity. a broadening Of. the methyl trough regions. into the

neighboring hydrocarbon chain plateau regions and a subsequent

decrease in the depth of the methyl trough regions are observed as

the number of bilayers decreases. These changes in the hydrocarbon

core region of the average bilayer profile with decreasing N are

similar to those accompanying "kink" formation (time-average or

ensemble average) in all trans hydrocarbon chains [5-3]. For
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example, figure 14 shows the electron density profiles for a

dipalmitoyl phosphatidylcholine (DPPO)bilayer at 35·0 and 49·0, the

former being below the phase transition temperature for chain

melting of 41·0, the latter above. Note that within the hydrocarbon

core regions of the profiles, the melted DPPO profile (dotted line)

exhibits many of the features (due to the time-average "kink"

formation in the fatty-acid chains) of the N = 2 electron density

profile of arachidic acid while the frozen DPPO profile displays the

features (due to the all trans configuration of the fatty-acid chains)

of the N = 5 electron density profile of arachidic acid. In particular,

note the similarly decreased average hydrocarbon chain length and

broadened methyl trough features in both the melted DPPO and

arachidic acid N = 2 electron density profiles.

Assuming that the electron density profile for a bilayer structure

is centrosymmetric and repeated N times in the multilayer profile

becomes less valid as the number of bilayers in the multilayer thin

film decreases. The fact that the background scattering corrected

intensity function Uo(qz)] for N = 2 and 3 (figure 5) is substantially

non-zero between some adjacent diffraction maxima strongly suggests

that the corresponding multilayer electron density profile may be

asymmetric, inasmuch as the non-zero minima would disallow the

phase of the structure factor· to change at that value of qz (see

appendix V). A model for the multilayer electron density profile for

N=2can be constructed by extending the electron density profile tor

the average bilayer (figure 13) to two bilayers (dotted line, figure
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15). This centrosymmetric model for the multilayer profile yields the

intensity function shown by the dotted line in figure 16. This figure

shows the derived intensity function after convolution with the

incident beam shape function, W(qz). The intensity function shows

auxiliary maxima between major diffraction orders; convolution with

W(qz) supress the secondary maxima and introduces a non-zero

"baseline" to the intensity function. Note, all the minima in the

calculated intensity function for this centrosymmetric model are zero

with respect to this baseline.

The direct Patterson function deconvolution method is limited in

that it determines only the electron density profile of the average

unit cell or bilayer in the multilayer. It cannot accommodate bilayer

structures where the monolayer profile structures differ from one

another; in particular, it cannot distinguish between the first

monolayer on the alkylated substrate as compared to the last

monolayer at the air interface. In general, it is impossible to phase

asymmetric structures of infinite extent (N > 10, dependent on W(qz»

unless some special technique (e.g. isomorphous replacement) is

employed. However, for finite systems (i.e. where the one-dimensional

Fourier transform of the corrected intensity function [Io (qz)] gives a

bounded multilayer Patterson function the box-refinement procedure

(appendix VI) can be used to determine the multilayer electron

density profile P1111 (z) [1-22].

This technique assumes a given phase for each point in qz

derived from the Fourier transform of some arbitrary "trial" function.
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These . phases are combined with the modulus of the multilayer

structure factor JFm1 (qz) J and Fourier transformed to give an initial

electron density profile Pm 1(z). This electron density profile is in

turn set to zero outside a box b(z) whose width is at least that of

the multilayer profile. This truncated electron density profile

becomes the new trial function and the process is repeated

iteratively until the refinement converges. (As noted earlier, the

intensitY' function, and thus JFm1(qz)J are sensitive to the finite

extent of the sample. The broadening and shifting of the intensity

maxima from the Bragg limit provide this information). The width of

the box b(z) can be determined from the multilayer Patterson

function; Pm.<z)must be zero for JzJ larger than the maximumextent

of p .. .<z) due to b(z). It is the finite extent of the multilayers in z

that provide the strong constraint needed for the box refinement

technique to coverage to a solution for the multilayer profile Pm1 (e),

The refinement continues until it has found a phase combination that

will produce a multilayer electron density profile which is zero

outside the box. UnfortunatelY' there is no guarantee that the

solution derived from the box refinement is unique; in fact, there are

likely to be several "local" solutions that satisfy the box constraint

[1-23]. The final solution may ultimately depend to some extent on

the initial trial function. The trial function used in this analysis was

the sum of a cosine and sine wave with a wavelength on the order of

twice the total extent of the multilayer profile as derived from the

multilayer Patterson function. Various other trial functions were also
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tried' (f.e, ramp functions of various sizes, pulse function of different

widths) which refine to qualitatively similar multilayer profile

structures.

The one, two and three bilayer multilayer systems were

investigated with the box refinement technique. The three corrected

intensity functions Io(qz) were refined to multilayer electron density

profiles which exhibited features common to each multilayer electron

density profile, as well as exhibited features common to each

monolayer within the multilayer electron density profiles. Figure 17

shows the resulting multilayer electron density profiles (i.e.

continuous profiles) for N = 1, 2, 3 after twenty iterations from the

box refinement technique. The figure also shows the trial function

used in each refinement as well as the "box" used in applying the

boundary constraint.

The continuous electron density profiles for the N = 3 multilayer

shows well-defined methyl troughs at z = OA, 54A, l09A; relatively

flat hydrocarbon chain regions for -24A < z <-5A, 2A < z < 16A, 30A

< z < 37A, 57A < z < 68A, 85A < z < l04A; carboxyl peaks at z = -30A,

23A, 78A; and a disordered, poorly defined methyl trough at z = 70A.

The profile for N = 2 shows well-defined methyl troughs at z = OA

and 53A; relatively flat hydrocarbon chains regions for -24A < z <

-4A, 4A < z < 20A, 28A < z < 49A; carboxyl .croups at z = -29A and

27A; and a disordered methyl trough at z = 53A. Finally, the profile

for N = 1 shows a well-defined methyl trough at z = OA; a relatively

flat hydrocarbon chain region for -5A < z < -26A; a carboxyl group
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at z = -31A; and a disordered methyl trough at z = -57A. In general,

a multilayer profile consisting of N arachidic acid bilayers exhibit N

equally-spaced well-defined methyl troughs, N equally-spaced

well-defined carboxyl peaks and one ill-defined and broad methyl

trough at one end. The broadening of this trough causes the

hydrocarbon chain region adjacent to the trough to become non-flat.

The mean carboxyl-methyl trough distance is 27A.
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Figure 11

The unit cell Patterson functions for the five (- - -), the three

(-----), and the two ( ) bilayer arachidic acid multilayers

reconstructed from the respective multilayer Patterson functions

(figure 6) are shown. The three unit cell Patterson functions are

typical for fatty acid multilayers with the sharp negative correlation

at z = * d/2, and the sharp positive correlation at z = * d.

77



F"igure 11

c

-60. -40.

c•r'~------~------r-----~-------r------~----~60.-20. o. 20.ANGSTROMS 40.

