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Abstract
Described are Radical-Polar Crossover (RPC) reactions, which have played an important role in the organic
synthesis, but very few review articles previously mentioned this concept. Using both photoredox catalysis
and non-photoredox catalysis can achieve the RPC transformation within a one-pot mechanism under very
mild condition. Besides this, RPC reactions provide many practical advantages such as rapid increasing in
molecular complexity and good functional group tolerance. Therefore, this potentially valuable reaction can
provide a lot of research opportunities.

Overall, the comparison of different authors’ views, critical analyses of the methods, and an overall summary
of the literature will be described in this review. The purpose of this work is to narrate both photoredox RPC
reactions and non-photoredox RPC reactions in a systematic fashion and to grasp the valuable point of view
from different authors. Applications of RPC reactions to the pharmaceutical sciences and industry will be
presented at the end.
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Described are Radical-Polar Crossover (RPC) reactions, which have played an important 

role in the organic synthesis, but very few review articles previously mentioned this concept. Using 

both photoredox catalysis and non-photoredox catalysis can achieve the RPC transformation within 

a one-pot mechanism under very mild condition. Besides this, RPC reactions provide many 

practical advantages such as rapid increasing in molecular complexity and good functional group 

tolerance. Therefore, this potentially valuable reaction can provide a lot of research opportunities.  

Overall, the comparison of different authors’ views, critical analyses of the methods, and 

an overall summary of the literature will be described in this review. The purpose of this work is to 

narrate both photoredox RPC reactions and non-photoredox RPC reactions in a systematic fashion 

and to grasp the valuable point of view from different authors. Applications of RPC reactions to 

the pharmaceutical sciences and industry will be presented at the end. 
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Literature Review of Radical-Polar Crossover Reactions 

 

Chapter 1. Introduction 

 

Radical-Polar Crossover (RPC) reactions played an important and ever-increasing 

role in organic synthesis. The novel feature of these reactions is that they are one-pot 

transformations that can accommodate both radical and polar reactivity, demonstrating 

step-economical properties. Such transformations attracted the attention of organic 

chemists to develop new reactions, but only few review articles mentioned the concept of 

RPC reactions.   

  Scheme 1 outlines two generic RPC reaction pathways. Radical 1, which can be 

formed from homolytic cleavage of the covalent bond of a radical precursor (R-[Y]), is a 

high energy intermediate that can be incorporated into a variety of productive reactions. 

With the appropriate use of light, heat, and the assistance of catalysts, radicals can be easily 

formed from various radical precursors. Upon reaction with a suitable radical acceptor (A), 

a radical adduct (R-A•) will be generated. This radical adduct will experience radical-

polar crossover, converting the initial intermediate to a polar adduct by single electron 

transfer (SET). The polar adduct (either an anion or a cation, depending on the 

transformation involved) can engage in further transformations to afford the final products 

via polar reactivity.1 The polar reactivity might include addition, elimination, or even 

rearrangement reactions, among others.1 The overall process of radical reactivity, 

transformation to a polar intermediate, and polar reactivity was defined as Radical-Polar 

Crossover Reactions. 

 

Scheme 1. Generic Reaction Pathway of Radical-Polar Crossover Reactions 

 
 

Photoredox catalysis will be one of the most important aspects of this review 

because it enables radical initiation and the transformation of the radical adduct to a polar 

adduct. Under the irradiation of visible light, a photocatalyst [PC] will be transformed to 

its excited state [PC]*, which can act as either a reductant (oxidative quenching) or an 

oxidant (reductive quenching).2, 3 As depicted in Scheme 2, in the oxidative quenching 

cycle, the excited state [PC]* is donating an electron to R-[Y] to generate the radical R•, 

and the ground state of the oxidized photocatalyst [PC]+ will have a high enough oxidation 

potential to transform the resulting radical adduct R-A• to a cation (RPC step) by Single 
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Electron Transfer (SET). Subsequent polar steps may include reactions with appropriate 

nucleophiles or rearrangements. Conversely, in the reductive quenching process, [PC]* is 

quenched by accepting an electron from the substrate R-[Y] to form R•, and the ground 

state [PC]- will have a high enough reduction potential to transform the incoming R-A• to 

an anion (RPC step) by SET. Further polar steps may occur by reaction with electrophiles, 

or, β-elimination when suitably substituted systems. Thus, under photoredox catalysis, the 

transformations may transpire via oxidation before reduction in reductive quenching cycle, 

or vice versa, reduction before oxidation in oxidative quenching cycle. A detailed 

mechanism depicting both oxidative quenching and reductive quenching was presented in 

a recent review article.2, 3  

 

Scheme 2. The Photoredox Catalytic Cycle for RPC Reaction2 

 
 

In addition to photoredox-catalyzed RPC reactions, non-photoredox-catalyzed RPC 

reactions will be reviewed. The non-photoredox-mediated RPC reaction are generally 

divided into four main categories: net redox-neutral (two different modes), net oxidative, 

or net reductive. In the net redox-neutral category, the selected non-photoredox catalyst, 

which denoted as ([cat]), participates in the catalytic cycle to mediate radical formation and 

transforms the generated radical adduct to a polar adduct via either reduction before 

oxidation, or oxidation before reduction (Scheme 3). Therefore, the series of net redox-

neutral RPC reaction can be categorized as RPC reaction transpiring via oxidation before 

reduction, or vice versa. Conversely, in net oxidative or net reductive reactions, the selected 

catalyst requires a stoichiometric oxidant or reductant, respectively, to turn over the 

catalyst to achieve overall oxidative or reductive transformations (Scheme 4). 
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Scheme 3. The Catalytic Cycle for Net Redox-Neutral RPC Reaction 

 
 

Scheme 4. The Catalytic Cycle for Net Oxidative and Reductive RPC Reaction 

 
 

The RPC reaction is generally mediated by photoredox catalysis or non-photoredox 

catalysis, and both sorts of RPC reactions can be applied to either intramolecular or 

intermolecular transformations, resulting in either cycloadducts, coupling products, or 

ring-closed adducts. The nucleophile is frequently internal, resulting in a cyclized product, 

but intermolecular transformations can sometimes occur via cycloadditions and carbon-

carbon or carbon-heterocyclic bond [C-C(X)] constructions. Therefore, the substrate scope 

of the reaction is relatively wide, and to date [4+2] cycloadditions, [3+2] cycloadditions, 

5-membered ring formation, intermolecular C-C bond construction, and even the formation 

of heterocycles were developed. In Scheme 5, representative examples of [3+2] and [4+2] 

cycloadditions and cyclizations are displayed, and these examples will be further discussed 

in the later chapters. In this review article, bonds formed through the RPC process were 
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emboldened, and all the bonds were colored in red (indicating radical bond formation) or 

blue (indicating polar bond formation). In this review, the detailed [3+2] cycloaddition, 

[4+2] cycloaddition, and non-cycloaddition reactions, including ring closure, ring 

expansion, and C-C (heterocyclic) bond formation, will be presented in a systematic 

fashion.  

 

Scheme 5. Cycloaddition and Non-Cycloaddition RPC Reactions4-6 

 
 

The construction of two or more bonds in a single operation increases efficiency in 

synthesis, and RPC reactions thus enable such processes to provide a rapid increase in 
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molecular complexity as well. The RPC reaction can be mediated by two main techniques; 

photoredox and non-photoredox, and most processes allow the RPC reaction to transpire 

under very mild conditions. Briefly, this review article will outline the use of both 

photoredox and non-photoredox catalysis in RPC reactions, as well as practical 

pharmaceutical applications. 
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Chapter 2. Photoredox-Mediated Radical-Polar Crossover Reaction 

 

This chapter will address the current and state-of-the-art in photoredox-mediated 

RPC reactions, and the information will be presented taking into account the mechanistic 

pathway. First RPC Reactions Transpiring via Oxidation before Reduction will be 

presented followed by RPC Reactions Transpiring via Reduction before Oxidation.  

Moreover, the [3+2] and [4+2] cycloaddition reactions are still under investigation in the 

RPC reactions that transpires via oxidation before reduction, so these are potential 

opportunities that can provide valuable researches. 

