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Abstract 
In this Final Design Review, the team outlines the general scope of the ARES Cleaning System 
project and the final design direction chosen and built. This team consists of a group of four 
mechanical engineering students who have been tasked with designing and manufacturing an 
autonomous ARES cleaning system to help their sponsor, Fracsun, better track soiling losses 
measured at large solar arrays. They designed, conceptualized, manufactured, and tested 
throughout the project as they looked to create a final, functioning product. In creating this Final 
Design Review, they have identified how the product will perform the desired functions and 
what materials and manufacturing methods need to be used for further development. The team 
has chosen a specific design, while creating a functional prototype that can be improved in the 
future or used immediately with Fracsun. The team has also identified future recommendations 
so that it can be implemented into a wider range of environments and be mass produced. While 
most of the specifications laid out by the team were met, they have reflected on the project and 
determined what worked during the year long project and what can be improved in the future. 
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1. Introduction  
Fracsun, a company built on helping solar array owners track soiling losses to save both time and 
money, has put forward the ARES Cleaning System project for our team at California 
Polytechnic State University, SLO. Fracsun provides owners of large solar arrays with an 
effective way to collect data and give feedback on the soiling losses in the arrays. The system 
consists of two panels, one control and one reference panel. The reference panel needs to be 
cleaned on a daily basis to be compared to the control that becomes dirty with the rest of the 
array. Our team, the Solar Patrollers, is a group of four mechanical engineering students: John 
Cunningham, Jack Glynn, Peter Greig, and Andy Sagers. We have taken on this project because 
of our interest in advancement in the solar industry and our desire to complete a year long senior 
project as we pursue a Bachelors degree in Mechanical Engineering. We have been tasked with 
designing and manufacturing a working prototype of the ARES cleaning system. This cleaner 
will be an autonomous cleaner that both eliminates the use of water and provides feedback as it 
cleans the 20x20 cm reference panel. We will aim to lower the cost and weight of the existing 
product used by Fracsun, with the purpose of helping Fracsun advance as they continue into 
Phase II of their overall design process. What follows in the Final Design Review is a 
background section, summarizing our preliminary findings, the objectives and goals of our 
scope, the ideation process, the chosen design direction, the manufacturing process for the final 
design, and the verification of this design.  
 
2. Background 
To begin this project, the team has done extensive research into what products and patents 
currently exist and what Fracsun desires. What follows in this background section is the findings 
of this research, with references to the exact articles and interviews in the appendices. 
 
2.1 Sponsor Research  
During the project presentation as well as our initial meeting with out project sponsor, we 
learned several things about Fracsun’s current system and their experience in the solar industry. 
Firstly, Fracsun, as well as the solar industry as a whole, is very averse to moving parts and 
maintenance. Solar plants are often in very remote areas over vast land areas and panel arrays 
expected to operate for years at a time with little to no human intervention. This makes using any 
water and pumps which require refilling and frequent maintenance not tenable in this market. 
Fracsun, however, uses a water sprayer cleaning method on the current iteration of their device. 
This was because they needed a quick solution for their device in order to qualify for the 
Department of Energy grant they had been awarded. It uses a 25 gallon tank that water is drawn 
from using a pump and sprayed out of two nozzles onto the reference clean panel below. This 
method is not preferable and this limits the use of device to areas where the water will not freeze 
on the panel surface. Additionally, a 2’ by 3’ solar panel, separate from the device, is needed to 
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power the pump cleaning system. Thus, Fracsun wants to eliminate the current wash extension 
entirely to a more maintenance-free friendly method.  
 
Some other information we were told at our first sponsor meeting and additional meetings since 
then is that their current method is a 5th iteration design, with previous methods including a 
linear actuating manifold that used a lot of water. Additionally we have been told to stay away 
from from any sort of covers or lids for the reference clean panel for several reasons. One is that 
the solar panel is needed to charge the battery for the device as well as the panel needs to take 
measurements over the course of the day, so the lid would need to open and close several times 
throughout the day. This creates vortices that pull any dust from the outside into the closed off 
area that would negate the effectiveness of the lid and the panel would still need additional 
cleaning. We were told that industry acceptability for maintenance would be once a year with a 
five year lifetime without any major maintenance. In our most current meeting we asked about 
the possibility of using a clear cover, either plastic or glass, and we learned that any sort of clear 
covering would affect the irradiance of the panel which would affect the reading taken by their 
device. Anything above an irradiance of 1-2% would be enough to throw the entire measurement 
off. Additionally, placing a covering over both panels would cancel out the effect on the 
measurement, however the two covers would have to be attached the same way so if one had to 
move over the surface of the panel, we would not be able to adhesively attach a cover to the 
control panel. And without an adhesive attachment, there exists the very high possibility that 
water or dust could accumulate between the clear cover and the panel. And finally when taking 
into account their current system and designing our cleaner around it, though it would be 
efficient for them not to change the hardware or layout, but if need be they will design around 
our cleaning system. 
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2.2 Product Research 
Five competitors of the ARES Cleaning system were researched and compared to Fracsun’s 
product. All five of these products are soiling measurement devices. In Table 1, the vendor and 
name are listed aside a description of the product. The products are evaluated in the two 
paragraphs following Table 1. 
 

Table 1. Product Research Descriptions 

Product Description 

Atonometrics - PV Device 
Soiling Measurement 
Systems for PV Power 
Plants 

 
(Atonometrics) 
 
 

The Atonometrics soiling measurement device measures 
soiling loss and soiling rate of PV power plants. This data is 
used for pre construction purposes or to optimize cleaning 
schedules of preexisting solar plants. The device has a control 
cell, accumulating dirt over time, and a reference cell, that is 
autonomously cleaned every day. The reference cell is a small 
PV cell about 1/60 the size of the control cell. The control 
cell’s energy output powers the system. A water solution and 
pump is used to clean the reference cell. This water solution 
does not freeze in cold temperatures and the reference cell has 
its own heating system. These features allow the product to be 
utilized in cold and snowy locations. In the photo, the black 
reference cell can be seen at the base of the control cell. The 
pump system runs tubing from the large white box to the 
reference cell. When deployed in the field, the device is either 
placed at a new possible solar plant site or next to an existing 
array. 

NRG Systems - Soiling 
Measurement Kit 

(NRG Systems) 

The NRG Systems Soiling Measurement Kit measures the 
impact of soiling on PV plants. The product can be used to 
optimize cleaning and maintenance schedules or provide pre 
construction data for PV plants. The device consist of three PV 
cells, a control, reference, and logger power cell. The control 
cell collects dirt over time. The reference cell is regularly 
cleaned, by an onsite worker, with deionized water. The logger 
power cell provides a 12V signal to power the device. All three 
of the cells are mounted to a pole and cable structure. This 
device can be installed with NRG Systems SRA System 
attachment. The SRA System is another device providing data 
to improve PV plant efficiency.  
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Table 2. Continued Product Research Descriptions 

Product Description 

Kipp & Zonen - DustIQ Soiling 
Monitoring System 

 
(DustIQ for PV Solar 
Monitoring) 

The DustIQ Soiling Monitoring System collects soiling 
measurement data to find out when and where PV plants 
need to be cleaned. The system does this by tracking the 
loss of light transmission caused by dirt on PV panels. 
Furthermore, the device does not have a control or reference 
cell. Instead it uses two light monitoring systems that 
accumulate dirt over time. These are the blue lights in the 
photo. The 990 x 160 mm PV cell in the middle of the two 
lights powers the system. This design requires no 
maintenance and no moving parts. The voltage required to 
power the device is 12-30 Volts DC. It takes measurements 
in one minute intervals throughout the day. The system is 
mounted in alignment with existing PV arrays. 

Kintech Engineering - Soiling 
Measurement Kit 

 
(Kintech Engineering) 

The Kintech Engineering Soiling Measurement Kit provides 
data to learn the exact effect soiling has on PV arrays. The 
device compares a clean reference to a dirty control cell. 
The reference cell is cleaned manually, by an onsite worker. 
The system is powered by its own solar power running at a 
voltage of 12 Volts DC. The temperature range of this 
product is -40 to 85 degrees C. It is commonly implemented 
in the field with other meteorological devices measuring 
temperature, pressure, and wind speed. To accommodate 
the extra devices the product is supported by a large metal 
structure. Because this device is built for a wide range of 
environments, it is commonly used to survey solar 
possibilities in extreme weather locations.  
 

Campbell Scientific - SMP100 

 
(SMP100: Solar Module 
Performance Monitoring 
System) 

The Campbell Scientific SMP100 is an in field soiling 
measurement device for operational or pre construction PV 
sites. The device consists of a clean reference cell, dirty 
dirty control cell and control box. The control cell must be 
cleaned manually by an onsite worker. The product is 
marketed mainly as an add-on to other Campbell Scientific 
meteorological systems, measuring other variables affecting 
solar panel efficiency. However, it can be used on its own 
as a soiling measurement device. 
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Analyzing the five products listed above, only two can be declared major competitors of the 
ARES Cleaning System, the Atonometrics PV Device and Kipp and Zonen’s DustIQ. These are 
the only fully autonomous low maintenance products that provide soiling data to PV plants. 
Atonometrics accomplishes this with a system very similar to the ARES Cleaning System. Both 
have a dirty control and self cleaning reference cell combination; however, Atonometrics’ 
control cell is much larger. This inhibits the product from being installed directly on an existing 
solar array. The advantage of this device is that it can be used in cold environments. The 
reference cell can be heated and the pump system runs with an antifreeze water solution. 
Atonometrics’ patent information can be found in Appendix A. The other stand-out Fracsun 
competitor was Kipp and Zonen’s DustIQ. This device autonomously collects soiling data using 
a light monitoring system that tracks loss of light transmission due to soiling. Thus, no reference 
must be cleaned in order for the DustIQ to run. In addition, the self powered product has no 
moving parts and requires no maintenance. As one can see, DustIQ’s unique design satisfies 
many of the design requirements the ARES Cleaning System is working toward. The major 
concern is how light transmission data compares to that of ARES’s control and reference cell 
data. Moreover, because this technology is new and not used by many, Kipp Zonen’s product has 
not gone through enough testing to prove reliability.  
 
As for the remaining three devices from Kintech Engineering, NRG Systems and Campbell 
Scientific, the primary need to self clean is not satisfied. While this classifies the products as 
poor competitors to the ARES Cleaning System, knowledge can still be gained from these 
systems. The designs of these devices are robust and permit flexibility. They can be placed in 
any environment and are often sold as attachments to more complex meteorological measuring 
systems. If the ARES Cleaning System could implement these design features, the product 
would reach more customers throughout the world.  
 
2.3 Technical Research 
With our technical research, we looked at several articles with case studies ranging from 
automatic solar panel cleaning solutions to any waterfree method of cleaning a surface. For solar 
panel cleaners, several methods were investigated that included wipers, roller wipers, lasers, 
static electricity, and acoustic systems. Some methods still used water but we specifically looked 
for cleaning solutions without water. Some systems utilized wind or solar energy to power their 
device while others relied on external power sources. 
 
The final design for the photovoltaic panel cleaner is required to meet certain codes and 
regulations including an International Protection rating, the National Electrical Manufacturers 
Association (NEMA) 4X rating, and the Underwriters Laboratories (UL) listing. These are 
important to the design because the product needs to be safe for anyone interacting with the 
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system. It is also important that that all the electrical components are enclosed so that they are 
protected from dust, debris, and water. Further information on these codes and regulations can be 
found in Appendix B.  
 
Case studies by Lu and Qiang utilized driven drag-wipers with pressure applied between the 
wiper and the panel. The movement was driven with a linear actuator and the wiper was able to 
reach the edges of the panel for complete coverage. A rolling, rotating wiper was a very popular 
cleaning method seen in case studies from Wang, Jawale, Qiang, and Aly. Some just used a 
nylon brush whereas the case study from Aly used three separate rotating rollers. In a 4 stage 
cleaning process, compressed air first cleans the surface, followed by a foam roller and an 
additional pass of the compressed air before finally brushed with a finishing pass of a rotating 
ostrich feather roller. Additional research was done in looking into case studies that detailed any 
water-free cleaning methods such as laser cleaning for windows and compressed air cleaning for 
apricots. There was mention that the laser system could have use cleaning a solar panel but 
additional research would have to be done in observing how the laser would affect the solar 
panel and its performance. 
 
Overall, it was helpful into researching what can feasibly be done and tested, as well as what has 
and has not been done for cleaning methods. These case studies also gave us inspiration for 
possible cleaning methods during our ideation phase of the project. Further information into the 
case studies presented here can be found in Appendix C. 
 
2.4 Additional Research 
Additional research was done after the broad scope of the project had been addressed. The below 
research focuses on specific functions of the desired product and how these functions might be 
incorporated. 
 
