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ABSTRACT 

Indirect Food Web Interactions: Sea Otter Predation Linked to Invasion Success in a 

Marine Fouling Community  

Margaret Foster Jenkins 

 

Humans have caused grave ecological and economic damage worldwide through 
the introduction of invasive species. Understanding the factors that influence community 
susceptibility to invasion are important for controlling further spread of invasive species. 
Predators have been found to provide biotic resistance to invasion in both terrestrial and 
marine systems. However, predators can also have the opposite effect, and facilitate 
invasion. Therefore, recovery or expansion of native predators could facilitate the spread 
of invasive species. Needles et al. (2015) demonstrated that the threatened southern 
sea otter (Enhydra lutris nereis) facilitated the invasion of an exotic bryozoan, 
Watersipora subatra. However, the underlying mechanism was not fully understood. We 
tested the hypothesis that sea otter predation on Romaleon antennarium crabs indirectly 
facilitated the abundance of W. subatra. To do this, we collected weekly data on sea 
otter foraging and quantified the abundance of crabs in the sea otter diet. We also 
conducted a caging experiment, where we experimentally manipulated crab densities 
and limited otter access using exclusion cages on pier pilings in Morro Bay, CA. We 
used photoQuad image processing software to calculate the abundance of W. subatra 
on PVC panels within each treatment group. We found that crabs were the second most 
abundant prey item in Morro Bay, comprising 25.1% of the otter diet. Through the caging 
experiment, we found that W. subatra abundance significantly increased as crab 
densities decreased. Our results indicated that sea otters indirectly facilitated the 
invasion of W. subatra by reducing R. antennarium crab densities and sizes. Removal of 
crabs may release W. subatra from the disturbance caused by crab foraging behavior. 
Understanding the impacts of top predators in invaded ecosystems has important 
management implications, as recovery of predator populations could unintentionally 
benefit some non-native species. Therefore, management should focus first on 
prevention and second on early detection and eradication of invasive species likely to 
benefit from predator recovery.  

Keywords: invasive species, marine fouling community, trophic cascade, facilitation, 
indirect effects 
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Chapter 1 

1. INTRODUCTION 

 
1.1  General Introduction 

Humans have greatly altered ecosystems on a global scale through the 

introduction of invasive species (Vitousek et al. 1996,1997; Mack et al. 2000). In 

both terrestrial and marine systems, biological invasions pose a major ecological 

and economic threat (Pimentel et al. 2005). Invasive species can reduce the 

abundance of native species through direct predation, competition, (Williamson 

1996, Suarez et al. 2000, Carlsson et al. 2009) or hybridization (Rhymer & 

Simberloff 1996), and can also have ecosystem-wide impacts by decreasing 

native habitat and biodiversity and altering nutrient cycling, fire regimes, and 

carbon sequestration (D’Antonio and Vitousek 1992, Kauffman et al. 1995, 

Vitousek et al. 1996, 1997; Mack et al. 2000, Bax et al. 2003). In the United 

States alone, invasive species cause approximately $120 billion dollars of 

ecological damage per year (Pimentel et al. 2005). The economic impact of 

invasive species is also evident in local economies. Local fisheries in the Black 

Sea and Azoz Sea collapsed due to the invasion of an exotic ctenophore, 

amounting to $250 million in losses (Travis 1993). Given the widespread 

ecological and economic effects of invasive species (Vitousek et al. 1997), it is 

important to understand the underlying factors that influence invasion success 

(Bulleri 2008). 

The success of exotic species depends on the attributes of the invader 

(Baker 1965, Ehrlich 1986), as well as physical and biological factors that either 



2 
 

act to facilitate or prevent invasion (Elton 1958, Byers 2002). Exotic species that 

are superior in resource acquisition, can tolerate variable or harsh environments, 

reproduce quickly, and have strong predatory defenses are more likely to 

become invasive (Rejmanek and Richardson 1996, Shea and Chesson 2002, 

Jensen et al. 2007). However, invader success is context dependent (Moulton & 

Pimm 1986, D’Antonio 1993) and regulated by a myriad of environmental 

constraints (e.g., temperature, salinity, wave exposure and other physical 

stressors) (Dethier & Hacker 2005, Moyle & Light 1996) and biotic factors within 

the recipient community (Elton 1958).  

Communities with diverse species assemblages, including enemies of the 

invader (predators, competitors, or parasites), can be more resilient to invasion 

(Elton 1958, Kennedy et al. 2002, Juliano 2010). On a local scale, increased 

biodiversity reduces community susceptibility to invasion by reducing available 

niche space (Stachowicz et al. 1999, Shea and Chesson 2002, Kennedy et al. 