 

2.1 RPC Reactions Transpiring via Oxidation before Reduction 
 

2.1.1 Non-Cycloaddition (Including Cyclization, Ring Expansion, or C-C(X) 

Formation) 

 

2.1.1.1 Construction of 1,1-Difluoroalkene Carbonyl Mimics 
Molander and co-workers pioneered a reaction pathway to the generation of gem-

difluoroalkenes, with the idea that the C=CF2 unit can serve as a mimic for the carbonyl 

group.7 This work is worth highlighting because the group initiated a reaction pathway to 

generate the C=CF2 unit, successfully achieving this construction through the RPC 

mechanism by photoredox catalysis. Using catalytic quantities of Ru(bpy)3(PF6)2 as a 

photocatalyst, this research demonstrated that a library of trifluoromethylated alkenes can 

be accommodated in the transformation to achieve the C=CF2 bond construction with 

uniformly good yields.7 

 

Scheme 6. Proposed Mechanism of the 1,1-Difluoroalkenes Generation7 

 
 

Scheme 6 outlines the mechanism of this access to gem-difluoroalkenes. Under 

irradiation by visible light, the photocatalyst is converted to its excited state. Subsequently, 

R• was generated by the SET oxidation of the radical precursors including R-BF3K, 

R2NCH2SiMe3, and alkyl silicate, which is denoted as R-[Si].7 R• then reacts with the CF3-
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functionalized olefin to form a new α-CF3 radical 2. The α-CF3 radical then undergoes SET 

reduction by the reduced photocatalyst (PC-) to afford a carbanion 3. Carbanion 3 

undergoes an E1Cb-type fluoride elimination, even though protonation is also viable. 

Ultimately, the desired gem-difluoroalkene was generated by RPC reaction process under 

mild conditions.7  

 

 
Figure 1. Representative Application of 1,1-Difluoroalkenes Carbonyl Mimics10, 11 

 

The carbonyl bond presented in natural products may diminish the biological 

activity because of its low hydrophilicity and lipophilicity.7, 8 “The gem-difluoroalkene 

moiety was shown to engage in analogous hydrogen bonding as the carbonyl bond, and the 

replacement of a carbonyl bond to gem-difluoroalkene was proven to result in unaffected 

recognition and improved biological activity (Figure 1).”7-9  Thus, Molander, Begue, and 

Liu argued that the replacement of a carbonyl group to the C=CF2 subunit would be 

worthwhile because of the favorable biological activity of this carbonyl mimic.7, 8 In an 

examination of the mechanism of the traditional radical or polar pathway proposed by 

Begue in France, relatively good yields were obtained, and the technique was successfully 

applied to two commonly used pharmaceutical reagents -Artemisinin and gluconolactone.8 

However, the conditions needed to achieve these transformations were non-ideal, 

transpiring under extremely low temperature and strongly acidic conditions.8 Conversely, 

in the presence of 2.5 mol % of photocatalyst, the transformation occurs at room 

temperature.7 As a result, a wider range of radical precursors could be employed to 

participate in the reaction, and a broader scope was discovered. Of note, almost all products 

were isolated free CF3-containing side products because of the rate of SET reduction and 

fluoride elimination, and yields in this transformation were uniformly acceptable (Scheme 

7).7 

Scheme 7. Representative Transformation of Molander’s Protocol7 

 
 

This RPC-catalyzed process has many benefits, such as the use of affordable 

photocatalysts, mild reaction conditions, and incorporation of a wide range of functional 
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groups.7 Therefore, a library of biologically active molecules can be synthesized through 

this approach. In addition, the RPC reaction combines the mechanism of a radical process 

and fluoride elimination in a single mechanism, so it efficiently saves energy compared to 

stoichiometric processes.7, 8 Another transformation discovered by Zhou and co-workers 

in China combined the mechanisms of a radical process, defluorination, and 

decarboxylation in a one-pot fashion.12 The next section will thoroughly narrate the 

protocol designed by Zhou, and the comparison between two methods will be thoroughly 

provided in Section 2.2.3.2.12 
 

2.1.1.2 A Photocatalytic Decarboxylative/Defluorinative RPC Reaction 
Zhou developed an analogous method as Molander’s method for synthesis of the 

C=CF2 subunit, which can serve as a mimic of the carbonyl group in a variety of 

biologically active molecules.12 The access to gem-difluoroalkenes in Zhou’s protocol was 

depicted in Scheme 8. Under irradiation with visible light, the photocatalyst is converted 

to its excited state, and subsequently, R• is generated by SET oxidation of the radical 

precursor. R• then reacts with CF3-functionalized olefin to form a new α-CF3 radical 4, 

which undergoes SET reduction by the reduced photocatalys (PC-) to afford carbanion 5. 

Anion 5 undergoes an E1Cb-type fluoride elimination, and ultimately, the desired gem-

difluoroalkene is generated by RPC reaction under mild conditions.12 

 

Scheme 8. The Mechanism of C=CF2 Subunit Generation12 

 
 

Molander and Zhou designed their protocols to accomplish the synthesis of gem-

difluoroalkenes around the same reaction time, and both reactions occur at room 

temperature under visible light irradiation, employing photoredox catalysis.7, 12 By 

contrast, their substrates, reaction conditions, and further synthetic applications are slightly 

different. Molander selected a radical precusors library, which includes R-BF3K, alkyl 

silicate, and R2NCH2SiMe3, to demonstrate that a wide range of radical precursors can be 

selected to participate in the RPC reaction.7 Conversely, carboxylic acid was selected as a 

radical precursor by Zhou, and it did not show advantages in this synthesis.12 More 

importantly, even though carboxylates were frequently used as radical precursors, because 
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stoichiometric base (2 equivalents of LiOH) is used for their generation, they might not be 

optimal radical precursors.7, 12 In Molander’s protocol, R-BF3K, R-[Si], and R2NCH2SiMe3 

do not require harsh conditions such as strong base or high temperature, and all three radical 

precursors are either commercially available or simple to be prepared.7  

Zhou and co-workers confirmed that the RPC reaction can enable the combination 

of both a radical process and defluorination step in a single mechanism, so it efficiently 

saves energy compared to the stoichiometric processes proposed by Bugue.8 

 

2.2 The RPC Reactions Transpiring via Reduction before Oxidation 

 

2.2.1 [3+2] Cycloaddition 

 

2.2.1.1 An Intermolecular Synthesis of γ-Lactones via Photoredox RPC Reaction 
Lactones were utilized as building blocks in pharmaceutical and organic 

materials.13 Liu and Fagnoni envisioned that photoredox catalyzed RPC reaction can be 

applied to the construction of highly substituted lactones, so they both employed 

photoredox catalyzed RPC reaction to construct γ- and δ- lactones, respectively.4, 5 This 

method is highly efficient, because with a small amount of loading fac-Ir(ppy)3, a number 

of γ-lactone derivatives can be synthesized.4 

 

Scheme 9. Generic Reaction Pathway and Mechanism of γ-lactone Synthesis4 
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Scheme 9 depicts the mechanism of this designed route to γ-lactones. Under 

irradiation by visible light, the photocatalyst is transformed to its excited state. 

Subsequently, radical 9 was generated by oxidation of the photoexcited photocatalyst. 

Intermolecular π-addition of radical 9 to olefin 7 produced a new radical, 11, which then 

undergoes SET oxidation by Ir4+(bpy)3 to afford a carbocation 11. Nucleophilic attack by 

H2O affords 12. Ultimately, a spontaneous intramolecular transesterification was catalyzed 

by LiBF4 and γ-lactones 8.  

 

Scheme 10. Scope of γ-Lactones Synthesis via Photoredox Catalysis4 

 
 

The previous approaches to γ-lactones usually employed harsh reaction conditions 

and stoichiometric oxidants to achieve activation of the alkenyl moieties and radical 

initiation, but with the loading of 0.5 mol % of fac-Ir(ppy)3, diphenylethylene and a variety 

of bromo-acetates were demonstrated to undergo RPC process efficiently to generate a 

variety of γ-lactones at room temperature.4 Scheme 10 summarized that yields in this 

transformation were excellent, with most yields above 90%, and several select examples 

presented in Scheme 10 take place in >95% yield. In addition, the substrate scope with 

respect to substituted styrenes was examined (Scheme 10). Of note, the results indicated 

that both styrene and its derivatives could interact with bromoacetate to obtain the γ-

lactones, with most yields above 70%.4 However, a critical point that is worth addressing 
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is that further extension of this method to construct δ-lactones via [4+2] cycloaddition 

reaction is yet to be realized.4  

 

2.2.2 [4+2] Cycloaddition 

 

2.2.2.1 The Synthesis of Isochromanones and Isochromenones via Photoredox RPC 

Meerwein arylation was first published by Meerwein in 1939.14 Under the catalysis 

of copper salts, an aryl diazonium salt (ArN2X) will react with an electron-poor alkene to 

afford an alkylated arene product upon the reduction of Cu(II) to Cu(I).14 However, the 

limitation of this method was shown in its poor yield and the high loading of stoichiometric 

copper salt (20 mol %).14 Taking the Meerwein arylation concept further, Heinrich and 

Fagnoni envisioned that a tandem reaction pathway that could successfully combine 

Meerwein arylation and RPC might achieve expand the scope of the reaction, increasing 

molecular complexity.5, 15  

 

Scheme 11. Proposed Mechanism of the Isochromanone Moiety Construction5 
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The catalytic cycle of photoredox Meerwein arylation proposed by Fagnoni is 

outlined in Scheme 11.5 In this transformation, the photoexcited catalyst reduces the 

aryldiazonium salt 9 to the aryl radical 11 via single electron transfer, generating 

Ru3+(bpy)2(PF6)2 in the process. Subsequently, 11 reacts with styrene to yield radical 12, 

affording cation 13 through the oxidation by Ru3+(bpy)3(PF6)2. Rearrangement of the 

cation occurs subsequently to achieve the ring expansion, providing the final product 10. 

