
Masthead Logo
University of Pennsylvania

ScholarlyCommons

Master of Chemical Sciences Capstone Projects Department of Chemistry

5-2019

Reverse-Polarity Activity-Based Protein Profiling
Suzanne Dettling
sdett@sas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/mcs_capstones

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mcs_capstones/19
For more information, please contact repository@pobox.upenn.edu.

Dettling, Suzanne, "Reverse-Polarity Activity-Based Protein Profiling" (2019). Master of Chemical Sciences Capstone Projects. 19.
https://repository.upenn.edu/mcs_capstones/19

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/219382712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fmcs_capstones%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/mcs_capstones?utm_source=repository.upenn.edu%2Fmcs_capstones%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/chemistry?utm_source=repository.upenn.edu%2Fmcs_capstones%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/mcs_capstones?utm_source=repository.upenn.edu%2Fmcs_capstones%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/mcs_capstones/19?utm_source=repository.upenn.edu%2Fmcs_capstones%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/mcs_capstones/19
mailto:repository@pobox.upenn.edu


Reverse-Polarity Activity-Based Protein Profiling

Abstract
Reverse-polarity activity-based protein profiling (RP-ABPP) is a chemical proteomics approach that uses
clickable, nucleophilic hydrazine probes to capture and identify protein-bound electrophiles in cells. The RP-
ABPP approach is used to characterize the structure and function of reactive electrophilic PTMs and the
proteins that harbor them, which may uncover unknown or novel functions of proteins in an endogenous
setting. RP-ABPP has demonstrated utility as a versatile method to monitor metabolic regulation of
electrophilic cofactors, as was done with the pyruvoyl cofactor in S-adenosyl-L- methionine decarboxylase
(AMD1) and discover novel types of electrophilic modifications on proteins in human cells, as was done with
the glyoxylyl modification on secernin-3 (SCRN3). These cofactors cannot be predicted by sequence and as
such this area is relatively undeveloped. RP-ABPP is the only global unbiased approach to discover these
electrophiles. Here, the utility of these experiments is described and a detailed protocol is provided for de
novo discovery, quantitation, and global profiling of electrophilic functionality of proteins through the use of
nitrogenous nucleophilic probes deployed directly to living cells in culture.
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Reverse-polarity activity-based protein profiling (RP-ABPP) is a chemical 

proteomics approach that uses clickable, nucleophilic hydrazine probes to capture and 

identify protein-bound electrophiles in cells. The RP-ABPP approach is used to 

characterize the structure and function of reactive electrophilic PTMs and the proteins 

that harbor them, which may uncover unknown or novel functions of proteins in an 

endogenous setting. RP-ABPP has demonstrated utility as a versatile method to monitor 

metabolic regulation of electrophilic cofactors, as was done with the pyruvoyl cofactor in 

S-adenosyl-L- methionine decarboxylase (AMD1) and discover novel types of

electrophilic modifications on proteins in human cells, as was done with the glyoxylyl

modification on secernin-3 (SCRN3). These cofactors cannot be predicted by sequence

and as such this area is relatively undeveloped. RP-ABPP is the only global unbiased

approach to discover these electrophiles. Here, the utility of these experiments is

described and a detailed protocol is provided for de novo discovery, quantitation, and

global profiling of electrophilic functionality of proteins through the use of nitrogenous

nucleophilic probes deployed directly to living cells in culture.
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Method Review of Reverse-Polarity Activity-Based Protein Profiling 

 

Chapter 1. Introduction 

 

1.1 The ‘Electrophilome’ 

 

Major aspects of protein function, structure, and regulation are often mediated by 

post-translational modifications (PTMs) (e.g. protein-protein interactions, cell stability, 

localization of proteins, etc.).1, 2 Recent development of a new chemical proteomics 

technology, reverse-polarity activity-based protein profiling (RP-ABPP), utilizes 

nucleophilic probes to capture reactive electrophile PTMs in cells, thus allowing global 

discovery of electrophilic functionality in proteins.2 Diverse electrophilic modifications 

are well known to confer function and are usually acquired through covalent installation3, 

4 or exogenous cofactor binding.5 Proteins have been known to incorporate more than ten 

classes of electrophiles for essential functions, including catalysis.6 Two examples of  

functional electrophiles are pyruvoyl cofactors, which facilitate catalysis of 

decarboxylation by forming a schiff base with the substrate, and formylglycyl cofactors, 

which are necessary for sulfate catalysis of hydrolysis of sulfate esters.4 Such 

functionality is often difficult or impossible to predict by primary structure, yet has been 

found on proteins associated with disease (e.g. KEAP1 protein in cancer, APP protein in 

Alzheimer’s disease, FTO protein in obesity, etc.).2 RP-ABPP can also be used for de 

novo discovery of novel PTMs, as was done in the discovery of the glyoxylyl 

modification on SCRN3.2 Additionally, some of the electrophilic sites that demonstrated 

high reactivity towards the nucleophilic probes represent cofactors critical for enzyme 

catalysis.  

Characterizing the structure and function of electrophile PTMs and the proteins 

that harbor them can elucidate unknown or novel functions of proteins in an endogenous 

setting, thereby improving our understanding of disease mechanisms, potentially even 

revealing new drug targets. Furthermore, the probes not only function as discovery tools 

but also as potent inhibitors and as such may eventually serve as a launching point for 

development of selective small-molecule inhibitors. Despite the importance of 

discovering and characterizing electrophile PTMs, there has yet to be a review compiling 

the experiments, analyses, and significance involved in such work. As such, the goal of 

this review is to collect and expound on this method, its purpose, and where it fits into 

chemical proteomics as a whole.  

Chemical proteomics methods are vastly diverse and require a broad range of 

knowledge. RP-ABPP is no different as these experiments incorporate biological, 

chemical, instrumentation, and computational aspects. RP-ABPP experiments incorporate 

cell culture, SDS-PAGE, western blots, cloning, mutagenesis, organic synthesis, liquid 

chromatography-tandem mass spectrometry, computational search strategies, peptide 

synthesis, and other techniques. This review will integrate all these techniques into their 

respective experiments and discuss how they fit into the method and what they are used 

to accomplish.  
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1.2 Development from activity-based protein profiling (ABPP) 

 

RP-ABPP was developed from activity-based protein profiling (ABPP), a related 

chemical proteomics method that characterizes nucleophilic reactivity of amino acids in 

the proteome. ABPP is a method that utilizes electrophile probes to target functional 

nucleophiles,7 while RP-ABPP works conversely, using nucleophilic hydrazine probes to 

target active-electrophiles as depicted in Figure 1A, where purple Ns represent 

nucleophiles and yellow Es represent electrophiles. Figure 1B shows the structures of the 

nucleophilic hydrazine probes used previously.2 Hydrazines were selected as the 

nucleophilic group due to their known ability to react with oxidative and electrophilic 

cofactors which are shown in Figure 1C. Hydrazines are known to inhibit enzymes 

through covalent reaction with pyruvoyl,8 aspartimide,9 quinone,3 and formylglycyl10 

electrophilic cofactors (the first four structures in Figure 1C) as well as alkylation of 

oxidative prosthetic groups (covalent heme cofactors11 and covalent flavin cofactors12) 

(the final two structures in Figure 1C). Additionally, these hydrazine probes are 

deployed in living cells to focus the results on electrophiles that are functional and 

strongly reactive in an endogenous setting.2 

 

 

 
 

Figure 1. (A) Schematic of ABPP and its reverse polarity counterpart. N represents 

nucleophilic reactivity on an amino acid and E represents an electrophile probe. In the RP-

ABPP schematic, E represents an electrophile PTM and N represents a nucleophile probe. 

