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ABSTRACT

Brain Tumor Classification Using Hit-or-Miss Capsule Layers

Spencer Chang

The job of classifying or annotating brain tumors from MRI images can be time-

consuming and difficult, even for radiologists. To increase the survival chances of a

patient, medical practitioners desire a means for quick and accurate diagnosis. While

datasets like CIFAR, ImageNet, and SVHN have tens of thousands, hundreds of

thousands, or millions of samples, an MRI dataset may not have the same luxury of

receiving accurate labels for each image containing a tumor. This work covers three

models that classify brain tumors using a combination of convolutional neural net-

works and of the concept of capsule layers. Each network utilizes a hit-or-miss capsule

layer to relate classes to capsule vectors in a one-to-one relationship. Additionally,

this work proposes the use of deep active learning for picking the samples that can

give the best model, PSP-HitNet, the most information when adding mini-batches

of unlabeled data into the master, labeled training dataset. By using an uncertainty

estimated querying strategy, PSP-HitNet approaches the best validation accuracy

possible within the first 12-24% of added data from the unlabeled dataset, whereas

random choosing takes until 30-50% of the unlabeled to reach the same performance.
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Chapter 1

INTRODUCTION

The survival of patients with brain tumors is influenced by the speed of diagnosis.

However, given an MRI image, it can be time-consuming even for neurologists to

correctly classify the brain tumor and suggest a treatment plan. Computer aided

diagnosis has become more popular in the research field not as a way of replacing

the medical experts but as a way of providing second opinions on the diagnosis of

a patient’s condition. Various machine learning techniques have been applied to

classifying the brain tumors from MRI images, including the use of Convolutional

Neural Networks (CNN). If successful, deep learning can speed up diagnosis and help

increase the survival chance for patients.

In this section, a quick overview is presented on brain tumors, deep learning

networks, dataset techniques for improved performance, and this work’s contribution.

1.1 Brain Tumors

A brain tumor is abnormal growth of cells in brain tissue. These tumors may

be diagnosed as either benign or malignant, where malignant tumors grow quickly

[41, 43]. While the benign tumor does not invade the surrounding tissue of a person’s

body, the malignant tumor will spread as such. A brain tumor is considered primary

if it begins in the brain. On the other hand, secondary or metastatic tumors are from

a primary tumor elsewhere in the body and move to the brain.

There exist more than 120 types of brain and central nervous system tumors [42].

Some of the most common diagnosed tumors are acoustic neuroma, astrocytoma,

chordoma, glioma, medulloblastoma, meningioma, and pituitary tumors. To identify

a patient’s tumor, medical institutions use the World Health Organization (WHO)

classification system [39, 42]. Doctors typically rely on techniques such as magnetic

1



Figure 1: Sampler of Brain MRIs with Tumors. From left to right, tumors
shown are classified as meningioma, glioma, and pituitary. Images are from the
dataset by Cheng et al. [10].

resonance imaging (MRI), computed tomography (CT) scans, and biopsies to deter-

mine the existence and classification of a brain tumor. The particular dataset used

in this work cover only meningioma, glioma, and pituitary tumors. Example brain

MRI slices can be seen in Figure 1.

1.2 Machine Learning and Dataset Techniques

Multiple proposed solutions to computer aided diagnosis of brain tumors have

come from a field of artificial intelligence called machine learning. A couple no-

table approaches try augmenting the tumor region of interest [10] or try combining

multi-modal wavelet features with random forest classifiers [54]. Within the field of

machine learning is deep learning, mainly represented by a set of learning models

called artificial neural networks.

Among these networks, the CNN has become the most popular choice for computer

vision tasks today [37]. However, with the way a CNN works, the global understanding

of a single image can be lost with layer upon layer of convolution and pooling [48].

Toward the end of 2017, Sabour et al. presented a paper that formalized a new kind

of artificial neural network based on a concept called capsules that was to improve

upon the CNN by increasing robustness versus translational and rotational variances

2



[48]. Using the common MNIST data set, they demonstrated that their new network,

dubbed CapsNet, could perform on-par with state-of-the-art CNNs and outperform

them in recognizing overlapping digits, all while keeping a smaller network parameter

space.

Since its introduction, multiple versions of the CapsNet have been created. These

range from a focus on object segmentation [36] to a focus on natural language pro-

cessing [7] and are covered in Chapter 3 on Related Works. In particular, Deliège et

al. combined the encoding of input data using convolutional layers with a classifier

made of vectors, or capsules, named the Hit-or-Miss layer [17].

Besides the introduction of new models, other well-known techniques like data

augmentation and equalization of training data are used to improve the performance

of proposed models. Other researchers, like Chitta et al. [11], focus on the active

learning technique to modify how data is fed into the model. Active learning considers

a model’s uncertainty for predictions on data and feeds iterations or mini-batches of

low-confidence samples into the master training dataset to train the network.

1.3 Contribution

Using the brain tumor dataset collected by Cheng et al. [10], three models are

presented that have an average 5-fold cross-validation accuracy close to 85% on the

tumor data without masking the tumors. Additionally, it is shown that when parts

are removed within each of the networks, their performance remains similar to the

unmodified version. Finally, this work will show that the active learning approach

causes the best model to train the fastest when picking the lowest confidence samples

as compared to picking randomly or the highest confidence samples.
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1.4 Thesis Overview

In Chapter 2, this work will cover the background required for the tools and

experiments that follow. Chapter 4 will cover the architecture of the network model

and the routing algorithm used for the capsules. Then, evaluation is discussed in

Chapter 5 with discussion and results following in Chapter 6. Finally, the work

concludes with Chapters 8 and 7.
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Chapter 2

BACKGROUND

In this section, basic background information is discussed concerning what is nec-

essary for understanding the system implementation and the work’s contribution to

the field. Topics covered include a brief overview of the National Institute of Health’s

classification of brain tumors, discrete wavelet transforms, artificial neural networks,

convolutional neural networks, capsule networks, and different implementations of

capsule networks.

2.1 Brain Tumors

A tumor is an abnormal growth of cells within exterior or interior body organs.

It is created when cells in a human body do not grow, divide, or die as they should in

normal cells. A tumor may be classified as either benign or malignant. While benign

tumors are noncancerous, they still require treatment to prevent them from spreading

into other parts of the original organ. Malignant tumors are carcinogenic and might

still reoccur after treatments [8].

Brain tumors that originate within the brain are termed primary. Other tumors

that spread to the brain from other organs in the body are termed secondary. Primary

brain tumors may be either malignant or benign, but secondary brain tumors are

always malignant [18, 46, 55]. Brain tumors have multiple classes assigned by the

World Health Organization and can be considered a meningioma, glioma, pituitary,

or other kind of tumor [39, 42]. According to the American Cancer Society, in 2016,

brain and spinal cord malignant tumors affected 23,800 adults and 100,000 children

in the US [18].

To diagnose brain tumors, doctors will call for neurological tests like comput-

erized tomography (CT) scans, magnetic resonance imaging (MRI), or even biopsy.
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Figure 2: Example of Artificial Neural Network with Four Fully-Connected
Layers

Following diagnosis, they will suggest a treatment plan for the patient, which could

be anything from surgery to chemotherapy [41, 43].

2.2 Artificial Neural Networks

In the field of artificial intelligence, there is a subset of learning models categorized

as deep learning models, which involve the progressive learning of increasingly lay-

ered representations of given data [12]. Among these advancements, artificial neural

networks were some of the first models to be created and trained on training data for

problems ranging from speech recognition to computer vision.

Artificial neural networks (ANN) are inspired by and loosely based on what a brain

might look like. Both a brain and ANNs contain networks of neurons hooked to each

other through synapses, or connections. However, this is as far as the similarities go

between the two neural networks. ANNs are made up of many layers of neurons. An
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Figure 3: Calculating the Output of a Neuron in an ANN Using the Ac-
tivation Function f Evaluated on Its Weighted Sum [2]

example is seen in Figure 2. Connections from one layer to the next have associated

weights that tell the network how heavily a neuron’s output should be considered, as

seen in Figure 3.