UNIT CELL PATTERSON
N=2,J,5 orochidiC ocid

78



Figure 12

The electron density profiles for the average bilayer for the five (-

- -), the three (-----), and the two ( ) bilayer arachidic

acid multilayers derived by unit cell Patterson recursive

deconvolution method. The protiles have been normalized so that the

relative electron densities of the polar head groups are the same.

The recursive errors propagate from right to left in the figure.
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Figure 13

The electron density profiles for the average bilayer for the five (-

- -), the three (---), and the two ( ) bilayer arachidic

acid multilayers derived by a correctly phased Fourier synthesis.

The profiles have been normalized so that the relative electron

densities of the polar headgroups are the same.
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Figure 14

The unit cell electron density profile for a dipalmityl phosphatidyl

choline (DPPO) bilayer at 35-0 and 49-0. The former is below the

phase transition temperature for chain melting, the latter above.

Courtesy of J.K. Blasie from J. Cain, G. Santillan, and J.K. Blasie,
Proceedings 0:1 1972 ICN-UCLA Symposium on Molecular Biology. In
Membrane Researcb, editor C.F. Fox, Academic Press, New York.
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Figure 15

Two model multilayer electron density profiles for the two bilayer

multilayer are shown. The dotted line represents a symmetric model

based on the repetition of the derived electron density profile for

the average bilayer from the Patterson function deconvolution

procedure (figure 13); the solid line is an asymmetric model based on

the box refinement multilayer profile (figures 17 and 20)
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Figure 16

Meridional intensity functions (after convolution with the incident

beam-shape function) derived from the model multilayer electron

density profiles for the two bilayer multilayer shown in figure 15.

The dotted line represents l(qz) derived from the symmetric model.

Note the zero-level minima (with respect to a non-zero baseline, Bee

text) between diffraction maxima. The solid line represents I(qz)

derived from the asymmetric model. The minima between diffraction

maxima two and three, and four and five are clearly non-zero. The

first diffraction maxima in each function has been normalized to one.
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Figure 17

Box refinement trial functions (- - -), box boundary constraint

functions (-----), and derived multilayer electron density profiles

( ) for N = 1, 2, 3 (top to bottom) bilayer multilayers are

shown. These multilayers provide a homologous series for the box

refinement procedure. Note that' each profile exhibits features

common to each multilayer electron density profile, as well as

exhibiting features common to each monolayer within the multilayer

electron density profile.
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Part II. Arachidic Acid, Myristic Acid, and IO,IlI Pentacosadiynoic
Acid MixedMultilayers

An additional constraint to the box-refinement technique which is

applicable when one wishes to determine the multilayer electron

density profiles of several closely related multilayer thin films was

developed for the analysis of the mixed multilayers. Box refinement

itself requires that the electron density profile of the multilayer

being refined be of finite extent. The additional criterium that we

have established for our enhanced refinement (or "corefinement")

requires that the multilayer thin films in question form a homologous

series; namely, we assume that the profile structures for these

multilayers are the same over a specified region. Thus the MAA,

AAAM,and AAMMmultilayers are assumed to form a homologous series

with the first two monolayers in each of the multilayers being an

identical arachidic acid bilayer. The corefinement technique then

adds the additional constraint to the box refinement procedure

demanding that the two or more electron density profiles being

simultaneously refined (ie. corefined) refine to profiles with the same

electron density over the assumed appropriate region in real space.

This is accomplished by numerically averaging the resultant electron

density profiles over this corefined region of real space after each

iteration. Corefinement may then be allowed to relax its additional

constraint after a specified number of iterations.

Figure 18A shows the multilayer electron density profile for the

AAAAmultilayer corefined with the AAAMmultilayer, figure 18B the
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multilayer electron density profile for the AAAAmultilayer corefined

with the AAMM·multilayer, and figure 18C the multilayer electron

density of the AAMMmultilayer corefined with the AAAMmultilayer.

In each case the electron density profiles were corefined over the

region 31A < z < 150A; this region encompasses the first two

arachidic acid monolayers. Relatively sharp, electron deficient

troughs representing well-ordered. terminal methyl groups are found

at z = 84A and z = 32A, and an electron dense peak representing

carboxyl headgroups is evident at z = 57A in each multilayer electron

density profile. The last monolayer in each multilayer profile has a

broad, electron deficient trough representing disordered terminal

methyl groups at z ... -24A tor the AAAAmultilayer, z ... -20A tor the

AAAMmultilayer,and z ... -llA for the AAMMmultilayer. The carboxyl

head group peak region between the third and fourth monolayers is

at z = lOA for the AAMMmultilayer, and at z = 2A for the AAAMand

AAAAmultilayers.

Figure 19 shows the derived multilayer electron density profiles

for the DDDAmultilayer and the DDDmultilayer. The two profiles

(thin solid lines) were corefined using the same initial trial (dotted

lines) and box functions (dashed lines), and allowed to iterate eleven

times. The region in real space where the two profiles were

constrained to have the same electron densities are shown by the

heavy solid lines. Both multilayer electron density profiles have

sharp troughs representing well-ordered terminal methyl groups at z

= 85A and z = 30A, and a carboxyl headgroup peak at z = 57A. Two
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features in figure 5 should be noted. First, the carboxyl headgroup

peak at z ... OA shows a significant decrease in electron density

comparing the DDDmultilayer electron density profile with the DDDA

multilayer electron density profile. Second, the entire region -30A S

z s OAin the DDDAmultilayer electron density profile, corresponding

to the broad trough ot. disordered terminal methyl groups and

adjacent hydrocarbon chain region of the arachidic acid monolayer,

has a relative electron density well below zero level. For z < -30A

the profile for·· the DDDAmultilayer simply oscillates about zero

electron density level. For the DODmultilayer, the electron density

profile simply oscillates about the zero level for z < -5A.
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Figures 18A, 18B, and 18C

The electron density profiles derived

refinement are shown. These profiles

by the variant of box

were corefined tor five

iterations and allowed to relax for an additional iteration. The

refinements were coretined in real space tor z > 35A. Figure 18A

compares the electron density profiles derived by corefining the

AAAA(solid line) and the AAAM(dotted Une) multilayers. Figure 18B

compares the electron density profiles derived by corefining the

AAAA(solid line) and the AAMM(dotted Une) multilayers. Figure 18C

compares the electron density profiles derived by corefining the

AAAM(solid line) and the AAMM(dotted line) multilayers. The initial

trial function and the "box" used to truncate the profiles after each

iteration are in each figure.
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Figure 19

The derived electron density profiles for the DDDA(upper) and DDD

(lower) multilayers are shown. The profiles were corefined for ten

iterations and allowed to relax for one additional iteration. The

heavy line represents to corefined region in the refinement. The

trial function (dotted line) and the "box" (dashed line) used in

truncating the profiles after each iteration are also shown.
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CHAPTER SIX: DISCUSSION
Part I. Arachidic Acid Multilayers: BoxRefine.ent

The dotted-lines in figures 5 and 6 represent the corrected

intensity and Patterson functions respectively for the one, two and

three arachidic acid bilayer multilayers calculated from the multilayer

profiles derived by the box refinement technique. The calculated

corrected intensity functions and the calculated multilayer Patterson

functions all agree extremely well with the original experimental

functions. The calculated intensity function reproduces the shape,

the relative intensity, and the position of the diffraction maxima; the

fine features of the multilayer Patterson function are also

reproduced. The continuous multilayer electron density profiles all

show an anomoly at z = -9A, 47A, 104Afor the N = 1, 2, 3 multilayer

sample respectively. This anomoly has the same characteristics in

each of the derived profiles; it is a positive spike following the first

well-defined methyl trough at one end of the multilayer profile. The

derived multilayer electron density profiles must conform to a

reasonable physical-chemical interpretation. Aside from the above

mentioned anomoly, they all do.