(B) Structures of hydrazine probes used previously.2 (C) Enzyme cofactors, PTMs, and 

prosthetic groups known to react with hydrazines.2,3, 8-12  

 

The ‘electrophilome’, or other ‘half’ of the reactive proteome, has been largely 

ignored prior to the advent of this method due to the lack of electrophilic reactivity on un-

modified amino-acids. However, initial results from this unbiased screen have 

demonstrated that there are functional and active electrophiles incorporated onto proteins 

post-translationally in the cell.2  In ABPP, nucleophilic sites and proteins can be 
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predicted from sequence because specific amino acids are inherent nucleophiles. This 

prediction allows profiling of anticipated activity at the predicted site and protein, 

whereas RP-ABPP experiments must begin by discovering protein, site, and structure of 

the electrophile because there is no prediction to rely upon. Thus, in addition to the 

applications of ABPP, RP-ABPP can also be applied for de novo discovery.  

All RP-ABPP experiments utilize a chemical probe, which includes a nucleophilic 

hydrazine warhead and an alkyne handle for detection and enrichment via ‘click’ 

chemistry (Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC)) to azide reporter tags. 

In this ‘click’ reaction, azides and alkynes react to form triazoles, enabling probes 

(alkyne) to bind to tags (azides) for further processing. For downstream analysis via mass 

spectrometry, biotin-azide tags are used as they have a very high affinity for streptavidin, 

allowing for detection, isolation, and purification of probe-bound proteins and peptides as 

depicted in the top portion of Figure 2. For gel experiments, fluorophore tags (e.g. 

rhodamine) are used to enable visual detection of probe-bound proteins via SDS-PAGE 

gel as depicted in the bottom portion of Figure 2. 

 

 
Figure 2. Schematic of utility of tags conjugated to alkyne probe. For mass spectrometry 

(MS) experiments, biotin tags are used to enable enrichment of probe-bound targets on 

streptavidin resin and conversely, for gel-based detection, a rhodamine-azide tag is used to 

visualize the bound electrophile using in-gel fluorescence. 

 

1.3 Goals and overview 

 

 The overall objective of this review is to compile all experiments involved in 

discovering ‘the electrophilome’ and put these experiments into context regarding results, 

analysis, and significance. To achieve this, the three major aims of the method discussed 

and explored are: (1) identifying and quantifying proteins with probe reactivity from 

native systems, (2) resolving the site where the electrophile is located, and (3) 

determining the structure of the electrophile. These aims are accomplished through a 

series of experiments as depicted by the flowchart in Figure 3. All protocols and 

procedures are adapted from Matthews, M.; He, L.; Horning, B.; Olson, E.; Correia, B.; 

Yates III, J.; Dawson, P.; Cravatt, B. Chemoproteomic profiling and discovery of protein 

electrophiles in human cells. Nat. Chem. 2017, 9, 234.  
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Figure 3. Schematic flowchart of RP-ABPP experiments. (A) Target identification and 

quantification is performed using SILAC RP-ABPP and targets are validated by gel RP-

ABPP western blots and RP-ABPP data for hydrazine probe-treated transfected cells 

expressing a protein target.2 The first lane corresponds to a control transfection (‘mock’) 

with the appropriate empty expression vector. (B) The site of probe-labeling is 

characterized using IsoTOP ABPP experiments to determine co-eluting isotopically-

differentiated peptide pairs and de novo sequencing the ions to resolve the modified site.2 

The site of probe-labeling is validated through comparison of mutation and wild-type (WT) 

probe-labeling and expression profiles.2 (C) The electrophile is determined, confirmed, and 

stoichiometrically quantified by inferring the electrophile and coelution of heavy-Arg/Lys-

labeled transfected cells treated with probe (followed by processing by isoTOP-ABPP) 

with light amino acid-labeled synthetic standards.2 
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In target identification and quantification, enrichment and competition 

experiments are performed by treatment with probe on heavy SILAC (stable isotope 

labeling by amino acids in cell culture) cells and either competitor or probe with excess 

competitor on light SILAC cells as shown in Figure 3A. A competitor is a non-clickable 

analog of the probe without the alkyne handle. Probe-labeled proteins are conjugated to 

biotin, enriched on streptavidin, digested, and analyzed by LC-MS/MS examining co-

eluting isotopically differentiated proteomes.2 From these spectra, heavy to light ratios 

can be used to determine and quantify high-reactivity targets. These targets are then 

validated by visualizing competition and enrichment in cells overexpressing the target 

compared to ‘mock’ transfected controls.2 Chapter 2 will discuss this in more detail. 

 To characterize the site of the electrophile, isotopic tandem orthogonal proteolysis 

(isoTOP) ABPP is performed to determine the peptide labeled, de novo sequencing of 

isoTOP ABPP data is performed to determine the specific residue labeled, and the site is 

validated by site-specific mutagenesis as depicted in Figure 3B. IsoTOP ABPP 

experiments involve probe-treatment of non-SILAC cells and conjugation of probe to a 

heavy or light tag. This isotopic differentiation on corresponding peptides allows for 

identification of the peptide-labeled by examining coeluting and specific mass 

differentiated peptides. In de novo sequencing, the MS2 spectra are assigned to specific 

amino acid residues to determine which residue is labeled and this result is validated by 

mutating that specific site and visualizing a loss of probe-labeling.2 Chapter 3 will discuss 

this in more detail. 

Finally, the electrophile structure is determined by first proposing a match using 

mass information from de novo sequencing as shown in Figure 3C. The structure is then 

confirmed by coeluting a light synthesized peptide containing the proposed probe-

captured electrophile structure with heavy-labeled peptides purified from SILAC cells.2 

Similarly, light synthetic peptides of an internal standard and a modified peptide are 

coeluted with heavy-labeled peptides purified from SILAC cells to measure the fraction 

of the proteome containing the modification. In this experiment, the internal standard 

effectively represents the total protein (both modified and unmodified forms). By using 

known quantities of modified and internal standards, absolute quantification of the 

endogenous modified and total protein can be determined, thus enabling calculation of 

the fractional occupancy. This review will delve into the specifics of the experiments 

briefly outlined here, providing detailed protocols of RP-ABPP experiments.  Chapter 4 

will discuss this in more detail. 
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Chapter 2. Target identification and quantification 

 

 The first aim of RP-ABPP is to determine probe-reactive proteins and quantify 

their reactivity. Probe-reactive proteins are identified and quantified by performing 

labeling, purification, and mass spectrometry (MS) analysis by stable isotope labeling by 

amino acids in cell culture (SILAC) RP-ABPP, and validation via recombinant 

expression protocols. Upon identification and quantification of these proteins, high-

reactivity targets can be further interrogated. Identification is an essential first step to RP-

ABPP because proteins harboring electrophilic PTMs are generally unknown and cannot 

be predicted based on sequence. Quantification of this reactivity allows for exclusion of 

weakly reactive or low stoichiometry electrophiles to bias toward functional sites. Thus 

allowing further pursuit of highly reactive target proteins containing functional 

electrophiles. 