A neuron’s output is determined by the incoming weighted sum and the response

of its activation function f to that weighted sum. The complete equation per neuron

can be seen in Figure 3. At the initialization of an ANN, the weights wi are assigned

random values or all 1’s. After the input has passed through the ANN’s activations, a

loss function calculates the error between the predicted output and the desired output.

Examples of loss functions include mean squared error, mean absolute error, and cross-

entropy (Kullback-Leibler Divergence). The calculated loss then informs the ANN

how its weights should be adjusted based on an averaged gradient per input batch

for each neuron. This process of calculating the gradients is called backpropagation.

The method of using incremental batches of training data to calculate gradients and

find loss minima is called stochastic gradient descent (SGD). Over many passes of the

training data through the ANN, backpropagation and SGD train the ANN weights

to better represent data in such a way that its output matches the correct label for

each training sample.
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In Figure 2, a fully-connected neural network is shown. However, it is not the best

type of model for solving computer vision problems, such as semantic segmentation or

object recognition. To have a decent test accuracy, multiple fully-connected layers are

needed, which results in tens of millions of parameters. A huge number of parameters

increases the amount of information a network can memorize about its training data,

but it does so at the cost of overtraining and not being able to generalize well to new,

unseen test images. Thus, for computer vision problems such as object recognition,

the most common network model used is the convolutional neural network.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) have become popular in the artificial in-

telligence industry for their ability to help solve a wide range of computer vision

problems. The CNN uses a stack of convolutional and pooling layers to represent the

input image with multiple channels, also called feature maps. These feature maps

are then fed through the final section of the network called a classifier, which is most

often a couple of fully-connected layers like those used in the example from Section

2.2. While a CNN also makes use of fully-connected layers like ANNs, the CNN has

fewer trainable parameters and typically achieves better performance.

In a convolutional layer, a filter is applied to subsections in the image based on the

filter’s size, which can be 3x3, 5x5, etc. pixel grids. For each channel of a convolutional

layer, there is a separate filter applied. In Figure 4, the layer convolves the RGB

image to five separate feature maps. This means that one channel filter will have

different values from another channel’s. Convolutional layers can vary in the size of

the filter used and the number of strides (pixels) between consecutive convolutions in

a channel. These hyperparameters of the network will determine the kind of features

learned from an image. The image may also be slightly subsampled by a few pixels

depending on each layer’s hyperparameters and whether the channels have a padding
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Figure 4: Convolutional Layer Passing a Filter Over an RGB Image [31]

of zeroes at their borders. After the convolutions are applied to a number of channels

in a convolutional layer, the layer’s output may feed into a pooling layer.

Like the convolutional layer, a pooling layer will focus on consecutive subregions

of each feature map or channel, applying either an averaging or maximum function.

Typically, max pooling is used to draw out the most prominent features in an image,

which would be given by larger values in channels [37]. For instance, in Figure

5, max pooling is applied to bring out the largest values that correspond to the

features a CNN may focus on to classify an input image. Compared to a convolutional

layer, pooling layers do not have trainable parameters or weights. They only apply a

function on each subregion as output to the next layer.

After the CNN has applied an arbitrary number of convolution and pooling oper-

ations on the input data, the neurons feed into a classifier. The classifier predicts the

class of the input data. Often, the classifier is made up of fully-connected layers of

neurons that take as input the final set of feature maps from the many convolutional

and pooling operations applied to the original image.

Over the past decade, multiple versions of the CNN have been created. From

those, a group of researchers has proposed residual connections called skip connections

9



Figure 5: Max Pooling Layer Downsampling a Matrix of Values [31]

be included in a network to improve upon what kind of information is passed from the

input to the classifier [22]. Another CNN version pertinent to this thesis creates an

ensemble of branches that vote on pixel labels in cityscape and indoor scene images

[61].

For future reference, CNNs in this thesis will be seen as going from lower layers

to higher layers. For instance, the input layer and first convolutional layer are seen

as the lowest two layers and the classifier is the highest layer of the network.

2.3.1 Residual Shortcut Connections

When deeper neural networks converge to their peak performance, a degradation

problem can be exposed. If the network is continually trained past this point, the

training accuracy becomes saturated and performance begins to drop off rapidly.

According to sources cited by He et al. [22], the problem is not due to overfitting but

that deeper models cause higher training error. To solve the problem of high training

error from increasingly deep networks, He et al. propose the use of identity mappings

from previous layers in a network [22]. These mappings are achieved by shortcut

connections that skip one or more layers in the network and are added back into the

mix by calculating F(x) = F(x) + x. By creating the shortcuts, the training error in

10



Figure 6: Residual Learning Building Block [22]

the higher layer should be no greater than in lower layers that map to it. A residual

building block demonstrating this can be seen in Figure 6.

Residual networks are able to increase the depth of a CNN while keeping the com-

putational complexity low. This is helpful when trying to compare plain and residual

networks since the main difference lies in the element-wise addition from shortcuts. To

deal with size differences between layers added together, 1x1 convolutions are passed

over the lower layer at a given stride that will subsample its size to the same as the

higher layer that receives the shortcut. Additionally, these shortcut connections can

still be trained end-to-end by SGD with backpropagation. These shortcuts have been

implemented in Python libraries such as Keras [33].

2.3.2 Pyramid Scene Parsing Network

Zhao et al. [61] tackled the problem of semantic segmentation of pictured scenes

[61]. Labeled objects in these images range from pillows and beds to people and

buildings. To get down to the specific pixels of each image, the researchers created

what is called a pyramid scene parsing network (PSPNet) that took from a single

pooling layer. After an initial convolutional layer, the network splits into four differ-

ent convolutional branches with filter sizes of 1x1, 2x2, 3x3, and 6x6, respectively.

Refer to Figure 7 for a depiction of their proposed module. After the branches are

11



Figure 7: Overview of PSPNet. Given an input image (a), the CNN is used to get
the feature map of the last convolutional layer (b), then a pyramid parsing module
is applied to harvest different sub-region representations, followed by upsampling
and concatenation layers to form the final feature representation, which carries both
local and global context information in (c). Finally, the representation is fed into a
convolution layer to get the final per-pixel prediction (d) [61].

computed, results are upsampled to the same size as the initial convolutional layer

and concatenated together.

With the added shortcut connection from the first convolutional layer, PSPNet

can factor in a global contextual prior when the four branches combine into the

output segmented image. In total, the contextual prior and the four branches in the

pyramid pooling module allow the network to learn representations at different levels

by looking at coarse and fine sub-regions within the image. Zhao et al. [61] used the

PSP module for semantic segmentation, but by subsampling the initial layer with 1x1

convolutions, it can be adapted toward object recognition and will be detailed further

in Chapter 4.

2.3.3 Drawback of Pooling

While CNNs have made great progress in solving computer vision problems for

robot navigation and in facial recognition, there are a couple issues that make it

unsuitable in going forward with CNNs as the main ANN applied to computer vision.

One major issue is that pooling layers cause a loss of global connectivity throughout

the CNN [48]. This means that a CNN may see separate parts in an image, but
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it will not be able to tell how the two parts are spatially connected. While the

aforementioned versions [22, 61] can alleviate this problem, the CNN also suffers

from rotational and translational variations in an image. Some more CNN versions

have attempted to create more robust models [58]. In their response to these issues,

Hinton et al.[25] mentioned a new kind of network based on ’capsules’, which were

formally presented and implemented by Sabour et al.[48].

2.4 Capsule Networks

The first idea of a capsule was presented by Hinton et al. in a paper about

transforming autoencoders [25], but the idea was not formally implemented and tested

until a paper by Sabour et al. [48] at the end of 2017. A capsule is a group of neurons

whose activity vector represents the instantiated parameters of a specific type of

entity, such as an object or object part. According to Sabour et al., in the future,

capsule networks (CapsNet) will replace CNNs, which are the current state-of-the-art

in computer vision problems.