The final product was obtained by ring closure of intermediate 13. 

With the optimal catalyst loading of [Ru(bpy)3]
2+ (2 mol %), phenylethylene and a 

variety of bromoacetates were demonstrated to undergo the RPC process to generate a 

variety of δ-lactones at room temperature.5 This method is valuable in the preparation of 

structures in many biological active compounds, such as isochromanone and 

isochromenone moieties, and because of its pharmaceutical applicability, its practical 

applications will be presented in Chapter 4.5 In addition to the photocatalytic Meerwein 

approach, a non-photoredox-mediated Meerwein approach was designed by Heinrich, 

which will be discussed in Section 3.2.2.1.15 

 

2.2.3 Non-Cycloaddition including C-C(X) Formation or Ring Expansion 

 

2.2.3.1 Arylative Ring Expansion Catalyzed by Photoredox Catalysis  
A novel and environmentally benign process for photoredox-catalyzed ring 

expansion was discovered through the catalysis of Ru(bpy)3(PF6)2, and it can be an efficient 

way to accomplish the synthesis of functionalized cyclic ketones.16 Toste and co-workers 

reported an analogous ring expansion using a dual Au/photoredox catalysis method.17 

Kim’s group envisioned that to achieve this transformation more efficiently, visible light-

mediated photocatalytic ring expansion could be employed without gold catalysis.16  

 

Scheme 12. Mechanism of Arylative Ring Expansion16 
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The catalytic cycle developed is outlined in Scheme 12. In this transformation, the 

photoexcited catalyst reduces the aryldiazonium salt 14 to the aryl radical •Ar2 via single 

electron transfer, generating Ru3+(bpy)2(PF6)2 in the process. Subsequently, the •Ar2 

radical reacts with 1-(1-arylvinyl)-cyclobutanol to yield radical 15, affording cation 16 

through the oxidation by Ru3+(bpy)3(PF6)2. Rearrangement of the cation occurs 

subsequently to achieve the ring expansion, providing the final product 17. 

Compared to the method developed by Toste, this set of reaction conditions appears 

more efficient, and the scope of this reaction is relatively broad (Scheme 13).16, 17 Therefore, 

without employing Au(I) catalyst, many advantages were provided such as mild reaction 

conditions and good functional group tolerance.16 However, the current limitation of this 

reaction is that the overall yield of this reaction was not significantly increased, even 

though the photocatalyst loading of Ru3+(bpy)2(PF6)2 was increased from 2.5 mol % to 3 

mol % compared to Toste’s protocol (Scheme 13).16, 17 

 

Scheme 13. Ring Expansion of 1-(1-Arylvinyl) Cyclobutanol16, 17 

 
 

2.2.3.2 Remote Hydroxylation through Radical Translocation and RPC 
“Radical translocation was applied to the intramolecular abstraction of a hydrogen 

atom or a group with a radical center, and this results in a repositioning of the site of the 

unpaired electron, which can lead to functionalization at positions that are unreactive.”18 A 

remote hydroxylation process that combined both radical translocation and RPC was 

discovered by Ragains and co-workers.19 This process was viewed exemplary because it 

provided an efficient way to employ photoredox catalysis to achieve site-selective 

replacement of C-H bonds to useful C-OH functional groups.19 Ragains designed this 

excellent process, and he indicated that remote hydroxylation is a key step in the 

mechanism, with photoredox catalysis efficiently promoting the RPC reaction.19  

As shown in Scheme 14, the addition of a proton can initially transform 18 to 19, 

and radical 20 is generated by the excited state of Ir+(ppy)3* as a reductant. The radical 

transformation subsequently transpires to produce a new radical 21, which is subsequently 
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oxidized by the ground state Ir+ to afford carbocation 22. Finally, product 23 is generated 

by nucleophilic addition. 
 

Scheme 14. Mechanism of Radical Translocation and RPC19 

 
 

Scheme 15. Radical Translocation by 1,5- and 1,6- Hydrogen Atom Abstraction18 

 
 

Hydrogen atom transfer (HAT) occurring intramolecularly is considered a radical 

translocation, and 1,5- and 1,6-HAT  translocations are the most common (Scheme 15).18 

Comparatively, from a bond angle point of view, 1,5-HAT is much more favored in the 

competition between 1,5-HAT and 1,6-HAT (even 1,7 HAT). The X—H—C bond angle 

that is very close to 180 degree (typically 150-160 degree) makes the bond length 

shortest.18 However, Regains used their protocol to demonstrate that 1,6- and 1,7-HAT can 

be predominantly achieved instead of 1,5-HAT.19 They determined Tz group as the starting 

point, and under the trace of strong acid and visible light irradiation, the Tz ester was 

successfully converted into the corresponding alcohol.19 The yielding of the products are 

uniformly good to excellent with a small amount of olefin side product. Most products 
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from the scope were afforded via 1,7-HAT, but one representative product 23c from the 

scope proved that with the 1,6-HAT can be achieved via this remote hydroxylation 

(Scheme 16).19 In this work, the reason why this remote hydroxylation was successful in 

replacing 1,6-HAT or 1,7 HAT (Tz group) was ambiguously presented, but the inferred 

reason is that the substrate selected for this transformation can minimize the entropy 

barrier.19, 20 Therefore, it is noteworthy that 1,6-HAT and 1,7-HAT is favored in this case. 

 

Scheme 16. Scope of Radical Translocation19 

 
 

 Even though Ragains pioneered the first process that involved both RPC and radical 

translocation, the current limitations were shown to be narrow in scope and low yielding 

(Scheme 16).19 Furthermore, the only tested nucleophiles currently are H2O, methanol, and 

ethanol, so to expand and further develop this research, a library of nucleophile selections 

would need to be tested. 

 

2.2.3.3 The Photochemical Alkylation of Vinyl Boronate Complexes 
Organoboronates became key reagents in organic synthesis, attracting much 

attention in the organic synthesis community, and for instance, Suzuki coupling became 

one of the most well-known reactions using organoboron chemistry.21 Suzuki coupling 

reaction has its undeniable advantages including its scalability, commercial availability, 

functional group tolerance, and its environmental friendliness.21 Therefore, Suzuki 

coupling became the most frequently employed coupling reaction in the pharmaceutical 

industry.21 However, recent research emanating from the groups of Aggarwal and Studer 

demonstrated that organoboronates can be used in RPC reactions.22 Thus, organoboronates 

was used to conduct a 1,2-metalate rearrangement with a RPC step, and very mild 

conditions were employed.23 Aggarwal and Studer differed in their approach, in that 

Aggarwal employed photoredox catalysis to achieve this transformation, while Studer 
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achieved this transformation stoichiometrically that will be mentioned in Section 3.2.1.1 

of non-photoredox catalysis section.22, 23 

In Aggarwal’s protocol, outlined in Scheme 17, radical 25 was generated from 24 

by reduction of excited state of Ru2+, and the new radical 27 was produced by the π-addition 

to olefin 26. The formed new radical 27 is subsequently oxidized by RuIII to form a 

carbocation 28, and 1,2-migration occurs as the last step to afford product 29. 

Compared to the method developed by Studer’s group, which will be discussed 

later, the limitation of this method is that only C-C bond formation was investigated, and 

hypothetically, this method should be able to accommodate [3+2] cycloaddition 

reactions.23 Therefore, one aspect for future development of this method is broadening the 

scope by designing a protocol to accomplish the synthesis of the cycloaddition adduct. 

Furthermore, the final product retains the boron functional group, and the alkylboronic 

esters can be very valuable for a variety of further chemistry for functional group 

installation.23 Overall, this research is exemplary because it successfully broadened the 

application of organoboron chemistry to RPC reactions.22, 23 It demonstrated that it is 

possible to enable a transformation to employ organoboron reagents without harsh 

conditions.22 
 

Scheme 17. Plausible Mechanism of Merging Photoredox with 1,2-Metalate 

Rearrangements22 

 
 

2.2.3.4 Photoredox-Catalyzed C-H Difluoroalkylation  

The first method for C-H bond functionalization of imino compounds was 

discovered by Zhu and collaborators.10 Zhu and Song demonstrated that RPC reactions can 

be used to achieve meaningful C-H bond functionalization of imino compounds, and both 

scientists employed mild conditions in their protocol.10, 24 However, Zhu and Song differed 

in their research, in that Zhu employed photoredox catalysis to achieve this C(sp2)–H 
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difluoroalkylation, while Song achieved this C(sp2)–H difluoroalkylation by a process that 

was mediated by a copper complex.10, 24 

In the mechanism shown in Scheme 18, the photocatalyst Ir3+(ppy)3 was 

transformed to its excited state under irradiation, and subsequently, 30 was reduced to 

afford radical 31. Addition of radical 31 to olefin 32 formed a new radical 33, which was 

oxidized by SET from Ir4+ to afford carbocation 34. Ultimately, product 35 was formed by 

1,2-migration in a polar transformation.  

