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Statement of Confidentiality 	
 	
The complete senior project report was submitted to the faculty coach/advisor and sponsor. The results of 
this project are of a confidential nature and will not be published at this time. 	
 	
Statement of Disclaimer 	
 	
Since this project is a result of a class assignment, it has been graded and accepted as fulfillment of the 
course requirements. Acceptance does not imply technical accuracy or reliability. Any use of information 
in this report is done at the risk of the user. These risks may include catastrophic failure of the device or 
infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and 
its staff cannot be held liable for any use or misuse of the project. 	
 
Abstract 
 
Cal Poly physics professors Peter Schwartz and Nathan Heston approached the Solar Freeze team with the 
problem that remote communities in Africa have limited access to modern-day medicine or vaccines. They 
suggested that we try and design a cooling device that can keep vaccines cold for multiple days at a time 
while the medicine is transported to remote villages. Currently, there are vaccine cooler products on the 
market, but most of them are very expensive or lack portability. Peter and Nate have tasked the Solar Freeze 
team to come up with a less expensive solution that is also portable and can handle the harsh environments 
of Africa. Due to the fact that Peter and Nate have done extensive research and laboratory experiments with 
using a solar panel to power thermo-electric coolers, they suggested that a thermo-electric cooler should be 
used to keep the cooler cold. The Solar Freeze team’s goal is to design a solar-powered vaccine cooler that 
utilizes thermo-electric coolers to freeze a phase change material and keep vaccines at optimal temperature.  
 
In the following Design Report document, the Solar Freeze team will discuss how a portable vaccine cooler 
would be beneficial to poorer communities in Africa. In the Background section, the results of our extensive 
research will be discussed including existing products, current patents, and interviews with the sponsor. 
The Objectives section will cover the scope of the problem that the Solar Freeze team is trying to solve 
which includes a problem statement, Quality Function Deployment (QFD), and risk analysis. The Concept 
Design chapter will cover idea development, decision matrices, and potential risks and issues. In the Final 
Design chapter, a complete description of the final design including 3D models, supporting calculations, 
and cost analysis will be discussed. The Manufacturing Plan chapter will have in-depth descriptions of how 
procurement, manufacturing, and assembly of all the parts and subsystems. The Design Verification Plan 
chapter will cover the testing specifications, verification tests, and testing facilities and equipment. In the 
Project Management section, project timeline and key deliverable tables discussed. Lastly, the Conclusion 
will wrap up the document and suggest a potential plan for moving forward. 
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1. Introduction 
 
The Vaccine Cooler for the Global Poor is a senior project with a team that consists of four senior 
mechanical engineering students at California Polytechnic State University. The communications lead is 
Cody Volk who has an interest in solar panel technology. Our manufacturing lead is Cooper Gibson who 
has an interest in sustainable energy and improving the quality of life in developing countries. Our testing 
lead is Ben Larson who has an interest in applying his engineering studies in real world applications. Our 
hardware lead is Eilbron Younan who is looking forward to working with Peltier technology and making a 
difference in the world.  
 
2. Background 
 
The background section will discuss customer research the team performed, research on existing products, 
and research on patents for similar devices.  
 
2.1 Customer Research 
 
Three distinct types of background research were focused on during the initial research stage: customer 
research, product research, and technical research. Customer research involved the team familiarizing itself 
with quality of life in Africa, and the needs/wants of a clinic hoping to transport vaccines to remote villages. 
Product research involved researching current solutions on the market in order to determine how 
commercial products solved similar problems. Technical research was primarily centered on existing 
patents and how specific components work.  
 
After meeting multiple times with Peter Schwartz and Nathan Heston, the Solar Freeze team had a good 
idea of what type of customer they were trying to build a vaccine cooler for. In the poorer communities of 
Africa the electricity may only be on intermittently for a few hours at a time. For this reason it is very 
important that the vaccine cooler can run using a solar panel. The cooler must also be small and portable 
enough to fit on the back of the motorcycle as that is one of the most common methods of transportation 
between villages. This means that the Solar Freeze team must be aware, when designing the cooler, of the 
bumps and vibrations that occur while riding on a motorcycle and how fragile glass vial vaccines are. Parts 
of Africa’s climate are very hot, dry, and dusty. The cooler must be designed to handle hot surroundings 
and must not be affected by dust. The cooler must also be easy to maintain in poor communities as it is 
likely that they do not have access to specialized parts or skilled workers if the cooler were to breakdown. 

 
2.2 Product Research 
 
Table 1 summarizes the product research completed by the Solar Freeze team. In completing our research 
of similar products on the market, a few common observations and insights were made that will help guide 
our initial design phase. Firstly, a lot of commercially available solar refrigeration units are large and meant 
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for storage of large quantities of vaccines at the clinic itself. There are not many portable solar-driven 
coolers designed with the intent of transporting vaccines far distances to remote villages. Also, the solar 
coolers that are available are incredibly expensive, often times costing upwards of $3000.  
 

Table 1. Existing products that solve similar problems.  

Product: Sure Chill [1] 
 
Pros: Portable, stays cool for long time, powered 
by renewable energy 
 
Cons: Bulky, difficult to attach to motorcycle, 
expensive 
 
Functionality: Water surrounds a Sure Chill 
refrigeration compartment. When it has power, the 
water cools and forms ice above the compartment 
leaving only water at four degrees cooling the 
contents. When the power is switched off, the 
water warms and rises while the ice begins to 
melt, keeping only four-degree water cooling the 
contents of the compartment [1]. 

 

Product: Solar Chill [2] 
 
Pros: Solar powered, stays cool for long time, 
powered by solar power, accurately stays at 4 ℃, 
12 days of constant cooling. 
 
Cons: Heavy, not portable, expensive 
 
Functionality: Solar power, generated by solar 
panels, runs a direct drive compressor. The 
compressor powers the refrigerant cycle creating 
an ice-bank. The power of the sun is essentially 
stored in an “ice battery”. The cold temperature is 
transferred from the ice-bank to the storage cabin 
[2]. 
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Product: Sundanzer BFRV55 [3] 
 
Pros: Stays cool for long time, powered by 
renewable energy, can store hundreds of vaccine 
vials, maintains idea internal temperature for 4 
days in an environment of 43 ℃. 
 
Cons: Heavy, not portable, expensive 
 
Functionality: Direct solar-driven cooler, with no 
internal batteries. Conventional refrigerator 
components.  

 

Product: Isobar [4] 
 
Pros: Lightweight, portable, stays cool for long 
time 
 
Cons: Expensive 
 
Functionality: A mix of ammonia and water is 
heated in a lower pressure vessel, causing the 
ammonia to vaporize and separate from the water. 
It remains trapped in the upper chamber by a valve 
until the cooling effect is needed. The device is 
then flipped over, causing the chemicals to 
recombine and give a cooling effect [4]. 

 

Product: Indigo [5] 
 
Pros: Lightweight, portable, stays cool for long 
time 
 
Cons: Difficult to recharge, expensive 
 
Functionality: The vessel is a liquid nitrogen (a 
doubled-walled bottle with vacuum insulation that 
is much like a thermos), with multi-layer 
insulation technology (aka: the material that 
protects spaceships from extreme temperatures). It 
functions as an ultra-insulated cooler [5].  

 

Table 1. cont. 
 
 



 

 
 

10 
 
 
 
 

2.3 Technical Research 
 
Table 2 summarizes five patents that are integral to the functionality of the solar cooler. Our goal is to 
design a cooler that is driven by the thermo-electric cooling effect of Peltier technology. A Peltier is a 
thermo-electric cooler that works when DC current flows through small, doped semiconductors that are 
arranged in series between two ceramic plates. One side of the Peltier heats up while the other side cools 
down. Usually, heat is dissipated through a heat sink or some type of circulating water system. This creates 
the desired temperature on the cold side of the Peltier [6]. Peltiers are an appealing option when deciding 
how to effectively cool a vaccine transport cooler due to their low cost, no moving parts, and durability. 
For example, a generic single Peltier module costs around $6, and was shown to effectively cool 80 grams 
of water from 25 °C to 0 °C into solid ice in 50 min [7]. This informed the team that they could use direct 
solar-driven Peltier(s) to create an adequate cooling environment for vaccines.  
 

Table 2. Related technical patents. 

Patent Title Patent Number Patent Description Drawing 

Mobile 
Thermoelectric 
Vaccine Cooler 
With a Planar Heat 
Pipe 

US20160003503A1 

A portable medical refrigerator 
cooled with a thermoelectric 
device connected to a heat 
sink. Also utilizes a planar 
heat pipe to efficiently transfer 
heat out of the cooling 
chamber. [8] 
 

 

Backpack for use 
with a Portable 
Solar Powered 
Refrigeration Box 
and Water 
Generator 

US20180106509A1 

A solar powered portable 
refrigeration unit with an 
insulated chamber for storing 
perishable goods. Contains 
batteries and an inverter to 
convert DC voltage to AC 
voltage. Also contains a stand-
alone water generation unit for 
converting atmospheric 
moisture to potable water. [9] 
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Thermoelectric 
Medicine Cooling 
Bag 

US5704223A 

Medicine cooling bag cooled 
by a Peltier heat pump. Vials of 
medicine are tilted to maximize 
heat transfer efficiency. The 
heat pump has both a cold plate 
and heat sink and is powered by 
an internal battery. [10] 

 

Two Stage 
Radiation 
Thermoelectric 
Cooling Apparatus 

US6880346B1 

Two stage thermoelectric 
cooling apparatus for cooling 
electrical components. First 
stage pre-cools the electronic 
device in order to lower the 
temperature to level the TEC 
can efficiently cool. Residual 
heat is dissipated out the back 
of the device using a heat pipe 
and radiator. [11]  

Medical Travel 
Pack with Cooling 
System  

US20090049845A1 

Device incorporates a 
thermoelectric cooler inside an 
insulated cooler. TEC is in 
contact with a freezable phase 
change material. When 
disconnected the phase change 
material provides passive 
cooling inside the container 
while medical material is 
transported. Not solar powered, 
is intended for short trips in 
between charges. [12]  

Table 2. cont. 
 
One strategy to maintain a vaccine cooler at its desired temperature is to use ice packs. Ice packs are 
effective due to the large amounts of energy it takes to cause a phase change from solid to liquid. If the 
phase change temperature is the same temperature that the cooler needs to be maintained at, ice packs can 
be effective. Since most vaccines must be kept between 2-8 ℃, only certain types of ice packs would work. 
For example, water has a phase change temperature of 0 ℃ which is too cold for a vaccine cooler, so other 
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phase change materials have been investigated. Organic phase change materials (PCMs) manufactured by 
Rubitherm have a phase change temperature of 5℃, are non-toxic, and have consistent performance over 
thousands of heating and cooling cycles [13].  
 
In addition to product and patent research, it was important to understand certain industry standards that 
will guide the safety of our design. In terms of industry standards, the World Health Organization has very 
strict vaccine regulations. For example, the maximum acceptable fully loaded weight of a vaccine box 
should not exceed 55 lbf, if being lifted by one worker. Also, the universal safety standard for transporting 
vaccines is to maintain a temperature of between 2-8℃ for 7.48 hours at a surrounding temperature of 43℃ 
[14]. Our plan is to use this standard as the main focus for the performance of our cooler in order to meet 
and surpass it, as there is a lot of uncertainty in transporting vaccines to remote villages in Africa.   
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3. Objectives 
 
People in Africa do not have access to reliable electricity need a way to safely and effectively transport 
vaccines, with the ability to maintain optimal temperatures of 2-8°C for up to 1 day at a time.  
 
Figure 1 below shows the boundary diagram for this project. Components that are inside the dotted line 
are ones that we can control. These will have strict specifications and be entirely designed by us, while 
the components outside the dotted line are components that should be accounted for, but not necessarily 
designed for.  

 
Figure 1. Boundary diagram showing scope of project design. 
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3.1. Design Considerations (Needs and Wants) 
 
The customer’s needs for this project are that the cooler is to be portable and lightweight, and should not 
require more than one adult in order to handle it. Due to the lack of stability of power grids in Africa, this 
cooler needs to be powered by off-grid electricity. The cooler needs to be durable and require little to no 
maintenance, encouraging the solid-state technology of Peltiers to be the main method of cooling the device. 
 