At a high-level, capsules represent an entity’s properties using a vector as opposed

to a scalar. This vector has properties such as the entity’s pose, and its length corre-

sponds to the probability that the entity exists in any given input. When presented

by Sabour et al. [48], CapsNets consist of a convolutional layer leading into two cap-

sule layers, what are called primary and ‘digit’ capsules. The second layer of capsules

could be generalized to be called ‘class’ capsules, as this is what the particular layer

represents. To classify an image, the primary capsule layer is trying to predict the

output of the class capsule layer. To train these predictions, the capsule layers use

an algorithm called “routing by agreement”, where primary capsules will only route

to parent capsules in the class capsule layer that agree with its own output.

In Figure 8, three main portions of the routing algorithm are pictured. When first

entering the primary capsule layer, vectors are calculated to check for any existing

13



(a)

(b) (c)

Figure 8: Overview of the Dynamic Routing Algorithm. [20] (a) how the
primary capsules look when computed (b) the between-capsule agreement for the
rectangle portion (c) the between-capsule agreement for the triangle portion. The
poses of either entity are pictured in a-c.
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entities, as seen in (a). There might be a little bit of noise within the image, but the

largest pose and length shown are that for the triangle and rectangle. Suppose the

CapsNet is trying to figure out if the picture is an image of a sailboat or a house.

Going from primary capsules to class capsules, each capsule is checked to see if they

could signal the existence of either class. In (b), the rectangle is seen routing to both

the house and sailboat class. In (c), the triangle is also routed to the house and

sailboat class. However, the triangle’s pose does not agree with the rectangle’s pose

when routing to the house class. On the other hand, the triangle and rectangle have

strong agreement for the sailboat class. So, the routing algorithm will simultaneously

weaken the routing connection from the primary capsules to the house class capsule

and strengthen the routing connection from the primary capsules to the sailboat class

capsule.

In the work by Sabour et al. [48], the following equations are presented as means of

mathematically implementing the routing by agreement algorithm, particularly using

a straightforward implementation called dynamic routing. As noted in their paper,

this implementation is only a way to show that capsules do work fairly well.

For both capsule layers, the length of the output vector represents the probability

that the entity represented by a particular capsule is present in the input. To do this

in a non-linear fashion while preventing large values from dominating the capsules, a

“squashing” function is created. As seen in Equation 2.1, vectors are squashed such

that short vectors are shrunk down to nearly zero length while long vectors are shrunk

down to a vector length slightly below one.

vj =
||sj||2

1 + ||sj||2
sj
||sj||

(2.1)

vj is the vector output of capsule j and sj is its total input, given by the weighted

sum in Equation 2.2. Excluding the first layer of capsules, the total input to a capsule

sj is calculated from a weighted sum over all “prediction vectors” ûj|i from capsules

in the previous layer multiplied by corresponding “coupling coefficients” cij between
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the capsule layers. ûj|i is created from multiplying the output ui of capsules in the

previous layer by a weight matrix Wij going from capsule i to capsule j in the next

layer. The first layer of capsules gets its input from a previous non-capsule layer, or

a convolutional layer [48].

sj =
∑
i

cijûj|i, ûj|i = Wijui (2.2)

In Equation 2.3, the coupling coefficients cij between the capsule layers sum to 1 using

a “routing softmax”, where the bij are log prior probabilities that capsule i should be

coupled to capsule j.

cij =
exp(bij)∑
k exp(bik)

(2.3)

In the original CapsNet paper, a margin loss, seen in Equation 2.4 was imple-

mented to have differing losses based on whether the particular MNIST digit exists

in the input or not. For the loss Lk below, Tk = 1 iff a digit of class k is present,

and m+ = 0.9, m− = 0.1, and λ = 0.5 for the implementation. The margin loss is

calculated for each class capsule, resulting in a total loss that is a sum of all class

capsules’ margin losses.

Lk = Tk max(0,m+ − ||vk||)2 + λ(1− Tk) max(0, ||vk|| −m−)2 (2.4)

The agreement between capsules is the scalar product aij = vj · ûj|i. The resulting

product is treated as if it was a log likelihood and is added to bij before computing

new values for all coupling coefficients between capsule i and the next layer’s capsules.

In Algorithm 1, the dynamic routing algorithm is presented. As seen, routing

by agreement involves several loops that will repeatedly strengthen couplings for

correct capsule links and weaken couplings for incorrect capsule links. Lines 4 and

6 correspond to Equation 2.3 and 2.1, respectively. Compared to CNNs, CapsNets

are meant to take the entire input into account when computing capsule outputs.

In the original work [48], the input for primary capsules was 6x6 since a larger size
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Algorithm 1 Dynamic Routing Algorithm [48]

1: procedure Routing(ûj|i, r, l)

2: for all capsule i in layer l and capsule j in layer (l + 1): bij ← 0.

3: for r iterations do

4: for all capsule i in layer l: ci ← softmax(bi)

5: for all capsule j in layer (l + 1): sj ←
∑

i cijûj|i

6: for all capsule j in layer (l + 1): vj ← squash(sj)

7: for all capsule j in layer l and capsule j in layer (l+ 1): bij ← bij + ûj|i ·vj

8: end for

9: return vj

10: end procedure

would result in a substantial increase in trainable parameters, causing the CapsNet

to quickly become unwieldy in size.

A more recent paper was written by Hinton et al. [24] in 2018 that trained and

tested on the smallNORB dataset. In particular, the routing mechanism instead

used expectation-maximization (EM) to strengthen or weaken couplings. However,

other implementations of CapsNets have surfaced recently that help demonstrate that

CapsNets are a promising future area to research in place of CNNs.

2.4.1 Recent Adaptations

Due to the recent introduction of CapsNets, good results on large datasets like

ImageNet [35] and Pascal VOC2012 [40] have yet to appear in the research community.

However, some researchers working on medical imaging problems have adapted the

capsule networks or created their own kind of capsules. There are two main cases in

which capsules have started to be adapted to new problems other than recognizing

handwritten digits. Additionally, there is one network that has adapted the idea of

capsules into a new kind of layer meant for any kind of classification network.
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A näıve and simple adaptation of the CapsNet was implemented by Afshar et al.

in classifying brain tumor types between meningioma, glioma, and pituitary tumors

[4]. The original CapsNet was slightly modified to better accommodate their use

case. Overall, the architecture used was practically similar to the CapsNet presented

by Sabour et al. [48]. The authors demonstrated that the new architecture shows

promise in increasing accuracy in medical imaging problems.

In LaLonde and Bagci’s object segmentation [36], the concept of deconvolutional

capsules were introduced. Along with skip connections as implemented by He et al.

in ResNet [22], LaLonde and Bagci were able to create a kind of CapsNet that was

at least four times deeper than the original CapsNet. Compared to convolutional

capsules that may downsample the image going from one capsule layer to another,

deconvolutional capsules will upsample and eventually, with the help of shortcut

connections, return an output that is the same size as the input images. These

images would contain information for the CapsNet’s classifier to successfully segment

out pathological lungs from a CT scan. Additionally, the idea of locally-constrained

capsules was introduced which allowed their CapsNet to take input images that were

512x512 and yet remain lightweight in trainable parameter count.

Most importantly, the HitNet architecture proposed by Deĺıege et al. [17] uses the

idea of capsules as vector-based neurons to create a learned Hit-or-Miss (HoM) layer,

placing it as the decoder for the feature maps from the convolutional layers. Their

objective is that by checking each vector against a preset center of the ‘target’, the

network will learn to represent the data in a better way. To elaborate, each vector

in the HoM layer corresponds to a single class, and the closest HoM capsule vector

to the ‘target’ is the predicted class. Figure 9 shows an illustration of the original

HitNet architecture.