Using only 2 mol % of fac-Ir(ppy)3 as the photooxidant and weak base Na2HPO4 in 

DMF, the reaction could be carried out at room temperature.10 The construction of the 

N=C-CF2 moiety was proven useful to access biologically active materials. Section 3.2.3.5 

will outline the copper-mediated C(sp2)-H functionalization using aminyl RPC.24, 25 

 

Scheme 18. Proposed Mechanism of Photoredox-Catalyzed Difluoroalkylation10 

 
 

2.2.3.5 Photoredox-Catalyzed Semipinacol-type Rearrangement: 

Trifluoromethylation or Trifluoromethylthiolation/Ring Expansion by RPC             
 Glorius and co-workers designed a transformation proceeding via RPC reaction for 

the installation of –CF3 and –SCF3 groups with a subsequent ring expansion from a four-

membered ring to a five-membered ring.
26, 27

 In 2015, this effort resulted in a semipinacol-

type rearrangement with trifluoromethylation and ring expansion through RPC mechanism, 

and the results were proven fruitful.27 Scheme 19 outlines the mechanism proposed by 

Glorius regarding the installation of the –CF3(–SCF3) group. Scheme 19 depicts the 
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formation of the trifluoromethyl or trifluoromethylthiol radical, which denoted as 

•CF3(•SCF3) radical, by reduction of excited state *[Ru(bpy)3]
2+. Subsequently, addition of 

•CF3(•SCF3) onto the double bond of olefin 36 affordeds radical 37. At this point, RPC 

occurs to oxidize radical 37 to carbocation 38, thereby simultaneously regenerating the 

photocatalyst. Ultimately, the 1,2-carbon shift occurs to achieve the ring expansion from a 

four-membered ring to a five-membered ring, and therefore, product 39 is generated. The 

reaction provided a relatively wide scope. Glorius’ ongoing studies on the development of 

this catalyzed semipinacol type rearrangement resulted in trifluoromethythiolation/ring 

expansion in a one-pot process as indicated in Scheme 19.26  

 

Scheme 19. Plausible Mechanism of Photoredox-Catalyzed Trifluoromethylation/ 

Trifluoromethylthiolation Ring Expansion by RPC26, 27 

 
Side product 40 was detected in the trifluoromethylation process outlined in 

Scheme 19, which details the trifluoromethylation/ring expansion by RPC reaction.26, 27 
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The trifluoromethylthiolation/ring expansion does not have side products formed at the end 

of the synthesis.26, 27 Therefore, to improve this ring expansion process, avoidance of side 

products becomes very critical. 

Glorius developed a protocol to combine semipinacol-type rearrangement, RPC 

reaction, and functional group installation (i.e., –CF3 and –SCF3) simultaneously under 

photoredox catalysis.26, 27 The reason why the construction of –CF3 and –SCF3 was 

mentioned is that both functional groups can be introduced into lead compounds of 

pharmaceutical targets to improve their chemical and physical properties.26, 27 Compared 

to Zhu’s work, this method was improved by incorporation of -SCF3 group into the scope.10   

 

2.3 Photoredox Conclusion 

 A series of photoredox-mediated RPC reactions are outlined in this Chapter. The 

RPC reaction under the photoredox catalysis provided fruitful results in both ring 

expansion and C-C(X) bond formation, but gaps still exist, such as the cycloaddition 

reaction that transpires under oxidation before reduction. Therefore, future research can be 

focused on more investigations of RPC cycloaddition reactions that transpire via oxidation 

before reduction. 

 The RPC reaction under photoredox catalysis has many advantages, including its 

step-economy and mild condition reaction conditions. Most of the reactions selected above 

were processed under mild condition and with low loading amount of catalyst, and 

molecular complexity was achieved in the reactions mentioned above. Noteworthy, a few 

products generated from photoredox mediated RPC reaction can be valuable as 

pharmaceutical reagents or in materials chemistry, in particular, the γ- and δ- lactones.4, 5 

The pharmaceutical applications of γ- and δ- lactones and comparison between the RPC 

pathway and previous approaches will be thoroughly narrated in Chapter 4.4, 5 

 In addition, many discoveries and innovations were outlined and discussed in non-

photoredox catalyzed RPC reactions (Chapter 3). As stated in Chapter 1, this review article 

will outline the use of both photoredox and non-photoredox catalysts in RPC reactions, and 

therefore, the RPC reaction catalyzed by non-photoredox catalysis is going to be 

thoroughly reviewed in the next chapter.  
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Chapter 3. Radical Polar Crossover Reaction by Non-Photoredox Protocols 

 

Many representative examples of photoredox catalyzed RPC reactions detailed in 

Chapter 2 provided insight to understand how the photoredox catalysis can be applied to 

RPC reactions, and the current limitations and advantages were described. Conversely, this 

chapter will address the current and state-of-the-art non-photoredox-mediated RPC 

reactions, and the subchapters are going to be divided into RPC Reactions transpiring via 

oxidation before reduction, RPC reactions transpiring via reduction before oxidation, RPC 

reactions transpiring via oxidation, and RPC reactions transpiring via reduction.   

 

3.1 RPC Reaction Transpiring under Oxidation before Reduction 

 

3.1.1 [3+2] Cycloaddition Reaction 

 

3.1.1.1 Dialkylzinc-Mediated Tandem Radical Addition/Aldol Condensation.  
As stated in Section 2.3.1.1, Liu initiated his protocol to synthesize a variety of 

highly substituted γ-lactones via RPC reaction.4 A method to achieve the same 

transformation was pioneered most extensively by Bertrand and Chemla, who introduced 

organozinc complexes as direct radical precursors to a variety of radicals.28, 29 They 

demonstrated that the so-formed radical could either participate directly in the mechanism 

or participate in the mechanism after a radical exchange. With the growing interest in using 

dialkylzinc reagents as radical mediators, Bertrand contributed a review article describing 

the use of dialkylzinc reagents in radical reactions and mentioned that dialkylzincs reagents 

are air-sensitive organometallic species that can provide a radical species by exposure to 

oxygen.30 Taking the concept further, both Bertrand and Chemla employed alkylzinc 

reagents as radical precursors in their RPC reactions even though their synthesis goals were 

aimed to different substances.28, 29 In this Section, the synthesis of highly substituted λ-

lactones designed by Bertrand will be discussed.28  

In the protocol designed by Bertrand, Et2Zn was utilized as the radical initiator that 

is oxidized by O2 to generate an ethyl radical, and subsequently, the so-formed ethyl radical 

undergoes atom transfer with R-I to produce R•. A new radical 42 was afforded by the 

interaction between molecule 41 and R• and was simultaneously reduced to afford 

intermediate 43 and Et•. Afterward, the intermediate undergoes an aldol condensation to 

afford a new intermediate 44, and intramolecular lactonization ultimately occurs to produce 

the final product, trisubstituted γ-lactone 45. Overall, this transformation successfully 

involves four elementary steps, which are radical addition, homolytic substitution, aldol 

condensation, and lactonization (Scheme 20).28 

Most importantly, this dialkylzinc-mediated RPC reaction described herein 

successfully enabled the synthesis of trisubstituted γ-lactones in a remarkably step-

economical manner. Bertrand succeeded in the synthesis of γ-lactones, but he did not 

realize the application of his method to δ-lactones.28 To improve this strategy further, the 

synthesis of δ-lactone could be attempted. Overall, this work is valuable to accommodate 

a wider scope of product. Chemla carried out this work to demonstrate the accomplishment 

on the synthesis of functionalized tetrahydrofurans, which will be discussed in Section 

3.1.3.1.29 Thus, the scope of the Et2Zn-mediated RPC reaction was proven to be expanded.  
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Scheme 20. Plausible Mechanism of Et2Zn-Mediated RPC Reaction28 

 
 

Chemla and Bertrand simultaneously demonstrated that alkylzinc complexes can 

follow a RPC mechanism, and in the meanwhile, they both designed their own protocol.28, 

29 This simple access to trisubstituted lactones was accomplished with high 

diastereoselectivity, and induced Bertrand to continue his investigation into the scope of 

the process in a series of di- or trisubstituted lactones (Table 1).28 The results indicated that 

both the yields and scopes in this transformation were uniformly acceptable.  

