
1 
 

Reduce, Reuse, Reengineer 

Senior Research Project 2019 
 

 

 

 

 

 

 

 

 

 

 

Neil Robertson & Anthony Beers 

Advisor: Dr. Cole McDaniel 

Mechanical Engineering Consultant: Garrett Robertson, UC Davis 

California Polytechnic State University, San Luis Obispo 

Architectural Engineering 

6/19/19 

 

  



2 
 

Table of Contents 
 

Cover Page……………………………………………………………………………..1 

Table of Contents……………………………………………………………………....2 

Introduction……..……………………………………………………………...……….3 

History of the Solar Updraft Tower…………………………………………………...4 

Technology of the Solar Updraft Tower………………………………………………5 

Rethinking the Concept………………………………………………………………..6 

Solar Cycle Tower………………………………………………………………………7 

Interdisciplinary Collaboration…..……………………………………………………..8 

Hydroelectric Gravity Battery………………………………………………………….9 

Terraforming 

Habitation…………………………………………………………..…………………..11 

Integrated Hydroelectric Battery……………………………………..………………13 

Bibliography……………………………………...………………………………….... 26 

  



3 
 

Introduction 

 

Our senior project is a research exploration of renewable energy. We recognized 

there is a major need in the world for the advancement of green power sources. For our 

project, we wanted to go beyond what we have learned in our Cal Poly architectural 

engineering classes and to use some of our own creativity to investigate the possibilities 

of renewable energy from a structural perspective. The guiding question we asked 

ourselves was, “as architectural engineering students, how could we shift our world to 

use more renewable energy?” To start our journey off, was the original inspiration from 

the work of a German structural engineer named Jörg Schlaich and his design for a 

renewable power source called solar updraft tower that we touched on in our History of 

Structures class. 
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History of the Solar Updraft Tower 

 

 In 1982, Schlaich Bergermann Partner, a German structural and solar 

engineering company, constructed the first solar updraft tower in Manzanares, Spain 

after receiving sufficient funding from the German Ministry of Research and Technology 

and the Spanish Utility Union Electrica Fenosa (see Figure 1.). The tower stood 640 feet 

(195 meters) tall made of corrugated steel with a plexiglass canopy base that stretched 

800 feet (244 meters) in diameter. The tower tube was 32.8 feet (10 meters) wide in 

diameter. This prototype had a peak energy output of 50 kilowatts/hour and average 

output of 30 kilowatts/hour. It originally had a designed lifespan of three years, yet it 

held its ground for four extra years. Then in 1989, after being neglected of any 

maintenance, it collapsed from an intense windstorm. There have been many proposed 

solar updraft towers such as one in Australia that would stand 0.62 mile tall (1 kilometer) 

and have a base 6.2 miles (10 kilometers) in diameter (GROSE). 

Figure 1. Solar Updraft Tower in Manzanares, Spain (GROSE) 

 

http://www.sbp.de/en
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Technology of the Solar Updraft Tower 

 

  

Figure 2. Solar Updraft Tower 

 

 

 What is a solar updraft tower and how does it work? A solar updraft is a 

renewable energy generator that produces electricity through a heat differential in the 

air. The updraft tower traps air heated by the ground underneath the glass or plexiglass 

canopy area at the base. The heated air tries to expand but the canopy traps in 

increasing the pressure. The air forces its way upward and out of the top of the tower to 

an area of less pressure, spinning the turbine and generating electricity as it passes 

through. This process can be seen in Figure 2. This process can continue even after the 

sun goes down, albeit with reduced efficiency, because the ground is still warmer than 

the air at the top of the tower. This nighttime efficiency can be increased by using pods 

of water to better store the thermal energy from the sun through the night. 
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Rethinking the Concept 

 

 

One idea of a modification was to utilize water vapor instead of air. We thought 

water vapor would be better at propelling the turbine harder and faster. Since water 

vapor is denser than the other molecules of air, this added mass increases the force 

that spins the turbine. In turn, the faster spinning turbine would produce more electricity. 

We proposed a small modification to the original solar updraft tower (Figure 2), in that 

there would be a pond of water underneath the canopy base to collect the solar energy. 