18



Figure 9: Original HitNet Architecture [17]

2.4.2 Hit-or-Miss Transforms and HitNet

While Deĺıege stated that they had not known about Hit-or-Miss Transforms

[15, 19], it is worth discussing the image processing transform as another possible

explanation for how their network’s Hit-or-Miss capsule layer works. Since it com-

pares with an arbitrary ‘target’ vector, namely C = [0.5, 0.5, 0.5, . . . , 0.5], the weights

between the final convolutional layer and the HoM layer are being modified such that

the encoded feature maps conform to the set Hit-or-Miss pattern, or the ‘target’ vec-

tor. At the same time, the weights would be modified such that these feature maps

would lack conformity to the other capsule vectors.

Each vector in the HoM layer corresponds to a distinct class in our dataset. Thus,

by modifying the weights, it is possible to filter out unwanted patterns from the

convolutional encoding layers. The resulting vector would be recognized as being

close to the target since its pattern is recognized by the weights between the feature

maps and the HoM layer. At the same time, all other vectors are trained to have

vector lengths that are far from the center. That is, if a vector is meant to recognize

a 1 from the MNIST dataset, then vectors that are supposed to recognize 2, 3, 4, 5,

6, 7, 8, 9, and 0 should have vector lengths that are much greater.
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2.5 Deep Active Learning

Although many approaches to solving deep learning problems have involved creat-

ing new architectures, active learning is another way to improve a model by allowing

the model to choose what data it wishes to train on. The key idea is that a machine

learning algorithm can achieve greater accuracy when it is allowed to choose the data

from which it learns [50]. A comprehensive review on active learning can be found in

Settles’s survey [50]. Chitta et al. [11] have proposed Deep Probabilistic Ensembles

(DPE) that use regularized ensembles to approximate a Bayesian Neural Network.

Although one of many active learning approaches, they demonstrate that such ap-

proaches can allow models to achieve competitive performance while requiring less

training data. Empirically, Algorithm 2 shows that after the initial training cycle, the

system injects mini-batches into the labeled dataset and trains the ensemble of mod-

els on the mini-batch. This process is repeated until we have reached B total added

samples to the set. The algorithm is performed for every model in the ensemble,

where:

• U = {xj
u}

Nl
j=1 is a large unlabeled set consisting of Nu samples, where each

xj ∈ X is an input data point.

• L = {(xj
l , y

j
l )}

Nl
j=1 is a labeled set consisting of Nl labeled pairs, where each

xj ∈ X is a data point and each yj ∈ Y is its corresponding label. Thus, for a

classification problem having K labels, the label space Y would be {1, . . . , K}.

• A : X → Y is an annotator that can be queried to map data points to labels.

• {Me : X → Y }Ee=1 is the set of models making up the DPE, where each is

trained to estimate the label of a given data point.

• Ω is a single regularization term that is added into each model’s weights and

scaled by a factor β.
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This particular active learning setup is commonly referred to as batch mode active

learning [11], where every iteration involves 2 stages, as shown in Algorithm 2. In

the first stage, the ensemble M(i) is trained to convergence with the current labeled

set L(i). In the second stage, the trained ensemble evaluates the existing unlabeled

pool U (i) to select a subset of b samples for labeling performed by the annotator A.

This subset is then moved from U (i) to L(i+1) before the next iteration. Training will

proceed until the budget of B total label queries is met.

To rank all of the available unlabeled data using the acquisition function α, pre-

dictive entropy of the ensemble is used. This predictive entropy is given by

Hens = −

(∑
e∈E

p(e)

)T

log

(∑
e∈E

p(e)

)
(2.5)

where p refers to the normalized model prediction vector. Contrary to the above

explanation, no annotators are needed in the experimental loop for this algorithm to

proceed. Instead, it is sufficient to take a completely labeled dataset and hide a subset

of the class labels from the model until this subset of ‘unlabeled’ data is transferred

to the labeled dataset.

Additionally, as it pertains to this work, a simplified view of deep active learning

can be found from Figure 10. In this work, the unlabeled dataset makes up 80% of

the total training dataset, and the data budget is only limited by the size of the latter

set.
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Figure 10: Deep Active Learning for This Work
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Algorithm 2 Active Learning with DPEs

i← 0

Randomly sample b points {xj}bj=1 from unlabeled set U (0)

Annotate this data, {yj = A(xj)}bj=1

Move {(xj , yj)}bj=1 to initial labeled set L(0)

total added samples ← b

while total added samples ≤ B do

while model not converged do . stage (i)

Forward pass a mini-batch from L(i), ŷ =M(i)(x)

Compute gradients δ of loss l(y, ŷ) + βΩ

Update DPE, M(i) ←M(i) + δ

end while

for num iteration samples = 1 to b do . stage (ii)

for x ∈ U (i) do

α(x)← Hens(x)

end for

choice = arg maxx α(x)

ychoice = A(xchoice)

Move (xchoice, ychoice) from U (i) to L(i+1)

total added samples += 1

end for

Update b

i += 1

end while
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Chapter 3

RELATED WORK

In this chapter, research related to this work are briefly covered. Included in

this chapter are machine learning algorithms, convolutional neural networks, capsule

networks, and deep active learning techniques. Within each section, research that is

more relevant to this work is discussed in more detail.

3.1 Machine Learning Techniques for Tumor Classification

Multiple brain tumor segmentation and classification solutions have been pro-

posed using machine learning approaches. Abbadi et al. [1] have used gray level

co-occurrence matrices (GLCM) to extract features and classified tumors based on

those extractions using ANNs. Some other researchers have focused on large portions

of or the entire pipeline of selecting abnormal MRI slices, segmenting, and classifying

brain tumors. In particular, Deepak et al. [14] segment the sampled slice using K-

means and classify the segmented partition using decision trees and a Support Vector

Machine (SVM). Gupta et al. [21] went further and created a system that would auto-

matically detect tumors in MRI slices by first identifying the tumors then segmenting

the tumors in those slices. Their system used discrete wavelet transforms (DWT)

and an SVM or random forest classifier. Another group of researchers led by Usman

[54] processed multi-modal data by using DWTs and classified each slice’s pixels with

random forest classification, resulting in an image that would be segmented into five

pixel classes. In another work [46], the researchers focused on comparing feature

selection and extraction capabilities between Principal Component Analysis (PCA)

and Linear Discriminant Analysis (LDA) when applied to segment approximately 140

brain tumors in MRIs. They then classified pixels using an SVM. Also in the paper

24



by Rathi et al. [46], they use an Artificial Network Fuzzy Inference System, which has

also been used by Sharma and Mukharjee [52] for MRI brain tumor classification.

A couple of other notable approaches include the origin of the dataset used in this

work, first presented by Cheng et al. [10]. They proposed three models that utilized

intensity histograms, GLCMs, or a bag-of-words to classify tumor regions. Addi-

tionally, their approach attempted to enhance the performance of all three models by

augmenting (i.e. enlarging) the region-of-interest, which was the tumor itself. Finally,

Huang et al. [27] created a content-based image retrieval approach that kept an image

database and used a mean average precision metric to calculate a sample image’s sim-

ilarity to a stored image. The closest similarity then determined the sample’s given

label.

3.2 CNNs for Tumor Classification

In general, there is a basic overview of advancements in deep learning written by

LeCun, Bengio, and Hinton [37] that covers CNNs and recurrent neural networks,

where the latter is commonly used in natural language processing. Other quick and

general reviews on automated techniques for segmenting or classifying brain tumors

in MRIs are those by Hani et al. [18] and by Vidyarthi and Mittal [55]. At least one

paper calls out a weakness due to the pooling operation in CNNs, which in excess

causes the network to lack the translational invariance that is desired in computer

vision applications [6]. Additionally, Azulay and Weiss [6] demonstrate that modern

CNNs are unable to be invariant to translations but that they can also mitigate such

problems by introducing a decent amount of data augmentation.

Some approaches use CNNs and various architectural versions that specifically

address the problem of classifying brain tumors from MRIs. Korolev et al. [32] briefly

demonstrate the application of plain and residual CNNs on 3D brain MRIs for clas-

sifying between brains displaying Alzheimer’s Disease, early and late mild cognitive
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impairment, or normal control. In considering CNNs for this problem, Abiwinanda et

al. [3] create seven simple CNN models that are trained for approximately 10 epochs

on the dataset provided by Cheng et al. [10]. Their validation accuracy results do not

appear to improve past 85 – 90%. Balasooriya et al. [8] also created a CNN for MRI

brain tumor classification. However, their training was conducted over close to 96k

samples grabbed and combined from multiple different datasets. They applied their

system to five different classes, with four of them tumorous and one of them a normal

brain.