To study the anomoly, step-function model electron density

profiles equivalent to the continuous multilayer profiles were

constructed (figure 20). The anomoly is shown as a dashed line in

each model. Each step represents ... 3A in z. The anomoly was

attenuated to between 12 - 25%of its original magnitude in the model

profiles, from which model intensity functions and model multilayer
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Patterson functions were calculated and compared to the original

corrected intensity functions 10 (qz) and multilayer Patterson

functions Pml (z).

Figure 21 shows the intensity functions calculated from the

continuous multilayer electron density profile, the step-function model

profiles, and the original Lorentz corrected intensity function Io(qz)

for the N=2 multilayer. Note, the excellent agreement between the

intensity function derived from the continuous multilayer electron

density profile and the experimental intensity function. The

step-function models also give good agreement with the experimental

intensity function, with some qualifications. By constructing

step-function model profiles of finite spatlal resolution, the magnitude

of the diffraction maxima for qz > .075A-1 were perturbed; their

shape and position remained the same. Differences between the

derived model intensity function and the corrected intensity function

Io(qz) for N = 2 occur mainly,at qz .... 02A-1 and reflect a difference

in the magnitude of the first diffraction maximum. Other features of

the corrected intensity· function including the diffraction maxima

shapes, positions and magnitudes are preserved. As previously

mentioned, unavoidable errors in determining the magnitude of the

first order diffraction maximaoccur due to the background scattering

correction applied to the uncorrected intensity function. Error in

the relative magnitude of the first diffraction maxima contributes to

errors in the multilayer electron density profiles derived by box

refinement. Box refinement cannot compensate for errors in the
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corrected intensity function, rather it will just refine to them. The

origin (with respect to the intensity function) of a particular feature

in the continuous multilayer electron density profile can be

investigated by perturbing the feature and calculating corresponding

intensity functions.

The multilayer Patterson function calculated from the multilayer

electron density profile derived by box refinement (figure 22) and

the multilayer Patterson function P",l(Z) calculated from the corrected

intensity function Io(qz) agree extremely well, as do the

step-function model derived multilayer Patterson functions. The

step-function model derived Patterson functions deviate from P",l(z)

for z > 1.5d (where d is the "average" periodicity of the multilayer

profile). The vectors contributing to the Patterson function for Iz I

> 1.5d represent correlations between the first and the last

monolayer; these correlations correspond primarily to momentum

transfer vectors qz < .013A-I. This region of momentum transfer

space corresponds to the first diffraction maxima; the magnitude of

which is most prone to error in the analysis. The small ringing of

the multilayer Patterson function at Iz I > 2d is also partially a result

of this error and the truncation of the data tor qz < O.OIA-I. Since

the step-function models are of limited spatial resolution the feature

at z = *62A in P",l(Z) has become a shoulder on the multilayer

Patterson function derived from the step-function models.

Hence, it has been shown that errors in Io(qz) for qz < .02A-l

are essentially responsible for the anomolies in the box refinement
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derived multilayer electron density profiles. However, these errors

do not deter the box refinement technique from determining correctly

the general features of the multilayer electron density profiles.

104



Figure 20

The step-function models derived from the continuous multilayer

electron density profiles shown in figure 17. The anomoly is shown

by the dotted line.
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Figure 21

Calculated Lorentz-qz corrected intensity functions for the two

bilayer multilayer versus the corrected experimental intensity

function, Io(qz}. The solid line represents the corrected intensity

function Ia(qz); the dotted line ( -) represents the calculated

intensity function from the continuous multilayer electron density

profile (figure 17) derived by box refinement; the dashed lines

represent calculated intensity functions from the step-function models

(figure 20) without attenuation (- - -) and with attenuation ot the

anomoly (--)
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Figure 22

Calculated multilayer profile Patterson functions for the two bilayer

multilayer versus the multilayer Patterson function derived by

Fourier transforming the Lorentz qz corrected intensity function.

The solid line represents the multilayer Patterson function derived

from the corrected experimental intensity function; the dotted line

(----) represents the multilayer Patterson function calculated from

the continuous multilayer electron density profile (figure 17) derived

by the box refinement procedure; the dashed lines represent

multilayer Patterson functions calculated from the step-function

models (figure 20) without attenuation of the anomoly (- - -) and

with attenuation of the anomoly (- -).
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Part II. Arachidic Acid Multilayers: ModelCalculations

It is possible to investigate the derived multilayer electron

density profiles further by constructing physical-chemically

reasonable, yet mathematically simple multilayer

profiles (using only analytical functions) and

electron density

calculating the

meridional intensity and multilayer Patterson functions from these

models. While the intensity functions derived from the step-function

model profiles described above yield excellent agreement with the

experimental intensities,' not all their features represent true

physical-chemical features in the multilayer electron density profiles.

Three types of errors can be seen in these models. The first is a

high frequency oscillation in the electron density profile as a result

of only using a finite number of diffraction maxima in the

calculations. For example, the step-function model tor N = 2 shows

about a 20% oscillation in the magnitude of the electron density

profile in the hydrocarbon chain region. This is not physically

interpretable, and is probably due to this type of error. The second

is a very low frequency error resulting from errors in truncating

Io(qz) for qz < 0.02A-I. The third results from not deconvoluting

the beam width function, W(qz)' from the intensity function. This

error causes the electron density profile to be modulated by a

Gaussian-like function whose full width at half maximum is

proportional to the inverse of the FWHMof W(qz). In a model, it is

reasonable to replace the high frequency oscillations with a constant

electron density value and then recalculate the intensity and compare
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it to the experimental intensity. Other features can also be replaced;

the methyl troughs can be fitted with Gaussian tunctions for

instance.

The continuous electron density profiles derived by the box

refinement method yield intensity functions which match the

experimental intensity very well (tigures 5 and 21). These calculated

intensities are zero tor qz < .OIA-a and qz > .14A-a. While data was

not collected in these regions of momentum transfer space, the

intensity function is not truly zero in those regions.

