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ABSTRACT 

A Computational Fluid Dynamics (CFD) Analysis of the Aerodynamic Effects of the Seams on a Two-

Dimensional Representation of a Soccer Ball 

Allen R. Rohr 

Most major sports today use a dedicated ball or projectile with specific shape, size, and surface 

geometry, except for soccer. Over the history of the sport, the surface geometry and design stayed 

relatively unchanged, sewn together using 32 pentagonal and hexagonal panels. However, recent 

innovations in panel designs differ substantially from the traditional 32 panel ball. The effects these new 

designs have on the aerodynamic characteristics of the ball have remained largely unknown, even with 

the influx of experimental research completed in the past decade. Experimental studies have been broad 

in scope, analyzing an entire ball in wind tunnels or full flow paths in trajectory analyses. Computational 

efforts have been too assumptive in flow conditions, such as a fully turbulent flow field, which has not 

yielded accurate representations of the flow phenomenon. This study investigates the aerodynamic 

effects of the seam on a two-dimensional representation of a non-rotating soccer ball using 

Computational Fluid Dynamics (CFD). By applying a transitional solver to the narrowed scope of a two-

dimensional flow domain, with a single seam in cross-flow, the effects of the seam on the boundary layer 

and overall transient flow structure can be more accurately modeled. Data analysis suggests the seam 

produces a local effect on skin friction, however, that effect does not materialize into a premature 

boundary layer transition or delayed separation point, as predicted by literature. A detailed flow 

visualization is consistent with this result, displaying expected symmetric vortex shedding similar to a 

smooth cylinder, but not fully capturing the effects of the seam, reinforcing the need for expanding 

computational research efforts in this field. 

 

 

Keywords: Applied Computational Fluid Dynamics, Soccer Ball Seams, Boundary Layer Separation, 

Boundary Layer Transition, Vortex Shedding 
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1 INTRODUCTION 

1.1 Background on Sports, Soccer, and Impacts 

1.1.1 Sports 

 Sports are one of the most influential global activities that reaches into all aspects of daily life. 

Whether it be a profession, recreation, fandom, or education, the field of sport is an integral part of human 

interaction. Economically, the sports industry has a projected worth between $480-620 billion and a faster 

growth rate than overall GDP rates [1]. With the stakes rising in competition and the reward for victory with 

it, a great deal of investment and expansion into sports engineering has followed in recent decades [26]. 

While the term may be new, sports engineering is an old science, dating back even to Sir Isaac Newton’s 

analysis of the flight of a tennis ball. Due to vast technological advances in recent history, the application 

of engineering research in this field has had an increased effect on outcomes [26]. To ensure teams and 

athletes around the world can be the best, a great deal of work continues to be done to optimize 

equipment, apparel, accessories, and fields of play. 

1.1.2 Soccer 

 Soccer (football, association football) has the largest stake in the global sports market. The FIFA 

World Cup™, a quadrennial global soccer tournament of nations like the Olympics, is one of the most 

watched events, with 3.2 billion total viewers for the 2014 event, and 1.013 billion for the final match [19]. 

This global impact makes soccer one of the most profitable sports. Global yearly revenues for soccer 

sports events are about $28 billion, which is almost as much as the combined revenues of all major US 

sports, Formula 1 racing, tennis, and golf [1]. Due to the high viewership and monetary pressures on the 

athletes, the international soccer governing body, Fédération Internationale de Football Association 

(FIFA®), aims to ensure fair and eventful matches. This extends to the standardization of equipment for 

the sport, which places controls on items such as the apparel of the athletes, the field of play, and most 

importantly, the soccer ball. 

 FIFA® has an issued testing protocol for which all soccer balls must pass to be acceptable for 

competitive play, known as the FIFA Quality Programme for Footballs. This testing manual is an 

extensive guide to the ways in which soccer balls are tested by licensed FIFA® testing professionals 
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which include circumference, max sphericity, rebound height, water absorption, weight, loss of pressure, 

shape/size retention, and material analysis [18]. However, there are no restrictions on ball design (other 

than circumference/sphericity) or surface geometry, which differs greatly with most other sports which 

have a single design for professional use, such as basketball or baseball. This lack of standardization has 

produced an influx of different soccer ball designs, which have evolved over time. 

 

Figure 1: Evolution of the adidas Official World Cup Soccer Ball since 1970 [53] 

In its introduction, soccer balls were made of leather with a rubber bladder, but recent technological 

advances in synthetic (waterproof) materials introduced a latex bladder with a polyurethane cover and a 

multi-layer, reinforced backing [39]. This synthetic material was used in the 1970 World Cup ball, which 

had 32 black and white hexagonal and pentagonal stitched panels, commonly referred to as the 

“traditional” soccer ball (This design was known as the “Buckyball” and was made with the black and 

white panels for players to better perceive swerve and curvature as well as better to see visually on the 

first televised broadcast of the World Cup in 1970). The design remained largely unchanged from the 32-

panel design, until the 2006 World Cup ball, which featured a 14-panel design with various panel shapes 

including curved edges at the seams. In addition, the design evolved to thermally bonded panels, 

producing an overall smoother surface.  The combination of technological advances in manufacturing 

methods along with the variation in surface design contributed to an overall change in the aerodynamic 

roughness of the surface of the ball [10]. The effects of the new surface designs are not considered in the 
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FIFA Quality Programme for Footballs Testing Manual, and therefore has created discrepancies in flight 

dynamics due to soccer balls with varying surface geometry. 

1.2 State of Experimental Work 

 The increased investment and intrigue into sports engineering research has brought about a 

myriad of experimental work into the effects of soccer ball surface geometry on aerodynamic 

characteristics. This work includes wind tunnel testing, trajectory analysis, flow visualization, and 

computational analysis methods, to create a complete physical representation of the effects of these 

surface design changes. However, many of these studies have analyzed the geometry as a whole, rather 

than looking at specific cause-and-effect phenomenon of the seams and surface roughness on boundary 

layer transition, separation point, and wake structure [22]. 

1.2.1 Wind Tunnel Testing 

 Over the past decade, there have been extensive wind tunnel testing and flow visualization of 

various ball designs, surface geometry, and surface roughness [8-9,24-25,29-32]. The conclusions largely 

converged on the hypothesis that overall surface geometry of soccer balls alter the drag crisis to a lower 

Reynolds number in comparison to a smooth sphere, consistent with established work on surface 

roughening [4-5]. However, the asymmetry of the overall surface roughness due to the soccer ball panels 

creates differences in flight trajectory based off panel orientation, differing from the conventional 

symmetrically roughened sphere. [29] This analysis demonstrates that for non-spinning or low-spinning 

kicked balls the orientation has a large effect on flight trajectory, changing location of impact at the goal 

by up to 1 meter when comparing the 2010 and 2014 World Cup balls [29]. This change in final location as 

the ball crosses the goal line, for the exact same kick, would amount to the difference between scoring a 

goal, all simply due to the balls orientation at kick impact. 

Other work has found similar results and considers effects related to spinning soccer balls [10,42]. The 

tendency of a spinning, translating ball to be deflected laterally is a result of the Magnus effect, a 

dominant flow characteristic for curled kicks [13]. This effect has an anomalous counter-action, the reverse 

Magnus effect, where the laterally induced motion would propagate in a direction opposite of the normal 

sense. This is a result of the ball transitioning through the drag crisis because of the change in velocity 



4 
 

during flight and the surface roughness’ effect on the boundary layer on the advancing and retreating 

sides of the ball [13]. These effects are exacerbated by a smoother surface, much like a beach ball, and a 

subsequent roughening for the surface of a soccer ball is necessary for it to travel as expected in the 

case of spinning kicks. Experimental data illustrates that drag rises with increasing spin parameter and 

the Magnus force coefficient increases as well, which represents the induced side force [9]. 