2002), but in most large-scale observational surveys, the number of invaders 

increases with native diversity (Lonsdale 1999, Stohlgren et al. 1999, Stachowicz 

& Brynes 2006). This positive relationship may be explained by covarying 

environmental factors (Levine & D’Antonio 1999, Naeem et al. 2000, Shea & 

Chesson 2002), a lack of resource limitation, or presence of habitat forming 

species that increase resource availability for both native and invasive species 

(Stachowicz & Brynes 2006, Altieri et al. 2010, Bulleri et al. 2008, Tweedly et al. 

2008, Bruno et al. 2003). Native species within the introduced range of the 

invader can provide biotic resistance to invasion through predation and 
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competition (Elton 1958, deRivera et al. 2005, Jensen et al. 2007, Walters & 

Mackay 2005, Going et al. 2009). Exotic species may be more susceptible to 

predation, because they have evolved independently from predators within the 

introduced range (Hokkanen & Pimentel 1984, Colautti et al. 2004 Parker & Hay 

2005). However, ecosystems that lack native predators or competitors are more 

susceptible to invasion (Carlsson et al. 2009). 

The global loss of top predators has exacerbated the spread of invasive 

species (Estes et al. 2011, Carlsson et al. 2009, Wallach et al. 2010). Direct 

harvest, habitat destruction, climate change, and pollution have led to 

defaunation in both terrestrial and marine systems (Young et al. 2016), with an 

estimated 11,000 to 54,000 species going extinct annually in recent years 

(Scheffers et al. 2012, Mora et al. 2013, Dirzo et al. 2014). Predators structure 

the communities they inhabit through direct predation and trophic cascades 

(Hairston et al. 1960, Paine 1969, Estes & Palmisano 1974, Ripple & Beschta 

2012, Terborgh 2015), and enhance ecological resilience (Wilmers & Gertz 2005, 

Sandin et al. 2008, Wallach et al. 2010). In the absence of top predators, 

ecosystems can undergo changes in community composition (Terborgh 2001, 

Estes et al. 2011) and shift to alternative stable states dominated by invasive 

species (Wallach et al. 2010). For example, in Australia, removal of dingoes 

(Canis lupus dingo), a native apex predator, resulted in communities dominated 

by invasive mesopredators and herbivores (Wallach et al. 2010). Furthermore, 

when native birds were experimentally removed from small regions in Hawaii, the 

density of invasive spiders increased by 80-fold (Gruner et al. 2005).  
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When present, predators can reduce community susceptibility to invasion by 

directly consuming exotic species (Elton 1958, Reusch 1998, Parker et al. 2006, 

Carlsson et al. 2009, Carlsson et al. 2011, Morris et al. 2015). For example, 

native crabs (Cancer productus, Romaleon antennarium, Callinectes sapidus) 

limited abundance and distribution of the exotic European green crab (Carcinus 

maenas) through direct predation (Hunt & Yamada 2003, deRivera et al. 2005, 

Jensen et al. 2007), and native sea urchins (Tetrapygus niger) and shrimp 

(Rhyncocinetes typus) reduced abundance and settlement success of an exotic 

bryozoan (Bugula neritna) (Dumont et al. 2011). Predators can also limit the 

spread of invasive species through non-lethal means; invasive prey may change 

their behavior in response to a perceived risk of predation (Salo et al. 2008). For 

example, the invasive mink (Mustela vison) reduced movement between islands 

when the native predatory white-tailed sea eagle (Haliaeetus albicilla) was 

present (Salo et al. 2008). Predatory control of invasive species can abate 

negative impacts of invaders (Carlsson et al. 2009), release native species from 

interspecific competition (Juliano et al. 2010), and provide refuge for native 

species of lower trophic levels (Letnic et al. 2009).  Recovery of native predators 

can also displace invasive predators, further mitigating the impacts of invaders 

(McDonald 2007). 

Although native predators can be effective agents in resisting invasion, they 

can also facilitate the spread of invasive species. Predators that preferentially 

consume native prey species can release invaders from competition, and thereby 

allow invasive species to proliferate (Shea and Chesson 2002, Keane & Crawley 
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2002, Colautti et al. 2004, Maron & Vila 2001). Preferential consumption of native 

prey was first documented in terrestrial grasslands, where native mammals and 

insects facilitated the invasion of exotic grasses (Schierenbeck 1994, Joern 

1989), but also occurs in marine systems (Veiga et al. 2011, Coma et al. 2011). 

For example, native urchins have preferentially consumed macroalgae and 

indirectly facilitated the invasion of an exotic coral (Coma et al. 2011). 