Before constructing a physical-chemical model for the multilayer

profile based on the step-function model electron density profile

derived from the box refinement, it is necessary to investigate some

of the features of the corrected intensity function, Io(qz). The N=2

data set was chosen for modeling since it was the most accurate with

respect to the previously mentioned errors. The first diffraction

maximawas reasonably resolved from the specular scat.tering and the

beam-shape function was considerably more narrow than the

diffraction maxima. Consider the corrected intensity function for N =
2 in figure 21 (solid line). The corrected intensity function has

non-zero minima at qz = .048A-a and qz = .OS5A-a, between

diffraction maxima two and three, and maxima four and five

respectively. These non-zero minimacan arise from asymmet.ry in the

multilayer electron density profile. The centrosymmetric multilayer

profile model discussed earlier (dotted line, figure 15) did not

reproduce the intensity function very well (dotted line, figure 16).

112



In addition, maxima two and three, and four and five are shifted

closer together, and are not spaced exactly 1/d apart. Maximatour

and six have shoulders at qz = .071A-l and .107A-l respectively.

The shoulder may very well arise from convoluting the beam width

function with the modulus squared of the multilayer profile structure

factor. This beam width convolution is responsible for the auxiliary

maximaappearing as shoulders on the principal maximain IFin1(qz) Ia.

The solid line in figure 15 shows an electron density profile

model which has some of the features of the centrosymmetric two

bilayer model (dotted line, figure 15), but is simpler and asymmetric.

The relative magnitudes of the carboxyl peaks (z = * 27.5A) compared

to the methyl troughs at z = OAand z = 56A have been maintained.

The hydrocarbon chain regions between the peaks and troughs are

now flat. The methyl trough at z = -56A was broadened and shifted

one Angstrom toward the center of the multilayer profile. The

hydrocarbon chain region for -42A < z < 32A also has an average

electron density lower than the other hydrocarbon chain regions by

about 7.5%. (This is required on physical grounds, namely an

increased area/chain in the plane of the bilayer of the hydrocarbon

chain region is required if the methyl trough at z = -56A is to

become broad, shallow and shifted toward the neighboring carboxyl

peak). The calculated intensity, I(qz), and its anti-symmetric

component (see appendix VII), IA(qz) are shown in Figure 23. Note

the non-zero minima at qz = .046A-l is entirely due to the

anti-symmetric component of the intensity function, while IA(qz)
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contributes about 50% to the non-zero minima at Qz = .82A-l. Also

note the auxiliary maxima at Qz = .061A-l and .102A-l as well as

non-zero calculated intensity at z < .01A-l and z > .130A-l. The

relative intensities and shapes of the diffraction maxima seem to be

in reasonable agreement with the corrected intensity function Io(qz)

(figures 5 and 21) except for the relative magnitude of the first

maxima. As previously mentioned, errors in the magnitude of the

first diffraction maximaoccur due to errors in background scattering

correction. The odd maximadecay with increasing qz slower than do

the even maximain both the calculated and corrected intensities, with

the fourth maximumbeing about the same magnitude as the second.

The seventh maximum is slightly more intense than the sixth; the

second is about 50% the magnitude of the third; and the fourth

maximumis about 50%of the fifth. The sixth and seventh maximaare

about the same magnitude. The non-zero minima have also been

reproduced.

The solid-line in figure 16 shows the calculated intensity function

convoluted with the experimental incident beam-shape function. Note

that the auxilary maximahave flattened and caused the broadening of

adjacent maxima. This is especially apparent at qz = .033A-·, .076A-I

Convoluting the calculated intensity function with the

experimental beam-shape function makes it non-zero everywhere.
I

However, the calculated intensity function's minima at Qz = .055A-l

and .092A-I are above this new base-line, and reproduce the

corrected intensity function Uo(qz)] fairly accurately (figures 5 and
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21).

The results from the box-refinement method for N = 1, 2, and 3

multilayers and the model calculations for N = 2 indicate that only

one monolayer at one edge of the multilayer is disordered. For the N

= 1, 2, and 3 multilayers, this one disordered monolayer has a broad

shallow methyl trough and a non-flat hydrocarbon chain region

characteristic of disordered chains whose average end-end chain

length is less than that for all trans chains. This first series of

experiments cannot conclusively determine whether the first

monolayer which interfaces the glass-OTS surface, or the last

monolayer which interfaces air, is the disordered monolayer. This

result is not surprising when one considers that the OTS

hydrocarbon chain is very similar (on a macromolecular level) to that

of arachidic acid. Deposition of the first arachidic acid monolayer

onto the glass-OTS surface. should not be very different (with

respect to inter-molecular forces between monolayers) than depositing

the third monolayer onto the second, or the fifth onto the fourth, et

cetera. The last monolayer is not constrained by the terminal methyl

groups of a juxtaposed monolayer. The chain terminal methyl groups

of the last monolayer interface with air; consequently these chains

appear to have more degrees of freedom than the chain terminal

methyl groups of the internal monolayers in the multilayer.
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Figure 23

The calculated intensity function I(qz) (solid line) for the two bilayer

multilayer and its anti-symmetric contribution IA(qz) (dotted line).

These functions were calculated trom the two bilayer asymmetric

model (figure 15, solid line) and were not convoluted with the

incident beam shape function -.
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Part III. Arachidic Acid, Myristic Acid, and 10,12 Pentacosadiynoic
Acid Mixed Multl1ayers

The decreasing values of zmax for the multilayer profile

autocorrelation functions for the AAAA,AAAM,and AAMMmultilayers

are consistent with the expected changes in the extent of the

multilayer profiles. . However, difficulty in determining zmax with

certainty due to errors in I(qz) for Z < ....02A-1 limits its usefulness

in the determination of the precise extent of the multilayer profiles

(figure 8). Periodic multilayers, where the unit cell translation

vector projected onto the z-axis has magnitude d, have

autocorrelation functions which contain local maxima at integer

multiples of d. In figure 8 the autocorrelation function of the AAAA

multilayer shows such a local maximumat IZ I = 54A dominated by the

entirely positive correlations between the first monolayer and the

third monolayer and between the second monolayer and the fourth

monolayer; in addition a local minimumoccurs at Izl = 27A dominated

by the negative correlations between the electron deficient terminal

methyl groups (-CHs) of the arachidic acid monolayers and the

electron dense carboxyl headgroups (-COOH) of adjacent monolayers.

The autocorrelation function of the AAMMmultilayer has a local

maximumat Iz I • 48A with distinct shoulders at Iz I • 54A and Iz I •

38A; and local minima at Iz I • 27A and Iz I • 19A. Note the absence

of such features at Iz I • 19A, Iz I III 38A, and Iz I • 48A in the

autocorrelation function for the AAAAmultilayer. In addition note the

appearance of a positive shoulder at Iz I III 48A and a distinct
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negative feature at Iz I • 19A in the autocorrelation function for the

AAAMmultilayer. The derived electron density profiles for the AAAA,

AAAM,and AAMMmultilayers (figures l8A, l8B, l8C) yield an average

myristic acid carboxyl-methyl distance per monolayer of 22 * lA and

an average arachidic acid carboxyl-methyl distance per monolayer of

27 * lA. The features noted above in the autocorrelation functions

of the AAAA,AAAM,and AAMMmultilayer profiles clearly demonstrate

the sensitivity of the multilayer profile autocorrelation function in

detecting changes in composition of the monolayers in the multilayer

thin film.

