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Chapter 7

Model Risk, Mortality Heterogeneity, and 
Implications for Solvency and Tail Risk

Michael Sherris and Qiming Zhou

Mortality improvements have been systematic in that they have impacted individu-
als of  all ages, although to varying extents by age and across time for many coun-
tries. Mortality improvement rates have also shown varying trends (Njenga and 
Sherris 2011). Pension funds and insurance companies issuing life annuities have 
been exposed to this systematic risk, and this has the potential to impact solvency, 
especially in the tail of  the distribution of  survivors. Although some of  this risk has 
been transferred to reinsurers using reinsurance and longevity swaps, much of  this 
risk is accumulating with insurers, pension funds, and reinsurers, and it has not 
been diversified into the broader financial markets (Blake et al. 2011).

Systematic longevity risk is usually modeled with a doubly stochastic survival 
model, where the mortality rate follows a stochastic process and all individuals of  
the same age and gender are assumed to experience the same realized mortality 
rate. Given the mortality rate, individual survival is subject only to idiosyncratic 
risk, which can be diversified in large pools of  lives. Even if  there is only idiosyn-
cratic risk, at older ages in the tails of  the survival distribution, the number of  lives 
surviving becomes small and the variability in benefit payments and liability values 
increases. This is exacerbated by systematic risk from uncertain but common rates 
of  improvement across individuals.

Many models of  systematic mortality risk have been proposed. These vary from 
models such as the Lee–Carter model (Lee and Carter 1992) and variations, to 
models that model random changes in a parametric survival curve (Cairns et al. 
2006), to those that model the dynamics of  mortality rates in a financial frame-
work similar to that used for interest rate models (Biffis 2005). These models do not 
include allowance for heterogeneity. Individuals of  the same age are assumed to 
experience the same aggregate mortality rate.

Increasingly, attention is being devoted to the impact of  mortality heterogeneity 
and its effect on insurers and pension funds (Lin and Liu 2007; Liu and Lin 2012 ; Su 
and Sherris 2012). Along with systematic mortality risk, this mortality heterogene-
ity has implications for the solvency and tail risk of  annuity and pension providers. 
Even if  there were no systematic, or aggregate, mortality risk, heterogeneity gener-
ates variability in future experience and volatility in financial results. Heterogeneity 
requires underwriting of  risks to avoid adverse selection. Without full information 
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about the risks that insurers underwrite, the financial consequences of  adverse 
selection has its greatest impact for annuities in the tail of  the survival distributions 
long after the annuities have been issued.

Solvency and tail risk for life annuities and pensions have two dimensions. First, 
there is an effect on insurer profitability from adverse experience as well as an 
impact on variability at the older ages. Trends in mortality that arise from uncer-
tain mortality improvements and from the deaths of  less healthy lives in a heteroge-
neous pool have their greatest influence at the older ages. Second, the volatility of  
financial results arises from both systematic mortality changes, with higher volatil-
ity experienced at older ages, and from heterogeneity, also producing higher volatil-
ity at older ages (Su and Sherris 2012; Meyricke and Sherris 2013).

There are many different approaches to modeling mortality heterogeneity. 
Recent advances have seen the calibration and application of  more advanced 
models in the form of  Markov aging models (Lin and Liu 2007; Liu and Lin 2012;  
Su and Sherris 2012) that are extensions of  the Le Bras model (1976). The other, 
more commonly used, approach is to apply frailty models to capture unobserved 
heterogeneity (Vaupel et al. 1979).

In this chapter, we develop and apply a stochastic Markov aging model of  het-
erogeneity that also includes systematic mortality risk, calibrated to population 
aggregate mortality and health data. We compare results with a well-known frailty 
model and the Le Bras–Markov multiple state model to assess model risk, neither 
of  which includes systematic mortality risk. These models are used to quantify 
solvency and tail risk for a portfolio of  life annuities using risk measures standard 
deviation and value-at-risk for fund values at the older ages. Results illustrate the 
effects of  heterogeneity and model risk on the assessment of  longevity risk for these 
portfolios, as well as the impact of  selection and pool size.