The water from the base pool would then evaporate and rise to spin the turbine using 

the same principle as before of a heat differential. One draw back from this idea is that 

there would need to be a constant supply of water, but this could be countered by 

placing the structure above a reservoir or maybe even over a wastewater treatment 

plant’s treatment ponds. 
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Solar Cycle Tower 

 

 

Figure 3. Solar Cycle Tower 

 

The issue of constantly needing water got us thinking if it would be better to close 

the system from the environment (see Figure 3). Being a closed system would eliminate 

the resupply of water back into the tower, and the system can be placed in any 

environment, especially those areas of low rainfall. Thus, we created a new design we 

called the solar cycle tower based on the recycling of water, use of solar heat and 

shape of the system. With this setup, the water at the base of the tower would be 

heated up by sun rays causing the water to evaporate. This newly formed water vapor 

would rise up through the turbine generating electricity. After passing through the 
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turbine, the water vapor would be collected in a tank at the top of the tower. This tank 

would condense the water vapor through a difference in temperatures of the vapor and 

walls of the tank. We imagined that the tank would be painted white and insulated to 

resist absorbing solar heat keeping the tank as cool as possible. We also proposed that 

we capitalize on the gravitational force of the water since the water was already up so 

high. So, a second turbine would be present for the condensed water flowing down to 

producing even more electricity. This water cycle combination would possibly almost 

double the power output compared to the previous solar tower. As a side thought, we 

believe that we could store some water in the tank to act as a tuned mass damper to 

help counteract seismic forces. 

 

Interdisciplinary Collaboration 

 

At this point in the project, we sought out the help of a third year Mechanical 

Engineering student studying at UC Davis named Garrett Robertson. We contacted him 

to act as a consultant on this project because we wanted someone with more expertise 

in this area. It was a very good thing that we did consult with him too. He pointed out a 

major problem with using water vapor. For turbines to be efficient and not corrode the 

turbine blades, the steam needs to be superheated, which would not really be possible 

using sunshine alone for energy input. There would need to be some supplemental 

power or material to heat the water to adequate temperature, thus this requirement 

would take away from the additional efficiency of using water in the first place. We did 

contemplate with the idea of using an alternative fluid that possessed a low boiling point 

than water, so we could ensure the system’s reliance on only sun rays. However, 

Garrett pointed out that there is minimal information on the material properties of these 

vapors. Therefore, we would have had to conduct these experimental function tests 

ourselves, which is out of the scope of our project and experience and would take 

considerable time, guidance, and funding we do not have at our disposal. So, we had to 

go back to the drawing board on our research. 
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Hydroelectric Gravity Battery 

 

 

Figure 4. Pumped Hydroelectric Storage, Reservoir Example (Gilmore) 

 

 

Pumped storage hydropower is another form of renewable energy that we came 

across through the course of our research. Pumped storage hydropower is a way to 

store excess energy produced during the day for use during peak electricity demand 

times, reducing the losses on the power grid. As can be seen in Figure 4, this is 

conventionally done on hilly or mountainous terrain with upper and lower water storage. 

The water can be pumped up when there is excess green energy or by a power station 

during low demand times. The water is then released at high demand times to reduce 

strain on the power grid. Pumped hydroelectric storage uses a difference in height 

between the two tanks (called head) to generate the pressure necessary to turn the 

turbine. Instead of using lithium battery storage plant with toxic chemicals, the water 
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stores the surplus energy in the form of potential energy once it is raised in elevation. In 

essence, this method is a clean gravity battery.  

 

 

 

Figure 5. Hydroelectric Battery 

 

We adapted the idea of pumped hydroelectric storage from the usual reservoir 

setup to instead be a tower, seen in Figure 5, that would act as our change in elevation, 

allowing places with a more level landscape to construct these towers as to not rely on 

the landscape to make a pumped storage hydropower plant feasible. These towers 

would require an energy input to power a water pump, which we thought could be a 

solar field built around the tower. One thing to consider though with pumping water up is 

the efficiency of the pump. Garrett pointed out that we would have approximately an 

85% efficiency. Meaning that we would lose 15% of the energy that we were trying to 
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store. We also would need many of these towers to store enough energy for a large 

population of people.  