After talking extensively to Peter Schwartz and Nate Heston about the type of environment and possible 
uses of a vaccine cooler, the Solar Freeze team outlined a list of possible needs and wants which can be 
seen in Table 3 below. The most important needs are maintaining the optimal temperature of the vaccines 
and keeping that temperature for days at a time because if a vaccine spends too much time at a non-ideal 
temperature, it loses its potency. Many of the “wants” are intended to be included in the team’s vaccine 
cooler but are not absolutely essential to the final product. 
 

Table 3. Possible needs and wants for vaccine cooler. 

Need  Want 

Maintains optimal temperature Cheap 

Safely transports vaccines Aesthetically pleasing 

Portable Easy to operate 

Has off-grid power option Durable 

Stays operational for up to 1 days Can be connected to regular outlet 

Minimal maintenance  

 
3.2. Quality Function Deployment (QFD)  
 
To assure that they are solving the correct problem with the proper specifications, the Solar Freeze team 
created a QFD to compare their specifications to the specification of existing products. The QFD takes key 
elements such as who, what, how, how much, and testing categories and compares them with each other. 
The primary purpose of the QFD is to obtain a measurable set of engineering specifications. The Solar 
Freeze team’s QFD can be seen in Appendix A. For example, the “who” or different customers of a vaccine 
cooler was compared to “what” or different requirements that the vaccine cooler fulfilled. Depending on 
who the customer was, they would value each requirement differently. The different requirements that the 
vaccine cooler fulfilled were also compared to the testing categories and evaluated for relevance. 
Rudimentary values for each testing category were established. Other products on the market were then 
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compared to our standards and evaluated for how well they did. Using this QFD, it is our goal to design a 
vaccine cooler that meets our standards and scores better than the competition.  
 
3.3. Specifications and Risk Assessment  
 
The Solar Freeze team came up with parameters and requirements for each of the engineering 
specifications for the vaccine cooler and listed them in Table 4. These engineering specifications are only 
estimates from extensive research and will likely change when tests are performed. The only specification 
that is set is the optimal temperature specification of 2-8 ℃ , which was determined from World Health 
Organization parameters. Tolerances of each of the requirements were estimated. In order to assess the 
amount of risk regarding each specification, levels of risk were assigned using high risk (H), medium risk 
(M), and low risk (L). The higher the risk, the more important that parameter is to the end product. For 
example, maintaining the optimal temperature for the required time period is crucial since the vaccine will 
lose potency if ideal temperature range is not maintained. Parameters such as weight and dimensions were 
given low risk because these parameters are not set in stone and can be changed as needed. Compliance 
methods or how each parameter will be tested were also determined for each parameter including testing 
(T), analysis (A), inspection (I) and similarity to existing designs (S). For example, maintaining the 
optimal temperature must be determined by testing with thermocouple, while the dimensions can be 
determined by inspection. Since the Solar Freeze team does not yet know how the vaccine cooler will be 
kept cold, the engineering specifications were kept as broad as possible.  
 
 

Table 4. Engineering specifications. 

Spec. # Parameter Requirement Tolerance Risk Compliance 

1 Optimal Temperature 2-8 ℃ ± 0℃ H T 

2 Number of Vaccines Capacity 50 vials Min L T, A 

3 Weight Under 100 lbs. Max L I 

4 Cost  $200 Max M A 

5 Lifespan 3 years Max L S 

6 Dimensions 2ft x 2ft x 2ft Max L A, I 

7 Power Consumption 100 Watts Max M T, S 

8 Time to Reach Optimal Temperature 3.5 hours ± 3 hours M T, A 

9 Time of Maintaining Optimal 
Temperature  

12 hours Max H T 
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4. Concept Design 
 
The concept design chapter will discuss the team’s idea development process, initial sketches, concept 
models developed, decision matrices, and the chosen final concept.  
 
4.1. Idea Development 

 
To begin the idea development stage the team identified four main functions of the cooler. The four 
functions were determined as: cool vaccines, transport vaccines, charge cooler, and withstand heat. The 
team held multiple ideation sessions to create as many ideas as possible. Three separate brainstorming 
strategies were deployed during the sessions including traditional brainstorming, the SCAMPER technique, 
and brainwriting. Traditional brainstorming consists of each member contributing ideas over a set time 
period. SCAMPER stands for substitute, combine, adapt, modify, put to another use, eliminate, and reverse. 
It utilized by asking questions about existing products in order to develop creative ideas for developing new 
products. Finally, brainwriting consists of each team member writing ideas in a notebook for three minutes. 
At the end of three minutes, each team member passes their notebook to someone else, and another session 
begins. After everyone has written in each available notebook, results are shared, resulting in the 
development of new ideas. In Table 5 below, the strategy used is listed alongside the corresponding 
function. The results are shown in each subsequent column. The team was encouraged by faculty advisor, 
Dr. Eileen Rossman to keep even the craziest ideas throughout the process to spark creative and original 
thought.  
 

Table 5. Ideation techniques. 
 

Transport Vaccines 
(Traditional 

Brainstorming) 
 

Cool Vaccines 
(SCAMPER) 

 

Charge Cooler 
(Traditional 

Brainstorming) 
 

Withstand Heat 
(Brainwriting) 

 

·       Existing Cooler 
·       Autonomous 

Helicopter 
·       Back of 

motorcycle 
·       Backpack 
·       Teleportation 
·       Amazon prime 
·       Drones 
·       ATV 
·       Car 
·       Elephant  
·       Horse 

S: Ice Packs, thermal 
battery 
C: Freezer, Solar 
Panels  
A: Adapt to 
surrounding temp 
M: Dry Ice 
P: Use for food 
E: Minimize Weight, 
Insulation 
R: Cooker, Oven 
 

·       Solar power 
·       Peltier 
·       Battery 
·       Wall outlet 
·       Nuclear 
·       Hydro 
·       Gravity 
·       Wind  
·       Sun  
·       Ocean 
·       River powered 
·       Human powered 
·       Elephant powered 

·       Vacuum sealed 
cooler 

·       Styrofoam 
insulation 

·       Local African 
insulation 

·       Water bath 
·       Always pump out 

heat to keep cool 
·       Change climate of 

Africa to 2-8 C 
·       Vacuum and 

material insulation 
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·       Camelback 
·       Sniper/cannon 
·       Flat earth map –    

straight shot 
·       AT-AT 
·       Jason Bourne 
·       Vacuum chamber 
·       Insulated bag 
·       Yeti 
·       Crate 
·       Bank vacuum tube 
·       Heely’s  

·       Bike powered 
·       Electricity 
·       Gas  
·       Propane 
·       Generator 
·       Hamster 
·       Fly  
·       Laser  
·       Clean coal 
·       Hand crank  
·       Magnets 
·       Thermal magnets 
 

·       Pump heat out 
using stacked 
Peltiers 

·       Place cooler in a 
cooler in a cooler 

·       Reflective outer 
coating for solar 
heat 

·       Phase change 
substance of 2-8 C 

·       Cover device with 
thermal blanket 

 
 

 
During and after the brainstorming sessions, the members of the team drew sketches to communicate their 
more inspired concepts. Figure 2 depicts a top view of a concept cooler with a simple Peltier-driven 
cooling set up.   

 
Figure 2. Concept cooler with two heat sinks and fans. 
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The concept cooler in Figure 2 is cooled by two Peltiers with the hot side on a heat sink and the cold side 
in contact with an aluminum housing. The heat sinks are kept cooled by two DC fans that blow air through 
the fins to dissipate heat. Holes in the sides of the cooler would allow the hot air to escape to the ambient 
air. The following concept in Figure 3 utilizes water instead of air to cool the hot side of a Peltier to 
capitalize on the high specific heat capacity of water.   
 

 
Figure 3. Concept cooler with Peltier, phase change material, and heat sink inside a water bath. 

 
The concept in Figure 3 is cooled by a Peltier with its hot side connected to a heat sink which sits in a water 
bath. Once the system has run completely through (i.e. the phase change material is completely frozen), the 
water bath will be hot from absorbing energy and can be dumped out to release the unwanted heat. The cold 
side cools an aluminum chamber with a phase change material inside. Once the phase change material is 
frozen it acts as a thermal battery to keep the vaccine chamber cool while the Peltier is off. Another cooler 
concept created during the brainstorming sessions is portrayed in Figure 4.  
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Figure 4. Concept cooler with heat sink and water bath on top. 

 
The cooler in Figure 4 is another cooler concept which utilizes Peltier technology coupled with a phase 
change material. The heat sink and water bath are flipped to be on top of the vaccine chamber in order 
maximize cooling efficiency since heat has the tendency to travel up. The water can be dumped after use to 
get rid of the unwanted energy within the system. The concept also has a second lid that is more heavily 
insulated that replaces the water bath lid when not in use.  
 
The above featured concept sketches were some of the many drawn by the team during the ideation stage. 
Using the list of ideas in conjunction with the sketches, the team put together four separate Pugh matrices 
for each function. The matrices took the top ideas from each session and weighed them against each other 
to more narrowly select the most viable solutions. The Pugh matrices can be viewed in Appendix C at the 
end of the document. 
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4.2. Concept Models  
 
Table 6 below depicts the concept models generated prior to the preliminary design review presentation. 
These models were made from easily adaptable materials such as cardboard, aluminum foil, and tape, and 
are not fully functional. They only represent potential design directions set forth by the team.  
 

Table 6. Concept Models 
Concept Model Description Picture 

 
 

#1 
Tall Boy 

 
 

Tall, rectangular cooler design for ample room 
for vaccines. Solar panel and removable lid on 
top. 

  
 
 
 

#2  
The Separator 

Rectangular cooler design. Has inner lattice 
design to hold vaccines securely. 

  
 
 
 

#3  
Jack in the Box 

Cooler within a cooler design. Maximizes 
insulation potential. Uses air gap between 
coolers as a thermal insulator.  

  
 
 
 

#4  
Two Face 

Cooler design with two interchangeable lids. 
When the Peltier is not running, lids will be 
switched to limit heat transfer. 
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#5  
The Nuclear 

Core 

Cylindrical cooler design. Peltier and heat sink 
located on top of cooler. Phase change material 
along the sides of the vaccine chamber. 
Insulation on the outside of the phase change 
material layer. 

  
 
 
4.3 Decision Matrix 
 
The team selected the top three to six concepts from each Pugh matrix and created a Morphological matrix 
to assemble multiple creative and viable solutions. The matrix serves as a way to combine function concepts 
into distinctly different products and can be found in Appendix D. 
 
The five system concepts were entered into a decision matrix (Appendix D) to weigh how they perform 
against each other. The specifications taken from the QFD were used to evaluate how each system satisfied 
critical criteria. The engineering needs were weighted by importance against themselves. It was found that 
the most critical criteria of the cooler would be maintaining the optimal operating temperature and it is the 
only criteria that earned a weight of 5. The next most important criteria were found to be cost, power 
consumption duration of charge, and portability each receiving a weight of 4. The system model were rated 
on a scale of 1-5 for how they fulfilled each criteria. Then the ratings were multiplied by the weight of 
importance for the criteria. The final scores are at the bottom of the matrix and are the sums of the weighted 
rating values.  
 
The totals in the matrix show that system Concept 1 outscored the rest of the designs which utilized a Peltier 
coupled with a phase change material. The second best design was Concept 2 which used a backpack, 
Peltier and phase change material. The cooling device would be stored in an existing cooler style body and 
use Styrofoam insulation similar to current cooler models available.  
  



 

 
 

22 
 
 
 
 

4.4 Selected Concept 
 

The Solar Freeze team has made many iterations and design changes since the beginning of the project. The 
current design as presented during the Critical Design Review can be seen below in Figure 5 and will be 
discussed in further detail in Chapter 5: Final Design. To see a previous design iteration, specifically the 
design at the time of the Preliminary Design Review (11/16/18) view Appendix H. 

   
Figure 5. Concept of final design.  

