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1 Introduction

Individual investing for retirement has become increasingly important, as social security
systems all over the world are forced to cut unfunded pay-as-you-go benefits due to the
demographic change. Consequently, many countries have started social reforms that encour-
age voluntary individual investing for retirement, which on the one hand helps individuals
to gain more control over their pension assets, but on the other hand exposes them to higher
risk from capital markets. To mitigate risks from unsophisticated investment decisions, ex-
cessive risk taking, or extreme market movements, individual pension or retirement accounts
are often augmented with a guarantee that provides individuals with a minimum level of
benefits. Downside risk protection, however, is not costless, and the crucial questions are:
who pays for the protection, what does the protection cost, and how to implement an effec-
tive protection? Especially in the aftermath of the 2008 financial crisis, private households
with individual retirement accounts were hit hard. The sharp increase in stock volatility
and the downturn of worldwide stock markets depleted the available risk budget strongly.
Furthermore, interest rates went down and continue to stay at historic record lows. Such
extreme movement has to be incorporated in the proper evaluation and design of individual
retirement investment strategies with minimum benefit targets.

In this paper we apply a dynamic asset allocation approach to tackle these questions. We
solve for both, the optimal unconstrained as well as the optimal Conditional Value at Risk
(CVaR) constrained policy in a model with regime shifts in the stock volatility and the CIR-
style short rate process. Thereby, the CVaR constraint is core to a risk management scheme
that monitors the investor’s ability to meet a money back guarantee with high confidence
and restricts her asset allocation if necessary. Costs for the money back guarantee are
measured as certainty equivalent welfare losses from comparing the constrained against the
unconstrained policy.

Our approach is motivated by the German Retirement Savings Act from 2002 (Al-
tersvermögensgesetz (AVmG)), though not restricted to it. Instead, we focus on its fun-
damental principle with respect to identifying eligible investment solutions, which can be
described as an integrated investment and risk management scheme with conditional sol-
vency requirement. The private investor chooses a certified money manager, who invest on
her behalf. To qualify for a certification, the money manager has to provide a nominal money
back guarantee on the invested capital. Apart from this, there are no further restrictions in
place for the applied investment policy and the asset class selection. Key to this framework
is a continuous risk assessment that monitors whether the current wealth level is sufficient
to back the guarantee with a high degree of confidence.1 Furthermore, no upfront guarantee
costs are charged at the beginning or during the life of the contract. Instead, the invest-
ment company has to step in with its own capital, whenever the risk assessment signals
an underfunding of any contract.2 Note, in contrast to other pension schemes or related

1In this framework, the money back guarantee constitutes a legally binding liability. Throughout this
paper, however, we use the term money back guarantee synonymously for our constrained portfolio policy,
which protects the target with high confidence, but not with certainty.

2In this context, Gründl, Nietert, and Schmeiser (2004) coined the term contingent equity, because equity
is not set aside at underwriting, but provided whenever the plan is underfunded. The authors, however,
point out that the investment company has the option to default, whenever this is more profitable.
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insurance contracts, individual retirement accounts cannot benefit from pooling effects, but
each guarantee has to be granted separately, which increases the costs.

Previous research on minimum return guarantees are mainly carried out in an option
based framework, e.g. Bodie (1995), Gründl et al. (2004), and Lachance and Mitchell (2003).
In this paper, we focus on an asset allocation approach instead.3 In the context of the German
retirement savings act, Maurer and Schlag (2002) and Schnabel and Seier (2003) report that
typical dynamic asset allocation schemes yield rather low costs for the investor. Maurer and
Schlag (2002) use a risk-return framework to measure the costs, while Schnabel and Seier
(2003) apply a utility based framework to measure the difference in certainty equivalent.
Both studies benchmark several dynamic asset allocation schemes against an unconstrained
base case portfolio using a standard Black and Scholes (1973) asset model.

This practical application, however, relates to more general research questions about port-
folio choice under downside constraints, too. We consider a standard power utility investor
who faces an exogenous downside risk constraint in a multi-period framework. Reasons for
exogenous downside constraints, or risk management, are manifold. They can be found in
the regulation of banks, insurance companies, pension plans, and, like in our case, investment
products. The subtle differences lies in the way the downside risk is formulated in a multi-
period setting.4 For instance, Basak and Shapiro (2001) consider optimal trading between
the dates of risk evaluation, while Yiu (2004) considers optimal trading with a dynamic risk
constraint attached. In our framework, the downside risk constraint is defined over terminal
wealth but also regularly evaluated during the course of investing.5 The breakdown of the
risk horizon for intermediate evaluation and trading is similar to the case of standard Con-
stant Proportion Portfolio Insurance (CPPI) proposed by Black and Jones (1987), where
the wealth level must always reside above a floor, typically the discounted strike, in order
to meet the target at maturity. The difference is that the standard CPPI only considers
two assets, a risky and a risk-free one. Optimal allocation within the risky portfolio is not
covered, as changes in the risky portfolio would alter the multiplier. In our framework, we
consider both, the optimal investment solution as well as the risk management scheme.6 As
a consequence, a dynamic investor anticipates the impact of risk management and adjusts
her risky allocation accordingly. Furthermore, our approach also considers term structure
risk, which impacts the floor quite differently depending on the remaining maturity. This is
important for long-term CVaR constraints, because the CPPI generally neglects volatility in

3The disadvantage of the option approach is that put options with long maturities are expensive, they are
thinly traded—if at all, the costs are incurred upfront, and option prices do not necessarily reflect economic
costs (Lachance and Mitchell, 2003).

4Research on downside risk constraints in a one-period setting includes works of Roy (1952), Alexander
and Baptista (2002), and Alexander, Baptista, and Yan (2007) among others.

5This topic also relates to the research on dynamic risk measures, because standard risk measures like
VaR or CVaR are designed for static settings (Artzner, Delbaen, Eber, Heath, and Ku, 2002; Riedel, 2004;
Hardy and Wirch, 2004).

6By contrast, related studies directly incorporate downside risk measures in the objective function (Har-
low, 1991; Jarrow and Zhao, 2006; Emmer, Kluppelberg, and Korn, 2001; Alexander and Baptista, 2002) or
consider loss aversion in the utility function (Barberis and Huang, 2001; Berkelaar, Kouwenberg, and Post,
2004; Fortin and Hlouskova, 2011). This alters the optimal solution, as these investors endogenously dislike
downside risk. The difference to our approach is that these investor do not suffer from downside protection,
while the constrained power utility investor may incur welfare losses.
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the discounted floor. Hence, the downside constraint is affected by the investment decision
as well as the volatility of the floor. The investor can partially hedge the latter by managing
the duration of her bond investment.

We contribute to the existing literature along two directions. First, instead of relying
on the common log-normal distribution, we put much effort in modelling our asset model
time-varying with discrete regime switches in the stock return process and in the CIR-style
short rate process. The asset model is capable of generating skewed and leptokurtic asset
returns—commonly known as heavy tails.7 Especially, time horizon effects of downside
risks differ distinctively in a regime switching model when compared to a common log-
normal distribution (Guidolin and Timmermann, 2006). Thus, our CVaR estimates result
from a conditional distribution and can not be derived by closed form solution like under
a log-normal assumption. Instead they must be evaluated path-wise, which increases the
computational burden considerably. The risk constraint depends not solely on the evolution
of the wealth process, but it will be affected by the short rate level as well as the stock and
short rate regime. This allows us to study short-term market turbulences on interim risk
evaluation dates. Second, we measure the guarantee costs against the optimal unconstrained
policies for lump sump investments as well as savings plans. In contrast, previous works
have reported costs against ad-hoc defined benchmarks but have not considered the optimal
asset allocation decision of the unconstrained investor, which should be the natural basis
for comparison. Furthermore, standard portfolio insurance strategies like the CPPI cannot
deal with dynamic portfolio strategies, as they assume a constant risky portfolio mix until
maturity and ignore interest rate risk.

Our results show that for lump sum investments, the costs of money back guarantees are
negligible for very risk averse investors, but not for less risk averse investors who can suffer
from such guarantees—especially in a low interest rate environment. In practice most plans
are designed as saving plans, in which the investors contribute a specific amount each period
instead of investing all at the beginning. In this setting, costs from the money back guarantee
are somewhat smaller. For individual retirement accounts, these results are supportive, as
they back evidence for low economic costs arising from money back guarantees and low
welfare losses from applying simpler strategies, even in stressed market situations. On the
other hand, the money back guarantee can resolve many incentive problems that arise in
practice. In Germany, for instance, financial regulators are not required to approve complex
investment strategies offered by the plan providers, because the providers have to step in
with their own capital, whenever a plan is underfunded; this shuts down excessive risk taking
effectively. Furthermore, in this framework, the money back guarantee requires no initial
premium in contrast to an insurance-like option. This eases the transition from a pure
public pay-as-you go pension system to a more privately funded one, because no massive
upfront risk capital needs to be set aside. In fact, if capital markets developed favourably
no protection costs would be ever incurred, because the investor could pursue the optimal
unconstrained policy.

