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Abstract 

This is the Final Design Report for Daimtronics, a senior project team sponsored by Professor Charles 
Birdsong of Cal Poly and by Daimler Trucks North America. This team integrated mechatronic systems into 
a scale semi-truck chassis using existing mechanical and software systems from three separate Cal Poly 
senior projects over the recent years: Daimscale, MicroLaren, and ProgreSSIV. The goal was to have a 
user-friendly platform capable of executing autonomous driving algorithms that are programmable at a 
high level in Simulink and Robotic Operating System (ROS). Advanced driver assistance and autonomous 
vehicle algorithms were not within the scope of this project, but the capability to upload the platform 
with such software was. Through research on existing products and technologies in the field today, as well 
as through communication with the sponsors, Daimtronics has compiled a list of customer needs and 
resulting engineering specifications that will verify whether the needs are met or not. Included is both the 
preliminary design direction, encompassing the selection of a motor, a computing platform and a 
middleware framework, as well as the final design direction as the project evolved. The sensor suite for 
object detection and detailed plans for the integration of the electronic, computing, and mechanical 
components are described. The proposed and final design of the motherboard integrating the electronic 
and computing platforms of the system is detailed. A description of the current state of the project is 
included, as well as suggested next steps for future teams who will be working on this platform.  A timeline 
of key deliverables and their due dates throughout the 2018-2019 academic school year is included. 
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1. Introduction 
Autonomous driving for commercial vehicles is a major opportunity for companies and organizations that 
manage to implement the technology. A platform to expedite research in the trucking space and to enable 
university students to partake in autonomous vehicle and driver assistance research is therefore a large 
boon to both the companies that fund these projects and to society as a whole. 

This project is the successor to the Daimscale senior project, the team working to create a small-scale 
tractor-trailer chassis with RC (radio control) capabilities. The purpose of our project is to outfit the model 
developed by Daimscale with the mechatronic components necessary to execute autonomous vehicle 
software for research and testing purposes. Target capabilities for the end of this year’s project include 
automated driving in pre-programmed patterns, automated torque-controlled braking, and basic collision 
avoidance while developing detailed documentation for future users of the platform. These capabilities 
will demonstrate the satisfaction of the actual goal of the project, having a flexible user-centric platform 
capable of facilitating intelligent vehicle research and experimentation. Various sensors, actuators, and 
microcontrollers will need to be selected and utilized to form a cohesive and intelligent system to carry 
out the necessary actions of a semi-autonomous vehicle. The sponsors of this project are Daimler Trucks 
North America and Dr. Birdsong of Cal Poly, San Luis Obispo. The work done on this platform may also be 
used for a future technical elective course on driver assistance technology in development by Dr. Birdsong. 

The team consists of three members: Nate Furbeyre, Fernando Mondragon, and Ricky Tan. Each member 
of the team is concentrating in mechatronics and has experience implementing mechatronic solutions on 
the mechanical, electrical, and software levels of development. The team has additional experience with 
general mechanical design, manufacturing, and computational methods of analysis. 

This document is organized into sections to convey the relevant information regarding the project thus 
far. Section 2 will outline the Background, including custom needs, alternative preexisting solutions, and 
relevant technical research. Section 3 goes over the Objectives of the project, spelling out the problem 
statement, the bounds of the project, and engineering specifications. Section 4 will outline the Concept 
Design, with decisions made in both hardware and software design. Section 5 details the Final Design with 
descriptions and diagrams. Section 6 outlines our Manufacturing, detailing the specifics how we produced 
the platform. Section 7 will outline the Design Verification describing how the design passes or fails each 
of the design specifications. Section 8 contains an overview of the Project Management system that we 
used during development. Finally, Section 9 describes the Conclusions and future recommendations that 
we suggest after having finished the project. 

 Our code for the project is located in a GitHub repository at https://github.com/nfurbeyr/daimtronics. 

2. Background 
In order to develop a fully defined and contextualized problem definition, we communicated with our 
Sponsors, Daimler and Dr. Birdsong, and performed background research to understand preexisting 
solutions to intelligent vehicle research and to generally build an understanding of the current state of 
the intelligent vehicle field.  
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2.1 Customer Needs 
Daimler is the primary customer and therefore is the main source of customer needs, but Dr. Birdsong’s 
expertise was utilized in developing a consistent and meaningful set of needs and wants. The needs of 
each of these customers was identified in the initial conference call with Daimler and subsequent meeting 
with Dr. Birdsong conducted October 15, 2018. 

2.1.1 Daimler’s Needs - Students 
Daimler aims to use this platform as a base for autonomous software competitions and as a platform for 
intern projects in automation. For these purposes the research buggy needs to be representative of a 
semi-truck, capable of operations typically associated with autonomous driving such as object avoidance, 
compatible with MATLAB, quick to set up for tight development cycles, and able to provide feedback with 
regards to the performance of the vehicle. In this respect, the value of the platform to Daimler is its 
capability to maximize the productivity of university and early-career talent interested in the 
trucking/automotive industry with regards to furthering the development of safe and effective automated 
trucking solutions. 

2.1.2 Daimler’s Needs - Researchers 
More generally, this platform should be usable for Daimler researchers interested in furthering this 
technology. For this audience, the motion analysis data will be particularly important, along with the 
vehicle similitude and autonomous driving capabilities available for utilization. This aspect of Daimler’s 
requirements is secondary to the needs listed in 2.1.1. 

2.1.3 Dr. Birdsong’s Needs 
Dr. Birdsong is interested in developing a course dedicated to vehicle controls and dynamics and would 
like a platform that will be easy for mechanical engineering students who are not as well versed in low-
level programming applications and who want to learn vehicle dynamics and control systems. His priorities 
in this case rest more on the ease-of-use, autonomous capabilities, and the data analysis capabilities for 
educational/lab use. The platform must be easy to integrate with Simulink, as this is a tool most 
mechanical engineers at Cal Poly are familiar with. 

2.2 Existing Products 
While searching for existing products through various research databases, news articles, and academic 
papers, no truly competing products or solutions were found that completely satisfied the needs of our 
sponsors. Therefore, it was necessary for us to widen the scope of what was determined to be a similar 
product and look at products that satisfied some aspects of our sponsor’s needs. 

Highway Pilot is Daimler’s first commercial autonomous system that has reached level 2 automation as 
defined by SAE international [1]. Level 2 Partial Automation allows the vehicle to manage both steering 
and acceleration under certain driving conditions, such as in highway driving. The Freightliner Inspiration 
Truck is fitted with the Highway Pilot and was the first licensed truck for autonomous operation. Current 
capabilities include: a lane keeping assist accomplished with the use of a windscreen camera, an active 
brake assist used as an emergency braking assistant, a proximity control assist, a sideguard assist, a 
crosswind assist to counteract lane drift, and a predictive powertrain control which reacts to the 
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topography. The Freightliner Inspiration Truck is obviously not a scaled-down research vehicle but it is still 
necessary to analyze the full-scale product to determine the needs and wants of Daimler. A display on the 
Freightliner is shown in Figure 1. 

 

Figure 1: Highway Pilot in action on the Freightliner Inspiration Truck [1] 

Another relevant existing product is the Scale Vehicle Autonomous Test Bed created by Masters student 
Andrew Liburdi from the University of Windsor in 2010 as the focus of his thesis [2]. Liburdi cites a major 
need for test data to verify models in vehicle dynamic research and how scale testing is useful for 
validating control methods due to its low cost, low hazard, and high repeatability. The test bed itself was 
not made to analyze autonomous algorithms and safety protocols, but rather to just collect data on 
vehicle dynamics across various situations not easily replicated under full scale conditions. 

Small scale vehicle platforms were also created at both Berkeley and MIT. The BARC (Berkeley 
Autonomous Race Car) is a 1/10th scale development platform for autonomous driving [3]. It runs on open 
source software, utilizing Robotic Operating System (ROS), Julia, Python, and C++. It has a Odroid XU4 
microcontroller that handles the high level computation, and an Arduino that communicates with the 
microcontroller and with the suite of sensor and actuators on the platform. The MIT RACECAR is a similar 
small scale vehicle used at MIT for robotics research and education [4]. Like the BARC, the MIT RACECAR 
utilizes open source software such as ROS. The RACECAR, however, only uses a Nvidia Jetson TX 1 
embedded supercomputer that controls the platform and handles all the necessary computations. All of 
the vehicles created at these universities are not scaled down semi-truck research platforms; however, 
they are excellent platforms to study the electronic control units in a scaled vehicle. 

The high cost associated with proper testing and research for autonomous systems has resulted in many 
forms of research being conducted through pure simulation. The issue, as previously cited by Liburdi, is 
that those simulations themselves need to be proven in order to be accepted. It is completely possible to 
create a model that uses the technical specs of a full-scale semi-truck and conducts algorithms for 
autonomous testing; however, without an actual real-world testing procedure, those simulations would 
not be completely valid. 

In addition to the scaled test bed that was primarily aimed at research and analysis purposes, there are 
also a few different commercially available models of scaled down semi-trucks. Tamiya, a company 
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specialized in producing small scaled models of various real-world systems, has a 1/14th scale semi-truck 
that they offer [5]. A separate company called Integy also has a 1/14th scale model semi-truck [6]. While 
these products look similar to the full-scaled semi-trucks, the dynamics and similitude are not held to the 
same scaled standards.  These are RC-only vehicles and exhibit no autonomous capabilities. 

2.2.1 Relevant Patents 
Table 1 contains a list of patents that are relevant to the autonomous vehicle engineering challenge at 
hand.  The patent name and number are shown, along with a short description of what the patent covers. 

Table 1: List of Relevant Patents 

Patent Name 
Patent 

Number 
Description 

Electronic control device for 
controlling autonomously 

controllable assemblies 
6512970 

This outlines an electronic control unit for individual, 
autonomously controlled assemblies used in motor vehicles. 
[7] 

Truck with monitored and 
resettable electronic control 

units 
5890080 

This is a method for determining installed electronic devices 
on a truck by having a control unit identify the installed 
device from the transmitted data. There is an 
instrumentation control unit that provides a centralized reset 
to clear faults in the installed electronics.  [8] 

Calibration of multi-sensor 
system 

20100235129 

This is a method for preprocessing sensor data from one or 
more mounted sensors on a vehicle. The method is meant to 
overcome common obstacles between vision-based sensors 
and lidar sensors, using data gathered from the lidar sensor 
to run an algorithm and determine best sensor tilt for the 
vision sensor to reduce range errors [9] 

Laser distance measuring 
equipment 

105527619 

The invention aims to provide laser distance measuring 
equipment, which comprises a laser emitting and receiving 
device, a reduction gear driving device and a rotating device, 
wherein the laser emitting and receiving device is used for 
relevant distance measuring information [10] 

Control and systems for 
autonomously driven vehicles 

8126642 

The system outlined includes operation control mechanisms 
having inputs and producing outputs to control operation of 
a vehicle. It also contains a self-contained autonomous 
controller configured to operate with a variety of different 
sensors and different operation control mechanisms.  [11] 
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Of the five described, each patent either fits within the category of sensor technology or electronic control 
units (ECUs) for vehicles. These topics will be important to keep in mind when developing a design and 
will assist in ideation in the upcoming project phases. 

2.3 Relevant Technical Papers 
The most relevant technical papers for our design challenge come from previous Cal Poly senior projects 
that focused on individual components of the system we are trying to design. A small-scale intelligent 
vehicle (SSIV) design platform was completed in 2017 by three mechanical engineering students under 
the supervision of Dr. Charles Birdsong [12]. The next year, Dr. Birdsong headed another group that 
designed a Simulink interface to follow up with motion control and analysis for the intelligent vehicle 
platform [13]. Finally, an ongoing senior project by the Daimscale team finishing up at the end of Fall 
Quarter 2018 has been tasked with replicating a Daimler Trucks NA semi-truck at a 1/14th reduced scale 
[14]. The research and findings of these three project teams will be referenced extensively during our 
design process. 

2.3.1 Actuators 
The driving force of the vehicle is provided by actuators integrated in the truck’s chassis. In general, an 
actuator is responsible for controlling some physical mechanism behind a system. Two major actuators in 
small scale vehicles are motors for providing power transmission into linear motion and servos for 
providing control over steering. The Daimscale team working on the chassis for the truck has selected a 
Tekin RX8 ESC (electronic speed control module) and 1550kv 1/8 motor, as shown in Figure 2 [15]. The 
motor, coupled with an SMC 14.4V lithium-polymer battery, is responsible for the motion of the vehicle. 
In addition, two different types of servos have been specified – The Savox 1270TG for 360 oz-in torque to 
control and maintain steering angles, and the Savox 0220MG for shifting gears and actuating a “5th wheel” 
that locks and unlocks the trailer hitch. The previous team has already bought and integrated the previous 
components into the chassis, but our team has some discretion in switching out these parts for a more 
complete and optimized design. Actuator control is directed by the computing platform, which is informed 
by sensor data and processed using whatever software architecture we develop. Each of these are further 
explained in the following sections along with papers describing the current state of the intelligent vehicle 
field.  

 

Figure 2: Motor and motor controller specified by the Daimscale team [15]. 
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The motor and ESC are both already integrated into the vehicle chassis and are capable of receiver 
commands from the RC controller. 

2.3.2 Sensors 
To meet the autonomous capabilities that our customers require, we will need to incorporate a suite of 
sensors that gives the truck awareness of its physical surroundings. The Daimscale team has already 
specified a wheel-speed sensor and an inertial measurement unit (IMU) to give information about the 
speed and direction of the truck. For object detection, however, some sort of proximity sensor(s) will need 
to be added into our design.  The ProgreSSIV team incorporated cameras for computer vision, and 
ultrasonic range finders for autonomous purposes [12]. These are possible options for our design when 
moving forward, as they will help the truck understand more about its surroundings. There are also other 
sensor options that should be considered before a final design is chosen, including LiDAR and RADAR. 

2.3.3 Computing and Software 
In addition to the aforementioned sensors and actuators, a Raspberry Pi 3 B+ microcomputer and a Teensy 
3.6 microcontroller are available to handle the computing platform of the vehicle, as shown in Figure 3.  
These components are not finalized and are merely what previous senior project teams have used in their 
design. In depth analysis for specifying the components of our design will be described in Section 4.  

 

 

Figure 3: Raspberry Pi 3 B+ (left) [16] and Teensy 3.6 (right) [17] embedded controllers 

Some background into previous senior project designs, however, is enlightening in understanding more 
of what we will be working with. The primary reason for specifying both the Raspberry Pi and the Teensy 
boils down to the fact that one microcontroller does not run fast enough to both implement effective 
controls over the system and communicate with all of the sensors and actuators simultaneously [14]. The 
Pi has its own operating system, which prevents it from being utilized as a true real-time system that is 
required for satisfactory motion of the vehicle. By offloading communication with the sensors and 
actuators to the Teensy microcontroller, the Pi is able to have enough resources to effectively run the 
control loop algorithm since it only needs to communicate with the Teensy to acquire relevant data. 
Information is transmitted between the two computation modules through an SPI protocol. The Raspberry 
Pi’s Wi-Fi capabilities were utilized for ease-of-use when sending new control software. The Pi’s capability 
for image processing is an additional beneficial aspect that may be utilized in the future.  
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2.3.4 Current State of Autonomous Driving 
Information from previous Cal Poly senior projects is crucial to the design throughout this project, but 
there are plenty of other technical papers outside the university that give more generalized information 
on the contemporary state of autonomous driving, and the platforms that underpin vehicles’ autonomy. 
We will be using these papers to inform us of the general methods and systems in use today. 

The Society of Automobile Engineers (SAE) defines five levels of autonomous driving. An article by Victoria 
Transport Policy Institute breaks down the different autonomous capabilities into six different categories 
ranging from Level 0 (no automation) to Level 5 (full automation) [18].  

 

Figure 4: Levels of autonomous driving ranging from 0 (no automation) to 5 (full automation) [18]  

Each level incrementally relieves the human driver of certain actions, and instead places that responsibility 
on the vehicle’s systems. Naturally, as vehicles progress towards higher levels, the systems become more 
complicated, relying on robust software and hardware components for accurate and reliable control of 
the vehicle.   

A research paper by Loughborough University’s School of Civil and Building Engineering, and their School 
of Aeronautical and Automotive Engineering breaks down the fundamentals behind one common outlook 
of what is actually happening to make a car autonomous [19]. The paper’s basic description of the motion 
planning behind on-road driving consists of “(1) finding a path, (2) searching for the safest maneuver, and 
(3) determining the most feasible trajectory.” The path that the autonomous system identifies is based 
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on incoming sensor data and represents a geometric passageway that the vehicle must follow to reach its 
destination while avoiding potential collision hazards along the way. Once sensor data is taken in, 
maneuver-planning calculations are computed to generate a “high-level characterization of the motion of 
the vehicle.” From here, trajectory planning occurs in a real time setting, where additional incoming 
sensor data is considered to optimize specific parameters such as navigation comfort, avoiding obstacles 
and obeying any traffic laws. 

Since the main objective of Daimtronics is to create a platform for future implementation of intelligent 
vehicles, the software that builds the platform is of great importance. Generally speaking, there has been 
much success in incorporating open source software into autonomous vehicle design. One of BMW’s 
primary affiliates, BMW Car IT GmbH, specializes in researching and advancing the state of software 
development for self-driving vehicles [20]. The group suggests a combination of two different open source 
software platforms: AUTOSAR (Automotive Open System Architecture) and ROS (Robotic Operating 
System). 

 

Figure 5: System Diagram for an Autonomous Driving Platform from BMW Car IT GmbH [20] 

Software from each open source platform preside over different areas of the autonomous vehicle, with 
ROS taking over most of the computing responsibilities for decision making and path finding, and 
AUTOSAR taking over a more direct interface to the sensor and actuator hardware installed on the vehicle. 
It is important to note that the presentation of this material is predominantly for investigative research 
and design ideas and does not go into detail about the specific implementation of these platforms. 
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Nonetheless, the above diagram gives good idea of how open source software may be able to be 
incorporated into the proposed project. 

In the development our scale platform we will have to emulate the drive characteristics of semi-trucks. In 
a report titled Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control 
published in the SAE International Journal of Commercial Vehicles by Chen et al. [21], an overall method 
is explained for controlling electric vehicles based off different performance characteristics. The paper 
describes how to optimize different drive variables based off whether the human driver selects sport, eco, 
or normal mode, shown diagrammatically in Figure 6. 

 

Figure 6: Controller selection diagram [21] 

We will likely not be switching between different drive modes, but the mathematical framework 
developed may be useful in defining the appropriate cost functions to tune our controller’s parameters 
and architecture to emulate truck dynamics. The paper is particularly appropriate since it deals with 
electric vehicles, which can be viewed as scaled-up versions of our RC-based platform. While not directly 
related to the intelligent vehicle field, this report provides additional foundation for executing vehicle 
control. 

There exist many models and frameworks to describe the dynamics of vehicles and for how digital 
platforms should make driving decisions. A use case of these models is outlined in Personalized 
Driver/Vehicle Lane Change Models for ADAS, a paper published in the IEEE Transactions on Vehicular 
Technology journal by V.A Butakov and P. Ioannou [22]. Their paper mentions two kinematic models for 
executing lane change maneuvers, polynomial and sinusoidal, and goes into detail about the sinusoidal 
model, their choice for the system they developed. This kinematic model was used in conjunction with a 
stochastic model, the Gaussian Mixture Model, in order to create an Advanced Driver Assistance System 
(ADAS) lane-change framework that would tune itself to the preferences of the driver. Other stochastic 
methods mentioned were hidden Markov models, neural networks, fuzzy logic, Bayesian networks, and 
support vector machines. While our team is not intimately familiar with any of these models, we will be 
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keeping their existence in mind when deciding what types and what quality of data is necessary for the 
end-user to have when implementing these kinds of decision-making algorithms. 

3. Objectives 
The objectives stated in this section will be the driving force for our team and represents the overall 
philosophy going into this project, guiding the direction that our efforts will be focused. 

3.1 Problem Statement 
In order to increase safety and efficiency in the transportation industry, Daimler Trucks North America 
needs a way to enable interns, university-level competitors in autonomous trucking competitions, and 
general autonomous vehicle researchers to safely and accurately test semi-trucks outfitted with 
autonomous and driver-assistance capabilities on a scaled-down platform. To achieve this, we need to 
integrate electronics into an existing RC-scale semi-truck tractor/trailer chassis to allow new users to 
operate and learn from its capabilities such as vehicle dynamics, signal and data processing, feedback 
control and more. 

Specific aspects of solving our problem include integrating the computing platform, controls, and sensors 
with the chassis while writing the drivers, middleware, and user interface for the platform. 

 

3.2 Boundary Diagram 
The boundary sketch in Figure 7 and the boundary diagram in Figure 8 outline the scope of this project 
from a more visual perspective. 

 

Figure 7: Daimscale -> Daimtronics boundary sketch 
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Figure 8: Daimtronics boundary diagram 

All of the mechanical components should be completed in December 2018 by the Daimscale team, 
encapsulated in the ‘Chassis’ block in Figure 8. The autonomous driving software is going to be 
implemented by the users of this product and so is not included in our scope. However, rudimentary 
software will be developed by our team for demonstration and testing purposes. The primary scope of 
our work exists in integrating a computing platform, sensors, and actuators onto the chassis. As 
mentioned earlier, The Teensy operates on a custom motherboard to handle sensor wiring that will likely 
have to be redesigned during our project. 

Evaluating the Pi, Teensy, sensors, and the RC motors from the previous senior projects for whether they 
are the optimal solution for our project is also included in our scope. If there are options better suited to 
the end goal of the project this will be evaluated versus the additional time required to implement 
alternate solutions and whether that additional time will decrease the quality of the final product.  

3.3 Customer Needs List 
Performing background research and communicating with our sponsors resulted in a set of customer 
needs that will need to be kept in mind during the design process. These needs are based on the three 
different customer audiences listed in Section 2.1: Daimler at the university level, Daimler researchers, 
and Dr. Birdsong of Cal Poly. A Quality Function Deployment (QFD) House of Quality contains the list of 
needs and wants on the left-hand side of Figure 8. The list covers requirements in vehicle dynamics 
analysis, autonomous capability and practicality for being involved in future projects  
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3.4 Quality Function Deployment Process 
The QFD process was utilized to develop an appropriate set of engineering specifications and targets for 
this project. The full QFD House of Quality can be found in Appendix A. A portion of the QFD chart, the 
customer needs/wants versus our engineering specifications, is outlined in Figure 9. 

 

Figure 9: Customer Requirements and Engineering Specifications 

The left column of Figure 9 lists the customer wants and the top row lists the engineering specifications. 
The specifications are outlined further in section 3.5. In Figure 9, the intersection of each row and column 
represents the degree to which the engineering specification addresses a customer want – either strongly 
(filled circle), moderately (unfilled circle), weakly (triangle), or not at all. The setup time will be critical for 
the platform being usable in competitions and in a course’s lab. The capability for object avoidance and 
general automated driving abilities are important to every customer. 
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3.5 Specifications Table 
An output of the QFD process is the specification table, shown in Table 2 below. The table lists the 
specification number (for referencing), the parameter description, requirement, tolerance, risk, and 
method of verifying compliance. Each parameter has a short description beneath the table that gives more 
relevant information. 

Table 2: QFD Engineering Specifications 

Spec # Parameter Requirements/Target Tolerance Risk Compliance 
1 Cost $3,000 Max M I 
2 Control Loop Frequency 20 Hz Min L T 
3 Acceleration Time (0-top speed) 4 sec Max L T, A 
4 Deceleration Time (top speed - 0) 4 sec Max L T, A 
5 Setup time 5 min Max L T 
6 Steering Curve and Max Angle 10% similitude deviation Max M T, A 
7 Sensors read in Simulink Yes Nominal L T, I 
8 Top speed 20 mph Min L T 
9 Max Wi-Fi range 10 m Min H T 

10 Object detection range 5 m Min H T 
11 Object detection angle 180 deg Min M T 
12 Battery Life 30 min Min L T 
13 Software Application Layer All devices Nominal M T, I 
14 Documentation Rating 8/10 rating Min M T, I 
15 Voltage Safety Rating SF > 2 Min L I, A 
16 Replacement Test Time TBD Max H T, I 

Under compliance, ‘A’, ‘T’, ‘S’, and ‘I’ refer to the methods intended for determining compliance with the 
specification – Analysis, Testing, Similarity to Existing Designs, and Inspections, respectively. The 
tolerances are given as percentages of the nominal value, as a minimum or maximum constraint, or as a 
nominal constraint. Nominal constraints are either go/no-go design considerations with no specific 
tolerance. Under risk, ‘L’, ‘M’, and ‘H’ designate whether the specification is low, medium, or high-risk 
scaling with the difficulty of achieving the requirement.  

3.5.1 Cost 
Cost constitutes the total amount of money spent during our portion of the project. This will likely include 
the cost of sensors, may include the cost of a new computing platform, may include the cost of a custom 
PCB (printed circuit board) for electronic integration, and may include the cost of new motors. The budget 
is a maximum of $3,000, with a goal of minimizing costs and staying under this limit. The cost of sensors 
can become expensive depending on the performance required, hence the medium-risk designation. Cost 
compliance will be verified by inspection through the tracking of project expenditures. 
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3.5.2 Control Loop Frequency 
The control loop frequency is the frequency at which it can update the vehicle’s actuation signals, the 
inverse of the time it takes for the control algorithm to run once all the way through (the loop time). It 
impacts many aspects of the design as a loop time that is too long will interfere with how often sensors 
and actuators are updated, directly impacting the performance. Loop time can be minimized by writing 
efficient code and by using a computation platform with high enough performance that the loop time is 
sufficiently insignificant. The risk is low due to the high performance over cost ratio of modern electronics 
and our team’s comfortability with fast languages such as C++. Compliance will be verified through testing; 
execution of the control algorithms will be measured by whatever task scheduling architecture is 
eventually implemented. The execution time of all supporting tasks, such as those to read sensors, are 
absorbed by this specification in that their data needs to be available for the control loop to run 
appropriately. A minimum frequency of 20 Hz has been chosen as the absolute lowest speed at which our 
controllers can run. It is likely we will be achieve higher frequencies. 

3.5.3 Average Acceleration Time 
Acceleration time as a specification is defined as the time to go from zero to its top speed. This is specified 
to be a maximum of four seconds, verified through testing and inspection of the selected motor’s 
capabilities on the platform. Meeting this specification means we will have enough power on the platform 
to scale down to the appropriate acceleration curve that trucks exhibit without running into the physical 
limits of the system. Meeting this specification presents low risk due to the observed capabilities of the 
Daimscale chassis’ motor. This will be verified through testing and by analyzing the vehicle’s performance 
curves. 

3.5.4 Average Deceleration Time 
Deceleration time is defined as the time to go from top speed to zero. This is also specified to be a 
maximum of four seconds to ensure sufficient braking capability to match actual semi-truck deceleration 
curves. Meeting this specification presents low risk due to the observed capabilities of the Daimscale 
chassis’ motor, which can be used to output decelerating torque. This will be verified through testing and 
by analyzing the vehicle’s performance curves. 

3.5.5 Setup time 
The setup time of the platform is the time it takes to go from having a new high-level control algorithm 
developed to testing it on the platform where the platform was previously in nearby storage. This includes 
the time to attach batteries, connect the computing platform to the Wi-Fi, compile and download the 
user’s algorithms, and then have the car performing the algorithm. We aim for this to be less than five 
minutes total to ensure that the platform is conducive to quick iteration. Verification will be conducted 
by timing the procedure ourselves. 

3.5.6 Steering Curve and Max Angle 
The steering curve and max angle of the platform are important aspects of maintaining similitude. The 
Daimscale team was responsible for selecting the proper wheel and steering mechanism, as well as 
adjusting them for proper similitude. Our team’s focus will be maintaining the current steering curve and 
max angle established by the Daimscale team through proper servo control of the steering mechanism. A 
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maximum deviation of 10% from actual truck performance was determined to be sufficient to maintain 
similitude. This is a medium risk specification with compliance being determined by testing of the servo 
and steering mechanism, as well as analysis of the deviation. 

3.5.7 Sensors Read in Simulink 
This specification only requires that sensor data can be read both by the vehicle’s algorithms and by the 
user within Simulink or whatever high-level environment is used for the vehicle intelligence. This risk is 
low due to previous senior projects sponsored by Dr. Birdsong, such as the ProgreSSIV team’s, being able 
to accomplish this and our team’s overall experience with Simulink. Simple testing and inspection are 
sufficient to determine if the specification has been met. 

3.5.8 Top Speed 
The top speed of the current platform is the 1/14th scaled speed of a semi-truck driving at 65mph. The top 
speed was calculated by the Daimscale Team to be about 20mph [12]. The project should only be making 
improvements on the current platform and not limiting any work done on the platform; therefore, the 
goal is to meet this 20mph at a minimum. The risk is low for this specification due to the current platform 
already being capable of meeting and exceeding this value and thus limiting the top speed would be simple 
to do. 

3.5.9 Max Wi-Fi Range 
While the platform is in motion, it must still be able to communicate with Simulink through Wi-Fi. A max 
Wi-Fi range of 10m at a minimum is required to accomplish this. The risk is low due to the current state 
of Wi-Fi technology having vastly greater average ranges. Compliance with this specification will be 
verified through testing; preferably with the platform in motion to ensure it remains in communication 
with Simulink running on a PC. 

3.5.10 Object Detection Range 
The object detection range is the effective range of our object detection sensors. The object detection 
range can be maximized through careful selection of sensors that meet the minimum range required while 
still being fast enough for the microcontroller to process the data. A minimum of 5m allows for slightly 
over half a second between detection and collision when travelling at the vehicle’s top speed. The time 
to collision is increased proportional to the degree at which the vehicle is driver under its top speed. This 
specification is high risk due to the performance quality 5m represents for sensors at our scale. 

3.5.11 Object Detection Angle 
The object detection angle is the counterpart to the object detection range. It specifies how wide of an 
angle (typically centered on the forward-facing centerline of the vehicle) that the sensors are able to scan. 
A minimum detection angle of 180° was determined to be sufficient for the purposes of this project. This 
is a medium risk specification, with its success determined by both placement of the sensors on the 
vehicle, and the types of sensors that are included in the design. Testing the range of object detection will 
be used to verify this specification. 
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3.5.12 Battery Life 
The battery life determines how long the model semi-truck will be able to be continuously run without 
recharging the battery pack. A minimum target of 30 minutes was set for this specification, and this will 
primarily be measured through testing duration of the battery in the completed system. There is a low 
risk to this metric, with the only obstacle being cost of a battery. 

3.5.13 Software Application Layer 
Implementing a software application layer is one of the primary objectives of this project. This layer 
provides an abstraction between how a user will control the model semi-truck, and what actually goes on 
behind the scenes in the low-level software. To be complete, the software application layer must deliver 
an interface to read the data for each sensor that has data to be read, and to write different output levels 
to any actuators that will control the motion of the vehicle. This specification will be measured by how 
many of the devices are available to the application layer. The target is to have any device that is within 
the mechatronic system able to be read from or written to by future teams that need to make the vehicle 
more intelligent.  

3.5.14 Documentation Rating 
The documentation rating is a measure of how comprehensive and easy to understand our intelligent 
vehicle platform is. To be well documented our project must have consistent comments throughout the 
source code and thorough descriptions of application layer function calls. This metric will be tested 
towards the end of the project by subjecting students to use our platform, surveying the usability of our 
project from an applications standpoint. 

3.5.15 Voltage Safety Rating 
To have a robust system that is resilient to the electronics breaking from accidentally hooking up leads 
where they shouldn’t be hooked up and from any spikes in system draw, the system needs to have some 
voltage protection. The electronic design needs to incorporate elements that prevent user error, such as 
voltage regulators, diodes, etc. The primary way of verifying that this specification is met, is analyzing the 
electrical circuit once all of the necessary protection has been put in place. This is low risk, because simply 
adding the electrical components will achieve a high voltage safety rating. 