 

2.1 Labeling and preparation 

 

RP-ABPP experiments begin with probe, competitor, or probe and competitor 

mixture treatment and proteome harvesting and separation. These steps generate labeled 

soluble and membrane proteomes at a known concentration from cell culture. These 

proteomes are then used as the starting material for the rest of the RP-ABPP experiments. 

Below, sample procedures are described for in situ labeling (Section 2.1.1) and proteome 

preparation (Section 2.1.2). 

 

 2.1.1 In-situ labeling 

 

 To begin RP-ABPP, working stock solutions (~0.2−3 M) of probe and competitor 

compounds are prepared in water from the hydrazinium chloride salts and the pH is 

titrated to ~6.5−7 with concentrated sodium hydroxide. These solutions can then be 

stored in aliquots at –80 °C. After solution preparation, low-passage human adherent cell 

lines are grown at 37 °C in a humidified 5% CO2 atmosphere and expanded in media 

containing high-glucose, L-glutamine, and pyruvate supplemented with 10% (v/v) fetal 

bovine serum (FBS), and 1% Penicillin/Streptomycin antibiotic/antimycotic.13 For gel 

experiments, one 6 cm cell culture plate can be used and for MS samples, two 10 cm cell 

culture plates should be used.2  

 The treatment begins once the cells have reached near complete confluence, cells 

are washed with cold phosphate buffered saline (PBS, pH 7.4) and replenished with 

serum-free media (~15% of normal passage volume, e.g. a 10 cm plate normally 

passaged with 10 mL media would receive 1.5 mL) supplemented with 10 mM Na-

HEPES buffer (pH 7.5). Then, cells are incubated with probe in the absence or presence 

of 10-fold excess non-clickable analogs (competitors) for 30 minutes at 37 °C. Probe and 

competitor should be premixed before co-administering to the cells when applicable. 

Following treatment, cells are washed with cold PBS to remove the probe-containing 

media, harvested by scraping, collected by centrifugation (1,400 g, 3 minutes, 4 °C), and 

washed again by resuspension in cold PBS. Unless proceeding directly to proteome 

preparation, cells should be pelleted and frozen at –80 °C. 
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2.1.2 Proteome preparation 

   

 To prepare the proteome for use in mass spectrometry-based and gel-based 

experiments, cell pellets are resuspended on ice in PBS (100–500 μL) and lysed by a 

Branson Sonifier probe sonicator (2 × 6–10 pulses, 50% duty cycle, output setting = 3–5). 

For this step, resuspension volume and sonication power should be adjusted accordingly 

for cell pellet yield. To separate soluble and membrane proteomes, samples are 

ultracentrifuged (100,000 g, 30–45 minutes) and the protein concentrations for each 

fraction are determined using the DC protein assay, which is similar the Lowry assay, and 

read on a microplate reader.  

 

2.2 SILAC RP-ABPP 

 

 SILAC was initially developed in 2002, and is a widely applicable tool for 

quantitative proteomics.14 In this method, two groups of cells are used: (1) cells grown in 

‘light’ media which includes all natural abundance amino acids and (2) cells gown in 

‘heavy’ media which contains one or more heavier isotope amino acids (e.g. amino 

acid(s) containing 2H vs 1H, 13C vs 12C, 15N vs 14N, etc.).15 This method is a simple and 

easy way to isotopically differentiate samples because as the proteins incorporate the 

amino acids from the culture media, peptides will contain a known mass shift. This is 

sampler than other methods of isotopic differentiation used (e.g. reductive dimethylation 

(ReDiMe)) because it allows the heavy and light samples to be mixed prior to all major 

downstream processing. As such, this essentially allows the samples to halved when 

compared to other methods in which heavy and light samples must be processed in 

parallel and isotopic differentiation is incorporated later in the process, reducing 

experimental variation between the samples. 

 The defined mass shift created using SILAC media can then be analyzed via mass 

spectrometry to quantify by ratiometric comparison differences in abundance of peptides 

in the respective proteomes. Coelution of isotopically differentiated peptides is a common 

strategy in RP-ABPP as will be demonstrated throughout this review. This strategy is 

used with experimental samples in SILAC RP-ABPP and isoTOP ABPP as depicted in 

Figure 4.  In Figure 4A, heavy and light cells, proteomes, and peptides are depicted in 

blue and red, respectively. As shown in Figure 4A, isotopic differentiation is utilized in 

SILAC RP-ABPP as protein targets are determined based on their heavy to light ratios. In 

Figure 4B, heavy and light tagged proteins and peptides are depicted in dark and light 

green , respectively. As is shown in Figure 4B, the isotopic differentiation strategy is 

utilized in isoTOP ABPP to determine the peptide labeled by finding coeluting peptides 

with a specific mass differential. 

 

 

 

 



8 

 

 
 

Figure 4. (A) Schematic for MS-based quantitative (SILAC) proteomics experiments 

(enrichment and competition) as described in the text. Heavy (H) and light (L) cells, 

proteomes, and peptides are depicted in blue and red, respectively. Biotin tags and 

streptavidin resin are depicted in black and gray, respectively. (B) Characterization of probe 

labeled peptides using the isoTOP-ABPP method as described in the text. Heavy and light 

tagged proteins and peptides are depicted in dark and light green, respectively. Biotin-TEV 

tags and streptavidin resin are depicted in green and gray respectively. 

 

 SILAC can be utilized in RP-ABPP enrichment16 and competition17 experiments, 

as shown in Figure 4A.2, 18 In enrichment experiments, heavy cells are treated with probe 

and light cells with competitor and in competition experiments, heavy cells are treated 

with probe and light cells with probe and an excess of competitor. Enrichment and 

competition can also be shown using gel experiments. For MS-based analysis, labeled 

proteomes are conjugated to biotin tags via click chemistry and enriched on streptavidin 

beads to remove unlabeled proteins. Proteins are then digested and analyzed via LC-

MS/MS. Proteins with high heavy to light ratios for competition and enrichment are 

deemed to be high-reactivity targets and the reactivity is quantified using these ratios. 

The experimental steps and analysis described for SILAC RP-ABPP are pictorially 

represented in Figure 4A. Below, sample procedures are described for MS-based 

analysis (Section 2.2.1), liquid chromatography-tandem MS (Section 2.2.2), and 

determination of high-reactivity targets (Section 2.2.3).  Profiling experiments were 

initially adapted from those applied to other probes.19-22  

 

2.2.1 MS-based analysis of probe-labeled proteins 

 

For SILAC experiments, the in situ labeling protocol (Section 2.1.1) is followed, 

with the alteration of passaging each cell line a minimum of six times in SILAC media 

(lysine- and arginine-free) containing dialyzed FBS supplemented with either isotopically 

enriched L-[13C6
15N2]lysine hydrochloride and L- [13C6

15N4]arginine hydrochloride or 
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natural abundance isotopologues (100 μg/mL each, 550 μM and 475 μM, respectively). 