 

 

Terraforming Habitation 

 

Figure 6. Terraforming Habitation 

 

 Another avenue we were researching that was based more off the solar updraft 

tower was terraforming. One interesting and unintended side effect of having a solar 

updraft tower over an area of soil is that the base canopy traps water vapor in the air 

under it and then forces it to condense. This increases the humidity dramatically 

changes the atmosphere of the original area by putting water back into the topsoil, 

which can make the land area underneath more fertile for plant life to flourish. In 
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essence, the solar updraft tower canopy can transform the climate of an arid landscape 

into a more habitable one (which is the essence of terraforming). Obviously, this could 

be used to reclaim land that was previously too dry to grow plants. We again proposed, 

a modification to the solar updraft tower. This time it was to include a dwelling 

underneath the base structure to act as a home for people who could farm the land 

being terraformed under the canopy of the solar updraft tower (see Figure 7 for more 

detail). We believed that we could optimize the land by providing three different uses: 

energy generation, crop cultivation and habitable space. This system would be ideal for 

parts of the world like the Sahara, where there is a need for building developments. It 

can also contribute to the African Union efforts to make the “Great Green Wall”, which is 

an initiative to change the present desert landscape into farmable land (Monks).  

 

 

Figure 7. Cross Section of Terraforming in Action (Bosschaert) 

 

 Some problems we considered were the habitability of the subterranean structure 

and the price of the structure. In order to keep the inhabitants happy and healthy, we 

would need to bring in natural light. By having skylights in the ground we would be 

decreasing the efficiency of the solar updraft tower. The price of the solar updraft tower 

alone is very high and if added to the cost of making the subterranean dwelling, the 
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people we were hoping to benefit most from this would have a lot of trouble finding 

funding.  

 

Integrated Hydroelectric Battery 

 

[Dimensions: 250 feet by 280 feet (total: 70,000 square feet) and 8 stories at 15 feet (120 feet high)] 

Figure 8. Integrated Hydroelectric Battery 

 

 

  Returning to our roots as architectural engineering students, we circled back to a 

building. We wanted to combine what we had learned from the terraforming habitation 

and combine it with the stored hydroelectric battery. We liked the idea of the integration 

of renewables into everyday life and believed stored hydroelectric battery was promising 

system. What we came up with is called the integrated hydroelectric battery based on 



14 
 

the use of water to generate electricity, storing energy from another power source and 

this hydroelectric storage system being present within a building. The integrated 

hydroelectric battery is supported by an openly configurable structure and harnesses 

the gravitational energy of water as a supplementary source of electric energy (see 

Figure 8). The floor plan of the building portion of the integrated hydroelectric battery is 

open to most any occupancy that the owner or architect wants to tailor to satisfy the end 

consumers, whether the occupancy be affordable housing or vertical farming to name a 

few options. The integrated hydroelectric battery consists of five key parts: the lower 

tank, upper tank, pump, turbine and the structure supporting them all. The lower tank is 

located at the same level of the building’s foundation and is the starting point in the 

water’s cycle. Water travels up the height of the building by way of the pump, which is 

powered by excess renewable energy or by the power grid during the time of off peak 

demand. Once the water reaches the top of the structure, the upper tank holds it until a 

sufficient amount of water is present for power generation. Water is then released from 

the upper tank spinning a turbine producing electricity when the energy source is idle or 

during the peak demand time of the day. After that, the water returns to the lower tank, 

where it is stored and waits for the next power cycle to begin the next day.     