3.5.16 Replacement Test Time 
The replacement test time specification measures how easy it is to replace a component of the system, 
should a component break down during use. The determining factors into this metric are how complicated 
the electronic wiring is, and how easy it is to fasten/unfasten different components from the overall 
system. Currently there is no target duration for this specification, but once more is known about the 
different components in the system, a maximum reasonable part replacement time will be specified. If 
the most complicated to replace parts can be replaced in under this time limit, this specification will be 
considered successfully met. 
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4. Concept Design 
The aspects of our project’s design can be separated into two categories: hardware and software. 
Throughout our design process we will be leveraging preexisting, third-party resources to expedite the 
development of our platform and to maximize the ease with which the platform can be repaired and 
updated in the future. In particular, there exist many open-source software frameworks that can be 
incorporated into our design to aid in creating a reliable architecture.  

The primary hardware aspects of our design are the computing platform, motor, and sensors. The key 
aspects of our software are the middleware and the application layer. The interchangeability of each of 
these aspects means that we will be deciding on our solution for each aspect individually with our design 
being the sum of each optimized choice. This process is shown in the following subsections. 

4.1 Hardware Component Design Concepts  
The hardware components include: the computing platform, the actual computer or computers used to 
handle the vehicle’s intelligence; the main motor driving the entire vehicle, the single-motor configuration 
having been chosen by the Daimscale team in order to replicate a semi truck’s drivetrain; and the sensors 
on the vehicle to send environmental data to the computing platform. Other physical aspects of the 
vehicle that do not need in-depth decision analyses is the servo for steering, the servo for 5th-wheel 
actuation (see Section 2.3.1), the mounting solution for each sensor, and the mounting solution for the 
computing platform. Servos need only be integrated appropriately electrically and mounting will be 
developed as the final device models are selected and the Daimscale chassis is completed. 

4.1.1 Computing Platform  
The computing platform directs information between sensors, controllers, and actuators. It is the central 
component for the mechatronics behind this system, and each peripheral component needs to be 
compatible with how the computing platform behaves. Every device has particular communication 
protocols that it is compatible with, such as I2C, UART, and USB. It is imperative that the computing 
platform is able to handle the combined needs of all of the sensors and actuators in the design. For the 
purposes of our analysis we will be assuming that a mix of communication protocols will be necessary to 
satisfy the needs of each peripheral device so that the overall flexibility of the computing platform is all 
that we need to evaluate. 

Appendix C contains a decision matrix regarding the selection of the computing platform for our system. 
There is a total of six different design options shown in the columns of the table, along with seven different 
criteria used to compare the design options. Included in the options are the Raspberry Pi 3B+ and Teensy 
3.6 combination selected by the previous senior projects [12] [13]; an Nvidia Jetson TX2, used in the MIT 
RACECAR [4]; an Odroid and Arduino Uno combination; and a custom-built platform. Some of these 
options are shown below in Figure 10.  
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Figure 10: Arduino Uno [23], Nvidia Jetson TX2 [24] and Odroid C2 [25] (from left to right) 

The Arduino Uno is a common embedded device that is used in many different hobby applications. It is 
relatively easy to set up, and there is plenty of online community help for debugging the device. 
Unfortunately, it doesn’t have the most powerful computing resources. At a clock speed of 16MHz and 
only 2KB of RAM, there are other options that give us higher performance for prototyping this platform. 
The Nvidia Jetson TX2 lies on the other end of the spectrum; it is a powerful microcomputer that is 
currently being used for state-of-the-art AI programming applications. Unfortunately, the Jetson TX2 is 
too expensive for our purposes at a retail price of $599. Another competitive computing platform is the 
Odroid C2. This option is a more powerful version of the popular Raspberry Pi, at only a slightly higher 
price level ($50). There are two main drawbacks with this model: no built-in WiFi functionality, and fewer 
online resources for programming and debugging during software development. 

Taking into account the weighting applied to each criterion, the selected computing platform was chosen 
to be the Raspberry Pi 3B+ in tandem with a Teensy 3.6 (shown previously in Figure 3). This setup gave 
high marks in processing power, time to implement, and the number of ports and pins - the most weighted 
aspects of the computation platform decision matrix. 

The other aspect of the design for the computing platform is the method with which the computing units, 
sensors, and actuators physically interface with each other. We will be developing a custom printed circuit 
board (PCB) to act as the interfacing motherboard connecting the computation platform to the rest of the 
vehicle. Concerns regarding the motherboard discovered through experimentation with the SSIV vehicle 
are explained in section 4.4.1. 

4.1.2 Motor 
Our vehicle runs off of a single motor with the power transmitted through a three-speed transmission and 
a differential to the wheels. Since the lone motor is responsible for the locomotion of the entire vehicle 
and for maintaining semi-truck similitude, it is important for the motor to have enough torque and speed 
output capacity to satisfy dynamic demands requested by the control system the user develops. In 
addition to having sufficient spare output capacity, the motor has the potential to be a large portion of 
the overall cost of the platform – subsequently, minimizing excess motor cost is a high priority, both for 
our own project’s budget and for the replicability of our platform. Other factors include available 
documentation of motor behavior and characteristics, the motor’s efficiency and weight, and the time 
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required for us to integrate the motor into the existing platform. Appendix D contains the motor decision 
matrix evaluating the Tekin, Maxon, Turnigy, and Multistar motors shown in Figure 11.  

 

 
 

  

Figure 11: Tekin [15], Maxon [26], Turnigy [27], and Multistar [28] motors (clockwise from top left) 

The Tekin motor is the motor selected by Daimscale that is already integrated into the platform [14]. This 
is the top choice designated by the decision matrix; it has sufficient performance capabilities, is relatively 
low cost, and adds the smallest implementation burden to our team due to it already being in the chassis. 
The second choice was the Maxon motors, which are high performance motors used by the Microlaren 
and ProgreSSIV teams for their vehicle [12] [13]. The Maxon motors were much higher cost versus the 
Tekin motors when taking into account the motor drivers and had a higher time to implement both due 
to the physical integration necessary and due to requiring CAN communication and thus additional 
software to process its communication.  

The Turnstar and Turnigy motors, while not as expensive as the Maxon motors, were not noticeably 
different than the Tekin motor and were more expensive. Combined with that, we would have to redo 
the motor integration for little benefit, so we decided against the Turnstar and Turnigy motors. The Tekin 
motor provides sufficient performance at a low enough price point and with minimal time burden. 

4.1.3 Sensors 
Sensor selection is a multistage process starting with defining the maneuvers we want the platform to be 
able to execute if required by the user. For modelling purposes, we determined that the platform should 
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be capable of performing forward object avoidance, side object avoidance, lane following, lane changing, 
object following, J-Turns [31], parking maneuvers, and trailer pickups. Each maneuver has a set of objects 
that the vehicle will have to be able to detect in order to safely perform, and each object has a range and 
angle requirement associated with it. Appendix F shows this process and lists the various angles and 
distances required to perform these maneuvers.  

Concatenating the various sensor range requirements dictated by the object list results in Figure 12 below, 
our minimum required coverage areas for our sensor suite. 

 

Figure 12: Sensor coverage areas with angles and the distances of the sensors shown in meters [29] 

The primary coverage areas to be able to execute our required maneuvers are a narrow long-range sensor 
looking forwards, a wide medium-range sensor looking forwards, a wide short-range sensor on either side, 
and a wide short-range sensor on the rear. While the wide short-range side sensors, the wide medium-
range sensor, and the rear short-range sensor were determined based off the geometry of the road and 
objects around the vehicle, it was necessary to evaluate the narrow long-range using a different approach. 
According to an analysis published in the journal Advanced Motion Control and Sensing for Autonomous 
Vehicles, a range of 200m was necessary for a forward facing sensor when a vehicle is traveling at highway 
speeds [33]. This range allows enough time for the vehicle to detect an object and react appropriately. 
Accounting for a 1/14th scale vehicle gives us a required range of 14.29m. The 12-degree angle was 
determined based on analysis in the same textbook. Authors Li and Wang determined 12-degrees to be a 
good compromise between good obstacle coverage and avoidance of false and unnecessary 
measurements.  
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The specific sensor selection will be performed in the upcoming weeks as the particular class, model, 
multitude, and orientation of each sensor is developed according to our minimum coverage areas and 
available mounting positions on the chassis. This will depend on the final platform delivered by the 
Daimscale team. Other aspects that we will be minding as we develop the sensor suite specifications will 
be the vertical field of view for each sensor and the minimum latency for effective use as additional criteria 
for sensor model selection. 

4.2 Software Component Design Concepts  
As detailed in our introduction and problem statement, one of the primary objectives of this project is to 
create a platform that future students and researchers can use for a variety of vehicle algorithm 
applications. Part of this objective requires us to create a user-friendly application layer where end users 
can use our platform without being bogged down by the low-level details of reading and writing to 
different peripheral devices in the system. An effective design creates an abstraction between what the 
user wants the vehicle to do and what actually happens behind the scenes. Proper software design will 
satisfy the user-friendliness requirement of our customer wants and needs. 

4.2.1 Middleware 
In order to systematically decide between the many options available for middleware, we created a 
decision matrix on the most viable options, located in full in Appendix E. The different options evaluated 
are ROS (Robotic Operatic System), AUTOSAR (AUTomotive Open System Architecture), YARP (Yet 
Another Robot Platform), and custom-built middleware, where we write our own libraries to handle 
device abstraction and intercommunication. Each of the third-party options are open-source software 
platforms that have community support and are used for projects within the robotics and embedded 
systems realms. 

Of the criteria, the three most important are time to implement, Simulink compatibility, and flexibility. 
The full decision matrix can be seen in Appendix E. Time to implement is important not only for getting 
our platform up and running, but also for future groups that may want to add additional functionality to 
a system based on our architecture. Being compatible with Simulink is an important contribution to the 
user-friendliness of our application layer (discussed in section 4.2.2). Flexibility is crucial for the possibility 
of end users wanting to add new hardware components on top of our final design without having to 
redesign the middleware itself. The middleware we use should not be a barrier to adding new peripheral 
devices to the system. 

Our software design moving forwards will incorporate open-source code from ROS. It carries a low time-
to-implement, access to a variety of sensor packages available in both C++ and Python, can smoothly 
interface with Simulink through the Robotics System Toolbox, has an active support community, and 
because ROS is so widely used as an open-source robotics platform there is plenty of community-written 
code for future additions and iterations of the sensor and actuator suite. Due to it being an actively 
maintained and utilized framework, future users of the systems will be less likely to have to deal with 
archaic and unsupported code if making changes to our system. An overview of the ROS architecture is 
given below in Figure 13. 
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Figure 13: ROS architecture overview [30] 

ROS’s Wiki page gives a brief overview of the implementation of ROS [31]. The framework is based around 
different processes (‘nodes’ in ROS terminology) that each host an executable program. Groups of nodes 
exist within different packages that have commonality based on attributes of the system. When necessary 
nodes communicate with each other through ROS Topics at runtime. Nodes can “subscribe” to topics that 
belong to other nodes, allowing for the organized transfer of information from one part of the system to 
another. This is a very high-level overview of the inner workings behind ROS, and we will familiarize 
ourselves with more pertinent details as we begin software development and implementation. 

4.2.2 Application Layer 
Above middleware is the application layer of our software architecture. This is the layer that the user 
interacts with, the place where abstracted autonomous algorithm designs can be constructed and tested. 
The ProgreSSIV team developed a Simulink file that gives users space to create their own control systems 
by providing the outputs of every sensor on their vehicle and inputs to each of the actuators. How to wire 
everything in-between is up to the user. This is the overall scheme we will be implementing. Figure 14 
below shows a simplified control model in the ProgreSSIV interface. 
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Figure 14: ProgreSSIV example algorithm 

The file was provided by Dr. Birdsong with an initial PID average speed controller. We added an additional 
signal layer varying the actuation signal sent to each wheel individually to attempt to keep wheel speeds 
even. This is not an optimized or effective control example, but it showcases the ease with which a user 
can quickly implement and test an idea. The left side of the diagram pulls the rpm readings of each wheel 
and the right side is where torque signals are sent to each wheel’s motor. 

The design of our application layer will prioritize ease-of-use and provide real-time displays of the vehicle’s 
sensor readings and actuator output signals. 

4.3 Potential Risks 
Through experimentation with the SSIV platform developed by MicroLaren and ProgreSSIV and discussion 
with sponsors, we have identified several key risks we need to mitigate with our design. Appendix G 
contains a checklist with some of the hazards that are associated with our design. In general, the major 
concern is that this project involves an object with a significant amount of mass that is design to be able 
to travel at speeds up to 20 mph. 

4.3.1 Loss of Communication 
In the event that the semi-truck loses connection with Wi-Fi, the computing unit will most likely maintain 
the motor and servo outputs that were present just before the disconnect. Unless we incorporate an 
automatic shutoff feature to our design, the vehicle will be out of control, posing a risk both to the vehicle 
itself, and also any object or people around it. The ProgreSSIV senior project team implemented a “dead 
man’s switch” in their intelligent vehicle design that limited any actuation of the vehicle to only when a 
user was holding an RC controller trigger down. This ensures that active attention is required in order for 
the vehicle to operate and is a safety feature we will be replicating. 

4.3.2 Battery Spontaneous Combustion 
The class of batteries we will likely be using are LiPo (Lithium polymer) batteries due to their high-
performance characteristics and being the battery type already integrated in the Daimscale chassis. The 
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risk associated with this class of battery is their propensity to catch on fire when mishandled. To ensure 
the user’s and vehicle’s safety we must we design robust electrical connections and keep the batteries 
enclosed and protected in the event of a crash. Our user manual will also reflect safe handling practices 
for future users. 

4.4 Design Challenges and Unknowns 
There are several aspects of our design that are particularly important to the robustness of our finished 
product that we will be focusing on moving forward, described in the sections below. 

4.4.1 Electrical Power Concerns 
The major issue discovered while experimenting with the ProgreSSIV vehicle was the instability of the 
electronics. Their platform utilizes a single power supply, a single battery supplying power to all of the 
motors, servos, microcontrollers and sensors. This simplified the overall power system, but insufficient 
filtering and isolation between the motor and computing portions of the circuit resulted in enough noise 
to cause the Raspberry Pi to crash and restart. The power draw from the servos and motors would 
occasionally starve the microcontrollers of their required current at random, often frequent intervals. This 
is a major detriment to the user-friendliness of the platform and is a problem we will be addressing in our 
design through increased isolation between the power supplies, through both our redesigned 
motherboard and separate power supplies. 

4.4.2 Sensor Specifics 
As outlined in section 4.1.3, our current focus with regards to sensors has been accurately defining the 
coverage areas required. The entirety of our remaining component specification work is in finding 
appropriate sensor models and developing a layout that will satisfy the requirements we showed in Figure 
12 at high enough performance such that users have access to useful sensor data. The ease with which 
each sensor integrates into the rest of our platform will be taken into account in our selection in tandem 
with our motherboard development, described below in section 4.4.3. 

4.4.3 Motherboard Design 
Developing a redesigned motherboard will require a moderate amount of research into analog noise 
filtering techniques to ensure we have a robust design that mitigates the electrical effects discussed in 
4.4.1. Sensors and electrical devices in general have several options for inter-device communication and 
the compatibility of each sensor with our computing platform can depend on the flexibility that we design 
into the motherboard. Further, developing a custom PCB requires a significant time investment in reading 
through manufacturer datasheets and finding components that are compatible and equally robust. The 
details regarding our board design will likely be completely known only after going through the design 
process once and testing prototype boards. 
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5. Final Design 
Our concept design section specified major choices that are persisting into the final design, including the 
two microcontrollers of the computing platform, the motor and the ROS infrastructure that will control 
the tasks running on the Raspberry Pi. Our final design section rounds out the entire system with 
components and assemblies that have not been covered in the concept design. Major points of the final 
design are the sensor selection for object detection, the motherboard and electronic connections, physical 
mounting that will ground each of the components in the system to the chassis, further details behind the 
ROS code on the Pi, and the proposed design to the Teensy task code structure. 

5.1 Sensor Selection 
In the concept design portion, we laid out basic guidelines to follow for meeting our design specifications 
in terms of sensor functionality. Since PDR, we have decided to go with a more intuitive approach to the 
sensors and not rely on scaling the sensors down to the same 1/12th ratio that is seen in the semi-truck 
chassis. This decision was suggested by our sponsors due to the physical behavior of sensors not scaling 
the same way that the mechanical components can scale. For example, an ultrasonic range finder (URF) 
cannot accurately scale down the signals transmitted by the device to be deemed a truly scaled down for 
modelling purposes. Based on this, we are treating the semi-truck system as a general robot that requires 
the ability to sense its surroundings, without caring about any similitude constraints to the full-scale semi-
truck. 

5.1.1 360° Spinning Lidar  
We have selected Slamtec’s RPLidar A2M8 360° Laser Scanner for general midrange object detection 
(Figure 15). This sensor will be mounted at the front of the vehicle for maximizing its field of view. 
Embedded in the device is a motor that controls the frequency with which it spins, allowing for variable 
360° scan rates between 5 and 15Hz. When recording, it has a sample frequency (which is the number of 
individual light pulses emitted) of between 2000 and 8000 Hz. Each sample can detect objects between 
0.15 and 12m. While the full 360° nature of the lidar is great for the field of view, the relatively low refresh 
rate of the semi-trucks surroundings (max 15 Hz) is a problem. In the next subsection we incorporate a 
solution to this concern. 
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Figure 15: RPLidar A2M8 360 Scanner [34] 

A point-cloud, as shown in Figure 16 is generated through recording data while the sensor is spinning. 
Each point represents a single sample, and the cloud is updated after each 360° scan. RPLidar models, 
including the A2M8 have access to Slamtec’s software for processing point cloud data. Instructions 
overviewing the software development is given in the RPLidar SDK guide [35]. which will be instrumental 
down the road during development of the data processing protocol. This sensor will be hooked up to the 
Raspberry Pi, which is running ROS, through an RS-232 communication protocol.  A benefit to using the 
RPLidar is that there are existing ROS libraries for the sensor that have been tried and tested. 

 

Figure 16: Point Cloud generated by the spinning LIDAR [35] 
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5.1.2 Long Distance 1-D LiDAR 
A forward facing, one-dimensional LIDAR supplements the spinning LIDAR by allowing a much higher 
refresh rate to any object in front of the vehicle. There is one main concern with the low frequency of the 
spinning lidar: at max speeds of the semi-truck an object in a collision path with the vehicle will not be 
tracked very well. It will take the RPLidar a full rotation before the object’s location is updated. This is not 
ideal when the semi-truck is moving fast and is in jeopardy of running directly into the object.  

A LIDAR-Lite 3 was specified to keep track of objects directly in front of the vehicle, especially at longer 
ranges (up to a potential range of 40m). This device is able to read the distance of objects through either 
I2C (inter-integrated circuit) or PWM (pulse-width modulation) communication channels. Its 
configurability allows us to adjust settings that dictate accuracy, operating range and measurement time. 
Finally, the device is a low power sensor, only requiring 85 mA and 5V during operation. The Lidar-Lite 3 
is shown in Figure 17 below. 

 

Figure 17: LIDAR-Lite 3 High Performance [36] 

The end of the cable comes as bare wires which we will be able to plug directly into pin sockets on the 
motherboard. The documentation for the Lidar Lite 3 specifies an additional resistor if using PWM-based 
communication and two additional resistors with an electrolytic capacitor if communicating over I2C. 
Because these components are sensor-specific, they will not be integrated into the motherboard and will 
instead be built on an adjacent mini breadboard. See Section 5.2.5 for more information. 

5.1.3 Ultrasonic Range Finders (URF) 
To round out the sensors dedicated to object detection, we have decided to equip the semi-truck with a 
suite of HC-SR04 Ultra01+ URFs [37].  At this stage in the design, we are planning on having five of these 
URFs to for illuminating any blind spots that the 1-D and spinning LiDARs do not cover. The three main 
areas are directly behind the tractor (where the trailer will hitch up to the fifth wheel) and the back left 
and right corners of the tractor-trailer combo. The spinning LiDAR is not able to see these areas due to 
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being located at the very front of the vehicle, where the semi-truck cab obstructs some of the field of 
view to the rear. 

 

Figure 18: HC-SR04 Ultra01+ Ultrasonic Range Finder [37] 

The URFs that we have selected have a range of 2 to 500cm, and an effectual angle of 15 degrees 
diverging from the sensor itself. A resolution of 0.3cm is achievable with this sensor. One thing that we 
must consider with these URFs is that they do not specify what angle an object is detected at; the only 
data returned from the sensor is the distance to the nearest object in the field of view. Data is 
transmitted through Trigger and Receive pins to calculate the distance to the nearest object as specified 
in the product manual [37]. 

5.2 Motherboard 
The goal of the motherboard design is to provide a reliable common interface for the computing platform, 
sensors, and actuators that mitigates the issues seen on the SSIV platform (random restarting of the 
computing platform), provides an organized layout of the electrical components, and is easy for users in 
the future to use and adapt to their needs. Drawing #6 in Appendix K contains the full schematic for the 
motherboard. 

5.2.1 Overview 
The motherboard is powered by two batteries, one for the motor side and one for the computing side. 
Components can be powered from either power circuit depending on their noise level and to balance the 
current draw on each side. There are terminals for devices to be powered and pin sockets to interface 
with the Pi and Teensy GPIO (general-purpose input/out) pins. Additional pin headers are on the 
motherboard for interfacing with the RC receiver so that we can execute control from the RC controller 
and switch the platform between manual and automatic modes. We will be providing mini breadboards 
around the motherboard in the computing package to allow for miscellaneous through-hole components 
to be integrated into the board if required by a particular device to balance flexibility and platform 
simplicity. As an example, our linear Lidar requires an external capacitor and resistor which are unique to 
its model. 
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5.2.2 Power 
See Appendix H for a simplified diagram of the power routing. We chose to have the batteries for both 
the computing and motor power circuits be identical models to remain interchangeable for ease-of-use 
and because both the motor and computing sides of the power circuit have high current requirements. 
The computing battery connects to a cable terminating directly on the motherboard, while the motor 
battery connects to a cable that is spliced between the motor and the motherboard. This allows the 
current going to the ESC, which powers the motor, the RC receiver, and the steering servo through the 
receiver, to not have go through the motherboard, vastly decreasing the current rating requirements for 
that particular portion of the board.  

Both the computing and motor power circuits utilize an LM2678 switching voltage regulator [38] to step 
down the 14.8V coming from the batteries to 5V. The Teensy, Pi, and all of our selected sensors as well as 
most servos run off of 5V while only the signal lines operate at 3.3V with our current selection of sensors. 
Both the motor and computing sides of the power circuits have the main 5V power supply rail and smaller 
3.3V supply rails, stepped down using a 3.3V Zener diode in parallel with the rail, to maintain flexibility. 
The 5V rails are capable of pulling any current up to the regulators’ capacities while the 3.3V rails are each 
limited to 150mA by the diodes. The computing-side power circuits include additional filtering circuitry to 
create a power supply appropriate for sensitive devices and to supply analog reference voltages at 3.3V 
and 5V for our and any future analog to digital converts (ADCs). The filtering circuitry is constituted by a 
ferrite bead, bypass capacitor, dampening capacitor, and dampening resistor with the components 
selected to filter out high-frequency noise from the Teensy and Pi, minimize DC current losses, and to 
avoid resonance with the voltage regulator’s switching frequency. The ferrite bead’s capability to filter 
noise falls drastically with increasing DC-current bias, with the particular bead selected so that up to an 
amp of draw can be pulled between both the 5V and 3.3V rails (with the 3.3V further limited to 150mA by 
its diode) without a major loss of impedance. 

We chose a switching regulator rather than a linear regulator due to the high voltage differential and high 
current capacity we are aiming for. Switching regulators regulate current by rapidly switching the voltage 
on and off through capacitors, while linear regulators have to dissipate all of the excess power. This 
improves both thermal requirements and massively improves efficiency, from around 30% to 80%. The 
downside of a switching regulator is that the switching mechanism introduces a small amount of noise 
inherent to the output, but the capabilities of this regulator setup outweighs the small noise addition. 

The worst-case reasonable scenario not including start-up current requirements is that all of the devices 
not powered through the ESC have to be powered off of the computing side due to limitations on the 
motor-side battery. Table 3 below represents the loading of this scenario plus running the 5th-wheel servo 
(which needs to be powered off the board) at an estimated stall current of 1A. 
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Table 3: Maximum current loading conditions 

Device Current [mA] Qty Total [mA] 
Teensy [39] 100 1 100 

Pi [40] 1000 1 1000 
Pi peripherals [40] 1200 1 1200 

IMU [41] 13 1 13 
Wheel speed [42] 25 4 100 

URF [43] 15 8 120 
Linear Lidar [44] 135 1 135 

360 Lidar [45] 500 1 500 
5th-Wheel Servo [46] 1000 1 1000 

Total     4168 
 

The LM2678 has a maximum current rating of 5A, giving us a healthy 850mA margin even in the worst-
case operation scenario. In reality, we will be moving many of these components to the motor side to 
balance the total power draw between the two regulators and to concentrate noisy components on the 
motor side. The computing modules and sensors generally have startup current draws higher than their 
running draw; supplying this increased load will be handled by splitting the devices between the two 
power circuits if necessary. 

We utilized the TI Webench Power Designer [47] to spec the components required to complete the 
regulator circuitry and to simulate regulation performance. Figure 19 below shows the simulated transient 
response due to a load current step change between 0.5A and 5A. 

 

Figure 19: Webench-simulated LM2678 output voltage transient response 
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The output voltage increases 60mV and decreases 80mV in response to the massive current spike. The 
oscillations on the output voltage on top of the transient response is regulator’s internal switching noise, 
shown in Figure 20 below.  

 

Figure 20: Webench-simulated LM2678  steady-state performance 

The internal noise is responsible for +2mV and -8mV of the noise in Figure 20. It operates at roughly 
260kHz, the rated frequency of the LM2678. The small amplitude is a negligible detractor with regards to 
the reliability of the system. 

The recommended min/max voltage for the Raspberry Pi is 5.25V and 4.75V, putting the transient 
response well within the acceptable range [48]. The Teensy steps input voltage down to 3.3V for its own 
use with an LP38691 linear voltage regulator, which has a typical voltage dropout of 250mV, meaning it 
can take voltages down to 3.6V. The LP38691 can handle up to 10V, but the connected USB power switch 
is only rated for 6V (and there is not sufficient heat-sinking capability for higher voltages regardless), 
making this the maximum Teensy input voltage and making the Raspberry Pi the constraint in terms of 
electrical reliability. 

The other consideration in addition to the LM2678’s transient current response is how well it handles 
externally generated noise. Figure 21 below shows the simulated Bode plot from Webench. 
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Figure 21: Webench-simulated LM2678 Bode plot 

The conservative estimate of the electrical reliability will be the maximum output voltage spike (±250mV 
for the Pi, the constraining factor) divided by the sum of the following: the maximum output voltage 
decline due to a transient spike (Figure 19), the amplitude of external noise times the gain associated with 
the external noises’ frequencies based on Figure 21, and the noise due to discontinuous operation, 
discussed in the next paragraph. This frequency response simulation only helps to justify our current 
design; it does not drive it. However, if it turns out that noise is still an issue on our motherboard, we will 
use these frequency response simulations along with measurements of the noise generated by our 
devices to design a new regulator circuit. For our current setup, the simulated crossover frequency (the 
frequency at which the gain equals zero, no amplification or diminishing) is approximately 32kHz; any 
noise with a frequency higher than this will be increasingly dampened. 

The final factor affecting our electrical power reliability is the additional voltage ripple the regulator 
experiences when operating in discontinuous mode, which is where the operation of the regulator’s 
internal MOSFET starts to create voltage jumps at low load. This is not simulated in Webench, but Figure 
22 below from the LM2678 datasheet shows what we can expect. 
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Figure 22:  Expected discontinuous LM2678 operation [37] 

The amplitude of the ripple is limited to around 10mV and the regulator enters this mode around 500mA. 
The parameters of Figure 22 above are close enough to our actual case to be applicable. While it’s likely 
that we will enter this current range when everything is idling, 10mV is a minimal contribution towards 
the 250mV limit, particularly since there will be reduced noise at low current since components may not 
be operating. A final, conservative measure of the electrical noise safety factor will take this into account, 
however. 

With regards to additional safety measures, the LM2678 includes an on/off pin. This pin on the motor-
side regulator is hooked up to a GPIO port on the Teensy so that we can cut power to the sensors and 
reduce current draw if we find an appropriate scenario for this behavior to trigger. The computing-side 
regulator is not controlled with its on/off pin to avoid any possibility of undefined behavior when the 
power supply is receiving commands from its own load. 

5.2.3 Pin Organization 
The motherboard either directly utilizes or makes available for modular use all of the pins on both the 
Raspberry Pi and the Teensy, including the non-breadboard-able “pins” on the underside of the Teensy. 
The motherboard plugs directly into the Pi pin rack, leaving them unchanged but with traces to pins that 
we want hardwired to other areas of the motherboard, such as the serial communication pins going to 
the Teensy and 5V power supply to the Pi. The Teensy pins are broken out and lumped into sections based 
off their intended usage. 

The Teensy’s communication ports are available such that all of them can be used simultaneously if we 
have that many devices that require communication pins. While it is possible to rearrange which pins are 
used for which communication ports, it will not be possible to add more since the underlying alternate 
pin functions are all being utilized (there is a small, finite number of hardware-supported independent 
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communication lines allowed for each protocol). If alternate functions other than communications are 
required of a pin on a communication port, there may be a pin combination that allows an alternate pin 
to be used for communications on the same port, freeing the original pin for its other alternative function. 
However, the layout is such that this will be a remote last resort since it will require almost all of the pins 
being utilized. Table 4 below shows the pins that correspond to the chosen communication ports on the 
Teensy. 

Table 4: Selected Teensy communication port pins [49] 

Comm. Ports Pin 1 Pin 2 Pin 3 Pin 4 
Serial 1: 0 1     
Serial 2: 9 10     
Serial 3: 7 8     
Serial 4: 31 32     
Serial 5: 33 34     
Serial 6: 47 48     

I2C 0: 18 19     
I2C 1: 37 38     
I2C 2: 3 4     
I2C 3: 56 57     
SPI 1: 11 12 14 15 
SPI 2: 51 52 53 54 

CAN 0: 29 30     
 

The bolded ports are preferred ports that should be used before others in a given protocol class; these 
minimize the loss of other functionality. The number of the port corresponds to their designation on the 
manufacturer’s Teensy pinout documentation. 

Alternate functions other than communication protocols on the Teensy are PWM outputs, analog inputs, 
and pins capable of either. The several Teensy pins we designated as PWM-only are all used by the motors 
and servos and we did not make available to plug into for other uses. Analog inputs should be routed 
through the analog-only pins before using one of the dual-capability PWM-analog pins. Similarly, any 
general GPIO functionality should be handled by pins with no intended alternate functionality before 
being handled by one of the more useful PWM or analog pins. 

A caveat on the Teensy’s analog pins is that they are only 3.3V tolerant while all of our analog sensors (the 
ultrasonic range-finders) and many analog sensors generally output 5V. Rather than attempting to step 
down each analog pin individually, the motherboard has a dedicated eight-channel analog to digital 
converter (ADC) chip, an MCP3008, that communicates over SPI, with the SPI lines passed through a 
bidirectional 3.3V - 5V logic shifter. Since SPI is a bus-style communication protocol, the ADC chip and 
logic shifter combination allows for a higher number of analog inputs at no additional pin usage while 
allowing for separate dedicated 5V and 3.3V analog inputs on the motherboard. 
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5.2.4 Mode Switching & Actuation 
To switch the truck between manual and automatic modes, we have to be able to send commands from 
the RC controller to the computing platform. Since the receiver only outputs PWM signals, we plan on 
having the Teensy read the receiver output PWM on the two auxiliary channels and program the RC 
controller to modulate the PWM on those channels, one for the dead-man switch and one for signaling 
what mode to operate in. 