Because of the variable effects of predators on exotic species, recovery of 

threatened or endangered top predators can be in conflict with invasive species 

management (Needles et al. 2015). The southern sea otter (Enhydra lutris 

nereis) was hunted to near extinction in the 19th century, but has since recovered 

from a remnant population of approximately 50 otters in 1938 (Riedman & Estes 

1990) to 3,128 today (Hatfield et al. 2018). They historically ranged from Baja 

California, Mexico to Alaska, but their present range is constricted between 

Pigeon Point and Gaviota State Beach, California with slow expansion at the 

north and south ends of their range (Hatfield et al. 2018). Estuaries are emerging 

as important habitat for the recovery of the threatened southern sea otter within 

California (Lindsey 2016), as estuaries provide protection from wave action and 

shark predation, serve as important nursing grounds, and have abundant prey 

resources (Mccarthy 2010, Feinholz 1998). However, estuaries are highly 

susceptible to invasive species (Wasson et al. 2005). 

Estuaries are particularly vulnerable to invasion (Ruiz et al. 1997), and are 

more invaded than open coastal environments (Wasson et al. 2005, Preisler et 

al. 2009) due to high input of invasive species through multiple vectors of 
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invasion and anthropogenic structures that support high abundances of invasive 

species (Glasby et al. 2007, Ruiz et al. 2009, Needles & Wendt 2013). The major 

vectors for introduction of exotic species include fisheries, aquaculture, aquarium 

and ornamental trade, plastic debris, fouling on hulls of ships, and ballast water 

(Carlton 1989, Carlton & Geller 1993, Cohen & Carlton 1998, Bax et al. 2003). 

Invasion rates are accelerating due increased international commerce (Cohen & 

Carlton 1998), and the effects have extended to smaller estuaries via transport 

on hulls of regional boats and currents (Wasson et al. 2001). Sea otter 

recolonization of estuaries provides an opportunity to study the effects of top 

predators on invasion. 

Sea otters are known to structure nearshore communities and promote 

growth of both kelp forests and eelgrass through trophic cascades (Estes and 

Palmisano 1974, Hughes et al. 2013). Although the top-down effects of sea 

otters in both rocky and soft-bottom communities have been well documented 

(Estes and Palmisano 1974, Kvitek & Oliver 1988, Hughes et al. 2013), their 

effect on invaded fouling communities within estuaries and bays has received 

relatively little attention. Only one study, in Morro Bay, California, has 

investigated the indirect effects of sea otters in an invaded fouling community 

(Needles et al. 2015).  

Morro Bay is a small estuary in central California with a resident sea otter 

population (41 individuals) (Brian Hatfield, United States Geological Survey, 

unpublished data) and heavily fouled artificial structures dominated by exotic 

species (Needles & Wendt 2013). Archaeological evidence suggests that 
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southern sea otters historically occupied estuaries along California’s coast prior 

to the fur trade (Woolfolk 2005; Jones et al. 2011), but today the only California 

estuaries that support resident sea otter populations are Elkhorn Slough and 

Morro Bay (McCarthy 2010). Sea otters first recolonized Morro Bay in 1982, and 

their population quickly peaked to 34 adult otters in 1985, before declining 

sharply to zero observed in 1993. Their population remained below 10 resident 

otters through 2010, but has since rebounded; the local population was 41 adult 

otters as of 2017 (Hatfield unpublished).  

Southern sea otter recolonization of Morro Bay coincided with a dramatic 

increase in the abundance of an exotic encrusting bryozoan, Watersipora subatra 

(Needles & Wendt 2013; in which it was misidentified as Watersipora 

subtorquata). Watersipora subatra was previously misidentified throughout 

California as Watersipora subtorquata (Vieira 2014). W. subatra was first 

discovered in Morro Bay in 1989 (Ken Bondy photograph, Needles & Wendt 

2013), and coverage remained low through 2000 (Needles et al. 2015), but by 

2004, W. subatra occupied 86% of the artificial substrate surveyed (Needles & 

Wendt 2013). The increased abundance of W. subatra within Morro Bay was 

accompanied by a sharp decline in mussels, as well as declines in other known 

sea otter prey items such as crabs, chitons, and sea urchins on pier pilings 

(Oftedal 2007, Needles & Wendt 2013). 

Watersipora subatra is a widespread invasive bryozoan found on hard 

substrates across the Atlantic, Indo-West Pacific, and Pacific oceans (Ryland 

1974, Ryland et al. 2009, Mackie et al. 2012, Viera et al. 2014). It was first 
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described in Japan (Ortman 1890) and has since spread via ballast water to 

larger ports (Carlton & Geller 1993; Drake & Lodge 2004) and to smaller 

estuaries, like Morro Bay, via hull fouling on smaller ships (Carlton & Hodder 

1995, Wasson et al. 2001, Ashton et al. 2014, Zabin et al. 2014). Although W. 

subatra is predominantly found in fouling communities within estuaries, it recently 

colonized open coastal environments in California (Pister 2009, Zabin et al. 

2018). The Watersipora spp. complex is problematic because it reproduces 

rapidly through asexual budding (Lonhart 2012), displaces native species 

(Needles & Wendt 2013), is resistant to copper anti-fouling paints (Floerl et al. 