Mortality Heterogeneity Models
The main approaches to modeling mortality heterogeneity that we consider are 
frailty models and Markov multiple state models. Frailty models treat heteroge-
neity as unobservable. An often-used frailty model is that of  Vaupel et al. (1979), 
where an individual is assumed to have frailty Z at age x with force of  mortality: 
µ x Z Zae cbx,( ) = + . The frailty factor Z is Gamma distributed Z Gamma~ ( , )1 2σ  
so that the average frailty at age x is

Z x
a
b
ebx( ) = + −( )





−

1 12
1

σ

and the average force of  mortality is given by µ x Z x ae cbx( ) = ( ) + .
The Markov multiple state mortality model was developed by Le Bras (1976), 

who used a continuous time Markov chain with an infinite number of  states and a 
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discrete state space to model senescence. The model starts at state 1 and progresses 
to state 2, 3, etc. In any state, the rate of  jump to the next higher state and the rate 
of  death are assumed proportional to the state number. All individuals start in state 
0 at time 0. In state i, the transition rate to state i + 1 is λ λ0 + i , and the transition 
to death (an absorbing state) is µ µ0 + i . For the Le Bras model, the probability of  
being in state i at time t is (Yashin et al. 2000):

P t
i

ki

t t i

k

i
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The probability of  survival to time t, given the individual was in state n at time 
0, is given by

S tn
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Yashin et al. (1994) show the representation of  the average force of  mortality in 
the fixed frailty model to be equivalent to the Le Bras model.1 Markov aging mod-
els allow for heterogeneity because of  the differing mortality rates in the different 
states.

There have been several applications of  Markov chains to failure time distri-
butions in mortality, also known as phase-type distributions. Lin and Liu (2007) 
devised a deterministic survival rate model based on a Markov aging process. Each 
state in the model represents a ‘physiological age,’ as opposed to calendar age. The 
model assumes that there is a maximum physiological age, n, and that n = 200 is 
appropriate as an approximation to the potentially infinite aging process in the Le 
Bras model. Subsequently, Su and Sherris (2012) developed the Lin and Liu model 
(2007) to assess population heterogeneity for life annuity portfolios and relate states 
and mortality rates to aggregate population mortality.

These two Markov aging models have parameters that capture the changes in 
observed period life tables. Liu and Lin (2012) make the model stochastic by adding 
a time change component. The small number of  states and the transition matrix 
facilitate the incorporation of  health information. The time change allows a proba-
bilistic statement of  mortality uncertainty. The initial distribution is estimated from 
health condition data, and closed forms for the expected value and variance of  the 
survival probability exist if  the stochastic time change process has a closed form 
moment generating function.

These Markov aging models are the basis of  the model used in what follows. We 
extend the Su and Sherris (2012) approach to include health states calibrated to health 
conditions data as well as aggregate population mortality data. We also subordinate 
this underlying model to a Gamma time change, so that survival distributions are 
stochastic. The underlying model allows an assessment of  model risk by comparison 
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of  results for solvency and tail risk with the other models of  heterogeneity. The subor-
dinated model shows the significance of  heterogeneity if  mortality is stochastic.

The Markov aging model used has a time-inhomogeneous five-state transi-
tion matrix fitted to ages 30–110. Transition occurs as a Markov process from one 
transient state to its next state, or to the absorbing state, and the model takes into 
account both health status and mortality data. Aggregate survival rates are deter-
mined by a deterministic underlying multiple states survival model S0 ( )⋅  and a time 
change process γ t . The underlying model assumes the individual mortality process 
moves through a series of  deteriorating health statuses. Health and mortality is 
made stochastic by a random time change. The aggregate survival rate at time t  is 
S St t= ( )0 γ . Time until death in this system has a phase-type representation ( , )π T ,  
where π  is the initial distribution on the transient states, and T  is the states’ tran-
sition rates matrix. The probability of  survival up to time x  is S Tx e0 = ( )π exp  
where e  is a column of  ones. Under the assumption that deterioration in health is 
more likely than improvement, transition is assumed to be acyclic. Since all acyclic 
phase-type distributions have a Coxian representation, T can be written as:

− +
− +

− +
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Here, λ i t,  is the rate of  transition from state i  to state i +1  at time t, and qi t,  is 
the rate of  transition from state i  to the absorbing (death) state at time t . The time 
change is modeled as a Gamma process which is non-decreasing, additive, and has 
a closed form moment generating function. It is defined as starting at γ 0 0=  with 
independent increments ( )γ γt s t+ − , which are Gamma distributed with mean s  
and variance νs.

The Markov aging model is used in two ways. Its deterministic component (i.e. 
the underlying Markov process) is used for comparisons with other deterministic 
heterogeneity models. The subordinated model is used to assess the impact of  sys-
tematic mortality risk.
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Data
Modeling mortality heterogeneity requires a basis to divide the population into 
groups of  individuals anticipated to experience similar rates of  mortality, distinct 
from other groups. Calibration of  these models requires information about the 
health status distribution and survival probability. This can be done using socioeco-
nomic status, health conditions, or health risk factors. Socioeconomic status and 
income level are related to mortality, yet the correlation is not definitive and mortal-
ity is driven by more specific factors than socioeconomic status. Health risk factors 
based on individual panel data can be used to relate failure time to health charac-
teristics of  individuals. Characteristics include various factors such as diastolic and 
systolic blood pressure, body mass index, cholesterol, blood sugar, vital capacity, 
and cigarettes per day. This approach has significant data availability imitations at 
a population level.

Health risk factors such as obesity or smoking habits are less effective in cap-
turing heterogeneity than existing health conditions such as heart disease or lung 
cancer. In addition, health condition data is more readily available than health risk 
factor information, which requires both the risk factor and its duration. The ideal 
form of  data is that which records a cohort’s experience through time. However, 
health data are generally only available for the population alive in a particular year, 
so period mortality data must be used to match period health data.

For calibration of  the Markov aging model, the data used for estimating severity 
of  the health conditions and health status distribution were derived from a vari-
ety of  sources. The National Health Survey (NHS) data (ABS 2009) are used to 
capture prevalence of  long-term conditions, at ten-year intervals from age 15 to 
75, from years 2007–2008. We also use estimated average dementia prevalence by 
Ritchie et al. (1992) in five-year age intervals from 60 to 85. The Australian Cancer 
Incidence and Mortality Books (ACIMB) (AIHW 2012) are used for cancer inci-
dence and mortality for five-year age intervals up to 85, to the year 2008. Mortality 
by cause data (other than cancer) was taken from the following sources: the WHO 
mortality database (WHO 2010) for Australia gives the number of  deaths from a 
health condition, for five-year age intervals until 95, to the year 2006; the Australian 
Bureau of  Statistics Causes of  Death database (ABSCD) (ABS 2013) gives number 
of  deaths from each condition, aggregate of  all ages, to the year 2010. Infectious 
diseases or accidents were not taken into account, which means that the calibrated 
model assumes all individuals to have the same exposure to these baseline risks.

In order to determine population health status distributions, health conditions 
are ranked according to their severity and divided into five groups (or health states); 
the distribution of  the population for these five health states was estimated from the 
prevalence of  health conditions. Health conditions are ranked by the probability of  
death from cause-of-death data given the prevalence of  a condition. Since deaths 
by cause from WHO are only available up to 2006, and prevalence is only available 
for 2007–2008, the 2006 WHO data are scaled by the ratio of  2008 to 2006 num-
bers of  deaths in ABSCD.
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Some assumptions are made in estimating the proportion of  the population in 
each health state. It is assumed that the prevalence of  a condition for individuals 
for a ten-year age range could be used to represent the expected prevalence at the 
midpoint age, since health data are available at ten-year intervals, but the model 
requires distributions across ages. It is also assumed that long-term conditions are 
independent and that for a person affected by more than one condition, the high-
est death rate among all of  the conditions is assumed to be the death rate. The 
proportion of  individuals with a specific condition as their most severe condition 
is assumed equal to the proportion of  individuals not affected by any worse condi-
tion multiplied by the proportion of  the total population affected by the specific 
condition.