2.4.1 Alternative Cleaning Methods 
The first step in performing additional research was to look into alternative cleaning methods 
that don’t use any water. The patents for each of these methods can be found in the Patent 
Research Table in Appendix A. It was found that a remote controlled vacuum system could be 
used to remove dust, debris and liquids from our panel, and a radio controlled transmitter could 
be used to power the device on and off. A lint roller with a disposable adhesive sheet could be 
used to remove dust and debris, but would be ineffective in the removal of liquids and would 
create a lot of waste. A squeegee brush combination tool provides both scrubbing and scraping 
capabilities that could effectively remove almost any debris or liquid without the use of a motor 
driven blower that is required for a vacuum system.  
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Additional research looking into the use of a microfiber material and ostrich feathers was done. 
Microfibers are commonly used in dust mops that use static electricity to pick up dust. These 
mops are completely cleaned by washing them with water and soap however, a less thorough 
cleaning is done by simply shaking the mop out. (Simply Good Stuff) Ostrich feathers have been 
used in the automotive industry to clean. They are also used in feather dusters, where the duster 
is made up of 100% ostrich feather. When this is the case, these feathers have a very good rate of 
attracting dust and are resistant to static charge. Due to the collection and not elimination of dust, 
these feathers would need to be cleaned in order to continue performing over long periods of 
time. (Speed Cleaning) 
 
2.4.2 Sensor Research 
Our cleaning system is going to require some sort of sensor in order to provide Fracsun’s 
microcontroller with feedback. There are multiple options for sensor selection, and each has its 
own advantages and disadvantages that will be taken into account when the overall design is 
completed. The following list provides each sensor type along with benefits and drawbacks of 
each. 
 
Video 

● Provides live monitoring, but is expensive, and requires lots of cellular data 
Infrared 

● Cheap and requires low power, but could be affected by debris crossing the sensor’s path 
(Thonti) 

Ultrasonic 
● Utilizes the sound of the system as feedback, but could easily be disturbed by outside 

noise (Thonti) 
Magnetic 

● Commonly used for security systems, and is readily available, but would require 
components in two locations (Thonti) 

Contact 
● Simple and reliable, but would require custom design 

Vibration 
● Utilizes the vibration of the system, but could easily be affected by external vibrations 

Microwave 
● Can distinguish movement toward and away from sensor, but requires more power than 

other sensors (Thonti) 
DC Motor Potentiometer 

● Device is built into DC motors of actuation devices providing feedback of the device’s 
angle, speed and displacement (Resistor Guide) 
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2.4.3 Linear Actuation Research 
In order to develop solutions for the cleaning function of the ARES Cleaning System, further 
linear actuation research needed to be completed. While it is not guaranteed actuation will be 
needed for the cleaning system, additional research has helped us identify practical ways to move 
a cleaning device up and down a panel. The following list consists of different linear actuation 
methods with the benefits and drawbacks of each. 
 
Lead Screw Actuator 

● Robust design able to hold medium to large size loads 
● Actuation requires power screw and guiding mechanism to be fixed onto system (Firgelli 

Automations) 
Worm Drive Actuator 

● Robust design able to hold very large size loads 
● Used for heavy duty applications thus expensive (Firgelli Automations) 

Reciprocating Motor Actuator 
● Provides repeating linear motion with simple system 
● Hard to control and limited to one single cycle motion 

Rack and Pinion  
● Robust design good for long travel lengths 
● Manufacturing can be costly (Collins) 

Chain Drive 
● More commonly used to transmit power but in this case actuation moves with chains 
● Requires a full loop to be made around two sprocket gears (Encyclopaedia Britannica) 

Rigid Chain Actuator 
● Rigid chain is fed out of sprocket enclosure and is completely enclosed when not in use 
● Chain system is complex and expensive (Collins) 

Gravity and Pulley System 
● Custom actuation system using gravity to advantage  
● Cable system would be custom and require excessive maintenance 

Hydraulic or Pneumatic System 
● High force, fast responding, liquid and air systems 
● High cost systems that often required excessive maintenance (Collins) 
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3. Objectives 
This objectives section outlines the project goals and specifications, a problem statement and 
boundary diagram to depict the specific problem, and a Quality Function Deployment - House of 
Quality (QFD) to help analyze the desired specifications. 
 
3.1 Problem Statement  
Fracsun analyzes power loss due to the soiling of solar cells to help solar plant operators refine 
their wash schedules for cost effectiveness. For their ARES system, Fracsun needs a way to 
autonomously clean a reference solar panel at a daily interval with minimal maintenance while 
eliminating the use of water or other liquids, due to concerns with freezing and pump upkeep.  
 
3.2 Boundary Diagram 

 
Figure 1. ARES Cleaning System Boundary Diagram 

 
The boundary diagram in Figure 1 offers a visual representation of the scope of the ARES 
Cleaning System project. The dashed line serves as a boundary to what our project has a direct 
influence on. Inside the boundary is the cleaning system itself and the solar cell that powers the 
pump and cleaning system. The final product of this project will alter these two components. 
Outside the boundary are elements related to these components that will not be in our design. 
These include the solar plant array and the pump system. The pump system will be removed 
from Fracsun’s product due to elimination of water usage.  
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3.3 Needs/Wants List 
The customer needs/wants list is outlined in the Customer Requirements section of the QFD 
House of Quality located in Appendix D. Ten customer needs were chosen based on discussions 
with our sponsor and team research conducted and documented in the background section. The 
following bulleted list provides the ten needs and wants chosen for analysis in order of 
importance beginning with the most important. The importance is defined by the House of 
Quality as a relative weight in the customers section.  

● An autonomous system 
● The capacity to clean a 20x20cm piece of glass on a daily basis  
●  Maintenance on a yearly basis 
● The ability to provide accessible cleaning feedback 
● The elimination of water or other liquids 
●  Powered by a DC voltage supply 
● Clean on a nightly basis 
● Easy to install 
● Cheap/affordable 
● Works in critical temperatures 

 
3.4 QFD House of Quality Analysis 
QFD (Quality Function Deployment) is an analytical method used to define a customer’s needs 
and requirements. The full House of Quality resulting from the QFD analysis can be found in 
Appendix B. It incorporates given needs, engineering specifications, and QFD analysis into one 
specifications table found below in Table 3. The results of the analysis show that our most 
important specification is the ability of our system to provide a feedback voltage to Fracsun’s 
microcontroller.  The relative weights of the specifications also indicate that the maintenance and 
cleaning schedules are critical requirements to the design when compared to install time and 
critical temperature range. Needless to say, we believe all of the needs and specifications are 
important, and we plan to meet all of our target values assigned in Table 3. The four competitors 
listed in the far right of our House of Quality each have products with unique design features and 
specifications. We plan to use a similarity comparison of these products against our own along 
with analysis and testing to ensure our product meets all the needs and specifications required by 
our customers and sponsor. 
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Every specification listed in Table 3 needs to be verified by one of four methods: Analysis (A), 
Test (T), Similarity to existing designs (S), Inspection (I). In addition each specification is given 
a risk factor of either High (H), Medium (M), or Low (L) indicating how hard it will be to meet 
each specification.  

Table 3. Design Specifications  

Spec # Specification Target Tolerance Risk 
(H, M, L) 

Compliance 
(A,T,S,I) 

1 Maintenance 
Schedule Once/Year Max M A,T 

2 Install Time 15 Minutes Max L S,T 

3 Power 
Requirement 

12-24 VDC and 
30 A Max L A,T 

4 Cleaning 
Schedule Once/day Min L T 

5 Weight 6 lbf Min M A,T 

6 Cost $600 Max M A 

7 Area Cleaned 400 cm2 Min L T 

8 Temperature 
Range -40-185 °F Min H A 

9 Lifetime 10 Years Min M A 

10 Amount H 2O 0 mL Max H I,T 

11 Feedback 
Voltage 50 mV  Max L T 
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Specifications: 
● Maintenance Schedule: This maintenance schedule through testing to determine how 

often our product will need to be maintained. 
● Install Time: The install time will be measured through testing, by timing how long it 

takes to install the product in the field. 
● Power Requirement: The power used by our product will be measured through voltage 

analysis and testing with a digital voltmeter.  
● Cleaning Schedule: The cleaning schedule will be measured through testing how often 

our product autonomously cleans the solar cell.  
● Weight: The weight of our product will be measured through analysis using 3D modeling 

as well as testing with a scale.  
● Cost: The cost of our product will be measured through a cost analysis for both a single 

product as well and wholesale.  
● Area Cleaned: The area cleaned will be measured through testing and visual inspection of 

our solar cells.  
● Temperature Range: The temperature range will be measured through analysis of selected 

materials. This is listed as a high risk specification because it could cost more to design 
something that withstand critical temperatures. 

● Lifetime: The lifetime of our product will be measured through fatigue analysis. 
● Amount H 2O: The amount of water used will be measured by inspection and testing (if 

necessary) the volume of water used per cleaning cycle. This is listed as a high risk 
specification because if any water is used, we will have failed to meet a critical design 
requirement. 

● Feedback Voltage: The feedback voltage will be tested by monitoring the voltage across 
a microcontroller. 
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4. Concept Design 
The team began by choosing three main product designs that utilize cleaning methods in 
different ways. Once the effectiveness of the methods were tested, a specific design route would 
be selected. In this section the selection process is explained and three initial designs are 
presented as well as additional, alternate designs that were considered but not selected. 
 
4.1 Concept Generation 
In deciding how to move forward in the project, the first step was to determine the functions of 
the desired product and how to best use the research that had been done. The primary functions 
that were determined were: the cleaning method, the source of actuation, and the sensor. These 
functions, when working in unison, would meet the specifications. Ideation sessions were 
scheduled at different times, allowing for brainstorming. Each day during the meeting, the team 
picked one of the three functions and came up with at least twenty ideas for how to provide the 
desired function. Ideas were generated sporadically with no confinement or judgement from the 
other team members. Following the ideation session, and the recording of the results, the team 
moved forward in deciding how to implement these ideas into the concept design. 
 
4.2 Selection Process 
From the chosen functions, three Pugh matrices were created that would weigh the possibilities 
against each other. The Pugh matrices were made by selecting a “best idea” and setting it as the 
datum, then comparing all other ideas to this chosen idea. These Pugh matrices can be seen in 
Appendix E. When working through these Pugh matrices, it was clear that the cleaning method 
would need to be tested. Although research provided many possibilities for cleaning materials, 
because of the specific conditions of soiling, testing would further show what materials were 
best. The two other functions were combined into three unique ideas that would be the starting 
point in choosing the final design direction.  
 
Following the creation of the Pugh matrices, a decision matrix was made to weigh the best 
system ideas. The two cleaning methods that were compared were ostrich feathers and a scraper. 
These were the most desirable in the Pugh matrix, and although testing has not yet been done, 
the team used these two to compare the other functions. The weighted decision matrix can be 
seen in Appendix F. The results of this show little differences between the top three choices. It 
appears that using multiple cleaning tools in combination will be the best choice. Although the 
assumed cleaning tools are ostrich feathers and a scraper, testing will allow for stronger certainty 
in what cleaning tool should be used. Other options that will be tested include micro fibers, 
bristles, and the material lining the inside of baby diapers. 
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4.3 Alternate Designs 
Table 4 displays the alternative project designs that were considered during the ideation process. 
Provided are sketches and descriptions of the designs.  
 

Table 4. Alternative Project Designs 

Sketch Description 

 

Worm Drive Actuator 
 
A worm gear and motor system actuates a 
power screw, and attached cleaning system, 
across the solar panel. The actuation stops 
when the cleaning system is on top of the 
cylindrical cleaning bar. The bar rotates, 
forcefully removing the cleaning system of 
any dust or dirt. The actuation system reverses 
and returns the cleaning system to its resting 
state above the solar panel. 

 

Double Slide Stroke Actuator 
 
Using gear systems, two parallel motors rotate 
enclosed power screws. Screw nuts actuate 
along the power screws and hold the cleaning 
system. The cleaning system travels with the 
nuts over the solar panel, stopping on the 
cylindrical cleaning bar. The bar rotates, 
forcefully removing the cleaning system of 
any dust or dirt. The actuation system reverses 
and returns the cleaning system to its resting 
state above the solar panel. 
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Table 5. Additional Alternative Project Designs 

Sketch Description 

 

Vacuum Cleaner 
 
A vacuum cleaning system, spanning the 
width of the solar panel, is actuated up and 
down the face of the panel. The vacuum picks 
up any dust or contamination on the surface. 
Anything picked up by the vacuum travels 
through tubing to a waste bin. The vacuum 
sits above the panel when not cleaning.  

 

Wiper System 
 
Four hard edge cleaners are fixed at each 
corner of the solar panel. Using a motor, the 
cleaners rotate on pins. The four cleaners 
force dust off the face of the panel. The 
cleaners would be off the panel when not 
cleaning. 

 

Air Blower System 
 
An line of air nozzles is placed a top of the 
solar panel. An air compressor supplies air to 
the nozzles. When cleaning, the compressor is 
activated and the nozzles shoot air at a high 
velocity across the panel. This high velocity 
air removes dust that has accumulated on the 
panel. 

 

 
15 



 
 

4.4 Chosen Designs 
Three design directions have been chosen as possible solutions to the problem statement. These 
designs incorporate the functions of the system in unique ways and will have pros and cons 
based on the results from testing done with the cleaning tools. In observing possible issues and 
risks associated with the design of a solution, a Design Hazard checklist has been included as 
Appendix G. The reason for choosing the design, the specific benefits of the system, and the 
possible issues with the system are discussed in each section. 
 