RC motor and servos use a modified, roughly standard style of PWM signals as an artefact of their prior 
signaling method, Pulse-Positioning Modulation (PPM). Instead of having a duty cycle going from 0-100%, 
the receiver sends a pulse between 1ms and 2ms long every 10ms, limiting the range of duty cycles to 10-
20% and with a set frequency of 100Hz. We hooked up the outputs of our receiver to an oscilloscope to 
empirically measure the signals. Figure 23 below shows the steering servo signal. 

 

Figure 23: Oscilloscope capture of RC receiver steering signal 

The outputs we observed at maximum input on the RC controller never reached the 1ms and 2ms limits 
of the standard. We believe this is due to the controller limiting output itself rather than the components 
using a different standard. We found that the Daimscale team further limited forward motor output to 
90% of its “max”, while steering can be controller-commanded up to 120%, which was still beneath the 
2ms limit of the standard. We will impose whatever limits are appropriate to the output in software for 
automatic mode, keeping in mind that it’s likely we can extract slightly more range out of the motor and 
servos than the RC controller does. 

To hijack the PWM signals going to the motor and servo for autonomous mode, we are using single-pole 
double-throw (SPDT) solid-state relays (SSRs) triggered by a GPIO pin on the Pi and fed PWM signals from 
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the Teensy. The signal is sent from the Pi rather than the Teensy due to the Pi’s higher current draw limit 
on its pins. 

SPDT relays switch a common connection (the pole) between two other connections (the throws), in this 
case the input to the motor/servo and the PWM outputs of the receiver and Teensy, respectively. We 
selected solid-state relays due to the high reliability, smaller footprint, and simpler circuit design. For SPDT 
relays, SSRs also happened to be cheaper. Figure 24 below shows the circuit diagram of our chosen relay, 
the LCC110. 

 

Figure 24: LCC110 SPDT SSR circuit diagram 

The other option versus using relays to switch between signals was to route the receiver PWM output 
directly to the Teensy, have the Teensy read it and then recreate it with all of the motor and servo inputs 
being directly connected to the Teensy. We chose not to do this in case the resolution of receiver outputs 
is poor, which is likely due to the modified-PWM style of RC components mentioned above and possible 
performance constraints on the Teensy. Using an intermediary relay preserves maximum capability in 
both manual and automatic modes since there are no issues generating PWM outputs on the Teensy. This 
significantly lowers the performance requirements of the Teensy in reading the receiver’s output PWM’s 
since we only need to be able to distinguish between a moderate number of signals. 

To ensure safety, the default (normally-closed) position will be manual mode. If the RC receiver and 
controller lose contact the system will no longer read the dead-man switch and revert to manual mode, 
which has no signals being sent to it.  

5.2.5 Modularity 
The motherboard is meant to be generic with respect to the sensors that are attached to it to allow for 
flexibility both for our team and for anyone who works with the platform in the future. In the event that 
small components such as resistors or capacitors need to be added to allow a particular sensor or device 
to be utilized, we will be integrating mini breadboards into the computing enclosure wherever it turns out 
to be appropriate. Figure 25 below shows the model we will be purchasing. 
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Figure 25: Sparkfun mini modular breadboard 

This system will also allow for general expandability without needing a revised motherboard design. For 
example, if additional 5V analog input pins are required, an additional ADC circuit can be built on one of 
the breadboards and wired into the communication ports of the computing platform. 

5.3 Mounting 
In order to integrate all of the electrical and computing components onto the existing chassis, mechanical 
mounting components will be designed to effectively use the footprint provided by the Daimscale team. 
A majority of the mechanical mounting will consist of 3D printed components. We will be purchasing a 
spool of TPU (thermoplastic polyurethane, a flexible printing material) filament to be used on components 
that require damping, and a spool of PETG (polyethylene terephthalate glycol, a common 3D printing 
material) filament for any other components not critical for damping.  

Although having the complete truck body shell is not a requirement, we will take careful consideration in 
designing the mounting components in order to preserve as much of the shell as possible. We will not be 
modifying the truck body shell until after testing the components for optimal placement/angles and 
finalizing designs.  

5.3.1 Raspberry Pi + Teensy Mounting 
The Raspberry Pi will sit on the main computing enclosure on the scaled down vehicle. The computing 
enclosure is still being designed to account for the Raspberry Pi, Teensy, Motherboard and the mini 
breadboards. We will account for the limits of the platform due to the truck body shell and will stay within 
it. Sitting between the computing enclosure and the Raspberry Pi will be a Damping Mount shown in 
Figure 26 below. We will use this mount to reduce any vibrational effects on the electronics. 
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Figure 26: Raspberry Pi Damping Mount CAD Rendering 

5.3.2 Lidar Mounting 
The 1-D Lidar mount is a redesign of the Daimscale team’s front bumper mount shown in Figure 27 below. 
This redesign ensures that the current front bumper can be used in combination with the 1-D Lidar.  

 

Figure 27: Daimscale’s current front bumper design 

The mount is meant to sit at the front end of the truck to allow the 1-D Lidar a full forward facing field of 
view. We will fasten the 1-D Lidar on to the 1-D Lidar Mount with M3 cap screws, as with the rest of the 
assembly.  
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Figure 28: 1-D Lidar Mount CAD Rendering 

 

Figure 29: Assembly of 1-D Lidar and front bumper mount on the 1-D Lidar Mount CAD Rendering 

We determined that the ideal position of the 360˚ spinning RPLidar is on the hood of the truck body shell. 
Our current design has the RPlidar sitting over the 1-D Lidar on the front end of the truck as shown in 
Section 6.1.2. We will be removing the hood from the truck body shell due to the size of the RPLidar, 
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limited space of the truck shell hood, and to maximize visibility of the environment for the sensor. The 
main platform is shown in Figure 30 below. 

 

Figure 30: RPLidar Mount CAD Rendering 

5.3.3 Ultrasonic Mounting 
Since we will use the Ultrasonic Range Finder (URFs) to illuminate any areas the RPLidar does not detect, 
we will need to have a modular design of the URF mount for ease of testing as we finalize our design. Our 
design of the URF mount is therefore able to shift longitudinally along the side of the truck and is designed 
with a pivot that can be locked into place with a setscrew. This design will allow us to freely test the data 
we receive from the URFs from various angles and positions, until we settle on the best angle and position 
of the mounts. The URF mount will consist of 3 main parts: the URF Bracket, the URF Mount front, and 
the URF mount back, seen in Figures 31 and 32 below.  

Figure 31: URF Mount Front (left) and URF Mount Back (right) CAD Renderings 
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Figure 32: URF Bracket CAD Rendering 

5.4 Software 
The software design for our project is broken into two sections. The first section highlights what code will 
be run on the Raspberry Pi. We have made initial steps in writing the code, to a point where a group of 
ROS executables can run and communicate with each other. No actual semi-truck autonomous 
functionality has been completed at this time. The second section regards the development of the real-
time code that runs on the Teensy. Initial concepts have been supplied, but none of the code has been 
written. We will likely first get the Teensy up and powered with the motherboard board before we start 
uploading code to the device and see if it is behaving as we expect. 

5.4.1 ROS Design for the Raspberry Pi 
As laid out earlier in the report, the middleware to run on the Raspberry Pi is ROS. This architecture 
consists of many “nodes” (otherwise known as executables) that can run independently of one another, 
and topics that relay the system information between the different nodes. Our initial design in ROS 
includes four nodes: rplidar_node, lite_lidar_node, pi_comm_node, and controller_node. The first two 
nodes listed have been found online through existing repositories, while the latter two will need to be 
completed by us. Authors robopeak [50] and cocasema [51] host the GitHub repositories with ROS-based, 
C++ source code for the RPLIDAR and Lite Lidar, respectively. Any of these nodes can be launched without 
the other nodes running, but this does not necessarily mean that they will function as intended. To play 
its part in the system, a given node will need to communicate to other nodes via ROS topics. A node that 
outputs data can “publish” its data to a topic. A node that needs to read data can “subscribe” to the topic 
that it wants data from. 
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Figure 33: Initial ROS design with nodes and topics 

Figure 33 shows the general layout of the system. Nodes are shown as circles and topics are shown as 
boxes. The above graph was generated through a ROS utility package called rqt_graph. Rqt_graph is run 
in parallel with a system of ROS nodes, and generates a diagram showing the relationship and 
dependencies within the system. 

5.4.1.1 rplidar 
The rplidar node is shown at the top of the diagram. This node has a simple purpose of reading and 
processing data from the spinning LIDAR and publishing the output to a the rp_data. Again, the 
implementation of this node is credited to robopeak and the author’s GitHub repository. 

5.4.1.2 lite_lidar 
The lite_lidar node behaves similarly to the rplidar. It processes data from the forward facing, 1-D LIDAR 
and publishes its data to the lite_data topic. Author cocasema has written most of the code for this node. 

5.4.1.3 controller_node 
The controller node is the third node down in Figure 33. It subscribes to the three topics shown of 
lite_data, teensy_state and rp_data. Using a combination of this data, the controller node will carry out 
control systems calculations, and publish any results to the controller_our topic. This code will be written 
by us in the months to come.    

5.4.1.4 pi_comm_node 
Another node written by us is the pi_comm_node. This node subscribes to the controller_out topic to 
read and relay information across a serial port to the Teensy. In addition, the pi_comm_node reads data 
from the Teensy through the serial port. This data is published to the ROS system as teensy_data, and is 
needed for control loop functionality. 
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Figure 34: Sample code for publishing and subscribing to ROS Topics 

A snippet of C++ code that is written for the controller node is shown above in Figure 34. The first line 
depicts the syntax used for publishing data to a topic. A ROS Publisher object is created called ctrl_output, 
that is used to send messages (controller output data) to the topic. As written, the message is a String, 
with 1000 bytes of buffer space to avoid losing data that is not read immediately by a subscriber. Later in 
our development, we will need to change the message type to be some data that can be processed and 
sent to the actuators of the system, rather than a simple String placeholder. The actual topic that the 
message is posted to is denoted by the first parameter: "controller_out.” The latter three lines show the 
syntax for subscribing to a topic. In this case the controller node needs to know information about the 
state of the Teensy and what its peripheral sensors are reading, along with the data from both the Lite 
LIDAR and the RPLIDAR. Instantiating these Subscriber objects is similar to how the Publisher object was 
created. The primary difference is that a third parameter is needed as a callback function defining how to 
actually process the incoming messages. 

5.4.1.5 ROS and Simulink 
One specification of ours is to interface between ROS and Simulink. Figure 33 does not show any node 
corresponding to communicating with a Simulink model, simply because we have not gotten to that stage 
in the development. We are still planning to cover this feature in the months to come. Fortunately, there 
is clear documentation regarding this aspect of our system [52]. Quick research reports that there is a 
Robotics System Toolbox feature within Simulink to create Publishers and Subscribers that can interact 
with Topics within the ROS system. The article mentions that Simulink can be run on the same device as 
the ROS system for easy communication. One concern we have with this is that running Simulink on the 
Raspberry Pi will take up significant amounts of processing power that may inhibit the performance of the 
ROS nodes controlling the semi-truck. It is possible that we will have to run the Simulink model remotely 
and communicate via Wi-Fi to the Raspberry Pi. A ROS node would then pick up the signal and relay the 
controller information to the rest of the system. 

5.4.2 Teensy ChibiOS Architecture 
The Teensy will be running a third-party real-time operating system called ChibiOS. We had initially 
planned to run the MIT open-sourced software known as FreeRTOS. The main benefit of FreeRTOS was 
that members of the team have experience with this technology from previous mechatronics courses. 
Unfortunately, the Teensy’s microprocessor is a Freescale MK66FX1M-0VMD18 which does not support 
any version of FreeRTOS. As such, we have decided to go with the alternate plan for running ChibiOS. 
ChibiOS is licensed under GNU as a free software for running high performance embedded applications. 
The operating system can support a high volume of threads that are able to be interrupted, or preempted, 
by each other depending on different priority levels and time constraints [53]. The preemptive 
multitasking nature of this software is greatly important to the success and performance of our project. 
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We will be hosting several tasks that read sensors, control actuators and compute values that need to run 
“simultaneously.” Preemption of threads running tasks is necessary for the smooth operation of the 
vehicle. Figure 35 shows the task diagram for the Teensy. It will be implemented in ChibiOS C/C++ code. 
Tasks with a low priority number can interrupt other tasks with a higher priority number in order to satisfy 
their timing requirements. 

 

Figure 35: Teensy Task Diagram  

5.4.2.1 system_data 
Although this is not a task in itself, it is an important aspect of the design. The system_data will hold a 
variety of data that other tasks will have access to. A variable of this type can be initialized and passed as 
a reference to each of the other tasks in the system. Figure 36 shows our initial thoughts of what it might 
include. This is subject to change as we progress through implementing the design. 

 

Figure 36: A system_data variable containing information for other tasks to use. 
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5.4.2.2 teensy_serial 
The teensy_serial provides information transmission between the Raspberry Pi and the Teensy about the 
state of the vehicle. This task is designed to have a single state where it continually reads data from the 
system_data shown in Figure 36 and sends it over the serial port (UART communication) connected to the 
Raspberry Pi. In the same state, the task reads incoming data (if any) from the Raspberry Pi’s end of the 
serial port and writes that data to the system_data variable. This is what allows for each device to updated 
with the most current information of the system. This task has a high priority of 1 because it is basically a 
bottleneck between the different devices. It needs to be able to interrupt other tasks to run. If this task 
were to run very slowly and have a low priority, then there would be significant lag between the 
computing devices and the system would not behave optimally. Consequently, the timing for this task is 
relatively quick at 10ms. The only task to have as high of a priority as this task is the wheel speed sensor, 
where missing data results in catastrophic changes in control loop behavior. 

5.4.2.3 motor_driver 
The motor_driver task is what sends signals to the physical motor driver mounted on the chassis. This 
device, which regulates the voltage supplied to the motor, outputs a PWM based on what was calculated 
from the control loop in the Raspberry Pi. Without this task, the primary functionality of the semi-truck 
would be rendered useless. A reference to the system_data is passed to this task, and it will specifically 
read value of the motor_output variable in Figure 36 to actuate the motor. 

5.4.2.4 steer_servo 
The steer_servo task is similar to the motor_driver task in that it continually reads steer_output from the 
system_data variable writes this as a PWM level to the servo. Since there are multiple servos within the 
semi-truck system, and servos are relatively common in mechatronics projects like this, we will likely be 
able to find existing code online to help control these tasks. 

5.4.2.5 fifth_wheel  
The fifth_wheel  is another task that controls a servo. This task is responsible for locking and unlocking 
the “fifth wheel,” which acts as the coupling between the tractor and trailer. It will have two states, locked 
and unlocked, corresponding to different PWM outputs that determine angle of rotation of the servo. This 
task has low priority and timing requirements due to the non-critical nature of toggling the fifth wheel. 

5.4.2.6 wheel_speed  
The wheel speed sensor is used for tracking the speed of the vehicle. The analog device used is SparkFun’s 
Line Sensor Breakout – QRE1113. It is an IR reflectance sensor that can detect changes in reflective 
surfaces, such as the alternating black and white tape on the inner rim of the wheels. This sensor needs 
to have the tightest priority and timing restrictions due to potentially missing data as the wheels rotate. 
If it does miss a section of the tape, then the sensor will report that the speed of the truck is going 
drastically slower than it is, which will be relayed to the control loop and cause an unwanted spike in 
output motor level. We have determined the priority of this task to be 1 and the initial timing to be 5ms, 
although we can optimize this this after testing. 
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5.4.2.7 imu  
This task controls Adafruit’s BNO055 9-axis orientation device used for tracking orientation of the 
semitruck. Fortunately, Adafruit has available drivers for the BNO055 sensor on GitHub [54] that we can 
incorporate into our task.  Euler angle data regarding the semi-truck orientation is read over the I2C 
connection. Ultimately this angle data ends up on the Raspberry Pi’s control loop after being sent over 
serial communication in the teensy_serial. The timing for this task is set at 10ms, which is the sample rate 
as specified in the datasheet [55]. The priority is 3, leaving the only the wheel_speed and pi_comm tasks 
able to interrupt the IMU. 

5.4.2.8 URF_sensor 
This task controls the URF sensors that are oriented on the sides of the vehicle. If an object is detected by 
the sensor, a value signifying its distance will be read from the sensor and written to the system_data. 
There is an associated library for the device given by ElecFreaks [36]. This will supply us with some code 
to help read data from the sensor based on which pins it is hooked up to on the Teensy. The task has a 
specified timing of 25ms and a priority of 3. It is possible that we will need to adjust this to accurately read 
the signals that are transmitted and received by the URF in relation to nearby objects. 

5.4.2.9 RC_receiver 
The RC_receiver task reads in different PWMs from the RC receiver that is already mounted on the semi-
truck for manual control. There are two auxiliary channels not used for steering or acceleration that are 
wired up to the Teensy. The user can select different modes on the RC controller to send different PWM 
signals to the receiver. This task includes watching the dead-man switch on the RC controller as well as 
being responsible for triggering the switch between manual mode and a variety of different autonomous 
modes that may be saved on the Raspberry Pi. Like the URF sensor, this has a timing of 25ms and a priority 
of 3. We may need to alter these values to ensure functionality. In particular, some form of interrupt or 
polling may be required to accurately measure the output of the receiver if a static frequency is not 
sufficient. 

5.5 Cost Breakdown 
The total budget for our project is $3,000. Using this as a baseline we separate our project costs into five 
categories: sensors, motherboard, mechanical, electrical, and computing. Table 5 below shows our 
roughly budgeted and actual expenditures for the project as a whole. 

Table 5: Project budget 

Category  Budgeted   Spent  
Sensors  $          700.00   $     617.72  
Motherboard  $          400.00   $     363.73  
Mechanical  $          200.00   $     123.86  
Electrical  $          150.00   $     156.61  
Computing  $          100.00   $        68.98  
Total:  $      1,550.00   $  1,330.90  
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Sensor spending reflects the purchase price of all of our sensors, including those bought as part of testing 
and evaluation. Motherboard spending includes the requisite set of components plus extras and PCB 
orders for both versions of the motherboard. Mechanical costs include 3D printing filament and fasteners 
from McMaster. Electrical spending includes two LiPo batteries and a multitude of wires and connectors. 
Computing expenditures include one Teensy 3.6 and one Raspberry Pi 3B+, both bought to replace the 
units handed down to us. 

Based off our bill of materials in Appendix I, Table 6 below shows how much we would spend in each 
category if we were to make another vehicle, repeating the current design. 

Table 6: Vehicle budget 

Category Spending 
Sensors  $      529.70  

Motherboard  $      142.68  
Mechanical  $         88.34  

Electrical  $      123.60  
Computing  $         64.25  

Total:  $      948.57  

The total comes out to $950 with the current version of the vehicle, assuming the only costs associated 
with printed parts is the bulk filament orders. As expected, the bulk of the spending is on sensors. Within 
our total project budget of $3,000 another group could fit the Daimtronics-related components of a 
second vehicle into the current pool, where the total of our current expenses and of one more vehicle 
comes out to about $2,300. 

5.6 Updated Design since CDR 
When implementing the design that was laid out during CDR, we made several changes to the different 
subsystems in the platform. Some sensors were re-specified, the motherboard was redesigned for 
improvement, additional mounting was created, and software was redesigned. The details for each 
subsystem are described in detail. 

5.6.1 Updated Sensors 
The first main change that we made regarding the sensors was to replace the URFs with TOF (time of 
flight) sensors. Once the URF’s were hooked up to the Teensy and the code to control the devices was 
written, we found that the accuracy of these devices was not up to the standards that we wanted. The 
main issue was that when an object that was not directly square to the line-of-action for the URF signal, 
the signal would bounce off in another direction and the sensor would not receive feedback that an object 
was in the vicinity. We researched alternative sensors to solve this problem and decided on the Adafruit 
VL530X TOF sensors. These communicate via I2C, which needed to be considered in the design of the 
motherboard. An updated sensor diagram is shown in Figure 37 below. 
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Figure 37: Final Sensor Angles and Ranges [59] 

The second change pertains to the wheel speed sensors. We came across the realization that we could 
not determine the direction of motion of the wheels, only the magnitude of how fast the wheels were 
moving. Our initial plan was to change the digital version of the QRE113 back to an analog version and 
incorporate varying shades of reflectivity on the tape mounted inside the wheels. Using a strip of tape 
that had three different reflective values (as opposed to just two) would allow us to determine the 
direction of motion. Fortunately, during the manufacturing process we discovered that there is a direct 
output from the motor that can read the speed and direction of the motor in the form of a Hall Effect 
sensor. We decided that this would be the simplest way to read the speed of the vehicle. With this 
decision, we had to account for the backlash through the transmission that would offset the actual motion 
of the vehicle to what is being read from the motor output. 

5.6.2 Updated Motherboard 
The motherboard underwent an additional revision since Section 5.2, though the overall design is the 
same. This subsection will describe the changes from the previous design. 

5.6.2.1 Adjustable 12V Supply Rail 
There is an additional power supply rail supplied by a smaller 1A switching voltage regulator than the 
primary 5V regulators that is set to 12V but is adjustable using feedback resistors on the board. This is 
intended to supply peripherals that are not 3.3V or 5V, such as a more powerful 12V fan if future users 
require it. This rail pulls directly from the motor battery. 

5.6.2.2 Electromechanical Relay 
The two solid-state SPDT relays have been replaced with a single electromechanical relay that has two 
sets of SPDT contacts. It is a latching relay by necessity, since non-latching relays do not come at a low 
enough power consumption level to be supplied by the Pi or Teensy. However, this was discovered after 
ordering the revised board, so the negative lead of the relay goes to ground instead of to another IO pin. 
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The current motherboard has manual adjustments replacing that trace with a wire hooked up to the Pi 
GPIO. The next version of the motherboard will need to correct this (this is further expounded in Section 
9.1.1). 

5.6.2.3 Ports and I2C 
The pin ports were rearranged to reduce trace length and complexity, and an additional I2C port was 
added using an I2C multiplexer and accelerator to multiply the number of available channels. The 
multiplexer replaces I2C channel 3 on the Teensy. It reads commands from the main line of channel 3 to 
switch between its eight downstream channels, allowing sequential communication between eight 
different I2C devices and removing the device address restriction for its eight. Each of the multiplexer I2C 
channels have 10K resistor pullups and blank power supply rails. These need to be connected to the same 
voltage of the device being read, but allows for any signal voltage, while the multiplexer shifts everything 
back to the 3.3V for the Teensy. The accelerator injects extra current to the active I2C lines whenever it 
detects voltage changes to minimize the effects of high or varying bus capacitance on the maximum data 
throughput of the entire channel. Despite all of this, the I2C multiplexer and accelerator circuitry is 
currently inoperable for unknown reasons, and we are using only the four original I2C channels. 

5.2.6.4 Current Sensing 5th Wheel 
There is an INA250 integrated current sensing chip attached to the power supply traces going to the 5th 
wheel servo. This provides a 3.3V analog output directly to one of the Teensy analog pins that is scaled at 
2V/A, allowing for the detection of excess current draw by the 5th wheel servo in the event of a lockup as 
it tries to transition between positions. 

5.2.6.5 Motor Data Output 
The vehicle’s motor has a data output port outputting the motor shaft’s position and speed using the ticks 
of a Hall Effect sensor inside the housing. The output cable connects directly to the board using a JST ZHR-
6 connector. The board also has 5K resistor pullups. The Eagle device file for the connector has two pins 
switched, so the cable has minor modifications to remedy this. Fixing the device pin definitions is listed in 
Section 9.1.1. 

5.2.6.6 Regulators for 3.3V Lines 
Finally, the Zener diodes used to provide 3.3V supply to the board have been replaced with linear voltage 
regulators. The diodes only worked for extremely low current and could only step voltage down to 4.2V 
under any kind of load. The linear regulators are not as efficient as the primary switching regulators, but 
are simpler and use less board space. The number of supply/ground pin pairs for each supply port was 
reduced to six from eight to save board space, making room for the additional 12V line, and due to not 
being necessary. 

5.6.3 Updated Mounting 
Changes since CDR for mounting include the computing housing, second battery housing, a revised 
RPLidar mount, and revising the URF mounts to fit the ToF sensors. All parts are 3D printed in PETG 
(polyethylene terephthalate glycol-modified) or TPU (thermoplastic polyurethane). PETG is for rigid parts 
and TPU is for flexible parts, being a rubbery material. 
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5.6.3.1 Computing Housing 
The motherboard, Teensy, and Pi are enclosed in a box over the ESC, held in place by columns fastened 
to the chassis. All rigidly connected components use M2.5 hex nuts press fit into one part and the 
corresponding screw through the other. 

 

Figure 38: Computing housing 

The lid provides access to the pin ports on the Teensy and has a soft snap-fit into the casing to secure it. 
The motherboard assembly is suspended using 3D printed TPU springs. 
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Figure 39: Motherboard springs 

The springs have ridges that press-fit into matching ridges in the casing, which makes it very easy to 
assemble but has a high removal force due to having to compress each ridge and having to do so multiple 
times to remove the spring. 

The case features a 5V centrifugal fan fastened to the side of the housing with a printed TPU duct press 
fit into the case. 

 

Figure 40: Case fan and duct 
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A centrifugal fan was chosen due to its high-pressure output versus axial fans, which is necessary to keep 
air moving quickly through the enclosure, which has relatively little volume.  The fan is supplied off the 
motor-side 5V rail. 

The main casing itself is three parts that slide together – the floor, the walls, and the gate. This was done 
so that the motherboard and spring assembly can be mounting onto the floor without the walls getting in 
the way. 

 

Figure 41: Computing casing components 

After the floor is fully assembled, the walls slide on and are screwed to the floor to improve rigidity. The 
gate slides in, and then the lid after that. 

5.6.3.2 Second Battery Housing 
The second battery sits over the original one in the chassis, suspended by several columns fastened to the 
main plate of the chassis. 
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Figure 42: Second battery housing 

The battery is held in with flexible rotating fingers that are functionally identical to the ones Daimscale 
made. Our version can be used to replace the Daimscale parts if they break. 

 

Figure 43: Battery fingers 
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The columns supporting the back of the housing need to be adjusted, as they currently run into the battery 
fingers of the original housing. This is mentioned in Section 9.1.2. 

5.6.3.3 RPLidar Mounting 
The updated RPLidar mount replaced the rear through-holes for screws with snap joints with levers due 
to there not being matching screw holes on the chassis. 

 

Figure 44: Updated RPLidar mount 

A channel was added to the bottom of the mount to make room for the steering servo’s cable. There are 
also hooks for the RPLidar’s cable to hold it in place and extra holes to make it easier to reach all four 
mounting holes on the bottom of the lidar. 

5.6.3.4 Time-of-Flight Mounting 
The design of the side sensor mounts that were original for the Ultrasonic Rangefinders is fundamentally 
unchanged, but the head of the mounts have been changed to fit the much-smaller Time-of-Flight sensors 
instead. 
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Figure 45: ToF sensor mount 

The head can swivel when adjusting the angle of the sensors and then tightened down with the bolt at its 
swivel joint.  

5.6.3.5 Servo 5th Wheel Mounting 
The 5th wheel servo is attached to the rear of the chassis, several inches before the 5th wheel link. There 
are two clasps that fit onto the servo that are tightened down using M3 screws and preexisting tapped 
holes on the chassis frame. 

 

Figure 46: 5th wheel mount 
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The linkage connecting the servo to the 5th wheel lever has not yet been designed. A wire to pull on it 
should be a quick way to get it up and running and may be a near-optimal solution regardless. 

5.6.4 Updated Software 
Through conducting models in Simulink External Mode between a laptop and the Raspberry Pi, we 
discovered that the ROS network that was originally expected to be exclusively run on the Pi actually runs 
both on the Pi and the laptop. When Simulink is involved in External Mode, the entire control loop model 
is run on the PC and communicates through ROS’s built in TCP/IP communication protocol to relay 
information to the Pi. It effectively becomes its own ROS node that is running on the PC, but still is 
connected to the ROS network on the Raspberry Pi. Figure 47 shows more clearly the relationship between 
the three devices in the system. It should be noted that a user can still “deploy” a Simulink model to the 
Raspberry Pi, and keep everything running on the system attached to the semi-truck. In this case, the 
Simulink model is converted to ROS node, and is run directly on the Pi’s hardware. In this mode, however, 
here is no capability for viewing sensor and actuator data through Simulink scopes. 

 

Figure 47: Updated Software System Model for Simulink, ROS and ChibiOS. 

An example Simulink model has been included in Figure 48. This model shows three different subsystems. 
The left-most is a ROS subscriber subsystem that subscribes to all of the ROS topics running on the Pi, 
including the RPLIDAR’s topic, Lidar-Lite’s topic, and Pi serial communication topic. The middle subsystem 
is the control loop system that we expect future users to work most closely with. This is where all of the 
control system theory can be carried out and tested. The right-most subsystem takes care of publishing 
to ROS topics that hold all of the actuator data that eventually needs to be sent over to the Teensy for 
control over the motors and servos. Finally, the Simulation Rate Control block in the upper left corner 
controls how often the loop runs and sends messages to the actuator data topic on the Raspberry Pi. 

Users can view the system data as they traditionally would using Simulink. There are scopes and simout 
blocks that can be used to view the data in real time, and save the data for later analysis. Users can also 
alter block values within the control loop subsystem to see how the semi-truck responds to changes in 
gain values.  
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Figure 48: Example Simulink Model. 

For people using our system without any desire to work with Simulink, they must work more directly with 
the tools that ROS provides. ROSbags are the standard approach to saving simulation data throughout a 
session. We have created launch files to automatically output all of the sensor and actuator data that is 
within a ROS topic to a ROSbag. These are stored within the “semi_catkin_ws/rosbags” directory, and a 
script that we wrote can be used to export the ROSbag data to csv’s for each of the topic running during 
the Simulation. More specific information on how to achieve this is explained in our User Manual. 

Figure 49 show the updated Task Diagram for the tasks running on the Teensy. The general structure is 
the same as before (Figure 35), but tasks designed for the original set of sensors has been updated to 
display new tasks. The system_data that is shown in the diagram is not its own task, but since this holds 
the central state information of the semi-truck, we have included it in the diagram to show how the tasks 
relate to the system data. We have used a “shared-memory” approach to this statically declared variable. 
Any task that attempts to write data to the system_data must first acquire a mutex and lock the resource 
so that there are no race conditions within the code. 
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Figure 49: Updated Task Diagram for the Teensy. 

More specific discussion on the implementation of individual tasks can be found in section 6.3. 

The overall format of the main.ino file has also been updated for easier understanding. The top of the file 
contains a description of the overall organization to the Teensy code and the include statements for the 
header files containing the implementation for each specific sensor or actuator. Underneath that is several 
#define statements for each pin and its associated sensor or actuator. As we worked on all of the sensors 
and actuators on the Teensy, we found that having the pins declared in the specific .cpp file associated 
with the sensor or actuator was cumbersome for debugging and did not make for easily readable code. 
Instead, by having all of the pins declared at the top of main and passing them into each .cpp file as 
parameters, we were able to change pins on the fly in one location and avoid having to keep track of pins 
across multiple .cpp files. 

6. Manufacturing Plan 
The manufacturing for our project is split into three categories: mechanical, electrical, and software. 
Mechanical mounting encompasses mounting solutions, electrical encompasses wiring and motherboard 
assembly, and software encompasses the development of the drivers, middleware, and application layer 
for the computing platform. 

6.1 Mechanical Manufacturing 
We will be 3-D printing all of our Mechanical Mounting components. All of the sensor mounts are to be 
printed with PETG filament. This includes: the 1-D Lidar Mount, the RPLidar Mount, the URF Mount Front, 
the URF Mount Back, and the URF Bracket. PETG filament is significantly strong for the purposes of these 
components. The damping specific components will be printed with TPU filament. For now, the only 
component being printed in TPU is the Raspberry Pi Damping Mount.  
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6.1.1 Ultrasonic Assembly 
The Ultrasonic Range Finder will be placed inside the URF Mount Front and URF Mount back and will be 
fastened together with M3 cap screws. This subassembly will then be placed into the URF Bracket piece 
as shown in Figure 50. An M5 screw will be placed in the swivel joint of this assembly to allow the URF 
Mount to rotate on the URF bracket. An M3 setscrew can be inserted from behind to lock the mount to a 
specific angle if needed. 