 
4.5 Potential Issues/Risks 
 
One of the biggest issues involved with a vaccine cooler is keeping the vaccines at the optimal temperature 
so they retain their effectiveness. Limiting the heat transfer into the cooler will be one of the biggest 
challenges the Solar Freeze team will face. The team will also face challenges with the Peltier. The hot side 
of the Peltier must be very securely pressed to the heat sink otherwise heat will not dissipate efficiently 
enough. The cold side of the Peltier must also be securely attached to the heat pipes so they can work 
efficiently. Attaching and figuring out the optimal design of the heat pipes in the phase change material 
chamber will likely be tricky. Using the Peltier to fully freeze the phase change material will also be a 
challenge. Extensive testing needs to be done to get a better sense of these issues and what will be done to 
combat them.  
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The Design Hazard Checklist in Appendix G goes over the expected risks that will be present with our 
design. Due to the fact that our project is design to have no moving parts, only three of the design hazards 
are applicable to the Solar Freeze’s project. Sturdy handles will be installed to make transportation easier. 
One design hazard on the checklist that needs to be considered is that there will be electrical systems used 
that will not be grounded. But, the amount of current running from the solar panel to the Peltier is small 
enough that it will not be harmful. The last design hazard that the team will need to consider is the exposure 
to extreme weather conditions. The vaccine cooler must be designed to withstand the high temperatures 
and harsh conditions such as dust or wind in Africa.  
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5. Final Design 
 
This chapter discusses the overall system description, detailed subsystem description, specific part 
descriptions, and an ideal usage schedule. After this chapter, the reader should have a very good idea of 
how each part works in each subsystem and how the overall system runs.  
 
In the following chapter, two versions of the final design will be discussed: first, the final design as of the 
Critical Design review on February 7th, 2019 and second, the final design as of the Final Design Review on 
May 31st, 2019. The second final design will reflect a design that has been iterated and improved on based 
off of hours and hours of testing. This is the design that was presented at the Senior Project Expo on May 
31st, 2019. 
 
5.1 CDR Design: Overall System Description 
 
The vaccine cooler system consists of a vacuum flask used as an outer chamber for insulating the vaccines 
and cooling system, along with a thermoelectric cooling system consisting of a heat sink and fan, Peltier, 
and phase change material (PCM) chamber. Also included is an insulation cover for operation when the 
Peltier is not being powered, as well as temperature controller that notifies the user when to plug into the 
solar panel to power the Peltier. Since the capability of the plastic lid to insulate heat will be defected after 
alterations, the insulation cover protects the critical junction from allowing heat into the vaccine chamber. 
The PCM chamber houses a non-toxic, biodegradable phase change material which acts as a thermal battery 
in order to maintain the vaccine chamber at 4.5 ℃. In order to minimize heat transfer from the environment 
to the vaccine chamber, nylon fasteners are used to attach each system together. A full exploded view of 
the complete assembly can be seen in Figure 6 below.  

 
Figure 6. Exploded view of complete assembly. From top to bottom: Insulation Cover Assembly, Heat 

Transfer Assembly, and Vaccine Chamber Assembly.   
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5.2 Detailed Subsystem Descriptions 
 
In the following section, each subsystem of the vaccine cooler will be discussed in detail. The function of 
each part will be described along with justification for the design direction through analysis and testing.  
 
5.2.1 Vaccine Chamber 

 

 
Figure 7. CAD rendering of vaccine chamber. 

 
The vaccine chamber is a vacuum-insulated, RTIC one gallon flask that is used to hold and transport the 
vaccines, as seen in Figure 7. Due to the temperature sensitivity of the vaccines, this component needs to 
be well-insulated and reliable. A vacuum-sealed flask was chosen over other types of insulation because of 
how effective it is at limiting heat transfer. From the specifications provided by RTIC Products, the one 
gallon flask is able to keep ice at 0 ℃ for 24 hours. Upon further simple testing, it was found that the flask 
was able to hold a half gallon of ice for 22 hours, thus validating the claims made by RTIC and providing 
design verification for the component. The full detailed drawing of this part can be found in Appendix M: 
Drawing Package, part number SF101010.  
 
Six steel cup hooks are adhered to the inside of the gallon jug 8 inches up from the bottom using epoxy. 
These six evenly spaced hooks are used in conjunction with mesh bags to hold the vaccines in an organized 
array out of the path of the phase change chamber down the center of the system. The bags are small enough 
that they can be lifted out of the 4 in opening of the gallon jug. The bags also serve as an organization 
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method for separating vaccines by type and size. The full assembly drawing of this subsystem can be found 
in Appendix M: Drawing Package, part number SF101000.  

 
 
5.2.2 Heat Transfer Assembly 
 

 
Figure 8. CAD rendering of heat transfer assembly. 

 
The heat transfer assembly pictured above in Figure 8 is the driving system of the design. At the core is 
the Peltier thermoelectric cooler which draws heat out of a phase change material and dissipates it to the 
air through a heat sink and fan. The heat sink, fan and aluminum phase change chamber are secured to the 
container lid using nylon bolts, screws and nuts. An LED indicator strip wraps around the cap to signal 
the temperature of the vaccines to the operator. Refer to Appendix M: Drawing Package, part number 
SF102000 for an assembly drawing of the system.  
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5.2.2.1 Phase Change Material Container 

 
Figure 9. CAD rendering of PCM container. 

 
The phase change material container is a 9” long, 1.5” diameter aluminum pipe that is filled with phase 
change material and is capped at the top by the cold side plate and at the bottom with a rubber end cap as 
seen above in Figure 9. The rubber end cap is bought off the shelf and has a screw-driven binding to 
tighten the fitting. The cold side of the Peltier is in contact with cold side plate featured as the part at the 
top of Figure 9. Heat is removed from the cold side plate and then the PCM container walls. As the 
temperature decreases, the PCM freezes as heat is drawn out radially. When the PCM is frozen, it will act 
as a thermal battery for the system, or an “ice pack”. This thermal battery maintains the internal 
temperature of the vaccine chamber at the ideal temperature of 4.5 °C. When the Peltier is not in use, the 
PCM in the container slowly melts because it is absorbing thermal energy that is leaking into the 
chamber. Even when it is melting, the PCM maintains the internal temperature of the vaccine chamber. 
The phase change material chosen is manufactured by a company called Vericor Medical. It is non-toxic 
and biodegradable with a melting point of 4.5°C. For the full detailed drawing of the PCM container, 
refer to Appendix M: Drawing Package, part number SF102020.  
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Figure 10. CAD rendering of cold side plate. 

 
The purpose of the cold side plate is to be in contact with the cold side of the Peltier.  The plate is made 
from 6061 aluminum. The material was chosen for its excellent thermal conductivity and common use in 
industry for heat transfer applications. The CAD rendering can be seen above in Figure 10. The plate was 
analyzed using a 3-D transient heat transfer model in MATLAB. The plate was initially set at ambient 
temperature (30°C), then a 4.5°C boundary condition was set on the top of the plate to provide a simple 
model for the Peltier. All other faces were assumed to be insulated since they are located inside the vacuum 
flask. It was found that at steady state, there was only a 0.16 °C temperature difference between the top and 
bottom plates, validating the geometry and material choice for the cold side plate. The transient results can 
be seen in Figure 11 below for t = 1 min and t = 10 min (steady state) seen from left to right. The full code 
can be seen in Appendix F: MATLAB code for 3D Thermal Modeling. For the full detailed drawing of the 
cold side plate, refer to Appendix M: Drawing Package, part number SF102021. 
 

  
Figure 11. Transient analysis for cold side plate at t = 1 min and t = 10 min. 
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5.2.2.2 Cap 

 
Figure 12. CAD rendering of cap. 

 
The cap is the threaded cap that comes standard with the RTIC one gallon vacuum jug. It is modified to act 
as the “base” for the entire heat transfer assembly. The cold side plate of the phase change chamber is 
attached to the bottom of the cap via two nylon bolts in the holes seen above in Figure 12. The cold plate 
will sit flush with the inside of the top of the cap. The other two circular holes in the lid are used to secure 
the heat sink/fan. The Peltier sits in the square hole of the lid and is squished between the heatsink and 
phase change chamber. Thermal paste is used on both sides of the Peltier to maximize thermal efficiency. 
Refer to Appendix M: Drawing Package for an exploded view of the heat transfer assembly and detailed 
drawings of the cap.  
 
Note: The three quarter circle hole on the right side of the cap in Figure 12 is where the water spout was 
located. This hole is covered up and well insulated to prevent unwanted heat transfer.  
 
Due to the many modifications done to the cap, measures were taken to properly insulate it. Nylon bolts are 
used to fasten the cold side plate and heat sink to the cap because they have a thermal conductivity of about 
800 times less than aluminum bolts. A rubber O-ring is included in the purchase of the one gallon jug that 
is used to effectively minimize heat transfer through the threads that connect the lid to the vacuum chamber.  
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5.2.2.3 Peltier  
 
The proposed design will rely on a Peltier to cool and maintain the vaccine chamber between 2 and 8 °C. 
Peltiers consist of small rectangular ceramic plates with doped semiconductors sandwiched between them. 
When a voltage is applied between electrical junctions of a Peltier, current flows through them, causing 
heat to be removed at one junction and deposited at the other. In this sense, a Peltier is a solid-state active 
heat pump that uses electrical energy to achieve a desired cooling effect. Due to the lack of moving parts 
or refrigerant, small profile, very long life, and low cost, Peltiers prove to be an attractive method of cooling 
for this application. On top of this, Nate Heston and Peter Schwartz have shared their research data from 
the summer of 2018 where solar-driven Peltiers were used to effectively cool water in order to produce ice. 
This research provided us with performance characteristics of Peltiers at varying current levels, different 
configurations (i.e. stacked), and fluctuating temperature differences. Important parts of their research are 
included in Appendix E: Peltier Data.  

 
Figure 13. TEC 12715 Peltier module. 

 
Figure 13 depicts the Peltier model that will be used to transfer heat from the PCM chamber, effectively 
cooling the inner chamber to a temperature of 4.5 °C. After about 0.001 in. of thermal paste is applied to 
both sides of the Peltier device and excess paste is removed, the heat sink and fan will be attached to the 
hot side of the Peltier, and bolted down with an adequate mounting pressure of 25-100 psi. This mounting 
pressure will be measured with torque wrenches and will help to minimize the contact thermal resistance 
of the Peltier. In order to pull an estimated 20 W of heat out of the system as calculated in Appendix E: 
Peltier Data, the Peltier must be ran at 8.08 V and 8.25 A to achieve an optimal COP. This configuration 
draws 66.66 W out of the solar panel, which is possible with a 100W solar panel, even during non-peak 
hours.  
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5.2.2.4 Heatsink and Fan 

 
Figure 14. CAD rendering of heatsink and fan. 

 
One of the most important aspects of the vaccine cooler design is the method used to dissipate heat from 
the hot side of the Peltier. If heat cannot be dissipated quick enough, the Peltier could possibly short out 
or become inefficient. If the Peltier is not working properly, the phase change material will not freeze and 
the vaccines will spoil. Research and calculations were done involving some type of water bath that 
would be utilized to cool the Peltier but in the end it was decided that a fan and heatsink combination 
system would be most effective and appropriate for the design. 
 
The chosen fan and heatsink is a LGA Socket 1155 Intel CPU Cooler and can be seen above in Figure 14. 
According to calculations in Appendix N: Hand Calculations, this fan and heat sink combination device 
can dissipate heat at a rate of 163 Watts which is adequate for the design. The heatsink with be secured 
firmly to the holes in the cap via nylon bolts (See Appendix M: Drawing Package for an exploded view of 
how the two components line up). Small slots were machined out of the fins using the Dremel tool (See 
Chapter 6.2.5 for more in-depth manufacturing instructions) for which the nylon bolts will sit.  
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5.2.2.5 LED Temperature Indicator Lights 
 
Maintaining ideal temperatures is a crucial component in the vaccine cooler. A series of digital LEDs will 
be wrapped around the circumference of the vaccine cap. Incorporating a 360 degree indicator light 
configuration allows the end user to be aware of the status of the cooler from any angle of observation. This 
system is composed of a microcontroller, waterproof temperature sensor, LED light strip as previously 
mentioned above, and a rechargeable power bank that supplies power to the system as depicted in Figure 
15 below. The LED lights will be controlled by an Arduino Nano that will output a signal to illuminate 
either red, green or blue light depending on the input signal from the temperature sensor. The waterproof 
temperature sensor is mounted on the inside of the chamber where the vaccines are housed during transport. 
The microcontroller is compact enough to secure on top of the cap, and the power bank will be secured on 
the top of the heatsink. The microcontroller is programed to illuminate the LED strip with a blue hue when 
the temperature inside the chamber is 2 °C or less. When the end user observes the blue color, this indicates 
that the chamber is ready be filled with vaccines and begin the transport journey.  
 