 

Table 1. Diastereomeric Ratios and Scope of 4528 
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3.1.2 Non-Cycloaddition Reaction 

 

3.1.2.1 Synthesis of Cyclized Ether Catalyzed by Zn-Mediated RPC Reaction 
The organozinc catalysis applied to RPC reactions attracted much attention from 

the organic synthesis community, and recent advances provided by Chemla and Fabrice 

demonstrate that dialkylzinc reagents can be used successfully radical precursors in the 

RPC reactions.28, 29 Even though both scientists shared the common motif to have 

dialkylzinc reagents, their proposed protocol and targets are different.29 

Chemla and co-workers applied the R2Zn-mediated RPC reaction to the synthesis 

of functionalized tetrahydrofurans in a multicomponent fashion.29 Relatively good yields 

and wide scope were achieved in this transformation. The mechanism of the RPC reaction 

catalyzed by R2Zn in Chemla’s protocol is depicted in Scheme 21.29 With a trace of O2, the 

selected radical initiator R2Zn is oxidized to produce R2•. Different from Bertrand’s 

protocol, the so-formed radical does not undergo radical exchange, and instead, the 

addition of Et• onto 46 occurs so that new radical 47 is formed. 5-exo-dig Cyclization then 

occurs to afford 48, and subsequently, the 48 is reduced by Et2Zn to afford intermediate 49 

with C-Zn ionic bond formation. Attack by an incoming electrophile ultimately affords 

final product 50. 
 

Scheme 21. Proposed Mechanism of ZnR2-Mediated RPC Reaction29 

 
 

Different from the Bertrand-proposed, R2Zn-mediated RPC reaction, the so-formed 

R2• from R2Zn participated in the reaction instead of exchanging to afford another radical.28, 

29 Overall, Fabrice and Chemla illustrated that dialkylzinc reagents can be successfully 

applied to RPC reaction, but their synthesis goals were aimed to different kinds of 

substances.28, 29 Therefore, these results demonstrated that the alkylzinc complexes can 

follow a RPC mechanism and enable a one-pot reaction in building a variety of compounds 
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(δ-lactones and cyclic ethers), and in both protocols, the molecular complexity was 

increased.28, 29   

 

3.1.2.2 Et3B-Mediated RPC Reaction  

RPC is a unique reaction that can facilitate three-component, one-pot coupling, and 

this feature was confirmed in a work reported by Inoue.31 In 2013, Inoue achieved a three-

component coupling by either ionic or radical processes,32 with his innovation being 

inspired by combining radical and polar processes in one pot. Inoue and co-workers aimed 

to construct molecule terpenoid 56 in a one-pot reaction that successfully accommodated 

radical reactivity (including radical exchange and radical propagation), RPC, and polar 

reactivity (aldol condensation) within a single mechanism.33 

Inoue designed this mild RPC reaction by making connections of hindered linkages 

between three units: α,β-unsaturated ketones, aldehydes/ketones, and O-Te acetals.  The 

mechanism of this RPC reaction is illustrated in Scheme 22.33 Et3B, which has the same 

radical-generating property as Et2Zn, can produce ethyl radical by exposure to an O2 

atmosphere.30, 31 The so-formed ethyl radical induces the hemolytic cleavage of the C-Te 

bond of 51 to afford an α-alkoxy bridgehead radical 52.33 The so-formed α-alkoxy radical 

52 interacts with 53 to afford 54, and subsequently, Et3B reduces 54 to afford an anionic 

intermediate 55, with concomitant ejection of Et•. Ultimately, aldol condensation occurs 

between the anionic intermediate 55 and the carbonyl group of an incoming aldehyde to 

produce 56.    

 

Scheme 22. Proposed Mechanism of Et3B-Mediated RPC Reaction31 
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Of note, previous research employed O-Se acetals because the C-Se bond can also 

work as the radical precursor, but the homolytic cleavage of the C-Se bond requires higher 

energy, and transpires slowly at 110°C.34 Thus, the reaction conditions were optimized, in 

that the C-Se bond was replaced by a weaker C-Te bond as the alternative radical donor so 

that the transformation transpired under a mild condition at 0°C to afford a coupling 

product in modest yields.31  

This work is notable because it was the first to pioneer the RPC reaction that can 

accommodate three complex components in a single mechanism. This reaction provided a 

broad scope for product 56.31 Additional advantages were provided including a transition 

metal-free procedure, mild conditions, and high efficiency. Because of these many 

advantages, this three-component, one-pot RPC reaction provided valuable strategy for the 

synthesis of functionalized terpenoids.33, 35 
 

3.2 RPC Reaction Transpiring under Reduction before Oxidation  

 

3.2.1 [3+2] Cycloaddition  
 

3.2.1.1 RPC Reactions of Vinylboronate Complexes 

As described in Section 2.3.3.3, Aggarwal and Studer envisioned that 

organoborates can be used in RPC reactions, and the results were proven fruitful using 

Aggarwal’s protocol.22 As stated previously in Aggarwal’s protocol, a photoredox-

mediated RPC reaction was designed.22 Conversely, Studer commenced his investigation 

of organoboron RPC reactions by employing vinylBpin, perfluoroalkyl iodide (Rf-I), and 

Li-R as the core reaction components, with BEt3 as the radical initiator.23 Remarkably, this 

transformation was carried out without the assistance of a transition metal, and this protocol 

provided uniformly good yields and broad scope.23  

Compared to Aggarwal’s protocol, Studer achieved this transformation without 

photoredox catalysis, and the first focal point is that his method successfully 

accommodated [3+2] cycloaddition reaction into the scope (Scheme 23).22, 23 As Scheme 

23 depicts, the R2Li works as a reductant to afford new boronate ester 57, and subsequently, 

the •CR3R4CO2Et reacts with ester 57 to afford radical 58. The newly formed radical is 

afterward oxidized by I-CR3R4CO2Et to form a carbocation 59, and 1,2-migration occurs 

to afford 60 that retains the boron functional group. The final cycloaddition product 61 is 

afforded by transesterification under strong basic hydrogen peroxide conditions, and a 

variety of mono- and disubstituted λ-lactones were afforded, which illustrates that this 

protocol is tolerant of many functional groups (Scheme 24).23  

Aggarwal demonstrated that the application of boronate ester chemistry can be 

broadened to RPC reaction, but his method had several shortcomings with respect to 

retention of boron-containing product.22 The alkylboronate ester can be very valuable for 

a variety of further chemistry for functional group installation.36 Taking it further, Studer 

developed his protocol, which resulted in functional group installation, and three kinds of 

functional groups were introduced to replace the alkylboronate functional group.23 As a 

result, the functional group installation was achieved. A later chapter outlining C-C(X) 

bond formation that employs this method will be discussed in Section 3.2.3.2. 
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Scheme 23. Plausible Mechanism of Vinylboronate RPC Reaction23 

 
 

Aggarwal and Studer are in agreement that organoboron complexes can be used in 

RPC reactions, and they respectively proved this in their individual protocols.22, 23 Their 

common advantage is that all reagents are commercially available relatively inexpensive, 

and both methods afford moderate to good yields (35-95%). Most importantly, the overall 

cost was reduced in the method developed by Studer because the radical process does not 

require the presence of a transition metal.23  

 

Scheme 24. Scope of Vinylboronate RPC Reaction in [3+2] Cycloaddition23 

 
 



 

26 
 

3.2.1.2 [3+2] Cycloaddition of Azide with Aldehyde through an Aminyl RPC Strategy 

Tetrazole have great biological activity because of its resistance to biological 

degradation.37 For instance, TAK-456 demonstrated its strong biological activity and 

worked as an antibiotic (Figure 2).37 Because of the biological activity of tetrazoles, they 

attracted attention from the organic synthesis community, and they were successfully 

synthesized by a few groups of chemists.38, 39 However, previous analogous approaches of 

tetrazoles were achieved by Jiao and Narender, but both methods employed either harsh 

conditions or precious metals.38-40 The aminyl radical polar crossover (ARPC) strategy 

achieved tremendous development in the synthesis of tetrazoles, and Zhu’s group 

envisioned that the construction of tetrazole can be efficiently achieved under ARPC 

without harsh conditions or gold catalyst (Scheme 25).38-40 

 

 
Figure 2. The Structure of TAK-45637, 41 

 

The mechanism of this transformation is outlined in Scheme 26.41 In this 

transformation, the azide radical was generated from 62 via 63, and subsequently, reacts 

with incoming olefin 64 to yield radical 65, affording cation 66 through SET oxidation by 

Cu(II). Ultimately, ring closure occurs to achieve the cycloaddition, providing the final 

product 67.  

 

Scheme 25. Synthesis of Tetrazole 38, 40, 41 
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Zhu and co-workers reported mild conditions for the preparation of tetrazoles 

utilizing copper complexes. This method provided significant advantages in terms of ease 

of performance, broad scope, and mild conditions.41 Thus, ARPC demonstrated its ability 

improve the reaction scope, tolerate a number of functional group, take place under mild 

reaction conditions, and allow successful scale-up.41  

 

Scheme 26. Plausible Mechanism of ARPC Reaction41 

 
3.2.2 [4+2] Cycloaddition  

 

3.2.2.1 Thermally Induced Carbohydroxylation of Styrenes with Aryldiazonium 

Salts. 