 

Figure 2: Top - Wind-Tunnel Experimental Drag Coefficient results for non-spinning Brazuca and Jabulani World 
Cup Balls. Bottom - Computational Trajectories for Brazuca and Jabulani balls kicked at 20 m/s at an angle of 22 
degrees above the horizontal (Goff et. al 2014)  
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1.2.2 Trajectory Analyses 

 Trajectory analyses conducted alongside wind tunnel results and those done independently 

revealed differences in flight paths for differently designed balls, especially in the case of knuckling for 

non-spinning cases [16,23,39,52]. These studies reinforce the projections from wind tunnel testing and 

affirmed that the same ball with identical flow conditions hit with a different orientation produces a 

different trajectory [29]. Furthermore, the side forces produced by statistically smoother balls, such as the 

2010 World Cup ball, were more likely to have larger knuckling tendencies at the speeds of normal free 

kicks, due to the increased asymmetric forces in non-spinning kicks at these speeds [39]. Most importantly, 

“the magnitude of the lateral force is proportional to the square of the ball speed and so the knuckling 

effect will be exacerbated at the higher critical speed” [39], which happens to be the range of speeds in 

which typical soccer free kicks are taken. 

1.2.3 Flow Visualizations 

 Flow visualizations have also been a crucial method for analyzing this complex flow 

phenomenon. Due to the inherent transient nature of this flow, flow visualization helps to create a well-

rounded image of the overall flight of a ball, such as displaying wake structure due to roughness [39]. In 

addition, it can expose properties of the flow which can be missed through other means of analysis that 

make use of time-averaged values [9]. This approach has visually exposed the separation point effects, 

best seen in PIV analysis at the stream wise centerline of the ball [32]. The researchers followed the 

change in separation point due to different orientations of the ball fixed against the free-stream and 

Figure 3: Vortex Pathway for a non-rotating ball viewed from a wide angle (Asai et. al 2007) 
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visualized the combined effect of different numbers and orientations of seams to the oncoming flow [32]. 

However, this method is inherently limited in the boundary layer region due to the minimum size of the 

particles used in imagery techniques. To better visually model boundary layer effects computational 

methods are required. 

Figure 4: Velocity Vectors on the Suction Side of a non-spinning Soccer Ball in Four Different Kick 
Orientations at Velocity 30 m/s [32] 
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1.3 State of Computational Work 

 The computational analysis approach has become a dominant process in the engineering design 

and analysis of sports equipment [28]. The capability of computational analysis has improved over the past 

30 years alongside modern CPU and RAM hardware advances [28]. However, sports ball analysis has only 

recently entered the field with relevance [28]. There is limited analysis of Computational Fluid Dynamics 

(CFD) work on sports balls due to the required computational power, difficulty of meshing, and a previous 

lack of demand for a highly detailed understanding [11]. Yet, the continued increase in computational 

power available and improved ability of commercially available software has led to the emergence of full 

ball CFD analyses [10-11,28]. These studies have developed the framework for CFD analyses in this field, 

but most assume fully turbulent flow domains which do not fully capture the flow characteristics [11]. 

1.4 Purpose of this Work 

 This study aims to fill a gap in the computational research by accurately modelling the effects of 

the seams on a soccer ball through Computational Fluid Dynamics (CFD). Using a turbulence model that 

accounts for boundary layer transition effects, a more complete computational solution can be derived. In 

addition, this study narrows the scope to a two-dimensional analysis of the effects of a single seam rather 

Figure 5: Drag Coefficient vs. Reynolds Number Comparison for Three Soccer Ball CFD 
Simulations to a Smooth Sphere [11] 
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than a full ball. The effect of a single seam on the boundary layer, separation point, and overall wake 

structure adds qualitative and quantitative support to experimental work. This study, in tandem with 

experimental work, creates a well-rounded analysis of the effects that seam design and geometry have 

on soccer ball aerodynamics. 
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2 METHODOLOGY 

2.1 Theoretical Background 

 This study uses Computational Fluid Dynamics (CFD) which gives numerical approximation 

solutions to the governing equations of fluid flow. For this research, an applied approach was taken, using 

the commercially available software Ansys Fluent as the computational solver. Background on the way 

the governing equations are solved numerically are explained initially. Background on turbulence models 

and reasoning for the selection used for this study is described next. Finally, the overall framework for the 

solution process of this study is clarified in detail. 

2.1.1 The Governing Equations 

 The Computational Fluid Dynamics process is based on the computational numerical solution of 

the governing equations of fluid dynamics. These result from the universal laws of conservation of mass, 

momentum and energy, resulting in the Continuity, Momentum, and Energy equations of fluid motion [44]. 

The derivations of these equations will not be presented here, but rather their form and manipulation for 

analysis using computational methods will be explored. Several key approximations are used to simplify 

the analysis of these equations: 

1. A uniform, homogenous fluid without mass diffusion or finite-rate chemical reactions 

2. Incompressible fluid 

3. Thermal effects negligible 

4. Newtonian fluid 

From these approximations, the 3-dimensional governing equations for Continuity and Momentum 

take shape: 

Continuity: 𝛁 ∗ 𝑽 = 0  

Momentum: 𝜌
𝐷𝑽

𝐷𝑡
= 𝜌𝒇 − 𝛁𝑝 + 𝜇∇2𝑽 

Where ρ is the fluid density, 𝑽 is the fluid velocity, 𝒇 is the force per unit mass (body force), p is the 

pressure force, and 𝜇 is the coefficient of viscosity (considering constant) [44]. 
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 The components of the viscous momentum equation form the basis of the Navier-Stokes (NS) 

equations; however, the continuity and energy equations are included in the set [44]. For turbulent flow 

analysis, the unsteady NS equations are generally considered to govern the continuum regime [44]. This is 

where turbulence models come in as ways to numerically solve turbulent flow. 

2.1.2 Turbulence Model Selection 

 Direct Numerical Simulation (DNS) is the most direct solution analysis for turbulent flow but 

requires all relevant time scales to be resolved from the smallest eddies to the order of the physical 

dimensions of the problem domain [44]. The time steps must be small enough to resolve small-scale 

motion in a time-accurate manner and the computation needs to be three-dimensional [44]. This creates an 

incredible demand on computer resources, not available for most applications today, including the 

present study.  

Another approach is Large-Eddy Simulation (LES), in which the large-scale structure of the 

turbulent flow is computed directly and only the effects of the smallest (sub-grid scale) and more nearly 

isotropic eddies are modeled [44]. Using NS equation “filtering”, a set of equations can be obtained that 

govern the “resolved” flow, based on a space averaging of the flow variables over regions approximately 

the size of the computational control volume (or cell) [44]. Much like DNS, LES solutions still demand large 

computational resources for complicated turbulent flows and for this reason was not used in the present 

study. 

Most of the current modeling methods used in engineering applications of turbulent flow analysis 

are through the time-averaged NS equations, referred to as the Reynolds averaged Navier-Stokes 

(RANS) equations [44]. These equations are derived by decomposing the dependent variables in the 

conservation equations into time-averaged and fluctuating components, and then time averaging the 

entire equation [44]. The RANS equations for the Continuity and Momentum equations are written with 

bars over time averaged terms, shown in compressed form here: 

Continuity: 
𝝏𝑢𝑗

𝜕𝑥𝑗
= 0  

Momentum:
𝜕

𝜕𝑡
(𝜌�̅�𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌�̅�𝑖�̅�𝑗) = −

𝜕�̅�

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(�̅�𝑖𝑗 − 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ),  
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Where �̅�𝑖𝑗 takes on the reduced form: �̅�𝑖𝑗 = 𝜇 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
), 𝑖, 𝑗, 𝑘 = 1,2,3  

u1, u2, u3 represent the three components of the velocity vector 𝑽, x1, x2, x3 represent the three 

components of the position vector, u’ is the fluctuating velocity component, p is the pressure force, ρ is 

the fluid density, 𝜇 is the coefficient of viscosity (considering constant), and �̅�𝑖𝑗 is the additional turbulent 

stresses [44]. Turbulence Models are required to represent the new terms, known as Reynolds Stresses, 

which are introduced to the NS equations, which involve mean values of products of rapidly varying 

quantities [56]. 