4.4.1 Lead Screw Actuator Design 
The first design the team decided to pursue was one involving linear actuation of a cleaning 
system directly over the ARES’s solar panel. The cleaning system would be the width of the 
panel, functioning to collect dirt substances and or force them off the system.  Moreover, the key 
decision that needed to be made for this design route was what linear actuation method would be 
used to move this cleaner. The Linear Actuation Research section of this report highlights the 
various methods of actuation that were considered. Through logical reasoning and a Pugh 
Matrix, seen in Appendix E, the team decided a lead screw actuator was best for the design. A 
lead screw actuator is robust, takes large force loads, and is easily available for purchase. The top 
alternatives were a rack and pinion, worm drive actuator and reciprocating motor actuator. The 
rack and pinion and worm drive actuator were too costly for the application. The reciprocating 
motor actuator would have to be custom built, making the product much harder to manufacture. 

 
Figure 2. Lead Screw Actuator Design 
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Displayed in Figure 2 is the design chosen to implement a power screw linear actuation system. 
The actuator is fixed to the top of the panel casing. The cleaning system is attached to the 
actuation system thus rests above the panel when it isn’t cleaning and the actuator has zero 
displacement. This cleaning system is completely enclosed when dormant to protect the cleaner 
from environmental factors. When turned on, the cleaning system is directed by the actuator 
across the panel. During this process the cleaner will push any dirt in front of it and pick up the 
remaining dirt. Guide rails will ensure the cleaner is perpendicular to the actuator and dirt is 
pushed forward. Once extended past the panel, the cleaner pushes the dirt over and off the panel 
casing. The actuator stops when the cleaning system is sitting on the beater bar. The beater bar is 
a cylinder with a pattern of small hemispherical extrusions. It is attached to a DC motor and pins 
on the panel casing. It spins for a set amount of time against the cleaning box. The extrusions on 
the beater bar rid the cleaning system of any dirt it has accumulated. This dirt falls below the 
panel. The actuator then reverses direction, traveling back over the panel to its resting position. 
 
Because the cleaning system’s method of cleaning has not been determined, specific parts have 
not been chosen for this design.  However, a general plan has been developed. The lead screw 
linear actuator will be a power screw driven rod linear actuator. This is the type of actuator 
shown in Figure 2. In this actuation design, a DC motor and gearbox rotate a lead screw. When 
rotating, an encased nut holding a rod travels along the screw. The movement of the rod beyond 
the casing is the actuation. This power screw actuator was selected over the first two models in 
the Alternate Design section because it is enclosed well and the configurations of this actuator 
type consist of a wide array of lengths, force loads, power requirements, and control options. A 
200 - 400 mm stroke would clean the 20 x 20 cm cell and permit extra movement. A 50 - 500 lbf 
max load, offered by actuators in our price range, would provide the cleaning force needed. The 
price range for the actuator is no more than half the budget, 200 dollars. The exact force range 
will be determined once cleaning methods are tested. The majority of actuators are offered with a 
12-24 V DC input voltage, which would satisfy the ARES power specification. Most actuators 
are also sold with potentiometers built into their DC motors. The potentiometer would be wired 
to a microcontroller. This would fulfill the project’s feedback requirement by tracking the 
position of the actuator.  
 
As for the other components of the system, a bracket would secure the actuator on the panel 
casing and a lightweight plastic would enclose the cleaning system. Metal rails would be used to 
guide the cleaning system. 
 
It is unknown whether the beater bar will satisfy its function of cleaning the actuators cleaning 
system. Once the cleaning system’s cleaning method is chosen, further research will be 
generated. The team would then be able to make a more logical choice of what should provide 
the beater bar function. If the cleaning system is not completely cleaned by the beater bar 
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component, there would be a problem reversing the actuation system back over the panel to its 
resting state. The remaining dirt in the cleaning system could contaminate the panel. Another 
unknown in this design is how the linear actuator will withstand the outdoor environment for 
extended periods of time. While the operating temperatures of reasonably priced actuators suit 
the sub-freezing temperature specification of the project, their lifetimes in these extreme 
environments are unknown. Our team will have to contact the actuator’s manufacture to see if 
the product is suitable for our function. 
 
4.4.2 Rolling Track Design 
The second design under consideration is the rolling track design seen in Figure 3. In this design, 
the cleaning element rolls across the panel, and is stored underneath the casing where it can be 
protected from any environmental dust and debris when not in use. The design contains an 
infrared sensor in order to provide feedback as to when the panel is cleaned to Fracsun’s 
microcontroller. A Pugh matrix analysis, found in Appendix E, was used to decide which sensors 
would be best for our design. Although infrared topped the list, a device with a built in 
potentiometer could be advantageous and will be taken under consideration. The rolling track 
design also features a “beater bar” that the cleaning element is able to roll against to remove any 
trapped dust, or debris. An exploded view showing how these elements fit together can be seen 
in Figure 4. An additional drawing with basic dimensions can be found in Appendix H. 

 
Figure 3. CAD Model of Rolling Track Design 
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Figure 4. Exploded View of Rolling Track Design 

 
One potential issue with the rolling track design is that the track could cast a shadow on the 
panel, which would impair the power readings and not provide an accurate measurement of 
soiling. Another potential issue is that the rolling track will require some form of non-linear 
actuation that could be hard to implement and costly. This rolling track will also require more 
power than the lead screw actuator which is critical when trying to meet our power specification. 
Without knowing which cleaning element is the best, how much force will need to be applied to 
it, or how the roller will be actuated, it is difficult to say whether or not the rolling track design 
will meet all the specifications listed in Table 3. With further analysis and testing, we will be 
able to determine if the rolling track design is the best direction to proceed with in order to 
satisfy all the criteria laid out in our scope. 
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4.4.3 Rolling Band Design 
 

 
Figure 5. Concept Prototype of Rolling Band Design 

 
The design presented in Figure 5 utilizes a rotating band that leaves the panel completely 
exposed during the day when the device is taking measurements. During cleaning, which will be 
performed at night, the band will rotate driven by a motor in one of the side axles and sweep 
across the panel with a cleaning method attached to the underside of the band. 
 
The design as it stands is a housing and actuating system for the cleaner. The cleaning method 
has not yet been chosen yet due to need of testing. This design would allow for several different 
cleaning methods that we have yet to test, as well as it could accommodate multiple cleaning 
methods within the device. The current design would provide force against the panel only 
provided by tension in the band. If after testing, more force was found to be needed iteration on 
the design could take place to improve it. The belt could hook onto a track on the top with rigid 
bars attached between the tracks that would press the cleaner against the panel, shown in Figure 
6. 
 

 
Figure 6. Possible Modification to Rolling Band Design 

 
20 



 
 

 
This idea began during the concept model build day when a model was made that consisted of a 
clear cover that covered the panel at all times. The panel would protect the panel during the day 
when the system was taking measurements. During cleaning, the clear cover would rotate around 
and be cleaned on the underside of the system. When presented to Fracsun, they had mentioned 
that any clear covers, both plastic and glass, would affect the irradiance of the panel. This would 
skew any sort of measurement the device and would not be feasible. The rolling band design 
presented improved upon the concept model by doing away with cover but retaining the same 
overall idea. 
 
Potential issues of the design would be water or dust getting underneath the band and into the 
cleaning area as well as an accumulation of dust after a year of cleaning. This would impair the 
cleaning ability of the system and instead of cleaning the panel, it would be sweeping dust across 
the panel surface every time it actuated. Longevity and durability of the band would also be a 
possible long term issue with this design, but if the band was relatively cheap and 
interchangeable it could be switched out on a yearly basis which would be an acceptable 
maintenance period for the solar industry and our sponsor. 
 
4.5 Design Decision 
With the three design directions chosen, cleaning materials were tested. The testing procedure is 
discussed in section 7.1. This allowed for further certainty in which system would work with the 
chosen cleaner. The results from testing proved the cleaners suited all the design directions. 
However, because results proved increasing the amount of cleaning passes was more efficient 
than increasing cleaning force, the roller band design was selected. Fracsun also believed this 
was the most fitting design. The team was able to incorporate the general ideas of the rolling 
band design into a more desirable final design.   
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5. Final Design 

 
Figure 7. Final Design of Cleaning System 

 
The current design shown in Figure 7 is derived from the rolling band design where belts are 
used to drag a cleaner across the panel. There are two belts, one above and one below the panel, 
that spin on four pulleys completely around the device. The pulleys are attached by set screw to 
steel shafts which will be supported by bearings mounted in two 3D printed brackets and aligned 
using spacers. A cleaner is secured between the two belts with a strap connected to the belts 
using a wire sew technique. The cleaner is made up of a microfiber cloth head and ostrich feather 
base. The shaft is be powered by a DC gear motor and pulley system  mounted on the underside 
of the device. The system is constructed by a mixture of purchased and custom fabricated parts. 
It is mounted in the configuration shown in Figure 8 on the sides of the current ARES device. 
 

 
Figure 8. Assembly Exploded View 
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5.1 Brackets 
The bracket went through a major redesign from the structural prototype. The most major change 
is that the brackets are fabricated instead of assembled from bought parts. The current approach 
is to 3D print the entire bracket as one piece seen in Figure 9. The 3D print is a black nylon to 
prevent UV damage. The overall design helps to eliminate major problems we encountered when 
assembling the structural prototype. The first being that because the structural prototype used 
two L-brackets with holes drilled in them to support the shaft, getting the alignment was difficult 
and the little misalignment in the system created a lot of friction when the belts were put on the 
system. Another problem that the new bracket solves is the problem of having to support the 
bearings between the supports. Before, we had a tube with bearings that was placed between the 
metal supports. The bearings were meant to support the shaft and allow it to rotate. Instead, 
because of the tension created by the belts, the shaft was pulled toward the middle of the device 
which created rubbing between the shaft and metal support. With the new design, the bearings 
are press fit into the bracket and they are able to fully support the shaft while also allowing it to 
rotate.  

 
Figure 9. 3D Printed Bracket Model 

 
 

Lastly, with the re-designed bracket, an angle was created that allowed for the pulleys to be 
offset from the top of the ARES which solved two problems, seen in Figure 10. The first being 
that the belts were too high above the panel which would not only make cleaning difficult, but 
also create a shading effect on the panel which would affect the measurement taken by the 
ARES. And the second problem was that the extruding panel cover on the back of the device was 
in the way of the belt and would have interfered with the cleaner. 
 

 
Figure 10. Offset Pulleys Bottom View 
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5.2 Toothed Belts 
When doing preliminary testing, we determined that V-belts would introduce too much 
unnecessary tension. This is because the way V-belts are able to transmit power between the 
pulleys is that they rely on the tension in the belts. Our application does not benefit from the 
extra tension and instead this creates friction within the shaft and bearings. Thus a change to 
more flexible toothed timing belts was decided. We have decided to use urethane belts at this 
time in our but there are some concerns with durability of polyurethane, especially as it is 
exposed to the weather and UV radiation. Initial research shows that urethane would be affected 
by UV radiation possibly warping or loosening the belts. If more durable belts were determined 
to be needed, research has been done on silicone belts which have much more resistance to UV 
radiation, at the increase of cost. Furthermore, the urethane belts in our current design are 
reinforced with kevlar which give it more durability than a completely rubber belt. 
 
5.3 Pulleys 
With the change in belt type, a change also had to be made to a toothed pulley. This allows the 
belt tension to decrease as the force is transmitted through the teeth and does not rely on as much 
tension. The specific toothed pulley is shown in Figure 11. Another change with the pulleys is 
that their hubs are made from aluminum and have a set screw that locks the pulley to the shaft. 
An issue we had with the structural prototype is that the press fit between the shaft and the pulley 
was not able to hold and so when the shaft was rotated with a drill to rotate the belt system, the 
shaft rotated within the pulley instead. We made a quick fix using glue; however, a more suitable 
solution is to set screw the pulleys in place. 

 
Figure 11. Toothed Pulley with Set Screw 

 
  

 
24 



 
 

5.4 Bearings 
The bearings on the final design are press fit into the 3D printed bracket, shown in Figure 12. 
There are two bearings for each shaft on either side. A change made from the structural 
prototype is that there originally was a symmetrical design with one bracket supporting bearings 
and the other bracket supporting a rigid shaft on which pulleys with press fitted bearings spinned 
around. This introduced some manufacturing difficulty with the final design as it would be 
difficult to press fit bearings into an aluminum pulley. The aluminum would be much less 
accommodating of an interference fit than plastic. The new design is symmetrical with both 
brackets supporting the shaft with bearings. For durability in the weather, sealed bearings will be 
used. 

 
Figure 12. Press Fit Bearings Detail 

 
5.5 Cleaner 
The cleaner design is made up of three main components; the microfiber cloth head, the 
aluminum cleaner bar, and the ostrich feather fixture. These components are fastened together in 
series. This is shown in Figure 13. 
 