The paper is structured as follows. The second section presents our asset model with

7See Ang and Bekaert (2002b); Ang, Bekaert, and Wei (2008); Bansal and Zhou (2002); Dai, Singleton,
and Yang (2007); Driffill, Kenc, Sola, and Spagnolo (2009) for evidence in regime switches in short rates and
Chunhachinda, Dandapani, Hamid, and Prakash (1997); Peiro (1999) for skewness in financial returns.
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discrete regime shifts in the stock and the short rate process. We also discuss how to calibrate
and to simulate such regime switching models. The third section describes the investor’s
decision problem and the risk management scheme. The fourth and the fifth section present
the asset allocation results and the welfare analysis for the unconstrained and the constrained
lump sum investments, while the sixth section presents the results for savings plans. The
last section concludes.

2 A Regime Switching Asset Model

2.1 Modelling Regime Shifts in Stock and Bond Returns

Our asset model is driven by discrete shifts in regimes that affect the stock return process
as well as the short rate process. A similar model was applied by Ang and Bekaert (2002a)
who study the impact of regimes shifts in an international asset allocation framework. They,
however, only model the short rate, whereas we derive from the short rate process the whole
term structure, which we use for mainly two reasons: first, we generate bond returns for
investment purposes, and second, we discount future liabilities with respect to the remaining
maturity.
Analogously to Hamilton (1989, 1990), the regime shifts of each process are driven by a
discrete two-state Markov process, which prevails either in regime 0 or regime 1. The prob-
ability pij of a transition from regime i to regime j depends only on the current regime i.
The transition probability matrix is

F =

[
p00 p10
p01 p11

]

. (1)

We assume that the investor observes the current regime i, while the econometricians has to
filter the unobservable regimes from the data.

To preserve flexibility and parsimony, we allow the two regimes of the term structure
model and the stock return process to be governed by two independent processes. The joint
regime st is then described by the combination of the individual regimes sxt for the short rate
process and srt for the stock return process. The resulting four-state joint regime st equals

st = sxt ⊗ srt =







sxt = 1, srt = 1
sxt = 1, srt = 2
sxt = 2, srt = 1
sxt = 2, srt = 2






. (2)

This specification allows both processes to be affected by different regime shifts but reduces
the parameter space significantly. We also assume uncorrelated shocks between the CIR-
and the stock return process.

The Markov switching CIR-style term structure model (MS-CIR) is in line with Bansal
and Zhou (2002) and Driffill et al. (2009) with the discrete-time version of the state variable
process given by

xt+1 − xt = κ(st+1) [θ(st+1)− xt] + σ(st+1)
√
xtut+1, (3)
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where xt denotes the state variable, θ the process’s long-run mean, and κ the adjustment
speed at which the process reverts to its long-run mean. The conditional variance of the
process is σ2xt, where σ serves as a scaling parameter. All parameters may depend on the
realized regime st+1. The random shock ut ∼ N(0, 1) is independently and standard normally
distributed, and hence the process conditionally normally distributed. Note, with a single
state the standard Cox, Ingersoll, and Ross (1985) model ensues in the limit (Sun, 1992).

The market price of risk λ is also modelled regime-dependent with the corresponding
pricing kernel

Mt+1(st+1) = exp

[

−rft −
(
λ(st+1)

σ(st+1)

)2
xt
2
− λ(st+1)

σ(st+1)

√
xtut+1

]

(4)

and the one-period risk free rate rft . Bond prices with maturity τ are assumed to have the
form

P τ
t (st) = exp [−Aτ (st)− Bτ (st)xt] , (5)

with A(τ) and B(τ) being deterministic functions of the maturity. No-arbitrage bond prices
are imposed by the fundamental pricing equation

P τ
t (st) = Et

[
Mt+1(st+1)P

τ−1
t+1 (st+1)

]
. (6)

The constants A and B are derived by assuming joint log-normality in the process of the
pricing kernel Mt+1 and bond prices. Taking logs of (6) yields

logP τ
t (st) = Et

[
logMt+1(st+1) + logP τ−1

t+1 (st+1)
]

+1
2
V art

[
logMt+1(st+1) + logP τ−1

t+1 (st+1)
]
.

(7)

The resulting expression for A and B for each regime i is then given by

Aτ (i) = pii (Aτ−1(i) +Bτ−1(i)κiθi)
+pij (Aτ−1(j) +Bτ−1(j)κjθj)

Bτ (i) = pii

(

(1− κi − θi − λi)− B2
τ−1(i)

2
σ2
i + 1

)

+pij

(

(1− κj − θj − λj)− B2
τ−1

(j)

2
σ2
j + 1

)

,

(8)

with boundary conditions A(0) = 0 and B(0) = 0. Finally, the bond yields yτt are obtained
by

yτt (st) = − logP τ
t (st)

τ
=
Aτ (st)

τ
+
Bτ (st)

τ
xt. (9)

Similarly, the distribution of stock returns is driven by a Markov process, too. We assume
the log excess returns ret to be conditionally normally distributed with regime dependent
volatility v but regime invariant mean µ. Hence, we filter the mean-adjusted process of stock
excess returns to obtain the regime dependent volatility. For the regime invariant mean,
we assume an expected excess return of 7%, which is in line with the long-run estimates
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reported in Mehra and Prescott (2003).8 Applying a regime invariant mean reflects the
common difficulties in deriving reliable estimates for the equity premium due to its large
standard errors, especially in the case of regime switching models.9

The estimated process is described by:

ret+1 = µ+ v(st+1)et+1, (10)

where et ∼ N(0, 1) is the random shock in stock returns.

2.2 The Data

The investor allocates her wealth among stocks, default-free government bonds, and a risk-
free asset. Monthly excess stock returns are computed from returns including dividends on
the value weighted CRSP-index of stocks traded on the NYSE, AMEX, and NASDAQ less the
1-month Treasury bill; both continuously compounded. Monthly returns from government
bonds with maturity of five years are derived from a CIR-style regime switching interest rate
model.

The interest rate model is calibrated with the 3-month, the 6-month, and the 5-year
yield. The 3-month and the 6-month yields are taken from the Treasury bills provided by
the Federal Reserve Bank whereas the 5-year bond yields are the Fama-Bliss yields provided
by the CRSP database. In total, the data set comprises 457 monthly bond yields and index
prices from December 1969 to December 2007.

2.3 Calibration of the Regime Switching Asset Model

We proxy the actually latent state variable xt by an observable yield. Here we rely on the
3-month Treasury bill as proxy for the state variable xt, because Treasury bills with shorter
maturity are usually distorted by short-term liquidity needs.

To obtain monthly parameter estimates for the MS-CIR and the regime dependent market
price of risk λ(st), we assume that bond yields for a collection of maturities, specifically the
6 month and 5 years yield, are measured with error

yτt =
Aτ
τ

+
Bτ

τ
xt + ιt. (11)

This allows us to jointly estimate the MS-CIR model parameters and the market price of
risk.10

8Mehra and Prescott (2003) estimate a nominal equity premium of 6.92% for the subperiod of 1889-2000
and a nominal equity premium of 8.4% for the subperiod 1926-2000. Due to the more or less flat US stock
markets in the first decade of the 21th century, one might argue that the equity premium should be set
lower. Nevertheless, we are analyzing long-term investments, and weak stock markets over a decade can also
be observed in the last century, e.g. between 1970 and 1979. Hence, we stick to the long-run estimate of
Mehra and Prescott (2003).

9Ang and Bekaert (2002a) estimate different specifications of regime switching model including a mean-
invariant version. They conclude that the model can not be rejected with respect to various model selection
criteria. See Vo and Maurer (2012) for an analysis of asset allocation under regime dependent expected
returns and parameter uncertainty.

10Assuming measurement errors for a collection of yields is a commonly applied approach when calibrating
term structure models, see e.g. Pearson and Sun (1994); Chen and Scott (1995); Duffie and Singleton (1997)

7



The first step is to infer the hidden Markov process that governs our regimes from the
historical data. For this purpose we apply the Hamilton filter (Hamilton, 1989, 1990), which
requires the conditional probability density given the prevailing regime. Following Driffill
et al. (2009) and applying pseudo-maximum likelihood estimation, the density is assumed
conditionally normal

P (zt|st, zt−1,Θ) =
1

2π|Vst|1/2
e(−

1

2
ǫ′tV

−1
st
ǫt) × 1

2π|Σst |1/2
e(−

1

2
η′tΣ

−1
st
ηt), (12)

conditioned on the regime st, the observed data set zt = {zt, zt−1, . . . , z1} with zt = (y6t , y
60
t , rt)

′,
and the parameter space

Θ = {κ0, κ1, θ0, θ1, σ0, σ1, λ0, λ1, µ0, µ1,Σ0,Σ1} .

The first density corresponds to the stock return and the short rate process with the
residual

ǫt =

[
xt − xt−1 − κ(st)[θ(st)− xt−1]
rt − µ

]

(13)

and its regime dependent covariance matrix

Vst =

[
σ2(st)xt−1 0

0 v2(st)

]

. (14)

The second corresponds to the measurement errors on the yields with 6 month and 5 year
maturity

ηt =

[

y6t − A6(st)
6

− B6(st)
6

xt
y60t − A60(st)

60
− B60(st)

60
xt

]

(15)

with regime dependent covariance matrix

Σst =

[
σ2
6m(st) σ6m,5y(st)

σ6m,5y(st) σ2
5y(st)

]

. (16)

We obtain parameter estimates by maximizing the likelihood in equation (12) numerically
from multiplee different starting values. Using different sets of starting values reduces the
risk of being trapped in a locally optimal solution. The parameter estimates with the highest
likelihood among the trials are reported in Table 1 with numerically derived standard errors.
The asset model is used to simulate sample paths of monthly stock returns, bond returns,
and interest rates. Based on these simulations, we evaluate the CVaR of future wealth and
solve for the optimal portfolio policies using Monte Carlo integration.