2004, Piola & Johnston 2006), and facilitates the spread of other exotic species 

by providing a non-toxic settlement surface (Floerl et al. 2004) and habitat for 

other invaders within its 3-dimensional foliose structure (Stachowicz & Brynes 

2006). 

Needles et al. (2015) found that both southern sea otters and sea stars 

facilitated the invasion of W. subatra by preying on mussels and thereby opening 

up space for W. subatra to colonize. However, they also observed a significant 

increase in W. subatra abundance in areas open to sea otter predation, even 

when mussels were not initially present in the system (Needles et al. 2015); this 

suggests that there is another mechanism by which southern sea otters facilitate 

the invasion of W. subatra. Needles et al. (2015) suggested that sea otter 

predation on chitons and crabs could play a role, as chitons bulldoze W. subatra 

(Nydam and Stachowicz 2007) and crabs break apart W. subatra while foraging 

for prey living within the interstitial spaces of the W. subatra colony (Aiken 2014). 
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Crabs seemed a more likely candidate, because crabs are more prevalent than 

chitons in the sea otter diet along the central coast of California (Oftedal 2007), 

and chitons were rarely observed on pier pilings in Morro Bay (pers obs.). 

Additionally, Hughes et al. (2013) demonstrated that sea otter predation on crabs 

can have cascading effects to lower trophic levels within an estuary.  We 

therefore investigated how sea otter predation on crabs affects the abundance of 

W. subatra. We hypothesized that sea otter predation on crabs would facilitate 

the invasion of W. subatra, by releasing W. subatra from the disturbance caused 

by the crab foraging behavior. Elucidating the mechanisms by which sea otters 

facilitate the invasion of W. subatra is important for furthering our understanding 

of the indirect effects of predators in invaded communities. 

 
1.2 Introduction for Publication 

Humans have greatly altered ecosystems globally through the introduction 

of invasive species, resulting in changes in community composition, nutrient 

cycling, fire regimes, carbon sequestration, and biodiversity (D’Antonio and 

Vitousek 1992, Kauffman et al. 1995, Vitousek et al. 1996, 1997, Mack et al 

2000, Bax et al. 2003). It is therefore important to understand the factors that 

influence community susceptibility to invasion (Bulleri 2008). Several studies 

have shown that native predators can reduce community susceptibility to 

invasion by directly consuming exotic species (Elton 1958, deRivera et al. 2005, 

Jensen et al. 2007, Letnic 2009, Dumont et al. 2011). Predators may also 

indirectly decrease abundance of an invader by consuming a native species that 

would otherwise facilitate invasion (Bulleri et al. 2008). Predatory control of 
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invasive species can mitigate the negative impacts of invaders (Carlsson et al. 

2009), by releasing native species from interspecific competition with the invader 

(Juliano et al. 2010) and by providing refuge for native species of lower trophic 

levels (Letnic et al. 2009). However, predators do not always provide biotic 

resistance to invasion (Schierenbeck 1994, Joern 1989). 

 A growing body of evidence suggests that native predators can indirectly 

facilitate the spread of invasive species. Predators that preferentially consume 

native prey species can release invaders from competition and thereby allow 

invasive species to proliferate (Shea & Chesson 2002, Keane & Crawley 2002, 

Colautti et al. 2004, Maron & Vila 2001, Coma et al. 2011, Veiga et al. 2011, 

Needles et al. 2015). Through trophic cascades, top predators may indirectly 

increase abundance of habitat forming species (Estes & Palmisano 1974, 

Hughes et al. 2013), which may facilitate invasion in some cases (Tweedley et al. 

2008, Bulleri et al. 2008, Gestoso et al. 2014). Given that apex predators exhibit 

strong top-down control (Estes & Palmisano 1974, Estes et al. 2011) and can 

facilitate invasion (Needles et al. 2015), recovery of top predators can be in 

conflict with invasive species management.  

 Recovery of the threatened southern sea otter has been linked to invasion 

success in the marine fouling community within Morro Bay, CA. Southern sea 

otter recolonization of Morro Bay coincided with a dramatic increase in the 

abundance of an exotic encrusting bryozoan, Watersipora subatra (previously 

misidentified as Watersipora subtorquata (Needles & Wendt 2013, Vieira 2014). 

Watersipora subatra originated in Japan (Ortman 1890), but has since spread via 



11 
 

ballast water to larger ports (Carlton & Geller 1993, Drake & Lodge 2004) and to 

smaller estuaries, like Morro Bay, via hull fouling on boats (Carlton & Hodder 

1995, Wasson et al. 2001, Ashton et al. 2014). Although W. subatra is 

predominantly found in fouling communities within estuaries, it recently colonized 

open coastal environments in California (Pister 2009, Zabin et al. 2018). The 

Watersipora spp. complex is problematic because it displaces native species 

(Needles & Wendt 2013), is resistant to copper anti-fouling paints (Floerl et al. 