Turbulence models can be separated into two categories, those that make use of the Boussinesq 

assumption, or Eddy Viscosity Models (EVM), and those that don’t, or Reynolds Stress Models (RSM) [44].  

Boussinesq suggested that the apparent turbulent shearing stresses might be related to the rate of mean 

strain through an apparent scalar turbulent or “eddy” viscosity, and thus it was named after him [44]. 

 For this study, a RANS approach was used due to the selection of a Turbulence model that is 

based off a two-equation EVM, the k-ω SST model. This model is derived from the original two-equation 

EVM which includes two transport equations to represent the turbulent properties of the flow. One of the 

transported variables is the turbulent kinetic energy, k, and the other is the specific dissipation, ω [56]. The 

Shear Stress Transport (SST) variation of the k- ω model accounts for the transport of the turbulence 

shear stress in the definition of the turbulent viscosity left out by other EVM models [7]. It does so by 

providing a limiter to the formulation of the eddy-viscosity and thus subsiding the over prediction resulting 

from not accounting for the transport of the turbulent shear stress [7]. The next section expands on the 

turbulence model selected for this study. 

2.1.3 Transition SST Model 

 The main goal of this study is to precisely illustrate the boundary layer, transition, and separation, 

and therefore a turbulence model which can accurately represent this region was used. In Fluent, there 

are only three models of choice that offer transition prediction for wall boundary layers: The Transition 

SST model, the Intermittency model, and the Transition k-kl-ω [7]. The Transition SST model was selected 

over the other two models for the following reasons: 
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1. The Fluent user guide recommends the use of the Transition SST and Intermittency models over 

the k-kl-ω due to their combination with the SST model, which was designed to avoid freestream 

sensitivity of the k-ω model and is calibrated for accurate flow separation from smooth surfaces [7] 

2. This study is not considering surfaces that move relative to the coordinate system (non-spinning 

body) and thus the Transition-SST model is sufficient because it is not Galilean invariant 

a. The Intermittency model is Galilean invariant, and thus suitable for surfaces that move 

relative to the coordinate system, therefore unnecessary for this study 

3. The Transition SST model allows for user-defined empirical correlations and rough wall effects, 

which allows for expansion of the approach of this study to future work 

The Transition SST model, based on the γ-Reθ developed by Menter et. al., is also referred to as 

a Local Correlation-based Transition Model (LCTM) due to its combination of experimental correlations 

with locally formulated transport equations [40]. The solver couples the SST k-ω turbulence model with a 

transport equation for intermittency, γ, which is used to turn on the turbulent kinetic energy production 

term downstream of the transition point [40]. A second transport equation is solved in terms of the 

transition onset momentum-thickness Reynolds number (Reθt) to capture the nonlocal influence of the 

turbulence intensity; an essential part of the model because it ties the empirical correlation to the onset 

criteria in the intermittency equation [40]. The title of this model, γ-Reθ, is derived from the solution of these 

two transport equations [40]. 

2.2 CFD Framework 

 The following section serves as an architectural framework of the overall solution process used in 

this study. An auxiliary goal of this study is to create a basis of methodology for which further research 

can be expanded upon, both numerically and experimentally. First, the virtual geometry creation through 

computer aided design (CAD) is discussed. Next, the pre-processing procedure of flow domain meshing 

is explained. Finally, the computational solver and post-processing procedures are addressed. 
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2.2.1 CAD/Geometry Setup 

2.2.1.1 Scope of Physical Domain Modeled 

 Due to the inherent complexity of the phenomenon under investigation, as stated in the previous 

section, the scope of the research was decided to be reduced as much as possible. Firstly, a full 3D 

model with resolution in the boundary layer necessary for the solver used to successfully capture 

transition effects would require more computational power than available in this study. Secondly, the goal 

of the study is to find specific effects of the seams, and for this goal, an examination of a single seam on 

an overall smooth body would give clarity to the specific effects it has on the aerodynamics. Thirdly, a 

limitation to a 2D physical domain would provide the necessary resolution to visualize the effects of the 

seam, much like 2D PIV in similar experimental works [32] and decrease computational resources 

necessary. For these reasons, experimental work which analyzed a cylinder with a single seam was used 

as comparison for the computational results, the setup of which is displayed in the figure below. 

 

Figure 6: Experimental Set Up for Comparison in this Study (Hong et. al 2015) 

The following Computer Aided Design (CAD) geometry was thus created based off the 

experimental work and concluded to be sufficient resolution for this study: 

1. Two-Dimensional (2D) physical domain, resembling an “infinite” cylinder (see Figure 7) 

2. Single seam, with height to width ratio h/b = 2, located at 75 and 65 degrees aft of “leading 

edge” or forward stagnation point (0 angle of incidence). Seam locations chosen for 

comparison to experimental results by Hong et. al 2015, which displayed largest effect of 
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single seam on flow over a circular cylinder at these locations (discussed in Chapter 3: 

Results) 

3. Interface boundary (non-physical) at 1 ball diameter fore, up, and down from the surface of 

the body and through the wake for increased refinement in these areas 

4. Overall domain 10 ball diameters in each direction, large enough far-field boundaries to see 

no effect on flow but not too large as to create wasted computational space 

 

Figure 7: Computational Domain Used in this Study, for reference 

2.2.1.2 Process of Physical Domain Creation 

 Several iterations were necessary until the CAD model was finalized. Initially, an “extruded” 2D 

cylinder was attempted, that brought the solution into a 3D physical domain. However, this method 

proved to be far too computationally intensive given the resources available. The far-field boundaries 

were finalized by initial guesses based off recommended distances from previous work [36,54] and the 

Fluent user’s guide [7]. Then, validation cases of a smooth cylinder were solved until no induced effect 

from the boundaries could be seen. The interface boundary was found to be the most effective form of 

Inlet 

Flow Direction »» 

Outlet 

Seam 
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localized refinement near the surface and in the wake regions aside from structured grid meshing, 

discussed in the next section.  

The CAD modeling was initially undertaken through Solidworks, a separate software suite for 

CAD modeling from the Computational Solver. This approach was overtaken by using the built-in Ansys 

CAD modeling software due to preference in consistency between software interfaces for the entire 

solution process from geometry modeling to solution output. Thus, the Ansys Design Modeler was used 

for geometry and physical domain creation through the Ansys Workbench Project Management tool. 

Once the geometry was ready for computational domain meshing, checks for errors or holes in the 

geometry were conducted before continuing to the meshing phase. 

2.2.2 Meshing 

2.2.2.1 Meshing Background and Requirements 

Once a complete geometric physical domain was completed, a computational mesh domain was 

generated using the Ansys Meshing tool. Several constraints for the meshing domain were imposed on 

the study due to the nature of the minuteness of the boundary layer in a physical sense. In addition, 

conditions outlined by the authors of the Transition-SST model and the software user manual guided the 

meshing of the region near the surface of the body. These constraints are as follows: 

1. A wall-normal mesh resolution with y+<1 and expansion factors smaller than 1.1 found to be the 

threshold for accuracy of the model in flat plate test cases to detect transition effects [7] 

2. Fine mesh resolution in the location of transition necessary for separation-induced transition 

because it occurs over a short length [7] 

There are two approaches to meshing the physical domain, structured and unstructured meshes (and 

a combination of both known as hybrid meshes). The former utilizes blocking, where the physical domain 

is divided into computational blocks in which the user can control node count, spacing, and growth ratios. 