[Table 1 about here.]

We label the regimes in the stock return (S) and CIR process (C) as high volatility (HV)
and low volatility (LV) regime, respectively.11 This yields in total four possible regimes:

11Actually, the volatility of the short rate process is
√
xtσ(st), but for convenience we treat the regime

dependent scaling parameter σ(st) and the process’s regime dependent volatility synonymous. Whenever
necessary to avoid ambiguity, we will clearly state in the text, whether the scaling parameter or the process’s
standard deviation is meant.
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SLV, CLV, SHV, and CLV. In the case of the stock return process, it is by construction only
the volatility that differentiates the regimes. In short rate process, however, regime shifts
affect all parameters. The short rate’s low volatility regime exhibits a slightly lower market
price of risk (-0.0122) and a lower long-run mean (0.0023) compared to the high volatility
regime (-0.0089 and 0.0071). The lower market price of risk indicates a slightly steeper yield
curve in the low volatility regime. Furthermore, the MS-CIR’s low volatility regime is more
persistent than the high volatility regime, which can be seen by the transition probabilities.
Conditioned on being in the low (high) volatility regime it is relatively more (less) likely to
stay in this regime (0.9787 vs. 0.9080). The long-run probabilities show that the system
prevails in the low volatility regime by about 81%. Hence, the short rate process exhibits
rather short periods of higher volatility. Similarly, the stock return process prevails about
75% of the time in the low volatility regime.

A long-term investor may be less affected by these short periods of higher volatility in
both regimes, since the system quickly moves to its steady state. In light of short-term
risk constraints, however, the impact of those periods of excess volatility, though potentially
short-lived, can be of great importance. For instance, an investor with a downside risk
constraint on terminal wealth might be tempted to consider the long-run distribution only.
However, evaluation of the risk constraint from period to period during the investment
horizon will exhibit potentially large swings in her risk measurement.

2.4 Simulation of the Regime Switching Asset Model

We use Monte Carlo simulation to generate the asset return paths, which will be used to
evaluate the CVaR of future wealth and the expected utility in the portfolio optimisation
problem later on. Stock returns are generated from a standard Euler-scheme

ret+1 = µ+ v(st+1)Zv (17)

where ret+1 is the continuously compounded stock excess return, µ its unconditional mean,
v(st+1) its regime dependent volatility, st+1 the prevailing regime, and Zv a standard normal
random variable. Hence, the stock return distribution is a mixture of normals, whereby the
current regime is first determined by a binomial random variable with probability P (st+1|st).

The short rate’s square-root process, however, requires a different sampling scheme, be-
cause its transition probability is not normal but non-central chi-squared. Unfortunately,
sampling from a non-central chi-square process is computationally demanding. Therefore,
Andersen (2007) proposed a quadratic exponential (QE) simulation algorithm for approx-
imating square-root processes, which we adopt here.12 The main problem arises from the
non-negativity condition of the square-root process. Hence, simply sampling from the Euler-
scheme in (17) is likely to result in negative short rates, whenever the short rate is very
small. Therefore, the rationale of the QE scheme is to match moments by using a quadratic
scheme, whenever the short rate xt is sufficiently large and an exponential scheme otherwise.

12Originally, Andersen (2007) developed the sampling scheme for conditional volatility models (Heston,
1993), but the same rationale for square root processes applies here.

9



The conditional mean m and volatility σ of equation (3) are given by13

m = θ + (xt − θ)e−κ∆ (18)

and

s2 =
xtσ

2e−κ∆

κ

(
1− e−κ∆

)
+
θσ2

2κ

(
1− e−κ∆

)2
. (19)

For sufficiently large values of the short rate xt, the quadratic scheme draws from

xt+1 − xt = a+ (b+ Zv)
2 (20)

where Zv is a standard normal random variable. a and b are parameters that are determined
by moment matching. They depend on the time step ∆, on xt, and on all other parameters
of the short rate process.

To define a and b2, set ψ = s2/m2, then for ψ ≤ 2

b2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1 ≥ 0 (21)

and
a =

m

1 + b2
. (22)

Andersen (2007) shows that if ψ ≤ 2, which is the case for sufficiently large values of xt, the
moments of the quadratic scheme equates to the true moments m and s2.

For low values of xt, or more precisely if ψ > 2, the quadratic scheme performs poorly
and the moment matching fails.14 Hence, an alternative exponential sampling scheme is
applied for low values of xt. Andersen (2007) proposes an approximative probability density
for low values of xt, where the probability mass in the origin can be specified explicitly. The
resulting cumulative distribution function is

Ψ(z) = Pr(∆xt+1 ≤ z) = p+ (1− p)
(
1− e−βz

)
, z ≥ 0, (23)

where β ≥ 0 and p ∈ [0, 1) are both parameters to be determined. The inverse of equation
(23) is

Ψ−1(u; p, β) =

{
0, 0 ≤ u ≤ p,
β−1 1−p

1−u
p < u ≤ 1

. (24)

Thus, variates for low xt values can be sampled by the inverse distribution function method

∆xt+1 = Ψ−1(Uv; p, β), (25)

where Uv is a uniform random variable. Analogous to the quadratic scheme, the moments
of the exponential scheme will match the true moments m and s2 only if ψ ≥ 1.15 p and β
are defined as

p =
ψ − 1

ψ + 1
,∈ [0; 1) (26)

13For better readability, we omit the regime dependent notation. Note, that in the short rate process, all
parameters are regime dependent, and the formulas apply accordingly for each regime.

14Recall that negative nominal interest rates are in general not meaningful and also strictly prohibited in
the square-root process.

15More precisely, the system of equations has a single solution if p < 1, but the stated density function
additionally requires p > 0. Both is the case for ψ ≥ 1 (Andersen, 2007).
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and

β =
1− p

m
=

2

m(ψ + 1)
> 0. (27)

Finally, we need a switching rule for both sampling schemes. The quadratic scheme
is applicable if ψ ≤ 2, while the exponential scheme requires ψ ≥ 1. Fortunately, both
intervals overlap such that always at least one of both sampling schemes is valid. According
to Andersen (2007), we find that the sampling results are quite robust to the exact choice of
the threshold for ψ so that we set it to 1.5.

3 The Investor’s Problem

3.1 The Optimal Unconstrained Policy

Consider first the optimal policy for an unconstrained investor with constant relative risk
aversion (CRRA) who faces regime shifts in the stock and short rate process. The investor
optimises her utility over terminal wealth WT and trades among a stock investment, a bond
investment with fixed maturity of five years, and the one-period risk-free asset. We consider
a simple constant maturity bond portfolio, because in practical applications complex liability
management can be prohibitively costly on an individual retirement account basis. Five years
of maturity are chosen to match the duration of standard medium-term bond portfolios. We
assume the investor observes the current state of the economy, which is described by the
current short rate level, the current regime of the stock return process, and the current
regime of the short rate process.16 We ignore typical frictions like taxes on capital gains or
transaction costs, and also rule out short selling.

The investor solves for the optimal policy ω = {ωs}T−1
s=t that maximizes her terminal

wealth
V (Wt, Zt) = max

{ωs}
T−1
s=t

Et [u (WT )] (28)

subject to the intertemporal budget constraints

Ws+1 =Ws

(
ω′
sRs+1 +Rf

)
, ∀s ≥ t, (29)

where Zt denotes the state variables, Wt the current wealth, and Rs+1 the one-period excess
return vector of the stock and the bond investment. Note, ω = {ωs}T−1

s=t denotes not only a
single decision, but the sequence of all optimal decisions from now until T − 1. Fortunately
this complex optimisation problem can be restated as a sequence of simpler optimisation
problems via dynamic programming.

With standard power utility and risk aversion parameter γ we obtain17

16Of course, all these factors are latent and unobservable by nature. Endowing the investor with these
information is likely to exaggerate the impact of regime shifts. Nevertheless, we argue that this is a first
valuable step to assess the importance of regime shifts and the results serve as an upper bound estimate for
utility costs.

17The notation is mainly in line with Brandt, Goyal, Santa-Clara, and Stroud (2005).
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Vt (Wt, Zt) = max
ωt

Et

[

max
{ωs}

T−1

s=t+1

Et+1

(
W 1−γ
T

1− γ

)]

, (30)

= max
ωt

Et










u (Wt+1) max
{ωs}

T−1

s=t+1

Et+1





(
T−1∏

s=t+1

(
ω′
sR

e
s+1 +Rf

)

)1−γ




︸ ︷︷ ︸

ψt+1(Zt+1)










. (31)

Since the CRRA utility is homothetic in wealth, the stated problem only depends on the
state variables in Z. With normalized wealth Wt = 1 it can be reduced to

1

1− γ
ψt (Zt) = max

ωt

Et
[
u
(
ω′
tRt+1 +Rf

)
ψt+1 (Zt+1)

]
. (32)

The solution to this problem can be obtained by backward induction with terminal condition
ψT (ZT ) = 1. Thus, in T − 1, the investor simply solves a single period problem.

3.2 CVaR Risk Management

The most widely applied risk measure in financial risk management is certainly still the
Value at Risk (VaR), a quantile risk measure defined as the loss that won’t be exceeded with
a certain probability. It is used by insurance companies, banks, investment companies as
well as financial regulators.