In the event of the internal chamber is at a temperature between 3 and 6 °C, the microcontroller will output 
and signal the RGB LED strip to deactivate the blue hue and activate a green hue. The green color signifies 
that the vaccines are at optimal temperature and no action is required from the end user. When the internal 
temperature reaches 7 °C, microcontroller will activate the LED strip with a red color indicating to the user 
that the vaccines are reaching upper limit temperatures and the Peltier needs to be plugged back into a 
power source immediately. Once the internal temperature reaches 8 °C, the red ring of LEDs will start to 
pulse to generate a sense of urgency from the end user for the Peliter to be plugged into a power source. 
Once the upper limit of 8 °C is surpassed, and the RED LED strip is illuminated for more that 10 minutes, 
the vaccines have lost their potency and need to be discarded. Refer to Appendix K for the microcontroller 
code and flowchart.  
 
 



 

 
 

33 
 
 
 
 

 
Figure 15. Circuit diagram of LED temperature indication system. 
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5.2.3 Insulation Cover Assembly 

 
Figure 16. CAD rendering of insulation cover.  

 
The insulation cover, seen above in Figure 16, will be used when the Peltier-driven cooling system is not 
running to limit the heat transfer into the vaccine chamber. Due to the multiple modifications done to the 
cap of the vacuum flask, heat transfer will be more likely to travel through the cap. This heat transfer is 
not a problem when the Peltier is running but when it is not, measures need to be taken to limit the heat 
transfer into the vaccine chamber. The insulation cover will limit the heat transfer by eliminating any heat 
transfer via convection through the cap.  
 
The outer surface of the insulation cover is an 9” diameter acrylic cylinder capped on one end. 1” thick 
strips of FOAMULAR® extruded polystyrene insulation are glued to the inside of the cylinder. These 



 

 
 

35 
 
 
 
 

strips sit flush with each other creating a good insulation seal. The insulation cover will slide over the top 
of the vaccine cooler and fit snugly with an interference fit.  
 
5.3 FDR Design: Overall System Description 
 
The second final design is similar to first final design in the sense that the team is still trying to accomplish 
the goals in the same fashion. A Peltier is still used to cool a phase change material which is held in a PCM 
container and located inside of the vaccine chamber, and the PCM still acts as a thermal battery. A heatsink 
and fan is still used to remove heat from the system and an insulation cover is still used to limit the heat 
seepage into the vaccine chamber when not running. Design changes include changes to the PCM container, 
cold side plate, cap, and insulation cover. These changes will be discussed in the following sections. See 
Figure 17 below for an exploded view of the modified design. 
 

 
Figure 17. Exploded view of modified complete assembly. From top to bottom: Insulation Cover 

Assembly, Heat Transfer Assembly, and Vaccine Chamber Assembly.   
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5.3.1 Modified Heat Transfer Assembly 
 

 
Figure 18. CAD rendering of modified heat transfer assembly. 

 
As it can be seen in Figure 18 above, the heat transfer assembly has been modified primarily to be able to 
dissipate more heat from the system and freeze the PCM in less time. This has been accomplished through 
a new heat sink, shorter and wider PCM container, and 3D printed cap to enclose the heat sink and fan. A 
detailed description of design changes for each component can be found below.  
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5.3.1.1 Modified PCM Container 
 

 
Figure 19. CAD rendering of modified PCM container. 

 
As seen in Figure 19 above, the PCM container has been modified from the original long, slender design to 
a shorter and wider PCM chamber. The chamber was made from 3” aluminum pipe and is 4” long. A 
threaded ABS plumbing cap was epoxied to the end of the pipe in order to fill the chamber with PCM and 
keep it sealed during operation. Also The design was changed so that the aspect ratio of the cylinder was 
closer to 1:1 in order to facilitate improved heat transfer throughout the cylinder. Furthermore, aluminum 
metal shavings were loosely added to the inside of the PCM chamber in order to adequately freeze the entire 
PCM. Without these aluminum shavings, the center of the PCM is not able to freeze completely in under 3 
and half hours. 
 

 
Figure 20. CAD rendering of modified cold side plate. 
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As seen in Figure 20 above, the cold side plate was modified to fit the new PCM container and allow 
enough room to mount the PCM chamber and cold side plate to the underside of the modified cap. The 
cold side plate was made from a 3.25” circular aluminum plate and is 0.25” thick. Two through holes 
were drilled on the cold side plate in order to allow it to be mounted to the underside of the modified cap. 
One through hole was drilled on the cold side plate to accommodate a temperature probe. For detailed 
dimensions and hole locations, refer to Appendix M.  
 
 
5.3.1.2 Modified Cap 
 

 
Figure 21. CAD rendering of modified cap. 

 
As seen in Figure 21 above, the cap was modified from the CDR design in order to accommodate a larger 
heat sink, and provide adequate housing for the Arduino Nano and wired connections. The cap consists of 
two components: the housing itself, and a snap-fit lid that attaches to the top of the housing.   
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5.3.1.3 Modified Heatsink and Fan 
 

 
Figure 22. CAD rendering of modified heatsink and fan. 

As seen in Figure 22 above, the heatsink and fan were completely changed in order to dissipate more heat 
and improve the heat transfer out of the PCM chamber. The heat sink was upgraded from a LGA Socket 
1155 Intel CPU Cooler, typically used in desktop computer applications, to a copper-core HP dc5700s 
with integrated copper heat pipes. The improved thermal conductivity of copper and the introduction of 
heat pipes to quickly dissipate heat improved the cooling capabilities of the system.  

5.3.2 Modified Insulation Cover Assembly 
 

 
Figure 23. CAD rendering of modified insulation cover. 
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As seen in Figure 23 above, the insulation cover was changed in order to better insulate the system when 
the cooler is in transit. Styrofoam was selected for its low thermal conductivity of 0.01 W/m-K, and was 
press fitted into a white, plastic housing in order to supply 1.5 inches of insulation all around the vacuum 
flask.  
 
 
5.4 Ideal Usage Schedule 
 
The solar-powered Peltier-driven vaccine cooler can be used wherever there is adequate sunlight. The ideal 
way to use the cooler is to set it up in the morning, then let it charge for 3 hours until the PCM is completely 
frozen and the LED indicator is blue. Unplug the solar panel and transport the vaccines, making sure the 
LED indicator remains green for the duration of travel. The design will give the user about 12 hours of 
travel time. Once the LED turns red, it means that it is time to plug the solar panel back in and refreeze the 
PCM. This process will continue until the vaccines have reached their final destinations 
 
6. Manufacturing   
  
The manufacturing chapter covers the procurement of materials, the step by step manufacturing plan for 
each part, and the assembly plan. All of the materials are easily obtainable and have short order lead times. 
Every part can be manufactured in the Mustang 60 machine shop or other shop locations on Cal Poly’s 
campus.   
  
6.1 Procurement  
  
The list of every part or material needed can be found in the Bill of Materials in Appendix M. Most parts 
can be found on Amazon or another online retailer. Smaller parts such as bolts, washers, and nuts can be 
purchased at local hardware store such as Home Depot. To obtain many heatsinks and fans for which can 
be tested, the Solar Freeze team has reached an agreement with the local computer recycling company, 
Achievement House Inc., to receive free heatsinks and fans. Partnering with Achievement House Inc. has 
been a huge benefit to the team as now they can experiment on fans and heatsinks without fear of running 
out of funds.   
  
6.2 Manufacturing Plan  
  
The following section will go through step by step instructions of how to manufacture each part of the 
vaccine cooler and prepare it for assembly. All of the following manufacturing processes were completed 
at the Cal Poly Mustang 60 machine shop or the Hangar machine shop. The current design does not call for 
any outsourcing of manufacturing other than a weld which was completed by welding Professor Kevin 
Williams. Refer to Appendix M: Drawing Package for drawings and dimensions to aid in the manufacture 
of each individual part.  
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6.2.1 Cold Side Plate  
  
The cold side plate is a 0.25” thick circular aluminum plate. The name cold side plate comes from the fact 
that it is in contact with the cold side of the Peltier and will be cold. The part itself is purchased as a 0.5” 
thick, 3.25” diameter plate from McMaster. The manufacturing that is required it to step down the thickness 
of the plate to 0.25” , and drill the holes for mounting to the cap.  

1. Use the mill to trim down the thickness of the aluminum plate from 0.5” to 0.25”.  
2. Using drill press, drill four 11/64” holes into the plate. Two holes will be on each side. See drawings 

in Appendix M for hole location dimensions. Four corresponding holes will be drilled into the cap 
later. Two of these holes will be where the nylon bolts are used to attach the cold side plate to the 
bottom of the cap. The other two holes are for thermocouples to monitor the internal temperature 
of the phase change material.  

 

 
Figure 24. Solar Freeze team member Cody Volk using the mill to precisely trim down the thickness 

of the aluminum cold side plate. 
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6.2.2 PCM Chamber  
  
The phase change material chamber consists of an aluminum pipe and a plastic end cap. Manufacture as 
follows:  

1. Using the metal chop saw, cut the 3” diameter aluminum pipe to a length of 4”.   
2. Mount the RectorSeal 3” plastic drain cap on a manual lathe.  
3. Using a turning tool, remove the plastic flange so that the entire cap is a cylinder with 3” outer 

diameter.  
4. Measure 2” inward from the threaded cap and clearly mark with ink. 
5. Turn the diameter of this 2” section to 2.89” so that it will fit inside the aluminum pipe. 
6. Flip the part around in the lathe. Use a parting tool to remove the excess material that has not 

been turned.  
7. File/ sand edges so that the cap is smooth.  
8. Mix epoxy and apply generously to inside of aluminum pipe as well as outside of end cap. 

Spread epoxy up the end cap about 0.5”.   
9. Attach parts and allow 20 minutes for epoxy to set.  

 
 

 
Figure 25. Threaded cap mounted on a manual lathe. 
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 Figure 26. Assembled PCM chamber with plastic threaded cap. 

 
 

6.2.3 PCM Chamber and Cold Side Plate  
  
It is important that the phase change material chamber and the cold side plate have good thermal connection 
as this is where the heat will be transferring through. Manufacture as follows:  

1. Using the lathe, face the edge of the 3” aluminum pipe so it is level. The pipe needs to be able to 
sit flush on the cold side plate to ensure good thermal contact.   

2. Add a small chamfer to the outside diameter of the 3” aluminum pipe. This will make the welding 
process easier.   

3. Welding Professor Kevin Williams was contacted and agreed to assist the team in welding the PCM 
chamber to the cold side plate. The 3” aluminum pipe was centered on the aluminum plate and 
welded. It is important that this weld is water-tight as this chamber will be holding the phase change 
material and any leakage would be a large concern.  

4. Once the weld is completed, a small hole will be drilled on the side of the PCM container for a 
temperature probe. This probe will run from the micro-controller, through the cold side plate and 
into the PCM chamber, and out of the PCM chamber into the vaccine chamber so it can measure 
the air temperature there.  

5. The hole is 11/64 in diameter and is drilled 1.5 in from the top of the chamber. See Appendix M 
for the exact location in the drawing.  
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6.2.4 Cap  
  
The cap of the one-gallon vacuum chamber is 3D printed in order to accommodate the Peltier and heat sink 
assembly. This was done through Engineering Sandbox. The fully dimensioned drawings for the cap can 
be found in Appendix M. The only further manufacturing required for the cap is to drill the required holes 
to mount the heat sink, as well as the temperature probes. The hole locations can be found in Appendix M.  