3.3 Capsule Network Approaches

Before the initial empirical results were created for the first capsule network (Cap-

sNet [48]), Hinton published a paper on transforming autoencoders that hinted at

the use of capsules to represent data [25]. Following the introduction of CapsNet

by Sabour et al. [48], Hinton et al. published a paper on a different way of modify-

ing routing connections between capsules by expectation-maximization [24]. Later

in the same year, a group of researchers conducted tests using CapsNet on data sets

with higher dimensionality [59], such as CIFAR10 [34]. They found CapsNets hard

to train in higher dimensionality and attempted to find the best configuration for a

CapsNet applied to high dimension problems. Wang and Liu [57] present the dy-

namic routing algorithm proposed by Sabour et al. [48] as an optimization problem

for a number of heuristics then propose their own simple routing approach that is

shown to outperform the original paper’s results.

After the introduction of CapsNets, a few papers were written that propose sparse,

unsupervised capsules for better generalization [47], CapsNets that use group theory

to create equivariance of output pose vectors [38] or modifications that will let cap-

sules scale for complex data [45]. Nguyen et al. also applied CapsNets to detecting

images and videos that may have been forged by trying to solve inverse graphics
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problems. While many of the aforementioned CapsNets are geared toward computer

vision, Bahadori applied CapsNets to features extracted to a one-dimensional linear

subspace, which shows CapsNets have applications in natural language processing [7].

Additionally, Shahrodnejad et al. attempted to better explain how capsules work by

considering the routing between capsule networks as a relevance path-by-agreement

[51].

In reference to medical computer vision problems, Afshar et al. [4, 5] took the

original CapsNet [48] and applied it to the brain tumors in the dataset given by

Cheng et al. [10]. Without image masks, their first network achieved approximately

78% validation accuracy while their second proposed network achieved approximately

90% validation accuracy. LaLonde and Bagci [36] propose a network that makes use

of shortcuts and is modeled after the well-known U-Net, traditionally used for many

computer vision applications. Their network, which output a segmented image of

CT lung scans, contained a deep network of convolutional and capsule layers that

continuously downsampled the image then upsampled the image with the help of

shortcut connections. It is important to note that LaLonde and Bagci’s proposed

network could be adapted for any kind of image segmentation. Additional applications

to computer vision problems include segmenting breast histology images [28] and

reconstructiong functional MRIs with CapsNets [44].

3.4 (Deep) Active Learning Techniques

A comprehensive review of active learning was written by Settles [50]. In the re-

view, Settles covers the iterative and batch-mode active learning approaches and mul-

tiple types of query methods, such as uncertainty sampling or query-by-committee.

Many of these approaches use a confusion metric to determine what samples will

maximize information gain for a network. For the purposes of this thesis, the focus

will be on batch-mode approaches.
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Chitta et al. [11] worked on what is known as batch-mode active learning, where

mini-batches are added from the unlabeled dataset to the labeled dataset up to a

certain data budget. Other versions of batch-mode active learning have been used for

medical image applications [26] or multiple classes in a large dataset [29, 30]. In the

paper by Hoi et al. [26], the problem addressed was data correlation, and the proposed

solution was a Fisher information matrix. Joshi et al. [29] proposed a margin-based

uncertainty measure that was easy to compute so that the active learning could be

efficiently scaled to a large dataset and a large number of classes.
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Chapter 4

DEEP LEARNING MODEL DESIGN & IMPLEMENTATION

In this chapter, the design and implementation of three deep learning models is

covered. In summary, the original HitNet architecture [17] will be covered and two

additional architectures will be proposed. These models build off the original HitNet

as a template in different ways that are described below. In particular, there is a

basic HitNet, residual HitNet, and pyramid spatial pooling HitNet.

4.1 Original HitNet

In the original HitNet architecture [17], there are two convolutional layers followed

by the Hit-or-Miss (HoM) layer. The HoM layer leads to a reconstruction sub-network

or a prediction vector, seen at the top of Figure 11. In addition, only 28-by-28

grayscale images were input to their proposed architecture throughout the extent of

their work. The HoM layer is made of ten classes with 16 values per vector. Each

of the ten classes corresponds to one digit in the MNIST dataset, what Deĺıege et

al. [17] originally used to validate their model.

The reconstruction sub-network takes as input the HoM layer’s output and the

true class label for the given sample. It uses these inputs to reconstruct the original

image and checks the mean-squared error between the reconstructed image and the

original. A low error value implies that this model and the following models have

encoded the data well.

4.2 Baseline HitNet

For the baseline, there are three convolutional layers encoding the input. The

specifications for each layer can be seen in Table 1. Additionally, the bottom of

Figure 11 shows the proposed baseline architecture. This particular set-up was chosen
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Figure 11: Graphical Representation of HitNet [17] (top) and Baseline
HitNet (bottom)

to match the original HitNet as close as possible. As this network takes 256-by-

256 images as input, the architecture contains another convolutional layer to further

encode and reduce the image. Additionally, the baseline has only three classes, where

each class vector comes with 20 values. The HoM vectors were arbitrarily given 20

elements for the baseline as well as the following two architectures.

For the baseline and following models, the reconstruction network has a total of

33,767,168 parameters. This is due largely in part to reconstructing a 256-by-256

image, which by itself is 65,536 pixels. Preceding the reconstructed image, there

are two fully-connected layers of size 256 then 512 neurons. Thus, even with only

the fully-connected layer of 512 neurons, the reconstruction sub-network would reach

approximately 33.7 million parameters. The provided parameter numbers in Table 1

are the result of subtracting away the reconstruction sub-network from the full model,

leaving us with the encoding convolutional layers and the HoM layer.
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Figure 12: Implementation of Res-HitNet. For each shortcut, the result of
the 1x1 convolution is normalized across the batch then added into the output of the
given layer.

Figure 13: Comparison of PSPNet [61] (top) and PSP-HitNet (bottom)
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Table 1: Encoding Layers for Original HitNet [17] and Implemented
Versions. The filter specifications detail how to apply a convolution on the previous
layer to get the listed layer (i.e. for the Baseline Conv. Layer 1, perform a 3x3
convolution with vertical and horizontal stride (2,2) on the input layer).

Model Layer Feature Maps Filter Spec. # Parameters

HitNet [16, 17]
Conv. Layer 1 42 5x5 S(2,2)

—–
Conv. Layer 2 42 5x5 S(2,2)

Baseline HitNet

Conv. Layer 1 16 3x3 S(2,2)

4,190,844Conv. Layer 2 80 5x5 S(2,2)

Conv. Layer 3 80 5x5 S(2,2)

Residual HitNet

Conv. Layer 1 16 3x3 S(2,2)

4,170,156
Conv. Layer 2 64 5x5 S(1,1)

Conv. Layer 3 64 5x5 S(2,2)

Conv. Layer 4 64 5x5 S(2,2)

Pyramid Scene

Parsing HitNet

Conv. Layer 1 16 3x3 S(2,2)

4,358,040

Conv. Layer 2 32 5x5 S(1,1)

Max Pooling 32 2x2 S(2,2)

Branch 1 32 1x1 S(2,2)

Branch 2 32 2x2 S(2,2)

Branch 3 32 3x3 S(2,2)

Branch 4 32 6x6 S(2,2)

4.3 Residual HitNet (Res-HitNet)

The residual version of HitNet makes use of shortcuts [22, 23] in the attempt

to connect global information with higher layers. The main rationale for using this

architecture is that both local and global information is desired when attempting to

predict the correct tumor label for any given sample image. By using the shortcuts,

the architecture can keep that global information and add it in along with local

information. With this, the hope is that residual shortcuts will help the network
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achieve higher performance than the baseline. To get more variety in the shortcut

connections, another convolutional layer was added before the HoM layer. More

information about the network can be seen in Table 1 and Figure 12.