The hydrocarbon chains of the macromolecules in one monolayer

at the edge of each multilayer profile are significantly disordered as

evidenced by a relatively broad methyl trough feature consistently at

one end of the multilayer electron density profile. From the electron

density profiles, the calculated difference in the average

carboxyl-methyl end group distance between the arachidic acid and

the myristic acid monolayers as noted above is consistently ... 5A for

the AAAA,AAAM,and AAMMmultilayers. Hence, by varying the

carboxyl-methyl end group distance for the last one or two

monolayers in the deposition sequence by substituting myristic acid

for arachidic acid in the AAAA/AAAM/AAMMexperiments, one observed

the appropriate shifting of the broad methyl trough feature at one

end of the electron density profile (AAAAversus AAAM),or the

appropriate shifting of both the broad methyl trough feature and the

adjacent carboxyl headgroup region (AAAA versus AAMM,AAAM
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versus AAMM)in the multilayer electron density profiles (figures 18A,

18B, 180). The changes in the multilayer electron density profile of

the DDDA multilayer (figure 19) upon the removal of the final

arachidic acid monolayer to form the DDD multilayer is clearly

evident. The electron density profile for the latter shows the

absence of the broad methyl trough at Z = -25A, as well as the

decrease by factor of two of the carboxyl head group peak feature

between the third and fourth monolayer at z • OA when the fourth

monolayer is removed. The multilayer profile autocorrelation function

for the DDDA and DDD multilayers are consistent with the removal of

the last arachidic acid monolayer. The pronounced positive

correlations for Z '" Zmex ("'nOA) for the DDDA multilayer are between

the electron deficient terminal methyl group regions of the first (D)

and last (A) monolayers deposited. The only negative correlations for

Z '" zmu ("'90A) for the DDD multilayer are between the electron

dense carboxyl headgroup region of the last or third monolayer (D)

and the electron deficient terminal methyl group region of the first

monolayer (D) at the OTS-glass substrate surface.

Since we know the sequence in which the different

macromolecular monolayers were deposited during the fabrication of

the multilayers, the two sets of experiments constituting the second

part of this work unambiguously demonstrate that the surface

monolayer at the multilayer-air interface is disordered. Conversely,

the monolayer at the OTS-glass substrate surface, as well as all

interior monolayers in the multilayer are well-ordered.
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This result is not surprising when one considers that the OTS

hydrocarbon chain is very similar (on a macromolecular level) to that

of arachidic acid. Deposition of' the first monolayer onto the

glass-OTS surface should not be very different (with respect to

inter-molecular forces between monolayers) than depositing the third

monolayer' onto the second, or the fifth onto the fourth, et cetera.

The last monolayer is not constrained by the terminal methyl groups

of a juxtaposed monolayer. The chain terminal methyl groups of the

last monolayer interface with air; consequently these chains appear to

have more degrees of freedom than the chain terminal methyl groups

ot the internal monolayers in the multilayer.
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CHAPTER SEVEN: CONCLUSION

The box refinement technique is a very powerful method for

solving the phase problem in structures which are of finite extent.

Unfortunately, box refinement alone generally cannot provide a

unique phase solution which satisfies the box refinement constraint of

zero electron density contrast outside the box for asymmetric

structures [1-22, 1-23]. Usually some additional criteria must also be

used. Applying the box refinement techniques to series of

homologousmultilayers allows one to confidently establish the correct

electron density profile.

The N = 1, 2, 3 arachidic acid multilayers provide a homologous

series for the box refinement technique. That three vastly different

corrected intensity functions Io(qz) refined to quantitatively

analogous multilayer electron density profiles is strong evidence that

the refinement did indeed converge to' the correct solution in each

case. Furthermore, a mathematically simple and physical-chemically

reasonable .model has been constructed for the arachidic acid N = 2

case which further clarifies the box refinement result. Additional

evidence supporting the validity of the box refinement solutions

comes from the fact that the results are consistent with the average

bilayer electron density profiles derived from the deconvolution of

the multilayer Patterson function P",,(z). The Patterson function

deconvolution technique employing the Fourier synthesis gives

bilayer profile structures which represent the average structure of

the bilayer ensemble. As the number of bilayers decreases, the
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average bilayer electron density profile becomes more sensitive to

perturbations in any given bilayer. It is therefore consistent that

the average bilayer electron density profile for the arachidic acid N

= 2, 3 and 5 represents a more well-ordered system as N increases, it

the number of perturbed bilayers (or monolayers) in the multilayer

remains constant.

The Patterson deconvolution technique can lead to an erroneous

conclusion concerning the multilayer electron density profiles of the

arachidic acid multilayersj namely, that as the number of bilayers

decrease, the multilayer as a whole disorders. The box refinement

procedure demonstrated that only the last monolayer was in fact

disordered. This shows that the assumption used in the Patterson

function deconvolution technique (the existence of a repeated unit

cell or bilayer) was incorrect. The Patterson function deconvolution

was limited in that it could only produce the electron density profile

of the average unit cell.

From the arachidic acid multilayer study alone it is impossible to

conclusively determine whether the first fatty acid monolayer

(juxtaposed with the glass-OTS substrate) or the last surface

monolayer (interfaced with air) in the monolayer deposition sequence

was responsible for the broad methyl trough feature at one edge of

the multilayer electron density profiles. It simply demonstrated that

on a macromolecular' scale, one monolayer at one edge of the

multilayer profile was consistently disordered; all other monolayers in

the multilayers containing one, two, three and five bilayers were
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well-ordered. By systematically varying the chain length of the fatty

acid molecules in the different monolayers of the multilayer, the

second study was able to prove that the last or surface monolayer in

the deposition sequence was indeed the disordered monolayer. In

addition, when the last deposited monolayer was chemically removed

(DDDAversus DDD), the multilayer electron density profile no longer

exhibited the broad methyl trough feature at one end. Since the

multilayer films were non-periodic, standard structural methods which

rely on the repetition of an average structural unit could not be

employed. The corefinementtechnique is effectively the real space

analog of holographic interferometry described previously [7-1]. It

utilizes the reasonable physical-chemical constraint that the

multilayer structures in the homologous series remain invariant over

a specified region in real space; it does not however make any a

priori assumptions as to the nature of the invariant portion of the

electron density profiles.

The arachidic acid multilayer study coupled with the mixed

monolayer study necessarily leads to the conclusion that the surface

monolayer of an amphiphilic molecule at he multilayer-air interface in

Langmuir-Blodgett multilayer thin films can be ordered by the

deposition of another bilayer (or monolayer). This overlayer-induced

ordering of the underlying monolayer is not only interesting in

statistical mechanical terms concerning relevant physical interactions

between the different monolayers in the multilayer, but it must also

be considered in the fabrication of stable Langmuir-Blodgett
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multilayer films where intramolecular/intermolecular ordering within a

monolayer is critical for device applications [7-2].