 

Figure 50: Full URF Side Mount assembly 

6.1.2 Lidar Assemblies 
The new 1-D Lidar Mount will be screwed in place of the previous front bumper mount with the same two 
M3 cap screws. When the mount is secured to the front of the truck, the 1-D Lidar can then be secured 
on the mount with 4 M3 hex cap screws.  

For easier assembly, we recommend attaching the RPLidar to the RPLidar Mount before attaching it to 
the truck. Four M3x8 hex cap screws will secure the RPlidar to the mount from below. An M3 hex Allen 
key will be used to secure the screws. The entire subassembly will then be placed over the 1-D Lidar and 
secured with two M3 cap screws to the truck on either side of the mount. The full lidar assembly would 
look like the CAD Rendering in Figure 51 below. 
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Figure 51: CAD Rendering of the RPLidar and 1-D Lidar Mount assemblies 

The front bumper of the truck shell then attaches to the bottom of the 1-D Lidar Mount with two M3 hex 
cap screws to secure it for added protection and aesthetics. The bumper of the shell does not need any 
modifications. 

6.1.3 Full Sensor Assembly 
With the front assembly of both lidar sensors secured, the array of Ultrasonic Range Finders that 
supplement the lidar sensors will be attached on the sides of the truck. The sides of the truck currently 
have multiple tapped holes that can be used to secure the URF brackets to the truck with M3 hex cap 
screws as shown in Figure 52 below of the Full Sensor Assembly. The full RPLidar assembly is not shown 
in this figure as the STEP file provided by Slamtec contains a build error with the lens covering of the 
sensor and therefore it is hidden in this view. 
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Figure 52: Full Sensor Assembly CAD Rendering 

We currently have a plan to implement four Ultrasonic Range Finders to supplement the side views that 
the RPLidar cannot detect. Therefore, this assembly will be modular and allow us to secure the URFs 
along different points on the truck to find the best location for each sensor as testing continues.  

6.2 Electrical Manufacturing 
The bulk of electrical manufacturing is assembling the motherboard, with the remainder being 
modifications to wires. 

6.2.3 Motherboard Assembly 
The motherboard comes as a flat, blank circuit board with through-holes and pads for soldering 
components. All of the components come packaged in tape or tube form. To ensure that the motherboard 
is assembled correctly, the layout of the board is compared against both the digital board design and the 
schematic to cross-reference component location, connections, and values. A printout of the component 
list that summarizes the name, value, and footprint of each component will also be utilized to ensure 
maximum accuracy. 

Proper soldering safety measures include always returning the soldering iron to its holder, being mindful 
of heated objects, and having a fan operating to remove fumes except for when the breeze may cause 
especially small componentry to blow away. Having a clear workspace with slack on the soldering iron 
ensures that nothing will accidentally be knocked off the workbench. Additional measures when using 
leaded solder include not touching the eyes or mouth after coming into contact and thoroughly washing 
hands after the work is done.  
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Using a soldering iron requires the tip of the iron to be cleaned of excess solder then wetted with a small 
length of molten solder to maximize heat conduction to the board and to the component. When soldering, 
the solder is ideally melted by heat coming from the part being soldered and not directly from the iron, 
ensuring that the solder actually adheres to the component. 

Since there is a low overall number of components we are not investing in a stencil, but we are using 
solder paste to aid in the components with large heatsinking pads, such as the primary voltage regulators. 
Primarily we will be using solder rolls and a soldering iron to assemble the board, with a heat gun to 
remove components and for activating the solder paste. Attaching the surface-mount components first is 
easiest since it allows the board to lay flat. Surface-mount components should be handled with fine 
tweezers. Soldering down one end of the component at a time is recommended. A multimeter can be 
used to detect shorts and verify connections and component values as they are added. 

All of the through-hole components (terminals and pin sockets in our case) can easily be soldered at the 
end of the process. Gripping the board and the pins being soldered with a soft vise grip or clips is 
recommended so that the board and the part being soldered do not have to be held by the operator while 
pins are soldered. 

If a component needs to be replaced, the heat gun should be used to remove it, taking care to not damage 
the connections of adjacent components. If components have to be moved to a new blank PCB, again use 
the heat gun for easy removal of the original components. Large rows of headers and pins are difficult to 
remove from old boards, so typically we recommend buying new headers if making a new board. 

6.2.1 Wiring Modifications 
The only wiring modifications required are to the board side of the battery connectors. For the computing 
side, the ends of the purchased connector need to be stripped so that the wires will fit into the 
motherboard terminal. For the motor-side, the cables leading into the ESC need to be spliced so that 
power can be routed to both the ESC and the motherboard. 

To splice the motor-side LiPo wires, we will cut and strip both wires of the current connector, then use a 
three-way splice connector to go from the battery to the ESC and the motherboard. 

The actual crimp action can be performed with heavy-duty pliers or with a dedicated hand tool if available. 
After crimping, additional soldering can be performed to ensure maximum connection between the input 
and output as well as adding additional joint strength. 

6.3 Software Manufacturing 
A large portion of the project consisted of writing code to control all of the hardware and electronics that 
we have specified. Here we describe our approach to developing the software, and the differences 
between the Pi and the Teensy. We have started a GitHub repository for both the ROS code and Teensy 
code at https://github.com/nfurbeyr/daimtronics. 

6.3.1 Developing ROS code for the Raspberry Pi 
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The Raspberry Pi has been loaded with a microSD card with a Linux Raspbian operating system. Raspbian 
is a light version based on the Debian OS that is designed to run specifically on the Raspberry Pi, which 
doesn’t need the same amount of background processes as a typical computer. This allows for more 
computing power to go into applications that the user directly controls. Also installed on the microSD card 
is the Kinetic Kame distribution of ROS, with steps to carry out this process found on the ROS Wiki page 
[56]. This is what will govern control over all of the nodes and topics that are used in the semi-truck 
system.  

The Raspberry Pi has an HDMI port for a monitor and four USB ports for servicing a mouse and keyboard 
for user interactivity. This gives the ability to run and debug code directly on the Raspberry Pi. The 
standard Bash terminal is used to run commands necessary for launching the ROS nodes. If a bug is found 
in the code for our project, it is easy to edit the files, recompile the source code, and relaunch the nodes 
for quick feedback. Built in Wi-Fi on the Raspberry Pi allows the device to access the internet and 
download additional code from repositories found on GitHub.  

Tutorials for ROS have been consulted for getting the system running to where the multiple nodes shown 
in Figure 33 are communicating with each other. There were a few key steps, such as installing and 
configuring the ROS environment and building a ROS package that were required before ROS actually 
behaved as intended. There are plenty of online tutorials that cover this [56], so we won’t go into much 
depth here. 

6.3.2 Developing ChibiOS code for the Teensy 
Programming the Teensy with ChibiOS code was less user friendly than programming the Raspberry Pi. A 
major inconvenience with programming the Teensy microcontroller is that there is no direct user 
interactivity with the device. Our code must be uploaded from a computer to the Teensy through the 
micro-USB port that is built into the chip. In order to expedite this process, we will used the Teensy Loader 
software (running on a PC) and the Halfkay Bootloader (which comes pre-flashed onto the Teensy) for 
quick debugging and uploading cycles. PJRC has a few tutorials regarding details of the process [57].  

We used the Arduino IDE (Integrated Development Environment) for writing the code that runs on the 
Teensy. The Arduino IDE by itself does not support code for running on the Teensy architecture, but 
fortunately the Teensyduino add-on fixes this problem. Teensyduino simply adds another option in the 
IDE to select the board and libraries for the Teensy hardware. 

ChibiOS came into play by creating a ChibiOS thread whose job is to run a task. For example, the imu task 
shown in Figure 35 was mapped to a thread that runs the task function of reading data from the IMU. 
Threads are given a few different parameters as shown in Figure 36 [58]. In the case of the imu, the initial 
priority was set to 3, the thread function points to the function with code to actually read from the IMU, 
and the thread parameter would be the system_data that holds the variable imu_angle shown in Figure 
36. The stack size will need to be adjusted during development, and kept to the smallest size without 
getting any stack overflow problems when processing the task. 
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Figure 53: Initializing a ChibiOS thread 

When our system is running the list of tasks, a thread is designated to run each task. ChibiOS’s kernel 
contains a scheduler service that gives each thread a small amount of time to run, depending on the 
thread’s timing and priority requirements. ChibiOS’s documentation recommended to not mess with the 
kernel scheduler, but instead use the API for ChibiOS synchronization [57]. Each task accesses the 
system_data structure that resides in shared memory within the main.ino file. We used ChibiOS’s 
semaphore library to lock the system_data any time a task tried to write to it. If this had not been done, 
a task could have been interrupted in the middle of a write, and the data would be corrupted. 

6.3.3 Software Manufacturing Updates for Final Design 
Software manufacturing for the project went relatively smoothly. We were able to use existing code 
online for several of the device drivers, including the TOF, IMU, and both LIDAR sensors. Since most of the 
results of the coding manufacturing can be viewed from within the source code repository, we will not go 
too in depth here, but we wanted to highlight some of the major challenges that we faced. 

6.3.3.1 Serial Communication 
The serial communication between the raspberry pi and the teensy required the most in-depth coding on 
our parts. There were issues with how the bytes were transferred from one device to the other, including 
structure alignment, or byte packing. We found that even if we intended to send only one byte across the 
UART lines, in certain cases the C/C++ code for Arduino would automatically send an extra byte of junk 
data. This has to do with keeping the same structure as adjacent data that has just been sent before or 
after the sending of the single byte. Furthermore, the synchronicity problem for sending data caused us 
some issues for a while. When either the Raspberry Pi or the Teensy is executing its serial communication 
code, and the other device starts up and runs its code for serial communication halfway through, the data 
can become mismatched. For example, the Raspberry Pi might read a value that the Teensy intended to 
be the IMU angle, but based on in what order the Pi processed the data, it could be interpreted as a 
different sensor value, such as the wheel speed. To overcome this issue, we implemented a system so 
that every time a full set of sensor values was going to be sent, a device would first send a “sync value” 
that has a predetermined and consistent value that the other computing platform expects. If the receiver 
did not get the correct value, it empties the buffer up until it got the next sync value.  

6.3.3.2 Updated tasks for wheel speed 
The wheel_speed task on the Teensy has been rearranged to use the built in Hall sensor output (shown in 
Figure 54 below) from the Tekin motor instead of the QRE113 digital light sensor. The wheel_speed task 
itself was rearranged to track immediate speed and direction, while another task was needed to keep 
track of the ticks on the sensor. 
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Figure 54: Hall Sensor output from the Tekin RX8 BLDC motor 

The new task called the hall_sensor task was created to run on interrupts to count the number of ticks 
that have occurred during runtime. “Ticks” is a separate statically declared variable in the main file on the 
Teensy, that doesn’t reside within system_data. Wheel_speed runs on a standard timing basis within the 
ChibiOS scheduler, and updates the sensor_data variable based on the number of ticks that have passed 
since last run, and the time elapsed between the last run of the wheel_speed task. From this we are able 
to send the speed and direction of the truck to the ROS system on the Pi. 

While we were quickly able to read the frequency of revolutions that the motor was outputting, we could 
not determine the direction consistently. We implemented the hall_sensor task using interrupts that 
would trigger every time the motor’s phase A pin had a leading edge. The electronics were setup so that 
phase B and phase C signals on the motor were also hooked up to pins on the Teensy. Based on the 120 
degree offset between the phases, we could determine if the motor was going forwards or backwards 
based on whether phase B or phase C was high during an interrupt. In theory, our plan was solid, but 
actually writing the code for the sensor proved unfruitful. We were getting inconsistent, junk data for 
whether the pins were high or low during interrupts. After several days of attempting to debug this (both 
in software and hardware), we finally realized that the pins were initialized wrong in the setup section of 
the hall_sensor Teensy code. We had passed in to the pins’ setup functions that they should be in 
INPUT_PULLUP mode rather than just INPUT mode. It turns out that INPUT_PULLUP does not allow you 
to read a pin’s value like INPUT mode allows you to. Although the Hall sensor does require pull-up resistors 
to function, the new revision of the motherboard includes external pull-up resistors allowing us to switch 
from INPUT_PULLUP mode to INPUT mode. 

6.3.3.3 Updated tasks for TOF 
After scrapping the URF sensors that were not accurate enough for our purposes, we integrated the TOF 
sensors into the Teensy. All three of the sensors needed to run off I2C communication. These TOF’s in 
conjunction with the IMU would have used up all of the I2C ports. As is mentioned in the motherboard 
design, a I2C multiplexor was incorporated to free up some spaces in case additional devices running off 



Page 66 of 87 

of I2C needed to be included. Unfortunately, we were not able to interface properly with the multiplexor. 
We were able to ping the device, and get the device address to display on the serial console hooked up to 
the Teensy, but trying to access anything downstream from the multiplexor was unsuccessful.  

6.3.3.4 Updated RC Receiver task 
The RC_receiver task on the Teensy has been split into two separate threads for two switches on the RC 
controller shown in Figure 55 below. Switch 1 is used as the dead man’s switch that has to be pressed in 
order to output to the actuators during automatic mode. Switch 3 controls whether the platform is in 
manual mode (middle), automatic mode 1 (left), or automatic mode 2 (right). 

 

Figure 55: Switch 1 and Switch 3 on the RC Controller 

Each switch changes the PWM signal outputted from the RC receiver to the Teensy pins shown in Figure 
56 below. Both threads function in the same way, with each thread monitoring a specific pin on the Teensy 
that correlates to each switch on the RC controller. This was accomplished using interrupts to monitor the 
pin changes and run the specific thread to read the PWM signal on that pin.  
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Figure 56: PWM signal sent out by the RC receiver for the Teensy to transcribe 

An example of one of these threads is shown in Figure 57, below. The CH_IRQ_HANDLER declared on line 
227 runs preemptive instructions that prepares the Chibios system to awaken the switch 1 thread by 
sending a message in chThdResumeI on line 232. When the thread is resumed, the timing of the PWM 
signals sent by the RC receiver to the Teensy is read and the appropriate mode is returned.  

 

Figure 57: Example Code for the RC receiver task for Switch 1, the deadman switch. 
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6.3.4 Documenting the Process 
We have documented the entire software portion of this project using Doxygen. An index.html file has 
been generated and placed in daimtronics/doxygen/html, and can be opened in a browser to navigate 
through our written files and functions. In addition, a PDF has been generated and attached to this report 
as Appendix N. We suggest that future user focus primarily on the files and functions that reside within 
daimtronics/teensy_chibios/src/, and daimtronics/semi_catkin_ws/src/semi_truck/src/. These are the 
bulk of the code that we wrote, and will be key for understanding how the system works, and what can 
be done to add additional code to the platform. 

7. Design Verification Plan 
Verifying that our design is satisfactory requires both system-level and project-level verification to show 
we meet our overall project specifications, and intermediate tests that allow us to verify our design 
direction as we are able to. Appendix J gives a table for our DVPR with each of the tests that we conducted 
for verifying our design. All of our specifications that were determined in Table 2 have tests to verify 
whether or not the specification was met. In addition to these tests, there are some intermediary tests 
that helped us get to our target goals for the project. 

7.1 Specification Tests 
This section goes over how we intend on showing we meet each of our engineering specifications in 
Section 3.5. The number in parentheses in the section title is the corresponding item number in the DVPR, 
Appendix J. 

7.1.1 Cost - (21) 
To ensure we stay within budget we tracked our project expenditures by category and by transaction in 
our project ledger, delineating costs between the mechanical, electrical, motherboard, and computing 
aspects of the project. We have completed this project significantly under our total budget, spending 
about $1330, with a remaining budget of $1670 to be used for a second vehicle or further development. 
Table 5 in Section 5.5 details expenditures by category. 

7.1.2 Control Loop Frequency - (22) 
Because we were a little delayed in getting the entire system up and running with all of the sensors and 
actuators interfacing as we had hoped, we were not able to do extensive testing with the control loop 
frequency. We discovered fairly late in the game that when the Simulink External Mode is used the control 
loop doesn’t actually run on the Raspberry Pi, but rather the PC running Simulink. Unsurprisingly, the rate 
at which the control loop is able to run heavily depends on how complex the calculations within the 
control loop are. This is something that the next group that takes over the platform will have to test and 
optimize. 

7.1.3 Average Acceleration Time - (23) 
To verify the acceleration time, we timed how long it took the vehicle to accelerate to top speed. Detecting 
full speed was a combination of expecting the time-to-completion to be similar to the time to brake, which 
is easier to detect and was the test we performed first; observing the speed of the vehicle; and listening 
for the pitch of the motor and wheels to match the tone heard at full speed and to be constant. Using 
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these three heuristics to estimate when top speed was achieved, we found the acceleration time to be 
slightly under 3 seconds, meeting the 4 second target of this specification. 

7.1.4 Average Deceleration Time - (24) 
We ran the vehicle at maximum throttle for several seconds to get up to full speed then braked with the 
RC controller, using the RC’s built-in commands as a conservative estimate of the maximum braking 
capability of the motor. The vehicle consistently braked in 2.6-2.8 seconds, meeting the 4 second target 
of this specification. 

7.1.5 Setup time - (25) 
With the advent of the control loop running on a PC rather than directly on the Raspberry Pi, we have 
found that executing a model that has just been created is very fast and seamless. When the ROS nodes 
on the Pi are running, one can simple press “Run” within Simulink (having the correct model configuration 
parameters as mentioned in the User Manual) and have new model controlling the semi-truck in a matter 
of 3 to 4 seconds. For running control models using ROS inline code, the “catkin_make” command has to 
be used in the terminal of the Pi in the “semi_catkin_ws” directory. This will trigger a build of the new 
node, and takes 15-20 seconds. 

7.1.6 Steering Curve and Max Angle - (26) 
The max angle achieved for steering the semi-truck was determined by centering one of the front wheels 
on a protractor. We used the RC controller in manual mode to apply the maximum angle that the truck 
could achieve and measured the angle to be 20 degrees in both directions. Since we didn’t change any of 
the hardware for steering capabilities from what the Daimscale team had produced, we consider this test 
to be successful. Our original target was less than 10% deviation from similitude relative to an actual truck, 
but semi-trucks can actuate their wheels far past what the Daimscale chassis is inherently capable of, so 
we are not considering the 10% value to be our actual target. 

  
Figure 58: Steering Max Angle Testing in Manual Mode 

7.1.7 Sensors Read in Simulink - (27) 
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To verify that we are able to use sensor values read by the Teensy within Simulink on the Raspberry Pi, 
we created a test controller that used output values from a time-of-flight sensors, inertial measurement 
unit, and ultrasonic rangefinder to modulate the output of the motor and steering servo, verifying that 
sensor values are directly usable in Simulink. Figure 59 shows the change in output for the steering servo 
over time in one of our simulations. 

 

Figure 59: Simulink scope readings for actuator data 

7.1.8 Top Speed - (28) 
The test for the vehicle’s top speed was performed by measuring the time it took the truck to traverse 
two markers spaced 20 feet apart with the truck having accelerated to top speed prior to passing the first 
mark. One person was stationed at the beginning to start the timer when the vehicle traversed the first 
marker, and another was stationed at the end to call out when the truck passed 20ft. This test comprises 
our statistical analysis. 

The truck averaged 9.8mph, with a 95% T-based confidence interval spanning 9.05 – 10.54mph. The 
uncertainty in the speed is the combined propagated uncertainty of the total uncertainty of the distance 
and the total uncertainty of the time. The distance uncertainty was negligible compared to the time 
uncertainty, being almost 600 times smaller. The total time uncertainty was split between measurement 
uncertainty and of the statistical uncertainty. With a standard deviation of 28ms, the 95% T-distribution 
sample mean error is 34ms. The resolution of our timer was 10ms, but we considered the measurement 
uncertainty to be 100ms to account for the error in the operator’s perception of when the truck crosses 
the first marker and the delay between the second operator calling out the end of the run. 

With the time’s measurement uncertainty being three times larger than the statistical uncertainty, the 
statistical uncertainty contributes only an additional 6ms to the total uncertainty of the average time, 
106ms (the average time was 1.39sec). Due to this, essentially all of the uncertainty in the average velocity 
of the truck is due to the measurement uncertainty of the time. 
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Figure 60: Speed and acceleration test setup 

Regardless, the highest value we can reasonably assume the top speed of the truck to be is only 10.5mph, 
beneath our original specification of 20mph. However, upon discussion with our sponsors, we decided 
that 10mph is a sufficient benchmark, since the 1:14 scaling equates this to 140mph, far above what we 
would want a truck to be travelling. The 20mph specification was derived using a 1:sqrt(14) scaling, a 
choice made by the Daimscale team that we have overruled. Further, the output of the motor is currently 
being artificially constrained by the RC controller with limits input by Daimscale. We did not remove these 
limits since 10mph is sufficient, but if faster speeds are required, they could be achieved. The output limits 
of the vehicle while in automatic mode used the values read off of the RC controller, so the automatic 
mode limits are currently the same constrained values as the manual RC controller limits. 

7.1.9 Max Wi-Fi Range - (29) 
Communication between the Raspberry Pi and laptop running Simulink was achieved through using the 
Personal Hotspot feature on an iPhone, though we assume it is generalizable to any mobile hotspot. The 
phone was moved 30m away from the other devices indoors and in multiple orientations; both the 
Raspberry Pi and laptop were able to maintain a connection to each other. This satisfies our minimum 
target of 10m. 

7.1.10 Object Detection Range - (30) 
Our primary intention for measuring the object detection range was to use the Lidar-Lite sensor for front 
facing obstacle detection. Unfortunately, the line of sight of the device hits the ground before it can reach 
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its maximum range. We have resorted to using the RPLIDAR for the object detection range. The data 
comes from a ROS LaserScan which has an array of ranges. The data for this specification test has been 
exported to a .mat file in Matlab for easy viewing. Figure 61 shows the ranges (in meters) that the RPLIDAR 
can detect objects for. In the case below, we have data that shows objects at 11m away from the truck, 
which passes the test we set out for ourselves. 

 

Figure 61: Maximum range detected by the RPLIDAR of 11m 

7.1.11 Object Detection Angle - (31) 
Our object detection angle was determined primarily by testing the angles that the RPLIDAR was able to 
view. This data, which is in the form of a ROS LaserScan datatype, was analyzed in MatLab. Figure 62 
shows the different types of information contained within the structure, including the starting and ending 
(minimum and maximum) angles of the scan, the angle increment, and the ranges.  
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Figure 62: Data contained within the LaserScan for the RPLIDAR 

The starting angle, along with the angle increment can be used to generate an array of angles for an entire 
scan. The output of this calculation matches up with the Ranges array that is built into the ROS datatype, 
seen in Figure 63. This array shows for each timestep, an array of roughly 320 ranges, which are the 
distances to the nearest object in meters. Any cell with the value “Inf" means that the LIDAR could not 
detect an object within its 12m range. Based on the output of the data, the LIDAR shows angles for a full 
360-degree view but is obstructed by the motherboard casing for 30 degrees. As such, our system has 
achieved its goal of a detection angle of 180 degrees. 

  

Figure 63: The “ranges” data within the LaserScan 

7.1.12 Battery Life - (32) 
The battery life was confirmed to meet our specification during the Senior Project Expo. We had a demo 
running where the motor would actuate different levels based on a signal coming from the Lidar Lite’s 
detection of an object in front of the vehicle. The Expo lasted three hours, and for two of the hours the 
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platform was running. We estimate the motor and servos had been running for longer than the 30 minute 
limit for passing the battery life specification. 

7.1.13 Software Application Layer - (33) 
The software application layer requires that there be a library of easy-to-use functions for the user to call 
the interface with the sensors and actuators on the vehicle. The layer has been written in the 
semi_truck_api.cpp file, and future users should #include the semi_truck_api.h (in 
daimtronics/semi_catkin_ws/src/semi_truck/include) file when writing their algorithms to control the 
vehicle. The application layer consists of “setter” and “getter” functions to read from and write to each of 
the different sensors and actuators hooked up to the Teensy. As such, we have passed the test that 
actuators and sensors can be interfaced with through our API. As an example, Figure 64 shows the code 
for the call to set the motor output that is ultimately sent to the Teensy’s motor_driver task. 

 

Figure 64: Application layer example for controlling the motor output 

This application layer requires the pi_comm_node to be running and transmitting data between the Pi 
and the Teensy for the application layer function calls to work with data in real time. 

7.1.14 Documentation Rating - (34) 
We were unable to receive feedback from other mechatronics students on the documentation for this 
project due to time constraints. Because we were working on getting the full system to run up until the 
Senior Project Expo, we did not have time to meet with other students to test out the entire system. 

7.1.15 Voltage Safety Rating - (35) 
The minimum voltage rating for all electrical components at and around the battery inputs of the 
motherboard is 35V, slightly greater than the 30V minimum required for a safety factor of 2 with nominal 
battery voltages of 15V. Using a DC power supply, we tested an input of 20V, which we consider to be a 
reasonable extreme upper limit, to confirm the robustness of the motherboard. We do not see the benefit 
of directly testing further since we have only one motherboard currently available, and consider this test 
passed for our intents and purposes. 

7.1.16 Replacement Test Time - (36) 
Replacing the peripheral time-of-flight sensors takes about four minutes, including removing from 
mounting, removing wires, replacing wires, and putting back into mounting. [XX Include time to replace 
both upper and lower batteries, then call good]. This is beneath our target of 20min, satisfying this test. 



Page 75 of 87 

7.2 Intermediate Testing 
Intermediate testing encompasses the individual component testing and verification and was 
accomplished throughout the project, before the full assembly. The number in parentheses in the section 
title is the corresponding item number in the DVPR, Appendix J. 

7.2.1 Motherboard Testing - (4 through 9) 
The motherboard has been tested for any power and signal shorts, and successfully provides power to 
the Teensy, Pi, attached sensors, and the steering servo. The Teensy can successfully enable and disable 
the motor-side 5V regulator and the Pi can switch the relay between sourcing signals from the receiver 
(manual mode) and from the Pi (automatic mode). However, the I2C multiplexer is currently not 
functional. The motherboard passed all intermediate testing except for the multiplexer. 

7.2.2 Ultrasonic Calibration - (12) 
The URFs can determine a distance by emitting a sound and determining the amount of time it takes for 
the sound to return from an object. The URFs come with a recommended scaling factor of 58 
microseconds per centimeter. We were able to collect data on this output timing and compare it with 
known distances to further calibrate and verify the URF timing scale.  

 

Figure 65: Ultrasonic reading a distance for an object placed square to the sensor and 20 cm away 

In order to further confirm that the URFs were correctly reading distance, we tested a variety of different 
objects and ran the Ultrasonic script on the Teensy to output distance. We compared these distances with 
those found with a tape measure. The URFs were able to determine an accurate distance every few 
readings, but it was not consistent. Over time, random spikes in measured distance would be outputted 
by the URFs. A simple filtering script could be written to improve this accuracy, but we noticed that as 
objects became less square to the sensor, readings would go off the scale and become far too inaccurate.  
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Figure 66: The same object tested at an angle of 30 degrees to the sensor and 20 cm away 

An object at around a 30-degree angle to the URF would send data too inaccurate for a filter to properly 
function. For the same object rotated 30 degrees and 20 cm away from the sensor, Figure 66 shows that 
on average, the distance measured is about 30 cm. Additionally, any object that does not reflect sound 
easily, such as fabrics or people, introduces more noisy data that makes filtering less effective. For these 
reasons, we have determined that the Ultrasonic Range Finders have failed this test and have replaced 
them with an Adafruit VL53L0X Time of Flight sensor. 

7.2.3 Lidar Lite Calibration - (13) 
The Lidar Lite is successfully able to read distances to the nearest object directly in front of the semi-truck. 
This is achieved by simply using the ROS driver that cocasema [53] has written. It publishes its message as 
a ROS sensor_msgs/LaserScan message. The data is able to be read by Simulink when using External Mode. 
Unfortunately, we ran into issues that the line-of-sight of the sensor will hit the ground 5-7 meters in front 
of the vehicle. This is primarily due to the fact that the suspension tilts the vehicle downwards now that 
the entire computing system and batteries are mounted. This testing was not done with the trailer 
attached, so it is possible that the addition of the trailer will correct the line of sight issues that we were 
encountering. We have suggested some actions to take for fixing this problem in the Next Steps portion. 

7.2.4 RPLidar Verification - (14) 
The RPLidar successfully outputs its point-cloud data in a format that can be parsed in a way that is useful 
to a user. Currently its output is divided into equal radial zones, with the output of the sensor being the 
distance of the nearest reading within each zone. The data is currently nested within a ROS message that 
helps maintain structure and meta-data about the Lidar scan. Similar to the Lidar Lite, this sensor is 
controlled by a prebuilt ROS driver that outputs sensor_msgs/LaserScan data according to the ROS 
standard. There is an array of Ranges that contains the distance to the nearest objects in the 360 degree 
range that it is capable of. We have made suggestions in the Next Steps section on how to leverage the 
data coming from the RPLidar  
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7.2.5 Mounting Robustness - (10) 
Due to completing the full platform relatively late in our planned timeline, we did not have time to 
extensively test the mounting robustness. We had some troubles with 3D printing the mounting, and this 
was one of the final items completed for our project. We subjected the platform to vibrations from 
manually shaking the tractor portion of the semi-truck. We did not do any crash simulations with the 
system, and would suggest future teams be mindful of nearby objects to the truck when starting out with 
testing autonomous algorithms. 

7.2.6 RC Receiver Reading - (15) 
The Teensy can successfully distinguish between multiple servo-style PWM signals coming from the 
receiver. This is currently being used to send an enable/disable signal from the dead man switch on the 
RC controller to the Teensy and to send whether to be in manual or automatic mode. 

7.2.7 Relay Fidelity - (18) 
We have tested that the relay is able to switch between the two PWM sources and pass it through to the 
servos and motor with sufficient quality. Originally, we were concerned that the Pi would not be able to 
hold the relay high due to a high current sourcing requirement, but the two solid-state relays have since 
been replaced with a single larger electromechanical relay that controls both the steering and throttle 
and consumes less current than the two combined solid-state relays. We sent throttle and steering 
commands from the RC receiver through the motherboard to the motor and servo, comparing the signals 
before and after the relay with an oscilloscope, taking pre-relay to be ground and post-relay as the 
measurement. The signal read as almost identically zero, confirming that the relay does not degrade the 
signal quality. 

8. Project Management 
In order to ensure that the requirements of Daimler and Dr. Birdsong are met, this project was conducted 
in close connection with our sponsors in order to maintain tight feedback loops as we progressed. 

8.1 Project Overview 
To facilitate the development of this project, we conducted research on alternative and preexisting 
autonomous semi-truck research solutions. By evaluating the preexisting literature and consulting with 
professors knowledgeable in the required areas, we were able to tune our ideation and were able to focus 
on the technical decisions needed to produce an effective research platform. This work along with sponsor 
feedback guided our development of the critical design review report, which was presented to the 
sponsor. After obtaining design approval, we will begin integrating the parts of our design to begin testing 
as soon as possible. 

As of Winter 2019, this project is now fully owned by the Daimtronics team due to the completion of 
Daimscale’s senior project. Weekly meetings with Daimler and Dr. Birdsong helped guide us to completing 
the platform. 



Page 78 of 87 

8.2 Project Execution 
Our team utilized Asana, a task management platform, for planning and organizing work done outside of 
meetings, to track small details and work that needs to be done, and to organize relevant information and 
documents that are necessary for work completion but not necessarily required material for the project. 
The overall project timeline was tracked in TeamGantt shown in Appendix B. The weekly team meetings 
consist of time spent completing objectives and of planning what to have done individually by the next 
meeting or by particular lab dates. Table 8 below spells out the key deliverables and their due dates. 