This allows the cells to incorporate the heavy or light amino acids. For both enrichment 

and competition experiments, isotopically heavy cells are treated with the probe. For 

enrichment experiments, isotopically light cells are treated with non-clickable analog (at 

the same concentration used for the probe in the heavy cells) and for competition 

experiments, probe in the presence of 10-fold excess non-clickable analog as a 

competitor are used. This ultimately allows for high-reactivity targets to bind to probe in 

heavy cells and bind to competitor in light cells, ensuring high heavy to light ratios in 

high-reactivity targets.  

After labeling, isotopically heavy and light whole cell lysates are mixed in equal 

proportions and the proteome preparation protocol (Section 2.1.2) is followed as 

described above. Following the determination of the protein concentration, the 

fractionated equimolar mixture of heavy and light proteomes (~1−1.5 mg) is diluted to 1 

mL in PBS. To conjugate the protein-bound probes to biotin tags, 110 μL of a freshly 

prepared ‘click’ reagent mixture containing 0.1 mM tris(benzyltriazolylmethyl)amine 

(TBTA) (60 μL/sample, 1.7 mM in 4:1 DMSO:t-BuOH), 1 mM CuSO4 (20 μL/sample, 

50 mM in H2O), 100 μM biotin-azide (10 μL/sample, 10 mM in DMSO), and freshly 

prepared 1 mM tris(2-carboxyethyl)phosphine (TCEP) (20 μL/sample, 50 mM in PBS or 

H2O) is added to each sample (1 mL) and the mixture is vortexed. The ‘click’ reaction is 

allowed to proceed for 1 hour at ambient temperature on a rotator. After the reaction 

mixture has rotated for 1 hour, the ‘click’ reaction is quenched with sequential addition of 

and mixture with pre-chilled methanol (MeOH, 2 mL), chloroform (CHCl3, 0.5 mL), and 

PBS (1 mL) on ice. To fractionate the interphase protein from the organic and aqueous 

solvent layers, the precipitated proteome is centrifuged (5,000 g, 10 min, 4 °C) and to 

ensure the ‘click’ reagents are efficiently removed, the protein pellet is washed with cold 

1:1 MeOH:CHCl3 (3 × 1 mL) followed by mild sonication in cold 4:1 MeOH:CHCl3 (2.5 

mL).  

Following conjugation to biotin tags, the samples are denatured, disulfides 

reduced, and resulting thiols alkylated. This is performed by pelleting the remaining 

precipitate by centrifugation (5,000 g, 10 min, 4 °C) and re-dissolving by mild sonication 

in a freshly prepared solution of proteomics-grade urea (500 μL, 6M in PBS). Disulfides 

are reduced with TCEP (9 mM) pre-neutralized with potassium carbonate (27 mM) for 30 

minutes at 37 °C and the resulting thiols are alkylated with iodoacetamide (45 mM) for 

30 minutes at ambient temperature protected from light. To ensure complete 

denaturation, SDS [2% (w/v)] is added.  

The final steps in the SILAC RP-ABPP MS-based analysis enrich samples on 

streptavidin, digest samples with trypsin, and acidify with formic acid. To accomplish 

this, first the solution is diluted to ~0.2% SDS with PBS (~5 mL) and incubated with pre-

equilibrated streptavidin agarose resin (50 μL column volume, 100 μL 1:1 slurry) for 

~1.5−2 hours at ambient temperature on a rotator. Then, to remove unbound protein, 

excess detergent, and small molecules, streptavidin beads are collected by centrifugation 

(1,400 g, 1−2 min) and sequentially washed with 0.2% SDS in PBS (3 × ~10 mL), 

detergent-free PBS (3 × ~10 mL) and H2O (3 × ~10 mL). To perform the digestion, the 

resin is transferred to a Protein LoBind tube and bound proteins are digested on-bead 

overnight at 37 °C in ~200 μL total volume containing sequencing grade porcine trypsin 

(2 μg, Promega) in the presence of urea (2 M in PBS) and CaCl2 (1 mM). In the final 
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step, the proteolyzed supernatant is transferred to a fresh Protein LoBind tube and 

acidified with formic acid (5%) to inactivate trypsin and stored at −80 °C. 

 

2.2.2 Liquid chromatography-tandem mass spectrometry (LC/LC-MS/MS)  

 

Numerous mass spectrometry protocols exist and historically MudPIT 

(multidimensional protein identification technology) mass spectrometry protocols have 

been used for ABPP and RP-ABPP.23-26 These protocols utilize loading acidified Trypsin 

products onto a C18 silica and strong cation exchange (SCX) resin column and eluting 

peptides with 5 salt ‘bumps’ followed by increasing acetonitrile (ACN). However, a more 

efficient method without the salt ‘bumps’ has recently been incorporated into RP-ABPP. 
27 While MudPIT protocols enable further fractionation, they require significantly more 

time on the MS instrument. Utilizing another method, such as the sample protocol 

described below, is preferred because significantly less instrument time is required while 

obtaining equivalent results. In proteomics, the most limiting factor in almost all 

experiments is instrument time, as such, any way to reduce instrument time without 

compromising the quality of results is preferred. 

Taking the digested acidic peptide mixture, C18 Stage Tips are used to desalt 

samples. Desalted samples are concentrated under reduced pressure in an evacuated 

centrifuge (SpeedVac) and re-dissolved in 10 µL of diluent (98% H2O, 2% acetonitrile, 

0.1% formic acid) for nanoLC-MS/MS analysis. A 3–5 µL aliquot of this solution is 

injected via a nano-LC system onto a 75 µm (inner diameter) fused-silica capillary 

column hand-packed with C18 resin and laser-pulled tip in solvent A (0.1% formic acid 

in H2O). The column is developed with a 60 minute gradient of 5%–100% solvent B 

(20% H2O, 80% acetonitrile, 0.1% formic acid). Peptides are ionized in positive-ion 

mode with a flow rate of 300 nL/min and an applied voltage of 2.3 kV. Spectra are 

collected in a data dependent mode such that each scan cycle involves a single high 

resolution (30,000) full MS spectrum of parent ions (MS1 scan from 400–1800 m/z) 

collected in the orbitrap coupled to a 30 CID-induced fragmentation (MS2) scans in the 

ion trap of the 30 most abundant parent ions from the MS1 scan. Dynamic exclusion is 

enabled (repeat count of 1, exclusion duration of 20 s) as is monoisotopic precursor 

selection. Parent ions with unassigned of +1 charge stated by the instrument are excluded 

for fragmentation. All other parameters are left as default values. 

 

2.2.3 Determination of high-reactivity targets 

 

Once mass spectrometry data collection has been performed on the samples from 

MS-based analysis (2.2.1), the MS2 spectra are extracted for all fragmented parent ions 

(from .ms2 file) from each of the .raw files generated by the instrument (Xcalibur 

software) using RAW Xtract or RawConverter28 with monoisotopic selection. After 

extraction, each .ms2 file is searched using the ProLuCID algorithm against a reverse-

concatenated, nonredundant database of the human proteome and filtered using 

DTASelect 2.0 within the Integrated Proteomics Pipeline (IP2) software. In this search, a 

static modification on cysteine residues for carboxyamidomethylation (+57.02146 Da) 

and up to one differential modification on methionine residues for oxidation (+15.9949 

Da) are included. In the database search, peptides are also required to have at least one 
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tryptic terminus but allowed an unlimited number of missed cleavages. Additionally, the 

exact mass shift of heavy atoms on specific amino acids from the SILAC media is 

searched (e.g. if using 13C and 15N on Lysine and Arginine, K +8.0142 Da and R 

+10.0082 Da). This can be done by performing a coupled ‘heavy’ search on each dataset 

for both light and heavy isotopologues of the same peptide by specifying the mass shift of 

heavy residues as static modifications on lysine (+8.0142 Da) and arginine (+10.0082 

Da).  