 
Figure 13. Assembled Cleaner 
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They are attached to the belts via a nylon strap that runs through the slots of the cleaner bar. The 
cleaner bar is pictured in Figure 14. The nylon strap is sewed to the belts with galvanized wire. 
The strap and wire connection allows the cleaner bar to be able to rotate around the pulleys along 
with the belts as the strap is able to bend and stretch while the bar is rigid. In addition, the strap 
permits the cleaner to rotate and lead with the microfiber cloth head when the pulleys go in 
reverse direction. This allowed us to reverse the direction of the cleaner every day. Doing so 
extended the life of the cleaner greatly. Both sides of the cleaner can take on wear instead of just 
one side over and over. The life is also extended by storing the cleaner under the ARES fiture 
when not in use. 
 

 
Figure 14. Metal Cleaner Bar 

 
The microfiber cloth head is constructed from a small wooden block wrapped in microfiber 
cleaning material. This portion of the cleaner spans the width of the solar panel and pushes 
debris in front of it. Pressed against the panel when pushing, the microfiber allows little dust get 
by to the ostrich feathers. This component also gives the cleaner much needed height. The height 
allows the feathers to be higher above the solar panel, and because the nylon strap is not rigid, 
they come down on the panel at a steeper angle. During testing, it was clear that a steep feather 
angle was most effective for cleaning.  
 
The ostrich feather portion is manufactured by gluing and wire wrapping feathers around a 
custom made wooden fixture piece. The feathers accumulate the dust that the microfiber cloth 
does not remove. During their time not cleaning the panel, the feathers are forcefully brushed 
against the bracket extrusions and shafts. This removes dust and debris that has previously been 
accumulated.  
 
The dust accumulation and overall effectiveness on the cleaner was tested over 400 cycles. The 
cleaner proved effective in dry conditions and meets the yearly maintenance specification. This 
testing is covered further in Section 7.5. The maintenance of the cleaner would require the belt 
and cleaner combination to be replaced as one whole part. This replacement part would have to 
be provided to a solar plant operator.  
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5.6 Transmitting Power 
The system is powered by a toothed belt linkage between the bracket shaft and a motor mounted 
on the rear side of the device. We determined this to be a feasible method of rotating the shaft 
because the belts and pulley used for the cleaner worked well and were able to transmit the 
required torque. The shaft pulley can be seen in Figure 15 which is placed on the end of the right 
shaft. 

 
Figure 15. Gear on Shaft Detail 

 
Seen in Figure 16, There is an approximate 1:2 gear ratio between the motor which allows for a 
increase in torque at the expense of speed. During testing, we determined a higher need for 
torque than speed as we wanted the device to be able to spin with ease. The motor is mounted 
securely to the rear of the device using a L bracket motor mount. For our prototype, the motor is 
powered by a motor driver connected to a microcontroller. For use in the field, the 
microcontroller code will be placed on the device computer and the power will be supplied 
through integration with the device. 
 

 
Figure 16. Motor Shaft to Bracket Shaft Linkage 
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The motor chosen also came with an integrated encoder which was deemed necessary as the 
exact position of the cleaner was extremely important to know. If the motor simply ran for a set 
amount of time each day to cycle, there would be some variation which would lead to the cleaner 
stopping at different positions day to day. This could lead to the cleaner resting on the panel 
surface during the day which would skew the measurement taken by the device. With an 
encoder, we can be sure the cleaner will be below the device during the day during measurement. 
 
5.7 Cost analysis 
The four major subsystems as well as their cost are listed in Table 6. The majority of the cost 
was due to the bracket subsystem, particularly the $378.30 3D printed brackets. For higher 
volume manufacturing it would be recommended to find a cheaper method to make these parts. 
Injection molding would be a suitable option the design would allow for. If the price of the 
brackets were to be lowered, that would allow for more robust pulleys to be used while still 
staying under the $600 mark. The part by part breakdown of the cost is in Bill of Materials, 
Appendix I. 
 

Table 6. Subsystem Cost Breakdown 
Part # Part Description Total Cost 

100 Existing System - 

200 Bracket Subsystem $392.40 

300 Belt/Pulley Subsystem $79.96 

400 Motor Subsystem $70.17 

500 Cleaning Subsystem $42.05 

  $584.58 
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6. Manufacturing Plan 
The manufacturing plan for the ARES Cleaning System covers the part procurement, 
manufacturing operations and assembly used to construct the device. Manufacturing challenges 
are discussed within the section and long-term manufacturing plan is proposed. 
 
6.1 Procurement 
Parts necessary to complete these tasks were obtained from Fracsun, Home Depot, McMaster 
Carr and other various online retailers. The Bill Materials in Appendix I, shows specific part 
vendors and cost. The total expenditures for the whole project was $1,072.27. These purchases 
are found in Appendix J. 
 
6.2 Modified Parts 
Manufacturing the ARES Cleaning Device required the modification of the pulley shafts, shaft 
spacers, ARES fixture, wood block, cleaner bar, feather fixture, nylon strap and microfiber cloth. 
The sections below outline the process that was followed to successfully customize the parts. 
Drawings referenced throughout this section are found in Appendix K.  
 
6.2.1 Pulley Shafts 
The pulley shafts (5) and (6), seen in Drawing 2, were individually cut using a horizontal 
bandsaw in the Cal Poly Mustang 60 Machine Shop. They were cut successively from the same 
5/16 inch diameter steel rod. 
 
To perform this process, both required lengths were measured. Twelve inches for shaft (5) and 
11 inches for shaft (6). The stock shaft was placed in the bandsaw vise grip and the cut was made 
for shaft (5). The stock shaft was realigned in the bandsaw to make the cut for shaft (6). 
 
Once the shafts were cut to size, a file was used to deburr and smooth the ends of both shafts.  
 
6.2.2 Shaft Spacers 
The shaft spacers (8), seen in Drawing 2,  were sized with the vertical bandsaw in the Cal Poly 
Mustang 60 Machine Shop. 
 
Two spacers needed 4 millimeters removed from them. The vertical bandsaw was used to cut off 
this excess material. A deburring tool was used to smooth the edges.  
 
These spacers needed to be sized down because the 3D Printed Bracket holes were misaligned 
during manufacturing, resulting in overall bracket misalignment when installed. In future 
manufacturing, if the brackets are perfectly aligned, four identical spacers could be used in 
between the pulleys and the brackets. However, because they were not aligned, the pulley’s 
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positions with four identical spacers were offset by the distance of the bracket misalignment. 
Thus, it was decided two spacers needed to be sized down to account for the offset and perfectly 
align the pulleys for belt installation. Section 6.3.2 clarifies the placement of the modified 
spacers. 
 
6.2.3 ARES Fixture 
The ARES fixture (1), in Drawing 2, was stripped of its water sprayers and drilled. 
 
The provided ARES model had two water sprayers near the two upper corners of the reference 
panel. These are shown in Figure 17. The sprayers needed to be removed to fit the new cleaning 
system. To do so, the ARES fixture was fixed on a work table vise. The back end of a hammer 
was placed against the gold metal part of the sprayer. A downward force was provided to the 
hammer as if pulling out a nail. The sprayer easily popped off the fixture. 
 

 
Figure 17. ARES Water Sprayers 

 
The ARES fixture also needed to be drilled to fit fasteners required for assembly. The location 
and depth of these holes were determined from Drawing 2 . The holes were drilled. A challenge 
to note is the difficulty the team had screwing fasteners into the PVC during assembly. Initially 
holes were drilled conservatively assuming the fasteners would be able to penetrate any 
remaining PVC not drilled through. This was not the case. The PVC needed to be drilled to the 
full depth of the screw. Once completed, the components fixed to the ARES fixture could be 
secured tightly. This was the previously noted step that resulted in the brackets being misaligned. 
In future manufacturing, more time and precise measurements should be taken before drilling.  
 
In order for the motor belt to rotate without rubbing on the ARES fixture, a router was used to 
create a 1.5” long, 0.25” deep chamfer located next to the motor driven pulley. This allowed just 
enough clearance for the belt without removing a noticeable or critical amount of the fixture. 
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6.2.4 Cleaner 
The cleaner was constructed with 1/16 x 3/4 inch stock aluminum, microfiber cloth, wood block, 
ostrich feathers, galvanized steel wire, high strength super glue and fasteners. This subsection 
provides the steps used to manufacture the cleaner’s parts. 
 
Wood Block 
The 1 x 2 inch wood piece was sized to 8 inches in length and drilled to proper dimensions. A 
vertical bandsaw was used to make the outer dimension cuts. A hand drill was used to drill the 
two holes.  
 
The team initially decided to cut the wood to size, wrap it in microfiber cloth and then marked 
the dimensions for the drill holes. This turned out to be problematic because the microfiber cloth 
was easily moved around and stretched, thus the dimensions were not accurate. This problem 
was eliminated by marking the dimensions on the wood first. The wood was then drilled. During 
assembly the microfiber cloth was wrapped around the wood and a drill bit was used to find the 
holes under the cloth. 
 
Feather Fixture 
The wooden feather fixture was modified with a vertical bandsaw, wood sander, and drill. The 
feathers were glued on and wrapped with steel wire.  
 
A vertical bandsaw was used to size the wood to 4 x 0.5 inches. The hole dimensions were 
sketched on the piece of wood. They were located 0.5 inches from the ends and centered. With a 
wood sander, the corners of the wood piece were rounded to the drawn dimensions. The two 
holes were drilled with a hand drill.  
 
Next, feathers needed to be attached to the feather fixture. The feathers were obtained from a 
ostrich feather duster. The duster’s black protector was cut off with heavy duty scissors. The 
wire holding the feathers on the duster was then unraveled. This process is shown in Figure 18. 
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Figure 18. Duster Disassembly 

 
The feathers were individually super glued onto the feather fixture. They were placed in the 
orientation shown in Figure 19. They were pressed down using a wooden rod. After around five 
feathers were placed in series on both sides of the feather fixture, a wire wrap was performed. 
This was done by tieing a wire loop around the feathers and feather fixture, then wrapping the 
wire around them eight times. The feather placement and wire wrap was performed three more 
times to total four layers of feathers. 
 

 
Figure 19. Cleaner Feather Placement 

 
The feather fixture was left overnight to dry. Once dry, the base of the feathers up to the feather 
fixture were clipped with scissors, so that only the tips of the feathers remained. The sides of the 
feathers were trimmed after testing was performed with the cleaner. This was due to feather 
interference with the pulleys. 
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During this manufacturing process, the team recognized that glueing the feathers to the feather 
fixture was a two person job. Dealing with the gluing and feather placement posed many 
challenges. Specifically, when pressing the feathers down into the glue with the wooden rod, the 
feathers would get stuck to the rod. This often caused many of the feathers on the fixture to lose 
their positioning. The second person, who applied the glue, needed to quickly realign the feathers 
on the fixture before the glue dried. The person with the wooden rod needed to quickly readjust 
and begin placing the next feather.  
 
Cleaner Bar 
The cleaner bar was made from 1/16 x 3/4 inch stock aluminum. The aluminum was sized with a 
Beverly Shear and slotted with the Rotex Punch. This equipment was found in the Cal Poly Aero 
Hangar. 
 
To size the stock aluminum, the dimension markings of Drawing 4 were made on the aluminum. 
The stock aluminum was cut at the identified length with the Beverly Shear. The edges were 
smoothed with a metal file. The Beverly Shear is shown in Figure 20.  
 

 
Figure 20. Beverly Shear 

 
Next, the aluminum was slotted. The aluminum was placed under the Rotex Punch. The 5/32 
inch hole punch was used to punch holes in the shape of the slots. After each hole punch, the Y 
shaped tool attached to the Rotex Punch was used to part the aluminum from the punch. During 
this step, the team struggled to be gentle with the part as the punch would be tightly stuck into 
the aluminum. As a result, the part would easily bend. The Rotex Punch is shown in Figure 21. 
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Figure 21. Rotex Punch 

 
Next, the punched hole slots were filed down until smooth. The team was careful not to file the 
outer side of the bar too thin. The photo in Figure 22 shows the extent at which the slots were 
filed. 
 

 
Figure 22. Filed Cleaner Slot 

 
For the cleaner bar’s two screw holes, the 1/4 inch hole punch on the was used.  
 
Considering the struggles, the Rotex Punch still proved effective for manufacturing the cleaner 
bar. The slots were initially drilled using a drill press. This was extremely hard to do as the press 
struggled to allow drilling on top of predrilled holes. As a result, less holes were drilled for the 
slot and more filing needed to be done. This took much more time than using the Rotex Punch. 
 
Nylon Strap and Microfiber Cloth 
The nylon strap and microfiber cloth were cut to size with fabric cutting scissors. The strap was 
cut 14 inches in length. A lighter was used to mildly burn one of the strap ends. When doing so, 
the strap was placed in the lighter flame for two seconds. The melted material was then pressed 
down with fingers. This process was repeated on the other side of the strap. The singe procedure 
done here was to avoid fraying in the strap. The microfiber cloth was cut to be 8 x 16 inches size. 
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6.3 Assembly 
The ARES Cleaning System was ready to assemble once all parts were obtained and the 
necessary parts were modified. Assembly additionally required the need of two 2 x 2 inch 
wooden blocks, a vise, 3/32 inch allen key, drill, galvanized steel wire and sewing needle. 
Section 6.2 chronologically explains the assembly of the cleaner and the overall device. Drawing 
1 and 2 in Appendix K were used as a reference when building the device. 
 