 
6.2.5 Heatsink  
  
The heatsink and fan combo utilized in this project is a copper-core HP dc5700s heat sink. This CPU cooler 
has a rectangular four-hole bracket that is designed to securely fix the large and heavy heatsink to the 
motherboard. This is an off-the-shelf part, and only one manufacturing process needs to be completed on 
the heatsink.  

1. Add a strip of Velcro to the top and side of the heatsink. Place a corresponding strip of Velcro on 
the battery and the micro-controller.  

 
6.2.6 Cooling Fan  
  
The cooling fan utilized in this project is a single speed cooling fan out of a Cisco 2900 series network 
router. This fan has a two-pin connector that is designed to plug into a motherboard. This connector has a 
back and brown wire. Assemble as follows: 

1. Using wire cutters, cut both wires near the connector that plugs into the motherboard.   
2. Unwind the two wires to separate them from one another.  
3. Using wire strippers, strip off the insulation ends of the wires. 
4. Using a crimping tool, crimp on terminals to easily connect and disconnect the fan from the solar 

panel.   
5. Using 4 screws, fasten the fan to the heatsink making sure the label of the fam is up against the 

heatsink to ensure proper air flow to maximize cooling effect.  
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Figure 27. Cooling fan attached to the heatsink on top of the cap.  

 
6.2.7 Vaccine Chamber  
  
The vaccine chamber is a one-gallon vacuum sealed flask. No manufacturing was completed that could 
potentially have damaged the vacuum seal of the walls of the flask. Vaccines will be stored in Ziploc bags 
and placed at the bottom of the vaccine chamber. Additional padding can be added to protect the vaccine 
vials if needed.  
 
6.2.8 Insulation Cover   
  
When the system is not running, it is important that any heat transfer from the environment into the vaccine 
chamber is minimized so that the phase change material container remains frozen for as long as possible. 
An insulation cover will be used to limit the heat transfer into the vaccine chamber through the cap.  The 
insulation cover will be made from large 1-inch-thick sheets of Styrofoam and a white plastic trashcan. 
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1. Place the vacuum flask down on a sheet of Styrofoam and outline the base in order to draw the 
inner circle for the insulation.  

2. Locate the center of the circle, and use a compass to add 1.5 inches to the radius of the inner circle.  
3. Cut out the insulation ring and use this as a template for all other cuts.  
4. Measure and cut out an additional 10 rings.  
5. Epoxy the rings concentric with one another and let set overnight.  
6. Now use the template and only trace the outer diameter circle on the sheets of Styrofoam.  
7. Cut out 4 of these circles and lay them stacked on top of one another inside the white trashcan.  
8. Next, stack the epoxied rings on top so ensuring that the top-most ring is flush with the lid of the 

trashcan.  
9. The fit between the Styrofoam and trashcan should be very snug, ensuring that the vaccine cooler 

can be covered and uncovered without the Styrofoam itself coming out.  
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6.2.9 LED Indication System 
The contents that will be carried in the vacuum flask are sensitive to temperature and require to be within 
a specific temperature range. An LED indicator system will give the end user a visual of the current status 
of the cooler. An Arduino mini controller will collect data from temperature probe and output a signal to a 
digital LED strip wrapped along the perimeter of the cap of the vacuum flask. This system is composed of 
the following: Arduino controller, temperature sensors, LED light strip, 5v battery power pack, and 3 pairs 
of 14-gauge wire leads to make connections from the controller to each component. Assemble as follows: 

1. Secure Arduino controller to the side of the heatsink with Velcro and 3D printed holder. 
2. Secure battery pack on top of the heatsink with Velcro. 
3. Spice and join the black wire from the LED strip, temperature sensor, and Ground on 

controller board to the negative terminal of the power pack.  
4. Splice and join the Din contact point on the LED strip to D2 contact point on the controller.  
5. Splice and join the yellow data wire on the temperature sensor to D3 contact point on the 

controller.  
6. Splice and join the +5v contact point on the LED strip, red wire from the temperature probe, 

and +Vin on the controller to the positive terminal of the battery pack. 
7. Turn on power pack and the LED Indication System will power on and illuminate a hue 

from the LED strip.  

  
6.3 Assembly   
  
Once the parts are manufactured, the assembly can begin. The assembly is relatively simple as it will only 
require the insertion and tightening of bolts. Assemble as follows:  

1. Secure the cold side plate and the welded phase change material container to the cap using two 
nylon bolts, washers, and nuts. The thermocouple should be inserted into the phase change material 
container and run out to its location in the vaccine chamber. The thermocouple should be kept as 
near to the middle as possible.   

2. Add thermal paste to both sides of the Peltier to improve thermal conductivity. Place the Peltier 
into its dedicated rectangular cut out on the cap.  

3. Attach heat sink to cap using bolts, washers, and nuts into corresponding holes. Make sure the 
bottom of the heat sink is flush with the Peltier. Tighten the bolts down appropriately until the 
connection is snug.  

4. Stuff the PCM chamber full with scrap aluminum shavings from a lathe. Be sure to thoroughly 
wash the shavings first. See Figure 29. below to see the PCM chamber and the aluminum shavings.  
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5. Fill the phase change material chamber with PCM (about 250 mL) and use the threaded cap to seal 
the chamber so no PCM leaks out. Add 4-6 layers of plumber’s tape to the threads of the cap before 
screwing it closed. Tighten the cap as much as possible to prevent leakage of PCM.  

6. Insert PCM container assembly into the vaccine chamber. Tighten cap until secure. 
7. Velcro battery pack and micro controller to heatsink.  
8. Connect wires as described in section 6.2.9 

 
Overall, the vaccine cooler is not a difficult device to manufacture and can be completed by a person with 
basic machining skills in the machine shop. The estimated manufacture time is eight hours not including 
the time needed to 3D print parts.   
	

	
Figure 28. Attaching the cold side plate to the cap using nylon bolts. 
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Figure 29. PCM container with aluminum metal shavings from a lathe.  

 
6.4 Future Recommendations for Manufacturing 
 
In future manufacturing of the vaccine cooler system, the Solar Freeze team recommends following the 
steps outline above in Chapter 6, and referring to the drawings as needed in Appendix M.  
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7. Design Verification Plan 
 
In this chapter the following will be discussed: design specifications that need to be met, testing facilities, 
testing instructions, and test results.  
 
7.1 Design Specifications 
 
In this section each individual design specification that needs to be met will be discussed independently. 
Discussion will include how each specification is met and the level of importance of meeting that 
specification.  
 
7.1.1 Optimal Temperature  
 
The most important design specification that needs to be achieved is maintaining the internal temperature 
of the vaccine chamber between 2-8 ℃. One Peltier will need to be able to freeze the entire phase change 
material while charging. The next iteration will be powered by a power supply and data will be recorded 
with multiple thermocouples with one in the vaccine chamber, one in the phase change material, and one 
at the heat sink. The full design will be tested to ensure that the cooler is safe for vaccines.  
 
Once the phase change material is frozen, a test will be conducted to see how long the cooler will be able 
to keep the vaccines between 2-8 ℃. To do this, thermocouples will be placed in the vaccine chamber and 
the data will be recorded for the duration of one charge. Because the heat transfer calculations are very 
complex, this design specification will only be verified through testing.  
 
7.1.2 Vaccine Capacity  
 
Currently, the design can hold 50 vaccine vials in the mesh bags hanging from hooks on the inner wall of 
the vaccine chamber. This number could change depending on design considerations. Ultimately, since 
each vaccine will already be at 2-8 ℃ before entering the cooler, maximizing the number of vaccines the 
cooler will actually help to prolong the time that the vaccine chamber will remain within the optimal 
temperature range. The team will test this through simple fit tests with standard vaccine vials.  
 
7.1.3 Weight 
 
The sponsors, Peter Schwartz and Nate Heston, gave a weight specification that the device must weigh less 
than 100 lbs. The current design weighs 15 lbs. without vaccines and is far below the design restriction. 
With vaccines it is estimated that the total weight will only increase by 5 to 10 lbs. This specification will 
be tested by using a scale.  
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7.1.4 Cost 
 
A chart displaying the cost of each part along with the total cost can be found in the Bill of Materials in 
Appendix M. As per the cost specification, the total cost of the vaccine cooler should not exceed $200. 
Currently, the device is over budget by approximately $166. This cost includes the solar panel, heat sink, 
and PCM, all of which have been acquired free of cost. Without taking these into account, the cooler is 
under budget by $14. Design decisions were made to attempt to lower the total overall cost. While cost is 
an important specification, designing a vaccine cooler that works is more important. Once the device works 
(meets other design specifications), steps were taken to optimize the design so the cost will not be so high. 
This specification will be tested by compiling a list of prices of each part and comparing it to the specified 
budget.  
 
7.1.5 Lifespan 
 
The specified lifespan for the vaccine cooler is about three years. The current design will last the duration 
of that time period as the PCM is rated at 1000 freeze/melt cycles assuming the cooler is being charged 
once a day. Potential issues could arise with the fan and Peltier if they are not maintained properly. The 
vaccine chamber, cold side plate, PCM container, and heatsink are made of durable materials and will have 
no issues lasting three years. This specification is dependent on the lifespan of the phase change  material. 
The phase change material company, Vericor, listed the lifespan of its phase change material as 1,000 cycles 
of freezing and melting.  
 
7.1.6 Dimensions 
 
According to the dimension specification, the device must fit in a 2’ x 2’ x 2’ cube. The current design has 
a 6” circular base and is 14.9” tall which fits easily inside a 2’ x 2’ x 2’ envelope. This specification is 
important because the vaccine cooler must be portable as it will be travelling extensively and can be tested 
via inspection of measurements.  
 
7.1.7 Power Consumption 
 
Currently, the design consumes about 80.4 Watts to run the Peltier and 6 Watts to power the fan. The 
maximum power consumption specified is 100 Watts. Power consumption is limited to the wattage of the 
solar panel that is used to power the device. It is important that the vaccine cooler is designed so that a 
single solar panel can power the device. The LED indicator system has a separate battery and provides a 
current on the milliamp scale, making its power consumption negligible. This specification can be measured 
using the equipment in the Ice Lab. The Ice Lab will be discussed more in-depth in section 7.2 Testing 
Facilities.  
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7.1.8 Charge Time 
 
Charge time, or the time it takes for the Peltier to freeze the phase change material and lower the temperature 
of the vaccine chamber to the optimal temperature, is specified to be 3.5 hours. The initial test of the vaccine 
cooler suggested that the charge time would be about 8 hours (Discussed in Section 7.3 Completed Tests). 
Design optimization steps were taken to bring the charge time down. Charge time is important as the vaccine 
cooler can only be charged when the sun is out. The lower the charge time is, the more mobile the vaccine 
cooler can be. This specification can be tested using thermocouples placed inside of the PCM container and 
a stopwatch.  
 
7.1.9 Duration of Maintaining Optimal Temperature 
 
This engineering specification refers to how long the frozen PCM can maintain the optimal temperature 
inside of the vaccine cooler. The team’s specification is to have the device maintain the optimal temperature 
for a period of 12 hours. This specification can be tested in the Ice Lab using thermocouples and a Data 
Acquisition device (DAQ).  
 
7.2 Testing Facilities 
 
The sponsors, Peter Schwartz and Nate Heston, have a designated “Ice Lab” (building 52 room D13) where 
they have been running tests on Peltiers and how they can be used to freeze water. The Solar Freeze Team 
has full access to the lab and all of its equipment. Equipment includes thermocouples, power supplies 
(simulates solar panel), sinks, and a variety of useful tools such as screwdrivers and hot glue guns. This lab 
adequately meets the team’s testing needs.  
 
7.3 Completed Tests 
 
A variety of tests were completed to prove that the vaccine cooler could comply with the set engineering 
specifications. The first test completed was a proof of concept test proving that the team’s goals were 
achievable. Following tests proved more specifics of the design.  
 