To further filter the data, the parent ion mass tolerance for a minimum envelope 

of three isotopic peaks is set to 50 ppm, the minimum peptide length set to six residues, 

the false positive rate set to 1%, and at least 2 peptides of a protein must be detected. 

Heavy and light parent ion chromatograms associated with successfully identified 

peptides are extracted and compared using CIMAGE software.25 Data is filtered so that at 

least one ion of a co-eluting heavy-light pair must be accurately identified from a 

fragmentation event that occurred within the retention time window (± 10 minutes) of 

parent ion elution. Furthermore, to ensure that the correct pair of peaks is quantified, 

chromatograms within a 10 ppm error tolerance of the predicted m/z, single-to-noise 

ratios greater than 2.5, and ‘co-elution correlation scores’ and ‘envelope correlation 

scores’ R2 values greater than or equal to 0.8 are extracted. To further eliminate false 

positives and stochastic variability in the data, protein ratios are determined by median 

peptide ratio derived from three or more unique qualified peptides. To provide final 

values, protein ratios that comply with these criteria from a single experiment are 

averaged with ratios acquired from at least three replicates.  

 

2.3 Validation via recombinant expression  

 

Once high-reactivity targets have been determined, targets can be validated by 

demonstrating hydrazine reactivity as an intrinsic property of the protein targets that is 

shared by both the endogenous and recombinant forms of these proteins. This validation 

is performed by treating transfected cells with probe, followed by conjugation to a 

fluorophore tag (e.g. rhodamine), and visualization of a strong fluorescent band at the 

appropriate molecular weight. This band should be absent in ‘mock’ transfected cells and 

in cells treated with excess non-clickable agents as this should block probe-labeling of 

each protein. Additionally, recombinant expression of each protein (and lack of 

expression in ‘mock’ transfected control cells) is confirmed by western blotting. In order 

to perform these transfections, target genes need to be obtained in mammalian expression 

vectors. These vectors can be purchased or made using cloning protocols.2 Sample 

procedures for transfection and gel-based analysis (Section 2.3.1) are described below.  

To begin the target validation experiment, standard growth conditions are 

followed and cells are grown to ~40% confluence. The appropriate expression vector 

[control cells (‘mock’) receive an equal amount of the appropriate empty vector] is added 

as well as polyethyleneimine (PEI) ‘MAX’ (MW 40,000) as a transfection reagent under 

standard transfection conditions [3:1 vector/PEI (w/w) ratio]. Cells are incubated with 

transfection reagents for ~48 h before labeling in situ (2.1.1) and preparation of the 

proteome (2.1.2).  
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2.3.1 Gel-based analysis of probe-labeled proteins 

 

 Following transfection (Section 2.3) and labeling (Section 2.1.1) and proteome 

preparation (Section 2.1.2), proteomes from treated cells are diluted to 1 mg/mL. To 

conjugate the fluorophore to probe-labeled proteins, 6 μL of a freshly prepared “click” 

reagent mixture containing 0.1 mM TBTA (3 μL/sample, 1.7 mM in 4:1 DMSO:t-

BuOH), 1 mM CuSO4 (1 μL/sample, 50 mM in H2O), 25 μM azide-rhodamine (1 

μL/sample, 1.25 mM in DMSO), and freshly prepared 1mM TCEP (1 μL/sample, 50 mM 

in PBS or H2O) is added to each sample (50 μL).  Immediately upon addition of the click 

mixture, the samples are mixed by vortexing and the mixture is allowed to react at 

ambient temperature for 1 hour. The ‘click’ reaction is quenched with SDS loading buffer 

(4× stock, 17 μL) and proteins are resolved (~25 μg total protein loaded per gel lane) by 

SDS-PAGE (10% acrylamide gels). Labeling is visualized using in-gel fluorescence 

scanning on a flatbed fluorescence scanner (e.g. BioRad ChemiDoc MP). The same gel is 

transferred to nitrocellulose membrane and western blotted using standard protocols.2 

 

2.4 Conclusion  

 

As seen above and will be evidenced throughout the review, most RP-ABPP 

experiments build upon on another. For example, isoTOP ABPP experiments start with 

in-situ labeling (Section 2.1.1) and proteome preparation (Section 2.1.2) and parts of MS-

based analysis (Section 2.2.1) are repeated as well. Additionally, mutagenic analysis 

relies upon gel-based analysis (Section 2.3.1) and begins with in-situ labeling (Section 

2.1.1) and proteome preparation (Section 2.1.2) as well. It is important to note that these 

experiments are very rigorous. They require planning and attention to detail and have few 

acceptable pause points. One of the most critical portions of target identification and 

quantification is the equilibration and washing of the SILAC RP-ABPP samples on 

streptavidin beads. This step is critical because if the beads are washed very vigorously, 

some beads may be lost, causing low peptide signal. Conversely, if the beads are not 

washed vigorously enough, too many contaminants (e.g. unbound protein, excess 

detergent, small molecules, etc.) may be present, which decreases the ability to detect 

proteins of interest. These risks could be mitigated through use of magnetic beads, which 

are generally used for high-throughput applications. However, these beads are very 

expensive and require additional equipment.  

The results generated from target identification and quantification are quite 

robust. When RP-ABPP was performed in two cell lines with two probes, eleven high-

reactivity targets were identified and only two of these proteins were previously known to 

harbor an electrophile.2 Due to the promise of these initial results, performing 

identification and quantification with other probes and cell lines is likely to widely 

expand the knowledge of known functional electrophiles. 
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Chapter 3. Characterization of the probe-captured site 

 

The second aim of RP-ABPP is to determine the site of electrophilic reactivity on 

the protein. The peptide labeled is found using isoTOP-ABPP25, 29 experiments and the 

specific amino-acid residue labeled is found using de novo sequencing. These results are 

validated using site-specific mutagenic analysis. Characterization of the electrophilic site 

yields information about where the reactivity is located within the greater context of the 

protein. Once this site is determined, this paves the way for a large variety of downstream 

experiments including monitoring the electrophile, examining its installation, and 

potentially investigating its function. Additionally, after the site harboring the 

electrophile is identified, this area can be further interrogated to determine the structure 

of the electrophile. 