6.3.1 Cleaner Assembly 
The cleaner is made up of all the parts of Section 6.2.4. This section describes the process to 
assemble these parts. 
 
Step 1: Drill Cleaner head 
The microfiber cloth was wrapped tightly around the wooden block. This was then placed in 
series with the cleaner bar and feather fixture. Using a drill, fasteners with washers were screwed 
through the microfiber, into the wooden block, through the cleaner bar and into the feather 
fixture. This setup is shown in Figure 23. Note that this figure excludes the feathers for visual 
purposes. Drilling through the microfiber cloth was a difficult task. Because the screw would 
tangle and rip the cloth’s fibers, the best solution was to apply a strong and quick force to 
penetrate the cloth before the fibers managed to get tangled.  
 

 
Figure 23. Cleaner Assembly Without Feathers 
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Step 2: Belt Sewing 
The next step to assemble the cleaner was attaching the belts to the nylon strap. This was done 
by sewing the nylon strap onto the belt with galvanized steel wire. A sewing needle, with the 
wire attached, was threaded from the strap side of the belt down in between the belt teeth. If the 
needle could not be pulled through the strap by hand, needle nose pliers were used. The next 
move was made across and up to the strap within the same belt teeth. The wire was then threaded 
back down, but this time in between the next gap in the teeth. This sewing process can be seen in 
Figure 24.  
 

 
Figure 24. Wire Strap Sew 

 
Once all five teeth gaps were wired, the two wire ends were rethreaded through the sew at the 
top of the strap and twisted together. This can be seen in Figure 25.  
 

 
Figure 25. Wire Strap Sew Detail 
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Step 3: Adding Cleaner Head 
Lastly, the strap was inserted through the cleaner bar slots. The strap was then sewed onto the 
other belt using the process previously stated. The cleaner was adjusted on the strap so that the 
length of the strap from the edge of the belts to slot of the cleaner was 1.5 inches on both sides. 
The strap set up before the second sew is shown in Figure 26. The slot to strap length 
measurement is shown in Figure 27. 
 

 
Figure 26. Nylon Strap Through Cleaner Bar 

 
Figure 27. Slot to Strap Length 
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6.3.2 Device Assembly 
Step 1: Press Fit Bearings 
The Flip HDK Bearings, labelled (4) in Drawing 2,were press fitted into the 3D Printed Brackets. 
This job needed two people and the use of a vise. First, a bearing was hand placed in an outer 
hole of one of the brackets, only enough so it did not fall out when turned upside down. Next, in 
a vise grip, the bearing and bracket was sandwiched with two wooden blocks. This arrangement 
can be seen in Figure 28. The vise grip was tightened so that the bearing was pressed flush into 
the bracket. After the press, the bracket should looked like that in Figure 29. This process was 
repeated on the brackets for the remaining three bearings.  
 

 
Figure 28. Bearing Before Press 

 
Figure 29. Pressed Bearing 
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Step 2: Bracket Installation 
The brackets, labelled (2) and (3)  in Drawing 2, were installed on each side of the fixture. They 
were each mounted to the fixture with 5 screws and washers. To accomplish the mounting, the 
bracket holes were aligned with the fixture holes. The alignment is shown in Figure 30. Using 
the drill, the screw washer combination was tightly fastened with the bracket and fixture. This 
was done for both brackets. 

 
Figure 30. Aligning and Screwing Brackets 

 
Step 3: Shaft Installation 
The shafts (5) and (6) were inserted through the holes in the bearings. The long shaft (5) was put 
through the bearings on the motor side of the fixture and the short shaft (6) was put through the 
bearings on the opposite side. 
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Step 4: Pulley Installation 
To install the pulleys, an unmodified spacer followed by a pulley was put on the shaft, with the 
set screw on the outside of the pulley.  This was done for all four shaft ends. However, modified 
spacers were used on two of the shaft ends. The set screws on the pulleys were tightened with a 
3/32 inch allen key. For the motor shaft, another spacer was placed after the pulley. This was 
followed by the placement of the 2.25 inch motor pulley. The set screw was tightened. The 
device’s pulley placement is shown in Figure 31. 
 

 
Figure 31. Pulley and Spacer Placement 
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Step 5: Cleaner and Belt Installation 
To install the new belt and cleaner set up, the belts were placed over the device so that the 
cleaner laid straight across the solar panel. The innermost belt’s teeth were meshed to the pulley 
on its side. To do so, the belt was stretched over the other pulley so that it sat on the flange. The 
pulley was rotated outward so that the belts teeth joined with the pulley. This process can be seen 
in Figure 32.  
 

 
Figure 32. Belt Installation Process 

 
For the other belt, the team performed the same process but also aligned the cleaner. The cleaner 
needed to be placed perfectly straight across the panel. This was done by visual inspection as the 
second belt was meshed with the pulleys of its side. This took multiple attempts due to cleaner 
misalignment. The process became easier as we gained a feel for how much the meshing of the 
pulley altered the alignment of the cleaner.  
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Step 6: Motor Installation 
 
The first step of motor installation was assembling the motor bracket. The bracket was 
assembled using the ServoCity assembly photo in Figure 33. First, the 555196 Motor Mount was 
screwed onto the Motor. Next, the 585494 L shaped bracket was screwed onto the ARES fixture. 
The 555196 Motor Mount, with the motor, was then screwed into 585494 L shaped bracket.  
 

 
Figure 33. Servo City Motor Bracket Assembly 

 
With the motor attached, the 1.13 inch motor pulley was then placed on the motor shaft. The set 
screw was tightened. Figure 34 shows this step. 
 

 
Figure 34. 1.13 inch Motor Pulley Installation 

Step 7: Motor Belt Installation 
 
The motor belt installation was done on the 1.13 and 2.25 inch motor pulleys. This process was 
identical to the belt installation process in Step 5. However, this installation required more 
strength due to the tightness of the belts.  
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6.4 Long-term Manufacturing Plan 
The current manufacturing plan for the ARES Cleaning System is for our senior project final 
design. Optimally the design will be implemented by Fracsun and produced at a large scale. To 
produce large scale, many of the current manufacturing decisions must be changed. Large scale 
production will decrease the unit cost of the product.  
 
The current pulley supports are 3D printed nylon. This is not a cost efficient manufacturing 
method at a large scale. For higher volume production, the pulley supports will be injection 
molded PVC. ARES is currently made of machined PVC. This verifies that the injection molded 
PVC will be cost efficient, structurally sound and UV resistant. The PVC will also allow the 
bearings to still be press fit. 
 
The current procurement of the ARES Cleaning System parts is through individual part buying 
from stores in San Luis Obispo and online retailers. Large scale production would call for high 
volume buying. High volume buying decreases unit cost of parts. Specifically, this would help 
decrease the cost of the pulley, toothed belt, motor and bearing.  
 
Lastly, if the production scale was high enough, the manufacturing of customized parts would be 
outsourced. These parts would include the pulley shafts, shaft spacers and cleaner. Outsourcing 
this production would save time and money.  
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7. Design Verification 
This section addresses how the team verified that the chosen design and final prototype meet 
almost all the specifications listed in Chapter 3.4, Table 3. It was required that each specification 
is verified through at least one of four methods: Analysis (A), Testing (T), Similarity to existing 
designs (S), Inspection (I). This section shows describes all testing and results. The Design 
Verification Plan (DVP) summary of all tests completed can be found in Appendix L. When 
reading the DVP table, the specification numbers correspond to Table 3, and the different test 
stages are concept prototype (CP), structural prototype (SP) and final prototype (FP). The DVP 
also indicates whether a component (C), subsystem (Sub), or the full system (Sys) was tested. 
 
7.1 Initial Testing 
The specifications outlined in Table 3 that involve cleaning, require verification through testing. 
In order to thoroughly test that our design meet specifications such as, a maintenance schedule 
of once a year and a cleaning schedule of once per day, a cleaner needed to be chosen. The team 
conducted some initial testing of the materials seen in Figure 35 which include a screen cleaning 
microfiber, a microfiber cleaning cloth, a microfiber cleaning mitt, a bristled rim cleaner, and 
squeegee. 
 

  

 
Figure 35. Tested Cleaning Materials 

 
 
The materials were tested through through the process pictured in Figure 36. The team, along 
with their sponsors followed a process through which they placed a test panel inside a Shop-Vac, 
and vacuumed up dirt to simulate a day’s worth of soiling. The panels were then cleaned with 
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each material. The microfibers were pressed down with an aluminum plate so that the team could 
calculate the force required on the cleaners. This force analysis can be found in Appendix N. It 
was found that a pressure of 122.63 Pa is required for the panel to be cleaned.  In order to 
determine if the panels were completely cleaned, a “white glove” test was conducted by wiping 
the entirety of the panel with a paper towel and examining the particulates left behind through 
inspection. Overall, it was concluded that all of the microfibers and ostrich feathers left no 
particulates behind, and that the bristled rim cleaner and squeegee were ineffective by 
themselves. After the initial testing was complete, the group decided to use both the microfiber 
cleaner and ostrich feathers in tandem.  

 
 

 
 

 
 

 
Figure 36. Cleaning Method Testing Procedure 

 
7.2 Motor Testing 
Initial testing was done with four motors. These motors were: a DC motor provided by Fracsun, 
an unidentified gear motor provided by Charlie Refvem in the ME 405 Lab, and two more gear 
motors purchased from ServoCity.com. Motors were tested in a varying capacity. The first test 
the motor had to pass was whether it could spin the belt. This took the motor from the ME 405 
lab out of the running because it had extreme trouble at spinning the belt at a very low speed. 
Another requirement we put on the chosen motor was that, through the use of an encoder, it 
would provide feedback that the motor spun, passing the cleaner over the panel a set number of 
times. The motor provided by Fracsun was used to get a baseline test for torque and speed 
requirements. 
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The measurements taken during testing, seen in Table 7, were voltage, current, and time to rotate 
the cleaner 10 rotations. The power supply was set to specific voltages and it automatically 
adjusted the current as necessary. The motor speed was calculated by first turning the time for 10 
revolutions into an rpm and then turning that number, using the belt and gear ratios, into the rpm 
of the motor shaft itself. Motor power was calculated from voltage and current and that along 
with motor speed lead to the torque. 
 

Table 7. Torque Test Results 

Voltage 
(V) 

Current 
(A) 

Revolutions 
(Cleaner) 

Time 
(s) 

Cleaner 
Rotational 

Speed (rpm) 

Motor 
Rotational 

Speed (rpm) 

Power 
(W) 

Torque 
(oz-in) 

Torque 
Uncertainty 

(± oz-in) 
2.500 3.9 10 16.90 35.5 337.3 9.8 38.9 1.4 
3.000 3.8 10 11.01 54.5 517.7 11.5 29.8 1.2 
3.500 3.9 10 8.95 67.0 636.9 13.5 28.6 1.3 
4.000 4.4 10 6.98 86.0 816.6 17.6 29.0 1.4 
4.500 4.8 10 6.30 95.2 904.8 21.6 32.1 1.6 

 
The uncertainties listed in Table 8 contributed to a total torque uncertainty for each 
measurement. Uncertainty analysis had to be performed on each torque calculation because all 
the measurements taken had some sort of uncertainty.  
 

Table 8. Torque Test Uncertainties 

Voltage (V) Current (A) 
Revolutions 
(Cleaner) 

Time (s) 
Rotations 

Conversion 
Factor 

0.0005 0.1 0.05 0.25 0.1 
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The equipment used for this test is shown in Figure 37. Although the motor was able to spin the 
cleaner effectively at lower voltages, it did not satisfy our 12-24VDC requirements. We 
concluded that we needed a motor with much twice as much torque, 80 oz-in, and slightly slower 
speed, 300 rpm, than the lowest voltage test. This lead us to purchase two gear motors from 
ServoCity.com. They were identical motors but had different gear ratios, one allowing for higher 
speed but at a lower torque, and the other vice versa. The chosen motors had specifications close 
to the determined specifications so we would be able to observe which motor worked better in 
our system. We found the lower torque, high speed (317rpm)  motor was able to spin the belt and 
that the other motor was too slow (153 rpm) to what we preferred. 

Figure 37. Motor Test Equipment: Nucleo-Microcontroller with Motor Driver Board, BDS-52-85 
Motor (Right), 317 RPM Spur Gear Motor w/Encoder (Left), and Power Supply 

 
7.3 Cleaning Testing Method 
When cleaning testing was conducted, the methods used to soil the cleaner and also determine 
the cleanliness of the panel were kept consistent throughout our entire testing process. The 
method to soil the cleaner was using a shop vacuum with various types of dirt within its 
container set to blow mode, and a contraption that was placed over the panel surface where dust 
was blown into, lightly dusting the panel. Through verification from our sponsors, this accurately 
simulated a day of soiling in the field. For determining cleanliness, Fracsun encouraged us to 
employ their white-glove method of wiping a clean, white paper towel along the panel and 
inspecting the paper towel to see if any particulate was taken off the panel. The white-glove test 
was passed if the paper towel was unmarked and failed if any amount of dirt was observed. 
 