Aggregate mortality data are taken from the Human Mortality Database (HMD 
2013). The 2008 Australian period life table (male and female combined) is used for 
coherence with health data.

Calibration of Mortality Heterogeneity Models
Figure 7.1 shows the survival curve for the fitted Le Bras model and the Australian 
2008 life table used for calibration. The model provides a better fit to the survival 
curve when fitted for ages above 20. The parameter values estimated for the Le 
Bras model 20+ are given in Table 7.1. The model is equivalent to the frailty model.

The Markov aging model is fitted using observed health and survival distribu-
tions as expected values. The sum of  squared differences with the model’s estima-
tion of  E S t( ( ))  is minimized. A lower limit of  0.001 is imposed for ν  to prevent a 
near zero denominator in the numerical estimation procedure. Other parameters 
are assumed to have a lower limit of  0. Parameter estimates for the Markov aging 
model are given in Table 7.2.

Figure 7.2 shows the fitted survival curve. Figure 7.3 shows the fitted versus 
observed data by the health states for the model. The model provides a good fit to 
the survival distribution and health states data used for calibration.

Solvency and Tail Risk
In order to assess solvency and tail risk arising from heterogeneity, a portfolio of  
life annuities is projected using simulation. Annuity contracts are assumed to be 
written at age 65 under differing assumptions about the health status of  the lives 
purchasing the annuity. The annuities pay an annual payment of  $1 for as long as 
the individual lives. Expenses and other costs are not included. The distribution of  
health status is generated from each model. For comparison purposes health status 
ranges are aggregated into comparable groups for the purpose of  calculating pre-
miums and simulating annual balances.
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Premiums are calculated to be equal to the actuarial expected present value of  all 
payments. Survival rates conditional on health states are used to allow for selection. 
Population average survival rates are used for the cases where no anti-selection is 
assumed for mixed health status groups. A fixed interest rate of  3 percent per annum 
is assumed along with an assumption of  random investment returns.

Panel A. Le Bras �tted to ages 0 to 105.

Panel B. Le Bras �tted to ages 20 to 105.
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Figure 7.1.  Survival curve fit of  the Le Bras model.

Notes: Figures show the fit of  the Le Bras model to the 2008 Australian life table survival curve (male 
and female combined). The model provides a better fit to survival data starting from age 20 than that 
starting from birth.

Panel A. Le Bras fitted to ages 0–105.
Panel B. Le Bras fitted to ages 20–105.

Source: Authors’ calculations.
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Random returns are simulated using a model (including calibration) adopted 
directly from Nirmalendran et al. (2012). Assets were assumed allocated accord-
ing to the Australian Prudential Regulation Authority statistics (APRA 2010) of  
5.5 percent in cash, 86.8 percent in bonds, and 7.7 percent in stocks (rebalanced 
every year). Cash rates and stock prices are modeled with geometric Brownian 
motion. Short rates generated by the Vasicek model are used for single-period bond 
returns. For the random returns case, premiums are calculated with discount fac-
tor based on bonds yields. However, unlike Nirmalendran et al. (2012), the market 
price of  investment risk is not included.

The distributions of  healthy states for the Markov aging model are given in Table 
7.3. These percentages are calibrated to the health data. The table shows the shift 

Table 7.1  Parameter estimates for Le Bras 
Model fitted to ages above 20

λ0 0.489972
µ0 0.000608
λ 0.117869
µ 0.00001

Notes: The table shows the parameters estimates 
for the Le Bras model based on the Yashin et al. 
parameterization (1994). Parameter definitions 
are given in the text.
Source: Authors’ calculations.