Table 7: Key Deliverables and Expected Due Dates 

Deliverable Description Due Date 

Initial Task Diagrams Multitasking design diagrams for microcontrollers. Includes 
relationship between boards. 

November 1, 2018 

Preliminary Design 
Review (PDR) 

Report of team progress, review of initial solution designs. November 11, 2018 

Part Selection & 
Implementation 

Final selection of sensors and actuators with plan for board 
integration. 

December 2018 

Interim Design Review 
(IDR) 

Project update report including the results of the 
Daimscale project and our design progress 

January 17, 2019 

Manually-Operated 
Platform 

Assembly of all actuators and sensors. Manual control-
capable. 

February 2019 

Critical Design Review 
(CDR) 

Presentation and report of information for final design and 
plan for completion. 

February 8, 2019 

Basic Autonomous 
Software 

Completion of rudimentary software to demonstrate 
autonomous capabilities. 

April 30, 2019 

Final Design Review 
(FDR) 

Detailed report of all design considerations and evaluation 
of product capabilities. 

May 30, 2019 

Senior Project Expo Public presentation of the state of the project and design. May 31, 2019 

Final Vehicle Delivered Completed platform with aforementioned software and bill 
of materials. 

June 6, 2019 

The Gantt chart in Appendix B shows the finalized completion time for each deliverable and the 
dependencies of each aspect of the project. This was utilized in conjunction with Asana to keep the project 
moving at an appropriate pace. 
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The Gantt chart helped us to develop internal deadlines for the project and Asana helped to track details 
and resources. As the project progressed, we were less strict about tracking our progress as we focused 
on trying to get the work done rather than documentation. While this did not result in any obvious 
detriment to our team and the project, it is a weak spot we all are taking into account when we go into 
our next design project. Having the clearest available picture of the project status is always useful in 
determining how best to allocate resources. 

9. Conclusion 
This report is a culmination of all the information discovered throughout our year-long endeavor to build 
a platform for testing autonomous vehicle navigation algorithms. This version updates the details of our 
final design, our outcomes for motherboard, mounting and software manufacturing, and describes the 
results of testing and design verification. Our revised final design includes more appropriate sensor 
models, more easy access for assembling mounting for the platform, and a second design and 
manufacturing cycle of the motherboard.  
As is typical with Senior Projects, especially those revolved around mechatronics applications, we were 
fairly limited in time towards the end of the year. We only got our full system assembled by the day before 
the Senior Project Expo, and this did not leave us much time to do full system testing. While we were 
diligent in conducting and documenting the intermediate tests that we had set up on the path to a full 
system, we could have used a few more weeks to iron out all of the loose ends in the platform. In 
hindsight, it would have been best to get the motherboard and mounting completed halfway through our 
third quarter, rather than a week before the quarter ended. Furthermore, we could have frontloaded 
some more of our development on the sensor interfacing to free up time for system testing. With this 
being said, we are proud of the work we have completed, and are looking forward to hearing how the 
future users interact with the platform. 

9.1 Next Steps 
The project is ready for another group of engineers to start working with the platform on autonomous 
vehicle algorithms. The entire computing systems are hooked up to each other and passing data for 
controlling the semi-truck and sensing the truck’s surroundings. While the next team could start working 
on in-depth control models (either in Simulink or programmatically in ROS) we suggest that some 
modifications are made to our final design. 

9.1.1 Motherboard 
There are several changes that need to be made for the next version of the motherboard. The relay traces 
need to be adjusted, the I2C multiplexer and accelerator circuitry needs to be diagnosed, the motor hall 
sensor data port pins need to be fixed, the 5V analog circuitry needs to be tested, power switches should 
be added to either the board or the battery-to-board wires, the pin enabling the motor-side 5V regulator 
should either be disconnected or routed to a different pin on the Teensy, a reset pushbutton should be 
added for the Teensy, and we recommend adding a protoboard area. 

The negative pin of the relay’s actuating coil needs to be rerouted from ground to a pin on the Pi so that 
reverse voltages can be applied. A pin next to the current control pin is preferable. 
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The I2C multiplexer and accelerator currently do not detect any devices downstream of the multiplexer. 
The cause of this is currently unknown. One known change that should be made is to reroute the 
multiplexer’s channel from I2C channel 3 on the Teensy to any other channel, as channel 3 is an additional 
channel specific to the Teensy that is not fully supported in across a variety of I2C Arduino libraries. 

The supply and temperature pins of the JST ZHR-6 Eagle device for the motor hall sensor data port are 
switched in the connections between its footprint and its schematic. The device file has been fixed already, 
so fixing the schematic and traces then printing the new board are the only actions needed to fix the issue. 

The 5V analog input port has not been tested due to none of our sensors needing it. The converter chip 
communicates 5V SPI to the logic shifter chip, which translates the 5V SPI to 3.3V SPI to the Teensy. An 
SPI driver will need to be written for the Teensy to handle communication with this chip. 

Switches to control the power supply of both batteries without having to plug and unplug the connectors 
every time will save some time. If the switches are attached in-line with the wires then they can improve 
the safety of assembling the vehicle by preventing the bare wire-to-board leads from sparking when 
connected to the battery. 

The Teensy pin connected to the enable pin of the motor-side 5V regulator happens to also be the pin 
that controls the LED on the Teensy. This means the LED is not available for diagnosing the Teensy since 
it needs to be held high to keep the motor power on. This pin should be routed elsewhere or disconnected 
if control over the motor-side regulator is deemed not necessary. 

A board pushbutton should be added to operate the reset pin of the Teensy. Currently the only way to 
reset the Teensy is to disconnect and reconnect the entire computing power supply, which also resets the 
Pi. The Pi takes much more time to restart than does the Teensy, unnecessarily increasing the time it takes 
to reset the platform. 

Finally, we recommend adding a protoboard section to the motherboard. This is a grid of through-holes 
with connections similar to how a breadboard is set up. This allows for easy additions of unforeseen 
components or components that are very specific to a particular sensor or actuator, such as the capacitor 
on the Lidar Lite. This replaces the prior, unimplemented idea of using mini breadboards adjacent to the 
motherboard for this purpose, since a protoboard allows for easy soldering and will not allow components 
to come loose, a concern with using breadboards. 

Our team will be available to advise whoever is working to implement the above; this document alone is 
not expected to be sufficient to implement the changes unless the next developer has prior PCB design 
experience. 

9.1.2 Mounting 
During testing, we found that with the addition of the motherboard, sensors and batteries, the front 
suspension was closer to the ground than we had expected. This resulted in the front facing LIDAR-Lite’s 
line of vision to intercept the ground at approximately 7-8 meters. While this was not a deal-breaker for 
the max object detection range specification, we believe that a team could implement an easy fix to this 
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problem. We would suggest reprinting the mounting for the LIDAR-Lite so that the emitted laser travels 
as close to parallel with the ground as possible. 

Another improvement to the mounting for the system is including some protection for the Lidar-Lite 
located at the front of the vehicle. As it stands, the sensor is slightly exposed (sticks out about an inch past 
its mounting) and is vulnerable to any head on collisions with other objects. The fix for this would be pretty 
simple, and would include taking the existing solid models, and extend the front edge of the model so that 
the Lidar-Lite does not protrude out. In the meantime, users should be cautious while working with the 
semi-truck, and should try to avoid any high speed collisions with objects. 

The columns supporting the rear of the second battery housing need to be adjusted to be able to clear 
the finger tabs holding in the first battery without any modifications. 

The 5th wheel servo currently does not have a linkage connecting it to the actual 5th wheel spring and 
lever. A thick, stiff wire should be sufficient since the servo only needs to pull on the lever; it should never 
have to be actively pushing the 5th wheel closed. This is likely close to an optimal solution, though a more 
in-depth linkage can be designed by a future user if desired. 

9.1.3 Software 
While we have successfully setup the RPLIDAR and read its value through both the ROS and Simulink 
methods, we have not formatted the information in any way. Currently, the data resides within a 
LaserScan ROS message. This message has a variety of different values within its structure, including the 
minimum and maximum angles, the angle increment, and an array of both ranges and intensities. We 
suggest transforming the minimum angle and angle increment to generate an array of angles (from -180° 
to 180°) that is directly related to the ranges array within the data type. Both of these arrays will be of the 
same size, and easy to use to map out the surroundings. We also suggest setting up polar plots to help 
visualize the data in a point-cloud format.  

Sometimes the serial communication between the Teensy and the Pi gets into an error state where the 
data is mismatched, even with the advent of sending a synchronizing value (see the source code 
comments in the serial communication files for info). This will be fairly obvious to users, as data will not 
be updated even when the system is running. The fix for this is to relaunch all of the nodes using the 
command “roslaunch semi_truck_bags.launch” in the Raspberry Pi terminal. When the nodes are 
restarted, and more specifically the pi_comm_node, the data will be reset to proper transmission. We 
would recommend future users to find a more consistent way of avoiding this scenario by looking into the 
code and identifying any possible bugs. 

Adding software for additional devices (sensors or computing platforms) is likely going to be desirable for 
future teams. If the device has a community supplied ROS driver, it is probably easiest to hook up that 
peripheral to the Raspberry Pi. The Teensy is more limited in its abilities to service all of its peripheral 
devices than the Raspberry Pi. Especially when using Simulink in External Mode (where the PC takes a lot 
of strain off of the Raspberry Pi) we suggest trying to interface additional devices with the Raspberry Pi. 
In regards to adding another computing platform, such as an NVIDIA Jetson, this should be relatively 
straight forward. ROS has done a lot of the legwork for communicating data between different devices 
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with their own IP addresses. As we found later in development of our project, the ROS network that was 
originally intended to be only on the Pi actually extended to the PC. The same idea would apply to any 
other computing platforms, where ROS subscribers and publishers can specify IP addresses to connect to. 

9.2 Final Words 
Our team is grateful for the opportunity to work on this project and we look forward to seeing its evolution 
in the future! We hope we have provided a capable foundation that is easy to work with. All members of 
our team intend to be available to advise future groups working with this platform or related projects. We 
can be reached at our individual non-academic emails and our group team email, listed on the cover page 
of this report. 

Daimtronics Team 
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Appendix C: Computing Platform Decision Matrix 

Computing Platform 
Options 

R-Pi (3B+) + 
Teensy 

R-Pi (3b+)  Only Nvidia Jetson Arduino Uno Odroid + Uno 
Custom 

Platform 

Criteria Weighting Score Total Score Total Score Total Score Total Score Total Score Total 

Processing Power 5 4 20 2 10 5 25 1 5 4 20 3 15 

Time to 
Implement 

4 5 20 4 16 4 16 3 12 2 8 1 4 

Num. Ports/Pins 4 5 20 2 8 3 12 2 8 4 16 4 16 

Cost 3 5 15 5 15 1 3 4 12 3 9 3 9 

Replacement 
Time 

3 3 9 4 12 4 12 4 12 3 9 1 3 

Documentation 2 3 6 4 8 4 8 4 8 3 6 1 2 

Power Draw 1 3 3 4 4 2 2 4 4 3 3 3 3 

Totals:  93  73  78  61  71  52 
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Appendix D: Motor Decision Matrix 

Motor Options 

Tekin Maxon Turnigy Multistar 

Criteria Weighting Score Total Score Total Score Total Score Total 

Cost 5 5 25 1 5 2 10 2 10 

Top Speed 3 5 15 5 15 4 12 3 9 

Time to Implement 3 5 15 3 9 1 3 1 3 

Torque Output 3 4 12 4 12 5 15 5 15 

Documentation 2 4 8 5 10 1 2 1 2 

Efficiency 2 4 8 3 6 4 8 2 4 

Weight 1 3 3 4 4 3 3 3 3 

Totals:  86  61  53  46 
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Appendix E: Middleware Decision Matrix 

Middleware 
Options 

ROS AUTOSAR YARP Custom 

Criteria Weighting Score Total Score Total Score Total Score Total 

Time to Implement 5 5 25 4 20 4 20 2 10 

Simulink Compatible 4 4 16 3 12 3 12 2 8 

Flexibility 4 3 12 3 12 3 12 4 16 

Documentation 3 5 15 4 12 3 9 4 12 

Performance 3 4 12 5 15 4 12 2 6 

Computer Vision 2 4 8 1 2 3 6 2 4 

Totals:  88  73  71  56 
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Appendix F: Sensor Selection Process 

Detection Requirements 

Maneuver Object 
Range 

(m) 
Lower Angle 

(deg) 
Upper 

Angle (deg) 

Forward Object 
Avoidance 

Vehicles ahead 14.00 0 6 

Road debris 14.00 0 6 

Road blockages 14.00 0 6 

Medium-sized objects 14.00 0 6 

Objects falling out of vehicles 14.00 0 6 
Side Object Avoidance Vehicles to either side 0.50 30 150 

Lane Following 

Lane markers 5.00 0 10 

Curbs 0.50 60 120 

Road transition 0.50 60 120 

Freeway rails 0.50 60 120 

Walls 0.50 60 120 

Lane Changing 

Lane markers 1.00 0 10 

Curbs 0.50 60 120 

Road transition 0.50 30 150 

Freeway rails 0.50 30 150 

Walls 0.50 30 150 

Vehicles to either side 0.50 30 150 

Vehicles ahead 2.00 0 30 

Adaptive Cruise Control 
Vehicles ahead 14.00 0 10 

Lane markers 5.00 0 10 

J-Turn 

Vehicles from oncoming lane 14.00 0 6 

Curbs 0.75 60 120 

Lane Markers 5.00 0 10 

Parking 

Stationary objects 0.50 150 180 

Space between vehicles 0.50 150 180 

Space between walls 0.50 150 180 

Parking lot markers 0.50 150 180 

Loading dock ledges 0.50 150 180 

Trailer Pickup 

Trailer 0.50 150 180 

Stationary objects 0.50 150 180 

Space between walls 0.50 150 180 
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Appendix G: Design Hazard Checklist 

DESIGN HAZARDS CHECKLIST 

Y N 

a    1. Will the system include hazardous revolving, running, rolling, or mixing actions? [The truck] 

  a  2. Will the system include hazardous reciprocating, shearing, punching, pressing, squeezing, 

drawing, or cutting actions? 

a   3. Will any part of the design undergo high accelerations/decelerations? [The truck] 

a  4. Will the system have any large (>5 kg) moving masses or large (>250 N) forces? [The truck] 

  a  5. Could the system produce a projectile? 

  a  6. Could the system fall (due to gravity), creating injury? 

  a  7. Will a user be exposed to overhanging weights as part of the design? 

  a  8. Will the system have any burrs, sharp edges, shear points, or pinch points? 

  a  9. Will any part of the electrical systems not be grounded? 

  a  10. Will there be any large batteries (over 30 V)? 

  a  11. Will there be any exposed electrical connections in the system (over 40 V)? 

  a  12. Will there be any stored energy in the system such as flywheels, hanging weights or 

pressurized fluids/gases? 

 a   13. Will there be any explosive or flammable liquids, gases, or small particle fuel as part of the 

system? [LiPo batteries] 

  a 14. Will the user be required to exert any abnormal effort or experience any abnormal 

physical posture during the use of the design? 

 a   15. Will there be any materials known to be hazardous to humans involved in either the design 

or its manufacturing? [Leaded solder] 

  a  16. Could the system generate high levels (>90 dBA) of noise? 

  a  17. Will the device/system be exposed to extreme environmental conditions such as fog, 

humidity, or cold/high temperatures, during normal use? 

a    18. Is it possible for the system to be used in an unsafe manner? 

 a   19. For powered systems, is there an emergency stop button? [Dead-man switch on RC + 

disabled default state] 

  a  20. Will there be any other potential hazards not listed above? If yes, please explain on 

reverse. 
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Description of Hazard Planned Corrective Action 
Planned 

Date 

Actual 

Date 

 

The roughly 40 lb semi-truck 

will be able to move at speeds 

up to 20 mph (Applies to 

Checklist #1, #3 and #4) 

 

 

The user manual will warn the user that the 

system may behave unpredictably while 

reprogramming the vehicle (e.g. rapid 

acceleration and deceleration). 

 

 

 

12/14/2018 

 

 

A user can control this vehicle 

in an unsafe manner (Applies 

to Checklist #18). 

 

 

The user manual will warn the user to not drive 

the vehicle recklessly, and to be cautious of 

nearby people and objects. 

 

 

12/14/2018 
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Appendix H: Overall Power Routing 
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Appendix I: Bill of Materials 

(Next page) 
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Appendx J: DVPR 

(next page) 
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Team: Daimtronics

Quantity Type Start date Finish date Test Result Quantity Pass Quantity Fail

1 -- Verify that Teensy and Pi can be 
powered by motherboard

Microcontrollers turn on 
and stay on

Fernando 
Mondragon

FP 3 Sub February 22th March 1st

2 -- Verify that mounts hold all of the 
sensors and microcontrollers

Pass Ricky Tan FP 1 Sub February 22th March 1st

3 --
Verify that all ports on the 

motherboard are connected to the 
correct pins of microcontrollers

Pass Fernando 
Mondragon

FP 1 Sub February 22th March 1st

4 --
Verify that the Teensy code can 
be uploaded through the micro-

USB
Pass

Nate 
Furbeyre FP 1 C March 1st March 8th

5 --
Verify that messages can be sent 

from the Teensy to the Pi to be 
displayed on a monitor

Pass Ricky Tan FP 3 Sub March 1st March 8th

6 -- Verify wheel speed sensors are 
calibrated

Sensors read up to the 
20mph top speed

Fernando 
Mondragon

FP 3 C March 8th March 15th

7 -- Verify Ultrasonic Range Finders 
are Calibrated

URFs  detect objects 
within 0.5 m range

Nate 
Furbeyre

FP 3 C March 8th March 15th

8 -- Verify Lite Lidar is Calibrated Lite Lidar detects objects 
within 40m range

Ricky Tan FP 3 C March 8th March 15th

9 -- Verify RPLidar outputs point cloud 
data

RPLidar point cloud data 
can be viewed in SLAM

Fernando 
Mondragon

FP 3 C March 8th March 15th

10 --
Verify that the IMU is calibrated 

correctly

The IMU is calibrated and 
can read semi-truck 

heading data.

Nate 
Furbeyre FP 3 C March 8th March 15th

11 --
Verify that the dead man switch 

works properly

Releasing switch on the 
RC controller stops the 

vehicle

Nate 
Furbeyre FP 3 Sub March 15th March 22nd

12 -- Verify the motor can be controlled 
in an automatic mode

Semi-truck can 
acccelerate without 

manually controlled input 
from controller to receiver

Nate 
Furbeyre

FP 1 C March 15th March 22nd

13 -- Verify the steering servo can be 
controlled in an automatic mode

Semi-truck can steer 
without manually 

controlled input from 
controller to receiver

Ricky Tan FP 1 C March 15th March 22nd

14 --
Verify the 5th wheel can be locked 

and unlocked

The servo controlling the 
5th wheel can toggle 
between 2 positions

Fernando 
Mondragon FP 1 C March 15th March 22nd

15 1 Verify parts are within budget project < $3000 Nate 
Furbeyre

FP 1 Sys April 15th April 30th

16 2 Verify control loop frequency System runs smoothly Ricky Tan FP 5 Sys April 15th April 30th

17 3 Verify average acceleration time Top speed in < 4sec Fernando 
Mondragon

FP 5 Sys April 15th April 30th

18 4 Verify average deceleration time Complete stop < 4sec Nate 
Furbeyre

FP 5 Sys April 15th April 30th

19 5 Verify setup time New autonomous mode 
uploaded in < 4 sec

Ricky Tan FP 5 Sys April 15th April 30th

20 6 Verify max steering angle 10% deviation from 
similitude value

Nate 
Furbeyre

FP 3 Sys April 15th April 30th

21 7 Verify sensors read in Simulink Simulink can read data 
from each sensor

Ricky Tan FP 3 Sys April 15th April 30th

22 8 Verify top speed System reaches 20mph Fernando 
Mondragon

FP 5 Sys April 15th April 30th

23 9 Verify Max Wi-Fi Range Minimum of 10m Nate 
Furbeyre

FP 3 Sys April 15th April 30th

24 10 Verify object detection range Object detection for > 
10m range

Nate 
Furbeyre

FP 5 Sys April 15th April 30th

25 11 Verify object detection angle Object detection for > 
180° angle

Nate 
Furbeyre

FP 5 Sys April 15th April 30th

26 12 Verify sufficient battery life System can run for > 
30min

Nate 
Furbeyre

FP 3 Sys April 15th April 30th

27 13 Verify sensors read from 
application layer

There is a library function 
to read each sensor

Nate 
Furbeyre

FP 3 Sys April 15th April 30th

28 14
Verify sufficient documentation 

rating
Survey for documentation 

usability > 8/10
Nate 

Furbeyre FP 3 Sys April 15th April 30th

29 15 Verify voltage safety rating Factor of safety for > 2 Nate 
Furbeyre

FP 1 Sys April 15th April 30th

30 16 Verify replacement time Replacing part takes < 1 
hr

Nate 
Furbeyre

FP 3 Sys April 15th April 30th

SAMPLES  TIMING TEST RESULTS NOTESItem
No

Specification # Test Description Acceptance Criteria Test 
Responsibil

Test Stage

TEST PLAN TEST REPORT

Senior Project DVP&R
Date: 2/7/2019 Sponsor: Dr. Birdsong and Daimler Trucks NA Description of System: Autonomous Model Semi-Truck Platform DVP&R Engineer:
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Team: Daimtronics

Quantity Type Start date Finish date Test Result Quantity Pass Quantity Fail
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12 -- Verify the motor can be controlled 
in an automatic mode

Semi-truck can 
acccelerate without 

manually controlled input 
from controller to receiver
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13 -- Verify the steering servo can be 
controlled in an automatic mode

Semi-truck can steer 
without manually 

controlled input from 
controller to receiver

Ricky Tan FP 1 C March 15th March 22nd

14 --
Verify the 5th wheel can be locked 

and unlocked

The servo controlling the 
5th wheel can toggle 
between 2 positions

Fernando 
Mondragon FP 1 C March 15th March 22nd

15 1 Verify parts are within budget project < $3000 Nate 
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FP 1 Sys April 15th April 30th

16 2 Verify control loop frequency System runs smoothly Ricky Tan FP 5 Sys April 15th April 30th

17 3 Verify average acceleration time Top speed in < 4sec Fernando 
Mondragon
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18 4 Verify average deceleration time Complete stop < 4sec Nate 
Furbeyre
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19 5 Verify setup time New autonomous mode 
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Ricky Tan FP 5 Sys April 15th April 30th

20 6 Verify max steering angle 10% deviation from 
similitude value

Nate 
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21 7 Verify sensors read in Simulink Simulink can read data 
from each sensor
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10m range
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27 13 Verify sensors read from 
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to read each sensor
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28 14
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usability > 8/10
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SAMPLES  TIMING TEST RESULTS NOTESItem
No

Specification # Test Description Acceptance Criteria Test 
Responsibil

Test Stage

TEST PLAN TEST REPORT

Senior Project DVP&R
Date: 2/7/2019 Sponsor: Dr. Birdsong and Daimler Trucks NA Description of System: Autonomous Model Semi-Truck Platform DVP&R Engineer:
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sensors and microcontrollers

Pass Ricky Tan FP 1 Sub February 22th March 1st

3 --
Verify that all ports on the 
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to read each sensor

Nate 
Furbeyre

FP 3 Sys April 15th April 30th

28 14
Verify sufficient documentation 

rating
Survey for documentation 

usability > 8/10
Nate 

Furbeyre FP 3 Sys April 15th April 30th

29 15 Verify voltage safety rating Factor of safety for > 2 Nate 
Furbeyre

FP 1 Sys April 15th April 30th

30 16 Verify replacement time Replacing part takes < 1 
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SAMPLES  TIMING TEST RESULTS NOTESItem
No

Specification # Test Description Acceptance Criteria Test 
Responsibil

Test Stage

TEST PLAN TEST REPORT

Senior Project DVP&R
Date: 2/7/2019 Sponsor: Dr. Birdsong and Daimler Trucks NA Description of System: Autonomous Model Semi-Truck Platform DVP&R Engineer:
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Appendix K: Drawing Package 
Attached in the next pages: 

1. ME003 – LIDAR BUMPER 

2. ME004 – RPLIDAR MOUNT 

3. ME005 – TOF FRONT MOUNT 

4. ME006 – TOF BACK MOUNT 

5. ME007 – TOF BRACKET 

6. ME008 – COMPUTING COLUMN LEFT 

7. ME009 – COMPUTING COLUMN RIGHT 

8. ME010 – PI SPRING 

9. ME011 – MOTHERBOARD SPRING 

10. ME012 – SOFT WASHER 

11. ME017 – CASE WALLS 

12. ME018 – CASE FLOOR 

13. ME019 – CASE GATE 

14. ME020 – CASE LID 

15. ME021 – PI-MOTHERBOARD STANDOFFS 

16. ME022 – BATTERY HOUSING 

17. ME023 – BATTERY FEET FRONT 
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18. ME024 – BATTERY FEET BACK 

19. ME025 –BATTERY FINGER 

20. ME026 – SERVO CLASP 

21. MB001 – MOTHERBOARD SCHEMATIC 

a. MB001-1: SUPPLY CIRCUITRY 

b. MB001-2: COMPUTING BREAKOUT 

c. MB001-3: SUPPORT CIRCUITRY 
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Appendix L: Speed Uncertainty Analysis 

 



   

 

 

Appendix M: Daimtronics Operator’s Manual 
Battery Charging Procedure: 

1. Charge the batteries with the provided charger by plugging in the charger to an outlet and 
connecting the battery terminals to the charger ports. 

2. Disconnect the batteries from the charger when the lights indicate a fully charged battery. 

Setup Procedure: 

1. Attach bare leads of battery-to-board wires to the motherboard. DO NOT ATTACH THE LIPO 

BATTERIES YET. Attaching the batteries first risks sparking the bare leads. 

2. Plug the LiPo batteries in once the leads are secured on the motherboard. 

3. Turn on the ESC with the switch underneath the chassis. 

4. Turn on the RC controller. 

5. The Teensy and Pi will now be running whatever has been loaded into their memory. 

Uploading Algorithm Procedure: 

Warning: Do not plug in a USB to the Raspberry Pi while it is being powered by the battery! 

Running the motherboard off battery power while plugging in a USB to upload might cause the Raspberry 
Pi to short-circuit. 

The first thing to do is get all of the source code for the Daimtronics project. Go to 
https://github.com/nfurbeyr/daimtronics and clone or download the repository to your host computer. 

Setting up ROS on the Pi and Running a Simulink Model to Communicate with the System 

1. Make sure that you have the following Raspberry Pi and ROS packages for Simulink / MATLAB 

installed on your laptop. You can download these through the “Add-On ->Get Add-Ons" option 

in MATLAB (Figure 1). Refer to MathWorks documentation for additional help if needed. 

a. Robotics System Toolbox Interface for ROS Custom Messages 

b. Embedded Coder 

c. Simulink Coder 

d. MATLAB Coder 

e. Robotics System Toolbox 

f. Simulink Support Package for Raspberry Pi Hardware 

g. MATLAB Support Package for Raspberry Pi Hardware 
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Figure 67: Downloading required packages in Simulink / MATLAB 

  

2. On a PC with connected to Wi-Fi, open the “example_model.slx" Simulink model found within 

“daimtronics/simulink_models.” 

3. Open “Model Configuration Parameters” (Ctrl-E) and select “Hardware Implementation" 

a. Select “Raspberry Pi – Robot Operating System (ROS)" under “Hardware Board.”  

i. For this option to be available you need to have both the Robotics System 

Toolbox and Simulink Support Package for Raspberry Pi Hardware addons. 

b. Under “Target Hardware Resources -> Board Parameters” enter the Raspberry Pi IP 

address for Device Address and “pi” and “daimtronics” as the username and password, 

respectively.  

i. The Pi must be hooked up to the same WiFi network as the PC. If you have a 

mobile device that can create a HotSpot connection, this a viable option. 

ii. To first connect the Pi to WiFi, you will need to interface with the Pi by hooking 

up a monitor to the HDMI port and a keyboard / mouse to the USB ports.  

iii. Once connected to Wifi, to get the Raspberry Pi IP address, you can open a 

terminal on the Pi and type ‘ifconfig’ into the command line to get a number: 

XX.XXX.XX.XXX. 

c. Under “Target Hardware Resources -> Build options” select “Build and run” and for the 

Catkin workspace select “~/daimtronics/semi_catkin_ws” 
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Figure 68: Configuring Simulink to build Simulink model as a ROS node on the Raspberry Pi 

Click the drop-down arrow next to “Code Generation” (left side of Configuration Parameters window) 

and select the “Interface” option that appears. 

d. Activate “External Mode” by clicking on the check-box. 

e. Select “tcpip” for the "Transport Layer" under the external mode configuration 

 

Figure 69: Configuring Simulink to run in External Mode for our model. 

4. Change the configuration of the ROS Simulink blocks to connect to the correct IP addresses for 

the laptop and the Raspberry Pi. 

a. Double click on one of the ROS Subscriber or Publisher blocks. 

b. Click on “Configure network addresses” in the new window. 

c. For ROS Master, type in the IP address of the PC that is running Simulink, and for Node 

Host, type in the IP address for the Raspberry Pi that was used in Step 3. 

d. ROS Master Port should be 11311. 

5. In the MATLAB command window, write the following lines to let Simulink and MATLAB know 

what IP address the ROS core system is running on. 

a. “setenv('ROS_MASTER_URI','http://XXX.XXX.XXX.XXX:11311')” with the X’s replaced 
with the IP address of the Raspberry Pi 

b. “setenv('ROS_IP','XXX.XXX.XXX.XXX')” with the X’s replaced with the address of the PC 

6. Open a terminal on the Raspberry Pi. You can either do this directly on the Pi with a monitor and 

keyboard-mouse combo, or SSH into the device using a PC and Wi-Fi. 

a. SSH with “pi@XXX.XX.XXX.XX” (based on the IP address of the device) and a password of 

“daimtronics.” 

7. In the terminal, change the directory to “home/pi/daimtronics/semi_catkin_ws/src/launch.” 

8. Type the command: “roslaunch semi_truck_bags.launch” and press Enter. 

a. If you need to run different nodes than is in the launch file, modify lines to mimic the 

following format with your specific package and node in Figure 4 

 

Figure 70: Adding additional nodes to the launch file. 
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If all of the previous steps worked, the ROS nodes on the Raspberry Pi will be running, and the PC should 

have its Simulink model ready to send and receive messages with the Pi. 

Tuning the Simulink Model Parameters in Real-time 

 

Figure 71: Simulink example 

1. Follow the steps in “Uploading a Simulink Model to the Raspberry Pi”. This should get you to a 

state where the ROS nodes are running on the Pi. They are currently waiting for a Simulink 

model to read sensor data and output actuator data to the system. 

2. In Simulink, make sure that the “Simulation Mode” is "Normal." 

 

Figure 72: Simulink Simulation Mode 

3. Run the model simulation on the PC in Simulink by clicking on the green “Play Button”. 

a. This will effectively use Simulink to create a ROS node that is running on the PC. It can 

communicate to the Raspberry Pi through the TCP/IP settings we configured earlier. 

b. Messages will be received, processed in the model, and sent back to the ROS network as 

frequently as is specified in the “Simulation Rate Control” block. 

4. Open scopes connected to the actuator_data and sensor_data buses. 

a. This should show the current readings of the sensors connected to the Teensy. 

5. Alter block values in the Simulink model, and observe the changes in the scope.  

a. You can only change some parameters in the model, such as outputs from “Constant” 

blocks. Other alterations in the model will be denied, and a warning message that the 

model cannot change while the simulation is running will pop up. 
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6. When you have finished with the Simulation, stop the model and view the workspace in Matlab. 

a. There should be simout data that contains arrays of all of the sensor and actuator values 

that were running during the simulation. You can access this data and analyze how the 

system responded. 