7.4 Passes Testing 
The first step in longevity testing was determining how many passes the microfiber/ostrich 
feather cleaner needed for daily cleaning. This was done by soiling the panel and making 
successive passes over the panel with the cleaner until we determined the panel was clean. 
Initially, the panel was being cleaned in just a single pass, but the team decided to use a factor of 
safety, adding two additional passes as the cleaner loses effectiveness over time. 
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7.5 Life Testing 
After the the motor and number of passes were determined, the next step was to test if the 
cleaning system would be able to withstand a year of cleaning. Because of the time limitation of 
the project, we were not able to run our device for a year, however we were able to simulate a 
years worth of cleaning. We did this by running the cleaner for 400 cycles, soiling panel after 
every cycle. 
 
The test took place on May 11th and 16th at John Cunningham’s residence in San Luis Obispo, 
CA. The test was performed outdoors. The temperature was around 70 degree fahrenheit with no 
wind present. The soiling and white glove methods can be seen in Figure 38. The device was 
powered using a 12V battery. The microcontroller was powered using a usb charger. The soiling 
and cleaning verification methods used were those explained in Section 7.3.  
 

 
Figure 38. Soiling and White Glove Testing  

 
The procedure consisted of the device passing the cleaner over the soiled panel three times each 
cycle. After each cycle, the panel was manually soiled within a 10 second time interval set on the 
microcontroller. Every simulated day (10s), the cleaner changed its rotational direction in order 
to utilize both sides of the cleaner. After every ten cycles were completed a “white glove test” 
was performed. After every 20 cycles, notes were recorded regarding the status of the device. At 
these break points the battery was manually shut off.  
 
The first day of testing consisted of 180 total cycles. After the first 10 cycles were completed, the 
team noticed a small 0.5 cm strip of soiled dirt on the edge of the panel. It was apparent the 
microfiber head of the cleaner was not long enough in length, thus not cleaning that area of the 
panel. Disregarding this flaw, all white glove tests up to cycle 180 were passed. That said, the 
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cleaner began to look noticeably dirty after cycle 20. At cycles 60 through 80, the cleaner’s 
microfiber head ceased to rotate when the cleaner ran counterclockwise resulting in the cleaner 
leading with the ostrich feathers rather than the microfiber for these cycles. The middle picture in 
Figure 38 shows the proper orientation of the cleaner as it travels right to left. The misalignment 
did not affect the results of the white glove test but did prevent both sides of the cleaner from 
being used. The next 80 cycles, the microfiber head was inconsistent in rotating. At cycle 160, 
the decision was made to adjust the tension in the nylon strap of the cleaner. This was decided to 
potentially stop the inconsistent rotating of the microfiber head. After five test runs, the ideal 
nylon strap length was determined to be 1 ⅛ inch belt to slot, on both sides. At cycle 181 the 
battery died.  
 
Day two of testing proved the cleaner adjustment to be effective. The microfiber head 
consistently rotated in both directions. The cleaner passed all white glove test up until cycle 366. 
At cycle 366, the cleaner was tested in wet conditions. The wet conditions were simulated by 
spreading one teaspoon of water evenly across the panel each cycle. The cleaner did not pass any 
of the three white glove test taken within these 15 cycles. Is was decided that these results were 
mainly due to the cleaner being relatively dirty when beginning these wet tests and the fact that 
the cleaner was not allowed to dry in between cycles. Further testing must be completed in 
different temperatures and conditions in order to accurately identify if this form of cleaner is 
suitable for wet conditions. For this reason, it cannot be concluded that specification 8, 
temperature range, has been met.  
 
Once finished, the team noted the accumulation of dust on the devices pulleys, belts, and 
brackets. These accumulations were concluded to have had negligible effects on the device’s 
function. However, the dust accumulation in the imprinted “Solar Patrollers” lettering on one of 
the brackets was excessive. This led the team to believe the cleaner was doing a substantial 
amount of dust pushing. This was surprising as our initial impressions were that the cleaner 
would be picking up the majority of the dust. This knowledge could be utilized in the 
development of a new cleaner that focuses on pushing the dust off of the panel rather than 
picking it up. Lastly, the team noticed an accumulation of yellow microfibers on the bracket. 
These fibers were ripped of the cleaner as it ran over the bracket. While this did not compromise 
the cleaner’s functionality, this should be taken into consideration if the number of cleaner 
passes are increased.  
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7.6 Specifications 
After performing all of the test procedures and making the necessary inspections, we concluded 
that ten out of the eleven specifications have been met. 
 
The temperature range of the system was optimized by analysis and research of the individual 
parts, however, due to lack of testing in various conditions, we cannot conclude that these 
specifications were met entirely. The materials of the pulleys, belts, and brackets were 
determined carefully in order to comply with UV protection. The belts and brackets used in the 
final prototype are the proper material. The pulleys used are not UV stable, but can be made 
compliant with the addition of UV protected paint or custom-machined parts. The 
recommendation moving forward is to use paint to ensure UV protection over the course of a 
year, while allowing for easy substitution during annual maintenance. After further testing in 
extreme temperatures and conditions is completed, the temperature range specification will be 
verified. 
 
The specifications of weight, amount H20, cost, and area cleaned were all met by inspection, 
testing and planning throughout the project. The solution that is presented eliminates water use 
completely. The weight and cost were met by careful decision making regarding parts purchased 
and materials used. The final cost of the system was $584.58, $15.42 under our $600 limit. The 
heaviest component is the bracket fixture, but after multiple iterations of CAD design, 
unnecessary material was removed in order to provide the same function while minimizing cost 
and weight. The final weight of the system is 4.38 lbf, less than the 6 lbf requirement. The area 
cleaned was observed through maintenance testing, and confirmed to be a 400 cm 2.  
 
The specification for maintenance schedule, lifetime, feedback voltage, cleaning schedule, install 
time, and power requirement were all verified through testing, design, and analysis. Through the 
cycle testing described in Section 7.5, it was shown that a cleaner could potentially last more 
than a year in dry conditions. The entire system was designed in a way that every part can be 
easily replaced as needed. An operator’s manual, found in Appendix O, details how the user 
would replace each part. Although the entire system will not last 10 years, the maintenance 
schedule provides time to easily replace damaged or worn parts allowing the system to last more 
than 10 years. The feedback and cleaning schedule were tested and confirmed during our 
maintenance schedule testing. The controller was able to simulate 365 days and send a signal 
back to a computer indicating when the panel was cleaned. The install time took 11.5 minutes, 
3.5 minutes under our 15 minutes specification. The power requirement of the motor was met 
through the testing described in Section 7.2, and motor was selected to run on our 12-24 VDC 
requirement.  
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8. Project Management  
This section addresses the design process completed by the team and the project milestones that 
were met for the entirety of the project. It also provides the teams thoughts on the process taken 
and shows recommendations for future projects based on what did or did not go well during the 
course of the year. 
 
8.1 Design Process  
The design process follows the ME Senior Design Project Student Success Guide’s five basic 
steps to design success: establish a need, explicitly state the problem, generate possible solutions, 
evaluate the solutions, and document the work. Fracsun’s soiling measurements system is in 
need of a waterless solar cleaning system. They presented the challenge and our team defined the 
problem. With a clear objective and background of the project, idea generation was completed. 
Here, the team brainstormed numerous conceptual ideas and refined those models to only 
feasible options. The team chose three of these design options based on research and the use of 
decision matrices. These designs were presented at Preliminary Design Review. The team then 
performed initial testing to determine the most effective cleaning method to incorporate into the 
final design. Once finished, one of the three chosen design routes was selected to utilize the best 
cleaning method. The design was then analyzed and prototyped for the Critical Design Review. 
Lastly, the final prototype was built and tested for the Senior Project Expo. The whole project 
was documented in our team’s logbooks and class deliverables. The Gantt chart in Appendix Q 
provides a visual of the project plan over time. This chart was updated throughout the course of 
the project. 
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8.2 Key Milestones 
The key milestones presented in Table 9 were important deadlines for not only the team, but also 
for our sponsor so that they knew what to expect from us. There were four major milestones in 
the project, along with a few other minor milestones that were used to update Fracsun. These 
milestones provide structure to the build process and allowed the team to have a completed 
product by the end of the 2019 school year.  
 

Table 9. Important Milestone Dates and Tasks 

Task Description Due Date 

Scope of Work 

This initial report was used to prove to our 
sponsor that we understood the scope of the 
project. It also allowed us to document our 

initial research and analysis. 

October 19, 2018 

Preliminary Design 
Review 

The PDR consisted of a written report given to 
our sponsor, a oral presentation, and a concept 

model prototype. 
November 16, 2018 

Critical Design 
Review 

This review entailed a presentation and report 
describing everything needed to complete the 

final design. 
February 8, 2019 

Final Design Review 
(FDR) 

This final milestone showcases the results of 
the project and include a report, expo 
presentation, and working prototype. 

May 31, 2019 
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8.3 Project Success 
The process outlined in the ME Senior Design Project Student Success Guide was followed 
closely throughout the course of the project. The stated deliverables were met to the best of the 
team’s ability and used as progress reports throughout the year. Along with a closely followed 
report process throughout the project, certain design directions were chosen that proved unique 
to this project. 
 
The mechanical function of the final design was chosen fairly early on in the project. Initial 
brainstorming was focused on the generalities of the project, with the “what” being addressed 
first. By the end of the first quarter the mechanical function was narrowed down to three 
possibilities. When the second quarter started, the team spent significant time deciding on which 
idea was best. That design was then altered and built until its mechanical function met the stated 
goals. The final step was to decide which cleaner would then be implemented and what size 
motor would be used to drive this device. Although the specific cleaner materials weren’t chosen 
until later, because we thought they may change based on the mechanical function, it is now 
clear that they could have been chosen earlier on.  
 
The direction we took throughout the project was mostly successful. Testing different cleaner 
materials with the actual device allowed for higher certainty in the capabilities of the design. 
Also, sizing the motor towards the end of the project allowed for the proper torque and rotational 
speed to be met. This made sure that the best motor for the lowest cost was chosen. One project 
route that could have better helped the success of the project would have been to spend more 
time experimenting with the two other initial design directions. The chosen design was chosen 
based on analysis and research. If more time was allocated to the project or more time was spent 
building and testing multiple design directions, then this may have allowed for decisions to be 
made based off multiple built prototypes. Overall, the process was a success and allowed the 
team to improve their project management techniques in the future. 
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9. Conclusion  
Our final design meets the specifications laid out at the beginning of the project, including 
cleaning the panel autonomously without water. Through a lengthy design process, we created a 
functional prototype that proved to work through various tests. The most important test to verify 
the success of our design was the year long cleaning effectiveness and durability. We found that, 
using our daily soiling process, the cleaner was still able to clean the panel surface after 365 
cycles. Additionally, we did this all while staying under the set budget, under the maximum 
weight, and with acceptable power use. The tests that we were not able to perform are tests that 
determine the lifetime of the system in the field for an entire year. The test we performed on the 
cleaner was performed on a single day and we are unsure how the cleaner as well as entire 
system would last in actual use over the course of a year, with regards to weather and other 
conditions. 
 
There are aspects of the project that we set out to achieve and were successful in, but also some 
things that we were not able to get done within the timeframe. We were able to build a robust 
and efficient belt and pulley system powered by a DC motor. The design went through several 
iterations starting with a rolling band, that changed into a V-belt, which turned into a toothed belt 
for the final product. The toothed belt was by far the most successful method and ran with the 
least amount of effort. Another component we were proud of was the bracket that we custom 
designed. Though there exists several different methods of supporting a spin shaft on the side of 
a body, there were no options that fit the specific configuration of the ARES device given the 
thin edges and the need for offset pulleys. The custom design is able to closely match the needs 
of the system. We are also very satisfied with the way the motor connects to the system and the 
code that runs the motor. The code we wrote is efficient in running the system and was written in 
a way where set parameters of the system can easily be manipulated. If there was need for the 
cleaner to make more passes or run at a different, the code could be very easily modified to 
accommodate the desired change. 

 
We did not have sufficient time for testing for use in all climates. It would’ve been interesting to 
see how our system handled other soiling conditions such as snow, bird poop, or sprayed 
pesticides. If we were able to conduct these tests we could have changed the design of the 
cleaner as we saw necessary. 

 
When looking back on the project, we may have made a few design decisions differently. We 
may have written off the linear actuation device too quickly. This design would have allowed for 
a more simple design that had less moving parts, but may have posed additional problems such 
as a worn out cleaner or shadowing. When the decision was made to move forward with the 
belt-and-pulley design, we rejected the linear actuation. It seems like this concept should have 
been built and tested alongside the belt-and-pulley design so they could be better compared. 
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Another choice we would have made differently was to make the cleaner more robust and 
immediately marketable. The general function of the cleaner is clear, but the design could have 
been better built and further along to be implemented into Fracsun’s system right away. One 
final choice we should have made was to test throughout the project with the fixture at an angle. 
Due to ease of testing, the fixture usually sat horizontal on a table with clamps keeping it steady. 
The actual fixture will be mounted at an angle on a solar array. Although this would not change 
much, it would have allowed for better understanding of how gravity affects the design and if 
any additional issues surmounted. 