7.3.1 Proof of Concept Test 
 
The Solar Freeze Team first completed a proof of concept test on their structural prototype. Figure 30 below 
depicts the test taking place. Using the equipment in the lab, the team was able to use the Peltier to cool 
250 grams of water by about 14 ℃ in 70 minutes to remove about 14,000 Joules. The temperature of the 
hot side of the Peltier remained relatively constant. This proved that the Peltier was capable of cooling the 
temperature of water at about an average rate of 1 ℃ every five minutes. It also showed that the fan heatsink 
combination was capable of dissipating the heat at a fast enough rate to maintain the Peltier efficiency.  
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Figure 30. Testing the structural prototype while connected to a power supply and thermocouples in the 

Ice Lab.   
 
To see the table of the temperature data along with a corresponding graph, view Appendix I: Design 
Verification Plan. After further calculations which can be seen in Appendix J: Testing Calculations, it was 
determined that the system removed about 3.5 Watts from the water in the phase change material container. 
At this rate, it would take about 8.3 hours to completely freeze the water in PCM container. This is assuming 
the Peltier maintains the level of efficiency that it had been achieving thus far. Further tests were completed 
in order verify the design. These tests will be covered in the next section.  
 
7.3.2 Testing Process: Freezing the PCM 
 
Outlined below is the step by step description of the testing process that was completed to fully “charge” 
or freeze the PCM. The equipment required for testing include: two power supplies, connector wires, three 
type K thermocouples, temperature readout display, timer, and thermal paste. This test procedure assumes 
the Peltier-driven vaccine cooler is already completely assembled as described in Chapter 6: Manufacturing.  

1. Attach the wires of the Peltier and fan to the power supplies. The fan power supply should be set 
at 12 volts and 0.2 amps. The Peltier power supply should be set at 12 volts and 6.5 amps.  

2. One thermocouple, T2, should already be in place inside the PCM chamber. The second 
thermocouple, T3, is placed in between the fins of the heatsink. The end should be touching the 
core of the heatsink and running to the temperature readout display. The third thermocouple, T1, is 
placed inside the vaccine chamber. This thermocouple will be monitoring the air temperature inside 
the vaccine chamber.  



 

 
 

54 
 
 
 
 

3. Record the starting temperatures of all three thermocouples. Also record atmospheric pressure and 
temperature.  

4. Turn on the power supplies and start the timer. Record the temperature readings every three minutes 
for the first 30 minutes. This provides an accurate temperature versus time measurement as the 
PCM drops from room temperature to its freezing point of around 6 ℃. This should take between 
21-27 minutes. The heatsink temperature should remain constant between 33-36 ℃.  

5. Once the PCM temperature reaches about 6 ℃ and at 30 minutes, begin taking data points every 
five minutes. The PCM temperature will stay steady at 6 ℃ while the air temperature inside the 
chamber will continue to slowly drop.  

6. After approximately 2 hours and 40 minutes, or 160 minutes, the PCM will be completely frozen.  

The team completed a series of “charging” tests over multiple days to get a general understanding of how 
the process worked. A few of these tests were stopped early before the PCM was completely frozen in order 
to observe the results.  
 

	
Figure 31. Freezing or “charging” testing configuration setup with fan/heat sink system and Peltier 

connected to power supplies. 
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Test Results: 

	
Figure 32. Temperature vs time for PCM freezing test performed on May 2nd 2019. 

 
It can be seen in Figure 32 that the PCM began to undergo a phase change but did not phase change 
completely. The team wanted to categorize the air temperature inside the flask itself, so a third thermocouple 
was added to the system and a new test was conducted on May 7th.  

	
Figure 33. Temperature vs time for PCM freezing test performed on May 7th 2019. 

 
In Figure 33 the team observed the temperature of the vaccine chamber drop below the PCM chamber 
temperature, while the PCM was still undergoing a phase change. They decided to end the test at 90 minutes 
in order to observe the freezing profile of the PCM and determine potential methods of optimization.  
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Figure 34. Partially frozen phase change material inside PCM container after 90 minutes of “charging”. 

 
Figure 34 depicts the freezing profile of the PCM after the 90-minute mark of the freezing test performed 
on May 7th 2019. The team concluded that the PCM froze completely on the walls of the PCM chamber, 
creating a large thermal resistance and a barrier for further heat transfer. Furthermore, the PCM chamber 
started to gradually increase in temperature at the 80-minute mark, indicating that the Peltier was unable to 
pull more heat out of the system, and that heat was transferring back into the PCM chamber. After much 
deliberation and consultation with multiple Cal Poly professors, the team decided that the simplest, 
cheapest, and most effective way to improve the thermal conductivity of the PCM chamber was to introduce 
scrap aluminum shavings to the chamber before filling it with PCM. Another test was then performed in 
order to support this theory.  
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Figure 35. Temperature versus time for test with metal shavings in PCM container on May 14th. 

 
As seen in Figure 35, the PCM was able to freeze completely in 2 hours and 40 minutes, validating the 
introduction of aluminum shavings as a method of increasing heat transfer. After the PCM chamber was 
frozen entirely, the team opened the lid of the flask and kept it open for 60 seconds in order to simulate 
loading vaccines. Once 60 seconds had passed, the lid was sealed and the temperature inside the flask was 
recorded at 2 ℃, the lower limit of the acceptable range.  
 
7.3.3 Uncertainty Analysis  
 
In any experiment, there is inherent uncertainty involved with the equipment and methods selected for 
measuring desired quantities. In this case, the team observed potential sources of error in the accuracy of 
the thermocouple itself, an uncertainty based on the resolution of the temperature readout device, and 
uncertainty due to measurement noise. For the test on May 14th, total uncertainty in temperature 
measurement for each thermocouple during the phase change was calculated from tabulated uncertainties 
for type K thermocouples, visual inspection of the resolution of the temperature readout, and a statistical 
analysis for a sample size of 30 measurements. For a temperature range of 0-200℃, type K thermocouples 
have a standard accuracy of ±2.2℃. The temperature readout device reported to the nearest 0.1℃, 
introducing an uncertainty of ±0.05℃. Finally, a population standard deviation was found for each 
population of temperature measurements (populated by thermocouple 1 through thermocouple 3). By 
dividing these standard deviations by the square root of the sample size, an uncertainty due to measurement 
noise was found for each respective thermocouple. The uncertainties were then combined using a root sum 
square technique, since each uncertainty had the same units (℃).  
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Table 8. Summary of uncertainties due to measuring devices 
Readout Resolution [±℃] 

Uread 0.05 

Type K standard tolerance [±℃] 

UTK 2.2 
 

Table 9. Statistical analysis and summary of total uncertainty for each thermocouple 
Standard Deviations [℃] 

T1 T2 T3 
7.16 4.57 2.33 

 
Measurement Uncertainty [℃] 

T1 T2 T3 
1.31 0.84 0.42 

 
Total Uncertainties [±℃] 

T1 T2 T3 
2.56 2.35 2.24 

 
As summarized in Table 8 and Table 9, the calculated uncertainties in temperature measurement for 
thermocouples T1, T2, and T3, respectively are ±2.56℃, ±2.35℃, and ±2.24℃.  

 
Table 10. Summary of PCM freezing results 

Test Date  Duration 
(min) 

Final PCM 
Temp. (℃) 

Final Vaccine 
Chamber 
Temp. (℃) 

Average 
Heatsink 

Temp. (℃) 

Total 
Wattage (W) 

5/2 110 6.1 N/A 31.1 57.4 
5/7 90 6.4 3.5 33.9 68.5 

5/14 180 -1.4 -2.5 35.8 80.4 
 
Table 10 summarizes the important results from the PCM freezing test. It should be highlighted that 
although the last test in Table 10 shows temperatures that are lower than the coldest acceptable temperature 
to maintain vaccine potency (2℃), the vaccine chamber will still be able to function as intended. As the 
chamber is opened and loaded with vaccines, some heat will leak in and raise the inside temperature by a 
few degrees Celsius. It was found that at 21.6 ℃ ambient temperature, the inner flask temperature will raise 
by 3.5 ℃ in 60 seconds. This provides confidence that after charging the cooler and loading the vaccines, 
the inner temperature will be within the desired constraints.    
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7.3.4 Testing Process: Duration of Charge 
 
Outlined below are the steps that should be taken to test to see if the “charged” frozen PCM maintains the 
temperature criteria for the engineering specification of 12 hours. This test took place in the Ice Lab, a 
relatively temperature-controlled environment.  

1. Ensure that the phase change material is completely frozen in the PCM container. Check the 
temperature of the thermocouple inside of the PCM chamber. Make sure it is under 0 ℃.  

2. Disconnect the vaccine cooler from the power supply. Place the insulation cover over the top of 
the vaccine cooler. Connect the thermocouple to a data acquisition device (DAQ) and begin 
recording. The DAQ should record the temperature once every five minutes. 

3. Stop the recording of the DAQ after 24 hours.  
4. Take the SD card out of the DAQ and access the data from it using a computer. Plot the 

temperature versus time data in Excel.  
5. The time taken to melt the PCM can be estimated from the plot. 

 
Test Results: 

 
Figure 36. Temperature of the PCM as a function of time.  

 
As it can be seen in Figure 36 above, the phase change material only stayed within the optimal 
temperature for vaccines for about 220 minutes or about 3.7 hours. Unfortunately, this does not meet the 
team’s specified charge duration.  
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7.3.5 Testing Process: Heat Seepage Into Vaccine Chamber 
 
Outlined below are the steps to test the heat seepage into the vaccine chamber. The heat seepage into the 
vaccine chamber is an important result to know because it directly effects how long the frozen PCM charge 
will last. This test took place in the Ice Lab, a relatively temperature-controlled environment.  

1. Create an ice bath of water and ice in a separate container. Allow time for the water to reach 0 ℃. 
2. Pour 1 liter of 0 ℃ water into the vaccine chamber (vacuum-sealed flask). Make sure there are no 

ice cubes inside of the flask.  
3. Insert a thermocouple into the vaccine chamber. Make sure it is submerged in the water.  
4. Seal the vaccine chamber with the cap which includes the PCM container, heatsink, and fan. Slide 

insulation cap over the top. 
5. Connect thermocouple to the DAQ and begin recording. Come back after 16-24 hours and 

retrieve the SD card from the DAQ. Plot and observe data in Excel. 
6. Heat seepage can be calculated by taking the change in temperature of the water and finding the 

amount of energy needed to cause this change over the set time period. See hand calculations in 
Appendix O.  

 
Test Results: 
At the conclusion of this test and corresponding hand calculations it was determined that the heat seepage 
into the vaccine chamber was about 0.62 Watts. This test was supposed to give the team a good idea of the 
heat seepage into the PCM chamber but the team does not feel that this is an accurate representation of the 
heat seepage. This is due to the fact that in order for heat to transfer into the water in the above test, it must 
first travel through the insulation cap, then the Peltier, then the PCM chamber, then the air inside of the 
vaccine chamber, and finally to the water. But in reality for the actual system, heat will only be transferring 
through the insulation cap, then the Peltier, and finally into the PCM chamber. This process encounters a 
lot less heat transfer resistance as it does not need to transfer through air.  
 
 
In Table 11 below, the engineering specifications that were decided upon at the beginning of the project 
and if they are met are shown. As you can see, eight of the nine engineering specifications were met. 
Meeting these specifications was determined through hours of testing the system.  
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Table 11. Engineering specifications. 

Spec. 
# 

Parameter Requirement Specification Met? 

1 Optimal Temperature 2-8 ℃ Yes 
2 Number of Vaccines Capacity 50 vials Yes 
3 Weight Under 100 lbs. Yes 
4 Cost  $200 Yes 
5 Lifespan 3 years Yes 
6 Dimensions 2ft x 2ft x 2ft Yes 
7 Power Consumption 100 Watts Yes 
8 Time to Reach Optimal Temperature 3.5 hours Yes 
9 Time of Maintaining Optimal 

Temperature  
12 hours No 

 
 
7.3.6 Potential Future Tests 
 
The only test that is yet to be completed is to test the vaccine cooler in the harsh environmental, off-grid, 
conditions of Africa that it was designed for. Obviously, it is not realistic for a senior project team to travel 
to Africa to test the project so knowing how it would perform in the African backcountry hooked up to a 
solar panel is impossible. As per the engineering specification, a 100-Watt solar panel is required to power 
the vaccine cooler system. The total power consumption of the system is only 80.4 Watts so using a 100-
Watt solar panel will be sufficient even if there is not direct sunlight.  
 