4.4 Pyramid Scene Parsing HitNet (PSP-HitNet)

PSP-HitNet was inspired by the semantic segmentation work done by Zhao et al.

for parsing cityscape and room scenes [61]. A comparison between the original and

the implemented versions can be seen in Figure 13. The original PSPNet architecture

looks like an ensemble of four different networks, each using a different filter size for

the convolution. The filter sizes are 1x1, 2x2, 3x3, and 6x6. This allows the model to

acquire encodings for different sizes of objects as they appear in the image. In turn,

the encodings will help the network classify each pixel based on an increasing area of

influence, hopefully resulting in successful segmentation of all objects in an image. In

addition to the four ensemble branches, a global prior connection brings information

from the first convolutional layer to the ensemble branches’ output.

While the original PSPNet upsampled from the ensemble of convolutional branches,

the implemented PSP-HitNet does not upsample. The implemented version does not

segment the image and does not need to classify each pixel like the original network.

Thus, the outputs of all convolutions output reduced forms of their input. With ex-

ception of the first convolutional layer, all of the convolutional layers and branches

connect to HoM layers specific for each branch. The final stage exists as a kind of

voting scheme that adds together the results from the five separate HoM branches to

a single HoM layer that will determine each sample’s class label.
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Chapter 5

RESEARCH VALIDATION

This section will cover the experiments performed to validate the models men-

tioned in Chapter 4 using only the data mentioned by Cheng et al. [10]. There are

three main tests, where each one is conducted using a dataset-determined 5-fold cross-

validation. That is, the five folds are given by the dataset in a provided MATLAB

file.

The first test uses the original cross-validation dataset. Then, removing random

samples from each fold, the models train on an equalized dataset where each tumor

class has the same number of samples to train from for each epoch. The final test

takes the best of all three models and trains it using active learning.

5.1 Tumor Dataset

The data used is first referenced by Cheng et al. [10] and can be found at [9]. The

MRI slices are T1-weighted and contrast-enhanced covering three brain tumor classes.

These slices were anonymized and acquired from 2005 to 2010 at Nanfang Hospital in

Guangzhou, China and General Hospital at the Tianjing Medical University in China.

In total, there were 233 patients, with the entire dataset containing 708 meningioma,

1426 glioma, and 930 pituitary tumor slices for a sum of 3064 images. The tumor

borders were manually delineated by three experienced radiologists, and all tumor

slices come with a provided mask [10]. The distribution of slices per fold can be seen

in Table 2.

5.2 5-Fold Cross-Validation

In the first set of tests, each model was trained using K-fold cross-validation,

where K=5. There was no data augmentation involved, and all folds were run for
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Table 2: Original Distribution of Tumor Slices in Dataset

Class Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

Meningioma 112 167 139 124 166 708

Glioma 245 338 231 325 287 1426

Pituitary 185 174 202 179 190 930

30 epochs. For each fold, only the best weights were saved. The models were then

modified by removing certain parts of their architectures to see what pieces could

have the greatest or least impact on their performance.

In particular, for the baseline, each convolutional layer would be taken out one

at a time while keeping the other two in the model. For Res-HitNet, shortcuts are

the modified pieces, and for PSP-HitNet, each of the branches are considered pieces.

Examples of one modification for all three models can be found in Figure 14.

5.3 Equalized 5-Fold Cross-Validation

In the next set of tests, the dataset is equalized across all tumor classes, as seen

in Table 3. Based on the class with the least number of samples, the other two tumor

classes have a random set of images removed from the folds such that the size of the

respective set is equivalent. All three models are trained with 5-fold cross-validation

again without any data augmentation for 30 epochs. Then, the best model was trained

again with data augmentation on the equalized dataset. For each sample, the data

augmentation was allowed a rotation range of 10 degrees, horizontal and vertical flip,

and width and height shifts of 0.1. Any pixels that needed filling were done so with

a zero-value.
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Figure 14: Example of HitNet Architecture Modifications. From top to
bottom, the baseline has the second convolutional layer removed, Res-HitNet does not
have a second shortcut, and PSP-HitNet does not have the branch 2x2 convolutions.

Table 3: Equalized Distribution of Tumor Slices in Dataset

Class Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total

Meningioma 112 167 139 124 166 708

Glioma 112 167 139 124 166 708

Pituitary 112 167 139 124 166 708
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5.4 Deep Active Learning Cross-Validation

In the final set of tests, the network with best validation performance in the

previous two cross-validation tests is trained again with the 5-fold cross-validation

for 40 epochs. Then, the network is trained using active learning on each fold. Two

different active learning tests were conducted using 80% of the training data in the

equalized dataset.

In the first test, the network is trained for approximately five or six active learning

iterations. Each iteration moves about 20% of the unlabeled data to the labeled data

that is used for training the network. Each portion of unlabeled data is pulled either

with the uncertainty estimate or through random choosing. Given the flooring of

values when dividing the unlabeled data by five, there can be a sixth iteration that

moves the rest of the samples from the unlabeled to the labeled.

In the second test, the network undergoes active learning where the system anno-

tates either the 100 lowest-confidence, 100 highest-confidence, or 100 random samples

from the unlabeled dataset. Thus, this particular test may have the network train

from scratch for between 13 and 16 active learning iterations. For the purposes of

this thesis, the model’s predictive confidence indirectly relates to uncertainty. That

is, a prediction with high confidence has low uncertainty and vice versa.

When pulling the unlabeled data from the training data, the folds are weighted

depending on how many samples they contribute to the entire equalized training

dataset. For instance, if the model is training its fifth fold, the training set takes

from folds one to four. The second fold has the most samples and will have the most

labeled images moved to the unlabeled dataset. In the test for 20% unlabeled data,

Table 4 shows how the sample counts are decided.

In work by Chitta et al. [11], the active learning test is conducted for a maximum

of 400 epochs with an early stopping patience parameter of 25 epochs without im-
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Table 4: Image Split Per Class for 20% Unlabeled for the Fifth Fold. All
results from floating-point operations are floored to get integer numbers for images
per fold and per class.

Fold 1 Fold 2 Fold 3 Fold 4 Total

Equalized Total 336 501 417 372 1626

Fraction of Training 0.2066 0.3081 0.2565 0.2288 1.0

Maximum Images per Fold 268 400 333 297 1298

Maximum Images per Class 89 133 111 99 432

provement in validation accuracy. They use the stochastic gradient descent (SGD)

optimizer with a learning rate of 0.1 and momentum of 0.9. All active learning tests

run for the 80% unlabeled case used the SGD optimizer with the same learning rate

and momentum. In the DPE proposed by Chitta et al. , a custom regularization term

was calculated, but this work proposes using a single model for the active learning.

Thus, the active learning phase uses an L2-regularization of 0.00001 on all convolu-

tional layers of the best network. However, compared to the paper, where the learning

rate is decreased and the training is continued, this work’s model will only be trained

a maximum of 200 epochs and a patience of 25 when there is not at least an im-

provement of 0.01% validation accuracy. There was no decrease in learning rate as

done by Chitta et al. [11]. For a baseline comparison, the best model was trained on

the entire equalized training data for a maximum of 200 epochs. As will be seen in

the following chapter, the best cross-validated model did not improve its validation

accuracy after approximately 165 epochs. Thus, when conducting the active learning

for 80% unlabeled, the model is trained for a maximum of 200 epochs.

H = −
(

1− p

||p||

)T

log10

(
1− p

||p||

)
(5.1)

To calculate a prediction’s uncertainty, Equation 5.1 is used. p stands for the

prediction vector for a single label coming out of the derived and proposed HitNet
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models. Due to the vector values representing capsule lengths in reference to the

center, the smallest value corresponds to the predicted label for an input sample.

Additionally, the vector lengths may exceed 1.0. Thus, the prediction vectors are

length-normalized and subtracted from one. In general, this calculation should result

in lower confidence – a high H – when two or three prediction values are similar.