Table 7.2  Parameter estimates for subordinated 
Markov model fitted to ages 30–110.

a 0.000022
b 0.143882

c 0.907697
m1 0.001753
n1 0.004911
m2 0.000919
n2 0.020675
m3 0.00038
n3 0.046633
m4 0
n4 0.032396
ν 0.146892

Notes: The table shows the parameters estimates for 
the subordinated Markov aging model. Parameter 
definitions are given in the text.
Source: Authors’ calculations.



	 Model Risk  121

from the healthier states to the less healthy states and eventually to the death states 
with increase in age. The percentage in the healthiest state diminishes rapidly from 
age 50 to 70, with a reduction from 47.5 percent to 14.5 percent. By age 70 the distri-
bution across health states has shifted to the less healthy states with higher mortality.

Figure 7.4 shows the distribution of  heterogeneity at age 65 given by the three 
models by showing the distribution of  expected future lifetimes for the differ-
ent models. The Vaupel frailty model and the Le Bras Markov model forecast a 
higher proportion with higher life expectancies than the Markov aging model. The 
Markov aging model reflects a calibration to health status data as well as population 
mortality. By not reflecting health status, the expected future lifetime is overstated 
in the other models.

Impact of Heterogeneity and Adverse Self-selection
The impact of  heterogeneity is illustrated for the three models in Figure 7.5 with a 
comparison of  a ‘best health’ case and a ‘mixed’ case using the standard deviation 
of  the fund values in the older ages for a pool size of  1,000 individuals. The best 
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Figure 7.2.  Survival curve fit of  the Markov aging model of  heterogeneity based on both 
health and survival data.

Note: Figure shows the fit of  the Markov aging model used in the chapter compared to the 2008 
Australian life table survival curve. The model fit is shown for ages 40 and above.

Source: Authors’ calculations.
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Figure 7.3.  Fitted versus observed data for Markov aging model.

Note: Figure shows distribution of  health states for the Markov aging model used in the paper compared 
to the actual data use dot fit the model. The model fit is shown for ages 40 and 60.

Panel A. Age 40.
Panel B. Age 60.

Source: Authors’ calculations.
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health case assumes that only individuals in the best health class of  the Markov 
aging model purchase annuities. The mixed cases assume a portfolio of  annuitants 
with similar health proportions to that of  the population purchases annuities with 
an average premium for the group, and there is no selection based on health.
The standard deviation of  the annuity pool amount increases with older ages for 
all models. Even though frailty models imply reduced relative heterogeneity in 
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Figure 7.4.  Heterogeneity based on expected future lifetimes at age 65.

Note: The figure shows the distribution of  future expected lifetime according to the three modes 
used in the text to quantify heterogeneity of  mortality. The Markov model has a noticeably different 
distribution from the other models, reflecting its calibration to both health and survival data.

Source: Authors’ calculations.

Table 7.3  Markov aging model: Percentage distribution of  health states for ages 40–70

State: 1(%) 2(%) 3(%) 4(%) 5(%) Deceased (%)

Age:
30 72.7 20.5 5.0 0.4 0.0 1.3
40 65.1 25.0 7.4 0.2 0.2 2.1
50 47.5 31.3 12.5 4.7 0.3 3.7
60 24.8 37.3 18.2 11.7 0.9 7.1
70 14.5 29.6 20.4 18.3 2.2 14.9

Notes: The table shows the distribution of  health states for varying ages based on the Markov aging 
model. Health state 1 is the best health state with the lowest mortality rate, and 5 is the worst health 
state with the highest mortality rate.
Source: Authors’ calculations.
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Panel B. Le Bras model standard deviation. 
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Figure 7.5.  Standard deviation risk measure for the annuity pool amount at older ages for 
the different models of  heterogeneity for a pool size of  1,000.