The latter utilizes built-in meshing tools, either propriety or otherwise, which work to fill the physical 

domain with computational cells in several different ways. The method of choice in this application is 

discussed in the next section. 
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2.2.2.2 Meshing Process 

Initially, a structured mesh was attempted for this study due to the ability to control boundary layer 

mesh cell growth and use an O-grid scheme near the surface. The O-grid scheme allows for mesh blocks 

that handle geometry curvature much better than standard hexagonal blocks. However, when using a 

structured approach with specified blocking edges in the mesh domain, computational solutions showed 

oscillations in computed wall fluxes such as wall shear stress. 

 

Figure 8: Oscillatory Wall Shear Stress Values Produced by Structured Mesh Blocking Method 

In addition, an unstructured grid was more aligned with the auxiliary goal of this study, to create a 

framework for which further research may expand upon. Using an unstructured grid meshing tool allows 

researchers with less experience in the meshing process access to this type of flow analysis which they 

may otherwise have not attempted due to its complexity. Therefore, an unstructured mesh was used with 

several key properties which were necessary to capture the effects of this study computationally: 

1. Inflation layer for boundary layer, which produces orthogonal cells which grow wall-normal to the 

surface boundary selected with explicit initial cell height, total cell number, and growth ratio 

a. To meet the requirements of the mesh resolution stated above, a 5% growth ratio was 

used with an initial wall spacing that kept y+<1 for the Reynolds Number used in this 

study and a total 30 nodes in the boundary layer as recommended by the user’s guide [7] 
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2. The unstructured meshing tool used was a hexa-dominant, patch independent, part meshing due 

to the robustness of this tool. Hexa-dominant is recommended over tri-based meshes due to the 

orthogonality of quad cells in comparison to tri cells [7] 

3. Overall flow domain growth ratio limited to 1.1 (or 10 percent from cell to cell), to keep global 

aspect ratio low. Another recommended rule of thumb by the user’s guide for high quality cells is 

a low aspect ratio, due to its benefit of lowering the probability of mesh-induced errors 

4. The non-physical interface boundary mentioned in the CAD modeling was used as an interface 

between the near-field and far-field cells to be able to refine the cells near the surface of the body 

and in the wake region. The growth ratio from the interface boundary outward (from near-field to 

far-field cells) was low to ensure this interface boundary did not induce non-physical flow effects 

 

Figure 9: Computational Mesh Domain Including Detail of Mesh with Structured Boundary Layer Inflation 
Cells 

2.2.2.3 Mesh Resolution 

Once an initial computational meshing grid was created, it was exported for the Ansys Fluent 

solver for the smooth cylinder physical body. From there, the solution process was conducted and time-

averaged values for Cd and Cl were used to validate the flow domain’s accuracy. A Richardson 

Extrapolation – Grid Convergence Index (GCI) study was conducted for the meshes used in this work, 

detailed in the Results section. 
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 The results discussed for comparison were conducted at the “medium” mesh resolution level for 

the smooth validation case and the seam case upon conclusion of the Grid Independence Study. Before 

exporting the mesh to the solver, built-in quality checks in the meshing tool are used to analyze the mesh 

for quality [7]. Some of the most important checks, according the Meshing User’s Guide include the 

following [7]: 

- Element Quality: the ratio of the volume to the sum of the square of the edge lengths for 2D 

quad/tri elements, or the square root of the cube of the sum of the square of the edge lengths 

for 3D elements. This ranges from 0 to 1, 1 indicating a perfect square or cube and 0 

indicating zero or negative volume. An ideal element quality would be a value of 1 

- Aspect Ratio: for quadrilaterals, the ratio of a longer side to a shorter side of a rectangular 

plane projected by rectangles through midpoints of each side of the cell, with the best 

possible aspect ratio being 1 (for a square). For triangles, a similar process is conducted 

however the rectangular plane projected by rectangles go through the midpoint of 3 sides and 

the triangle apex of the cell, with the best possible aspect ratio being 1 (for an equilateral). 

- Cell Skewness: a ratio of how close to ideal (i.e., equilateral or equiangular) a face or cell is, 

with 0 being equilateral and 1 being degenerate. Degenerate cells are characterized by 

nodes that are nearly coplanar (collinear in 2D) and unacceptable due to the nature of the 

equations of the solver assuming relatively equilateral/equiangular cells. Ansys recommends 

values of 0.5 or smaller 

The Ansys Meshing tool includes several built-in physics preferences depending on the analysis 

type for the user to use pre-assigned quality metrics to all the mesh quality criterion. For this reason, the 

CFD physics preference was used which applies more scrutiny on mesh and cell quality than all other 

physics preferences. The mesh was refined and edited to the recommendations of the errors and 

warnings found by the built-in mesh quality checker. The mesh was finally exported to Ansys Fluent for 

the initialization of the solution process once all mesh quality metrics met minimum quality metric 

recommendations. 
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2.2.3 Solver 

 After completing mesh quality checks and successfully exporting the mesh to the solver, the 

solution process was ready to be initialized. As stated previously, the computational solver used in this 

study was Ansys Fluent, and the use of Ansys Workbench provided a seamless transition of exporting the 

mesh from the meshing tool into Fluent for the initialization of the computational solution process. Several 

conditions were set in Fluent to ensure successful validation against the experimental cases used for 

comparison and reach convergence in the solution process. Several notable solution settings and 

properties are listed below: 

- Flow domain settings: 

o 2D solution analysis (due to the 2D mesh domain) 

o Pressure-based solver, used over the density-based solver due to this solution 

process considering incompressible flow 

o Transient flow (time-variant) to capture vortex shedding and variation of separation 

point due to transient flow phenomenon 

o Physical properties for air defined as constant with density of 1.225 kg/m3 and 

viscosity of 1.7894x10-5 kg/m-s. 

o Boundary Conditions as follows: 

▪ Inlet Boundary: Velocity-Inlet with velocity of 24 m/s and normal to boundary, 

used for comparison to results by Hong et. al 2015 and relation to average 

soccer place kick velocity [35]. An Intermittency value of 1, 3% inlet turbulence 

intensity and turbulent length scale of 0.0154m, explained further in this 

section 

▪ Outlet Boundary: Pressure-outlet, with gauge pressure of 0 Pascal and 

backflow calculated normal to boundary with identical turbulence properties 

to inlet condition 

▪ Top and Bottom Far-Field Boundaries: Wall with slip condition (stationary 

wall with 0 wall shear stress) and roughness constant of 0 (smooth surface) 
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▪ Surface body: wall with no-slip boundary condition and roughness constant 

of 0 (smooth surface) 