By contrast, if the prediction vector contains two similar large values and one small

value, higher confidence – a low H – should result.
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Chapter 6

RESULTS & DISCUSSION

Below, results are presented for all tests mentioned in Chapter 5. In addition

to the validation accuracy, precision, recall, and F1-Score are given for each class.

Precision is used for checking how often the model gives false positives, while recall

will check how often the model gives false negatives. A high F1-Score means that

the model has both a low number of false positives and false negatives. Thus, it is

a value to maximize when looking at the results. The equations for precision, recall,

and F1-Score are given below. TP, FP, TN, FN stand for true positive, false positive,

true negative, and false negative, respectively.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2× Precision×Recall
Precision+Recall

6.1 Cross-Validation Results of Proposed Models

Using 5-Fold cross-validation with the regular training dataset and the equalized

dataset, results for all three proposed models are presented, and their performances

are compared. Additionally, results are given for when each model’s architecture has

parts removed one-at-a-time. From the mentioned results, a best model is chosen for

deep active learning testing, where its performance is further detailed in Section 6.2.

6.1.1 5-Fold Cross-Validation

After the first cross-validation test on the original dataset without equalizing the

tumor classes, validation accuracy reached a maximum average validation accuracy
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Figure 15: Training and Validation Accuracy Results for all models using
the original dataset. Training results are those curves that converge to an accuracy
value of 1.

of 85.79%, 86.18%, and 87.23% for Base-HitNet, Res-HitNet, and PSP-HitNet, re-

spectively. The precision, recall, and F1-Score for all three are presented in Table 5.

As can be seen, PSP-HitNet had the best F1-Score for classifying meningioma and

glioma tumors and held comparable performance for pituitary tumors versus Res-

HitNet. PSP-HitNet was also the quickest model to converge during the 30 epochs of

training, as shown in Figure 15.

6.1.2 Architecture Modifications

When removing the convolutional layers one at a time for Base-HitNet, the result-

ing performance was similar to the unmodified Base-HitNet. Specifically, the average

validation accuracy results for the Base-HitNet with layer 1 removed and with layer

2 or 3 removed were 84.59% and 84.52%, respectively. Additional results are not

necessary for removing layer 3 as both layer 2 and layer 3 have the same filter spec-
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ifications, seen in Table 1 of Chapter 4. These results are close to the unmodified

Base-HitNet result of 85.79%.

For Res-HitNet, the removal of shortcut connections had greater influence on the

overall performance of Res-HitNet’s original model. The removal of the second or

third shortcut connection resulted in an overall decrease of approximately 2% from

the original’s results. Given the more dramatic drop in validation accuracy, shortcut

connections that came into play later in the network appeared to have a greater

impact on the model’s performance.

Similar to the Base-HitNet results, modifications made to PSP-HitNet had little

to no impact. Perhaps due to the random weight initialization, some of the modified

architectures performed slightly better than the original PSP-HitNet. This is the case

with removing the branch containing 3x3 convolutions, which achieved an average

validation accuracy of 86.63% versus the original’s 86.55%. Otherwise, the results

show no sign of there being a decrease in performance.

A side-by-side comparison between this models’ architecture modifications can be

found in Table 6. Additionally, each architecture’s training results can be seen in

Figures 16, 17, and 18.

6.1.3 Equalized 5-Fold Cross-Validation

When equalizing the dataset, Base-HitNet, Res-HitNet, and PSP-HitNet achieved

a maximum validation accuracy of 85.57%, 84.70%, and 87.04%, respectively. From

Figure 19, it can be seen that all models had similar convergence rates but PSP-HitNet

came out with better validation results than the other two tested models. In Table

7, it can be seen that equalizing the dataset allowed each model to improve their F1-

Score for classifying meningioma tumors while trading off decreases in the F1-Scores

for classifying glioma and pituitary tumors. The results in Table 7 also show that

PSP-HitNet had better overall precision, recall, and F1-Score when trained using the
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Table 5: Average Precision, Recall, and F1-Score for All Models after
Training on the Original Dataset for 30 Epochs. Bolded entries signify the
best performance for precision, recall, or F1-Score.

Class HitNet Model Precision Recall F1-Score

Meningioma

Base 75.421 74.448 74.929

Res 76.822 71.916 74.288

PSP 76.412 77.178 76.793

Glioma

Base 89.008 87.454 88.224

Res 88.108 88.335 88.221

PSP 90.461 87.775 89.098

Pituitary

Base 90.544 93.591 92.043

Res 92.908 94.636 93.764

PSP 91.935 95.293 93.584

Figure 16: Results for Base-HitNet when Removing Pieces from the Ar-
chitecture. The model’s original results are shown by the red line.
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Table 6: Validation Accuracy Results for All Modifications to Base-
HitNet, Res-HitNet, and PSP-HitNet. To observe how the change in
parameters might have affected the average validation accuracy for the networks,
the number of parameters were included as well. All of the parameter counts are
completed without counting the reconstruction sub-network.

Model Type Modification # Parameters Validation Accuracy

Base-HitNet

Original 4,190,844 85.42

No Layer 1 18,023,100 84.59

No Layer 2 or 3 18,483,580 84.52

Res-HitNet

Original 4,170,156 86.18

No Shortcut 1 4,168,812 85.14

No Shortcut 2 4,168,812 83.99

No Shortcut 3 4,165,740 83.92

PSP-HitNet

Original 4,358,040 86.55

No 1x1 4,124,524 85.65

No 2x2 4,161,772 86.22

No 3x3 4,156,652 86.63

No 6x6 4,198,124 85.41

No Res 807,820 86.24
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Figure 17: Results for Res-HitNet when Removing Pieces from the Archi-
tecture. The model’s original results are shown by the red line.

Figure 18: Results for PSP-HitNet when Removing Pieces from the Ar-
chitecture. The model’s original results are shown by the red line.
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Table 7: Average Precision, Recall, and F1-Score for All Models after
Training on the Equalized Dataset for 30 Epochs. Bolded entries signify the
best performance for precision, recall, and F1-Score.

Class HitNet-Model Precision Recall F1-Score

Meningioma

Base 83.307 81.304 82.293

Res 79.667 81.988 80.811

PSP 81.164 86.555 83.773

Glioma

Base 86.136 82.439 84.247

Res 86.753 80.433 83.474

PSP 90.455 83.066 86.603

Pituitary

Base 90.428 94.828 92.576

Res 91.235 93.597 92.401

PSP 92.482 93.179 92.829

Figure 19: Training and Validation Accuracy Results for All Models Using
the Equalized Dataset.
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Table 8: Average Precision, Recall, and F1-Score for PSP-HitNet after
Training on the Data-Augmented Equalized Dataset for a Maximum of
400 Epochs. Due to early stopping based on the validation accuracy, none of the
training per fold exceeded 165 epochs.

Class Precision Recall F1-Score

Meningioma 87.761 90.447 89.084

Glioma 95.988 87.026 91.288

Pituitary 92.600 97.943 95.197

equalized dataset. From the validation accuracy, precision, recall, and F1-Score, it

was determined that PSP-HitNet was the best model of the three and was chosen

for moving forward with active learning. From this point in the work onward, PSP-

HitNet will be the only ‘model’ being trained and validated with additional tests.

After training the model for a maximum of 400 epochs using data augmentation

on the equalized dataset, it was discovered that training on all folds was stopped early

by the 165th epoch and resulted in an average validation accuracy of between 89.3%

and 93%. Results for training PSP-HitNet for this extended period of time can be

seen in Figure 20. As four of five folds did not train past 102 epochs, data is truncated

once the average accuracy contains only one fold in the calculation. In particular,

the yellow line in the graph represents the average across all five folds while red and

blue represent the averages across three and two folds, respectively. The maximum

average validation accuracies were 89.3%, 92.71%, and 93%. The yellow line ran for

56 epochs, the red for 94 epochs, and the blue for 102 epochs. After 102 epochs of

training, only training for the fourth fold continued until epoch 165. Precision, recall,

and F1-Score values can be seen in Table 8.
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Figure 20: Results for PSP-HitNet after Training for 101 Epochs with
Data Augmentation. Yellow contains a 5-fold average, Red a 3-fold average, and
Blue a 2-fold average. Respectively, their maximum average validation accuracies
were 89.3%, 92.71%, and 93%.
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Table 9: Average Validation Accuracy per Active Learning Iteration Us-
ing SGD Optimizer without Regularization. The zeroth iteration represents
results after training on the starting labeled data.