Custom ROS Model 

2. Open a terminal on the Raspberry Pi. You can either do this directly on the Pi with a monitor and 

keyboard mouse combo, or SSH into the device using a PC and Wi-Fi. 

a. SSH with “pi@XXX.XX.XXX.XX” (based on the IP address of the device) and a password of 

“daimtronics.” 

3. In the terminal, change the directory to 

“home/pi/daimtronics/semi_catkin_ws/src/semi_truck/src”. 

4. Create a new .cpp file in this folder. This .cpp file should contain all of the autonomous 

algorithm code that acts as the “brains” of the system. 

a. This file will need to subscribe to the ROS topics of the RPLidar and the Lite Lidar, and 

publish to the pi_comm_node. A truck_template_node.cpp file is in the “src” folder that 

gives some direction on what the file should look like. 

5. Change the CMakeLists.txt in “home/pi/daimtronics/semi_catkin_ws/src/semi_truck“ so that 

the new file is recognized when building the project. 

a. Add the following line around line 140 (there should be similar code as a reference): 

i. add_executable(your_file_name_node src/your_file_name.cpp) 

b. Add the following line around 157 (again there should be similar lines of code here): 

i. target_link_libraries(your_file_name_node ${catkin_LIBRARIES}) 

ii. The first argument (eg your_file_name_node) to each line’s function call must 
match exactly. 

6. Change the terminal directory to “home/pi/daimtronics/semi_catkin_ws”. 

7. Run the command: “catkin_make” 

a. This may take some time, especially if new packages have been integrated into the 

project. This is where all of the files get compiled into machine code. 

8. Update semi_truck_bags.launch (home/pi/daimtronics/semi_catkin_ws/src/launch) to run the 

new file by adding the following line. 

a. <node pkg="semi_truck" type="your_file_name_node" name="your_file_name_node" 

/> 

b. Make sure that the names here match up with what was added in Step 4. 

9. Run the new launch file by typing “roslaunch semi_truck_bags.launch” at the terminal. 

10. Once the session is done, and you have killed the program (by type Ctrl-C in the terminal that 

you launched the nodes) a ROSbag will be generated in 

/home/pi/daimtronics/semi)catkin_ws/rosbags. 

a. You can convert this data to csv’s with entire sets of data for individual topics that were 

running during the launch. In the terminal type “./readBag.sh {filename}.bag” 

b. The previous command will run a script to make a new directory with the “.bag” 

extension removed. All of the topics converted to csv’s will be placed here. Note that for 

longer simulations, this may take a long time to convert data.  
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Testing Procedure: 

Warning: Releasing the trigger on the RC controller will automatically stop the platform. 

In manual mode, if at any time an unsafe or unwanted action is about to be performed, or if at any time you 
need to stop the platform, simply release the trigger on the RC controller to send an automatic braking 
command to the platform. Alternatively, in either manual or automatic mode, release the dead man’s switch 
on the RC controller, button on SW1. 

 

Figure 73 Deadman's Switch is on SW1 

1. Remove the body housing by unscrewing the four M3 screws attaching the body housing to the 
Tractor. 

2. Mount the batteries in the battery mounts on the Tractor. 
3. Connect the battery connectors for both batteries to the motherboard. Both batteries are identical, 

therefore it doesn’t matter which one is plugged in to which port. 
4. Reattach the body housing to the Tractor by screwing in the four M3 screws. 
5. Turn on the RC Controller by turning the switch to the “ON” position. 
6. Turn on the Tractor by turning the ON/OFF switch to the “ON” position. 
7. Flip the “AUX Ch.2” switch on the RC Controller to switch to autonomous mode. 
8. Hold the RC Controller trigger to begin running the autonomous algorithm currently uploaded. 

The algorithm will continue running as long as the trigger is pressed. 
9. Let go of the trigger to bring the platform to a stop. 

 

 

Adding Sensors: 

1. Physical integration: The physical attachment of an additional sensor to the platform is entirely 

up to the operator and dependent on the sensor. 

2. Electrical integration: Wires supplying power to the sensor and sending outputs must be 

interfaced with the motherboard. 

a. All wires must have female 0.1” pitch connectors. 
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b. Available supply voltages are 3.3V and 5V, each either on the motor-side of the power 

circuit (noisier) or the computing-side (quieter). 

c. SPI, I2C, and serial ports are available if the sensor communicates via these protocols. 

d. 3.3V and 5V analog input ports are available, as well as general digital GPIO pins. 

e. The Raspberry Pi has USB ports available, but check that the current draw of the sensor 

combined with the other devices connected to the Pi’s USB ports does not exceed the 

maximum draw across all of the ports, 1200mA. If this sensor will put the Pi over the 

limit, cut the supply voltage and ground wires inside the USB cable and reroute it to 

either the noisy/motor or quiet/computing 5V supply rail on the motherboard. 

3. Software integration: Ideally, there will be a driver online that has already been written to 

control the sensor. If not, you will need to write the code to interface with the device. 

a. If the sensor is meant to be interfaced with the Teensy  

i. Create a .cpp task file in “teensy_chibios/src.” (see Software Overview 1D in this 

document) 

ii. Add a thread for this task to the chSetup function in main.ino 

b. If the sensor is meant for the Raspberry Pi 

i. Find a package online for controlling the device (or write one yourself with help 

from ROS tutorials).  

1. If you write one yourself, the place to put it is in the semi_truck package 

under daimtronics/semi_catkin_ws/src/semi_truck/src. 

ii. Add the package and executable name to the semi_truck_bags.launch launch 

file. 

Adding Peripherals: 

A ‘peripheral’ is defined as any device that is not a sensor or preexisting actuator, such as an additional 

fan, lights, or another servo. It follows the same procedure as adding additional sensors, except that 

software integration will be up to the operator and is dependent on the nature of the device. 

 

Adding Computing Modules: 

Additional computing modules (such as another Pi, an Nvidia Jetson, or other small computation device) 

can potentially be added to the vehicle. Such a change will require the design of new mounting and 

integration with the current software suite. Communication can be established with the Pi and Teensy 

either through one of the serial ports on the Teensy or with one of the non-serial communication buses 

on the Pi, including USB if applicable. 

An additional ROS node will have to be added to handle the communication, but all sensor, actuator, and 

state values for the system can potentially be shared with the new device. This new device can either 

provide additional inputs to the control system on the Pi, or the ROS network can be reworked to run the 

control system on the new hardware. 



 

M - 8  

Manual Control: 

The vehicle can be switched between manual and automatic control through the [INSERT SWITCH 

NUMBER] switch on the RC controller. When the switch is in [MANUAL SWITCH STATE], all actuator signals 

from the RC controller are sent directly to the motor and the steering servo. The trigger on the RC 

controller is the throttle and the wheel on the side of the controller is the steering input. 

 

Motherboard Overview: 

1. Powering Motherboard 

a. The motherboard is powered by two separate LiPo batteries. 

b. The connector for the motor-side LiPo battery is spliced such that there are two XT-90 

connectors and one set of bare wires. The bare wires go into the terminal of the 

motherboard. One XT-90 connector goes to the battery and the other goes to the ESC. 

c. The connector for the computing-side LiPo battery is an XT-90 connector on one end 

and bare wires on the other that go to the computing-side terminal on the 

motherboard. 

2. Powering Devices 

a. All supply pins are 0.1”-pitch male headers on the motherboard, which require mating 

wires to have 0.1”-pitch female connectors. 

b. Both the motor-side and computing-side power circuits have 3.3V and 5V supply rails 

available. The motor-side pins are labelled “noisy” and the computing-side pins are 

labelled “quiet”. 

c. An additional adjustable power line for peripherals is provided off of the motor battery 

that is default set to 12V. The voltage can be changed by swapping out the lower 

feedback resistor with a value of 59.6*(Vout - .596) kOhms. For 12V, this comes out to 
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5.23 kOhms. Swapping this resistor requires soldering.

 

Figure 8: Adjustable power supply resistor location 

d. The noisy power lines should be the default, reserving the quiet supply lines for devices 

that require less noise on their voltage supply, such as computing modules and sensors 

whose performance degrades at the level of noise present on the motor/noisy side. 

3. Input/Output Ports 

a. All I/O pins are 0.1”-pitch male headers on the motherboard, which require mating 

wires to have 0.1”-pitch female connectors. 

b. There are four different I/O ports: GPIO, analog-input, PWM-output, and analog-

input/PWM-output. 

c. The most restrictive ports should be used first. An analog input should be routed to the 

analog-input port if there are any available slots prior to being routed to an 

analog/PWM pin. Likewise, pins used just as a digital switches should first be routed to 

the GPIO port before using up any of the special-use (analog and/or PWM) pins. 

d. [ADD TABLE OF PORTS AND CORRESPONDING PINS] 

4. Communication Ports 

a. All communication port pins are 0.1”-pitch male headers on the motherboard, which 

require mating wires to have 0.1”-pitch female connectors. 

b. Each communication port has multiple channels. The channel’s designation corresponds 

to its designation in the Teensy documentation. The order in which channels should be 

utilized is given on the motherboard, with higher-priority channels starting at the left of 

each port. The priority is such that there is a minimal loss of alternate, special pin 

functionality if channels are used in order. [ADD PICTURE] 
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c. Communication ports can, if all other pins are utilized, be used as GPIO pins. Some pins 

in communication ports also contain PWM-output or analog-input functionality if all 

other special-use pins are already utilized. These can be seen on the Teensy’s pinout 

diagram. This should be the operator’s last resort when trying to add numerous 

additional components. 

d. [ADD TABLE OF CHANNELS AND CORRESPONDING PINS] 

5. Other 

a. The fan cooling the casing of the computing module is a 50mm x 50mm 5V brushed DC 

centrifugal blower. It should be powered off the 5V noisy supply rail. There is an opening 

in the casing specifically for its supply wires. The fan has an additional blue control wire 

that is not needed and should be left unconnected but physically secured. 

 

Software Overview: 

Teensy / Arduino / ChibiOS 
1.  Arduino IDE 

a. The Teensy is programmed using the Arduino IDE, which is where programmers write 

the code to be deployed on the Teensy. Find and download the Windows, Mac or Linux 

distribution of the software at https://www.arduino.cc/. When working on a Sketch 

(Arduino program), there are two main features of the IDE that are used: Verify (upper 

left check mark) and Upload (upper left arrow).  

i. Verify will compile the code that has been written and check for any errors that 

the compiler finds. This is useful when adding additional code and checking for 

any lapses in syntax. This option does not need a Teensy to connect to.  

ii. Upload requires the Teensy to be connected to the computer via a micro-USB. It 

both compiles the code (similar to Verify) and then uploads the resulting file 

from compilation to the Teensy. When successfully uploaded, the program will 

automatically run on the Teensy. Since the compiler needs to know specifics 

about the Teensy architecture, the Teensy 3.6 board needs to be selected under 

the “Tools” tab. More info about this is given in the Teensy Loader section. 
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Figure 9: ChibiOS Main 

b. Our Project makes use of a few different Software packages that are associated with the 

Arduino IDE. General information on how to download additional libraries should be 

readily available on online. 

i. BNO055: This is a driver that controls the IMU for angle data. Our code uses the 

Adafruit Unified Sensor and Adafruit BNO055 libraries. To install these, in the 

IDE go to "Tools” -> “Manage Libraries” and type in the library that you want to 

add. Once done downloaded, restart the IDE so that the libraries are recognized. 

ii. VL530X: This is a driver that controls the TOF sensors. You can download this 

library in the same way as the BNO055. 

iii. Servo: This library is default installed in each distribution of the Arduino IDE. 

c. All of the files for running on the Teensy are found in the “teensy_chibios” folder within 

the “daimtronics” repository. The code written is found within “teensy_chibios/src” and 

there is currently a folder “main” that holds the Arduino Sketch to be run on the Teensy. 

There is a “main.ino” within this folder, and one can open this file in the Arduino IDE to 

Upload it to the Teensy.  

d. The Teensy project is organized so that there is a single main.ino file within the “main” 

folder. Also in the folder is a collection of .cpp files. Each .cpp file holds the function for 

running the code for a single task. The .cpp files need to be in the same directory as 
main.ino in order for the IDE to link the code between main.ino and respective .cpp 
files. Also within the “main” folder is an “include” folder that holds all of the header files 

for the .cpp files. You will find at the top of “main.ino” that all of the files “include” are 

#included for successful compilation, otherwise you will get an undefined reference 

error. 

2. ChibiOS 

a. ChibiOS is another package that is necessary to download for the project to run. There is 

an official ChibiOS release, but this release does not have support for the Teensy 

architecture that we need. Download the Teensy compatible version from 

https://github.com/greiman/ChRt. Once downloaded, copy this library to the 
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Arduino/libraries folder. To verify that you are copying it to the right folder, you should 

see the Adafruit BNO055 library folder that was acquired through the “Manage 

Libraries” option within the Arduino IDE. 

3. Teensy Loader 

a. The Teensy Loader is required for being able to deploy a program onto the Teensy. The 

Arduino IDE does not come with support for the Teensy by default. There are tutorials 

for how to do this at https://www.pjrc.com/teensy/tutorial.html. The tutorials should 

get you to a point where you can upload a simple “Blink” example sketch to the Teensy 

and watch the LED blink. 

Raspberry Pi / ROS 

1. Basics behind ROS 

a. It is recommended that anyone who is reading this has a basic understanding of how 

ROS works, including the concepts of ROS nodes, topics, publishers, subscribers and 

messages. In addition, the basic file structure behind ROS should be familiar to the user: 

how different "packages" are organized within a project, how to build the source files 

through the "catkin_make" command, and how to actually run the executables (or ROS 

nodes) either with "rosrun" or a launch file. All of these concepts are covered in ROS 

tutorials and going through the process of understanding the basics is essential for a 

smooth transition into working with our project. 

b. http://wiki.ros.org/ROS/Tutorials  is a good source of information on the ROS side.  

2. Required Packages 

a. The only required packages for ROS are already included in the Daimtronics repository, 

(https://github.com/nfurbeyr/daimtronics), but incase you need to access these folders 

they can be found on github. 

i. https://github.com/cocasema/ros-lidar-lite/ for generating a node to control 

the 1D LIDAR 

ii. https://github.com/robopeak/rplidar_ros for generating a node to control the 

360 spinning LIDAR 

3. Launch files 

a. ROS has a feature of Launch files that can start multiple nodes at once. This is useful 

when running the entire system with all the nodes. Topics will be generated 

automatically based on what nodes subscribe and publish to topics. 

i. The launch files can be found in /daimtronics semi_catkin_ws/src/, and can be 

launched by typing “roslaunch {filename}” in the Raspberry Pi terminal. 

4. Launching individual nodes 

a. If you just want to run a node without using a launch file, you need to have the ROS 

master node running. Type “roscore” in the terminal of the Pi. This will take several 

seconds to finish building. 

b. To run a node, you can use the command: “rosrun <package_name> 

<executable_name>.  

i. An example of how to run the  communication node is: “rosrun semi_truck 

pi_comm_node” where semi_truck is the package name and pi_comm_node is 

the executable (node) name. 
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Deploying Simulink Models 
1. Required Simulink – RasPi packages 

2. Creating a Simulink model on a PC 

a. Below is a diagram of a simple Simulink model that takes in sensor data (wheel speed, 

IMU angle, URF distance) from a ROS topic named teensy_sensor_data, increments all 

of these values by 1, and then converts those incremented values to actuator data 

(motor output, steer output, fifth wheel output). The new actuator data is published to 

a separate ROS topic (teensy_actuator_data) for other nodes in the system to process, 

and to ultimately be sent back to the Teensy for controlling the semi-truck. This is a 

useless Simulink model in practice, but it demonstrates the general flow that a Simulink 

model  for our project might work with, including the necessary Subscribe and Publish 

Simulink blocks for communicating with other nodes. Also shown is the Bus Assignment 

block which takes a general message (eg teensy_actuator_data) and its data 

components (eg MotorOutput) and assigns incoming values that have just been 

incremented from the sensor values.  

b. (Note: the second Adding block ends up converting the IMU angle from a float to an int.) 

 

Figure 10: Simulink 

3. ROS Messages 

a. The Simulink model must work with the same types of data that are passed between the 

other nodes in the ROS system. This means that the ROS messages that make up 

individual pieces of data in a ROS Topic (that runs on the Pi in our project) need to be 

recognized by Simulink.  

b. First add our semi-truck specific messages to the suite of ROS Custom Messages. The 

following article by MathWorks gives a good overview of how to do this. You will need 

to have the specified Simulink packages in Part 1 of the Uploading Algorithm Procedure. 

i. https://www.mathworks.com/help/robotics/ug/ros-custom-message-

support.html 
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ii. If the a matlab_gen directory exists within the project directory, delete thhis 

matlab_gen directory that has the path: 

{PATH}/daimtronics/semi_catkin_ws/src/matlab_gen.  

iii. To generate the new messages, in the MATLAB console type 

rosgenmsg(“{PATH}/daimtronics/semi_catkin_ws/src”)   (Replacing {PATH} with 

the path to the daimtronics repository on your computer) 

iv. Add  “{PATH}/daimtronics/semi_catkin_ws/src/matlab_gen/jar/semi_truck-

0.0.0.jar” to javaclasspath.txt in the MATLAB folder. (See article for more info on 

where javaclasspath.txt is) 

v. Restart MATLAB for the changes to take place. 

c. In a Simulink Model on the PC, add the Simulink blocks below (Figure 11) and double 

click on them to bring up a “Block Parameters Subscribe / Publish” window.  

i. Under “Topic source” select “Specify your own." 

ii. Under “Topic” type the name of the topic that the model will connect with 

when deployed on the Pi 

iii. Press the “Select …" button and select “semi_truck/Teensy_Sensors” or 

“semi_truck/Teensy_Actuators” 

 

 

Figure 11: Subscribe and Publish Blocks within Simulink 
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Figure 12: Subscriber / Publisher Block Parameters Window 

   

 

d. An alternative method requires Simulink to access to a running ROS node on the 

Raspberry Pi that either subscribes or publishes to a topic with the desired message type 

to be integrated into the model. Bring up the Subscriber / Publisher Block Parameters 

Window. From here, configure the network address so that the ROS Master is hooked 

up to the IP address of the Raspberry Pi on port 11311. This IP address will change 

depending on what Wi-Fi network you are working on. Make sure the Raspberry Pi is up 

and running (and able to connect to the PC over Wi-Fi) and start a ROS node that works 

with a topic using the desired message type. In this case of Figure 13, the 

pi_comm_node on the Raspberry Pi was running which generated the 

teensy_actuator_data and teensy_sensor_data topics. In the Block Parameters Window, 

under “Topic source” select “Select from ROS network.” Press the select button. A 

dialogue box should open up that allows you to select which type of message the ROS 

subscriber / publisher is working with, as long as a proper connection to the Pi exists.  
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Figure 13: Selecting a ROS topic that is running on the Pi 

e. If the above steps are followed correctly, you should have the necessary information to 

construct Simulink models to run within a ROS network. Everything else in the model 

besides the Publisher and Subscriber blocks should follow standard Simulink control 

loop procedures. 
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File Index

2.1 File List

Here is a list of all files with brief descriptions:

daimtronics/semi_catkin_ws/src/semi_truck/include/system_data.h . . . . . . . . . . . . . . . . . . . . ??
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daimtronics/teensy_chibios/src/main/hall_sensor.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/imu.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/main.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/motor_driver.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/range_finder.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/RC_receiver.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/steer_servo.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/tca_selector.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/teensy_serial.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/tof_lidar.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/wheel_speed.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/include/fifth_wheel.h . . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/include/hall_sensor.h . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/include/imu.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/include/motor_driver.h . . . . . . . . . . . . . . . . . . . . . . . . ??
daimtronics/teensy_chibios/src/main/include/range_finder.h . . . . . . . . . . . . . . . . . . . . . . . . ??
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Chapter 3

Class Documentation

3.1 actuator_data_t Struct Reference

#include <system_data.h>

Public Attributes

• int16_t motor_output
• int16_t steer_output
• int16_t fifth_output

3.1.1 Member Data Documentation

3.1.1.1 int16_t actuator_data_t::fifth_output

3.1.1.2 int16_t actuator_data_t::motor_output

3.1.1.3 int16_t actuator_data_t::steer_output

The documentation for this struct was generated from the following file:

• daimtronics/teensy_chibios/src/main/include/system_data.h

3.2 sensor_data_t Struct Reference

#include <system_data.h>



6 Class Documentation

Public Attributes

• int16_t imu_angle
• int16_t wheel_speed
• int16_t right_TOF
• int16_t left_TOF
• int16_t rear_TOF

3.2.1 Member Data Documentation

3.2.1.1 int16_t sensor_data_t::imu_angle

3.2.1.2 int16_t sensor_data_t::left_TOF

3.2.1.3 int16_t sensor_data_t::rear_TOF

3.2.1.4 int16_t sensor_data_t::right_TOF

3.2.1.5 int16_t sensor_data_t::wheel_speed

The documentation for this struct was generated from the following file:

• daimtronics/teensy_chibios/src/main/include/system_data.h

3.3 system_data_t Struct Reference

#include <system_data.h>

Collaboration diagram for system_data_t:

system_data_t

sensor_data_t

 sensors

actuator_data_t

 actuators
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3.3 system_data_t Struct Reference 7

Public Attributes

• int16_t wheel_speed
• int16_t imu_angle
• uint16_t right_TOF
• uint16_t left_TOF
• uint16_t rear_TOF
• uint16_t drive_mode
• int16_t motor_output
• int16_t steer_output
• uint16_t fifth_output
• bool updated
• int16_t deadman
• int16_t drive_mode
• sensor_data_t sensors
• actuator_data_t actuators

3.3.1 Member Data Documentation

3.3.1.1 actuator_data_t system_data_t::actuators

3.3.1.2 int16_t system_data_t::deadman

3.3.1.3 int16_t system_data_t::drive_mode

3.3.1.4 uint16_t system_data_t::drive_mode

3.3.1.5 uint16_t system_data_t::fifth_output

3.3.1.6 int16_t system_data_t::imu_angle

3.3.1.7 uint16_t system_data_t::left_TOF

3.3.1.8 int16_t system_data_t::motor_output

3.3.1.9 uint16_t system_data_t::rear_TOF

3.3.1.10 uint16_t system_data_t::right_TOF

3.3.1.11 sensor_data_t system_data_t::sensors

3.3.1.12 int16_t system_data_t::steer_output

3.3.1.13 bool system_data_t::updated

3.3.1.14 int16_t system_data_t::wheel_speed

The documentation for this struct was generated from the following file:

• daimtronics/semi_catkin_ws/src/semi_truck/include/system_data.h
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Chapter 4

File Documentation

4.1 daimtronics/semi_catkin_ws/src/semi_truck/include/system_data.h File Reference

#include <stdint.h>
Include dependency graph for system_data.h:

daimtronics/semi_catkin
_ws/src/semi_truck/include

/system_data.h

stdint.h

Classes

• struct system_data_t

4.2 daimtronics/teensy_chibios/src/main/include/system_data.h File Reference

#include <stdint.h>
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Include dependency graph for system_data.h:

daimtronics/teensy
_chibios/src/main/include

/system_data.h

stdint.h

This graph shows which files directly or indirectly include this file:

daimtronics/teensy
_chibios/src/main/include

/system_data.h

daimtronics/semi_catkin
_ws/src/semi_truck/src

/pi_comm_node.cpp

daimtronics/semi_catkin
_ws/src/semi_truck/src
/truck_template_node.cpp

daimtronics/teensy
_chibios/src/main/fifth

_wheel.cpp

daimtronics/teensy
_chibios/src/main/include

/teensy_serial.h

daimtronics/teensy
_chibios/src/main/main.cpp

daimtronics/teensy
_chibios/src/main/teensy

_serial.cpp

Classes

• struct sensor_data_t
• struct actuator_data_t
• struct system_data_t

Typedefs

• typedef struct sensor_data_t sensor_data_t
• typedef struct actuator_data_t actuator_data_t
• typedef struct system_data_t system_data_t

4.2.1 Typedef Documentation

4.2.1.1 typedef struct actuator_data_t actuator_data_t

4.2.1.2 typedef struct sensor_data_t sensor_data_t
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4.2.1.3 typedef struct system_data_t system_data_t

4.3 daimtronics/semi_catkin_ws/src/semi_truck/src/pi_comm_node.cpp File Reference

#include "pi_comm_node.h"
#include "system_data.h"
#include "semi_truck/Teensy_Sensors.h"
#include "semi_truck/Teensy_Actuators.h"
#include <wiringSerial.h>
#include <wiringPi.h>
#include <stdio.h>
#include <unistd.h>
#include <ros/ros.h>
#include <sensor_msgs/LaserScan.h>
Include dependency graph for pi_comm_node.cpp:

daimtronics/semi_catkin
_ws/src/semi_truck/src

/pi_comm_node.cpp

pi_comm_node.h

semi_truck/Teensy_Sensors.h semi_truck/Teensy_Actuators.h

system_data.h wiringSerial.h wiringPi.h stdio.h unistd.h ros/ros.h sensor_msgs/LaserScan.h

Macros

• #define SHORT_SIZE 2
• #define RELAY_PIN_1 7
• #define RELAY_PIN_2 0
• #define SYNC_VALUE -32000
• #define SENSOR_DATA_SIZE_W_SYNC 14
• #define SENSOR_DATA_SIZE 12
• #define UART "/dev/ttyS0"
• #define BAUDRATE 9600
• #define LOOP_FREQUENCY 20

Functions

• int main (int argc, char ∗∗argv)

The main function for the ROS node to communicate with the Teensy over UART. It receives sensor data from the
Teensy and publishes this data to the teensy_sensor_data topic. It also subscribes to the teensy_actuator_data topic
and writes the values it gets to the Teensy over UART.

• void pi_sync ()

Called before reading sensor data from the Teensy. It will read the buffer until it encounters the SYNC_VALUE that
has been defined. Once this happens, the next set of bytes are the set of sensor values.

• short read_sensor_msg (int serial, char num_bytes)

Reads a single value from the UART communication buffer.

• void read_from_teensy (int serial, semi_truck::Teensy_Sensors &sensors)

Reads an entire set of Teensy sensor data by calling read_sensor_msg on each sensor data in the UART message.

• void write_actuator_msg (int serial, short actuator_val, char num_bytes)

Writes a single actuator value to the Teensy.
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• void write_to_teensy (int serial, const semi_truck::Teensy_Actuators &actuators)

Writes an entire set of actuator data to the Teensy via UART.

• void print_sensors (const semi_truck::Teensy_Sensors &sensors)

A function useful for debugging serial communication. Prints the entire set of sensor data to the console.

• void print_actuators (const semi_truck::Teensy_Actuators &actuators)

A function useful for debugging serial communication. Prints the entire set of actuator data to the console.

• void actuator_cb (const semi_truck::Teensy_Actuators &msg)

The callback function the the subscriber to the teensy_actuator_data topic. This function will run every time RO←↩

S::spinOnce is called. It reads the set of data from the topic and immediately writes these values to the Teensy via
UART.

Variables

• static int serial

4.3.1 Macro Definition Documentation

4.3.1.1 #define BAUDRATE 9600

4.3.1.2 #define LOOP_FREQUENCY 20

4.3.1.3 #define RELAY_PIN_1 7

4.3.1.4 #define RELAY_PIN_2 0

4.3.1.5 #define SENSOR_DATA_SIZE 12

4.3.1.6 #define SENSOR_DATA_SIZE_W_SYNC 14

4.3.1.7 #define SHORT_SIZE 2

4.3.1.8 #define SYNC_VALUE -32000

4.3.1.9 #define UART "/dev/ttyS0"

4.3.2 Function Documentation

4.3.2.1 void actuator_cb ( const semi_truck::Teensy_Actuators & msg )

The callback function the the subscriber to the teensy_actuator_data topic. This function will run every time ROS←↩

::spinOnce is called. It reads the set of data from the topic and immediately writes these values to the Teensy via
UART.

Parameters

msg A set of actuator data that has come from the actuator topic and needs to be written to the Teensy.
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4.3.2.2 int main ( int argc, char ∗∗ argv )

The main function for the ROS node to communicate with the Teensy over UART. It receives sensor data from the
Teensy and publishes this data to the teensy_sensor_data topic. It also subscribes to the teensy_actuator_data
topic and writes the values it gets to the Teensy over UART.

4.3.2.3 void pi_sync ( )

Called before reading sensor data from the Teensy. It will read the buffer until it encounters the SYNC_VALUE that
has been defined. Once this happens, the next set of bytes are the set of sensor values.

4.3.2.4 void print_actuators ( const semi_truck::Teensy_Actuators & actuators )

A function useful for debugging serial communication. Prints the entire set of actuator data to the console.

Parameters

actuators The object that holds all of the actuator data

4.3.2.5 void print_sensors ( const semi_truck::Teensy_Sensors & sensors )

A function useful for debugging serial communication. Prints the entire set of sensor data to the console.

Parameters

sensors The object that holds all of the sensor data

4.3.2.6 void read_from_teensy ( int serial, semi_truck::Teensy_Sensors & sensors )

Reads an entire set of Teensy sensor data by calling read_sensor_msg on each sensor data in the UART message.

4.3.2.7 short read_sensor_msg ( int serial, char num_bytes )

Reads a single value from the UART communication buffer.

Parameters

serial The serial file descriptor to read from

num_bytes The number of bytes to read from

Returns

The value of the bytes that have been read
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4.3.2.8 void write_actuator_msg ( int serial, short actuator_val, char num_bytes )

Writes a single actuator value to the Teensy.

Parameters

serial The serial file descriptor to write to

actuator_val The value that is written through UART to the Teensy

num_bytes Number of bytes to write to the UART

4.3.2.9 void write_to_teensy ( int serial, const semi_truck::Teensy_Actuators & actuators )

Writes an entire set of actuator data to the Teensy via UART.

Parameters

serial The serial file descriptor to write to

actuators The object that holds all of the actuator data

4.3.3 Variable Documentation

4.3.3.1 int serial [static]

4.4 daimtronics/semi_catkin_ws/src/semi_truck/src/pi_comm_node.h File Reference

#include "semi_truck/Teensy_Sensors.h"
#include "semi_truck/Teensy_Actuators.h"
Include dependency graph for pi_comm_node.h:

daimtronics/semi_catkin
_ws/src/semi_truck/src

/pi_comm_node.h

semi_truck/Teensy_Sensors.h semi_truck/Teensy_Actuators.h
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This graph shows which files directly or indirectly include this file:

daimtronics/semi_catkin
_ws/src/semi_truck/src

/pi_comm_node.h

daimtronics/semi_catkin
_ws/src/semi_truck/src

/pi_comm_node.cpp

Functions

• short read_sensor_msg (int serial, char num_bytes)

Reads a single value from the UART communication buffer.

• void read_from_teensy (int serial, semi_truck::Teensy_Sensors &sensors)

Reads an entire set of Teensy sensor data by calling read_sensor_msg on each sensor data in the UART message.

• void write_sensor_msg (int serial, short sensor_val, char num_bytes)
• void write_to_teensy (int serial, const semi_truck::Teensy_Actuators &actuators)

Writes an entire set of actuator data to the Teensy via UART.

• void update_sensors (semi_truck::Teensy_Sensors &sensors)
• void pi_sync ()

Called before reading sensor data from the Teensy. It will read the buffer until it encounters the SYNC_VALUE that
has been defined. Once this happens, the next set of bytes are the set of sensor values.

• void print_sensors (const semi_truck::Teensy_Sensors &sensors)

A function useful for debugging serial communication. Prints the entire set of sensor data to the console.

• void print_actuators (const semi_truck::Teensy_Actuators &actuators)

A function useful for debugging serial communication. Prints the entire set of actuator data to the console.

• void sensor_cb (const semi_truck::Teensy_Sensors &msg)
• void actuator_cb (const semi_truck::Teensy_Actuators &msg)

The callback function the the subscriber to the teensy_actuator_data topic. This function will run every time RO←↩

S::spinOnce is called. It reads the set of data from the topic and immediately writes these values to the Teensy via
UART.