Fagnoni and Heinrich designed protocols to a reaction pathway that successfully 

combined Meerwein arylation and RPC, but they differ in their research in that Fagnoni 

constructed δ-lactones under photoredox catalysis.5, 15 Heinrich employed a non-metal-

mediated RPC reaction to afford a larger product scope, including the construction of C-C 

bonds and one representative [4+2] cycloaddition reaction. Overall, the yields were 

uniformly acceptable, and the δ-lactone was successfully synthesized.15  

δ-Lactone 74 is a representative molecule from the scope of this transformation, 

and it demonstrated that [4+2] cycloaddition reaction was achieved in this transformation. 

The generic scheme and mechanisms were depicted in Scheme 27. Diazonium ion 69 acted 

as a self-reductant and to generate radical 68 via thermal initiation, and a new radical 69 

was formed by the addition to olefin 71. The so-formed radical 70 was subsequently 

oxidized by an incoming diazonium ion to form carbocation 72 as well as a new radical 69.  

H2O then acted as a nucleophile to attack the carbocation to afford 73. Ultimately, the 

product δ-lactone 74 was produced by transesterification under moderately basic 

conditions (KOAc). 

Of note, this transformation was successfully carried out without assistance of a 

transition metal, and it is environmentally sustainable and economical.15 Furthermore, this 

method achieved the combination of Meerwein arylation and RPC, resulting in a broad 

product scope (Section 3.2.3.6).  
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Scheme 27. Mechanism of Meerwein Arylation in [4+2] Cycloaddition15 

 
 

3.2.3 Non-cycloaddition 

 

3.2.3.1 Intermolecular Nonreductive Alkylation of Enamides via RPC 

Carbon-carbon bond construction via RPC reactions offer practical advantages in 

ease of performance. Friestad envisioned a process in which AIBN/tBu3SnH, the former 

acting as a radical initiator, can initiate an RPC reaction that transpires under mild 

conditions to allow the alkylation of enamides.42 This RPC reaction successfully enabled 

the construction of C-C bonds in a remarkably step-economical manner, and perhaps most 

impressively, this set of reactions and its corresponding results are reminiscent of the Heck 

reaction.42  

In Friestad’s protocol, outlined in Scheme 28, radical 76 was generated by 

AIBN/tBu3SnH from 75. A new radical was formed by the interaction between radical 76 

and olefin 77 and subsequently oxidized by 75 to afford carbocation 78. Ultimately, the 

incoming base NEt3 neutralizes the reaction so that the Heck-like product 79 is formed. 
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Scheme 28. Proposed Mechanism of Enamides Alkylation42 

 
 

One drawback of this protocol is that the RPC reaction transpires using 

AIBN/tBu3SnH as the radical initiator.42 Because of the toxicity of tin compounds, a tin-

free process would be desirable.43 In the RPC reaction developed by Studer (Section 

3.2.3.2), only a small loading of BEt3 was required to act as a radical initiator to transform 

R-I to R•, which indicates that the conversion of R-I to R• does not require 

AIBN/tBu3SnH.23 Therefore, to further improve this method, radical initiator 

AIBN/tBu3SnH could perhaps be replaced by more environmentally friendly substances. 

 

3.2.3.2 RPC Reactions of Vinylboronate Complexes 
As stated in Section 3.2.1.1, the RPC reactions of vinylboronate complexes can 

accommodate [3+2] cycloadditions as well as C-C intermolecular bond construction.23 In 

this section, the mechanism of C-C bond construction will be depicted, and further 

chemistry of the boronic acids will also be discussed.  

The mechanism of C-C bond construction is slightly different from [3+2] 

cycloaddition reactions because of the replacement of the transesterification step to 

functional group installation.23 The mechanism is depicted in Scheme 29. Due to the 

importance of Fluorine substituents in pharmaceutical chemistry, the predominant radical 

employed in the Studer’s protocol is perfluoroalkyl radical, which was denoted as •Rf. 

Because of the low electronegativity of iodine, only 5 mol % of BEt3 was used as a radical 

initiator to transform Rf-I to Rf• via homolytic cleavage of the covalent bond. Subsequently, 

the Rf• adds to the alkenylborate 80 to afford radical 81, which then undergoes SET 

oxidation by an incoming Rf-I to produce carbocation 82. A 1,2-alkyl shift from boron to 

the -carbon (sp2 center) generates the alkylboronate 83, and ultimately, the alkylboronate 

was oxidized by NaOH/H2O2 to form alcohol 84.  

In contrast to Aggarwal’s protocol, Studer demonstrated the organoboronate ester 

can be treated in RPC reaction under a non-photoredox catalysis without the presence of a 

transition metal.22, 23 Additionally, Aggarwal demonstrated a wide scope of functional 

group transformations from the boronate.22 For the initial studies, Studer oxidized the 

resulting boronate ester with NaOH/H2O2.
23 They found that all the targets were accessed 

smoothly with a uniformly acceptable yield (Scheme 30). To demonstrate that a wider  
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Scheme 29. Proposed Mechanism of C-C Bond Construction via Vinylboronate RPC 

Reaction23 

 
 

scope of functional groups can be installed, Studer continued to introduce 2-furyllithium 

and 2-thienyllithium, respectively to the organoboronate, and heterocyclic compounds 85a 

and 85b were formed (Scheme 31).23 Overall, Studer pioneered a reaction pathway 

employing boronic acid in an RPC reaction, and the broad scope of further coupling was 

demonstrated.23   

 

Scheme 30. Follow-up Chemistry of Alkylboronate by Installation of –OH Group23 
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Scheme 31. Follow-up Chemistry of Alkylboronates23 

 
 

3.2.3.3 TTF-Mediated RPC Reaction 

The tetrathiafulvalene (TTF) was first prepared by Perlstein in 1973, and TTF and 

its derivatives were extensively investigated by both the organic synthesis community and 

materials science community with a particular focus on new conductors and 

semiconductors.44, 45 The most extensive research of TTF-chemistry was recently focused 

on its single electron donating property, and Murphy and co-workers published a very 

practical use of RPC reaction mediated by TTF in 1993.46 In contrast to SmI2-mediated 

RPC reactions, which will be discussed in Section 3.4.1, Murphy and co-workers 

demonstrated that the TTF-mediated RPC cyclization might transpire via reduction before 

oxidation, and an SN1 reaction ultimately occurs to finalize the reaction cycle.47 Overall, 

this work is notable because of the absence of transition metals in the protocol, and a 

relatively good yield and a broad scope were achieved (Scheme 32).6 

The TTF-catalyzed RPC reaction was mostly applied to aryl diazonium salts, and 

the initial radical participating in the catalyzed cyclization is an aryl radical (Scheme 32). 

As depicted in Scheme 32, radical 87 is derived from 86 by loss of N2, and a subsequent 

radical cyclization occurs to afford new radical 88, which then undergoes SET oxidation 

by TTF. The intermediate 89 undergoes an SN1 reaction with an incoming nucleophile after 

departure of TTF to generate carbocation 90, providing 91 as the final product. 

Murphy commenced the discovery of the scope of TTF-mediated RPC reaction by 

installing a variety of functional groups, which includes –OH, -OMe, and –NHCOMe 

group (Scheme 31).45, 48 He realized that the TTF-mediated RPC reaction can produce 

alkaloids by employing an intramolecular nucleophile. Thus, in research performed in the 

same laboratory, a TTF-mediated RPC reaction was applied to the total synthesis of 

Aspidospermidine, which is a typical biological active reagent isolated from Aspidosperma 

tree (Section 4.1). 48, 49 

 

 

 

 

 

https://pubs.acs.org/author/Perlstein%2C+J.+H.
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Scheme 32. Proposed Mechanism of TTF-Mediated RPC Reaction45 

 
 

3.2.3.4 Copper-Catalyzed RPC Reaction to Achieve C(sp2)-H Difluoroalkylation 

 Difluoroalkylation of aldehyde-derived hydrazones was developed by Zhu and co-

workers under visible-light photoredox catalysis. This work accomplished a C-H 

functionalization within a one-pot protocol.10, 24 Conversely, Song and co-workers 

developed their own protocol to achieve the analogous C-H difluoroalkylation of aldehyde-

derived hydrazones, and the N=C-CF2 subunit is the core synthesized in the final product. 

Both groups of scientists envisioned the strong biological activity of N=C-CF2 subunit.10, 

24 Song achieved the functionalization of C(sp2)-H bonds under copper-mediated RPC 

reactions (using Cu/B2pin) instead of using photoredox catalysis with low loading of B2pin 

resulting more freedom in molecular complexity generation.24 

Copper-mediated C(sp2)-H difluoroalkylation of aldehydes was exclusively 

researched by Song and co-workers. According to the proposed mechanism depicted in 

Scheme 33, the radical 93 was afforded by the reduction of 92 by a CuI-Bpin complex. 