Iteration 80% Uncertainty 80% Random

0 77.063 76.926

1 87.558 82.472

2 89.653 88.334

3 90.720 88.756

4 89.927 89.817

5 91.003 90.471

6.2 Applying Deep Active Learning to Best Model

The best model, PSP-HitNet, was then run using the batch-mode active learning

method. In particular, for each deep active learning iteration, the model was trained

for a maximum of 200 epochs, stopping early if the validation accuracy did not im-

prove after 25 consecutive epochs. When comparing the uncertainty estimation with

the random choosing, there is a marginal performance improvement. By pulling in

the lowest-confidence samples from the unlabeled dataset, the network improves faster

than if it chose random samples. Results for no regularization and for regularization

can be seen in Tables 9 and 10 and in Figures 21 and 22. Note that although the two

querying strategies begin at the same general validation accuracy for each starting

point, the uncertainty querying strategy generally trains the model faster than the

random strategy.

The differences between querying strategies are demonstrated when the model is

configured to pick either 100 lowest-confidence, 100 random, or 100 highest-confidence

samples each iteration from the unlabeled dataset. Since picking 100 samples per

iteration involves a minimum of 13 iterations, approximately 6% of the complete

training set is annotated at a time. Both Table 11 and Figure 24 display results for
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Figure 21: Active Learning Results for Both Random and Uncertainty-
Estimated Queries Using SGD without Regularization

Table 10: Average Validation Accuracy per Active Learning Iteration
Using SGD Optimizer with L2-Regularization.

Iteration 80% Uncertainty 80% Random

0 74.503 74.793

1 86.670 82.302

2 87.027 87.993

3 89.512 90.051

4 90.901 90.048

5 90.597 89.686
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Figure 22: Active Learning Results for Both Random and Uncertainty-
Estimated Queries Using SGD with L2-Regularization

an average of two runs per querying strategy. It can be seen in Table 11 and Figure

24 that the first additional 12 – 24% of training data shows quicker improvement by

picking the 100 lowest-confidence samples per iteration.

In the first active learning iteration, picking the 100 lowest-confidence samples

showed less improvement than the other strategies, perhaps due to random initial-

ization that occurs when the model is trained from scratch for each active learning

iteration. In addition, due to the SGD optimization algorithm, some active learn-

ing iterations show querying strategies where the model may have become stuck in

a local minimum. However, during iterations two, three, and four, annotating the

samples with the lowest confidence leads to better performance compared to either

picking random samples or picking samples with highest confidence. This strategy led

to bringing in the most information for PSP-HitNet to train. As the training set is

filled with images that bring in less information for the model, picking low-confidence

images converges to an average validation accuracy of approximately 90%. Broadly
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Table 11: Results for 100 Highest-Confidence, 100 Random Choose, and
100 Lowest-Confidence per Active Learning Iteration. The results presented
are averaged across two runs for each strategy.

Iteration High Confidence Picks Random Picks Low Confidence Picks

0 75.021 75.458 75.573

1 80.028 82.595 78.999

2 81.124 80.722 87.258

3 83.064 82.392 83.589

4 81.474 86.634 88.615

5 84.884 88.891 89.075

6 85.982 89.115 88.845

7 84.066 88.479 89.797

8 87.958 88.717 89.863

9 88.343 90.529 90.201

10 89.212 90.406 89.844

11 90.068 90.769 90.667

12 90.819 90.026 90.391

13 90.291 91.079 90.639

speaking, as the training set is filled with more annotated samples, all three querying

strategies converge to the same approximate average validation accuracy.

Lastly, Figure 23 shows a sample of some high-confidence and low-confidence

samples. These samples were determined by the model when it is first trained from

scratch using Folds two to five for training and Fold one for validation.
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(a) (M, P) - 0.27346858 (b) (G, P) - 0.27386144 (c) (P, P) - 0.26106316

(d) (M, M) - 0.36038724 (e) (G, M) - 0.3601587 (f) (P, P) - 0.3603682

(g) (M, P) - 0.47303647 (h) (G, M) - 0.47384858 (i) (P, P) - 0.47279787

Figure 23: Resulting Predictions for MRI Scans and Corresponding Un-
certainty Calculations. Pictured MRI scans were determined after training with
20% unlabeled using Fold 1 as the validation set. The letters in the parentheses are
true label and predicted label, respectively. They are followed by their calculated
uncertainty value. A higher uncertainty value implies low-confidence for the model’s
prediction while a lower value implies high-confidence.
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Figure 24: Active Learning Results for 100 Highest-Confidence, 100
Lowest-Confidence, and Random Sampling. The results presented are aver-
aged across two runs for each strategy.
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Chapter 7

FUTURE WORK

To extend this work and improve upon the presented active learning technique,

a couple different paths are possible. First, in reference to work by Hoi et al. [26],

medical images may have information overlap between each other, making it difficult

to choose a subset of unlabeled data based on uncertainty estimates. The researchers

propose a Fisher information matrix and an efficient way of reducing the matrix to

pick out the most informative examples from the unlabeled data.

A second approach would be to extract some features from the MRI slices using

wavelet transforms [13, 60]. Wavelet transforms have also been applied to ultrasound

images to diagnose cancer [53]. Either discrete or stationary wavelets could help filter

out unnecessary information in the MRIs, allowing the network to focus on the brain

tumor features that might remain. Some introductions and studies can be found by

Walker [56] and Schmeelk [49].

In reference to deep active learning, another appraoch would be to change the

annotated set size to smaller, more fine-grained portions to better understand the

behavior of the model when adding each sample. For example, instead of annotating

100 samples from the unlabeled dataset to the labeled dataset, the system would

annotate 50, 25, 10, or as little as 5 samples per each deep active learning iteration.

A final proposed extension would be to re-implement the segmentation portion

of the PSP module in PSP-HitNet. This would allow the model to not only classify

between tumors but also segment exactly where the tumor is in the brain. In turn,

the model would become more powerful than it currently is.
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Chapter 8

CONCLUSION

A quick diagnosis of brain tumors using MRI scans can help increase the survival

chances for patients. Some researchers use trained machine learning models as second

opinions to aid in the diagnosis. These techniques can include augmenting the tumor

region-of-interest [10], capsule networks [4, 5], and CNNs [3, 8]. In this work, variants

of HitNet [17] have been proposed and trained on a small dataset of brain MRI scans

containing meningioma, glioma, and pituitary tumors. Through tests on the original

and equalized datasets, it was found that PSP-HitNet had the best performance

compared to Base-HitNet and Res-HitNet, gaining a maximum validation accuracy

of approximately 87% and improving by at most 2% over the Base-HitNet. Training

the best model with data augmentation and for a maximum of 400 epochs revealed

that PSP-HitNet reached at most 93% validation accuracy for any single training

fold.

While modifying and making new deep learning architectures is one way of in-

creasing the overall validation and test accuracy, other techniques like deep active

learning work with the dataset to increase the validation accuracy. It is not always

possible to acquire large amounts of data, and deep active learning helps train mod-

els faster with less data. This work has proposed using PSP-HitNet with deep active

learning that allowed it to train the fastest by choosing the lowest-confidence, or

highest-uncertainty, samples. In using this technique, the model was able to achieve

better performance than randomly choosing within the first 12-24% of annotated

unlabeled data. Even with a small dataset, the network was able to quickly achieve

performance by annotating the lowest-confidence unlabeled samples and adding them

into the master training dataset.
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