2004, Piola & Johnston 2006), and facilitates the spread of other exotic species 

by providing a non-toxic settlement surface (Floerl et al. 2004) and habitat for 

other invaders within its 3-dimensional foliose structure (Stachowicz & Brynes 

2006). It is a successful invader because it grows rapidly through asexual 

budding (Lonhart 2012), and can therefore quickly colonize open space (Clark & 

Johnston 2009). Needles et al. (2015) found that sea otter predation on mussels 

facilitated the invasion of W. subatra by opening up space for W. subatra to 

colonize. However, they also observed a significant increase in W. subatra 

abundance in areas open to sea otter predation, even when mussels were not 

initially present in the system (Needles et al. 2015); this suggests that there is 

another mechanism by which southern sea otters facilitate the invasion of W. 

subatra.  

Elucidating the mechanisms by which sea otters facilitate the invasion of 

W. subatra is important for furthering our understanding of the indirect effects of 

predators in invaded communities (Needles et al. 2015). Needles et al. (2015) 

suggested two additional mechanisms by which sea otters could potentially 
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facilitate the invasion of W. subatra; sea otter predation on chitons and crabs 

could increase the abundance of W. subatra, as chitons bulldoze W. subatra 

(Nydam and Stachowicz 2007) and crabs break apart W. subatra while foraging 

for prey living within the interstitial spaces of the W. subatra colony (Aiken 2014). 

Crabs seemed a more likely candidate, because crabs are more prevalent than 

chitons in the sea otter diet along the central coast of California (Oftedal 2007), 

and chitons were rarely observed on pier pilings in Morro Bay (pers obs.). 

Additionally, Hughes et al. (2013) demonstrated that sea otter predation on crabs 

can have cascading effects to lower trophic levels within an estuary. We 

therefore investigated how sea otter predation on crabs affects the abundance of 

W. subatra within the Morro Bay fouling community. We hypothesized that sea 

otter predation on Romaleon antennarium crabs would facilitate the invasion of 

W. subatra, by releasing W. subatra from the disturbance caused by the crab 

foraging behavior. We aimed to: 1) determine the proportion of crabs in the sea 

otter diet within Morro Bay, 2) quantify changes in W. subatra abundance in 

response to varying Romaleon antennarium crab densities, and 3) quantify crab 

densities and W. subatra abundance in a system open to sea otter predation. 
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2. METHODS 
 

2.1 Overview of Experimental Design 

We conducted a subtidal cage exclusion experiment to test whether sea 

otter predation on crabs indirectly facilitated the abundance of the non-native 

bryozoan, Watersipora subatra, on pier pilings. We used cages to exclude sea 

otters and to manipulate crab densities on six pier pilings at the North T-Pier in 

Morro Bay, CA (35.370716, -120.858288) (Fig. 1). Morro Bay is tidally influenced 

with a tidal range of 1.62 m between the Mean Higher High Water and the Mean 

Lower Low Water, reaching flow velocities of 3.6 knots near the mouth of the bay 

(Morro Bay Power Plant 2001). Depth at the North T-Pier ranges from 

approximately 3m to 9m (pers obs.). We selected wooden cylindrical pilings on 

the interior of the pier to avoid contact with vessels anchored to the pier. Pilings 

were divided into four faces based on the cardinal directions. On each piling, 

three of the faces were caged and assigned to one of the following treatments: 

no crabs (0 crabs/m2), low crab density (1 crab/m2), and high crab density (3 

crabs/m2). The fourth face of each piling remained uncaged, allowing a natural 

density of crabs in a system open to predation by sea otters and other predators. 

All four treatments were represented on each of the six pilings (Fig. 2). We 

ensured that each treatment faced each of the cardinal directions at least once 

by blocking for cardinal orientation on the first four pilings, and then randomly 

assigning the direction of treatments for the last two pilings (Supplementary 

material, Appendix 1, Table 3). For each of the treatments, six polyvinyl chloride 

(PVC) settlement plates were hung vertically against the piling surface (Fig. 2).  
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Prior to deploying the experimental setup, we performed point contact 

surveys on each face of the six pilings to determine the percent cover of W. 

subatra in the existing fouling community. The cage exclusion experiment 

commenced on May 18, 2017 and continued for ten months. We measured the 

percent cover of W. subatra on each settlement plate every other month from 

July 2017 through March 2018 using the photoQuad region count tool. We 

collected sea otter foraging data weekly from March 2016 to March 2018 at the 

North T-Pier to quantify the proportion of crab in the sea otter diet. 
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Figure 1. Map of Morro Bay, California, a tidally influenced estuary. The darker 
gray represents water and the light gray, green and white represent land. Our 
study site, the North T-Pier, is starred. Flow associated with tidal exchange runs 
along the channel. 
 
2.1.1 Cages 
 

We constructed eighteen cages (three per piling) using 16-gauge vinyl 

coated galvanized steel wire mesh with 1.27 x 1.27 cm openings (Fencer Wire). 