The VaRα is defined as the level of loss L that won’t be exceeded with probability 1−α

P (L > V aRα) = (1− α). (33)

The VaR is quasi-standard and widely spread due to its intuitive and simple concept, as it
reflects the perception of risk associated to regular market conditions. Nevertheless, the VaR
is not a coherent risk measure in the sense of the axioms of Artzner, Delbaen, Eber, and
Heath (1999)18, it does not account for the magnitude of extreme losses exceeding itself, and
it can lead to adverse portfolio policies that increase risk in the worst market conditions.19

By contrast, the Conditional Value at Risk (CVaR) is a coherent risk measure. It is
defined for continuous distributions as the expected loss L that exceeds the V aRα

CV aRα = E(L|L > V aRα). (34)

18Most importantly, coherent risk measures imply subadditivity, which essentially states that they allow for
diversification effects. By contrast, the portfolio VaR can actually be higher than the VaR of each individual
asset. A special case is the normal distribution, where the VaR is coherent and proportional to the standard
deviation.

19Basak and Shapiro (2001) show that VaR-style risk management schemes result in adverse portfolio
policies, because the VaR accounts only for the frequency and not the magnitude of loss exceeding itself.
Thus, a VaR constrained investor would only insure in states where insurance is cheap and expected losses
were small, but would take the full loss whenever insurance was expensive and expected losses were large.
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Furthermore, Rockafellar and Uryasev (2000) provide a representation for CVaR optimisation
problems that is convex and differentiable for continuous distributions.20 An approximation
for discrete distributions is given by

Fα(ω, ζ) = ζ +
1

N(1− α)

N∑

k=1

[f(ω, rk)− ζ ]+ , (35)

where α denotes the confidence level, ω the portfolio weights, ζ the VaRα, N the number of
samples, and f(ω, rk) the portfolio loss, which is a function of the portfolio weights ω and the
k-th return vector sample. The virtue of this representation is that it is no longer necessary to
determine the VaRα first. Minimising CVaRα(ω) over ω is equivalent to minimizing F (ω, ζ)
over ω and ζ . Besides being convex and piecewise linear in ζ , this CVaR representation for
discrete distributions is not differentiable with respect to ζ . Nevertheless, this problem can
still be minimised by transforming it into a linear programming problem (Rockafellar and
Uryasev, 2000).

Then minimising (35) is equivalent to minimising the linear expression

ζ +
1

N(1− α)

N∑

k=1

uk (36)

subject to
uk ≥ 0 and f(ω, rk) + ζ + uk ≥ 0 for k = 1, . . . , N. (37)

Note, the portfolio loss f(ω, rk) is also linear in the portfolio weights ω. Furthermore, this
CVaR representation does not imply any specific assumptions about the loss distribution
but holds for general loss distributions. It can be readily applied to historical samples or to
simulated samples without the need to assume a specific distribution. Hence, we can easily
adopt it to our simulated asset model paths. Throughout the paper we will consider only
CVaR as downside risk measure due to its favourable properties.

In our framework, the CVaR constraint is conditioned on a long-term and maturing
investment horizon. At the terminal date, the investor requires a pre-defined minimum rate
of return at a given confidence level. The underlying risk constraint is conditioned on the
terminal wealth WT such that

CV aRα(WT ) ≥W, (38)

where W denotes the minimum required wealth level at the end of the investment horizon.21

Actually, the investor seeks to manage the risk of her terminal wealth only, but at each
rebalancing step t, she has to monitor her current risk of missing the required minimum
rate of return at the final date T . Hence, at each rebalancing step, the future liabilities
are discounted by the corresponding risk-free rate to evaluate the current funding level. Let
τ = T − t be the remaining investment horizon, then the current funding level is given by

Ct =
Wt

We−y
τ
t τ
. (39)

20This is not the case for the VaR, which is not convex in the portfolio weights.
21Note that we have defined VaR and CVaR over losses, which is common practice in risk management.

Here, CVaR is applied on wealth levels, but the definitions for this case hold analogously. For instance, the
V aRα for loss distributions is its α-quantile, whereas the V aRα for wealth distributions is its (1−α)-quantile.
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At each date t, we restrict the next period’s CVaRα to

CV aRα

(

Wt+1

We−y
τ−1

t+1
(τ−1)

)

= CV aRα(Ct+1) ≥ 1. (40)

Note, that this CVaR is affected by the uncertain investment outcome given by Wt+1 but
also by the interest rate risk given in the denominator. The next periods term structure,
and hence the yield yt+1 of the bond with maturity τ − 1 is stochastic as well.

The advantage of using the risk-free yield as discount rate is, that it is objectively ob-
servable, traded at the market, and hence not prone to estimation risk. Furthermore, as
long as the funding level is greater than unity, the remaining liability can be fully hedged by
buying the zero coupon bond that matches the liability’s maturity.22

In some states, however, our wealth level will fall below the CVaR-constraint, and we
need a pre-determined rule for such states instead.23 For these cases, we decide to lock-in the
current funding level, and thus the current shortfall, by enforcing the investor to switch into
the bond with maturity that matches the remaining investment horizon. This is equivalent
to realizing the shortfall immediately and consequently the money manager loses discretion
about the allocation until maturity; in other words she is stopped out. Of course, this is
costly in terms of utility and we expect the money manager to act strategically in order to
avoid such events, e.g. by willingly reducing the allocation to stocks, even if the next period’s
CVaR constraint is not binding. Hence, we analyse if CVaR-style risk management schemes
induce intertemporal hedging demands. For all CVaR-constrained policies, we choose a
confidence level of α = 0.95.

3.3 Numerical Solution Methods

Numerically, we solve this problem by discretizing the state space with the current regime,
the current short rate, and in case of any CVaR constraint, the current funding level as our
state variables. Using the terminal condition ψT = 1, we optimise the one-period problem
in T − 1 and move backwards in time through the grid. The expected utility is solved by
Monte-Carlo integration. E.g., for a one-period investment it is approximated as follows:24

max
ωt

1

I

I∑

j=1







[

(1− ω′
t1K) exp(r

f
j,t) + ω′

t exp(r
f
j,t1K + rej,t+1)

]1−γ

1− γ







, (41)

where I denotes the number of simulation paths, K the number of assets, and 1K a K × 1
vector of ones. In the dynamic case, we evaluate a grid with dimension S × X × C, where

22Alternatively, the risk manager could discount the liability with the optimal constrained policy return.
In practice, however, this requires knowledge about the conditional distribution of terminal wealth, which
depends on the current state variables, but also on any future action of the investor, say her portfolio policy.
This is an extremely complex as well as problematic task, because of estimation risk and potential moral
hazard issues.

23Note, in contrast to a perfectly secured portfolio insurance, the CVaR risk management scheme allows
for 1− α shortfalls.

24Other authors who also use Monte Carlo methods to approximate expected utility are Barberis (2000);
Honda (2003); Guidolin and Timmermann (2007).
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S = 4 is the number of regimes, X = 30 the number of short rate levels ranging from 0.5%
to 15%, and C = 40 the number of wealth to liability ratios ranging from 1 to 5, except for
risk aversion γ = 2, for which we choose a higher grid limit of 7. For funding levels less than
unity, we apply a pre-defined rule. In any of those states, the investor will switch to a bond
with maturity T − t. The value function in each state is stored and values lying in between
the knots are interpolated by cubic splines; values beyond the grid limits are extrapolated.

For the optimal policies, we consider an investment period of 10 years with yearly rebal-
ancing. The asset model, however, is simulated on a monthly base. For each of these 120
months, we draw 20,000 Sobol quasi-random numbers for each innovation process; for the
regime, the stock return, and the short rate innovation. We take these simulated paths to in-
tegrate the utility expectations analogously to equation (41). Due to the high dimensionality
of our problem, we use a scheme to additionally randomise the resulting sequence of Sobol
numbers. Quasi-random number sequences tend to produce correlation patterns in higher
dimension among the actually independent random numbers. Randomisation schemes as
proposed by Matousek (1998) can reduce those correlation patterns to an acceptable level.
Despite the problems in high dimensions, we still decide to use Sobol numbers to keep the
optimisation tractable in a dynamic setting. For instance, we transform the CVaR-constraint
into a linear constraint according to equation (36) and an excessive amount of samples would
be detrimental for the optimisation routine.25

3.4 Measuring Welfare Costs

In the welfare analysis, we focus on two important aspects. First, we investigate the benefits
of acting dynamically instead of myopically. Recent works have reported that financial
literacy is an important aspect in individual retirement investment, because many individuals
lack the ability to adopt most complex strategies like optimal dynamic policies.26 Similarly,
money managers may have the financial literacy to understand and implement dynamic
strategies, but the infrastructure to perform such calculation for each individual account is
certainly a bottleneck in practical applications. Therefore, it is important to decide if the
costs of applying simpler myopic strategies truly outweighs the reduction in complexity.

Second, we investigate how costly the money back guarantee is to the investor. Recall
that our framework implies a CRRA utility investor who has no intrinsic need for a risk
management scheme. In fact, the constraints are set externally by the financial regulator
who does not want to bear the costs of a failed private retirement scheme. In Germany,
for instance, the risk management is part of the conditional solvency scheme, which pre-
vents excessive risk taking caused by either moral hazard or bad investment decisions. In
either case, the individual investor has an implicit put option on receiving social welfare if
her retirement investment fails. Hence, a money back guarantee shuts down intended or
unintended increases in risk taking.