 
Some next steps for Fracsun in their development of our cleaning system have mostly to do with 
turning this prototype design into a design that could more easily and cheaply be manufactured. 
For our prototype, we 3D printed the custom brackets using SLS, which while being strong and 
robust, was costly and the inherent properties of the sintered nylon aren’t well known in regards 
to UV durability. The new ARES body is injection molded in polycarbonate which can take the 
toll of weather and the sun, and our design allows for injection molding and could be 
manufactured in a similar manner. The 3D printing of the brackets allowed for quick and 
efficient design but turned out to be the bulk of the cost of our system so that is a high priority in 
changing. Furthermore, the pulleys we used, sourced from McMaster-Carr, were acetal plastic 
and we foresee this being another weak point in our design from a weather and UV durability 
standpoint. The pulley choice was made because they were the exact size we need in the 
configuration we needed, and their were not metal or other more durable options for pulleys in 
the configuration we wanted. 
 
Another design decision that needs more thought put into manufacturability is the method of 
attaching the cleaner to the belts. The current method of hand sewing the nylon strap to the belt 
using metal wire worked well, but was extremely tedious and the long term durability of the 
connection is unknown. We recommend further testing and analysis in sewn connections and the 
use of a sewing machine in aiding the manufacturing of the system. The first iteration of using 
staples was easier, but interfered with the teeth in the pulley as well as the connection felt weaker 
and more prone to failure. While we did not explicitly test any other method of connection, we 
believe that sewing is the correct design direction to take as opposed to glueing which would not 
last in both respects to the weather as well as the physical toll of constantly bending around the 
pulley as the cleaner turned. 
 
In order to integrate the prototype with Fracsun’s current system, the encoder, motor, and code 
must be set up with their system. Python code has been provided in Appendix R. It has been 
commented to show places where a feedback signal could be sent to their portal after the panel 
has been cleaned. The motor and battery should be hooked up to some sort of motor driver 
board/pins that can utilize pulse width modulation to control the speed of the motor. The encoder 
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can be easily connected to any controller using a gnd, Vcc, and two output pins. The code has 
been commented to indicate where pin names must be changed to match the new controller. 

 
Although Fracsun is left with a working prototype, we have some recommended directions that 
that they may make in further development of our system. The first is that the system we created 
could work in conjunction with the current water sprayer system. While this would leave the 
issues that come with having water, such as leaks and pump upkeep problems, the combined 
system could work in places where freezing can occur. By mounting a temperature sensor in 
addition to the weather monitoring Fracsun already does, the system could decide to spray only 
when there is no risk for freezing and use the cleaner when the temperature is below freezing or 
freezing is likely to occur. This would also lessen the wear on the cleaner as it would only be 
used when needed for freezing conditions and allow the field tested and proven water sprayer 
system to handle the majority of cleaning. Furthermore, since our cleaning system did not behave 
as well as we would have liked it to in wet conditions, the water sprayer could also be used when 
water is detected. Since the water would be on the panel in liquid form, most likely due to rain, 
the water would not be at risk of freezing. 

 
If the water sprayer system would like to eliminated altogether, we also have a few 
recommendations on how to increase the robustness of our design. The first would be to replace 
the microfiber cloth, the first stage cleaner in our design, to a cleaner that would be able to either 
absorb the water better or just be water-resistant while still cleaning the panel however, we do 
recommend keeping the ostrich feathers due to their fine dust cleaning abilities. Another possible 
modification that may need to be added is some sort of enclosure for the cleaner while it was 
stationary during the day. We did not have the time or environmental conditions to emulate what 
could happen to the cleaner if actually left in the field for a year. The enclosure would protect the 
cleaner from dust blowing on it as well as weather such as rain that could soak the cleaner and 
negate its effectiveness. 

 
Another recommendation is combining our cleaning method with a squeegee for cleaning in wet 
conditions. During testing, we found that using a squeegee in dry conditions was not at all 
effective but was very effective in wet conditions. The squeegee wiped away both water and any 
wet particulate that was on the panel. The ideal method would be only to use the squeegee when 
wet. Because our design allows for motion in both directions, the squeegee could be attached to 
only one side of the cleaner and when water was detected the cleaner rotated one way, and for 
dry conditions the cleaner rotated the other way. 
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Appendix A: Patent Research Table 

Patent # Description Image 

DE201010006531 
 

This product is listed as a device 
for cleaning surfaces, 
particularly solar panel disks. It 
is a robot cleaner  with rails 
located along the x and y-axis. 
It’s motion is executed through 
the use of an electric motor. The 
patent describes the product as 
being customizable for many 
environmental conditions 
(Armut). 

  

 
US12333624 

This device is described as an 
automatic  cleaning  system for 
solar  panels with features such 
as  a time controller, detection 
capabilities, perfusion 
integration, and a driven 
cleaning system (Lee).  
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Patent # Description Image 

 
 
KR20110029095A 
 

This product is an autonomous 
robot device used to clean a solar 
panel. It integrates a battery pack , 
and  allows adjustments in the 
temperature of cleaning liquid 
based off of external environment 
conditions, which optimizes the 
actual cleaning of the panel 
( 섽ꈑ겑) .  

US20120053867A
1 

This is Atonometric’s product that 
measures the performance of 
individual strings of photovoltaic 
modules in a PV array. It includes 
a string combiner box with 
integrated capability for 
measurement of string I-V 
characteristics (Dunn). 

 

 
US13331904 
 

This is Fracsun’s very own 
photovoltaic array performance 
monitoring system which may 
include a data acquisition unit 
coupled with reference and 
ambient photovoltaic panels. The 
product is unique in that it supplies 
data management, portal access 
and data transmission (Fisher). 
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Patent # Description Image 

US3626545A This is a patent for a remote 
controlled vacuum cleaner. It 
includes a motor driven blower 
inside a dust collection chamber 
connected to a hose via a conduit to 
create the vacuum system. The 
system is controlled remotely 
through radio signals and uses a 
transmitter and receiver 
combination to relay signals from 
the operator to the device 
(Sparrow).  

 

US6014788A This is a patent for a standard lint 
roller which is described as a large 
micro-debris roller with a single 
sided adhesive sheet facing 
outward which is wrapped around a 
rotating center. Each section has a 
non-adhesive perforated tab for 
easy disposal of each sheet (Jaffri).  

 

US3619845A This is a patent for a squeegee 
brush combination cleaning tool. 
The patent describes the device as 
push broom with a squeegee 
extended beyond the bottom of a 
set of bristles. It is useful for 
cleaning wet or dry surfaces 
(Partridge). 
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Appendix B: Industry Codes and Regulations 

Code/Regulation Description 

IP 68 The IP Code (International Protection Rating) is defined in international 
standard IEC 60529. It defines the amount of protection required against 
the intrusion of solid objects in electrical enclosures. In our case, the 
number six means that there can be no ingress of dust, and requires 
complete protection against contact. The number eight means that the 
equipment is sealed in such a way that it can handle continuous 
immersion in water ( IP Rating Chart).  

Nema 4X 4X enclosures are made for both indoor and outdoor use, and must to 
provide protection to all personnel against access to dangerous parts. It 
also must provide protection to the equipment inside the enclosure 
against windblown dust, water (including rain, sleet, snow, splashing 
water, ice, and hose directed water) as well as protection against 
corrosion (NEMA 4X Enclosures). 
 

UL  UL (Underwriters Laboratories)  listing means  that UL has tested the 
product and determined that the product meets specific, defined 
requirements. These requirements are typically published in UL's 
Standards  for Safety (Electrical Code). 

 

B-1 



Appendix C: Case Study Research 

Case Study Description 

“A Solar Panel Cleaning 
System Based on a Linear 
Piezoelectric Actuator” 
(Lu) 

● Driven wiper with guide 
● Pressure between wiper and panel 

“Wind Driven Mechanism for 
Solar-Power Cleaning” 
(Wang) 

● Bi-directional reciprocating linear cam 
● Rotation into linear motion 
● Driven cleaning brush 
● Clutch connected when cleaning required 

“Ultrasonic System for Solar 
Panel Cleaning” 
( Vasiljev) 

● Thin water layer 
● Vacuum cavities form in water 
● Ultrasonic actuator with air/water medium 

“Solar Panel Cleaning Bot for 
Enhancement of Efficiency - 
An Innovative Approach” 
(Jawale) 

● Maneuvers on surface 
● Varying angles from horizontal to vertical 
● Rotating nylon brushes 
● Minimal water use 

“Experimental Comparison of 
Drag-Wiper and Roller-Wiper 
Glass-Cleaning Robots” 
(Qiang) 

● Drag-wiper 
○ Simple 
○ Can reach edge of frame 

● Roller-wiper 
○ Improved driving performance 
○ Reduces required absorption force 
○ Flexible and energy/time efficient 

“Photovoltaic Glass Cleaning 
Methods: An Overview” 
(Syafiq) 

● Electrostatic method 
● Self-cleaning nanofilm method 

“Laser Cleaning of Glass” 
(Ueda) 

● N2 laser 
● Evaporation and sputtering of stains by heat 
● Need to be careful for laser effect on solar cells 
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Case Study Description 

“Novel Dry Cleaning Machine for 
Photovoltaic and Solar Panels” 

 
(Aly) 
 

● 4 stage process 
● 1st stage 

○ Compressed air removes sand and coarse 
dust 

○ Dries out any humidity 
○ DC compressor 

● 2nd stage 
○ Low density flexible polyurethane foam 

roller 
○ Cleans sand and dust stuck to panel 

● 3rd stage 
○ Compressed air clears off dust left from 

roller 
● 4th stage 

○ Polywool synthetic duster with static 
charge 

○ Removes very fine dust particles 
○ Natural ostrich feathers also effective 

● Operate in areas with little to no rainfall 
● Different method needed in case of rainfall 

“Simulation and Experimental Test 
of Waterless Washing Nozzles for 
Fresh Apricot” 
(Chu) 
 

● 4 types of nozzle tested 
● Column cone nozzle was best performing 
● Apricot covered with dust or sand 
● High pressure water too rough 

“Cleaning of Contaminated 
XUV-Optics at BESSY II” 
(Eggenstein) 

● Waterfree oxygen/argon mixture 
● Contamination by carbon layers 
● Plasma discharge cleaning method 

“Self-Cleaning Solar Panels” 
(Sumner) 

● Uses electricity to statically push dust 
● Charge lines across panel to 1200V 
● Electrical field pushes away dust 
● 3 phases in layers 
● Small amount of energy - “capacitive load” 
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Appendix D: QFD House of Quality 
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Appendix E: Pugh Matrices 
 

Motion Sense Pugh Matrix 
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Moving Cleaner Pugh Matrix 
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Cleaning Tool Pugh Matrix 
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Appendix F: Weighted Decision Matrix 
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Appendix G: Design Hazard Checklist 
 

 DESIGN HAZARD CHECKLIST 
  
Team:  21 - Solar Patrollers                  Advisor: Schuster                  Date:  11/15 
  
Y      N 

☑ ☐ 1. Will the system include hazardous revolving, running, rolling, or mixing 
actions? 

☐ ☑ 2. Will the system include hazardous reciprocating, shearing, punching, 
pressing, squeezing, drawing, or cutting actions? 

☐ ☑ 3. Will any part of the design undergo high accelerations/decelerations? 

☐ ☑ 4. Will the system have any large (>5 kg) moving masses or large (>250 N) 
forces? 

☐ ☑ 5. Could the system produce a projectile? 

☑ ☐ 6. Could the system fall (due to gravity), creating injury? 

☐ ☑ 7. Will a user be exposed to overhanging weights as part of the design? 

☐ ☑ 8. Will the system have any burrs, sharp edges, shear points, or pinch points? 

☐ ☑ 9. Will any part of the electrical systems not be grounded? 

☐ ☑ 10. Will there be any large batteries (over 30 V)? 

☐ ☑ 11. Will there be any exposed electrical connections in the system (over 40 
V)? 

☐ ☑ 12. Will there be any stored energy in the system such as flywheels, hanging 
weights or pressurized fluids/gases? 

☐ ☑ 13. Will there be any explosive or flammable liquids, gases, or small particle 
fuel as part of the system? 

☐ ☑ 14. Will the user be required to exert any abnormal effort or experience any 
abnormal physical posture during the use of the design? 
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☐ ☑ 15. Will there be any materials known to be hazardous to humans involved in 
either the design or its manufacturing? 

☐ ☑ 16. Could the system generate high levels (>90 dBA) of noise? 

☑ ☐ 17. Will the device/system be exposed to extreme environmental conditions 
such as fog, humidity, or cold/high temperatures, during normal use? 

☐ ☑ 18. Is it possible for the system to be used in an unsafe manner? 

☐ ☑ 19. For powered systems, is there an emergency stop button? 

☐ ☑ 20. Will there be any other potential hazards not listed above? If yes, please 
explain on reverse. 