Note: The figures show standard deviation of  the annuity fund for annuities commencing at age 65 
at the older ages for a pool size of  1,000 individuals. The standard deviations are shown for the three 
different models and for the assumption that only the best health individuals purchase annuities (best 
only), and also assuming a mixture of  health states representative of  the population purchase annuities 
(mixed).

Panel A. Markov model standard deviation.
Panel B. Le Bras model standard deviation.
Panel C. Vaupel model standard deviation.

Source: Authors’ calculations.
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Panel C. Vaupel model standard deviation. 
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Figure 7.5.  (Continued)

mortality at older ages, there is an increase in variability of  pool fund amounts. The 
Le Bras and Vaupel models produce similar results, with the Vaupel model produc-
ing higher standard deviations.

The most interesting aspect shown here is the Markov aging model, whose 
measure of  heterogeneity is specifically calibrated to population health data. The 
heterogeneity for cases when only people in the best health states purchase annui-
ties is significantly lower than for the mixed-population pool. These differences do 
not arise in the other two models, where heterogeneity in health is derived from 
aggregate survival rates only.

Figure 7.6 shows the Markov aging model results for the best health state 
compared with the mixed health case in order to illustrate the differences in the 
expected value of  the fund as well as the variability. The best health case expected 
value starts higher but both fund values converge to zero, since the premiums are 
fair. In the mixed population case the distribution of  fund sizes is much wider, with 
significantly higher probabilities of  adverse fund sizes.2 This illustrates how the 
strategy of  writing annuities for a select group of  individuals reduces the volatility 
arising from heterogeneity and is a lower risk strategy for an annuity provider.

In practice individuals can self-select against the annuity provider. This is 
referred to as adverse selection. To consider this we assume that the premium 
charged is based on the mixed population distribution of  health states but indi-
viduals purchase annuities based on their health state. Thus lives in better health 
than the mixed group find the annuity rate attractive and purchased annuities. As 
shown in Figure 7.7, the effect of  this anti-selection is that the average fund size 



Panel A. Best health state only annuity fund balance. 
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Panel B. Mixed population annuity fund balance. 
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Figure 7.6.  Balance of  annuity fund for the best health state and the population mix showing 
uncertainty and downside risk.

Note: The figures show the annuity fund for annuities commencing at age 65 at the older ages for a 
pool size of  50 individuals. Panel A shows an annuity portfolio with only the best health state and 
Panel B shows annuities assuming a mixture of  health states representative of  the population purchase 
annuities (mixed).

Panel A. Best health state only annuity fund balance.
Panel B. Mixed population annuity fund balance.

Source: Authors’ calculations.
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Panel B. Standard deviation. 
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Figure 7.7.  Mean and standard deviation of  balance of  annuity fund showing the impact 
of  adverse selection.

Note: The figures show the annuity fund for annuities commencing at age 65 for a pool size of  50 
individuals assuming that a population annuity rate is charged. The top figure shows the mean balance 
and the bottom figure the standard deviation. Two cases are shown: one where there is no self  (adverse) 
selection and the other where only the healthy lives purchase annuities.

Panel A. Mean balance.
Panel B. Standard deviation.

Source: Authors’ calculations.
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drops significantly, as expected, and the chance of  major losses increases. Adverse 
selection does produce lower standard deviations of  pool fund balances, but this is 
primarily because the mean level of  the fund falls more rapidly and the self-selected 
group is less heterogeneous than the mixed group.

Table 7.4 shows the premiums and risk measures at the ultimate age of  110 
for the cases of  best health, mixed health, and adverse selection for a pool size of  
1,000. Annuity premiums vary significantly according to health state in the Markov 
aging model. They vary from 15.22 for the best health state to 0.64 in the worst 
health state. The Le Bras and Vaupel models produce higher premiums, reflecting 
the higher life expectancy in these models. The three models agree on the impact 
of  self-selection, although they differ on the reduction in volatility when the best 
health group is priced separately. These results illustrate the extent of  model risk 
in allowing for heterogeneity when assessing a pricing strategy and solvency of  an 
annuity pool. Large variations in premiums occur as well as in tail measures of  risk.