4.4.1 Function Documentation

4.4.1.1 void actuator_cb ( const semi_truck::Teensy_Actuators & msg )

The callback function the the subscriber to the teensy_actuator_data topic. This function will run every time ROS←↩

::spinOnce is called. It reads the set of data from the topic and immediately writes these values to the Teensy via
UART.
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Parameters

msg A set of actuator data that has come from the actuator topic and needs to be written to the Teensy.

4.4.1.2 void pi_sync ( )

Called before reading sensor data from the Teensy. It will read the buffer until it encounters the SYNC_VALUE that
has been defined. Once this happens, the next set of bytes are the set of sensor values.

4.4.1.3 void print_actuators ( const semi_truck::Teensy_Actuators & actuators )

A function useful for debugging serial communication. Prints the entire set of actuator data to the console.

Parameters

actuators The object that holds all of the actuator data

4.4.1.4 void print_sensors ( const semi_truck::Teensy_Sensors & sensors )

A function useful for debugging serial communication. Prints the entire set of sensor data to the console.

Parameters

sensors The object that holds all of the sensor data

4.4.1.5 void read_from_teensy ( int serial, semi_truck::Teensy_Sensors & sensors )

Reads an entire set of Teensy sensor data by calling read_sensor_msg on each sensor data in the UART message.

4.4.1.6 short read_sensor_msg ( int serial, char num_bytes )

Reads a single value from the UART communication buffer.

Parameters

serial The serial file descriptor to read from

num_bytes The number of bytes to read from

Returns

The value of the bytes that have been read

Generated by Doxygen



4.5 daimtronics/semi_catkin_ws/src/semi_truck/src/semi_truck_api.cpp File Reference 17

4.4.1.7 void sensor_cb ( const semi_truck::Teensy_Sensors & msg )

4.4.1.8 void update_sensors ( semi_truck::Teensy_Sensors & sensors )

4.4.1.9 void write_sensor_msg ( int serial, short sensor_val, char num_bytes )

4.4.1.10 void write_to_teensy ( int serial, const semi_truck::Teensy_Actuators & actuators )

Writes an entire set of actuator data to the Teensy via UART.

Parameters

serial The serial file descriptor to write to

actuators The object that holds all of the actuator data

4.5 daimtronics/semi_catkin_ws/src/semi_truck/src/semi_truck_api.cpp File Reference

#include "semi_truck_api.h"
Include dependency graph for semi_truck_api.cpp:

daimtronics/semi_catkin
_ws/src/semi_truck/src

/semi_truck_api.cpp

semi_truck_api.h

../include/Teensy_Actuators.h ../include/Teensy_Sensors.h

Functions

• void set_motor_output (semi_truck::Teensy_Actuators &actuators, int16_t motor_output)

sets the motor output of the actuators object to the passed in value

• void set_steer_output (semi_truck::Teensy_Actuators &actuators, int16_t steer_output)

sets the steer output of the actuators object to the passed in value

• void set_fifth_output (semi_truck::Teensy_Actuators &actuators, uint16_t fifth_output)

sets the fifth wheel of the actuators object to the passed in value

• int16_t get_wheel_speed (semi_truck::Teensy_Sensors &sensors)
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reads the wheel speed of a TeensySensors object

• int16_t get_imu_angle (semi_truck::Teensy_Sensors &sensors)

reads the imu angle (degrees) of a TeensySensors object

• int16_t get_right_TOF (semi_truck::Teensy_Sensors &sensors)

reads the right TOF distance (cm) of a TeensySensors object

• int16_t get_left_TOF (semi_truck::Teensy_Sensors &sensors)

reads the left TOF distance (cm) of a TeensySensors object

• int16_t get_rear_TOF (semi_truck::Teensy_Sensors &sensors)

reads the rear TOF distance (cm) of a TeensySensors object

4.5.1 Function Documentation

4.5.1.1 int16_t get_imu_angle ( semi_truck::Teensy_Sensors & sensors )

reads the imu angle (degrees) of a TeensySensors object

Parameters

sensors a reference to a TeensySensors object to read from.

4.5.1.2 int16_t get_left_TOF ( semi_truck::Teensy_Sensors & sensors )

reads the left TOF distance (cm) of a TeensySensors object

Parameters

sensors a reference to a TeensySensors object to read from.

4.5.1.3 int16_t get_rear_TOF ( semi_truck::Teensy_Sensors & sensors )

reads the rear TOF distance (cm) of a TeensySensors object

Parameters

sensors a reference to a TeensySensors object to read from.

4.5.1.4 int16_t get_right_TOF ( semi_truck::Teensy_Sensors & sensors )

reads the right TOF distance (cm) of a TeensySensors object

Parameters

sensors a reference to a TeensySensors object to read from.
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4.5.1.5 int16_t get_wheel_speed ( semi_truck::Teensy_Sensors & sensors )

reads the wheel speed of a TeensySensors object

Parameters

sensors a reference to a TeensySensors object to read from.

4.5.1.6 void set_fifth_output ( semi_truck::Teensy_Actuators & actuators, uint16_t value )

sets the fifth wheel of the actuators object to the passed in value

Parameters

actuators a reference to a TeensyActuators object to alter

value the value to update the actuators with. 0 for locked and 1 for unlocked.

4.5.1.7 void set_motor_output ( semi_truck::Teensy_Actuators & actuators, int16_t value )

sets the motor output of the actuators object to the passed in value

Parameters

actuators a reference to a TeensyActuators object to alter

value the value to update the actuators with. This value should range from 0 for full reverse power to 180
for full forwards power.

4.5.1.8 void set_steer_output ( semi_truck::Teensy_Actuators & actuators, int16_t value )

sets the steer output of the actuators object to the passed in value

Parameters

actuators a reference to a TeensyActuators object to alter

value the value to update the actuators with. This value should range from 0 for a 20 degree angle left to
180 for a 20 degree angle right.

4.6 daimtronics/semi_catkin_ws/src/semi_truck/src/semi_truck_api.h File Reference

#include "../include/Teensy_Actuators.h"
#include "../include/Teensy_Sensors.h"
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Include dependency graph for semi_truck_api.h:

daimtronics/semi_catkin
_ws/src/semi_truck/src

/semi_truck_api.h

../include/Teensy_Actuators.h ../include/Teensy_Sensors.h

This graph shows which files directly or indirectly include this file:

daimtronics/semi_catkin
_ws/src/semi_truck/src

/semi_truck_api.h

daimtronics/semi_catkin
_ws/src/semi_truck/src

/semi_truck_api.cpp

daimtronics/semi_catkin
_ws/src/semi_truck/src
/truck_template_node.cpp

Functions

• void set_motor_output (semi_truck::Teensy_Actuators &actuators, int16_t value)

sets the motor output of the actuators object to the passed in value
• void set_steer_output (semi_truck::Teensy_Actuators &actuators, int16_t value)

sets the steer output of the actuators object to the passed in value
• void set_fifth_output (semi_truck::Teensy_Actuators &actuators, uint16_t value)

sets the fifth wheel of the actuators object to the passed in value
• int16_t get_wheel_speed (semi_truck::Teensy_Sensors &sensors)

reads the wheel speed of a TeensySensors object
• int16_t get_imu_angle (semi_truck::Teensy_Sensors &sensors)

reads the imu angle (degrees) of a TeensySensors object
• int16_t get_right_TOF (semi_truck::Teensy_Sensors &sensors)

reads the right TOF distance (cm) of a TeensySensors object
• int16_t get_left_TOF (semi_truck::Teensy_Sensors &sensors)

reads the left TOF distance (cm) of a TeensySensors object
• int16_t get_rear_TOF (semi_truck::Teensy_Sensors &sensors)

reads the rear TOF distance (cm) of a TeensySensors object
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4.6.1 Function Documentation

4.6.1.1 int16_t get_imu_angle ( semi_truck::Teensy_Sensors & sensors )

reads the imu angle (degrees) of a TeensySensors object

Parameters

sensors a reference to a TeensySensors object to read from.

4.6.1.2 int16_t get_left_TOF ( semi_truck::Teensy_Sensors & sensors )

reads the left TOF distance (cm) of a TeensySensors object

Parameters

sensors a reference to a TeensySensors object to read from.

4.6.1.3 int16_t get_rear_TOF ( semi_truck::Teensy_Sensors & sensors )

reads the rear TOF distance (cm) of a TeensySensors object

Parameters

sensors a reference to a TeensySensors object to read from.

4.6.1.4 int16_t get_right_TOF ( semi_truck::Teensy_Sensors & sensors )

reads the right TOF distance (cm) of a TeensySensors object

Parameters

sensors a reference to a TeensySensors object to read from.

4.6.1.5 int16_t get_wheel_speed ( semi_truck::Teensy_Sensors & sensors )

reads the wheel speed of a TeensySensors object

Parameters

sensors a reference to a TeensySensors object to read from.
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4.6.1.6 void set_fifth_output ( semi_truck::Teensy_Actuators & actuators, uint16_t value )

sets the fifth wheel of the actuators object to the passed in value

Parameters

actuators a reference to a TeensyActuators object to alter

value the value to update the actuators with. 0 for locked and 1 for unlocked.

4.6.1.7 void set_motor_output ( semi_truck::Teensy_Actuators & actuators, int16_t value )

sets the motor output of the actuators object to the passed in value

Parameters

actuators a reference to a TeensyActuators object to alter

value the value to update the actuators with. This value should range from 0 for full reverse power to 180
for full forwards power.

4.6.1.8 void set_steer_output ( semi_truck::Teensy_Actuators & actuators, int16_t value )

sets the steer output of the actuators object to the passed in value

Parameters

actuators a reference to a TeensyActuators object to alter

value the value to update the actuators with. This value should range from 0 for a 20 degree angle left to
180 for a 20 degree angle right.

4.7 daimtronics/semi_catkin_ws/src/semi_truck/src/truck_template_node.cpp File Refer-
ence

#include "system_data.h"
#include "semi_truck_api.h"
#include <stdio.h>
#include <unistd.h>
#include <ros/ros.h>
#include <sensor_msgs/LaserScan.h>
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Include dependency graph for truck_template_node.cpp:

daimtronics/semi_catkin
_ws/src/semi_truck/src
/truck_template_node.cpp

system_data.h semi_truck_api.h stdio.h unistd.h ros/ros.h sensor_msgs/LaserScan.h

../include/Teensy_Actuators.h ../include/Teensy_Sensors.h

Functions

• void rplidar_cb (const sensor_msgs::LaserScan &msg)
• void lidar_lite_cb (const sensor_msgs::LaserScan &msg)
• void teensy_sensors_cb (const semi_truck::Teensy_Sensors &msg)
• int main (int argc, char ∗∗argv)

4.7.1 Function Documentation

4.7.1.1 void lidar_lite_cb ( const sensor_msgs::LaserScan & msg )

4.7.1.2 int main ( int argc, char ∗∗ argv )

4.7.1.3 void rplidar_cb ( const sensor_msgs::LaserScan & msg )

4.7.1.4 void teensy_sensors_cb ( const semi_truck::Teensy_Sensors & msg )

4.8 daimtronics/teensy_chibios/src/main/fifth_wheel.cpp File Reference

#include "include/fifth_wheel.h"
#include "include/system_data.h"
#include <Arduino.h>
#include <Servo.h>
Include dependency graph for fifth_wheel.cpp:

daimtronics/teensy
_chibios/src/main/fifth

_wheel.cpp

include/fifth_wheel.h include/system_data.h Arduino.h Servo.h

stdint.h
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Macros

• #define LOCKED_ANGLE 0
• #define UNLOCKED_ANGLE 180

Functions

• void fifth_wheel_loop_fn (int16_t fifth_output)
• void fifth_wheel_setup (short fifth_wheel_pin)

Set up the fifth wheel task to write to the pin attached to the fifth wheel, and to be in the locked position.

Variables

• static Servo fifth_wheel_servo

This is a Servo object to control the fifth wheel. It relies on code from Servo.h which is a prebuilt library for the Arduino
IDE.

4.8.1 Macro Definition Documentation

4.8.1.1 #define LOCKED_ANGLE 0

4.8.1.2 #define UNLOCKED_ANGLE 180

4.8.2 Function Documentation

4.8.2.1 void fifth_wheel_loop_fn ( int16_t fifth_output )

The is the primary function controlling the fifth wheel. It reads the fifth_output value form the system data and writes
to the Servo for actuating between the two different angles.

Parameters

fifth_output the output to the fifth wheel, which will be one of two values, either locked or unlocked

4.8.2.2 void fifth_wheel_setup ( short fifth_wheel_pin )

Set up the fifth wheel task to write to the pin attached to the fifth wheel, and to be in the locked position.

Parameters

fifth_wheel_pin The pin that signals a PWM to the fifth wheel servo.

4.8.3 Variable Documentation
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4.8.3.1 Servo fifth_wheel_servo [static]

This is a Servo object to control the fifth wheel. It relies on code from Servo.h which is a prebuilt library for the
Arduino IDE.

4.9 daimtronics/teensy_chibios/src/main/hall_sensor.cpp File Reference

#include "include/hall_sensor.h"
#include <Arduino.h>
#include <ChRt.h>
Include dependency graph for hall_sensor.cpp:

daimtronics/teensy
_chibios/src/main/hall

_sensor.cpp

include/hall_sensor.h Arduino.h ChRt.h

stdint.h

Functions

• int16_t hall_sensor_loop_fn (short PhaseB_pin, short PhaseC_pin)

This is the primary function controlling the wheel speed sensor. It reads a Hall sensor that is built into the Tekin R8
Motor. This is a three phased motor (PhaseA, PhaseB, PhaseC). Each phase is offset 120 degrees from each other.
Ticks will be incremented if the motor rotates forwards one full revolution, and decremented if it rotates backwards
one revolution.

• void hall_sensor_setup (short PhaseA_pin, short PhaseB_pin, short PhaseC_pin)

Set up the wheel speed task to read high or low values from the three pins attached to the Hall sensor (one for each
phase).

Variables

• int16_t ticks = 0
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4.9.1 Function Documentation

4.9.1.1 int16_t hall_sensor_loop_fn ( short PhaseB_pin, short PhaseC_pin )

This is the primary function controlling the wheel speed sensor. It reads a Hall sensor that is built into the Tekin R8
Motor. This is a three phased motor (PhaseA, PhaseB, PhaseC). Each phase is offset 120 degrees from each other.
Ticks will be incremented if the motor rotates forwards one full revolution, and decremented if it rotates backwards
one revolution.

Returns

the current number of ticks that the sensor reads.

4.9.1.2 void hall_sensor_setup ( short PhaseA_pin, short PhaseB_pin, short PhaseC_pin )

Set up the wheel speed task to read high or low values from the three pins attached to the Hall sensor (one for each
phase).

Parameters

PhaseA_pin An interrupt is triggered every time the Teensy read a leading edge for this phase.

PhaseB_pin If this pin is high when the interrupt is triggered, the truck is going in reverse.

PhaseC_pin If this pin is high when the interrupt is triggered, the truck is going forwards.

4.9.2 Variable Documentation

4.9.2.1 int16_t ticks = 0

4.10 daimtronics/teensy_chibios/src/main/imu.cpp File Reference

#include "include/imu.h"
Include dependency graph for imu.cpp:

daimtronics/teensy
_chibios/src/main/imu.cpp

include/imu.h

stdint.h Wire.h Adafruit_Sensor.h Adafruit_BNO055.h utility/imumaths.h
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Functions

• int16_t imu_loop_fn ()

The primary function for the IMU that reads and returns heading data of the BNO055.The Adafruit_BNO055 library
does most of the work here. This function simply sets up a sets up an "event" variable to hold the IMU data.

• void imu_setup ()

Initializes the BNO055 sensor.

• void print_imu_data (sensors_event_t ∗event)

A debugging function used to print out IMU orientation to the USB serial device (usually the Arduino Serial Monitor).

Variables

• Adafruit_BNO055 bno = Adafruit_BNO055(55)

A global variable, for the only Adafruit_BNO055 object in the system.

4.10.1 Function Documentation

4.10.1.1 int16_t imu_loop_fn ( )

The primary function for the IMU that reads and returns heading data of the BNO055.The Adafruit_BNO055 library
does most of the work here. This function simply sets up a sets up an "event" variable to hold the IMU data.

Returns

an integer representing the heading angle in degrees

4.10.1.2 void imu_setup ( )

Initializes the BNO055 sensor.

4.10.1.3 void print_imu_data ( sensors_event_t ∗ event )

A debugging function used to print out IMU orientation to the USB serial device (usually the Arduino Serial Monitor).

4.10.2 Variable Documentation

4.10.2.1 Adafruit_BNO055 bno = Adafruit_BNO055(55)

A global variable, for the only Adafruit_BNO055 object in the system.
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4.11 daimtronics/teensy_chibios/src/main/include/fifth_wheel.h File Reference

#include <stdint.h>
Include dependency graph for fifth_wheel.h:

daimtronics/teensy
_chibios/src/main/include

/fifth_wheel.h

stdint.h

This graph shows which files directly or indirectly include this file:

daimtronics/teensy
_chibios/src/main/include

/fifth_wheel.h

daimtronics/teensy
_chibios/src/main/fifth

_wheel.cpp

daimtronics/teensy
_chibios/src/main/main.cpp

Macros

• #define LOCKED 1
• #define UNLOCKED 0

Functions

• void fifth_wheel_loop_fn (int16_t fifth_output)
• void fifth_wheel_setup (short fifth_wheel_pin)

Set up the fifth wheel task to write to the pin attached to the fifth wheel, and to be in the locked position.
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4.11.1 Macro Definition Documentation

4.11.1.1 #define LOCKED 1

4.11.1.2 #define UNLOCKED 0

4.11.2 Function Documentation

4.11.2.1 void fifth_wheel_loop_fn ( int16_t fifth_output )

The is the primary function controlling the fifth wheel. It reads the fifth_output value form the system data and writes
to the Servo for actuating between the two different angles.

Parameters

fifth_output the output to the fifth wheel, which will be one of two values, either locked or unlocked

4.11.2.2 void fifth_wheel_setup ( short fifth_wheel_pin )

Set up the fifth wheel task to write to the pin attached to the fifth wheel, and to be in the locked position.

Parameters

fifth_wheel_pin The pin that signals a PWM to the fifth wheel servo.

4.12 daimtronics/teensy_chibios/src/main/include/hall_sensor.h File Reference

#include <stdint.h>
Include dependency graph for hall_sensor.h:

daimtronics/teensy
_chibios/src/main/include

/hall_sensor.h

stdint.h
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This graph shows which files directly or indirectly include this file:

daimtronics/teensy
_chibios/src/main/include

/hall_sensor.h

daimtronics/teensy
_chibios/src/main/hall

_sensor.cpp

daimtronics/teensy
_chibios/src/main/main.cpp

Functions

• int16_t hall_sensor_loop_fn (short PhaseB_pin, short PhaseC_pin)

This is the primary function controlling the wheel speed sensor. It reads a Hall sensor that is built into the Tekin R8
Motor. This is a three phased motor (PhaseA, PhaseB, PhaseC). Each phase is offset 120 degrees from each other.
Ticks will be incremented if the motor rotates forwards one full revolution, and decremented if it rotates backwards
one revolution.

• void hall_sensor_setup (short PhaseA_pin, short PhaseB_pin, short PhaseC_pin)

Set up the wheel speed task to read high or low values from the three pins attached to the Hall sensor (one for each
phase).

4.12.1 Function Documentation

4.12.1.1 int16_t hall_sensor_loop_fn ( short PhaseB_pin, short PhaseC_pin )

This is the primary function controlling the wheel speed sensor. It reads a Hall sensor that is built into the Tekin R8
Motor. This is a three phased motor (PhaseA, PhaseB, PhaseC). Each phase is offset 120 degrees from each other.
Ticks will be incremented if the motor rotates forwards one full revolution, and decremented if it rotates backwards
one revolution.

Returns

the current number of ticks that the sensor reads.

4.12.1.2 void hall_sensor_setup ( short PhaseA_pin, short PhaseB_pin, short PhaseC_pin )

Set up the wheel speed task to read high or low values from the three pins attached to the Hall sensor (one for each
phase).

Generated by Doxygen



4.13 daimtronics/teensy_chibios/src/main/include/imu.h File Reference 31

Parameters

PhaseA_pin An interrupt is triggered every time the Teensy read a leading edge for this phase.

PhaseB_pin If this pin is high when the interrupt is triggered, the truck is going in reverse.

PhaseC_pin If this pin is high when the interrupt is triggered, the truck is going forwards.

4.13 daimtronics/teensy_chibios/src/main/include/imu.h File Reference

#include <stdint.h>
#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BNO055.h>
#include <utility/imumaths.h>
Include dependency graph for imu.h:

daimtronics/teensy
_chibios/src/main/include/imu.h

stdint.h Wire.h Adafruit_Sensor.h Adafruit_BNO055.h utility/imumaths.h

This graph shows which files directly or indirectly include this file:

daimtronics/teensy
_chibios/src/main/include/imu.h

daimtronics/teensy
_chibios/src/main/imu.cpp

daimtronics/teensy
_chibios/src/main/main.cpp

Functions

• short imu_loop_fn ()

The primary function for the IMU that reads and returns heading data of the BNO055.The Adafruit_BNO055 library
does most of the work here. This function simply sets up a sets up an "event" variable to hold the IMU data.

• void imu_setup ()

Initializes the BNO055 sensor.
• void print_imu_data (sensors_event_t ∗event)

A debugging function used to print out IMU orientation to the USB serial device (usually the Arduino Serial Monitor).
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4.13.1 Function Documentation

4.13.1.1 short imu_loop_fn ( )

The primary function for the IMU that reads and returns heading data of the BNO055.The Adafruit_BNO055 library
does most of the work here. This function simply sets up a sets up an "event" variable to hold the IMU data.

Returns

an integer representing the heading angle in degrees

4.13.1.2 void imu_setup ( )

Initializes the BNO055 sensor.

4.13.1.3 void print_imu_data ( sensors_event_t ∗ event )

A debugging function used to print out IMU orientation to the USB serial device (usually the Arduino Serial Monitor).

4.14 daimtronics/teensy_chibios/src/main/include/motor_driver.h File Reference

#include <stdint.h>
Include dependency graph for motor_driver.h:

daimtronics/teensy
_chibios/src/main/include

/motor_driver.h

stdint.h
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This graph shows which files directly or indirectly include this file:

daimtronics/teensy
_chibios/src/main/include

/motor_driver.h

daimtronics/teensy
_chibios/src/main/main.cpp

daimtronics/teensy
_chibios/src/main/motor

_driver.cpp

Functions

• void motor_driver_loop_fn (int16_t motor_output)

This is the primary function controlling the motor. It reads the motor output value from the system data and controls
the motor with this value.

• int16_t scale_output (int16_t motor_output)

Scales a value coming from the pi between -100 and 100 to between 0 and 180 for what the Servo library requires.

• void motor_driver_setup (short motor_pin)

Set up the motor driver task to write to the pin attached to the motor, and to be in the locked position. It also outputs
a value corresponding to zero torque.

• int16_t stop_motor (int16_t wheel_speed, int16_t time_step)

Runs a control loop to stop the motor based on the reported wheel speed, and returns a value to be output to the
motor.

4.14.1 Function Documentation

4.14.1.1 void motor_driver_loop_fn ( int16_t motor_output )

This is the primary function controlling the motor. It reads the motor output value from the system data and controls
the motor with this value.

Parameters

motor_output the output to the motor

4.14.1.2 void motor_driver_setup ( short motor_pin )

Set up the motor driver task to write to the pin attached to the motor, and to be in the locked position. It also outputs
a value corresponding to zero torque.
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Parameters

motor_pin The pin sends a PWM signal to the motor.

4.14.1.3 int16_t scale_output ( int16_t motor_output )

Scales a value coming from the pi between -100 and 100 to between 0 and 180 for what the Servo library requires.

Parameters

motor_output An input value, ideally between -100 and 100 (although it will be limited to -100 or 100 if
outside this range

Returns

a value to output to the motor between 0 and 180

4.14.1.4 int16_t stop_motor ( int16_t wheel_speed, int16_t time_step )

Runs a control loop to stop the motor based on the reported wheel speed, and returns a value to be output to the
motor.

Parameters

wheel_speed speed of the truck read by the wheel speed sensor

time_step number of millis since the last time this task ran; used in integral control

Returns

the output to the motor

4.15 daimtronics/teensy_chibios/src/main/include/range_finder.h File Reference

#include <stdint.h>
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Include dependency graph for range_finder.h:

daimtronics/teensy
_chibios/src/main/include

/range_finder.h

stdint.h

This graph shows which files directly or indirectly include this file:

daimtronics/teensy
_chibios/src/main/include

/range_finder.h

daimtronics/teensy
_chibios/src/main/main.cpp

daimtronics/teensy
_chibios/src/main/range

_finder.cpp

Functions

• long range_finder_loop_fn (short urf_echo_pin)
• void range_finder_ping (short urf_trig_pin)
• void range_finder_setup (short urf_trig_pin)

4.15.1 Function Documentation

4.15.1.1 long range_finder_loop_fn ( short urf_echo_pin )

This is the primary function controlling the URFs. It reads a value representing a distance to an object from the URF
sensor and returns that value

Returns

distance to object
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4.15.1.2 void range_finder_ping ( short urf_trig_pin )

4.15.1.3 void range_finder_setup ( short urf_trig_pin )

4.16 daimtronics/teensy_chibios/src/main/include/RC_receiver.h File Reference

#include <stdint.h>
Include dependency graph for RC_receiver.h:

daimtronics/teensy
_chibios/src/main/include

/RC_receiver.h

stdint.h

This graph shows which files directly or indirectly include this file:

daimtronics/teensy
_chibios/src/main/include

/RC_receiver.h

daimtronics/teensy
_chibios/src/main/main.cpp

daimtronics/teensy
_chibios/src/main/RC

_receiver.cpp

Functions

• int16_t RC_receiver_SW1_fn (short PWM_PIN)

This is the primary function reading Switch 1 on the receiver. It reads a PWM signal that the RC receiver receives
from the RC controller. Based on the specific timing of the PWM, a deadman mode (either deadman switch pressed
or not pressed) is selected to send to the rest of the platform.

• int16_t RC_receiver_SW2_fn (short PWM_PIN)
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• int16_t RC_receiver_SW3_fn (short PWM_PIN)

This is the primary function controlling the RC receiver. It reads a PWM signal that the RC receiver receives from
the RC controller. Based on the specific timing of the PWM, a drive mode (either manual or one of the autonomous
algorithms on the Pi) is selected to control the vehicle.

• void RC_receiver_setup ()

4.16.1 Function Documentation

4.16.1.1 void RC_receiver_setup ( )

4.16.1.2 int16_t RC_receiver_SW1_fn ( short PWM_PIN )

This is the primary function reading Switch 1 on the receiver. It reads a PWM signal that the RC receiver receives
from the RC controller. Based on the specific timing of the PWM, a deadman mode (either deadman switch pressed
or not pressed) is selected to send to the rest of the platform.

Returns

the deadman mode of the semi-truck based on RC receiver signal

4.16.1.3 int16_t RC_receiver_SW2_fn ( short PWM_PIN )

4.16.1.4 int16_t RC_receiver_SW3_fn ( short PWM_PIN )

This is the primary function controlling the RC receiver. It reads a PWM signal that the RC receiver receives from
the RC controller. Based on the specific timing of the PWM, a drive mode (either manual or one of the autonomous
algorithms on the Pi) is selected to control the vehicle.

Returns

the driving mode of the semi-truck based on RC receiver signal

4.17 daimtronics/teensy_chibios/src/main/include/steer_servo.h File Reference

#include <stdint.h>
Include dependency graph for steer_servo.h:

daimtronics/teensy
_chibios/src/main/include

/steer_servo.h

stdint.h
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This graph shows which files directly or indirectly include this file:

daimtronics/teensy
_chibios/src/main/include

/steer_servo.h

daimtronics/teensy
_chibios/src/main/main.cpp

daimtronics/teensy
_chibios/src/main/steer

_servo.cpp

Functions

• void steer_servo_loop_fn (int16_t steer_output)
• void steer_servo_setup (short servo_pin)

Set up the steer servo task to write to the pin attached to the servo controlling angle of the trucks's front axis.

4.17.1 Function Documentation

4.17.1.1 void steer_servo_loop_fn ( int16_t steer_output )

The is the primary function controlling the steering servo wheel. It reads a value form the system data and controls
the steering servo based on what the system data contains.

Parameters

steer_output the output to the steering servo that controls angle

4.17.1.2 void steer_servo_setup ( short servo_pin )

Set up the steer servo task to write to the pin attached to the servo controlling angle of the trucks's front axis.

Parameters

servo_pin The pin that signals a PWM to the steering servo.
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4.18 daimtronics/teensy_chibios/src/main/include/tca_selector.h File Reference

This graph shows which files directly or indirectly include this file:

daimtronics/teensy
_chibios/src/main/include

/tca_selector.h

daimtronics/teensy
_chibios/src/main/main.cpp

daimtronics/teensy
_chibios/src/main/tca

_selector.cpp

Functions

• void tcaselect (short i)

4.18.1 Function Documentation

4.18.1.1 void tcaselect ( short i )

4.19 daimtronics/teensy_chibios/src/main/include/teensy_serial.h File Reference

#include "system_data.h"
Include dependency graph for teensy_serial.h:

daimtronics/teensy
_chibios/src/main/include

/teensy_serial.h

system_data.h

stdint.h
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This graph shows which files directly or indirectly include this file:

daimtronics/teensy
_chibios/src/main/include

/teensy_serial.h

daimtronics/teensy
_chibios/src/main/main.cpp

daimtronics/teensy
_chibios/src/main/teensy

_serial.cpp

Macros

• #define HWSERIAL Serial1

Functions

• void teensy_serial_loop_fn (system_data_t ∗system_data)

The primary function for communicating between the Teensy and the Pi over the Serial UART port.

• void teensy_serial_setup ()

Sets up the serial communication for the teensy to output data to both the Pi (through UART) and a PC console
(through USB).

• void set_sensor_msg (int user_input, sensor_data_t ∗data_ptr)
• void teensy_sync ()

Ensures that the data being read from the Pi is synced. It clears the serial buffer up until it reads the designated
SYNC_VALUE.

• void clear_buffer ()

Clears the serial buffer from all of its data. This is used primarily when the Teensy is restarted, and the Pi has been
sending data that the Teensy does not need to process.

• void read_from_pi (actuator_data_t ∗actuators_ptr)
• void print_sensor_msg (sensor_data_t ∗sensors_ptr)
• void print_actuator_msg (actuator_data_t ∗actuators_ptr)

4.19.1 Macro Definition Documentation

4.19.1.1 #define HWSERIAL Serial1

4.19.2 Function Documentation

4.19.2.1 void clear_buffer ( )

Clears the serial buffer from all of its data. This is used primarily when the Teensy is restarted, and the Pi has been
sending data that the Teensy does not need to process.
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4.19.2.2 void print_actuator_msg ( actuator_data_t ∗ actuators_ptr )

4.19.2.3 void print_sensor_msg ( sensor_data_t ∗ sensors_ptr )

4.19.2.4 void read_from_pi ( actuator_data_t ∗ actuators_ptr )

4.19.2.5 void set_sensor_msg ( int user_input, sensor_data_t ∗ data_ptr )

4.19.2.6 void teensy_serial_loop_fn ( system_data_t ∗ system_data )

The primary function for communicating between the Teensy and the Pi over the Serial UART port.

Parameters

system_data a pointer to the system data that is declared statically in main.ino.

4.19.2.7 void teensy_serial_setup ( )

Sets up the serial communication for the teensy to output data to both the Pi (through UART) and a PC console
(through USB).

4.19.2.8 void teensy_sync ( )

Ensures that the data being read from the Pi is synced. It clears the serial buffer up until it reads the designated
SYNC_VALUE.