Esri,	HERE,	Garmin,	©OpenStreetMap	
contributors,	and	the	GIS	user	community

Morro	Bay	
North	T-Pier

0.3	Miles0.150
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We applied an additional anti-corrosion protective coating (Si-COAT 579 

Polysiloxane) to the caging material, which is environmentally benign once cured 

(CSL Silicones Inc. 2012). Each cage measured 4 m high x 0.25 m wide x 0.18 m 

deep (Fig. 2). The boundary of the un-caged treatment was delineated by the 

sides of the neighboring cages, and ranged between 0.25 m and 0.35 m wide 

depending on the circumference of the piling (between 1 m and 1.1 m). We 

chose these cage dimensions to allow for a block design, including all four 

treatments on one piling, and to accommodate the low-density crab treatment of 

one crab per m2. 

The cages were five sided, with an open back to allow the crabs to be in 

direct contact with the piling surface. The top and bottom of the cages were cut to 

match the curvature of the pier pilings, allowing the cages to lay flush against the 

piling surface. All cages had six side doors, three front doors, and doors on both 

the top and bottom (Fig. 2). These doors were all attached to the caging material 

using zip ties and fastened shut with a bungee cord to prevent crabs from 

escaping. The doors hinged open to allow access for cleaning the cages. Buildup 

of fouling organisms on the cages could alter the composition of the fouling 

community on the settlement plates, either by preventing the flow of water and 

larvae into the cage, or by decreasing flow and trapping larvae within the cages 

(Miller and Gaylord 2007, Nowell and Jumars 1984). In order to prevent potential 

cage effects, SCUBA divers cleaned the cages every other week using scrub 

brushes and metal scrapers. 
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Figure 2. Diagram depicting experimental design. Left is a bird’s eye view of a 
pier piling with all 4 treatments represented on a single piling. Three faces of the 
piling were caged and assigned to one of the following treatments: no crab 
treatment (0 crabs/m2), low crab density (1 crab/m2), and high crab density (3 
crabs/m2). The fourth face of each piling remained uncaged, allowing a natural 
density of crabs (N) in a system open to sea otter predation. Right is a 
representation of the predatory exclusion cages. The cages measured 4 m tall x 
.25 m wide x .18 m deep and had 6 side doors, 3 front doors, and doors on both 
the top and bottom that all hinged open. The cages were 5 sided so that crabs 
could be directly exposed to the piling surface. The six grey squares represent 
settlement plates. The cages were secured 0.61 m above the benthos. 
 

We attached three cages to each pier piling using twelve, 1.83 m long high 

tensile strength cable ties, which fed through the caging material of all three 

cages and cinched the cages tightly against the piling surface. The bottoms of 

the cages were secured 0.61 m above the benthos, such that at high tide the 

tops of the cages were submerged between 1.5-3 m below the surface, and at a 

0.15 m low tide, all cages remained fully submerged. However, the upper parts of 
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some cages were exposed at negative low tides. To minimize gaps between the 

cage and piling, a 0.25 m long piece of Gutter Guard plastic mesh (Miners Ace 

Hardware) was zip tied to the caging material at the top and bottom of the cages. 

We also used Gutter Guard plastic mesh and recycled bicycle tubing to minimize 

gaps on the sides of the cages. 

2.1.2. Settlement Plates 

To measure any differences in the abundance of W. subatra across 

treatments and over time, we deployed six, 24.7 cm x 24.1 cm grey PVC 

settlement plates within each treatment group. Prior to deploying the settlement 

plates, we roughened the plate surface with sandpaper to encourage settlement 

(Marshall and Keough 2004). We drilled a small hole in each corner of each 

settlement plate, 1.5 cm in from each side, for a zip tie anchor point. A handle 

and a small notch extended out from the 24.7 cm x 24.1 cm area to reduce 

disturbance of the fouling community during handling of the settlement plates 

(Supplementary material, Appendix 1, Fig. 8). For the caged treatments, the 

settlement plates slid into a PVC track that was zip tied to the cage. The notch 

and handle stuck out through the caging material, functioning to hold the 

settlement plate in place. For the un-caged treatment, we secured the settlement 

plates to the wire mesh material of the neighboring cages using zip ties. The 

settlement plates were placed 38.1 cm from the top and bottom of the cage and 

were evenly spaced 30.5 cm apart. A small gap remained between the 

settlement plates and piling surface for all treatment groups, which allowed crabs 

to fit behind the settlement plates. 
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2.1.3. Crabs 

We chose to use Romaleon antennarium (formerly Cancer antennarius) 

crabs in the field experiment because: (1) they are a known sea otter prey item 

(Oftedal 2007, Hughes et al. 2013), (2) they are relatively abundant on the pier 

pilings at the Morro Bay North T-Pier (Supplementary material, Appendix 1, Fig. 