 

3.1 IsoTOP ABPP 

 

IsoTOP ABPP is used to determine the peptide labeled, which is depicted in 

Figure 4B. Following probe treatment of non-SILAC cells (shown in gray in Figure 4B), 

this method utilizes conjugation to heavy and light cleavable biotin-TEV tags (shown in 

green in Figure 4B). After conjugation to heavy and light tags, labeled proteomes are 

enriched on streptavidin beads and on bead digestion is performed. After digestion, all 

unlabeled peptides are discarded as shown in Figure 4B. The remaining labeled peptides 

are released from the beads through cleavage of the tag (by TEV protease), ultimately 

generating probe-labeled peptides as mass differentiated pairs. Using the coeluting pair 

with heavy and light tags (plotted in dark and light green, respectively, in Figure 4B), the 

peptide harboring the labeled residue can be found. Determining which peptide is labeled 

can give information about where the reactivity is located in the sequence of the protein 

(e.g. active site, N-terminus, etc.). These searches enable differentiation between probe-

labeled peptides and other peptides in the sample regardless of identity or mass. A sample 

isoTOP-ABPP procedure (Sections 3.1.1-3.1.2) is described below. 

 

3.1.1 IsoTOP ABPP sample preparation to isolate probe-captured peptides 

 

 IsoTOP ABPP begins with probe treatment of wild-type or transfected cells in-

situ (Section 2.1.1) and proteome preparation (Section 2.1.2). After performing these 

protocols, soluble proteomes (2 mg total protein) are diluted to 1 mL in PBS. To 

conjugate half of the proteome (0.5 mL) to the light TEV tag and the other half to the 

heavy TEV tag, click reactions are scaled accordingly to maintain final concentrations of 

0.1 mM TBTA, 1 mM CuSO4, 100 μM of light or heavy biotin-TEV-azide (5 mM in 

DMSO) and 1 mM TCEP. The mixture is vortexed and placed on a rotator at ambient 

temperature. Once the mixture has rotated for 1 hour, it is centrifuged (16,000 g, 5 

minutes, 4 °C) and resulting pellets are mildly sonicated in ice-cold methanol (0.5 mL). 

The light- and heavy-labeled proteomes are combined and centrifuged once more. To 

solubilize the proteomes, 1.2% SDS (1 mL in PBS) is added and samples are stored at –

80 °C overnight.  

 After leaving the samples in –80 °C overnight, samples are diluted to ~0.2% SDS 

with PBS (~5 mL) and incubated with pre-equilibrated streptavidin agarose resin (100 μL 
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1:1 slurry) for ~2–3 hours at ambient temperature. To remove un-labeled proteins, resin 

is washed as described above in the SILAC RP-ABPP MS-based analysis procedure 

(Section 2.2.1), and after the washes, the resin is transferred to clean Eppendorf tubes and 

resuspended in urea (500 μL, 6M in PBS). Cysteines are then reduced and alkylated with 

TCEP and iodoacetamide, respectively, as described above in the SILAC RP-ABPP MS-

based analysis procedure (Section 2.2.1). To remove reagents, resin is washed once with 

PBS and bound proteins are digested with sequencing grade porcine trypsin (Promega, 2 

μg) for 8–12 h at 37 °C in the presence of 2 M urea (200 μL, in PBS) and CaCl2 (1 mM). 

 After trypsin digestion, sequential washes with PBS (5 × 0.5 mL) and H2O (5 × 

0.5 mL) are performed to remove unmodified peptides, urea, and trypsin. The resin is 

transferred to fresh tubes and equilibrated with TEV buffer (50 mM Tris, pH 8). To 

release the remaining immobilized peptides, TEV protease is added (~1–2 μM in ~200 

μL TEV buffer at 30 °C for 3–5 hours). Heavy- and light-labeled peptides are collected 

and recovered from the resin with H2O (2 × 50 μL). Samples are stored at –80 °C and 

must be analyzed within several days. 

 

3.1.2 Characterization of probe-labeled peptides by isoTOP ABPP 

  

 To analyze the samples generated from the isoTOP preparation, data is collected 

from isolated probe-captured peptides using mass spectrometry protocols as described 

above in the SILAC RP-ABPP procedure (Section 2.2.2). Then, the data is searched on 

the MS1 level for paired spectra of mass differentiated coeluting peaks as shown on the 

right in Figure 5. Every recorded monoisotopic precursor mass is searched 6.0138 Da (± 

5 ppm) upstream and downstream in each total ion (MS1) spectrum for a possible 

isotopic partner taking into account +2 and +3 charge states (3.0069 and 2.0046 Da, 

respectively). The relative intensity of the monoisotopic peaks is required to be greater 

than or equal to 5% of the base peak of each spectrum and each isotope profile (envelope) 

must have at least three peaks. Additionally, the Euclidean distance between two isotope 

profiles must be greater than or equal to 0.2. Pairs with the same m/z values (± 5 ppm) 

and retention times (± 10 minutes) are grouped to eliminate duplicates. Pairs of parent 

ions from transfected versus mock-transfected cells are analyzed and pairs of parent ions 

from three biological replicates should be analyzed as well. 

 

3.2 Fragmentation spectra assignment by de novo sequencing 

 

To further resolve the site labeled and the mass of the probe-captured PTM, the 

MS2 spectra from the isoTOP experiments is assigned via de novo sequencing by 

extraction of b and y ions and assignment spectra to their respective amino acids. The 

residue containing the modification can be identified as it will contain the known mass 

shift of the fragmented heavy/light tag, containing covalently bound probe and 

conjugated biotin-TEV tag. After all peaks are identified as either an amino acid or amino 

acid with fragmented tag, the mass of the bound electrophile can be calculated. A sample 

procedure is described below. 
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Figure 5. Search strategy to determine probe-labeled site from isoTOP ABPP data. To 

determine the peptide containing the modification, MS1 searches for coeluting pair with 

the specified mass difference are performed. To determine the residue labeled, MS2 spectra 

are assigned by de novo sequencing. 

 

Using the MS2 spectra generated from the isoTOP experiments, spectra are 

assigned manually as depicted on the left in Figure 5. It may be necessary for the 

instrument method to be modified such that both the parent and fragment ions are 

measured in the orbitrap to gain high-resolution data for both to be certain of the peak 

assignments and charge state of the tag-specific b-ions. Only the five most abundant 

parent ions for fragmentation per cycle (versus 30 if the spectra are collected in the ion 

trap) are selected to account for increased scan time. The number of MS2 spectra 

collected per cycle is extended to ten if the data is generated on the Fusion Orbitrap. The 

MS2 spectra is searched for diagnostic ions of the peptide. Highly abundant fragments 

that represent diagnostic markers for the unmodified portion of the peptide and other 

fragmentation products representing the portion that contains the modification and that is 

differentially labeled by the isotopic tags should be found. The spectra for the heavy and 

light peptides are compared and the ion shift should be observed (6.0138 Da). 

RawConverter can be used to extract accurate monoisotopic m/z values for each MS2 

spectra. Downstream structure determination will be based on the correct precursor mass 

calculated, which will be further discussed in Chapter 4. 
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3.3 Mutagenic analysis 

 

 After the amino acid containing the reactive electrophile has been identified, the 

next step is validation and confirmation of the location by mutation of the specific residue 

labeled. The site is confirmed if mutation of the site enables visualization of a loss of 

probe labeling. Additionally, expression should be present in both the wild-type and 

mutant protein and confirmed via western blot. To start this experiment, mutants are 

generated from the plasmids used in the recombinant expression procedure using 

QuikChange30 site-directed mutagenesis with primers containing the desired mutations 

and their respective complements. Once the mutation is confirmed, cells are transfected 

(Section 2.3), proteomes are labeled (Section 2.1.1) and prepared (Section 2.1.2), and gel-

based analysis (Section 2.3.1) is performed as described above.  