When we mentioned off-peak and peak demand, we are referring to the Time Of 

Use (TOU) plan that is offered by electric utility companies like Pacific Gas & Electric 

and Southern California Edison. TOU plans are electricity rate plans that have different 

pricing throughout the day based on the overall power demand. This will be explained in 

detail in the Energy Cost Analysis section. For our project, we modeled the integrated 

hydroelectric battery to work with the prime version of time of use plan (TOU-D-PRIME) 

as a cost saving measure. What is meant by cost saving measure is that the system 

would only power the building during peak demand times from the power grid when 

energy is most expensive, and not during the entire night when many renewable 

energies lose the ability to produce electricity. We decided to have the integrated 

hydroelectric battery act like this because there would need to be a very large green 

energy area to power the building and the pumps, and we were worried about the 

weight of the water being too great if we stored enough for 12 hours. Reason being is 

the amount of the water is proportional to the energy produced by the battery and the 
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large weight of the water would threaten the stability and yield strength of structure 

supporting the top water tank. We proposed and analyzed a structure that could have 

solar on the roof, but we decided against pursuing this combination of the integrated 

hydroelectric battery and solar panels because we wanted to prove our energy storage 

system works on its own. However in the future, our system can be combined with any 

power generating sources like solar panels or wind turbines.  

Our model for the integrated hydroelectric battery building that we started out 

with was a 6 story mixed-use building with 2 levels of underground parking that would 

be constructed with steel framing. The conceptual structure had a footprint of 70,000 

square feet. We estimated that the integrated hydroelectric battery would cost an extra 

15-20% of the construction cost on top of the original construction cost. The high 

expense is due to it being a new experimental design and heavy water loading. Exact 

dollar values were difficult to estimate because of the myriad of variables like land cost, 

labor, equipment, government and city fees, etc. Yet, our concept can be created with 

widely available materials due to the simplicity. Constructability of the integrated 

hydroelectric battery is possible and the massive water load of the prototype would be 

accounted for in the design process. The gravity load of the water was about 1.5 ksf 

(Figure 15), which would require larger columns and deeper beams than usually 

prescribed by structural engineers, but would take approximately 34 years to have paid 

for itself { ($150/SF * (70000 SF *6) * .15))/ $273,915/year) =45.9 years} . ( In this 

estimation we took the average price per square foot multiplied by the square footage of 

our building times the number of floors, then divided by savings per year from Figure12) 

In later thoughts of the design, we pictured that the upper tank could be supported by a 

space frame to save on weight and have longer span lengths than regular wide flange 

beams. Also, the upper tank of our structure could be utilized as a sloshed tuned 

damper if a sufficient level of water remained in the tank and servo fins were installed 

inside the tank to delay the movement of water during a seismic event, acting as a 

tuned sloshing damper. This type of water damper was proposed and implemented in 

the One Rincon condo tower in San Francisco, California (Nolte). We also realized that 

the weight of water can be decreased if we proportionally increased the overall height of 

the system allowing the water to have more force in propelling the turbine. This would 
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mean a taller building with a smaller square footage would be more efficient at using the 

integrated hydroelectric battery because it uses less water and created more electricity 

due to the greater height difference. We had several avenues to explore, but for the 

sake of this study, we were interested in investigating if the integrated hydroelectric 

battery would do what it was intended to accomplish, which was to save money on 

electricity.  

 

 

 

Energy Cost Analysis 

 

 

 

 

Figure 9.  TOU-4-9PM Pricing (“Time-Of-Use Residential Rate Plans”) 

 

 

 

Figure 10. TOU-4-8PM Pricing (“Time-Of-Use Residential Rate Plans”) 

 

 

 

Figure 11. TOU-D-PRIME Pricing (“Time-Of-Use Residential Rate Plans”) 
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 For electric rate pricing, we decided to look at Southern California Edison plans, 

in order to keep different energy companies different pricings from being a factor in our 

energy cost evaluation. Southern California Edison provides four different plans: TOU-

D-4-9PM, TOU-D-5-8PM, TOU-D-PRIME, and their Tiered Plan. All the TOU plans have 

times of the day where there is a peak, for demand as well as price. They also have 

periods of the day where there is off-peak demand and pricing. Our integrated 

hydroelectric battery system is designed to pump water up during these off-peak times, 

therefore avoiding the substantial price increase that comes with using electricity during 

peak times. Each TOU plan has its own pricing for both summer and winter, and can 

even have a different peak length, as can be seen in Figure 9-Figure 11. We also 

looked at the older Tiered plan which is just a set price based off of kW usage, but this 

plan would not benefit from our system because we are using about 15% more energy 

than the TOU-D-PRIME plan since the pump is not 100% efficient. 