9), and (3) they occur in higher densities on vertical man-made structures than 

on the surrounding benthos (Page and Dugan 1999). The low-density crab 

treatment of one crab per m2 was based on the naturally occurring R. 

antennarium crab density on the pier pilings at the North T-Pier in Morro Bay, 

which is subject to sea otter predation (Hatfield et al. 2018). We initially selected 

four crabs per m2 for the high-density treatment, based on the highest published 

R. antennarium densities found on an oil platform structure in the waters offshore 

of Goleta, California (Page and Dugan 1999), which is outside the range of the 

southern sea otter (Hatfield et al. 2018). However, these densities were not 

sustainable over the long-term, as cannibalism at these densities was high and 

survival rates of the smallest crabs were low. Therefore, we reduced the high-

density treatment to three crabs per m2 within the first four weeks of the field 

experiment. 

All R. antennarium crabs were collected from the Cal Poly Pier in Avila 

Beach, CA. The crabs were housed in a flow-through sea water system and fed 

squid every 2-3 days until we amassed enough crabs to start the field 

experiment. We systematically assigned crabs to each treatment group to 

account for differences in crab size. All low-density treatments initially had a crab 
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between 84 and 92 mm, and all high-density treatments had an even distribution 

of small (61-72 mm) medium (76-97 mm) and large (>98 mm) crabs. All crabs 

were transported from the Cal Poly Pier in Avila Beach, CA to the Morro Bay 

North T-Pier and deployed into their respective low-density or high-density crab 

treatment cages. 

We checked the density of crabs within all the caged treatments every 

other week to ensure that the crab densities remained consistent for each 

treatment. Although the cages were secured tightly against the piling, small gaps 

allowed some small juvenile crabs (approximately 10-50mm) to move freely in 

and out of the cages. Octopus were able to fit through the caging material as 

well. We removed any octopus and extra crabs found in the cages and replaced 

any missing or dead crabs with a similarly sized crab (minimum crab size 60 

mm). To prevent double counting of crabs within the high-density crab treatment, 

we attached different colored rhinestones to the carapace of each crab using 

Super Glue (ethyl cyanoacrylate) (Stachowicz and Hay 1999). For the un-caged 

treatment, we measured both the density and sizes of all species of crabs on the 

un-caged area of each piling every other month for the entire duration of the 

experiment. Sea otters, octopus, and sea stars had access to the un-caged 

treatment area. 

2.1.4. Watersipora subatra sampling method and photo analysis 

We photographed all settlement plates on the surface to measure the 

abundance of W. subatra in July 2017, September 2017, November 2017, 

January 2018, and March 2018. SCUBA divers attached settlement plates to a 
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1.3 m high x 1.7 m wide x 0.3 m deep frame constructed of PVC and plastic 

netting (Ace Hardware Tenax Snow Guard Fence) affixed with carabiner clips. 

The frame enabled divers to pull up all 24 settlement plates from a single piling at 

one time. A surface support team photographed the settlement plates using a 

DSLR camera (Canon EOS 70D(W) 20.2 megapixels) with a macro lens (Canon 

EFS 60 mm) and immediately returned the settlement plates to the water. In 

order to reduce edge effects, we set the quadrat boundary 1.5 cm in from all 

sides of the settlement plates, creating a 21.7 cm x 21.1 cm quadrat boundary. 

Percent cover of W. subatra on each settlement plate was calculated using the 

photoQuad region count tool. We calibrated each image, delineated the quadrat 

boundary, and identified all W. subatra species regions by outlining all W. 

subatra colonies within the quadrat boundary. The photoQuad program 

calculated the percent cover of W. subatra based on the number of pixels 

assigned to W. subatra divided by the total number of pixels within the quadrat 

boundary (Trygonis and Sini 2012). 

2.1.5. Sea Otter Foraging 

We collected sea otter foraging data weekly from March 2016 to March 

2018 using land-based high power (50x) Questar field telescopes and binoculars 

(8-24x). We recorded foraging observations on untagged sea otters in close 

proximity to our study site. Most observations were made within 5-80 m of the 

study site and all observations were made within 200 m. Following standard 

methods developed by Watt et al. (2000) and Ralls et al. (1995), we identified 

each sea otter prey item to the lowest taxonomic level possible for all successful 
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dives. We calculated the proportion of crab in the sea otter diet by dividing the 

total number of crabs caught across all feeding observations by the total number 

of prey items caught. We also collected opportunistic data on the number of 

otters foraging near the study site while diving and performing other fieldwork at 

the study site. 