▪ Interface boundary: Interior condition as to be simply considered fluid domain 

cells and not impart non-physical effect on flow solution 

- Transition SST-model related settings: 

o The Curvature Correction function was used due to its being recommended by the 

Fluent User’s Guide when dealing with highly curved streamlines, such as flow over 

spherical or cylindrical bodies [7] 

o The Roughness Correlation was kept off for this solution due to the analysis of a 

smooth surface 

o No user defined transition correlations were used to assess the model predicted 

transition location 

o No Scale-Resolving Simulation options were added to the flow such as Detached 

Eddy Simulation (DES) due to the increase in necessary computational resources 

and divergence of solutions run with these options included 

- Solver Settings: 

o The SIMPLE Pressure-Velocity Coupling method was used over the PISO method 

even though the Fluent User’s Guide recommends the PISO algorithm for all 

transient flow calculations. This was due to the computational constraints of the PISO 

algorithm on small time steps, necessary for this solution to keep a low CFL number, 

explained further in this section 

o Second-Order Upwind Schemes were used for the spatial discretization schemes for 

increased accuracy due to the body curvature creating mesh cells not aligned directly 

with the freestream flow  

o A first-order implicit transient flow discretization scheme was used due to reduce 

computational resources necessary with respect to a second-order method 

o The default under-relaxation factors were used initially due to the recommendation 

from the Fluent User’s Guide. An attempt to decrease computation time by increasing 
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the relaxation factors produced divergence issues in the solver and thus the default 

relaxation factors were used for the model were used for the extent of the study 

o A Time Step size of 4.5x10-5 seconds was used for the time discretization to keep the 

CFL (Courant-Freidrichs-Lewy) number low for accuracy in transient flows. The value 

was derived by the estimated period of vortex shedding from experimental values of 

Strouhal number at the corresponding Reynolds number for this study [6] 

In addition to the specific settings above, an overall solution process included an initialization of 

the flow field with the laminar solver for 50 time steps. Then, the solver model was switched to the 

Transition-SST model with the conditions described previously for 10,000 time steps, which produced a 

converged solution with a minimum of 5 complete vortex shedding cycles determined by monitoring the 

Lift Coefficient time history value. This approach proved to converge the solution faster than without the 

laminar flow field initialization without effect to the converged solution values. 

Several important surface and flow domain values were tabulated during the solution process to 

be able to generate accurate, time-averaged values for analysis. The pressure coefficient, skin friction 

coefficient, and x- and y- wall shear stresses were tabulated for each surface node at every time step 

over the entire solution process. This was done so that instantaneous values could be time-averaged 

over shedding cycles as well as compiled into time animations of solution variables. Overall flow domain 

data was saved every 10 time steps to create contour and vector animations for flow visualization at 

different instantaneous time steps. The data export was formulated to optimize data analysis using 

MatLab and Ansys’ CFD-Post simulation results post-processor tool. 

2.2.4 Post-Processing 

The Post-Processing phase of the solution required data analysis using Ansys CFD-Post and 

MatLab. Due to the transient nature of the flow solution, instantaneous flow values were tabulated and 

exported for analysis in MatLab and overall flow solution data files were exported for analysis in CFD-

Post. CFD-Post was chosen for the post-processing tool due to its seamless integration into the Ansys 

Workbench project management tool and export/import of data from Fluent to CFD-Post. MatLab was 

chosen for data analysis because of the author’s proficiency in this programming language and the 
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program’s ability to store and read large data files seen in this analysis. This section will provide detail on 

the specific post-processing techniques used in this study. The techniques used were selected to best 

represent the solution data for comparison to experimental values, as well as create easy to follow and 

visually informative illustrations of the flow phenomenon. 

To create accurate time-averaged values for variables such as lift, drag, pressure, and skin 

friction coefficient, a vortex shedding cycle time-averaged (referred further as “cycle-averaged”) value for 

these quantities had to be derived. The reason for this is the values oscillate depending on the temporal 

location of the vortex being shed from either the top or the bottom surface at any given time. With these 

cycle-averaged values, accurate comparisons to experimental data, which time-average aerodynamic 

force coefficients such as Cl and Cd, could be performed. For analysis of separation point, cycle-averaged 

values for cf and Cp were tabulated and plotted for comparison with experimental data. Global time 

averaging of the solution data, or time-averaging the flow solution over the entire range of the solution 

time, was found to both cancel out and/or compound some of the data incorrectly. This data analysis was 

conducted using MatLab, taking advantage of the data store function for reading large database or file 

storage data files. 

In CFD-Post, several modes of flow visualization were utilized including velocity vectors, path 

lines, and flood-fill contours of several flow properties. Velocity vectors were used to display the laminar 

separation bubble and turbulent reattachment region for boundary layer transition as well as the 

separated recirculation wake region. Flow particle path lines were used to create instantaneous visual 

representations of flow particle motion. Flood-fill contours were used to illustrate flow properties in the 

overall flow domain such as turbulence characteristics and visually inspect any mesh induced errors. 

Time animations were used in the research process to visualize the transient values of flow 

properties for understanding and validation of flow physics. Time animations of surface related values 

such as cf and Cp were generated in MatLab to investigate separation point and vortex shedding effects. 

Time animations of flow domain properties (using velocity vectors or flood-fill contours of other values) 

were generated in CFD-Post to visually support the cf and Cp time animations. 
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2.2.5 Grid Independence Study/Validation 

To validate the flow physics of the simulation, a grid independence study was conducted to 

ensure the mesh was refined enough to produce an accurate solution. Grid independence and 

quantification of uncertainty in CFD is an important aspect of numerical discretization, as every result is 

only accurate to a certain degree. However, concurrent methodology on an accurate discretization of 

numerical error is not well established. The author chose to follow the Journal of Fluids Engineering 

Editorial Policy guidelines which takes the approach of a more widely accepted CFD validation technique 

[47], built on the Richardson Extrapolation method. 

 The most well established and practiced method of discretization error estimation is the 

Richardson Extrapolation method, which has been referenced extensively by CFD studies over the years 

[47]. The Richardson Extrapolation, also known as the h2 extrapolation, assumes the discrete solutions 

have a series representation, in the grid spacing h, of 

𝑓 = 𝑓[𝑒𝑥𝑎𝑐𝑡] + 𝑔1ℎ + 𝑔2ℎ2 + 𝑔3ℎ3 + ⋯, where the functions 𝑔1, 𝑔2, 𝑒𝑡𝑐. are defined in the continuum and 

do not depend on any discretization [45]. This equation need only be a valid definition for the order of the 

discretization to be applied to finite element solutions [45]. For a second order method, 𝑔1 = 0 above and 

the idea behind the Richardson Extrapolation becomes clear. Combining two separate discrete solutions, 

say 𝑓1 and 𝑓2, on two different grids with (uniform) discrete spacings of ℎ1(fine grid) and ℎ2 (coarse grid), 

to “eliminate the leading order error terms in the assumed error expansion” [45] and obtain a more accurate 

estimate of 𝑓[𝑒𝑥𝑎𝑐𝑡] which takes the form of the original h2 extrapolation by Richardson: 

𝑓[𝑒𝑥𝑎𝑐𝑡] =
ℎ2

2𝑓1 − ℎ1
2𝑓2

ℎ2
2 − ℎ1

2 + 𝐻. 𝑂. 𝑇. 

where H.O.T are higher-order terms (Roache 1994). Using a grid refinement ratio 𝑟 = ℎ2/ℎ1, where 

applying this, and dropping H.O.T., the previous equation takes the form: 

𝑓[𝑒𝑥𝑎𝑐𝑡] ≈ 𝑓1 + (𝑓1 − 𝑓2)/(𝑟2 − 1) 

and the most common application of this method is with a grid doubling or halving, or 𝑟 = 2 (or ½) 

(Roache 1994). The Richardson Extrapolation is most often used with integer grid refinement, specifically 
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applied to grid doubling, however Roache points out that even in Richardson’s 1910 paper that he looked 

forward to defining a continuum by higher-order interpolation [45]. 