 For any “Y” responses, add (1) a complete description, (2) a list of corrective actions to be 
taken, and (3) date to be completed on the reverse side. 
 

Description of 
Hazard 

Planned Corrective 
Action 

Planned 
Date 

Actual 
Date 

  
Rolling, running 
hazard from cleaning 
actuation 
  
  

  
 Device will be 
operated 
autonomously 
without human 
intervention 

  
  
1/15/19 

  
  
11/15/18 

  
 High and low 
temperature ranges, 
exposure to fog and 
humidity 
  
  

  
Electrical systems 
will be properly 
insulated and 
protected 

  
  
1/15/19 

  
  
11/15/18 

  
Fall due to gravity 
  
  

  
 System will be 
properly mounted to 
the panel array 

  
  
1/15/19 

  
  
11/15/18 
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Appendix H: Dimensioned CAD Model 
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Appendix I: Bill Of Materials 
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Appendix J: Budget 
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Appendix K: Drawing Package 
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Appendix L: Design Verification Plan 

 

L-1 



Appendix M: Failure Modes Effects and Analysis 
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Appendix N: Hand Calculation 

 
The above is a calculation showing that the cleaner and cleaner bar combined must weight 50 
grams in order to exert the same force that was applied during testing. In addition, if the mass is 
less than 50 grams, the guide rails will apply additional downward force.  
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Appendix O: Operators’ Manual 
 
The ARES Cleaning System Operators’ Manual explains a solar plant operator’s maintenance 
duties involving the the ARES Cleaning System. It describes the replacement and upkeep 
process for any components susceptible to wear or failure. Figure 1 may be used as reference 
while performing these operations. All safety recommendations should be followed as stated.  

  
 

Figure 1. Assembly of ARES Cleaning System 
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1. Belts and Cleaner Installation and Replacement 
It is required that the belts and cleaner components of the ARES Cleaning System are to be 
replaced on an annual schedule. Because these parts are linked through a sewn wire connection, 
they must be replaced together. Operators must obtain a new belt and cleaner set up from 
Fracsun if not already provided. To install, one must first remove the old belts and cleaner. This 
is done by stretching one of the cleaner belts over the outermost flange of a pulley and rotating 
the pulley outwards. The belt should slip off the pulley. Be careful to avoid the pinch point 
between the flange and the belt. Perform this same process with the other belt. 
 
To install the new belt and cleaner set up, a reverse process is performed. Place the belts over the 
device so that the cleaner lays across the solar panel. Take the innermost belt and mesh the teeth 
with the one of the pulleys on its side. Stretch the belt over the other pulley so that it lies on the 
flange. Rotate the pulley outward so that the belts teeth join with the pulley. This process can be 
seen in Figure 2 and 3. For the other belt, one must perform the same process but also align the 
cleaner. The cleaner is to be placed perfectly straight across the panel. This is done by visual 
inspection as one aligns the second belt. This may take multiple attempts. The process becomes 
easier as one gains a feel for how much the meshing of the pulley alters the alignment of the 
cleaner.  
 

 
Figure 2. Cleaner Belt Installation on Flange 

 

 
Figure 3. Rotating for Cleaner Belt Installation 
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2. Motor Belt Installation and Replacement 
The motor belt should be replaced annually along with the cleaner. To begin, remove the old 
motor timing belt. Loosen all other pulley set screws on the long shaft. Remove the pulley by 
sliding it off the shaft outward. To make this process smoother, also pull the shaft outward in the 
opposite direction. The removal process can be seen in Figure 3. To place the new motor belt 
over the motor pulley, mesh the motor belt with the small motor pulley. Perform the same belt 
installation process explained in Section 1, rotating the pulley outward with the belt until it 
meshes.  
 

 
Figure 3. Motor Belt Installation 

 
3. Pulley Installation and Replacement 
Refer to sections 1 and 2 to remove the cleaner or motor belt before removing the pulley(s). 
Once the cleaner, spacers, and or motor belt have been removed, take the 3/32 inch (5/64 for 
motor pulley)  allen key and loosen the set screw located on the center of the pulley shown in 
Figure 4. Once the pulley is loose, it can be moved along the shaft for adjustment or easily 
replaced with a new pulley. Make sure the set screw is loose and the spacers on the main shaft 
are in place before sliding the new pulley on the shaft. Once the pulley is in the desired position, 
tighten down the set screw with the allen key. Refer to sections 1 and 2 to properly place the 
cleaner and motor belt back onto the device. 
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Figure 4. Set Screw Location 

 
4. Shaft Installation and Replacement 
Refer to sections 1 and 3 to properly remove the cleaner, and pulleys before removing the 
shaft(s). Once the pulleys are removed, the shaft will easily slide out of the bracket and can be 
easily be replaced as shown in Figure 5. Refer to sections 1 and 3 to properly place the cleaner, 
belts and pulleys back on the device. 
 

 
Figure 5. Shaft Removal 
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5. Motor Installation and Replacement 
Refer to section 2 and 3 to properly remove motor driven belt and timing pulley. When handling 
the motor, never short any wire leads. Avoid any water exposure to the electronics and never 
handle the connections while the system is powered. Following the photos in Figure 6, 
disconnect the battery from the microcontroller by disconnecting the positive lead on the battery 
followed by the negative lead. Next, unscrew the motor connection terminals on the motor driver 
board of the microcontroller. Remove the wires from the terminals. Remove the encoder wire 
connection from the motor. Unscrew the 4 bolts holding the motor to the mount with a 7/64 size 
allen wrench. Remove the motor and mounting plate. Place the new motor in the mounting plate 
and replace the bolts. Recconnect the encoder connection, and motor wires to the board. Tighten 
down all terminals before reconnecting the battery, ground first.  
 

 
Figure 6. Motor Replacement Steps 
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Appendix P: Risk Assessment 
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Appendix Q: Gantt Chart 
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Appendix R: Python Code for Motor Operation 
 
Motor Class 
## @file motor.py 
# this source file contains a motor driver class which initializes and allows 
# variable duty cycle 
## This class implements a motor driver for the ME405 board.  It does this  
# by initializing certain pins and taking user input to control both  
# direction and speed.  
class MotorDriver: 
    ## Creates a motor driver by initializing GPIO pins and turning the motor 
    # off for safety.  
    def __init__ (self,MotorPort):  
        import pyb 
        if MotorPort == 1: 
            pinA10 = pyb.Pin (pyb.Pin.board.PA10, pyb.Pin.OUT_PP) 
            pinA10.high () 
            tim3 = pyb.Timer (3, freq=20000) 
            pinB4 = pyb.Pin (pyb.Pin.board.PB4, pyb.Pin.OUT_PP) 
            ## ch1 provides power in the clockwise direction 
            self.ch1 = tim3.channel (1, pyb.Timer.PWM, pin=pinB4) 
            pinB5 = pyb.Pin (pyb.Pin.board.PB5, pyb.Pin.OUT_PP) 
            ## ch2 provides power in the counter-clockwise direction 
            self.ch2 = tim3.channel (2, pyb.Timer.PWM, pin=pinB5) 
        elif MotorPort == 2: 
            pinC1 = pyb.Pin (pyb.Pin.board.PC1, pyb.Pin.OUT_PP) 
            pinC1.high () 
            tim5 = pyb.Timer (5, freq=20000) 
            pinA0 = pyb.Pin (pyb.Pin.board.PA0, pyb.Pin.OUT_PP) 
            ## ch1 provides power in the clockwise direction 
            self.ch1 = tim5.channel (1, pyb.Timer.PWM, pin=pinA0) 
            pinA1 = pyb.Pin (pyb.Pin.board.PA1, pyb.Pin.OUT_PP) 
            ## ch2 provides power in the counter-clockwise direction 
            self.ch2 = tim5.channel (2, pyb.Timer.PWM, pin=pinA1) 
        else: 
            print('Invalid Input, Select Port A or B as a String') 
  
    def set_duty_cycle (self, level): 
        ## This if statement accounts for a duty cycle that will spin 
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        # the motor counter-clockwise. 
        if level <0: 
            level = abs(level) 
            self.ch2.pulse_width_percent (level) 
            self.ch1.pulse_width_percent (0) 
        ## This else statement accounts for a duty cycle that will spin 
        # the motor clockwise 
        else: 
            self.ch2.pulse_width_percent (0) 
            self.ch1.pulse_width_percent (level) 
        ## This prints user feedback for the duty cycle entered. 
        #   print ('Setting duty cycle to ' + str (level)) 
  
Encoder Class 
## @file encoder.py 
## This class measures the position of a motor. It does this by reading an 
#  optical encoder. The inputs are pinlabel, chan, and TIM. The pin label is  
#  inputted as a string of the characters of the desired pin. Chan is an  
#  integer number for the proper channel. TIM is an integer for corresponding  
#  timer. The init constructor initializes the encoder, and sets the position  
#  of the motor to zero. The read method returns the postion of the motor. 
#  The zero method resets the position of the motor. The class will be called 
#  twice to properly read the encoder in lab via a test file or in putty 
#  directly.  
import pyb 
class MotorEncoder: 
    ## The init constructor intializes the encoder pin selected by using the  
    #  inputted string for pinlabel to specify the input signal. Init 
    #  selects the iputted timer and sets a prescaler of 0 with a period of 
    #  ffff (hex). The inputed channel is configured with the inputted timer and  
    #  the intial position  and encoder count are reset.  
    def __init__ (self): 
        ## tim is the desired timer to use with the encoder.  
        self.tim = pyb.Timer (8, prescaler=0, period = 65535) 
        ## self.pos is the position of the motor that is read using the read  
        #  method. It is the calculated by adding the previous position to 
        #  to the current change in position. It is reset using the zero  
        #  method.  
        self.pos = 0 
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        ## self.encoder_old is the previous encoder count used to calculate the 
        #  change in position, delta, of the motor in the read method. 
        self.encoder_old = 0 
        ## pinch is the configured input pin corresponding to the inputted pin 
        #  label. It is used to configure the proper channel. 
       pinch1 = pyb.Pin('PC6',pyb.Pin.IN) 
       pinch2 = pyb.Pin('PC7',pyb.Pin.IN) 

        ## self.tim is the configured timer that is assigned to the inputted 
        #  channel. It has a period of 65535, and a prescaler equal to zero. 
        self.tim = pyb.Timer (TIM, prescaler=0, period = 65535) 
        ## ch is an object configured in encoder moded and is triggers the  
        #  counter when either Channel 1 or Channel 2 changes. It uses the 
        #  inputted timer, encoder pin, and channel number for setup.  
        self.ch1 = self.tim.channel(1,pyb.Timer.ENC_A,pin=pinch1) 
        self.ch2 = self.tim.channel(2,pyb.Timer.ENC_B,pin=pinch2) 
    ## The read method returns the current encoder reading by subtracting off 
    #  the previous encoder reading. It checks for overflow in the positive  
    #  and negative directions by comparing the change in counnts to half of 
    #  the period and adjusts accordingly. It sets the next encoder reading,  
    #  and returns the new position. 
    def read(self): 
        ## encoder_new is current encoder count kept track of by the timer. 
        #  it it used to calculate the change of position of the motor, delta, 
        #  which is the difference in encoder counts which is then added to the 
        #  previous position to get an accurate position of the motor. 
        encoder_new = self.tim.counter() 
        ## delta is the difference in encoder counts added to the previous 
        #  position of the motor to gain an updated postion which is then 
        #  returned. 
        delta = encoder_new - self.encoder_old 
        if delta > (65536/2): 
            delta = delta-65536 
        elif delta < (-65536/2): 
            delta = delta + 65536 
        else: 
            delta = delta 
        self.pos = self.pos + delta 
        self.encoder_old = encoder_new 
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        return self.pos 
    ## The zero method resets the position and timer back to zero. 
    def zero(self) 
        self.pos = 0 
        self.encoder_old = 0 
    self.tim.counter(0) 
Main File 
## @main 

# This is the main file that utilizes the motor driver, and encoder to run the cleaning cycle on the 

#ARES device 

import encoder 

import motor 

import utime 

## Setting up motor and encoder 

A = motor.Motor(1) 

B = encoder.Encoder() 

## Defining cycle parameters (Passes, Number of days, Pulse-Width Modulation, and time 

#between cycles) 

Passes = 3 

Cycles = 398 

PWM = 75 

Pause = 60 ## Time in seconds 

## Defining constants used in loop (J is used to switch direction of the cleaner) 

C = 0 

i = 0 

t = 0 

j = 1 

## While loop reading position of cleaner, cycle number, and pass number switching directions 

#each day 

while t < Cycles: 

   A.mset(0) 
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   utime.sleep(Pause) 

   j = j*-1 

   i = 0 

   while i<Passes: 

       while abs(C) < 3932: 

           A.mset(j*PWM) 

           C = B.read() 

   ## Feedback could easily be placed here for pass number 

    print('Pass') 

    B.zero() 

       C = 0 

       i = i+1 

   t = t + 1 

   ## Feedback could easily be placed here for cycle number 

   print('Cycle') 

A.mset(0) 

## Feedback could be placed here for when maintenance is required. 

print('Done') 
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