The TOU-D-PRIME plan is for customers that have some form of energy storage 

that can shift their usage to lower demand times. This plan is the ideal plan for our 

system, and we found TOU-D-PRIME to be the most cost effective for our building when 

compared to the other TOU plans as well as the Tiered plan, saving upwards of 

$270,000 a year when compared to the same and other TOU plans without the 

integrated hydroelectric battery. 
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Figure 12. TOU-D-PRIME Cost Analysis of Proposed Building 
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Figure 13. TOU-D-PRIME Cost Analysis of Proposed Building-Hand Proof 
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This explanation Figure 13 is to show how we set up our Excel sheets to get cost values 

and then compare them. 

1. Starting with the  TOU (WITH TANK ) side (the left column OFF PEAK COST 

(WEEKDAY)) we took our building’s kW usage multiplier by the number of hours 

of non-peak usage {732kW/day *19 hours}. We added that to the extra cost 

during this time to power the pump that would get the water up to the height 

necessary to generate electricity for the peak demand time of 5 hours. To get the 

energy needed to pump for 5 hours week took the power usage, multiplied it  by 

the hours of use , as well as 1 over the pump efficiency to increase the power 

usage to account for the losses in the system. 

2. For PEAK COST (WEEKDAY), there are no hours during peak demand which 

our building is using energy so the hours are zero and therefore the cost from 

this part of the day is zero. 

3. We repeated this same process of 1 and 2 for WEEKENDS. 

4. To total up the cost for the summer we took the price/day for WEEKDAYS and 

WEEKENDS and multiplied them by the number of days per week each of these 

are (5 days/week for WEEKDAYS and 2days/week for WEEKENDS). Then we 

multiplied by the average number of weeks per month (4.35weeks/month) and 

the number of months that are considered the Summer by Southern California 

Electric (4 months). 

5. The TOU (WITHOUT TANK) is simpler, we just took the same process from 1 

and took out the part with the pump efficiency and redistributed the hours that the 

pump would have covered to the peak pricing. 

6. Following step 4 again, we got a total for the summer cost and then took that 

number and found the difference between the two ($89509.08). 
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Figure 14. Water Flow Rates 

This table shows the flow rate of water necessary given a height change (head) and a 

desired power output (kW). This chart shows that the water rates are linearly 

proportional, so one can find the flow rate of water for any head height and any desired 

power output. This process can be seen in figure 15. 
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Figure 15. Water Properties for Proposed Building 

1. Taking the 10 meter head/10kW output flow rate from Figure 14 (0.136m3/s) we 

converted that flow rate using our building height of 37 meters and our 732 kW 

demand as a ratio to 10m head/10kW output. 
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2. Using the new flow rate we converted it into a per hour flow rate by multiplying by 

seconds per minute and then minutes per hour. We then multiplied by the 

amount of time the tank would need to supply water to generate electricity during 

peak times which is 5 hours for the Prime plan in order to find the volume of 

water necessary.. 

3. Then we took that volume and multiplied by the density of water (2202#/m3), and 

then converted to kips from pounds to get the weight of the water necessary for 5 

hours of energy generation. We then divided by the square footage of the 

building (70000 SF) to find the distributed load on the building in kips/square foot. 

4. Taking the volume we calculated earlier, we converted it into cubic feet, and then 

into gallons of water. We then took those gallons and divided by 660253 

gallons/per olympic swimming pool     

 {12846890gal * ((1 olympic pool)/ 660253gallons)=19.4 olympic pools} 

5. Again we took the volume of water necessary for 5 hours of energy generation, 

and again converted to cubic feet to then divide by the building’s square footage 

of 70000 SF to determine the height of the tank in feet. 