The Langmuir-Blodgett technique is a very powerful tool in

creating multilayer systems composed of a finite number of

monolayers, each of a defined chemical composition. X-ray diffraction

can now be used to probe the structure of such multilayer systems,

even to the level of one bilayer or individual monolayer. The box

refinement and corefinement techniques (provided one uses a

homologous series of multilayers) can yield excellent results in

determining the multilayer electron density profiles for each of the

series in the absence of the stringent requirement that the multilayer

be composed of a finite number of repeated symmetric units, e.lI.

symmetric bilayers, bilayer pairs, et cetera.

The auxiliary maximaobserved in the meridional diffraction data

can be well resolved by improving Aqz resolution. This requires

improved detector spatial resolution and x-ray optics, or requires an

increase in specimen to detector distance with focusing x-ray optics.

The latter generally necessitates either greater x-ray flux or

extended total exposure time to maintain the statistical accuracy of

the data. Improving both the statistical accuracy of the data and

the Aqz resolution of the experimental system is essential in the

structural study of multilayer thin films by x-ray diffraction

techniques since the methods of data analysis employed depend

critically on these parameters.
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CHAPTER EIGHT: THE STUDY OF mIN MULTILAYER FILMS - A DISCUSSION OF
A BIOPHSYICAL APPLICATION

McConnell has utilized lipid monolayers attached to planar glass

surfaces by the Langmuir-Blodgett technique to study the specific

binding and triggering of cellular components of the immune system.

His work has been motdvated :by a desire to use well-defined planar

model membranes as surfaces with controlled physical and chemical

properties which serve as a target for specific cell surface

recognition studies.

Specifically. McConnell studied the binding of guinea pig

peritoneal macrophages to supported planar lipid monolayers. He

fabricated planar lipid monolayers supported on alkylated glass

containing one mole per cent of a lipid hapten (dipalmitoyl

phospholipid nitroxide hapten I) [1-16]. A hapten is a small molecule

which is only immunologically active in the presence of an existing

specific antibody; it is unable to trigger antibody synthesis in situ

[8-1]. The monolayers were either "fluid" in the layer plane when

DMPC(dimyristoyl phospatidylcholine) was used in their preparation,

or "solid" when DPPC (dipalmitoyl phospatidylcholine) was employed.

The binding affinity of the macrophage to the hapten is increased by

three to four orders of magnitude when a specific anti-hapten

immunoglobulin of the class IgG is bound to the lipid hapten. The

IgG antigen specific antibody mediates or triggers the response of

the macrophage to the antigen (hapten) by binding to surface

receptors on the macrophage.
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The structural nature of the interaction between the monolayer

membrane and the macrophage membrane is basic to the study of the

mechanisms of membrane-membrane interactions in the immune system.

Understanding the changes in the macrophage membrane structure

when IgG is bound both to the lipid hapten and to the surface

receptors of the macrophage is important for elucidating the

mechanism by which immunoglobulins trigger intracellular components

during an immune response. Both of these biological problems,

namely the mechanism of membrane-membrane interactions and the

mechanism of the response of membranes to extracellular mediation,

are therefore strongly structural in nature.

McConnell found that the cellular response of the guinea pig

peritoneal macrophages to the supported lipid monolayers to be both

qualitatively and quantitatively similar to the response of macrophage

binding to lipid hapten containing vesicles [1-16]. He concluded that

supported planar monolayer were indeed a good model system for

studying the binding and triggering of the cellular components of

the immune system.

The use of supported planar multilayers or monolayers are also

ideal for structural studies of the membrane-membrane interaction

between the macrophage and monolayer membranes since they can be

utilized to orient the macrophage membrane for x-ray scattering

measurements. The work in this thesis demonstrated that meridional

(out of plane) scattering from as few as two molecular monolayers can

be collected and analyzed to provide the electron density profile of
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each monolayer provided sufficient statistics can be obtained over a

range of qz S (qz)o which determines the spatial resolution in the

derived profile. For biological samples, this could easily be

accomplished by using the increased flux of a synchrotron x-ray

source. The additional flux would allow measurements of equatorial

(in plane) scattering, which would provide information about

correlations in the planes parallel to the monolayer surface [8-2].

This would facilitate measurements of the chain tilt of the lipids with

respect to the monolayer surface normal and membrane fluidity.

Meridional x-ray scattering data from supported planar lipid

multilayers or monolayers with a single layer of bound macrophage

membrane could be phased by refinement techniques provided there

was a reference structure available. This reference structure would

simply be a supported planar lipid multilayer without bound

macrophage. The reference structure and the macrophage bound

lipid multilayer would be a homologous series. Hence the profile

structure of the multilayer and the multilayer with the attached

macrophage membrane could be accurately determined as a function

of changes in either the lipid hapten monolayer (on the multilayer

surface) and/or the macrophage membrane upon forming the

monolayer-membrane "complex".

Thus, thin multilayer films attached to planar surfaces can not

only be used to study membrane-membrane interactions and the

triggering of cellular components of the immune system [1-16], they

can also be used as a powerful tool in the structural study of the
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membranes in the membrane-membrane interaction and the triggering

mechanism since they can greatly facilitate both the collection and

phasing of the x-ray scattering data.
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APPENDIX I: FOURIER TRANSFOHM OF AN INFINITE PERIODIC ARRAY OF
. DELTA FUNCTIONS

An infinite array of delta functions of periodicity d can be

expressed as follows:

p(z) = L6(Z - 'd) (AI-I)

It's Fourier transform is given by:

. +-
F(qz) = J ~6(Z -'d) exp[271'izqzl dz

Evaluating the integral yields:

(AI-2)

+-
Lexp[271'Udqzl--

=
+-
LexP[271'idQz] • (AI-3)-.

Equation (AI-3) can be expanded in terms of two similar sums:

+- +-
Lexp(271'idQzJ' + Lexp[271'idqzJ-' - I
o 0

=
+- +-
Lexp[271'idQzJ' + LexP[-271'idQzJ' - I
o 0

(AI-4)
Utilizing the power series of equation (AI-5):

(AI-5)

for f = exp[27ridqz] and f = exp[-27ridqz] yields:
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1 11 - exp[2widQz] + ~1----e-x-p~[--2~w-i~d~Q-z~]- 1
(Al-6)

Evaluating (AI-6) yields F(qz):

for exp[*2widQz] ~ 1
-+ • for exp[*2widQz] = 1

The singularities are periodic and occur when:

('=integer)

•qz = d
Thus, F(qz) tends to infinity at integer multiple of lId. We can

therefore utilize the delta in expressing F(qz).