 From the Richardson Extrapolation, a fine-grid error estimator approximates the error in a fine-

grid solution, 𝑓1, by comparing it to that of the coarse grid, 𝑓2, defined by 

𝐸1
𝑓𝑖𝑛𝑒

=
𝜀

1 − 𝑟𝑝
 

and a coarse-grid error estimator approximates the error in a coarse-grid solution, 𝑓2, by comparing the 

solution to that of a fine grid, 𝑓1, defined by  

𝐸1
𝑐𝑜𝑎𝑟𝑠𝑒 =

𝑟𝑝𝜀

1 − 𝑟𝑝
 

where 𝜀 =  𝑓2 − 𝑓1; 𝑓2, 𝑓1, and r are as mentioned above; and p = formal order of accuracy of the 

algorithm. To account for uncertainty in the generalized Richardson-based error estimates due to various 

factors and provide a basis for all grid-convergence studies as grid doubling with a second-order method, 

Roache [46] incorporates a safety factor, 𝐹𝑠, into the estimators and the Grid Convergence Index (GCI) is 

defined for the fine and coarse grid as 

𝐺𝐶𝐼1
𝑓𝑖𝑛𝑒

= 𝐹𝑠|𝐸1| ; 𝐺𝐶𝐼2
𝑐𝑜𝑎𝑟𝑠𝑒 = 𝐹𝑠|𝐸2|  

The safety factor is interpreted as the error band of the experimental data, with Fs<1, since Fs=1 gives 

GCI = |E|, or the best estimate of the error, analogous to a 50% error band [46]. Values for the safety factor 

were recommended by Roache through conservative estimates for any grid-convergence study to one 

with a grid doubling and a second-order method (r=2, p=2) [46]. From this methodology, Roache extracts 

convergence rate from grid-convergence tests and sources the calculation of the order, p, of the 

algorithm, for a constant r: 

𝑝 =
ln (

𝑓3 − 𝑓2

𝑓2 − 𝑓1
)

ln(𝑟)
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Where subscript 1 indicates the finest grid of three grid solutions. When r is not constant, the equation 

above cannot be used to calculate p because it is implicitly present in the GCIs, and a more general 

procedure is used to solve the equation for p: 

𝜀23

𝑟23
𝑝

− 1
= 𝑟12

𝑝
[

𝜀12

𝑟12
𝑝

− 1
] 

This equation is transcendental in p and requires iterative solution methodology to converge to the 

appropriate value for p according to the order of the solution [45]. To conduct this solution process and 

calculate the resulting GCI and associated error for grid solutions of this study, the procedure described in 

Journal of Fluids Engineering Editorial Policy guidelines [47] was followed for consistency to other works. 

It’s step by step process has been posted as Appendix A. 
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3 RESULTS 

 Transient flow simulations were carried out on the smooth surface and 75-degree seam 

geometries at the same flow conditions and comparisons are drawn in the following sections. First, a 

comparison of pressure and skin friction distributions along the surface of both simulations and 

experimental data is explored. Next, a comparison of the aerodynamic force coefficients between both 

simulations and experimental data is examined. Finally, several different forms of flow visualizations are 

presented for qualitative discussion. 

3.1 Pressure and Skin Friction Distribution Comparisons 

 The effects of the seam on the aerodynamic characteristics was presumed to be best 

represented by comparison of pressure and skin friction distribution with that of a smooth surface 

(representing a cylinder) and a geometry with a single seam. One limitation to this method is in the 

comparison of experimental data with that of computational data. Experimental data used for validation 

does not have clear methodology on the process of time-averaging transient data values, rather that the 

instrumentation used for force measurement handled that internally [2]. However, it is noted in other works 

that a time-averaged value is recorded over a set period to obtain a time-averaged solution [6,48]. Due to 

the occurrence of vortex shedding at the Reynolds number investigated in this study, a vortex shedding 

cycle averaged value was used for comparison to experimental results. This method was used to ensure 

the calculated value was not inadvertently averaged out by general time-averaging over the entire 

converged solution period. 

3.1.1 Smooth Surface 

 Initially, a geometry with a smooth surface was simulated to ensure that the flow physics were 

correctly captured at the Reynolds Number investigated in this study. The smooth surface case was 

intended to validate the geometry by comparing the results to experimental data available at the same 

flow conditions. The following figures display the calculated coefficients of skin friction and pressure as 

they compare to established data on cylinders in cross-flow. The experimental data available was 

conducted for a sweep of Reynolds numbers, and so the two nearest values were displayed for 

comparison. The skin friction coefficient comparison shows good agreement with the experimental data in 
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capturing the boundary layer growth, separation bubble, turbulent reattachment, and subsequent 

separation.  

 

Figure 10: Skin Friction Coefficient Comparison of CFD to Experimental Data by Achenbach, 1968. (Skin 

Friction Coefficient was normalized for comparison to experimental data using the following: 𝑐𝑓 =  
𝜏0

𝜌𝑈∞
∗

√𝑅𝑒) 

However, it is noted that the CFD data displays more pronounced effects in the recirculation 

region from the vortex shedding phenomenon, most clearly seen in the drop in pressure coefficient near 

the 180° mark. This phenomenon was further investigated by looking at the range of instantaneous 

values for skin friction and pressure coefficient over an entire vortex shedding cycle. In investigation of 

these values, it was found that the vortex shedding cycle averaged values shown here aligned with the 

instantaneous values over an entire vortex shedding cycle as well as over multiple shedding cycles, as is 

aligned with experimental data acquisition methods. 
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Figure 11: Pressure Coefficient Comparison of CFD to Experimental Data by Achenbach, 1968. 

3.1.2 Single Seam at 75 degrees, h/b = 2 

 Once the flow physics were captured using a smooth case for validation, the geometry in 

question, relating to that seen in the validation experiment by Hong et. al 2015 [32] with a single seam on 

the top surface, was investigated. The seam was triangular, with a depth of 2mm and with of 1mm, giving 

a height to width ratio h/b = 2. The CFD data comparison with the smooth surface case shows that the 

seam is captured, as seen by the spike in skin friction coefficient, however, the effects as predicted by 

literature such as a delayed separation are not shown. After the spike in skin friction coefficient, the 

boundary layer profile quickly returns to the structure of the smooth surface case as seen in the figure 

below.  
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Figure 12: Skin Friction Coefficient Comparison - Single Seam at 75° (h/b=2) vs. Smooth Case CFD (Skin 

Friction Coefficient was normalized using the following: 𝑐𝑓 =  
𝜏0

𝜌𝑈∞
∗ √𝑅𝑒) 

 

 

Figure 13: Velocity Vectors Colored by Magnitude for the Single Seam at 75° (h/b=2) CFD simulation 
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The pressure coefficient plot shows similar results, as there is a distinct drop in the pressure 

coefficient at the seam location, however there is no differentiation otherwise seen between the seam and 

the smooth case. 

 

Figure 14: Pressure Coefficient Comparison - Single Seam at 75° (h/b=2) vs. Smooth Case CFD 

3.1.3 Single Seam at 65 degrees, h/b = 2 

The author investigated an additional location of the seam for comparison to the experimental work 

by Hong et. al 2015 [32] in order to have multiple data points for comparison to the experimental results. 