 

3.4 Conclusion 

 

 Characterizing the site labeled encompasses very difficult experiments. The 

isoTOP ABPP sample preparation is particularly difficult and requires extensive planning 

as the samples are very sensitive and should be analyzed quickly after performing the 

preparation. Furthermore, as was the case in identification and quantification, incubation 

and washes of the samples with streptavidin resin is a critical step. In addition to the 

reasons mentioned above, excess urea not removed during washes can impact TEV 

protease activity, thereby causing difficulty in releasing immobilized peptides.29 Further 

evidence of this issue is that two common sources of problems in these experiments are 

incomplete trypsin digestion and incomplete TEV digestion.29 Urea is used as a 

denaturing agent in these experiments, but high urea concentrations can reduce trypsin 

and TEV protease is sensitive to even trace amounts of urea, as such, these steps 

represent critical points in this method.29 Additionally, the search strategys used to 

determine the residue labeled are quite complex, but are designed with intent. The 

strengths in these searches, laid out in Figure 5, are that for the MS1 search, no sequence 

information is required to make the determination and for the MS2 search, no parent 

mass information is required to make the determination. Once the site has been 

determined and mutations at the electrophilic site have been generated, this allows for 

extensive further experimentation. In downstream experiments, the wild-type protein 

harboring the modification and the mutant that cannot contain the modification can be 

used to interrogate installation, function, and other aspects of the modification. 
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Chapter 4. Structure determination of probe-captured electrophile  

 

 The third and final goal of RP-ABPP is to determine the structure of the 

electrophile PTM. A structure match is initially proposed using the mass information 

about the PTM from de novo sequencing and chemical intuition regarding the residue and 

chemical reactivity of probe used. Information about enzyme class or similar motifs may 

also be useful. Peptides are coeluted with synthetic standards to: (1) confirm the proposed 

structure as well another confirmation of the site of labeling and (2) quantify the fraction 

of protein bearing the modification.  

 

4.1 Validation of proposed structure by coelution with synthetic standard 

 

Validation of electrophilic site and structure utilizes coelution of isotopically 

differentiated samples, light synthesized peptide with proposed probe-captured 

electrophile PTM and probe-labeled heavy SILAC cells. A sample procedure (Sections 

4.1.1-4.1.2) is described below. 

 

4.1.1 Synthetic standard  

 

 To generate the synthetic standard, solid phase peptide synthesis is used to 

prepare the peptide labeled and identified by isoTOP ABPP, including the proposed 

electrophile PTM bound to probe. The obtained synthetic peptides are conjugated to 

already cleaved tags, in contrast to the isoTOP sample preparation in which the tags are 

conjugated prior to cleavage. To cleave the tags, stocks of the heavy and light biotin-

azide tags (0.25 μmol of each) are diluted to 250 μM with 1 mL 50 mM Tris, pH 8 

supplemented with 1 mM DTT in the presence of 0.4 μM TEV protease and the reaction 

is incubated overnight at 30 °C. Once the reaction has incubated overnight, the reaction is 

concentrated to ~200 μL and the protease is precipitated with an equal volume of 

acetonitrile and pelleted. The supernatants containing the cleaved tags are then purified 

by RP-HPLC. To conjugate the synthetic hydrazone alkyne peptide to the cleaved heavy 

and light tags, a ‘click’ reaction is performed with addition of TBTA (0.1 mM), CuCl2 (1 

mM), and TCEP (1 mM) to a 0.5 mL mixture of the hydrazone alkyne peptide (~0.3 mM, 

~0.15 μmol) and either form of cleaved tag (~60 μM, ~0.03 μmol of each) in phosphate 

buffer (60 mM, pH 7). The reactions are incubated at ambient temperature for 

approximately 2 hours and purified by RP-HPLC. The product is then neutralized with 

phosphate buffer (25 mM, pH 7), lyophilized, and aliquots frozen at –80 °C. 

 

4.1.2 Coelution with synthetic standard 

 

 The samples used for coelution are generated using the isoTOP sample 

preparation procedure in Section 3.1.1, with the exception of growing cells in standard 

SILAC media. Once probe-labeled peptide pairs conjugated to tags have been isolated, 

the standard is diluted in water, the concentration is verified spectrophotometrically, and 

0.5 pmol is added to the digested sample just prior to column loading for analysis. If the 

proposed structure is correct, the peptides should co-elute and appear identical in the data 

analysis with the only exception being the previously defined mass shift.  
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4.2 Determination of absolute stoichiometry with synthetic isotopolgues 

 

 The fraction of modified protein can be determined by coeluting (light) synthetic 

modified and internal standards with (heavy) endogenous modified and internal peptides 

as depicted in Figure 6. In these experiments, the internal peptide represents the total 

protein in the cell (both modified and unmodified protein). Both the endogenous 

modified and internal peptides absolute quantities are able to be calculated using the 

known amount of respective standards added to the sample and the relative peak areas of 

the standard to the endogenous peptides as shown by fractional occupancy in Figure 6. A 

sample procedure for these experiments is described below. 

 

 

 
 

Figure 6. Scheme of stoichiometry measurement for modified peptide. Using a known 

quantity of synthetic standards of modified and internal peptides enables absolute 

quantification of the endogenous modified and total protein, allowing for calculation of 

fractional occupancy.  
 

 To generate the endogenous peptides in stoichiometric quantification, cells grown 

in heavy SILAC media are transfected and probe treated (Section 2.1.1) using procedures 

described above. The plasmids transfected must contain genes for the protein and FLAG 

tag for downstream purification. Cells are lysed in PBS (pH 7.4), fractionated by 

ultracentrifugation (100,000 g, 30–45 minutes), and the samples diluted to 1 mL with 50 

mM Na-HEPES buffer (pH 7.5) supplemented with 500 mM NaCl and 1% Triton X-100. 

Unsolubilized protein remaining in the sample is pelleted by centrifugation and denatured 

with a small volume 10% SDS for 1 hour at 37 °C. The completely resolubilized sample 

is incubated at 4 °C overnight by rotation with anti-FLAG resin.  The resin is washed by 
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resuspension and centrifugation with the same buffer supplemented with 500 mM NaCl 

(5 × 1 mL) followed by 100 mM NaCl (2 × 1 mL). The bound protein is eluted by 

incubating the beads for ~1 h at 37 °C in PBS containing 8 M urea (2 × 50 μL). Cysteines 

are reduced with TCEP (10 mM pre-neutralized with 30 mM potassium carbonate for 30 

minutes at 37 °C) and alkylated with iodoacetamide (20 mM under the same conditions 

but protected from light). The samples are diluted to 2M urea with PBS and digested at 

37 °C overnight with 2 μg trypsin supplemented with 1 mM CaCl2. Trypsin is inactivated 

with 5% formic acid. The natural abundance probe-labeled peptide standard generated 

above is diluted in PBS and the digested protein sample with the modified standard as 

well as an internal peptide that represents the total protein (5–50 pmol of each) are doped 

in just prior to analysis by the same method used for proteomic profiling. Absolute 

amounts of standards should be adjusted to achieve nearly comparable peak intensities 

for quantitation. 