+.
F(qz) = ~ L6(qz-'/d)-. .. (Al-7)

The factor lid is to provide the proper normalization. Generally

since we deal with only relative quantities, the lId is dropped tor

convenience.

QED
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APPENDIX II: SHIFTING OF DIFFRACTION MAXIMAFOR MULTlLAYERS OF
FINITE EXTENT

Taking the derivative of equation (II-56), assuming W(qz) = 6(qz)

yields

(AlI-l)

For I(qz) to be a maximum requires

F dLn
UG • dqz = 0 (AlI-2)

Evaluating (AII-2) for qz = '/d yields:

dFUG L• ndqz = 0 (AII-3)

since dLn/dqz = 0 for qz = '/d if Ln to be a maximum at qz = '/d

(II-57).

Therefore if dFuc/dqz = 0 (ie. Fuo is a maximum) at qz = '/d the

diffraction maxima will not be shifted from the Bragg limit position

and will occur at the qz = '/d. It dFuc/dqz < 0 for qz = '/d the

diffraction maximum will be shifted to higher qz; conversely, if

dFuc/dqz > 0 at qz = '/d the diffraction maximum will be shifted to

lower qz.
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APPENDIX III: RECONSTRUCTION OF THE UNIT CELL PA'n'ERSON BY THE
METHOD OF LINEAR EQUATIONS

If one assumes a profile structure to be composed of a repeating

subunit (ie. unit cell) it is possible to reconstruct the unit cell

Patterson function from the multilayer Patterson function. Equation

(II-58) (assuming w(z) = 1) can be written to yield:

P.l(Z) = [Puc(z) * I(z)] * [puc(-z) * I(-z)]
= [Puc(z) *Puc(-z)] * [I(z) * I(-z)]
= Puc(z) * ia(z) (AlII-I)

For Puc(z) = 0 for Izl > d

+-... L 6(z-nd) [b(z) * b(-z)]and P(z) = .--
with b(z)=1 -Nd/2 ~ z ~ Nd/2

b(z)=O otherwise

N = numberof unit cells

IfO<II<d and Wk = P",l(kd) where k is an integer such

that 0 < k < +N then:

Equation (AlII-2) simply states that the multilayer Patterson

function at any point is just the weighted sum ot the unit cell

Patterson function at z=1Iand z=d-/l. The weighting factor arises

from the autocorrelation of the box function, b(z), and can be taken

as the magnitude of the local maxima of the multilayer Patterson
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function at z = kd,

For P -+ d - II equation (AlII-2) yields:

(AlII-3)

Solving (AIII-2) and (AIII-3) for Puo(d-II) and Puo(P) yields:

PucCd-P)

PucCP)

where Wk = Pml(kd) and Wk+1 = Pml([k+l]d).

A special case is when k = N. Then Wk+l = 0 and (AlII-4) and

(AlII -5) red uce to:

Puc(d-P) = PmJ![k+IJd-l!l
Wk

Puo(P) = PmJ(kd+!l
Wk

(AlII-6)

(AIII-7)

This proves that the unit cell Patterson function is just the

multilayer Patt.erson function over the interval Nd to [N+l]d divided

by Wk.

Equations (AIII-2) through (AIII-7) are valid for -N < k < 0 with

the provision that k+l goes to k-l. This is of course is a

consequence of the fact that Patterson functions are symmetric.

Theoretically it is possible to determine the unit cell Patterson

over any interval, however the best statistics are obtained over the
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first interval, namely k=O. Equations (AlII-6) and (AlII-7) show it is

possible to determine the unit cell Patterson by inspection alone;

unfortunately, the statistics for the interval' defined by k= *N are

poor.
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APPENDIX IV: DIRECT DECONVOLUTION METHOD

This method can be applied to deconvolute either the multilayer

electron density profile from the multilayer Patterson, or the unit cell

electron density profile from the unit cell Patterson. Therefore no

subscripts denoting unit cell or multilayer have been included.

Let us begin with the definition of the Patterson (or

autocorrelation) function (II-42):

P(z) = p(z) * p(-z) (AtV-I)

where p(z) = 0 Izl > d/2
and P(z) = 0 Izi > d

Note, P(z)=P(-z) must always be true. This is obvious from

equation (AtV-l).

By definition equation (AlV-1)yields:

+-
P(z) = J p(u) p(u+z) du--

Since p(z) and P(z) are finite:

+d

P(z) = I p(u) p(u+z) du
-d

(AlV-2)

Rewriting the integral as a sum yields
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+l

P(z) = Lp(nAu) p(nAu+z) Au
n=-l

(AlV-3)

where l=d/2Au
and Au:;t 0

If we let z = -d + kAu

+l
P( -d + ksu) = Lp(nAu) p( [n+k]Au-d) Au

n=-l
(AIV-4)

where k ranges from 0 to 2d/Au.

There are 2'+ 1 terms in the above sum for each P; however

equation (AlV-4) can be reduced to include only non-trivial terms.

+.
P( -d + kAu) = U(nAu) p( [n+k]Au-d) Au

n=l-k
(AlV-5)

p(nAu) is zero for n > l; likewise, p([n+k]Au-d) is zero for n <

'-k.
For k = 0, (AlV-5) yields:

PC-d) = p(.Au) p(['Au]-d)

since '=d/2Au

PC-d) = p(d/2) p(-d/2) (AIV-S)

Assuming p is symmetric, allows us to solve for p('d/2):

p('d/2) = * Jp(d) (AIV-7)

In general for k :;t0, from equation (AlV-5) we have:
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I-I
P( -d + kAU) = Lp(nAU) p( [n+k]Au-d) Au +

n=I-k
p(IAU) p([I+k]AU-d) AU (AIV-8)

and solving for k=l, with I=d/2Au yields:

P(-d+AU) = p(-d/2+Au) p(d/2) AU +
p(d/2-Au) p(-d/2) Au

= P(-d+Au)
~(*d/2)Au (AlV-9)

For k ~ 0,1 equation (AlV-5) yields:

I-I :
P( -d + kAu) = Lp(nAu) p( [n+k]Au-d) Au +

n=I-k+l
p(IAu) p([I+k]Au-d) Au +

p([I-k]Au) p(IAu-d) Au

since I=d/2Au

I-I
P( -d + kAu) = LP(nAu) p( [n+k]Au-d) Au +

n=I-k+l
p(d/2) p(-d/2+kAu) Au +

p(d/2-kAu) p(-d/2) Au
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'-1
PC -d + kau) = LP(nAu) p( [n+k]Au-d) Au +

n='-k+l
2p(*d/2) p(~d/2*kAu) Au

p(·d/2·k.u) = [ P(-d+k'u)-

'-1 1n=,_~(nAU) p([n+kJAu-d) Au
(IV-IO)

2p(*d/2)AU

Given a finite Patterson function (and consequently a finite

electron density profile) it is possible to directly deconvolute the

Patterson function, assuming the electron density profile is symmetric

(see equation (AtV-7) above). However, this method is a recursive

technique (equations (AtV-9) and (AtV-lO» and propagates errors

rapidly. Generally, the direct deconvolution method is not used to

deconvolute the multilayer Patterson function since there is to much

uncertainty in the multilayer Patterson function at z ... *d; there is

no theoretical reason why it could not be done however.
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APPENDIX V: rounmR SYNTHESIS OF THE ELECTRONDENSITY PROFILE

Rewriting equation (II-3S) for a multilayer yields:

+.
P.,(z) = I F.,(gz) exp[2nigzz) dgz-. (AV-l)

where

From equation (II-56) we have simply that

or

(AV-2)

Addtionally

where .(qz) is the phase function.