25Nevertheless, our optimisation is not a pure linear problem, because our objective function, the CRRA
utility function, is non-linear. To solve this problem, we apply a large-scale optimiser implemented by the
Numerical Algorithm Group (NAG), which belongs to the class of sequential quadratic programming (SQP)
optimisation algorithms.

26For instance, a survey by Benartzi and Thaler (1999) shows that subjects chose inconsistent asset
allocations when faced with either the short-term or the long-term distribution of the same return process.
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As in Ang and Bekaert (2002a), welfare costs are measured as utility loss from pursuing
the suboptimal policy α+ instead of the optimal policy α∗. We can derive the wealth w̄ that
compensates an investor for using the constrained solution by solving

E0 [U(W
∗
T |W0 = 1)] = E0

[
U(W+

T |W0 = w̄)
]
. (42)

For a CRRA investor the required wealth w̄ can then be calculated by27

w̄ =

(

ψ∗
0,T

ψ+
0,T

) 1

1−γ

. (43)

The costs are expressed as dollar per wealth unit w = 100× (w̄ − 1). Hence, w is the costs
per $1 investment that is required to compensate a CRRA investor for any utility losses from
the suboptimal investment policy.28

4 The Effect of Regime Shifts in Stock Returns and

Interest Rates

4.1 Asset Allocation Results

[Figure 1 about here.]

First, we solve for the unconstrained policy, which serves as our benchmark solution against
which we measure the costs of risk management. Costs are calculated as utility loss from the
constrained versus the unconstrained solution. In addition to the optimal dynamic strategy,
we consider two simplified strategies. The myopic strategy ignores the future impact of
today’s decision and instead allocates at each rebalancing date according to the optimal
one-period rule. This reduces the computational burden extremely but still requires regular
actions and monitoring. A further simplification is the buy-and-hold strategy, which allocates
only once at the beginning of the investment period, and hence requires no future actions.29

The impact of regime switches and the short rate level is best illustrated by the buy-and-
hold strategy. Figure 1 plots the optimal allocation to stocks for a buy-and-hold investors
with different risk aversion (top to bottom panels) against the investment horizon. The left
panels vary the initial short rate level and fix the initial regime at the low volatility regimes,
while the right panels vary the initial regimes and fix the short rate level at its historic mean.
The plotted stock fractions display the conditional optimal stock allocation for a buy-and-
hold investor with remaining investment horizon given on the horizontal axis and an initial
short rate level or regime represented by the different lines. For instance in the left upper
graph, a γ = 2 investor allocates about 80 percent to stocks if the initial short rate level

27CRRA utility is homothetic in initial wealth and thus E0 [U(W ⋄

T |W0 = 1)] = V ⋄/(1− γ) for ⋄ = ∗,+.
28Costs are not annualized but always given for a 10 year investment plan.
29Here, we assume that the buy-and-hold investor is able to consider the time horizon effects of the asset

model and optimises her policy according to the T−th period distribution. Recall that our asset model is
time-varying such that the terminal distribution of the asset returns depends on the current state and the
investment period.
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in t = 0 is high and the remaining investment period is one year. Whenever her remaining
investment period is ten years, the allocation will be 100 percent. While the short rate level
can and will vary over the course of the investment period, only the short rate level at the
beginning in t = 0 is relevant. The same holds for the initial regimes in the right panels.

Both panels show that due to varying initial regimes and short rate levels the allocations
move monotonically to an optimal long-term equilibrium allocation. Regime switches lead to
more pronounced allocation shifts at the beginning, while changes in the short rate level result
in more persistent shifts. For instance, regime switch effects are negligible for investment
horizons longer than five years, irrespective of the risk aversion, while shocks in the short
rate level are still in effect at these horizons.

In contrast to the buy-and-hold policy, the myopic and the optimal dynamic policies
require regular rebalancing according to the prevailing states. The allocations for these
strategies are displayed in Table 2 with varying risk aversions from left to right and the
prevailing regimes from top to bottom. The subpanels show the optimal stock fraction for
different investment periods in years (top to bottom) and for different short rate levels (left
to right). The first row of each subpanel displays the 1-year allocation, which is equivalent
to the myopic allocation, and the remaining rows show the intertemporal hedging demands
for the longer investment periods. For instance, in the first row of the last column, we find
that the optimal 1-year allocation to stocks is 21.7 percent for an investor with risk aversion
γ = 10, whenever the short rate is one standard deviation above its mean (+1σx) and the
stock as well as the CIR process prevail in the low volatility regime (SLV-CLV). The second
row of the last column shows that a dynamic investor will reduce this allocation by 1.9
percent to 19.8 percent if her investment horizon is two instead of one year. By contrast,
a myopic investor sticks to her 1-year allocation irrespective of the number of remaining
investment periods.

[Table 2 about here.]

We report only the stock fraction, because the optimal policy is always fully invested in
either stocks or bonds with no allocation to the risk-free asset; hence, the bond allocation
is always 100 percent less the stock allocation. That is true for the given risk aversion
parameters (γ = 2, 5, 10), the time horizons (t = 1, . . . , T ), the current short rate level, and
the current regime.30

Looking at the myopic allocation in the first row of each subpanel, we find the stock
fraction decreasing with the risk aversion as well as with the short rate level (left to right).
Of course, more risk averse investors prefer bonds over stocks, while higher short rate level
imply higher carry returns from bonds and increase their attractiveness compared to equities.
The impact of the regimes (top to bottom) is more dominant for stock regimes than for short
rate regimes. The allocation for all risk aversion is qualitatively similar, whenever the stock
regime is in the low volatility regime (SLV-CLV and SLV-CHV) or in the high regime (SHV-
CLV and SHV-CHV) and mainly invariant to the short rate regime. The short rate regime is
only relevant if the short rate prevails above its mean. Then, bonds become less attractive for
all risk aversions ceteribus paribus (SLV-CLV vs. SLV-CHV and SHV-CLV vs. SHV-CHV).

30The only exception is the myopic allocation for risk aversion γ = 10 and a short rate level one standard
deviation below its mean. In this case, the investor holds about 10 percent in the risk-free asset.
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The intertemporal hedging demands, which are displayed in the remaining rows of each
subpanel (top to bottom), are negative for stocks but positive for bonds. This is in line with
the fact that our asset model mainly induces momentum in the stock returns and mean-
reversion in bond returns.31 The magnitude for a γ = 2 investor, however, is negligible with
a maximum reduction in stocks of less than 5.5 percent in the low stock/high short rate
volatility state (SLV-CHV) and only at elevated short rate levels. For a high risk averse
investor (γ = 10) who already holds more bonds, however, the stock allocation may drop by
up to 50 percent of the myopic allocation.

4.2 Welfare Analysis

As shown in the previous section, regime shifts and interest rate risk do induce intertemporal
hedging demands. However, the costs of neglecting those intertemporal hedging demands
are small. Table 3 reports the cost of myopia for an unconstrained policy. For γ = 2, welfare
cost are virtually zero for all states. An investor with γ = 5 loses about 12 to 24 basis points
and for very risk averse investors with γ = 10, the costs are somewhat higher ranging from
about 40 up to 92 basis points. This is consistent with the findings about intertemporal
hedging demands in the previous section, where hedging demands increase with the risk
aversion. Considering the complexity of the dynamic compared to the myopic strategies, we
argue that these costs are small. Furthermore, the costs reported here are an upper bound
estimate as we neglect estimation risk and allow the investor to perfectly observe the latent
states of regimes and short rate levels.

Analogous to the existing literature, we find strong evidence for the importance of regime
switches in asset allocation but few arguments for incorporating intertemporal hedging de-
mands.32

[Table 3 about here.]

5 The Effect of Money Back Guarantees

5.1 Asset Allocation Results

So far, we have considered the unconstrained investment case under a regime switching asset
model. Our objective, however, is the evaluation of a constrained strategy that ensures a
nominal money back guarantee with high confidence for long-term investors. Thereby, the
risk management rule is straightforward. We discount the future liabilities with the current
term structure to determine the current funding level and require it to be also higher than
unity the next period under any eligible allocation. Hence, the investor is required to consider
two competing time horizons; on the one hand she has to meet a short-term restriction for

31Ang and Bekaert (2002a) highlight the momentum generating properties of regime switching stock
returns and the impact of international asset allocation as well.

32Ang and Bekaert (2002a) report small utility losses from myopic investment in a regime switching
international asset allocation framework. However, they also find that ignoring regime shifts is extremely
costly.
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the risk management scheme and on the other hand she has to optimize utility of her long-
term terminal wealth. Similar to regime switches, CVaR-constraints are also capable of
introducing intertemporal hedging demands as the investor weighs the benefit of a more
aggressive allocation today versus the risk of being stopped out in later periods.

[Figure 2 about here.]

Figure 2 displays the optimal stock allocation for a myopic (left) and a dynamic (right)
investor at different funding levels Ct as defined in equation (39). The risk aversion is varied
from top to bottom, while the short rate level is fixed at its mean. The figure represents a
sectional view of the three dimensional optimal policy grid for a selection of relevant states.
It describes the policy that the investor should apply given her current state.