Subsequent addition of radical 93 to olefin 94 provided a new radical 95, which was 
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oxidized by SET from CuII-Bpin to afford carbocation 96. Ultimately, product 97 was 

formed by loss of a proton from intermediate 96. 

Coincidently, Monteiro and co-workers reported an analogous C-H 

difluoroalkylation of aldehyde-derived hydrazones, but in analyzing this method and 

protocol, the overall yield of the reaction is low, and vigorous reaction conditions and 

expensive materials, including both metals and ligands, needs to be used to afford the 

desired product (Scheme 33).50 In a further coincidence, both Monteiro and Song 

synthesized aliphatic aldehyde-derived N,N-dimethyl hydrazines, but Song used his 

protocol under mild conditions to obtain a much higher yield than Monteiro’s protocol.24, 

50 These results illustrate that RPC improved the method by employing mild conditions 

with an increase in the yield of product.24 Overall, this transformation demonstrated that 

C-H difluoroalkylation of aldehyde-derived hydrazones is achievable under Cu-Bpin 

catalysis. 

 

Scheme 33. Proposed Mechanism of Copper-Catalyzed RPC Reaction24 

 
 

3.2.3.5 Thermally Induced Carbohydroxylation of Styrenes with Aryl diazonium 

Salts 

Heinrich demonstrated that Meerwein arylation can be applied to RPC reactions in 

a one-pot fashion, and he successfully tested his protocol in the synthesis of δ-lactones 
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stated in Section 3.2.3.2.15 This transformation afforded a broad scope of product via both 

[4+2] cycloaddition and C-C bond construction. 

 

Scheme 34. Scope of Thermally Induced Carbohydroxylation of Styrenes with Aryl 

Diazonium Salts15 

 
 

The method provided significant advantages in terms of ease of performance and 

wide product scope.15 At room temperature, a variety of compounds can be afforded under 

the condition of KOAc and CH3CN.15 Several representative examples from the scope of 

transformation are outlined in Scheme 34, and overall, good to excellent yields of product 

98 were achieved in this RPC transformation. Afterward, Heinrich lowered the reaction 
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temperature from room temperature to 0°C, and a variety of stilbene derivatives 99 were 

afforded with good to excellent yield (Scheme 34).15 

In summary, it is feasible to apply the Meerwein arylation to RPC reactions under 

mild thermal reaction conditions, and through addition of water, this transformation 

afforded the corresponding alcohol at room temperature.15 In addition to this discovery, the 

scope can be extended to achieve carboetherification or the synthesis of stilbene derivatives, 

and it was demonstrated by Heinrich (Scheme 34).15   

 

3.3 Net-Oxidative RPC Reaction  

 

3.3.1 [3+2] Cycloaddition 

 

3.3.1.1 SOMO Catalysis.  

Singly Occupied Molecular Orbital (SOMO) catalysis was most extensively 

developed by the MacMillan group.51 The concept of SOMO catalysis was unambiguously 

demonstrated by activation modes, and once the selected catalyst interacts with the 

carbonyl group on an aldehyde, the HOMO activation level is approached with a 4π system 

(Scheme 35).52 With the presence of oxidant [Fe(phen)3]•(SbF6)3, the HOMO species is 

oxidized with loss of one electron to afford the SOMO catalysis species, and subsequently, 

the radical is successfully generated.  

 

Scheme 35. Illustration of Both LUMO- and SOMO-Catalysis Activation Modes52 

 
 

SOMO-catalyzed RPC reactions demonstrated their applicability in both [3+2] and 

[4+2] cycloaddition reactions.53 SOMO catalysis is based on single-electron oxidation of 

electron-rich enamines, which generate radicals that can be oxidized to afford 

electrophiles.51, 52 Subsequently, the lone pair on the nitrogen donates its electron pair to 

various electrophiles to form cycloadducts as the observed products of the reactions. 

Scheme 36 depicts one example of SOMO catalysis used in the RPC reaction. In this 

transformation, an aldehyde and an olefin are the main participants in a [3+2] cycloaddition 

reaction. The catalyst first interacts with the aldehyde to afford 100 as a radical cation 

intermediate, and a radical reaction then ensues to generate 101 followed by oxidation of 

the resulting radical by Fe(phen)3(PF6)3 to afford electrophile 102. The polar cyclization 

reaction affords the cyclized intermediate to complete the catalysis, with hydrolysis of the 

iminium ion providing the final product, regenerating the organocatalyst.51, 52 
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Scheme 36. Mechanism of SOMO Catalysis in [3+2] Cycloaddition51, 52 

 
 

The combination of SOMO organocatalysis mode, RPC mechanism, and 

cycloaddition (including [3+2] and [4+2]) were achieved and employed to serve as a 

pathway to a variety pyrrolidines and piperidines, respectively.51 Good to high yields were 

afforded under the SOMO catalysis with the same set of reaction conditions, and in addition 

to [3+2] cycloaddition, the [4+2] cycloaddition can provide the synthesis to piperidines, 

which will be discussed in Section 3.3.2.1. 

 

3.3.2 [4+2] Cycloaddition  

 

3.3.2.1 SOMO Catalysis.  
SOMO catalysis can be used to perform [4+2] cycloadditions as well as [3+2] 

cycloadditions.51, 52 The Diels-Alder reaction became central in the development of six-

membered ring systems, and prior to the development of radical-polar [3+2] cycloadditions, 

[4+2] cycloadditions were carried out by SOMO catalysis, enabling the direct, 

enantioselective allylic alkylation, nitro-alkylation, and vinylation reactions of 

aldehydes.53, 54 

To achieve [4+2] cycloaddition reaction under SOMO catalysis, the aldehyde 

shown in Scheme 37 has an additional -CH2- unit, and the interaction between the aldehyde 

and catalyst affords 103 with loss of one electron.54 Subsequently, the olefin participates 

in the reaction, and the radical 104 is formed by an intermolecular 6-exo radical addition 

process.  The resulting radical is oxidized by IrCl3 to form the El+ 105. The polar process 

finalizes the transformation to afford the final six-membered ring as the product. Slightly 

different from the SOMO [3+2] cycloaddition reaction, MacMillan accomplished the [4+2] 

cycloaddition reaction in both carbocyclic and heterocyclic fashion, and cyclohexyl ring 

and piperidines are constructed.53 
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Scheme 37. SOMO Catalysis in [4+2] Cycloaddition51-53 

 
 

Of note, the development of SOMO catalysis allowed access to six-membered 

heterocyclic and carbocyclic frameworks via RPC reactions, and piperidines were 

generated (Scheme 38). MacMillan published a series of articles of SOMO catalysis, and 

they demonstrated that the RPC reaction can successfully enable the reaction pathway 

toward both pyrrolidines and piperidines.51, 53  

 

Scheme 38. The Synthesis of Piperidines and Six-Membered Carbocycles53 

 
 

3.3.3 Non-cycloaddition reaction 

 

3.3.3.1 Ceric Ammonium Nitrate (CAN) Mediated Oxidative RPC Reaction  
Cerium(IV) compounds, and in particular, ceric ammonium nitrate (CAN), are 

among the most useful oxidants in general.55 In 1992, Molander composed a review article 
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demonstrating that the development of mild and convenient procedures were found in 

CAN-mediated reactions instead of using stoichiometric CAN.55 Afterward, Mawdsley and 

co-workers discovered the CAN-mediated RPC cyclization, which can produce a number 

of biologically active products, for instance, Quinolacticin C.56  

The mechanism of this transformation is depicted in Scheme 39.56 The radical 106 

is generated by SET oxidation of CAN, and radical cyclization occurs to form a new radical 

107, which is afterward oxidized by CAN to afford an iminium ion 108. An elimination 

occurs, followed by an iterative radical generation and oxidation process to afford an 

iminium ion 109. Subsequent interaction with solvents (MeOH) ultimately generates the 

final product 110.  

Mawdsley and co-workers developed this transformation to demonstrate that CAN-

mediated RPC reactions are feasible under milder conditions compared to Mn(OAc)3-

catalyzed reactions.56, 57 However, this reaction showed its disadvantage in the extremely 

high loading of CAN catalyst (1:4), and the oxidant CAN was not recyclable in the catalytic 

cycle. It is noteworthy that CAN-mediated RPC reactions afforded a number of valuable 

drug-like molecules, such as Quinolacticin C, L-755,807, and PI-091.56 

 

Scheme 39. Proposed Mechanism of CAN-Mediated RPC Reaction56 

 
 

3.4 Net-Reductive RPC Reaction 
 

3.4.1 Samarium (II) Iodide (SmI2)-Mediated RPC Reactions. 
As stated in Section 3.3.1.1, mild and convenient procedures were promoted by 

lanthanide reagents.55 A reductive cyclization was first reported by Molander, who 

envisioned that samarium(II) iodide (SmI2) could provide significant advantages in terms 
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of its one electron reducing property and in applications to many organic transformations. 
58 Taking the concept further, SmI2-mediated RPC reactions were first developed by 

Molander and his former coworkers in 1991, and the whole transformation was carried out 

under reductive conditions.58 Moreover, the SmI2-mediated RPC reaction can be classified 

by category ketyl radical precursors (Category A) and aryl radical precursors (Category B) 

(Scheme 40).  