 

4.3 Conclusion 

 

 Throughout RP-ABPP, coelution of isotopically differentiated samples is 

thoroughly utilized. This principle is used for SILAC, isoTOP, and synthetic standard 

experiments. RP-ABPP has been used for de novo discovery of a new previously 

unknown modification2 and there is the potential that other human proteins may harbor 

previously unknown electrophilic modifications. As such, electrophilic structure 

determination experiments could yield novel and far-reaching results.   
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Chapter 5. Conclusions 

 

5.1 Previous results and significance 

 

 Electrophilic modifications are not easily predicted by sequence and sequence 

predictions do not yield information about function or activity. Initial results from RP-

ABPP have yielded eleven targets and these targets are largely functional and strongly 

implicated in disease.2 Additionally, nine of the eleven targets were not previously known 

to harbor an electrophile and on one of these targets, SCRN3, a novel previously 

undiscovered modification, the glyoxylyl, was discovered.2 The results of the RP-ABPP 

experiments used to discover the glyoxylyl are depicted in Figure 7. Figure 7A depicts 

the probe reaction with the gyloxylyl. Identification and quantification of SCRN3 as a 

target is shown in Figure 7B with extracted parent ion chromatograms and corresponding 

heavy to light ratios for tryptic peptides of SCRN3 protein probe-treated cells quantified 

in enrichment and competition (left) and quadrant plot of average competition versus 

enrichment SILAC ratios from quantitative proteomics experiments (right).2 In Figure 

7C, isoTOP ABPP MS1 ion chromatograms (left) and isotopic envelopes (right) 

demonstrate coelution and specific mass differentiation of the labeled SCRN3 peptide.2 

Figure 7D depicts de novo sequencing to determine the residue labeled and the 

mutagenesis gel and western blot validate the result that both C6 and D7 must be present 

for labeling to occur, because the y-ions resolve the modified site (Figure 7*) to the N- 

terminal cysteine and/or adjacent aspartate and mutation profiles of Cys6-to-Ala6 (C6A) 

and Asp7-to-Phe7 (D7F) mutant SCRN3 proteins compared to wild-type (WT) SCRN3 

show a lack of probe labeling.2 In Figure 7E, heavy-Arg/Lys-labeled SCRN3-transfected 

cells treated with probe, followed by processing by isoTOP-ABPP, yields an isotopically 

differentiated probe-labeled SCRN3 peptide pair (light and dark green), which co-elutes 

with a light amino acid-labeled probe-Glyoxylyl6-Arg20 standard (also an isotopically 

differentiated peptide pair; light and dark gray).2 Inset chromatogram shows all four 

traces scaled to the same intensity to show co-elution of endogenous and standard probe-

Glyoxylyl6-Arg20 SCRN3 peptides.2 The discovery of the glyoxylyl is significant 

because it demonstrates the utility of RP-ABPP in discovering new unknown 

electrophilic modifications. The results of these initial experiments indicate that other 

human proteins may harbor electrophilic groups and that there are other unknown 

modifications to be discovered. As such, the advent of this method is critical due to RP-

ABPP being the only global unbiased approach to discover electrophilic cofactors. 
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Figure 7. Sample data from RP-ABPP experiments. Adapted from Matthews, M.; He, L.; 

Horning, B.; Olson, E.; Correia, B.; Yates III, J.; Dawson, P.; Cravatt, B. Chemoproteomic 

profiling and discovery of protein electrophiles in human cells. Nat. Chem. 2017, 9, 234. (A) 

Reaction scheme of probe captured glyoxylyl on SCRN3. (B) SCRN3 data from SILAC RP-

ABPP identification and quantification experiments. (C) Extracted MS1 ion chromatograms 

(left) and corresponding isotopic envelopes (right) for co-eluting heavy- and light-tagged 

peptides labeled by probe (in dark and light green, respectively). (D) Comparison of high-

resolution MS2 spectra generated from light- versus heavy-tagged parent ions. Through de 

novo sequencing, the modified (*) site is determined and is confirmed by examining probe-

labeling and expression profiles of mutant SCRN3 proteins compared to wild-type (WT) 

SCRN3. (E) The glyoxylyl structure and site were confirmed by coelution with synthetic 

standards as described in the main text. 

 

5.2 Future applications 

 

 RP-ABPP is a recently developed method, and there are many potential future 

applications. These experiments are not limited to cell culture, they could easily be 

adapted for use in bacteria, pathogens, tissue, or in living animals. This method opens up 

a new area, the entire other half of the reactive proteome, the ‘electrophilome.’ Based on 
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targets generated from only two probes in two human cell lines,2 there are more 

electrophile-bound proteins to be discovered and disease-relationships to be explored. In 

addition to discovery of protein targets and electrophilic modifications, the tools in this 

method can also be used to further investigate various aspects of the proteins and 

modifications discovered. For example, discovery of installation mechanisms and 

functions of these electrophiles could yield new information about the proteins and 

mechanisms in these cells. Additionally, as many of the protein targets discovered have 

strong associations to poorly understood disease mechanisms (e.g. APP – Alzheimer’s 

Disease, FTO – Obesity, etc.) these modifications’ installation and function could play an 

important role in or yield information about the pathogenesis of these diseases. Due to 

hydrazines’ ability to covalent inhibit enzymes through reaction with their electrophilic 

cofactors, these experiments could ultimately be used to discover inhibitors and launch 

drug trials.   
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Appendix A: Acronyms and Abbreviations 

 
ABPP = Activity-Based Protein Profiling 

ACN = Acetonitrile 

APP = Amyloid Precursor Protein 

CuAAC = Cu(I)-catalyzed azide-alkyne cycloaddition (‘click’ reaction) 

DC Assay = Detergent Compatible Assay 

DDA = Data Dependent Acquisition 

DTT = Dithiothreitol 

dFBS = dialyzed Fetal Bovine Serum 

FBS = Fetal Bovine Serum 

FTO = Fat mass and obesity-associated protein 

HEPES = 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

IAA = Iodoacetamide 

IP2 = Integrated Proteomics Pipeline 

IsoTOP = Isotopic Tandem Orthogonal Proteolysis 

LC-MS/MS = Liquid Chromatography – Tandem Mass Spectrometry 

KEAP1 = Kelch-like ECH-Associated Protein 1 

MS = Mass Spectrometry 

MS/MS = Tandem Mass Spectrometry 

MudPIT = Multi-dimensional Protein Identification Technology 

nLC = nano Liquid Chromatography 

PBS = Phosphate Buffered Saline  

PEI = Polyethyleneimine 

PTM = Post-Translational Modification 

ReDiMe = Reductive Dimethylation 

RP-HPLC = Reversed Phase High-Performance Liquid Chromatography 

SCRN3 = Secernin-3  

SCX = Strong Cation Exchange  

SDS = Sodium Dodecyl Sulfate 

SDS-PAGE = Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SILAC = Stable Isotope Labelling by Amino Acids in Cell Culture 

TBTA = Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine 

TCEP = Tris(2-carboxyethyl)phosphine 

TEV = Tobacco Etch Virus 

WT = Wild-Type 
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