Recall that the myopic allocation does not account for the remaining investment periods,
and hence for sufficiently large funding levels, the left panels show a constant stock allocation
for all investment horizon. We found the constrained allocation to be virtually identical to
the unconstrained solution, whenever the funding level is greater than 1.5, irrespective of the
states or risk aversion. Therefore, it illustrates the allocation for a non-binding CVaR. For
instance, at risk aversion γ = 2 the allocation is constant at funding levels greater or equal
to 1.5; at risk aversion γ = 5 and γ = 10 it is already constant for funding levels greater
than or equal to 1.2. The factor that drives the myopic allocation with respect to the time
horizon is only the risk management rule, which becomes binding for lower funding levels.
Of course, the constraint is also more binding for more aggressive investors, as they prefer
riskier allocations compared to defensive investors. Nevertheless, more risk averse myopic
investors with γ = 5 or γ = 10 will only adjust their allocations for horizons of at least four
years and at funding levels close to unity.

The impact of the CVaR-constraint seems unintuitive at first sight, because the investor
tends to decrease her stock allocation with increasing investment horizon. The considered
CVaR estimate, however, is always a one-year estimate and is mainly determined by two
factors: the investor’s allocation and the duration of the liabilities. Hence, an increasing
CVaR with respect to the remaining investment horizon reflects the higher interest rate risk
in the liability.

The right panels display the dynamic stock allocation, which is always less than or equal
to the myopic allocation. We know this result already from the previous section from our
analysis of the unconstrained policy and conclude that the time-varying asset model induces
decreasing stock allocation with increasing investment horizon. Similarly, the investor acts
as if she were unconstrained from the risk management rule at a funding level of 1.5, and
reduces her stock allocation for increasing investment periods accordingly. As the CVaR
constraint becomes binding, both the myopic as well as the dynamic investor reduce their
stock allocation in order to meet the restriction. Nevertheless, the dynamic investor reduces
her stock allocation much stronger than the myopic investor. If unconstrained, the myopic
investor always sticks to the one-period allocation irrespective of the investment horizon.
Thus, any decrease in the myopic stock holdings stems only from the one-period CVaR
restriction. The additional reduction in the dynamic investor’s allocation compared to the
myopic investor is due to the time-varying liability process and the risk of of being stopped
out in the course of investing.
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At low current funding levels Ct, a very risk averse myopic investor with γ = 10 and
ten remaining investment years reduces her stock allocation slightly from 28 percent to 21
percent, while a dynamic investor reduces her allocation to about 8 percent. Furthermore,
when comparing the dynamic solution at Ct = 1.5 to the myopic solution at Ct = 1.1,
one can see that even though the virtually unconstrained policy was eligible at Ct = 1.1,
the investor still chooses a far less risky allocation than required from the next-periods risk
constraint. This highlights her additional intertemporal hedging demands arising from the
risk management rule.

In summary, risk management via downside risk constraints can be considered as ex ante
preventive action to control excessive risk taking as in the myopic case. Those preventive
actions are one aspect of the overall hedging costs. Regularly monitoring may also detect
breaches of risk constraints during the investment period, because CVaR-based risk man-
agement insures only partly. In that case, the investor shall be forced to pursue a more
conservative investment scheme to reduce further downside risk and to prevent any gam-
bling. Those rules must be formulated sufficiently restrictive to provide an incentive for the
investor to avoid being trapped in those situations and losing discretion about her portfolio
as seen in the dynamic case. The later aspect can be considered as punitive actions. Hence,
both preventive as well as punitive aspects of a CVaR-based risk management scheme makes
up for the costs of risk management.33

5.2 Welfare Analysis

In this section, we return to our main objective of measuring the costs of money back
guarantees. Therefore, we have derived the optimal strategies with risk management in
place and without. In contrast to previous findings, we measure the costs against the optimal
solution and not only against some ad hoc benchmark strategies and account for different
states of the economy. For instance, in the aftermath of the financial crisis in 2008, many
individual retirement plans that approached maturity as well as new plans faced an extremely
unfavourable situation. The sharp decline in equity markets that erased potential previous
gains of existing plans was followed by a low interest rate environment with high stock market
volatility.

Table 4 displays the welfare costs measured in certainty equivalents. The panels vary
the risk aversion and alternative investment policies. Each subpanel presents the results for
alternative initial states described by varying short rate levels and regimes. Note that the
funding level is not explicitly stated in the Table; it is rather implicitly determined by the
remaining investment horizon and the prevailing term structure, which in turn is determined
by the current short rate level and the current CIR regime. Here, we consider a remaining
investment period of 10 years.34

33See van Binsbergen and Brandt (2007) who investigate preventive and punitive aspects explicitly in an
asset liability management framework.

34In practice, strategies like the Constant Proportion Portfolio Insurance (CPPI) that pursue short-term
downside protection are also quite popular. In contrast to a long term risk management rule, they target at
a revolving short term downside protection though the underlying investment horizon may be considerably
longer. See Herold, Maurer, Stamos, and Vo (2007) for an analysis of short-term hedging effectiveness and
long-term costs of these strategies.
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[Table 4 about here.]

Similarly to the unconstrained case, intertemporal hedging demands require the dynamic
investor to adjust her stock allocation compared to the myopic investor. The top subpanels
indicates that the gain over a simpler myopic strategy is larger than in the unconstrained
case but still less than one percent for nearly all states and risk aversions. Only a very
risk averse investor with γ = 10 who faces a high volatility regime at low short rate levels
can improve a little better. We find this result surprising, because once an investor hits
the CVaR constraint, it is likely that she will be restricted for an extended period or even
stopped out for the remaining investment period. Our asset allocation results also show that
the dynamic investor tries to avoid such situations strategically by reducing her risky assets,
even if the funding ratio is well above a critical level. Nevertheless, in a similar framework
van Binsbergen and Brandt (2007) report, that a VaR constraint does not induce further
hedging demands, but instead decreases the ability of the investor to act strategically. They
argue that the VaR constraint did not result in a kinked utility function, but led only to
a flat peak in the CRRA utility, which was common for most portfolio problems involving
power utility. A flat surface around the optimum, however, implies that even large deviation
from the optimal solution only result in small utility losses.

The costs for the money back guarantee are displayed in the bottom subpanel. They are
derived by comparing the unconstrained dynamic to the constrained dynamic investment
rule, hence both polices account for intertemporal hedging demands. In contrast to previ-
ous findings who report very low costs from money back guarantees, we can not conclude
this in general. Compared to an optimal dynamic unconstrained solution, the loss due to
risk management can be significant for unfavourable initial states. The costs increase with
decreasing risk aversion as well as decreasing short rate levels, which is intuitive as less risk
averse investors prefer riskier investment that are more likely to be affected by a CVaR con-
straint. Furthermore, at lower short rate levels the present value of liabilities are higher,
which decreases the funding level and tightens the CVaR constraint. By contrast, a very
risk averse investor is virtually not impacted by the CVaR constraint as she prefers a large
portion of bonds anyway. Bonds are also a natural hedge against the interest rate risk in
the liabilities. Whenever the remaining investment period is less that five years—which is
the duration of the bond investment—the liability risk could be matched effectively by a
duration hedge. Therefore, the costs for γ = 5 and γ = 10 investors are negligible. For low
risk averse investors with γ = 2, the costs of money back guarantees are not deniable. With
at average short rate levels, the costs are ranging between about 0.60 to 0.75 percent, and
at low short rate levels, the costs are ranging about 1.25 to 1.95 percent.

6 Savings Plans and Money Back Guarantees

6.1 Asset Allocation Results

In this section, we extend our previous analysis to savings plans. In contrast to a single
lump sum investment, the investor contributes to the investable wealth during the invest-
ment period. This reflects the savings and investment decision of an individual retirement
investor more realistically. Over her life cycle, the individual investor typically starts with

21



low financial but high human capital and allocates her current labour and financial income
between saving and consuming. Hence, investment decisions are made over varying financial
wealth with potential in- and outflows from the invested capital. In this paper, we focus
on the money manager’s investment objective and abstract from the individual’s saving and
consumption decision. To this end, we consider a simple yet realistic saving rule with deter-
ministic absolute constant regular contributions.35 More precisely, over a 10-year investment
the investor allocates a constant absolute amount, say $1, at the beginning of each period.
The specific saving amount is irrelevant, because the CRRA utility is homothetic in wealth.

Essentially, a deterministic savings plan is equivalent to a lump sum investment with
a partially restricted investment policy. A savings plan with T regular absolute constant
contributions can alternatively be described as a portfolio of T zero coupon bonds with a
maturity structure that matches the deterministic contribution dates. For instance, in the
first period the investor is free to invest $1, while she holds additional T − 1 bonds with $1
notional each. At each future contribution date one of the bonds expires and the investor
can invest the repaid amount of $1 freely. The last contribution is made at T − 1. In the
last period, the investor is unrestricted as in in the lump sum case. Each periodic savings
amount wt is invested according to the portfolio weights ωt and the process for the overall
contributed and invested amount Wt can be described as

Wt+1 =
t∑

i=0

t∏

j=i

wi
(
ω′
jR

e
j+1 +Rf

)
, (44)

where Re
t+1 denotes the vector of excess returns and Rf the periodic risk free return. The

process for the total value of the savings plan St is described by

St+1 =Wt+1 + wt+1 +
T−t−1∑

i=2

wt+iP
i−1
t+1 ∀t < T − 1. (45)

St+1 contains the accumulated wealth on the received savings contributions Wt+1, the next
period’s deterministic saving contribution wt+1, and the next period’s present value of future
savings contributions. In T − 1 we do not expect any further contributions, and hence
ST =WT .