From 1991 to 1997, Molander and co-workers reported efforts on a series of 

publications outlining the SmI2-mediated RPC reaction, and his discovery proved to be 

fruitful.59 Scheme 40 outlines the mechanism of SmI2-mediated RPC reaction in category 

A and B as mentioned above. In category A, radical 111 was initiated by reduction of SmI2, 

and cyclization occurred to produce a new radical 112, which then undergoes SET 

reduction by SmI2 to afford carbanion 113. Ultimately, addition of an electrophile finalizes 

this RPC transformation to afford product 114. In category B, the step of radical initiation 

differs from category A, in that the radical 115 was initiated by SmI2 via reduction of an 

aryl-iodide, and a series of analogous steps are followed toward the formation of final 

product 116.  

 

Scheme 40. Proposed Mechanism of SmI2-Mediated RPC Reaction58 
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In the SmI2-mediated ketyl RPC reaction, a variety of electrophile were used in the 

polar reactivity, and the installation of several representative functional groups are 

illustrated in Scheme 41 with a good yield (60-80%).58, 59 In addition, the technique 

outlined in Category B was successfully applied to a total synthesis to of Penitrem D, which 

was developed by Curran.60 The applicability of SmI2-mediated RPC to the total synthesis 

of Penitrem D will be reviewed in Chapter 4.60 

 

Scheme 41. Scope of Samarium (II) Iodide (SmI2)-Mediated RPC Reactions58, 59 

 
 

3.5 Non-Photoredox Conclusion 

A series of non-photoredox-mediated RPC reactions were outlined in this chapter. 

The RPC reaction under non-photoredox conditions compounds provided fruitful results 

in [3+2] and [4+2] cycloadditions and C-C(X) bond construction. Compared to the 

photoredox-mediated RPC reaction, any protocol presented in non-photoredox afforded 

the cycloadduct as the product. 

Different from photoredox mediated RPC reactions, a few cases of non-photoredox 

promoted RPC reactions transpire by adding stoichiometric reagents such as SmI2 and 

cerium(IV).55, 58 The stoichiometric reagents can make the transformation transpire under 

entirely oxidative or reductive conditions. The stoichiometric oxidant CAN cannot be 

recycled. Therefore, each RPC reaction promoted under stoichiometric conditions needs to 

have a catalyst to regenerate the oxidant/reductant for sustainability. 

The RPC reaction has many foreseen advantages, including its step economy and 

mild reaction conditions, and this statement was confirmed in this chapter. The same can 

be said for photoredox-catalyzed reactions; mild conditions are predominantly employed 

in the non-photoredox-mediated RPC reaction, and many products generated from non-

photoredox catalyzed reaction were applied to pharmaceutical chemistry, which will be 

described in Chapter 4. Overall, achievement of tin-free procedures and improvement by 

the absence of transition metals were achieved in state-of-the-art RPC reactions. 
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Chapter 4. Pharmaceutical Applications 

A number of pharmaceutical agents can be synthesized using RPC reactions. RPC 

reactions might provide many practical advantages such as efficiency, good functional 

group tolerance, and avoidance of toxic side products. Therefore, this chapter will address 

the current representative pharmaceutical applications that employed photoredox- or non-

photoredox-mediated RPC reactions. 

 

4.1 Aspidospermidine 

 

 
Figure 3. Structure of Aspidospermidine62 

 

Aspidospermidine was first isolated from Aspidosperma, and because of its 

important bioactivity, it became an attractive parent structure for total synthesis.61 In 1998, 

a total synthesis of the DCE-ring system of Aspidospermidine was carried out by Murphy 

and co-workers employing a TTF-mediated RPC reaction with an axially chiral substrate 

to induce enantioselectivity (Figure 3).61 Murphy realized that among the five ring system 

of the parent structure Aspidospermidine, ring BCE system can be synthesized by a RPC 

reaction.  

 

Scheme 42. The Construction of BCE Ring on Aspidospermidine61 

 
 

In the work carried by Murphy, the construction of ring BCD was accomplished in 

a one-pot fashion at the first step of the total synthesis (Scheme 42).61 The main catalyst 

chosen for this synthesis is TTF, which initiated the radical and transformed the radical 

adduct to a polar adduct during the synthesis.45 The RPC reaction, which was proposed and 
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performed by Murphy, was successfully applied to the synthesis of aspidorspermidine with 

51% yield.61  

With the optimal conditions in hand, the synthesis of aspidorspermidine has the 

potential to allow scientists to synthesize a number of targets that can provide enormous 

pharmaceutical and clinical value, such as Vinorelbine (Figure 4), which can be targeted 

to treat lung cancers.61, 63 

 
Figure 4: Structure of Vinorelbine61 

 

4.2 A Highly Efficient Synthesis of the BCD-Ring System of Penitrem D 

A total synthesis of the DEFG-ring system of Penitrem D was accomplished by 

Curran.60 Penitrem D (Figure 5) is a molecule that has eight ring systems, and Curran and 

co-workers realized that the BCD ring on the molecule could be constructed by a SmI2-

mediated RPC reaction.60  

 

 
Figure 5: Structure of Penitrem D60 

 

In the work designed by Curran, the construction of BCD ring become the last step 

of the total synthesis (Scheme 43).60 SmI2 was employed as the RPC reagent, and two 

equivalents of SmI2 were required for the transformation. With the optimal conditions in 

hand, Curran examined the functional group tolerance of this method, which led to good 

to moderate yields of the target structures (40%-60%).60 
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Scheme 43. The Construction of BCD Ring on Penitrem D60 

 
 

 

4.3 A Synthetic Pathway to Achieve the Synthesis of Lactones. 

Lactones and their derivatives were extensively synthesized by the organic 

synthesis community, but in most methods, this sort of construction requires stoichiometric 

oxidants and harsh conditions.4, 5 Therefore, a method that can enable the construction of 

highly substituted lactones in an efficient and environmentally friendly fashion was 

targeted. Liu and Fagnoni envisioned that under photoredox catalysis, many moieties with 

δ- and γ-lactones could be synthesized with excellent yields, high selectivities, and good 

functional group tolerance.4, 5 

Because of the pharmaceutical applicability of γ-lactones as basic structural 

elements, Liu employed photoredox-mediated RPC reactions to achieve the construction 

of a variety of γ-lactones.4 The optimal conditions selected to conduct this reaction were 

fac-Ir(ppy)3, hv = 450 nm in CH3CN. Under the optimal conditions, the γ-lactone moiety 

can be constructed in a [3+2] cycloaddition reaction via reduction before oxidation. Good 

to excellent yields were achieved, even as high as 99%. This process enabled the 

transformation to functionalized γ-lactones under mild conditions. A current limitation of 

Liu’s protocol is that the functional group tolerance is still not high.4 (Scheme 44)  

With only 2 mol % loading of [Ru(bpy)3]
2+, Fagnoni enabled a novel intermolecular 

synthesis of two typical δ-lactone moieties; isochromanone and isochromenone (Figure 6). 

The optimal conditions involved [Ru(bpy)3]Cl2 (2 mol %) as photocatalyst in dry MeCN. 

With the optimal conditions in hand, the scope of the reaction was investigated by 

employing a number of different substituted diazonium salts and a variety of styrenes.  
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Scheme 44. Synthesis of γ-and δ-lactones via Photoredox RPC Reactions4, 5 

 
 

 
Figure 6. The Structure of Isochromanone and Isochromenone5 

 

Amicoumacin A (Figure 7) is an antibiotic that can target bacterial ribosomes, and 

it can affect translocation and results an additional contact interface between ribosomal 

RNA and mRNA.64 As a result, it may cause the death of cancer cell. Many scientists 

already envisioned that development of amicoumacin A and its derivatives can provide 

clinical value, and with the photoredox-mediated RPC reaction in hand, the construction 

of amicoumacin A will be achieved under mild condition and with low catalyst loading.   

 
Figure 7. The Structure of Amicoumacin A64 
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Chapter 5. Conclusion 
Over the past 25 years, radical-polar crossover reactions experienced an increasing 

role in the organic synthesis, and a number of natural product syntheses was carried out by 

such processes. RPC reactions provided a number of practical advantages, such as the 

ability to employ mild condition, increase molecular complexity, tolerate functional groups, 

and process in a one-pot operation.  

A series of photoredox and non-photoredox catalyzed RPC reaction were 

investigated, and the overall results proved fruitful. The comparison of different authors’ 

views, critical analysis of the methods, and an overall summary of literature were all 

described in a systematic fashion. 
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