Impact of Random Investment Returns
Table 7.5 shows the annuity premiums and risk measures for pool sizes of  1,000 
assuming random investment returns. Premiums are lower since the average interest 
rate in the stochastic model is higher than the deterministic 3 percent used in Table 
7.4. The best health annuity premium for the Markov aging model is now 12.68, 

Table 7.4  Annuity premiums and tail risk measures assuming a fixed investment return for 
different models of  heterogeneity

Mortality 
model

Heterogeneity Annuity 
premium

Risk measures at age 110
Stdev 95% VaR

Markov best health only 15.22 511.76 821.67
state 2 14.94 519.94 855.21
state 3 13.97 566.82 922.96
state 4 11.45 687.93 1112.05
state 5 0.64 118.03 199.83
mixed 13.42 682.91 1122.83
mixed w/self-selection 13.42 540.05 5452.06

Le Bras best health only 17.49 588.21 947.61
mixed 14.15 634.72 1052.37
mixed w/self-selection 14.15 608.96 6816.63

Vaupel best health only 18.39 639.50 1029.39
mixed 14.72 676.94 1130.14
mixed w/self-selection 14.72 656.93 7369.68

Notes: The table shows the premium for a life annuity of  1 per annum and tail risk measures for a pool 
of  1,000 individuals aged 65 assuming different pool compositions for health statuses for a fixed 
investment return of  3% per annum. Results are shown for the different deterministic models of  
heterogeneity. See text.
Source: Authors’ calculations.
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compared to 13.93 for the Le Bras model and 14.35 for the Vaupel model. Risk is 
substantially increased with the addition of  investment return risk. The Le Bras and 
Vaupel models show similar risk measures for the different cases of  selection and 
these are higher than the Markov aging model. For the Markov aging model the bet-
ter health states contribute significantly to the overall fund risk measures.

Impact of Stochastic (Systematic) Mortality
The subordinated Markov aging model incorporates stochastic mortality through 
a Gamma time change. This changes the survival probabilities for all individuals 
in a random manner. The result is a distribution of  survival probabilities for each 
health state. The degree of  uncertainty in future survival probabilities is deter-
mined by the variance ν of  the Gamma time change.

Table 7.6 shows the impact of  the Gamma time change parameter on the fund 
standard deviation at age 110. The annuity fund tail risk is not very sensitive to this 
assumption. Higher values of  the parameter result in reduced standard deviations 
for a mixed health state fund as compared with the best health only case.

Impact of Pool Size
Table 7.7 compares the standard deviation at age 110 for pool sizes 100 to 100,000 
given by the Markov aging model with and without the stochastic time change. 

Table 7.5  Annuity premiums and tail risk measures assuming random investment returns 
for different models of  heterogeneity

Mortality 
model

Heterogeneity Annuity 
premium

Risk measures at age 110
Stdev 95% VaR

Markov best health only 12.68 4,570.53 7,372.69
state 2 12.49 4,454.89 7,150.40
state 3 11.80 4,250.96 6,755.93
state 4 9.85 3,494.09 5,688.37
state 5 0.63 386.70 638.02
mixed 11.34 4,096.90 6,528.22
mixed w/self-selection 11.34 3,912.58 17,878.91

Le Bras best health only 13.93 5,480.72 9,047.16
mixed 11.84 4,328.60 6,910.74
mixed w/self-selection 11.84 4,218.89 19,635.98

Vaupel best health only 14.35 5,725.39 9,188.87
mixed 12.14 4,500.81 7,286.31
mixed w/self-selection 12.14 4,428.48 20,553.27

Notes: The table shows the premium for a life annuity of  1 per annum and tail risk measures for a pool 
of  1,000 individuals aged 65 assuming different pool compositions of  health statuses for a random 
investment return. Results are shown for the different deterministic models of  heterogeneity. See text.
Source: Authors’ calculations.
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With deterministic mortality rates, standard deviation increases approximately in 
proportion to the square root of  pool size, showing a diversification of  idiosyncratic 
mortality risk. Thus as the pool size grows by 10 times from 1,000 to 10,000, the 
tail risk, as given by the fund standard deviation at age 110, increases by approxi-
mately 3.16 times (square root of  10). In contrast, with the inclusion of  systematic 
risk, the effect of  diversification of  mortality risk increases by 9.8 times (almost 10). 
Systematic mortality risk dominates as the pool size increases.