The portfolio decision affects only the process on the contributed amount Wt+1, because
future contributions are not at the investor’s disposal yet. Compared to an unconstrained
lump sum investment as in section 4, the complexity of the optimisation problem increases
for savings plan, because the current wealth level represents an additional state variable.
At any point of time, we know the present value of the future savings contribution and the
value of the contributions made so far, but the accumulated return made on the contributed
capital is unknown. We need this information, however, in order to determine the fraction
of our wealth that can be invested freely.

In the constrained case, a money back guarantee is written on each contributed dollar.
For instance, in the first period a minimum of $1 is guaranteed at the end of the 10-year

35Note, in our framework any other deterministic savings rule that may or may not be related to the
current wealth level could be considered as well.
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investment horizon, in the second period $2, and in the last period $10. In the case of money
back guarantees, we restrict the investment policy analogous to the lump sum case. The next
period’s CVaR of the funding level has to be greater than unity. Thereby, the money back
guarantee is active for all the contributions made so far. The risk constraint becomes

CV aRα

(

Wt+1 + wt+1
(∑t+1

i=0 wi
)
e−y

τ−1

t+1
(τ−1)

)

= CV aRα(Ct+1) ≥ 1. (46)

where Ct+1 is the funding level defined over the next period’s wealth Wt+1 and the next
period’s saving rate wt+1. Despite the fact that the savings contribution wt+1 is deterministic,
its impact on the funding level is still random, because the next period’s term structure is
stochastic. Hence, we do not know how much risk budget the next savings contribution will
add to our current risk budget. The lower the next period’s present value of wt+1, the more
risk budget is added and vice versa. Note, the money back guarantee is less restrictive for a
savings plan than for a lump sum investment, because future savings contribution always add
additional risk budget. Savings contributions enter with their full amount in the numerator,
but only with its present value in the denominator of the funding level. Hence, the funding
level increases with each contribution ceteris paribus and the investor may never be truly
stopped out as long as she awaits sufficient future savings contributions.

This, however, raises difficulties in our analysis, because whenever the investor faces a
funding level below unity, she still can regain discretion about the portfolio policy at later
periods. This is not the case for lump sum investments, because the current funding level
would be locked-in by investing in the bond that fully matches the liability’s maturity.
Furthermore, if and when the investor regains discretion in a savings plan is stochastic and
depends on the future liability process. This problem could be solved with an additional
state variable, which would heavily increase computational time. Therefore, we apply an
approximation for these cases. Whenever the investor cannot meet the CVaR constraint for
the next period, she has to invest in the bond that matches the duration of her liability for
the next period. For the evaluation of the value function, we truncate the funding level from
below at unity. This is similar to restricting the investor to apply a constrained allocation
with an assumed funding level at unity for later periods. Hence, our results may tend to
underestimate the exact costs of money back guarantees for savings plan.

[Figure 3 about here.]

Figure 3 displays the optimal allocation to stocks for a savings plan with and without
a money back guarantee. In both cases, the regime is set to the low volatility regime for
the stock and the short rate process. For the unconstrained case in the left panels, we vary
the short rate level, and for the constrained case in the right panels, we vary the funding
level with the short rate set at its historical mean. The displayed stock fraction refers to the
contributed and accumulated wealth so far. In the unconstrained case, an aggressive investor
with γ = 2 is always fully invested in stocks, except at high short rate levels. Then, her
allocation reduces to slightly above 80 percent for an one period investment. This is a more
aggressive allocation to stocks than in the lump sum case, where at this short rate level the
allocation is decreasing for longer investment periods. The latter is true for more risk averse
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investors, too. In contrast to the lump sum investment, the stock allocation for savings plans
increases for longer investment periods. This result is known from previous work, especially
in the life cycle household finance literature. Recall, a savings plan is equivalent to a lump
sum investment with a large fraction bound to bond investment at the beginning. Hence,
the investor allocates a larger fraction to stocks to compensate this effect, especially at the
beginning of her investment period. As the savings plans matures, less capital is bound to
bonds and the investor can shift to her overall desired allocation.

The constrained case shows non-monotonic allocation patterns, except for low risk aver-
sion. An aggressive investor is fully invested in stocks at high funding levels, but as the
funding level decreases, the CVaR restriction becomes more binding and the investor re-
duces her allocation to stocks monotonically with increasing time horizon. For higher risk
aversions, the stock allocation increases first, but with increasing time horizon the duration
of the liability increases as well. Both amplifies the funding level’s volatility and enforces the
CVaR restriction. Especially at low funding levels, the restriction to stocks can be severe; for
all risk aversions the stock fraction is capped at about 20 percent for a 10 year investment,
while the unconstrained fraction were 100 percent.

6.2 Welfare Analysis

[Table 5 about here.]

Table 5 displays the welfare costs of the money back guarantee for savings plans. Here,
the costs are given as percentage of the savings plan’s present value. Recall, each savings
plan comprises ten annual payments, and hence the initial present value of each savings plan
depends on the current state, which is given by the regime and the short rate. For better
comparability, we normalize the costs by the initial present value of the savings plan.

The costs are the lowest for conservative investors, as they desire a larger bond portion.
Because of the saving plan, the conservative investor holds implicitly a higher bond portion
anyway. By contrast, the aggressive investor’s wealth process is more correlated to the
liabilities due to the higher implicit bond holdings. Because she cannot invest aggressively
in early years, her risk increases to enter a constrained policy path, where she has to stick
to low equity holdings. Starting in the low volatility short rate regime, the costs range from
0.38 to 1.09 percent, depending on the initial short rate. Costs are slightly lower in the high
volatility short rate regime ranging from 0.34 to 0.83 percent. For γ = 5 costs do not exceed
0.36 percent in any case, and for γ = 10 costs are virtually zero.

7 Conclusion

In this paper we have analysed the impact of money back guarantees on optimal long-term
asset allocations under regime switching stock returns and regime switching CIR-style term
structures. The applied asset model is capable of generating a rich set of investment scenarios
with conditional volatilities, non-normal asset returns, and non-linear time variation in the
term structure. The CRRA investor maximises her utility over terminal wealth with respect
to a CVaR constraint that monitors the probability of falling short the money back guarantee.
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At each period, the liability is discounted by the current yield with maturity equal to the
liability’s duration. Whenever, the funding level is sufficiently high, the investor can invest
freely, otherwise, she has to adopt her strategy to meet the CVaR constraint.

We present results for the optimal unconstrained policy as well as for the CVaR con-
strained policy, which are both derived in a dynamic framework in discrete time. Welfare
costs for myopic lump sum investments are measured against the corresponding optimal dy-
namic solution; costs from the money back guarantee for lump sum investments and savings
plans are derived from comparing against the optimal unconstrained policies. In line with
previous research, we find that time variation in asset returns, does induce intertemporal
hedging demands but potential gains compared to simpler myopic strategies are small. With
respect to the financial literacy of average investors in practice, we doubt that any efforts
towards implementing the dynamic strategy were justified. For a lump sum investment, the
costs from risk management are negligible for very risk averse investors, because they natu-
rally prefer bonds over stocks. Of course, bonds are less riskier than stocks and also provide
an effective hedge against the liability risk. Less risk averse investors, however, suffer from
such guarantees, especially in a low interest rate environment. Nevertheless, in practice most
plans are designed as saving plans, in which the investors contribute a specific amount each
period instead of investing all at the beginning. In that setting, costs from the money back
guarantee are similarly small.

From our perspective, the results are very supportive for money back guarantees in indi-
vidual retirement accounts, especially if implemented as in the German Retirement Savings
Act. They provide retirees with a minimum level of benefit at very low economic costs.
Conflicts arising from moral hazard, lack of financial literacy, and high upfront insurance
costs are mitigated from this conditional solvency framework. In fact, if capital markets
develop fairly well, no costs from the money back guarantee would ever be incurred as the
investor could invest freely throughout. Hence, the term conditional solvency framework
is most suitable, because risk capital needs only to be set aside by the money manager if
necessary.

Further research in this direction could target more ambitious guarantees than a nominal
minimum zero return. However, the risk management scheme considered here is not readily
applicable for positive returns, because upfront costs can not be generally ruled out in this
case. We also choose a simple fix maturity bond portfolio, and do not consider the impact
of duration management explicitly. Hence, more complex liability structures could be intro-
duced with the need for more emphasis on the bond portfolio management. Furthermore,
risk management could be moved from the CVaR constraint into the objective functions
directly by incorporating loss aversion. It would be interestingly to see if welfare losses
under loss aversion utility prove to be substantially different to those in the CRRA case.
And finally, additional important sources of risk could be considered as well. For instance,
parameter and model uncertainty would not only impact the portfolio policy, but also the
risk management, as conditional CVaR estimates depend on the uncertain distribution as
well.
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Table 1

Parameter Estimates for the Two-Regime Asset Model
The table reports the pseudo-maximum likelihood estimates for the two-regime CIR-style term structure
model and the excess stock return process on a monthly basis. Numerically derived standard errors are in
parenthesis. The 3-month T-bill is used as proxy for the short rate, which is jointly estimated with the market
price of risk λ by assuming pricing errors for the 6-month T-bill and the 5-year bond yield. Parameters are
given on a monthly basis.