This was pursued due to the inconsistency with results from the single seam at 75 degree simulation with 

the experimental data, discussed previously. The 65° seam location was chosen due to the downward 

trend of the lift data between the tabulated values of 60° and 75° in the study[32]. It was hypothesized that 

a second solution value analyzed at the 65° seam location would provide thorough examination of the 

accuracy of the CFD methodology and ensure the initial solution was not an outlier. The skin friction and 

pressure distribution for this simulation are displayed below, with comparison to the smooth CFD 

simulation. 
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Figure 15: Skin Friction Coefficient Comparison - Single Seam at 65° (h/b=2) vs. Smooth Case CFD (Skin 

Friction Coefficient was normalized using the following: 𝑐𝑓 =  
𝜏0

𝜌𝑈∞
∗ √𝑅𝑒) 

 

Figure 16: Pressure Coefficient Comparison - Single Seam at 65° (h/b=2) vs. Smooth Case CFD 
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3.1.4 Single Seam at 75 degrees, h/b = 0.17 

 Due to the inconsistency with the CFD data and predicted literature effects, a second geometry 

with a seam was modeled. This was done to verify whether the CFD data did not appropriately capture 

the effects from the seam, or whether the previous case was simply not a distinct enough geometry 

feature for the CFD to capture. This simulation was also triangular, to match the previous case, but had a 

seam depth of 0.5mm and a seam width of 3 mm, giving a height to width ratio h/b = 0.17. This ratio was 

chosen from investigative experimental results on the height to width ratios for transverse gaps or ditches 

which affect boundary layer transition, with h/b = 0.17 being a ratio showing noticeable effect of speeding 

up the onset of boundary layer transition [12]. The figures below compare the two seam cases with 

differing height/width ratios (at the 75° location). It is once again observed that the CFD captures the 

seam geometry’s effect on the boundary layer corresponding to the large spike in skin friction coefficient 

(and drop in pressure coefficient), however the boundary layer quickly returns to similar shape as the 

smooth surface case. 

 

Figure 17: Skin Friction Coefficient Comparison - Single Seam h/b = 2 vs. h/b = 0.17. (Skin Friction 

Coefficient was normalized using the following: 𝑐𝑓 =  
𝜏0

𝜌𝑈∞
∗ √𝑅𝑒) 
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Figure 18: Pressure Coefficient Comparison - Single Seam h/b = 2 vs. h/b = 0.17 

3.2 Aerodynamic Force Coefficients 

 For thorough comparison with experimental data, a time history tabulation of the lift and drag 

coefficients was captured for both the smooth and 75seam cases. Due to the transient nature of this flow, 

a comparison of these coefficients was necessary to verify any temporal effects produced by the seam, 

such as a longer period of vortex shedding. 

3.2.1 Drag Coefficient - CFD Case Comparison 

 The drag coefficient was recorded as a function of flow time for both the seam case and the 

smooth surface case. The figure shows that while the two cases approach steady-state in somewhat 

different structure, the steady state oscillatory value converges about the same value. Moreover, the 

period and amplitude of oscillation are almost identical, showing that the CFD did not capture any 

temporal effect from the seam which may have resulted from the expected delayed separation on the top 

surface. 
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Figure 19: Drag Coefficient Convergence History Comparison - Single Seam (h/b=2) vs. Smooth Surface 
CFD 

3.2.2 Lift Coefficient - CFD Case Comparison 

 Similarly, to the drag coefficient, the lift coefficient was tabulated for both the seam and smooth 

surface cases as a function of flow time. In this comparison, it is noted that the two cases produce a 

steady state oscillation about the same value, and the period and amplitude of oscillation are almost 

identical. It is clear from the figure that the time history plots are out of phase in time, however, due to the 

negligible effects seen in other value comparisons, it cannot be concluded that the seam produced this 

effect. 
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Figure 20: Lift Coefficient Convergence History Comparison - Single Seam (h/b=2) vs. Smooth Surface 
CFD 

3.2.3 Force Coefficients – Experimental Data 

 Both the drag and lift coefficients recorded were compared with experimental data available for 

the Reynolds number examined in this study. The drag coefficient was compared to experimental results 

for smooth surface cylinders in crossflow, as seen in the figure below. The CFD results show good 

agreement with experimental values, although it is noted that the Reynolds number selected is in or 

around the transition region, making values in this area much harder to define specifically. The reasoning 

behind the selection of the Reynolds number of this study was for comparison to experimental results for 

a cylinder with a single seam, examined in the lift coefficient comparison in the following figure. 
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Figure 21: Drag Coefficient for Several Wind Tunnel Tests vs. CFD time averaged value 

The lift coefficient was compared to experimental data from the study previously mentioned, by 

Hong et. al 2015 [32], which took a cylinder with a single seam and rotated the cylinder in 15-degree 

increments from 0 degrees (front stagnation point), to 150 degrees. The lift force was documented at 

each 15-degree increment, and a noticeable negative (or downward) lift force began to arise at the 60 

degree mark, with the most prominent force at 75 degrees, as seen in the figure below. The next data 

Figure 22: Observed Lift Force as Cylinder was Rotated for CFD Lift Coefficient Validation [32] 
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point in the experiment was at 90 degrees, and therefore it is unclear whether there are intermediate 

values between 75 and 90 degrees where the lift force was downward. As stated previously, a secondary 

seam location of 65 degrees was chosen due to the documented downward lift force at 60 degree and 75 

degree seam locations, and a negative trend in the observed data. 

The flow conditions used for that study were replicated for this one to draw comparisons between 

experimental and CFD results, and the lift force registered in the experimental study was converted to a 

lift coefficient using cl =  
𝐿

1

2
ρU∞

2𝐴
, where A represented the projected area of the cylinder, with diameter of 

220mm (characteristic length) and unit width [32]. A similar calculation was used for the CFD results and 

the comparison can be seen in the figure below. The CFD results did not capture the large increase in 

downward lift force as the experimental results did, which is consistent with the results mentioned 

previously, where the CFD did not appear to capture the delayed separation predicted by the seam on the 

top surface. 

 

Figure 23: Lift Coefficient (calculated from Hong et. al 2015) vs. CFD time averaged lift coefficient values 
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3.3 Grid Independence Study 

 The numerical discretization error was characterized using the procedure detailed in Appendix A 

from the ASME Journal of Fluids Engineering Editorial Policy Statement on the control of Numerical 

Accuracy [47]. The step-by-step analysis was conducted using the solution values for the Drag Coefficient, 

due to its use in comparison to experimental data and thus an appropriate calculated value of interest for 

validation purposes. The grid spacing used in this study from the coarsest grid to the finest grid was not 

uniform due to memory limitations for conducting the finest grid. In addition, the solution value for Drag 

Coefficient was extremely close between the medium grid to the finest grid, leading the author to 

conclude that the mesh was refined enough at the medium grid level in converging to the “exact” 

numerical solution. 

 However, when conducting the numerical discretization error procedure as detailed in Appendix 

A, the methodology would not converge onto a specific order of accuracy for the apparent order, p, as 

referenced in Section 2.2.5 Grid Independence Study/Validation. The fixed-point iteration would diverge 

and not produce a logical value for p. The author suggests that the reason for this results from the issue 

with the similar solution values for the medium and fine grid and the number of cells for both grids being 

very close as well. In the procedure, it is noted that if the difference between solution values of 

successive grids is “very close” to zero, the [procedure] doesn’t work [47]. Additionally, it’s theorized that 

the “exact” solution has been attained, and if possible, calculations with additional grid refinement may be 

performed; if not, the results may be reported as such [47]. In the case of this study, a more refined grid 

could not be performed due to the computational resource limitations. Therefore, for the fine grid solution, 

assumed p values ranging from 0.75 to 2 were used to obtain associated error percentages with solutions 

critiqued on that order of error, the results of which are tabulated below: 

Error 

Value 

Apparent order p (through fixed-point iterative solution) 

0.7 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 

𝜑𝑒𝑥𝑡
21 0.6773 0.6829 0.6863 0.6886 0.6902 0.6914 0.6924 0.6931 0.6938 0.6943 

𝑒𝑎
21 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 

𝑒𝑒𝑥𝑡
21 3.27% 2.42% 1.91% 1.57% 1.34% 1.16% 1.02% 0.91% 0.82% 0.75% 
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𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21 3.96% 2.95% 2.34% 1.94% 1.65% 1.43% 1.26% 1.13% 1.02% 0.92% 

 

 The calculated error associated with the Grid Convergence Index for each value of p was plotted 

as error bars on the extrapolated value, and the fine grid solution was found to fall within the error bars of 

even the tightest margin of error for the extrapolated value with the associated GCI error percentage, as 

seen in Figure 24.  