7.4 Design Optimization 
 
The vaccine capacity has increased due to the reduction in size of the PCM chamber from previous 
iterations. The chamber is designed to have a 1:1 diameter to depth ratio which is optimal for heat transfer. 
The weight of the cooler has increased due to the addition of 3D printed electrical mounting brackets and 
heat sink housing. However, the additional weight from the new 3D printed parts is small compared to the 
overall cooler weight. The cost of the cooler has been reduced due to part searching for better prices. This 
project is mostly designed on off-the-shelf parts and there are many supplies offering competitive prices. 
With a charge time of 2.7 hours, the initial specification charge time of 3.5 hours was easily met. The lower 
time was achieved by improving the welds between the PCM chamber and the cold side plate and adding 
aluminum shavings to the PCM chamber. The lower charge time was also achieved by utilizing a heat sink 
that has copper heat pipes embedded in a copper core in order to increase overall heat transfer.  
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7.5 Recommendation for Future Work 
 
At the conclusion of the testing, the Solar Freeze Team believes that although they have achieved their 
goals of creating an off-grid vaccine cooler that adheres to advisor-designated specifications, there is 
potential room for further testing/design. One thing that could be investigated is the use of cylindrical pin 
fin heat sinks on the cold side of the Peltier in order to vastly improve the ability of heat to be taken out of 
the PCM. While the team utilized aluminum shavings to accomplish this, a heat sink would be far more 
effective and could help to improve the efficiency of the Peltier module. Furthermore, there is room to scale 
up this type of cooler so that it can transport more vaccines. One could investigate the possibility of using 
multiple Peltiers in different configurations in order to achieve a greater cooling effect. Finally, the 
possibility of utilizing a different insulation material for the insulation cover could be investigated in order 
to keep the vaccines within the desired range for longer. For example, with more funds and manufacturing 
equipment, a double-vacuum walled insulation cover could be manufactured in order to drastically lower 
the convective and conductive heat transfer through the cover. This would prolong the amount of time that 
the cooler can be in transport without the need to stop and charge for 3 hours.  
 
 
 
8. Project Management 
 
This project has been completed after one full academic year of design, manufacturing, and testing. Key 
deliverables and corresponding due dates that were met throughout the year are listed below in Table 12. 
The project management and design process followed throughout this project worked well, but there were 
certain aspects of the project that could have been managed/designed better. For example, a huge success 
for the team was being able to freeze the entire PCM in under three and a half hours, with the entire system 
consuming less than 100 watts. A failure in the design, however, was that after charging, the system only 
maintained the acceptable temperature range for approximately three hours. Too much time was spent 
designing and ensuring that the PCM would freeze, with not enough time allocated to ensuring that the 
cooler would be able to maintain temperature. The team should have broken up into two sections that 
worked collaboratively and in tandem with one another: one team to tackle freezing the PCM, and one team 
to work on the insulation and maintaining temperature. This way, both teams would have been able to work 
quickly and efficiently, with inputs from all team members, in order to improve time management.  
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Table 12. Timeline of deliverables 

Key Deliverables Due Date 

Scope of Work 10/19/18 

Preliminary Design Review 11/15/18 

Interim Design Review 1/17/19 

Critical Design Review 2/7/19 

Manufacturing & Test Review 3/14/19 

Hardware/Safety Demo 4/25/19 

Final Design Report 5/30/19 

EXPO 5/31/19 

 
 
Overall the team worked very well together. Utilizing the Gantt Chart, deadlines were met, presentations 
and reports were turned in on time. The only delay the team suffered was having to delay their CDR 
report and presentation by one week. Despite this, the team was able to make up for the lost time and 
were soon back on track.  
 
 
9. Conclusion 
 
This document outlines the final design for a portable solar-powered vaccine cooler aimed at satisfying the 
needs of third world countries along with the objectives that will ensure efficient progress in accordance 
with the project plan. While all specifications set forth at the beginning of this project were not entirely met 
(including the important specification of maintaining temperature for 12 hours at a time), the team would 
by no means consider this project a failure. This project highlighted the ability of using a Peltier to 
effectively cool a system in a manner that consumes a little more power than a standard light bulb. It also 
highlighted the potential that phase change materials have for thermal storage. Also, with the increased 
availability of double-walled vacuum flasks and their desirable insulation properties, the project provided 
insight into the possibility of using these for vaccine transport instead of typical Styrofoam coolers used 
today. A big area where the project struggled was maintaining the vaccine temperature once fully charged. 
This was due to the fact that a large portion of the design process was focused on making sure the Peltier 
would be able to remove heat from the PCM, freeze it entirely, and cool the vaccine chamber to the specified 
temperature. Towards the end of the project, the insulation cover was put together with not enough design 
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or calculations to ensure that it would work effectively. If the team was to do the project over again, they 
would budget their time more appropriately in order to accommodate the design and implementation of the 
insulation cover. This aspect was overlooked as not as important as getting the PCM to freeze entirely (a 
difficult feat in and of itself), but it should have gotten far more attention than it did. Also, the team decided 
that the insulation cover could only really be tested after the entire assembly was assembled and functioning 
properly. After further reflection, the team realized that this was not entirely accurate, and likely contributed 
to a bottleneck in testing. The team should have implemented more tests earlier in the design process as 
‘proofs of concept’ for certain components. For example, the insulation cover could have been constructed 
and tested as soon as the vacuum flask was bought. The team could have put the flask inside a freezer and 
monitor the temperature until it was in the desired range. Then, the heat leakage could have been calculated 
into the flask through the insulation cover and modifications or redesigns could have been performed 
appropriately.   
 
 
9.1 Next Steps  
 
For next steps in the design process, the team recommends exploring different insulation options for the 
insulation cover in order to extend the duration that the PCM can stay frozen. Also, reconfiguring the 
location and quantity of PCM as well as the quantity of Peltier modules could improve the performance of 
the system by introducing more thermal storage capability.  
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Appendix A: Quality Function Deployment  
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Appendix B: Gantt Chart  
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Appendix C: Pugh Matrices 
Table C.1. Pugh Matrix for Cooling Vaccines Function.   
              Concepts 
 
Criteria 

Refrigeration Cycle 
(Datum) 

Single 
Peltier Two Peltiers PCM Only 

Peltier and 
PCM 

Temperature S - - - - 
Speed S + + - + 
Cost S + + + + 

Weight S + + + + 
Efficiency S - - - - 

Power Required S + + + + 
Sum 0 2 2 0 2 

 
Table C.2 Pugh Matrix for Withstanding Heat 
                         Concepts 
 
Criteria 

Existing 
Cooler 

  (Datum) 

Modified 
Cooler 

Vacuum 
Sealed 
Cooler 

Styrofoam 
Cooler 

Metal 
Cooler 

Cooler Using 
Local 

Insulation 
(straw) 

Cost S - - + - + 
Weight S - S + - - 

Quality of Insulation S + + S - + 
Maintains Optimal Temp S + + - - + 

Duration S + + - + S 
Size S S S S S - 
Sum 0 1 2 0 -3 1 

 
Table C.3 Pugh Matrix for Dissipating Heat 

              Concepts 
 
Criteria 

Aluminum 
w/Copper 

Core 

Aluminum 
Block 

Copper 
Heat Sink 

Copper 
w/Heat Pipes 

Aluminum w/Heat 
Pipes 

Speed S - + + + 
Cost S + - - - 

Duration S + + + + 
Maintains Temp S - + + + 

Weight S + - - - 
Sum 0 1 1 1 1 

 
Table C.4 Pugh Matrix for Transporting Vaccines 

              Concepts 
 
Criteria 

Existing 
Cooler Backpack 

Vacuum 
Sealed 

Container 
Insulated Bag Cooler Pants 

Cost S - - + - 
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Weight S + - + + 
Portability S + S S + 
Strength S - + - - 
Capacity S - S - - 

Sum 0 -1 -1 0 -1 
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Appendix D: Decision Matrices 
 
Table D.1 Morphological matrix.  

 System Concepts 
Function 1 2 3 4 5 6 
Transport 
Vaccines 

Existing 
Cooler Backpack Vacuum 

sealed 
Insulated 

bag Cooler pants   

Cool 
Vaccines 

Compressor 
freezer One Peltier Two Peltiers 

Phase 
change 
material 

Peltier and 
Phase change  

Charge 
Cooler Wall plug in Solar Hand Crank Gas Pre cooled  

Withstand 
Heat 

Existing 
cooler 

Modified 
cooler 

Vacuum 
sealed Styrofoam Metal Local 

Insulation 
 
From the matrix above the team drew lines from function concept to function concept to uncover original 
system combinations. Below is a list of five system concepts that were used in a final decision matrix. 
 

1. Transport – Existing cooler 
Cooling – Peltier with phase change material 

Charging – Solar 
Withstand Heat – Styrofoam 

 
2. Transport – Backpack 

Cooling – Peltier with phase change material 
Charging – Solar 

Withstand Heat – Styrofoam insulation 
 

3. Transport – Insulated bag 
Cooling – Phase change material 

Charging – Precooled phase change from freezer 
Withstand Heat – Styrofoam insulation 

 
4. Transport – Vacuum chamber 

Cooling – Peltier with phase change material 
Charging – Wall plug in 

Withstand Heat – Vacuum sealed chamber 
 

5. Transport – Existing cooler 
Cooling – Two Peltiers 

Charging – Solar 
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Withstand Heat – Local insulation 
 
 
 

Table D.2 Decision Matrix 
Criteria Weight 1  2  3  4  5  

Operate at 
optimal temp 5 5 25 2 10 2 10 4 20 2 10 

Vaccine 
Capacity 3 4 12 2 6 2 6 3 9 4 12 

Weight 
 3 2 6 5 15 5 15 2 6 3 9 

Cost 
 4 3 12 4 16 4 16 1 4 4 16 

Drop Height 
 2 3 6 3 6 2 4 3 6 3 6 

Fatigue/ 
uses 1 4 4 3 3 2 2 4 4 2 2 

Lifespan 
 1 4 4 3 3 2 2 4 4 2 2 

Dimensions 
 2 3 6 4 8 4 8 4 8 2 4 

Power 
Consumption 4 2 8 3 12 3 12 2 8 2 8 

Time to reach 
ideal temp 3 2 6 2 6 3 9 3 9 1 3 

Vibration on 
moto 1 4 4 4 4 3 3 3 3 3 3 

Duration of 
one charge 4 4 16 2 8 2 8 3 12 2 8 

Portability 
 4 3 12 5 20 4 16 3 12 2 8 

TOTALS   121  117  111  105  91 
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Appendix E: Peltier Data 
 
TEC1-12715 Datasheet 

 
 

Included in this appendix is a table of specifications for the TEC 12715 Peltier module, as well as sample 
calculations and graphs that helped guide the design decisions regarding Peltier operating conditions and 
heat sink thermal resistance. Also included is the excel spreadsheet from which basic heat transfer 
calculations can be found. The total amount of heat required to cool the chamber and freeze the PCM is 
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Recorded as Q_cool in the spreadsheet.

 

Q_air 0.079753531 [kJ]
Spec	Heat c 2 [kJ/kg-°C] Q_PCM 267.9788869 [kJ]
Density ! 997 [kg/m^3] Q_PCMhousing 3.81111E-05 [kJ]

Latent	heat H_f 334 [kJ/kg] Q_total 268.06 [kJ]
Freezing	temp T_freeze 4.5 [°C] Q_cool 19.65 [W]

Mass m 0.67842756 [kg] t_cool 14400 [s]

Q_rad 1.03216903 [W]
Inner	pipe	height	 h 0.15 [m] Q_fan 3 [W]
Outer	pipe	height h_o 0.155 [m] Q_total 4.03216903 [W]

Inner	radius R_i 0.038 [m]
Outer	radius R_o 0.05 [m]
PCM	Volume V_pcm 0.00068047 [m^3]

Housing	volume V_h 0.00051422 [m^3]
Density !_h 0.0027 [kg/m^3]
Spec	heat c_h 0.9 [kJ/kg-°C]

Vaccine	Chamber	Cooling

Heat	Losses

Phase	Change	Material
VeriCor	Med	Material

PCM	Housing	Specifications
1060	Aluminum

Q_cool	is	the	total	amount	of	energy	to	
remove	from	the	air	in	the	chamber,	PCM	
material,	and	PCM	housing	to	cool	the	
system	to	the	desired	temprature.	It	is	
assumed	that	the	cooling	takes	about	4	
hours	to	complete.	