Regime LV Regime HV

κ 0.0154 ( 0.0020) 0.0385 ( 0.0084)
θ 0.0023 (1.07E-04) 0.0071 ( 0.0014)
σ 0.0029 (1.41E-04) 0.0070 ( 0.0005)
λ −0.0122 ( 0.0013) −0.0089 0.0078
σ6m 1.0E-04 (5.1E-06) 2.0E-04 (1.2E-05)
σ6m,5y 7.3E-04 (3.7E-05) 8.9E-04 (5.8E-05)
ρ6m,5y 0.4883 ( 0.0528) 0.6098 ( 0.0560)
Regime LV 0.9787 ( 0.0023) 0.0920 ( 0.0106)
Regime HV 0.0213 0.9080
Long run 0.8122 0.1878

µ 0.0056 0.0056
v 0.0334 ( 0.0041) 0.0650 ( 0.0111)
Regime LV 0.9498 ( 0.0243) 0.1486 ( 0.2000)
Regime HV 0.0502 0.8514
Long run 0.7488 0.2512
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Table 2

Optimal Allocation to Stocks - Unconstrained Policy
The table reports the optimal unconstrained dynamic allocation to stocks in percent for different investment
horizons in years. The initial short rate level is set either at the historical mean of the 3-month T-bill, −1
standard deviation, or +1 standard deviation. The different panels (top to bottom) vary the initial regimes;
the low volatility stock regime (SLV), the high volatility stock regime (SHV), the low volatility CIR regime
(CLV), and the high volatility CIR regime (CHV). The columns correspond to varying risk aversions and
initial short-rate levels. In each subpanel, the first row display the optimal one-period allocations, while the
remaining rows display the intertemporal hedging demands.

γ = 2 γ = 5 γ = 10

Periods −1σx µx +1σx −1σx µx +1σx −1σx µx +1σx

SLV-CLV

1 1.000 1.000 0.834 0.625 0.497 0.370 0.347 0.281 0.217
2 0.000 0.000 −0.008 −0.013 −0.013 −0.015 −0.018 −0.017 −0.019
5 0.000 0.000 −0.023 −0.042 −0.042 −0.046 −0.057 −0.055 −0.058
10 0.000 0.000 −0.032 −0.059 −0.061 −0.066 −0.078 −0.077 −0.082

SHV-CLV

1 1.000 0.839 0.631 0.442 0.357 0.274 0.244 0.200 0.158
2 0.000 −0.005 −0.005 −0.009 −0.009 −0.010 −0.013 −0.012 −0.012
5 0.000 −0.013 −0.015 −0.029 −0.028 −0.030 −0.039 −0.037 −0.038
10 0.000 −0.019 −0.021 −0.041 −0.040 −0.043 −0.053 −0.051 −0.053

SLV-CHV

1 1.000 1.000 0.998 0.640 0.558 0.479 0.385 0.342 0.305
2 0.000 0.000 −0.009 −0.027 −0.028 −0.031 −0.034 −0.035 −0.039
5 0.000 0.000 −0.034 −0.089 −0.088 −0.095 −0.115 −0.112 −0.118
10 0.000 0.000 −0.055 −0.131 −0.129 −0.136 −0.165 −0.160 −0.168

SHV-CHV

1 1.000 0.894 0.760 0.461 0.405 0.353 0.265 0.245 0.220
2 −0.001 −0.010 −0.011 −0.019 −0.019 −0.021 −0.014 −0.024 −0.026
5 −0.009 −0.029 −0.032 −0.062 −0.060 −0.064 −0.069 −0.076 −0.080
10 −0.020 −0.042 −0.045 −0.090 −0.087 −0.092 −0.103 −0.108 −0.113
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Table 3

Welfare Costs of Myopia - Unconstrained Policy
The table reports the welfare cost of myopia in cents per dollar for alternative initial regimes, risk aversions,
and short rate levels. The myopic investor always applies the optimal one-period allocation irrespective
of the remaining investment horizon. The columns correspond to varying risk aversions and initial short
rate levels. The initial short rate level is set either at the historical mean of the 3-month T-bill, −1 std.
dev., or +1 std. dev. The alternative initial regimes comprise the low volatility stock regime (SLV), the
high volatility stock regime (SHV), the low volatility CIR regime (CLV), and the high volatility CIR regime
(CHV).

γ = 2 γ = 5 γ = 10

−1σx µx +1σx −1σx µx +1σx −1σx µx +1σx

SLV-CLV 0.00 0.00 0.01 0.13 0.13 0.14 0.45 0.42 0.44
SHV-CLV 0.00 0.00 0.01 0.12 0.13 0.13 0.43 0.40 0.41
SLV-CHV 0.00 0.00 0.01 0.22 0.22 0.24 0.69 0.68 0.73
SHV-CHV 0.00 0.01 0.01 0.19 0.19 0.21 0.92 0.59 0.63
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Table 4

Welfare Costs for Constrained Policies
The table reports the welfare costs of constrained myopic investing (top subpanels) and the money back
guarantee (bottom subpanels) for CVaR confidence levels of 95 percent. The constrained myopic policy is
compared against the constrained dynamic strategy, while the costs for the money back guarantee is derived
by comparing the dynamic unconstrained policy versus the dynamic constrained policies. The different
columns corresponds to different risk aversions and initial regimes: the low volatility stock regime (SLV),
the high volatility stock regime (SHV), the low volatility CIR regime (CLV), and the high volatility CIR
Regime (CHV). The initial short-rate level is set either at the historical mean of the 3-month T-bill, one
standard deviation below the mean, or one standard deviation above the mean.

γ = 2 γ = 5 γ = 10

−1σx µx +1σx −1σx µx +1σx −1σx µx +1σx

Myopia

SLV-CLV 0.31 0.19 0.09 0.34 0.17 0.16 0.55 0.49 0.50
SHV-CLV 0.66 0.25 0.08 0.30 0.16 0.15 0.53 0.46 0.47
SLV-CHV 0.25 0.15 0.11 0.35 0.26 0.27 0.84 0.75 0.80
SHV-CHV 0.56 0.23 0.10 0.29 0.22 0.23 1.15 0.66 0.69

Money Back Guarantee

SLV-CLV 1.79 0.76 0.22 0.09 0.01 0.00 0.00 0.00 0.00
SHV-CLV 1.93 0.69 0.21 0.07 0.01 0.00 0.00 0.00 0.00
SLV-CHV 1.24 0.60 0.21 0.05 0.01 0.00 0.00 0.00 0.00
SHV-CHV 1.34 0.59 0.20 0.05 0.01 0.00 0.00 0.00 0.00
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Table 5

Welfare Costs of Money Back Guarantee - Savings Plan
The table reports the welfare costs of the Money Back Guarantee in cents per dollar calculated as cer-
tainty equivalence of the unconstrained versus the CVaR0.95-constrained optimal dynamic savings plan. The
columns correspond to varying risk aversions and initial short-rate levels. The initial short rate level is set
either at the historical mean of the 3-month T-bill, −1 std. dev., or +1 std. dev. The alternative initial
regimes comprise the low volatility stock regime (SLV), the high volatility stock regime (SHV), the low
volatility CIR regime (CLV), and the high volatility CIR regime (CHV).

γ = 2 γ = 5 γ = 10

−1σx µx +1σx −1σx µx +1σx −1σx µx +1σx

SLV-CLV 1.08 0.63 0.38 0.35 0.13 0.04 0.02 0.00 0.00
SHV-CLV 1.09 0.64 0.38 0.36 0.14 0.04 0.02 0.00 0.00
SLV-CHV 0.83 0.53 0.34 0.24 0.10 0.04 0.01 0.00 0.00
SHV-CHV 0.83 0.53 0.34 0.25 0.10 0.04 0.01 0.00 0.00
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Figure 1: Optimal Stock Allocation for a Buy-and-Hold Investor.

The figure plots the optimal allocation to stocks for an unconstrained buy-and-hold investor against different
investment horizons in years. The left panels fix the initial regime at the low volatility regime and vary the
short rate level from low (−1 std. dev.), to mean (its historical average), and to high (+1 std. dev.). The
right panels fix the short rate level at its historical mean and vary the regimes. The risk aversion increases
from the top to the bottom panels.
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Figure 2: Dynamic and Myopic Stock Allocation for the Constrained Policy.

The figure plots the optimal allocation to stocks for a CVaR0.95-constrained investor against different invest-
ment horizons in years. The stock and the CIR process prevail at the low volatility regime with the short
rate set at its historical mean. The left panels display the dynamic solution, the left the myopic solution.
The different lines correspond to different funding levels Ct as defined in equation (39). The risk aversion
increases from top to bottom panels.
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Figure 3: Stock Allocation for an Unconstrained and a Constrained Savings
Plans.
The figure plots the optimal allocation to stocks against the investment horizon for an investor with constant
yearly savings contributions. The left panels display the unconstrained case for varying short rate levels xt.
The right panels display the CVaR0.95-constrained case for varying funding levels Ct as defined in equation
(39) and the short rate level set at its historical mean. The risk aversion γ increases from top to bottom
panels.

39


	University of Pennsylvania
	ScholarlyCommons
	4-1-2013

	Dynamic Asset Allocation with Regime Shifts and Long Horizon CVaR-Constraints
	Huy Thanh Vo
	Raimond Maurer
	Dynamic Asset Allocation with Regime Shifts and Long Horizon CVaR-Constraints
	Abstract
	Keywords
	Disciplines