Figure 24: Numerical Discretization Error - Fine Grid Solution for Drag Coefficient 

 

3.4 Flow Visualizations 

3.4.1 Contour and Vector Plots 

 In this section, several flow visualizations are displayed to give an illustrative view of the 

aerodynamics present in this flow. Contours of velocity magnitude for the entire wake region are shown to 

display the vortex shedding found at this Reynolds number. A closer look at the region near the surface 

with a single seam is examined through velocity contours and velocity vector plots to show that the 

natural boundary layer transition is captured, with the formation of a separation bubble.  
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Figure 25: Velocity Contour Plot at Converged Solution for Single Seam (h/b=2) CFD Simulation 
Displaying Large Scale Vortex Shedding Phenomenon 

 

Figure 26: Inset of Velocity Contour Plot Converged Solution for Single Seam (h/b=2) CFD Simulation 
Displaying Seam and Boundary Layer Separation Region 

 

The formation of a separation bubble is thoroughly documented in literature for cylinders to occur 

at and around the Reynolds number of this study, which translates to the transition region of the boundary 

layer from laminar to turbulent [2,6,48]. In one of the first works to diagram the separation bubble, seen in 
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Figure 28, a direct comparison can be made to the velocity vector plot shown in the CFD simulation in 

Figure 27. The existence of the separation bubble is corroborated in the pressure contour plot seen in 

Figure 14, where the pressure value is delayed in retreating toward a stagnant value. This is also 

displayed in the work by Horton [33], as seen in Figure 29, further supporting the ability for the CFD 

simulation to model the boundary layer transition accurately. However, the effect of the seam, as 

predicted by literature, to delay the final separation point, is not observed, nor the effects that would follow 

this phenomenon. 

Figure 27: Velocity Vector Plot at Converged Solution for Single Seam (h/b=2) CFD Simulation Displaying 
Separation Bubble Formed during Boundary Layer Transition 
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Figure 28: From Laminar Separation Bubbles in Two- and Three-Dimensional Incompressible Flow, H. P. 
Horton, 1968 

 

Figure 29: From Laminar Separation Bubbles in Two- and Three-Dimensional Incompressible Flow, H. P. 
Horton, 1968 
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3.4.2 Transient Flow Structure Animations 

 The following figures display contours of Vorticity on a log scale to better visualize the vortex 

shedding phenomenon. The period from frame to frame corresponds to a flow time of 0.45 seconds. If the 

effects of the seam as predicted by literature were captured, a delayed separation caused by the seam on 

the top surface would influence the period and consistency of the vortex shedding due to the asymmetry it 

would create. However, as stated previously, because the delayed separation on the top surface was not 

captured in the CFD results, the vortex shedding structure is identical to that of a smooth surface. 

Figure 30: Time Series of Vorticity Displaying the Vortex Shedding Phenomenon. (Time between images 
is 450ms) 
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4 DISCUSSION AND CONCLUSIONS 

 An applied computational fluid dynamics approach was taken to analyze the aerodynamic effects 

of the seams on the surface of a soccer ball. A two-dimensional representation of a single seam was 

translated into computational space as a cylinder with a single seam in cross-flow. The goal of this study 

was to analyze the feasibility and accuracy of a computational approach using a transition-based solver in 

capturing the effects that the seam has on boundary layer transition, flow separation point, and wake 

structure. An auxiliary goal was to develop a computational analysis framework for which future work 

could expand upon to fill the gap of computational data which complements experimental data and 

trajectory analyses. 

 The first goal was rigorously pursued but not entirely achieved. A large portion of this work 

focused on developing the methodology to appropriately apply a transition-based solver to the flow 

conditions investigated. As noted in Section 2, there were many mistakes made along the way, which 

proved to help define an accurate methodology. This included the meshing strategy, computational solver 

selection, solver tuning, and data analysis methods. Extrapolating from previous computational work, 

experimental data gathering practices, and some trial and error, the final methodology used in this study 

was concluded given the resources available.  

With a thorough examination of the comparisons between experimental data and CFD results in 

the previous section, several deductions can be made. First, the results do not indicate that the seam had 

any effect on the flow physics, as the results for the smooth surface and seam cases were practically 

identical. This is displayed through the comparisons of skin friction, pressure, drag, and lift coefficients as 

well as flow visualizations. Second, the results indicate that the CFD results show the seam geometry 

was captured, shown in the spike after the seam in the skin friction coefficient data, similarly seen in flat 

plate and other related analyses of transverse gaps and ditches [12,41]. However, the downstream effects 

of the seam did not materialize, as predicted by literature, as all the subsequent data shows similar 

results to that of the smooth surface case. 

Downstream from the seam, the separated region has large fluctuations in skin friction, which did 

not correlate directly to physical phenomena. Initially, it was thought that the time-averaging technique 
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used was the cause of this discrepancy. To confirm whether this was the case, all of the timesteps in the 

converged solution were plotted against the time-averaged solution used in this study and the global time-

averaged solution, which averaged the data over the entire converged time domain. 

Figure 31: Investigation into Separated Region Skin Friction Coefficient Fluctuations. Comparison of 
Instantaneous Time-Step Data vs. Vortex Shedding Cycle Averaged and Global Time Averaged Values 

(Skin Friction Coefficient was normalized using the following: 𝑐𝑓 =  
𝜏0

𝜌𝑈∞
∗ √𝑅𝑒) 

 

 Upon investigation of this data, the author found that the inconsistency in the separated region in 

the CFD results may have materialized due the unrealistic calculation of a complete boundary layer in the 

separated region, caused by the uniform refined grid spacing used to capture the boundary layer in the 

attached region. More refined cells used to ensure accurate calculation of the boundary layer in the 

attached region may have inadvertently caused mesh-induced, increased wall shear stress calculated in 

the separated region, not seen in experimental data.  A recommendation for future work would be to 

include using a scale resolving solution criteria, where the Transition SST model can be coupled with a 

delayed eddy simulation (DES) solver to shield the boundary layer from the free stream flow to more 

accurately model that region [7]. These results, coupled with the inconsistencies in the pressure, lift, and 
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drag data, lead the author to conclude that the primary goal was not achieved, as the effects of a single 

seam were not captured as predicted by experimental work. 

 The auxiliary goal was achieved as the author has attempted to provide a baseline for which 

future work can expand upon. The type of flow under examination, as well as the scale of the geometry 

feature (the seam) relative to the body under study (soccer ball), contribute to the difficulty in developing 

accurate computational results. The availability of computational resources in future work shows promise 

in defining much more accurate computational results than for this study. However, the framework 

developed in this study can guide future research both experimentally and computationally. 

 There are several other suggestions for which future work may expand. One of which includes 

the transition to a three-dimensional analysis, due to the induced effects of three-dimensional flow 

structures as well as asymmetric geometry features. This is especially important when analyzing a body 

such as the soccer ball which is spherical, and therefore not necessarily symmetric about the span-wise 

axis as the current study assumed. Further, more experimental work is suggested in the realm of single-

seam or single geometry feature bodies to accompany and validate CFD results. At the time of this paper, 

the only known work which sought to tabulate experimental data on a sphere with a single seam was not 

yet published [55]. With a robust methodology and targeted application of the resources, a computational 

solution can accompany experimental results to give a clearer picture of the interesting and complex flow 

phenomenon investigated in this study. 
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APPENDIX A 

Procedure for Estimation of Discretization Error [47] 
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