If we assume Pili I(z) to be centrosymmetric

then .(qz) can have values of only 0 or 71'. Thus equation (1), atter

substituting CAV-2) and CAV-3) becomes:

+.
p.,(z) = 2 I · J l(g,) cOB(2ng,z) dgz-. (AV-4)

For FIIII(qz) to be a continuous function, .(qz) can only change from

()--+?r or from 7I"'"-t() when Filii(qz) = 0; otherwise Filii(qz) would be a
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multivalued function. Thus the number of possible phase

combinations is 2' where , is the number of observed diffraction

maxima.. Since half of the solutions differ by a shift in the z-origin

by d/2 (d = unit cell translation .vector projected onto the z-axis) ,

the effective number of solutions is 2'-1.

The Fourier synthesis outlined above does not solve for +(qz)

but is only a prescription for possible phase combinations.

Generally, the number of possible phase combination is infinite; it is

only because we assume Pili 1(z) to be centrosymmetric that we are

able to limit the number of possible phase combinations to 2'.
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APPENDIX VI: BOX REFINEMENT TECHNIQUE

The box refinement technique is an iterative procedure for

calculating the phase solution for finite systems. The background

and Lorentz-qz corrected intensity function for a multilayer of finite

size or extent exhibits a broadening and shifting ot dittraction

maxima from the Bragg (ie. infinite extent) limit. Auxiliary maxima

may also be observed; the number and position ot which depend on

the number of monolayers in the multilayer as well as the

experimental system Aqz resolution. These features in the intensity

function, I(qz), which are attributed to the finite size of the

multilayer contain the information which the box refinement technique

needs to converge to a phase solution. The modulus of the structure

tactor, IF(qz) I, is given by the square root of the corrected

intensity function:

(AVI-l)

One chooses a trial multilayer electron density tunction, Po(z),

and calculates its Fourier transform (equation AVI-2). After some

simple algebra (equations AVI-3 and AVI':"4)we are lett with the

expressions for the cosine and sine of the trial phase (equations

AVI-5 and AVI-6, respectively). The subscript n refers to the

iteration index; it is zero for +n (qz) calculated from the trial electron

density profile.

= f Pn(z) exp[2wiQzz] dz (AVI-2)
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= J Pn(Z) cos (2'71'qzz]dz +

iJ rn(z) sin (2'71'qzz]dz

= IFn(qz)lexp(itn(qz)J

2. IFn(qz)12 = [ I Pn(z) cos(2'71'qzz] dz ] +..
2[ I Pn(z) sin[2'71'qzz] dz ] (AVI-3)

and

= tan-1 I~J_Pn_(z_}_s_in_f2_'7I'q_zz_J-dzdz]
I Pn(z) cos f2'71'qzz]

(AVI-4)

with

(AVI-5)

(AVI-6)

The multilayer electron density profile is Just the inverse Fourier

transform of the structure factor (AVI-7). IF(q z)l is known (AVI-1);

we substitute tn(qz) for t(qz) and calculate Pn+l (z) (AVI-8).

Pm) (z) = (AVI-7)

where
and

= IF(qz}1 exp[it(qz)]= unknown phases
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= J F~(qz) exp[-2wiqzz] ds

= IF(qz)1 exp[itn(qz)]= phases derived from Pn(z)

(AVI-8)

where
and

After some algebra, (AVI-8) yields (AVI-9):

Pn+t(Z) = J IF(qz)1 cosCtn(qz)] cos 2wqzz ds +

iJ IF(qz)1 sinCtn(qz)] cos 2wqzz ds +

J IF(qz)1 sinCtn(qz)] sin 2wqzz ds +

iJ IF(qz)1 cosCtn(qz)] sin 2wqzz ds

Pn+t(Z) = J IF(qz)1 cos[tn(qz)] cos 2wqzz ds +

J IF(qz)1 sin[tn(qz)] sin 2wqzz ds

(AVI-9)

where Ps~~~ = J IF(qz)1 cos[tn(qz)] cos 2wqzz ds

PA~~~ = J IF(qz)1 sinCtn(qz)] sin 2wqzz ds

and cos[tn(qz)], sinCtn(qz)] are given by (AVI-5) and (AVI-6).

Note, PSn+t(z) is the cosine or symmetric Fourier transform of

F~(qz); PAn+t(z) is the sine or antisymmetric Fourier transform

of Fn(qz). We now apply the box constraint to Pn+tCz) (AVI-IO). We

demand that Pn+aCz) be zero outside some box, /l(z). The width of

this box must at least be the size or extent of the multilayer. This

minimum box width is determined from the multilayer Patterson

function and is given by z = Z where PmdZ) -+ o.
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P~+I(Z) = Pn+I(Z) • P(Z) (AVI-IO)
where P(z)

P(z)
= 1= 0

for PI < Z < P2
otherwise

and IZI ~ P2 - PI

P~+S<Z) is substituted for Pn(z) in equation (AVI-2) and the

process is iterated until:

Pn+I(Z) = Pn(z) (AVI-ll)
or

(AVI-12)

Equation (AVI-ll) states that the refinement is complete when two

subsequent iterations give the same p(z); equation (AVI-12)

emphasizes that this will occur when Pn+l (z) iterates to be zero for z

< PI and z > P2.
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------------------- -- -----------

APPENDIX VII: SYMItRTRIC AND ANTISYMItRTRIC CONTRIBUTIONS OF THE
ELECTRON DENSITY PROFILE TO THE INTENSITY FUNCTION

The electron density profile can always be split into its

symmetric component, Ps(z), and its antisymmetric component, PA(Z):

p(z) (vr r-L)

where Ps(z) = Ps(-z)

The Fourier transform of of (vII-I) yields the structure factor

(vII-2) from which the intensity function (vrr-a) can be calculated:

f(q.) = J [ ps(z) + PA(Z) I exp[2wiq.z) dz

· J ps(z) coB2wq.z dz + iJ p~(,)Bin2wq.z dz

(vII-2)

(vII-3)

The square of the cosine transform of the electron density

profile is called the symmetric intensity function, Is(qz), while the

square of the sine transform of the electron density profile is called

the ant-symmetric intensity function IA(qz). The intensity function,

I(qz) is just the sum of the symmetric and antisymmetric functions.
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overlayer-induced ordering
Patterson function

Patterson function, calculated
Patterson function, unit cell
10,12 pentacosadiynoic acid
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