4.20 daimtronics/teensy_chibios/src/main/include/tof_lidar.h File Reference

#include <Adafruit_VL53L0X.h>
Include dependency graph for tof_lidar.h:

daimtronics/teensy
_chibios/src/main/include

/tof_lidar.h

Adafruit_VL53L0X.h
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This graph shows which files directly or indirectly include this file:

daimtronics/teensy
_chibios/src/main/include

/tof_lidar.h

daimtronics/teensy
_chibios/src/main/main.cpp

daimtronics/teensy
_chibios/src/main/tof

_lidar.cpp

Functions

• int16_t tof_loop_fn ()

This is the primary function controlling the ToF Lidar for reading distance measurements on the sensors.

• void tof_lidar_setup ()

Initializes the VL53L0X sensor.

4.20.1 Function Documentation

4.20.1.1 void tof_lidar_setup ( )

Initializes the VL53L0X sensor.

4.20.1.2 int16_t tof_loop_fn ( )

This is the primary function controlling the ToF Lidar for reading distance measurements on the sensors.

The Adafruit_VL53L0X library does most of the work and the function here calls the measure.RangeMilliMeter
instruction and stores the distance here.

Returns

an integer representing distance the sensor detected in millimeters
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4.21 daimtronics/teensy_chibios/src/main/include/wheel_speed.h File Reference

#include <stdint.h>
Include dependency graph for wheel_speed.h:

daimtronics/teensy
_chibios/src/main/include

/wheel_speed.h

stdint.h

This graph shows which files directly or indirectly include this file:

daimtronics/teensy
_chibios/src/main/include

/wheel_speed.h

daimtronics/teensy
_chibios/src/main/main.cpp

daimtronics/teensy
_chibios/src/main/wheel

_speed.cpp

Functions

• int16_t wheel_speed_loop_fn (int16_t ticks)

This function reads the motor ticks that have been determined by the hall sensor and converts this value into a speed
for the truck.

• void wheel_speed_setup ()

4.21.1 Function Documentation

4.21.1.1 int16_t wheel_speed_loop_fn ( int16_t ticks )

This function reads the motor ticks that have been determined by the hall sensor and converts this value into a
speed for the truck.

Generated by Doxygen



44 File Documentation

Parameters

ticks The number of ticks that is kept track of by the hall_sensor task.

Returns

the speed of the truck

4.21.1.2 void wheel_speed_setup ( )

4.22 daimtronics/teensy_chibios/src/main/main.cpp File Reference

#include <stdint.h>
#include "include/system_data.h"
#include "include/fifth_wheel.h"
#include "include/imu.h"
#include "include/motor_driver.h"
#include "include/range_finder.h"
#include "include/RC_receiver.h"
#include "include/steer_servo.h"
#include "include/teensy_serial.h"
#include "include/wheel_speed.h"
#include "include/tof_lidar.h"
#include "include/tca_selector.h"
#include "include/hall_sensor.h"
#include <ChRt.h>
Include dependency graph for main.cpp:

daimtronics/teensy
_chibios/src/main/main.cpp

stdint.h

include/system_data.h include/fifth_wheel.h

include/imu.h

include/motor_driver.h include/range_finder.h

include/RC_receiver.h include/steer_servo.hinclude/teensy_serial.h include/wheel_speed.h include/tof_lidar.h include/tca_selector.h include/hall_sensor.h ChRt.h

Wire.h Adafruit_Sensor.h Adafruit_BNO055.h utility/imumaths.h Adafruit_VL53L0X.h

Macros

• #define HWSERIAL Serial1
• #define FIFTH_WHEEL_PIN 6
• #define MOTOR_PIN 5
• #define STEER_SERVO_PIN 2
• #define IMU_SDA_PIN 18
• #define IMU_SCL_PIN 19
• #define TOF_LIDAR_SDA_PIN 18
• #define TOF_LIDAR_SCL_PIN 19
• #define RC_SW1_PIN 25
• #define RC_SW3_PIN 24
• #define HALL_PHASE_A_PIN 40
• #define HALL_PHASE_B_PIN 41
• #define HALL_PHASE_C_PIN 42
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Functions

• MUTEX_DECL (sysMtx)
• static THD_WORKING_AREA (fifth_wheel_wa, 64)

Fifth Wheel Thread: Reads desired state of the fifth wheel from the system_data and outputs a servo angle corre-
sponding to locked or unlocked.

• static THD_FUNCTION (fifth_wheel_thread, arg)
• static THD_WORKING_AREA (imu_wa, 2048)

IMU Thread: Reads euler angles from the BNO055 IMU and writes the data to the system_data after obtaining the
system_data mutex.

• static THD_FUNCTION (imu_thread, arg)
• static THD_WORKING_AREA (motor_driver_wa, 64)

Motor Driver Thread: Reads motor output levels from the system data and controls the motor based on this value.

• static THD_FUNCTION (motor_driver_thread, arg)
• static THD_WORKING_AREA (left_tof_wa, 512)

Left Time of Flight Lidar Thread: Reads the distance in millimeters to the nearest object for the left Time of Flight
sensor.

• static THD_FUNCTION (left_tof_thread, arg)
• static THD_WORKING_AREA (right_tof_wa, 512)

Right Time of Flight Lidar Thread: Reads the distance in millimeters to the nearest object for the right Time of Flight
sensor.

• static THD_FUNCTION (right_tof_thread, arg)
• CH_IRQ_HANDLER (RC_SW1_ISR_Fcn)
• static THD_WORKING_AREA (rc_sw1_isr_wa_thd, 128)

RC Receiver Switch 1 Thread: Reads auxiliary signals from the RC receiver switch 1 for determining if the deadman
switch is pressed.

• static THD_FUNCTION (rc_sw1_handler, arg)
• CH_IRQ_HANDLER (RC_SW3_ISR_Fcn)
• static THD_WORKING_AREA (rc_sw3_isr_wa_thd, 128)

RC Receiver Switch 3 Thread: Reads auxiliary signals from the RC receiver switch 3 for determining what drive mode
the semi-truck is in.

• static THD_FUNCTION (rc_sw3_handler, arg)
• static THD_WORKING_AREA (steer_servo_wa, 64)

Steer Servo Thread: Controls the servo that dictates the driving angle of the semi truck.

• static THD_FUNCTION (steer_servo_thread, arg)
• static THD_WORKING_AREA (teensy_serial_wa, 2048)

Teensy Serial Thread: Communicates over the serial (UART) port to relay system data between the Teensy and the
Raspberry Pi.

• static THD_FUNCTION (teensy_serial_thread, arg)
• CH_IRQ_HANDLER (HALL_ISR_Fcn)
• static THD_WORKING_AREA (hall_sensor_wa, 5120)

Hall Sensor Thread Controls the Hall sensor that is outputted from the main motor of the vehicle for determining
Encoder Ticks.

• static THD_FUNCTION (hall_sensor_thread, arg)
• static THD_WORKING_AREA (speed_wa, 5120)

Speed Thread: Controls the Hall sensor that is outputted from the main motor of the vehicle for determining Encoder
Ticks.

• static THD_FUNCTION (speed_thread, arg)
• void chSetup ()

Creates the threads to be run by assigning the thread function, working space, priority and any parameters that the
thread needs.

• void setup ()

Initializes the semi-truck system so that it is ready to run in an RTOS environment.

• void loop ()
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Variables

• static system_data_t system_data = {0}

The data for the entire system. Synchronization to access this resource is achieved through the use of ChibiOS's
mutex library.

• static int16_t Encoder_ticks

The number of ticks that have read based on the rotation of the three-phase motor. The ticks are determined from the
Hall Sensor that is on the motor, and passed into the wheel_speed task to determine physical speed of the system.

• static thread_reference_t rc_sw1_isr_trp = NULL

RC Receiver Switch 1 Interrupt Handler: Runs preemptive Chibios Interrupt code and awakens the RC receiver
Switch 1 thread.

• static thread_reference_t rc_sw3_isr_trp = NULL

RC Receiver Switch 3 Interrupt Handler: Runs preemptive Chibios Interrupt code and awakens the RC receiver
Switch 3 thread.

• static thread_reference_t hall_isr_trp = NULL

Hall Sensor Interrupt Handler: Runs preemptive Chibios Interrupt code and awakens the main Hall Sensor thread.

4.22.1 Macro Definition Documentation

4.22.1.1 #define FIFTH_WHEEL_PIN 6

4.22.1.2 #define HALL_PHASE_A_PIN 40

4.22.1.3 #define HALL_PHASE_B_PIN 41

4.22.1.4 #define HALL_PHASE_C_PIN 42

4.22.1.5 #define HWSERIAL Serial1

4.22.1.6 #define IMU_SCL_PIN 19

4.22.1.7 #define IMU_SDA_PIN 18

4.22.1.8 #define MOTOR_PIN 5

4.22.1.9 #define RC_SW1_PIN 25

4.22.1.10 #define RC_SW3_PIN 24

4.22.1.11 #define STEER_SERVO_PIN 2

4.22.1.12 #define TOF_LIDAR_SCL_PIN 19

4.22.1.13 #define TOF_LIDAR_SDA_PIN 18

4.22.2 Function Documentation
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4.22.2.1 CH_IRQ_HANDLER ( RC_SW1_ISR_Fcn )

4.22.2.2 CH_IRQ_HANDLER ( RC_SW3_ISR_Fcn )

4.22.2.3 CH_IRQ_HANDLER ( HALL_ISR_Fcn )

4.22.2.4 void chSetup ( )

Creates the threads to be run by assigning the thread function, working space, priority and any parameters that the
thread needs.

While the static thread definitions are written before this function, none of them are used until chThdCreateStatic(...)
is called.

4.22.2.5 void loop ( )

4.22.2.6 MUTEX_DECL ( sysMtx )

4.22.2.7 void setup ( )

Initializes the semi-truck system so that it is ready to run in an RTOS environment.

The setup function is default to Arduino sketches, and holds all of the code that must be run before the main loop
can be run. In this project, each task will have a setup function in it's .cpp file that is called here. Finally, ChibiOS
setup is called to start initialize threads and start the thread scheduling that is built in to ChibiOS.

4.22.2.8 static THD_FUNCTION ( fifth_wheel_thread , arg ) [static]

4.22.2.9 static THD_FUNCTION ( imu_thread , arg ) [static]

4.22.2.10 static THD_FUNCTION ( motor_driver_thread , arg ) [static]

4.22.2.11 static THD_FUNCTION ( left_tof_thread , arg ) [static]

4.22.2.12 static THD_FUNCTION ( right_tof_thread , arg ) [static]

4.22.2.13 static THD_FUNCTION ( rc_sw1_handler , arg ) [static]

4.22.2.14 static THD_FUNCTION ( rc_sw3_handler , arg ) [static]

4.22.2.15 static THD_FUNCTION ( steer_servo_thread , arg ) [static]

4.22.2.16 static THD_FUNCTION ( teensy_serial_thread , arg ) [static]

4.22.2.17 static THD_FUNCTION ( hall_sensor_thread , arg ) [static]

4.22.2.18 static THD_FUNCTION ( speed_thread , arg ) [static]

4.22.2.19 static THD_WORKING_AREA ( fifth_wheel_wa , 64 ) [static]

Fifth Wheel Thread: Reads desired state of the fifth wheel from the system_data and outputs a servo angle corre-
sponding to locked or unlocked.

This thread calls fifth_wheel_loop_fn() which is the primary function for the fifth wheel and whose implementation is
found in fifth_wheel.cpp.
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4.22.2.20 static THD_WORKING_AREA ( imu_wa , 2048 ) [static]

IMU Thread: Reads euler angles from the BNO055 IMU and writes the data to the system_data after obtaining the
system_data mutex.

This thread calls imu_loop_fn() which is the primary function for the IMU and whose implementation is found in
imu.cpp.

4.22.2.21 static THD_WORKING_AREA ( motor_driver_wa , 64 ) [static]

Motor Driver Thread: Reads motor output levels from the system data and controls the motor based on this value.

This thread calls motor_driver_loop_fn which is the primary function for the motor and whose implementation is
found in motor_driver.cpp.

4.22.2.22 static THD_WORKING_AREA ( left_tof_wa , 512 ) [static]

Left Time of Flight Lidar Thread: Reads the distance in millimeters to the nearest object for the left Time of Flight
sensor.

This thread calls tof_loop_fn which is the primary function for the motor and whose implementation is found in
tof_lidar.cpp.

4.22.2.23 static THD_WORKING_AREA ( right_tof_wa , 512 ) [static]

Right Time of Flight Lidar Thread: Reads the distance in millimeters to the nearest object for the right Time of Flight
sensor.

This thread calls tof_loop_fn which is the primary function for the motor and whose implementation is found in
tof_lidar.cpp.

4.22.2.24 static THD_WORKING_AREA ( rc_sw1_isr_wa_thd , 128 ) [static]

RC Receiver Switch 1 Thread: Reads auxiliary signals from the RC receiver switch 1 for determining if the deadman
switch is pressed.

This thread calls RC_receiver_SW1_fn which is the primary function for the RC receiver switch 1 and whose imple-
mentation is found in RC_receiver.cpp

4.22.2.25 static THD_WORKING_AREA ( rc_sw3_isr_wa_thd , 128 ) [static]

RC Receiver Switch 3 Thread: Reads auxiliary signals from the RC receiver switch 3 for determining what drive
mode the semi-truck is in.

This thread calls RC_receiver_SW3_fn which is the primary function for the RC receiver switch 3 and whose imple-
mentation is found in RC_receiver.cpp
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4.22.2.26 static THD_WORKING_AREA ( steer_servo_wa , 64 ) [static]

Steer Servo Thread: Controls the servo that dictates the driving angle of the semi truck.

This thread calls steer_servo_loop_fn which is the primary function for the steering servo and whose implementation
is found in steer_servo.cpp

4.22.2.27 static THD_WORKING_AREA ( teensy_serial_wa , 2048 ) [static]

Teensy Serial Thread: Communicates over the serial (UART) port to relay system data between the Teensy and the
Raspberry Pi.

This thread calls serial_loop_fn() which is the primary function for the serial communication and whose implemen-
tation is found in teensy_serial.cpp.

4.22.2.28 static THD_WORKING_AREA ( hall_sensor_wa , 5120 ) [static]

Hall Sensor Thread Controls the Hall sensor that is outputted from the main motor of the vehicle for determining
Encoder Ticks.

This thread calls hall_sensor_loop_fn() which is the primary function for the Hall sensor and whose implementation
is found in hall_sensor.cpp.

4.22.2.29 static THD_WORKING_AREA ( speed_wa , 5120 ) [static]

Speed Thread: Controls the Hall sensor that is outputted from the main motor of the vehicle for determining Encoder
Ticks.

This thread calls hall_sensor_loop_fn() which is the primary function for the Hall sensor and whose implementation
is found in hall_sensor.cpp.

4.22.3 Variable Documentation

4.22.3.1 int16_t Encoder_ticks [static]

The number of ticks that have read based on the rotation of the three-phase motor. The ticks are determined from
the Hall Sensor that is on the motor, and passed into the wheel_speed task to determine physical speed of the
system.

4.22.3.2 thread_reference_t hall_isr_trp = NULL [static]

Hall Sensor Interrupt Handler: Runs preemptive Chibios Interrupt code and awakens the main Hall Sensor thread.

4.22.3.3 thread_reference_t rc_sw1_isr_trp = NULL [static]

RC Receiver Switch 1 Interrupt Handler: Runs preemptive Chibios Interrupt code and awakens the RC receiver
Switch 1 thread.
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4.22.3.4 thread_reference_t rc_sw3_isr_trp = NULL [static]

RC Receiver Switch 3 Interrupt Handler: Runs preemptive Chibios Interrupt code and awakens the RC receiver
Switch 3 thread.

4.22.3.5 system_data_t system_data = {0} [static]

The data for the entire system. Synchronization to access this resource is achieved through the use of ChibiOS's
mutex library.

Tasks that control a sensor will call the primary function to read that sensor, obtain the mutex to for the system data,
write the sensor data to the system_data, and then release the mutex on the system_data.

Tasks that control actuators will read from the system_data (no mutex needed as the system_data is effectively
read-only for actuator tasks) to receive the specific data that corresponds to their task and then run their primary
functions to control the actuators.

4.23 daimtronics/teensy_chibios/src/main/motor_driver.cpp File Reference

#include "include/motor_driver.h"
#include <Arduino.h>
#include <Servo.h>
Include dependency graph for motor_driver.cpp:

daimtronics/teensy
_chibios/src/main/motor

_driver.cpp

include/motor_driver.h Arduino.h Servo.h

stdint.h
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Macros

• #define WHEEL_SPEED_STOP 0
• #define MOTOR_STOP 90
• #define FORWARDS 120
• #define INIT_VALUE 68
• #define KP 1
• #define KI 0.05f
• #define SAT_ERROR 1000
• #define MAX_TIME_STEP 500
• #define WHEEL_SPEED_RANGE 1000
• #define MOTOR_RANGE 180
• #define FULL_REVERSE 1087
• #define FULL_FORWARD 1660

Functions

• void motor_driver_loop_fn (int16_t motor_output)

This is the primary function controlling the motor. It reads the motor output value from the system data and controls
the motor with this value.

• int16_t scale_output (int16_t motor_output)

Scales a value coming from the pi between -100 and 100 to between 0 and 180 for what the Servo library requires.

• void motor_driver_setup (short motor_pin)

Set up the motor driver task to write to the pin attached to the motor, and to be in the locked position. It also outputs
a value corresponding to zero torque.

• int16_t stop_motor (int16_t wheel_speed, int16_t time_step)

Runs a control loop to stop the motor based on the reported wheel speed, and returns a value to be output to the
motor.

Variables

• static Servo motor

This is a Servo object to control the motor. It relies on code from Servo.h which is built into the Arduino IDE, and is
able to control motors as well as servos.

• static int16_t error_sum = 0

The accumulated error for integral control of the control loop that stops the motor when the dead man's switch is not
pressed.

4.23.1 Macro Definition Documentation

4.23.1.1 #define FORWARDS 120

4.23.1.2 #define FULL_FORWARD 1660

4.23.1.3 #define FULL_REVERSE 1087

4.23.1.4 #define INIT_VALUE 68

4.23.1.5 #define KI 0.05f
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4.23.1.6 #define KP 1

4.23.1.7 #define MAX_TIME_STEP 500

4.23.1.8 #define MOTOR_RANGE 180

4.23.1.9 #define MOTOR_STOP 90

4.23.1.10 #define SAT_ERROR 1000

4.23.1.11 #define WHEEL_SPEED_RANGE 1000

4.23.1.12 #define WHEEL_SPEED_STOP 0

4.23.2 Function Documentation

4.23.2.1 void motor_driver_loop_fn ( int16_t motor_output )

This is the primary function controlling the motor. It reads the motor output value from the system data and controls
the motor with this value.

Parameters

motor_output the output to the motor

4.23.2.2 void motor_driver_setup ( short motor_pin )

Set up the motor driver task to write to the pin attached to the motor, and to be in the locked position. It also outputs
a value corresponding to zero torque.

Parameters

motor_pin The pin sends a PWM signal to the motor.

4.23.2.3 int16_t scale_output ( int16_t motor_output )

Scales a value coming from the pi between -100 and 100 to between 0 and 180 for what the Servo library requires.

Parameters

motor_output An input value, ideally between -100 and 100 (although it will be limited to -100 or 100 if
outside this range
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Returns

a value to output to the motor between 0 and 180

4.23.2.4 int16_t stop_motor ( int16_t wheel_speed, int16_t time_step )

Runs a control loop to stop the motor based on the reported wheel speed, and returns a value to be output to the
motor.

Parameters

wheel_speed speed of the truck read by the wheel speed sensor

time_step number of millis since the last time this task ran; used in integral control

Returns

the output to the motor

4.23.3 Variable Documentation

4.23.3.1 int16_t error_sum = 0 [static]

The accumulated error for integral control of the control loop that stops the motor when the dead man's switch is not
pressed.

4.23.3.2 Servo motor [static]

This is a Servo object to control the motor. It relies on code from Servo.h which is built into the Arduino IDE, and is
able to control motors as well as servos.

4.24 daimtronics/teensy_chibios/src/main/range_finder.cpp File Reference

#include "include/range_finder.h"
#include "Arduino.h"
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Include dependency graph for range_finder.cpp:

daimtronics/teensy
_chibios/src/main/range

_finder.cpp

include/range_finder.h Arduino.h

stdint.h

Functions

• long range_finder_loop_fn (short urf_echo_pin)

• void range_finder_ping (short urf_trig_pin)

• void range_finder_setup (short urf_trig_pin)

Variables

• int val = 0

• unsigned long high_time = 0

• long distance = 0

• unsigned long time = 0

4.24.1 Function Documentation

4.24.1.1 long range_finder_loop_fn ( short urf_echo_pin )

This is the primary function controlling the URFs. It reads a value representing a distance to an object from the URF
sensor and returns that value

Returns

distance to object
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4.24.1.2 void range_finder_ping ( short urf_trig_pin )

4.24.1.3 void range_finder_setup ( short urf_trig_pin )

4.24.2 Variable Documentation

4.24.2.1 long distance = 0

4.24.2.2 unsigned long high_time = 0

4.24.2.3 unsigned long time = 0

4.24.2.4 int val = 0

4.25 daimtronics/teensy_chibios/src/main/RC_receiver.cpp File Reference

#include <Arduino.h>
#include "include/RC_receiver.h"
Include dependency graph for RC_receiver.cpp:

daimtronics/teensy
_chibios/src/main/RC

_receiver.cpp

Arduino.h include/RC_receiver.h

stdint.h

Functions

• int16_t RC_receiver_SW1_fn (short PWM_PIN)

This is the primary function reading Switch 1 on the receiver. It reads a PWM signal that the RC receiver receives
from the RC controller. Based on the specific timing of the PWM, a deadman mode (either deadman switch pressed
or not pressed) is selected to send to the rest of the platform.

• int16_t RC_receiver_SW3_fn (short PWM_PIN)

This is the primary function controlling the RC receiver. It reads a PWM signal that the RC receiver receives from
the RC controller. Based on the specific timing of the PWM, a drive mode (either manual or one of the autonomous
algorithms on the Pi) is selected to control the vehicle.

• void RC_receiver_setup ()
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Variables

• float SW1_high_time = 0
• volatile unsigned long SW1_time = 0
• short SW1_mode = 0
• float SW3_high_time = 0
• volatile unsigned long SW3_time = 0
• short SW3_mode = 0

4.25.1 Function Documentation

4.25.1.1 void RC_receiver_setup ( )

4.25.1.2 int16_t RC_receiver_SW1_fn ( short PWM_PIN )

This is the primary function reading Switch 1 on the receiver. It reads a PWM signal that the RC receiver receives
from the RC controller. Based on the specific timing of the PWM, a deadman mode (either deadman switch pressed
or not pressed) is selected to send to the rest of the platform.

Returns

the deadman mode of the semi-truck based on RC receiver signal

4.25.1.3 int16_t RC_receiver_SW3_fn ( short PWM_PIN )

This is the primary function controlling the RC receiver. It reads a PWM signal that the RC receiver receives from
the RC controller. Based on the specific timing of the PWM, a drive mode (either manual or one of the autonomous
algorithms on the Pi) is selected to control the vehicle.

Returns

the driving mode of the semi-truck based on RC receiver signal

4.25.2 Variable Documentation

4.25.2.1 float SW1_high_time = 0

4.25.2.2 short SW1_mode = 0

4.25.2.3 volatile unsigned long SW1_time = 0

4.25.2.4 float SW3_high_time = 0

4.25.2.5 short SW3_mode = 0

4.25.2.6 volatile unsigned long SW3_time = 0
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4.26 daimtronics/teensy_chibios/src/main/steer_servo.cpp File Reference

#include "include/steer_servo.h"
#include <Arduino.h>
#include <Servo.h>
Include dependency graph for steer_servo.cpp:

daimtronics/teensy
_chibios/src/main/steer

_servo.cpp

include/steer_servo.h Arduino.h Servo.h

stdint.h

Macros

• #define STRAIGHT 90

• #define MIN_ANGLE 1400

• #define MAX_ANGLE 1800

Functions

• void steer_servo_loop_fn (int16_t steer_output)

• void steer_servo_setup (short servo_pin)

Set up the steer servo task to write to the pin attached to the servo controlling angle of the trucks's front axis.

Variables

• static Servo steer_servo
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4.26.1 Macro Definition Documentation

4.26.1.1 #define MAX_ANGLE 1800

4.26.1.2 #define MIN_ANGLE 1400

4.26.1.3 #define STRAIGHT 90

4.26.2 Function Documentation

4.26.2.1 void steer_servo_loop_fn ( int16_t steer_output )

The is the primary function controlling the steering servo wheel. It reads a value form the system data and controls
the steering servo based on what the system data contains.

Parameters

steer_output the output to the steering servo that controls angle

4.26.2.2 void steer_servo_setup ( short servo_pin )

Set up the steer servo task to write to the pin attached to the servo controlling angle of the trucks's front axis.

Parameters

servo_pin The pin that signals a PWM to the steering servo.

4.26.3 Variable Documentation

4.26.3.1 Servo steer_servo [static]

This is a Servo object to control the steering servo. It relies on code from Servo.h which is built into the Arduino
IDE.

4.27 daimtronics/teensy_chibios/src/main/tca_selector.cpp File Reference

#include "include/tca_selector.h"
#include <Wire.h>
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Include dependency graph for tca_selector.cpp:

daimtronics/teensy
_chibios/src/main/tca

_selector.cpp

include/tca_selector.h Wire.h

Macros

• #define TCAADDR 0x70

Functions

• void tcaselect (short i)

4.27.1 Macro Definition Documentation

4.27.1.1 #define TCAADDR 0x70

4.27.2 Function Documentation

4.27.2.1 void tcaselect ( short i )

4.28 daimtronics/teensy_chibios/src/main/teensy_serial.cpp File Reference

#include <Arduino.h>
#include "include/teensy_serial.h"
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Include dependency graph for teensy_serial.cpp:

daimtronics/teensy
_chibios/src/main/teensy

_serial.cpp

Arduino.h include/teensy_serial.h

system_data.h

stdint.h

Macros

• #define SHORT_SIZE 2
• #define ACT_DATA_SIZE_W_SYNC 8
• #define ACT_DATA_SIZE 6
• #define READ_CYCLES 2
• #define SYNC_VALUE -32000

Functions

• void teensy_serial_loop_fn (system_data_t ∗system_data)

The primary function for communicating between the Teensy and the Pi over the Serial UART port.

• void teensy_serial_setup ()

Sets up the serial communication for the teensy to output data to both the Pi (through UART) and a PC console
(through USB).

• void clear_buffer ()

Clears the serial buffer from all of its data. This is used primarily when the Teensy is restarted, and the Pi has been
sending data that the Teensy does not need to process.

• void teensy_sync ()

Ensures that the data being read from the Pi is synced. It clears the serial buffer up until it reads the designated
SYNC_VALUE.

• void read_from_pi (actuator_data_t ∗actuators_ptr)
• void print_sensor_msg (sensor_data_t ∗sensors_ptr)
• void print_actuator_msg (actuator_data_t ∗actuators_ptr)
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4.28.1 Macro Definition Documentation

4.28.1.1 #define ACT_DATA_SIZE 6

4.28.1.2 #define ACT_DATA_SIZE_W_SYNC 8

4.28.1.3 #define READ_CYCLES 2

4.28.1.4 #define SHORT_SIZE 2

4.28.1.5 #define SYNC_VALUE -32000

4.28.2 Function Documentation

4.28.2.1 void clear_buffer ( )

Clears the serial buffer from all of its data. This is used primarily when the Teensy is restarted, and the Pi has been
sending data that the Teensy does not need to process.

4.28.2.2 void print_actuator_msg ( actuator_data_t ∗ actuators_ptr )

4.28.2.3 void print_sensor_msg ( sensor_data_t ∗ sensors_ptr )

4.28.2.4 void read_from_pi ( actuator_data_t ∗ actuators_ptr )

4.28.2.5 void teensy_serial_loop_fn ( system_data_t ∗ system_data )

The primary function for communicating between the Teensy and the Pi over the Serial UART port.

Parameters

system_data a pointer to the system data that is declared statically in main.ino.

4.28.2.6 void teensy_serial_setup ( )

Sets up the serial communication for the teensy to output data to both the Pi (through UART) and a PC console
(through USB).

4.28.2.7 void teensy_sync ( )

Ensures that the data being read from the Pi is synced. It clears the serial buffer up until it reads the designated
SYNC_VALUE.
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4.29 daimtronics/teensy_chibios/src/main/tof_lidar.cpp File Reference

#include "include/tof_lidar.h"
Include dependency graph for tof_lidar.cpp:

daimtronics/teensy
_chibios/src/main/tof

_lidar.cpp

include/tof_lidar.h

Adafruit_VL53L0X.h

Macros

• #define TCAADDR 0x70

Functions

• void tcaselect (uint8_t i)

• int16_t tof_loop_fn ()

This is the primary function controlling the ToF Lidar for reading distance measurements on the sensors.

• void tof_lidar_setup ()

Initializes the VL53L0X sensor.

Variables

• static bool initialized = false

• Adafruit_VL53L0X sensor1 = Adafruit_VL53L0X()

A global variable that sets up the sensors to be used here.

• Adafruit_VL53L0X sensor2 = Adafruit_VL53L0X()

• Adafruit_VL53L0X sensor3 = Adafruit_VL53L0X()
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4.29.1 Macro Definition Documentation

4.29.1.1 #define TCAADDR 0x70

4.29.2 Function Documentation

4.29.2.1 void tcaselect ( uint8_t i )

4.29.2.2 void tof_lidar_setup ( )

Initializes the VL53L0X sensor.

4.29.2.3 int16_t tof_loop_fn ( )

This is the primary function controlling the ToF Lidar for reading distance measurements on the sensors.

The Adafruit_VL53L0X library does most of the work and the function here calls the measure.RangeMilliMeter
instruction and stores the distance here.

Returns

an integer representing distance the sensor detected in millimeters

4.29.3 Variable Documentation

4.29.3.1 bool initialized = false [static]

4.29.3.2 Adafruit_VL53L0X sensor1 = Adafruit_VL53L0X()

A global variable that sets up the sensors to be used here.

4.29.3.3 Adafruit_VL53L0X sensor2 = Adafruit_VL53L0X()

4.29.3.4 Adafruit_VL53L0X sensor3 = Adafruit_VL53L0X()
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4.30 daimtronics/teensy_chibios/src/main/wheel_speed.cpp File Reference

#include <Arduino.h>
#include <ChRt.h>
#include "include/wheel_speed.h"
Include dependency graph for wheel_speed.cpp:

daimtronics/teensy
_chibios/src/main/wheel

_speed.cpp

Arduino.h ChRt.h include/wheel_speed.h

stdint.h

Macros

• #define SCALE 1

• #define MAX_CHANGE 32768

Functions

• int16_t wheel_speed_loop_fn (int16_t ticks)

This function reads the motor ticks that have been determined by the hall sensor and converts this value into a speed
for the truck.

• void wheel_speed_setup ()

Variables

• int16_t speed

• int16_t prev_ticks =0

• uint16_t prev_time = chVTGetSystemTime()
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4.30.1 Macro Definition Documentation

4.30.1.1 #define MAX_CHANGE 32768

4.30.1.2 #define SCALE 1

4.30.2 Function Documentation

4.30.2.1 int16_t wheel_speed_loop_fn ( int16_t ticks )

This function reads the motor ticks that have been determined by the hall sensor and converts this value into a
speed for the truck.

Parameters

ticks The number of ticks that is kept track of by the hall_sensor task.

Returns

the speed of the truck

4.30.2.2 void wheel_speed_setup ( )

4.30.3 Variable Documentation

4.30.3.1 int16_t prev_ticks =0

4.30.3.2 uint16_t prev_time = chVTGetSystemTime()

4.30.3.3 int16_t speed
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