Assuming that	the	vaccuum	flask	eliminates	
conduction	and	convection,	leaving	radiation	
as	the	only	method	of	heat	transfer.	Assume	
also	that	nylon	fasteners	 provide	little	heat	
transfer	and	thus	will	not	be	categorized	as	
losses.	Q_fan	is	the	heat	leakage	when	the	
insulation	cover	is	placed	over	the	fan	and	
the	solar	panel	is	disconnected.	Q_total	is	the	
worst	case	heat	transfer	when	the	system	is	
completely	closed	off.	
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Volume V_h 0.00378541 [m^3]
Air	volume V_a 0.00259073 [m^3]

Ambient	temp T_ia 35 [°C]
Final	air	temp T_fa 0 [°C]
Spec	heat	of	air c_v 0.718 [kJ/kg-°C]
Density	of	air ! 1.225 [kg/m^3]
Mass	of	air m_a 0.00317364 [kg]
Surface	area A_s 0.152 [m^2]

Boltzman	constant " 5.67E-08 [W/m^2-°K^4]
Emissivity # 0.075 []

Vaccine	Housing	Specifications
Stainless	Steel

V_h
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Appendix F: MATLAB Code For 3D Thermal Modeling  
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Appendix G: Design Hazard Checklist 
 
Team:  Solar Freeze                        Advisor: Dr. Eileen Rossman                         Date: 11/14/18 
 
Y N 
    N 1. Will the system include hazardous revolving, running, rolling, or mixing actions? 
    N 2. Will the system include hazardous reciprocating, shearing, punching, pressing, squeezing, 

drawing, or cutting actions? 
    N 3. Will any part of the design undergo high accelerations/decelerations? 
    N 4. Will the system have any large (>5 kg) moving masses or large (>250 N) forces? 
    N 5. Could the system produce a projectile? 
    N 6. Could the system fall (due to gravity), creating injury? 
    N 7. Will a user be exposed to overhanging weights as part of the design? 
    N 8. Will the system have any burrs, sharp edges, shear points, or pinch points? 
Y     9. Will any part of the electrical systems not be grounded? 
    N 10. Will there be any large batteries (over 30 V)? 
    N 11. Will there be any exposed electrical connections in the system (over 40 V)? 
    N 12. Will there be any stored energy in the system such as flywheels, hanging weights or 
pressurized                fluids/gases? 
    N 13. Will there be any explosive or flammable liquids, gases, or small particle fuel as part of 
the system? 
    N 14. Will the user be required to exert any abnormal effort or experience any abnormal 
physical posture       during the use of the design? 
    N 15. Will there be any materials known to be hazardous to humans involved in either the 
design or its manufacturing? 
    N 16. Could the system generate high levels (>90 dBA) of noise? 
Y    17. Will the device/system be exposed to extreme environmental conditions such as fog, 
humidity, or cold/high temperatures, during normal use? 
    N 18. Is it possible for the system to be used in an unsafe manner? 
    N 19. For powered systems, is there an emergency stop button? 
    N 20. Will there be any other potential hazards not listed above? If yes, please explain on 
reverse. 
 
For any “Y” responses, add (1) a complete description, (2) a list of corrective actions to be taken, 
and (3) date to be completed on the reverse side. 
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Description of Hazard Planned Corrective Action Planned 
Date 

Actual 
Date 

The current running from 
the solar panel to the 
Peltier will not be 
grounded.  
 

The current is low enough that 
it is not dangerous and does not 
need to be grounded.  

 
N/A 

 

During normal use in 
Africa, the cooler will be 
exposed to temperatures of 
up to 35 degrees Celsius.  
 

Every aspect of the cooler will 
be designed with this 
temperature in mind.  

 
 

All year 
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Appendix: H 
 
 
The selected concept at the time of the Preliminary Design Review used Peltier technology together with a 
phase change material. Research indicated that a height to width ratio of 1:1 would yield the best cooling 
efficiency of the phase change material. Figure 18 below shows a labeled section view of the selected design 
which incorporates a Peltier TEC, an aluminum housing, phase change material, heat pipes, and a heat sink 
in a water bath. 
 

 
Figure 19. Labeled concept model section view 

 
The large hatched areas above represent the insulation inside the cooler. It was found that there would need 
to be at least 5 cm of high grade Styrofoam insulation around every component inside the cooler. A plastic 
outer housing shields the inside from impacts and everyday wear. Figure 19 below shows a 3D section view 
of the design.  
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Figure 19. Isometric concept model section view. 

 
The cubical design features an inner vaccine chamber with dimensions of 20 cm x 20 cm x 20 cm (8000 
cm^3). Smaller vaccine coolers on the market feature a vaccine capacity of 6000 to 8000 cubic cm. The 
vaccine chamber is surrounded phase change material encased in an aluminum housing. Both the lid and 
main body of the cooled are filled with a minimum insulation thickness of 5 cm. The lip inside the lid 
contains a rubber seal to limit the amount of heat leak into the system from the lid/body junction. Figure 20 
below shows a front view and section view with preliminary dimensions that were used throughout analysis 
attached in the appendices.  



 

 
 

85 
 
 
 
 

 

 
Figure 20. Concept model section view with preliminary dimensions. 

 
The hot side of the Peltier is thermally connected to a heat sink while the cold side is connected to a heat 
pipe array and the metal aluminum phase change housing. After the system has ran, the phase change 
material will be completely solid and the hot water bath can be emptied via a release spout and replaced 
with cooler water.  
 
After further research and calculations, Solar Freeze Team realized that this design was not feasible and 
decided to head in a different design direction.  
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Appendix I: Design Verification Plan 
 

 
 

Confirmation Prototype Test Results: 
 Atm Temp (℃) Atm Hum (%) Peltier Fan 

Controls: 19 49 9.24 V, 6A, 60 W 13V, 0.5A max rpm 
   TEC 15-127 Intel 1155 Socket LGA 

 
Time (min) PCM Container  (℃) Heat Sink Core (℃) 

0 21.5 20.8 
1 21.6 26.7 
5 20.5 27.2 

10 18.7 27 
15 17.2 27.4 
20 15.7 27.5 
25 14.6 27.2 
30 13.3 27.9 
35 12.2 27.6 
40 11.2 27.4 
45 10.4 27.5 
50 9.7 27.6 
55 9.1 27.5 
60 8.5 27 
65 7.9 27 
70 7.3 27.5 
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Appendix J: Testing Calculations 
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Appendix K: Microcontroller Code and Flowchart 
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Appendix L: Failure Mode and Effects Analysis 
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Appendix M: Drawing Package 
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Appendix N: Hand Calculations 
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Appendix O: Source Code for Temperature Indication System 
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Appendix P: Heat Seepage Test Hand Calculation 
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Appendix Q: Operators Manual 
This operator’s manual includes instructions for product use and important safety information. Read this 
section entirely including all safety warnings and cautions before using the product. 
 

WARNING: Do not leave vaccine chamber open for long periods of time in order to preserve 
internal temperature of chamber.  

 
Instructions for Inserting Vaccines 
 
Follow these instructions to safely insert vaccine vials into the cooler: 
 

1. Ensure that all the wires in the system are completely disconnected from the solar panel.  
2. Unscrew cap and remove both the cap and phase change material container from the vaccine 

chamber.  
CAUTION: Be gentle with any exposed wires. If the device is not connected to a power supply, 
touching the wires is fine. Be sure to not to let the wires get caught on anything or damaged.  

3. Carefully insert vaccine vials into the vaccine chamber.  
4. Replace cap onto vaccine chamber and screw closed firmly.  

 
 
Instructions for Charging* Cooler 
 
Follow these instructions in order to safely charge the cooler to the acceptable transport temperature: 

*Charge or charging the cooler means to use the solar panel to power the Peltier which cools the 
phase change material until it is frozen and can act as an ice pack.  

 
1. Make sure the heatsink, fan, cap, and PCM container is placed on the vaccine chamber (vacuum 

flask) and tightened securely. The insulation cap can be slid onto the bottom of the vaccine 
chamber See Figure 37 below.  

2. Connect exposed, labeled wires to solar panel. Red to red, black to black. 
3. Set up device in a place with direct sunlight. Charging will now begin. The fan on the heatsink 

should be running continuously. Do not stick any objects into blades of fan.  
4. Let the device operate until the LED indicator lights turn green, indicating an adequate internal 

chamber temperature. This will take roughly 2.5-3 hours to reach the optimal temperature of 
about 4°C . 

5. Unplug wires and place insulation cover over the top of the device to prevent heat seepage into 
the vaccine chamber. Insulation cap also doubles to protect device during transportation. See 
Figure 37 below for visual representation.  
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Figure 37. System ready to charge as described in Step 1. 
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Figure 38. Vaccine cooler system with insulation cap on top as described in Step 5 above. 

 
 
Instructions for Monitoring LED Warning Lights 
 
Follow these instructions to properly monitor the LED warning lights located on the cap to ensure that 
vaccines remain at the appropriate temperature.  
 

1. Wait to disconnect the vaccine cooler from the power source until it is fully “charged” and the 
vaccine chamber is at the optimal temperature of 4°C. This will be indicated when the LED lights 
are blue. 

2. Once disconnected, the vaccine chamber will slowly increase temperature. The LED lights will 
light up green indicating that the internal temperature is safe for the vaccines. The safe 
temperature range for vaccines is 2-8°C.  

3. If the LED lights change to red, the temperature inside the vaccine chamber has reach the upper 
acceptable limit for the vaccines to not lose potency (8°C). When the LEDs turn red, the device 
should be connected to a power source as soon as possible. 

4. If the LED lights begin to flash red, the internal temperature of the vaccine chamber has exceeded 
the acceptable limit and the vaccines have likely been corrupted.  
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Table 13. Table of LED warning lights indications. 

Lights Color Vaccine Chamber Temperature Meaning 
Blue 4 °C System fully charged. 

Green 2-8 °C System in the optimal range. 
Red 8 °C System on edge of optimal range.  

Flashing Red Above 8 °C Vaccines compromised. 
 
 
NOTE: The LED indicator lights are powered by a portable battery which will need to be recharged 
roughly every month. The battery can be charged by removing it from the system via the top lid and 
plugging it into a standard micro-USB charging cable. The battery charge level is indicated by a ring of 
lights on the top of the battery and can be viewed by looking through the lid on the top of the device. 
 
 
Transportation Instructions/Warnings 
 
Follow these instructions and warnings to safely transport vaccines: 
 

1. If vaccines are present, only transport the device when the cooler is fully “charged”.  
2. Never charge the cooler during transportation.  
3. During transportation, the insulation cap must stay on at all times unless vaccines are being 

removed.    
4. Do not tip vaccine cooler upside down as this may disturb the vaccines and the phase change 

material container. 
5. During transport, ensure that the device is securely fastened and so it will not be jostled or 

disturbed. 
 
 
Trouble-shooting 

Table 14. Trouble-shooting. 
Issue Solution 

LED Indicator lights are 
not working.  

Check battery charge level. 
Check wire connection from battery to lights. 
Check wire connection from micro-controller to lights 

Heatsink fan is not 
working. 

Check wire connection to power supply.  
Check if any debris is lodged in fan blades.  

Vaccine chamber is not 
getting cold enough.  

Check wire connections from solar panel to Peltier. 
Peltier could be burnt out/broken. Needs to be replaced.  
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Maintenance 
 
Regular maintenance on the vaccine cooler includes cleaning of the fan and heatsink with a rag as needed.  
 
 
Repair and Replacement of Parts 
 
If a part were to break, it would be unlikely that the part could be repaired by hand. A complete list of 
parts along with where those parts can be found is in the Bill of Materials in Appendix M.  
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Appendix R: Risk Assessment 
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