 

 

 

 

 

Competition Comparison 

 

Conducting due diligence, we did look into other energy storage devices. One of 

which was Tesla Powerwall. The Tesla Powerwall is a large lithium ion “battery that 

stores solar energy so you can use it on demand and self-power your home to reduce 

your reliance on grid electricity. In the event of a grid outage, Powerwall automatically 

provides backup power or easily integrates with solar to ensure your home is powered 

24/7. With Powerwall, you are assured of energy security and a clean energy lifestyle” 

(“Tesla Powerwall”). Tesla is well known for its innovative products, but this one does 

have drawbacks as well. Unknown to most people, lithium ion batteries are a non-



24 
 

recyclable material. Over the course of using and recharging the lithium ion batteries 

countless times, the lithium loses its electricity storage capacity. Once the lithium ion 

battery loses its ability to charge, it cannot be renewed and there is no alternative use 

for it as a disposal material currently. So, its final destination is landfills. Furthermore, 

Tesla warranties their Powerwall at only 10 years. We estimated that the integrated 

hydroelectric battery will withstand the life of the whole building, which is approximately 

50 years. This saves on the cost of periodically replacing the battery and the integrated 

hydroelectric battery has a larger capacity of power generation than the Powerwall. Not 

to mention, the extraction and refinement of lithium that the Powerwall is comprised of is 

harmful for the environment. Lithium ion mining around world devastates the landscape 

around the world from Asia to South America. For example,  

In May 2016, hundreds of protestors threw dead fish onto the streets of Tagong, 

a town on the eastern edge of the Tibetan plateau. They had plucked them from 

the waters of the Liqi river, where a toxic chemical leak from the Ganzizhou 

Rongda Lithium mine had wreaked havoc with the local ecosystem.There are 

pictures of masses of dead fish on the surface of the stream. Some eyewitnesses 

reported seeing cow and yak carcasses floating downstream, dead from drinking 

contaminated water. It was the third such incident in the space of seven years in 

an area which has seen a sharp rise in mining activity, including operations run 

by BYD, the world’ biggest supplier of lithium-ion batteries for smartphones and 

electric cars. After the second incident, in 2013, officials closed the mine, but 

when it reopened in April 2016, the fish started dying again. (Katwala)  

It is clear that mining for lithium is very dangerous for the environment but also the way 

lithium is separated from other heavy metals is also very harmful. It takes  

approximately 500,000 gallons [of water] per tonne of lithium. In Chile’s Salar de 

Atacama, mining activities consumed 65 per cent of the region’s water. That is 

having a big impact on local farmers – who grow quinoa and herd llamas – in an 

area where some communities already have to get water driven in from 

elsewhere. There’s also the potential – as occurred in Tibet – for toxic chemicals 

to leak from the evaporation pools into the water supply. (Katwala)  
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Figure 16. Evaporation Pool of Salar de Atacama, Chile (Katwala) 

 

From Figure 16 above, you can see the vivid hues from the heavy metals and acid 

floating in the pools of contaminated water. If these evaporation pools leak out to the 

rest of the surroundings, it poisons virtual everything making it unusable for 

consumption and irrigation. Similar operations to these ones in China and Chiles are 

present in Argentina, Bolivia, Brazil, Zimbabwe, Australia and even in the U.S. 

Obviously, we want to reduce pollution like this. That is why the integrated hydroelectric 

battery is significantly less hazardous because we are not requiring rare materials and 

instead are using readily obtainable competents for all of the parts of the integrated 

hydroelectric battery. Overall, we believe our integrated hydroelectric battery has an 

edge over lithium ion battery when weighting all the large scale costs financially and 

environmentally.    
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Vision for the Future 

 

We hope that our senior project will encourage others to push the boundaries of 

green energy possibilities further to make the world cleaner and less dependent on 

fossil fuels. By creating and analyzing these concepts, we wanted to bring awareness to 

renewable energy storage and show that more research and experimentation in this 

field is almost as important as green power generation if a completely green energy 

powered future will be reached. We hope greener communities will be created because 

of the energy cost savings of our integrated hydroelectric battery and eventually 

transition from merely a cost savings technique to a complete nighttime storage of 

green energy. The integrated hydroelectric battery and other energy storage systems 

will assist in increasing the effectiveness of renewables by way of providing constant 

energy to consumers. In the future, we envision that cities will be solely powered by 

renewable energy sources working in tandem with our energy storage system.   
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