Figure 7.8 shows how the impact of  systematic mortality risk increases through 
the older ages. The standard deviation of  the pool amount for ages above 90 for 
the deterministic and subordinated Markov aging models, for pool sizes 500 and 
1,000, increases significantly. The effect of  larger pool sizes at the older ages is 
clearly seen.

Table 7.6  Standard deviation of  annuity fund for 
different assumptions of  stochastic mortality risk

ν

Stdev at age 110

Best health Mixed

0.01 956.16 1,027.44
0.05 1,859.89 1,817.99
0.1 2,603.98 2,509.03
0.5 5,660.73 5,474.22

Notes: The table shows the standard deviation for a 
life annuity fund of  a pool of  1,000 individuals age 65 
assuming different pool compositions for health statuses for 
annual payments of  $1 and a fixed investment return of  
3% per annum. See text.
Source: Authors’ calculations.

Table 7.7  Standard deviation at age 110 for different pool sizes using Markov model 
without and with stochastic mortality risk

Pool size Deterministic Markov Subordinated Markov

100 215.54 354.96
1,000 684.12 2,954.66
10,000 2,147.19 28,913.66
100,000 6,832.39 287,749.89

Notes: The table shows the standard deviation of  the fund at age 110 for life annuity of  1 per annum for 
best health individuals age 65, assuming a fixed investment return of  3% per annum. The stochastic 
model assumes variance of  Gamma time change ν = 0 095. . See text.
Source: Authors’ calculations.
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Figure 7.8.  Standard deviation of  annuity pool amount at older ages for the Markov aging 
model.

Note: The figures show the standard deviation of  the annuity fund for annuities of  $1 per annum for best 
health individuals aged 65, assuming a fixed investment return of  3 percent per annum.

Panel A. Without systematic risk.
Panel B. With systematic risk.

Source: Authors’ calculations.
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Conclusion
This chapter has deployed a recently developed Markov aging model for mortality 
heterogeneity, along with more commonly used frailty models, to show the impact 
of  heterogeneity and systematic mortality risk on annuity fund values at the older 
ages, the tail of  the mortality distribution. Model risk for longevity arises from a 
misspecification of  the underlying process being modeled. Systematic mortality 
risk models have been developed and applied. Markov aging models for hetero-
geneity have also been developed. Standard models of  heterogeneity do not cap-
ture observed health differentials or the effect of  systematic mortality risk. Using 
a model that captures only one of  these aspects of  mortality risk has limitations 
because of  model risk.

We illustrate the impact of  this model risk in the determination of  annuity pre-
miums and fund risk measures. Heterogeneity results in a wide variation in annuity 
premiums depending on health status. Selection of  lives in better health states by 
insurers when writing life annuities is a less risky strategy than writing annuities on 
all health states in the population, even if  premium rates vary by health state and 
there is no adverse selection. Adverse selection negatively impacts both profitability 
and fund risk.

Increasing pool sizes increase tail risk almost linearly with the size of  the pool for 
the cases where the Markov aging mortality model includes systematic risk. This 
effect is not captured by standard models of  heterogeneity where mortality pooling 
results in only a square root of  pool size increase in fund risk.

Notes
	 1.	 The two are equivalent when: a = ×[( ) / ( )]λ λ µ0 , b = +λ µ , c = − ×µ λ λ µ0 0[( ) / ( )] , 

σ λ λ2
0= [( ) / ( )] .

	 2.	 The other two models show a smaller magnitude; see Table 7.3.
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