2.2 Statistical Analyses 

To account for the repeated measures aspect of our experimental design, 

we performed a general linear mixed model with compound symmetry covariance 

structure to test for differences in the percent cover of W. subatra across 

treatments and over time. The percent cover of W. subatra was logit percent 

transformed to homogenize variance and normalize the distribution of residuals 

(Supplementary material, Appendix 1, Fig. 10). The logit percent transformation 

corrected for the severe non-normality of the un-transformed residuals, but was 

still non-normal based on a Shapiro Wilk’s test (p=<0.0001). However, we 

proceeded with the analysis using the logit transformation, because residuals 

using the transformation more closely followed a normal distribution, with less 

skew, fewer outliers, and no obvious deviations from the expected values 

(Supplementary material, Appendix 1, Fig. 11). We included treatment, sample 

month, vertical panel position, orientation of each treatment group, and 

interactions between month and treatment, month and vertical panel position, 

and treatment and vertical panel position as fixed effects. Because W. subatra 

has non-feeding larvae with a short larval duration after being released from the 

source colony (Marshall and Keough 2003), we accounted for natural variation in 
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W. subatra abundance on the pier pilings by including the initial percent cover of 

W. subatra on the piling surface within each treatment area as a fixed effect 

covariate. We transformed the initial percent cover of W. subatra to correct for 

skewness by adding a constant of 1.5 and performing a logit percent 

transformation. The constant of 1.5 was chosen because it was half of the 

smallest non-zero value for the initial percent cover of W. subatra. We 

considered a higher order model that included a quadratic term for the initial 

percent cover of W. subatra, but the quadratic term was non-significant, so was 

excluded in our final analysis. Piling and panel ID were included as random 

effects: piling as a block and panel ID for the repeated measures. 

         We compared the compound symmetry mixed model to models with 

autoregressive and Toeplitz covariance structures. There was little difference in 

both AIC and BIC across the models. The autoregressive model was the poorest 

fitting model, as the AIC was the same as the compound symmetry model, and 

the BIC was higher. The Toeplitz model had a marginally smaller AIC than the 

compound symmetry model, but the BIC was the same. We decided to proceed 

with the simpler model, with compound symmetry covariance structure, because 

the AIC for the Toeplitz model only differed by 1.5% (Supplementary material, 

Appendix 1, Table 4). 
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3. RESULTS 

3.1 Patterns in Watersipora subatra abundance across treatments and over 

time 

Treatment, month, and the interaction between treatment and month were 

significant predictors of the percent cover of W. subatra (Table 1). We observed 

a trend of decreasing percent cover of W. subatra with increasing crab density 

within the caged treatments for each month (Fig. 3A). Although the pattern was 

consistent across months, results from the post hoc comparisons using a 

Bonferroni correction (α =0.0083) indicated that the differences in the percent 

cover of W. subatra across the caged treatments were not significant for every 

month. The high crab density treatment had a significantly lower percent cover of 

W. subatra than the no crab treatment in September and November, and 

significantly lower percent cover of W. subatra than the low crab density 

treatment in September only (p=<0.0001, Fig. 3A). 

 
Table 1. Summary of the fixed effects tests for the linear mixed model analyzing 
logit transformed Watersipora subatra percent cover across several predictor 
variables. Significant p-values at α=0.05 are in bold font. 
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Figure 3. A) Plot of modeled mean percent cover of Watersipora subatra across 
treatment groups by month. Values have been back transformed from the logit 
percent scale to the standard percent scale. Error bars represent standard error 
about the mean. Different letters denote significantly different means based on a 
post hoc test with α =0.0083 using a Bonferroni correction. Statistical 

A

B
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comparisons were only done between treatment groups within the same month. 
B) Modeled mean percent cover of Watersipora subatra across treatment groups, 
including data from September, November, January, and March. Values have 
been back transformed from the logit percent scale to the standard percent scale. 
Error bars represent standard error about the mean. Different letters denote 
significantly different means based on a post hoc Tukey test with α =0.05. 

 

We observed the highest abundance of W. subatra in the un-caged 

treatment for all months, except September, which was the first month of 

sampling (Fig. 3A). The un-caged treatment had a significantly greater 

abundance of W. subatra than the high crab density treatment for all months 

(p=<0.0001, Fig. 3A). Additionally, the percent cover of W. subatra in the un-

caged treatment was significantly greater than all other treatments in November, 

and greater than both the low and high crab density treatments in January (Fig. 

3A). 

         The percent cover of W. subatra varied significantly across treatments 

(p=<0.0001, Table 1), reflecting the trends observed within each month (Fig. 3A). 

Within the caged treatments, the percent cover of W. subatra significantly 

decreased with increasing crab density (Fig. 3B). Overall, the un-caged treatment 

had significantly greater abundance of W. subatra than both the low and high 

crab density treatments (p=<0.0001), but was not significantly different from the 

no-crab treatment (p=0.059, Fig. 3B). 

There was a significant increase in the overall abundance of W. subatra 

(averaged across all treatments) over time, except between November and 

January (Fig. 4). However, the relationship between month and the percent cover 

of W. subatra varied significantly by treatment group (p=<0.0001, Table 1). The 
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high crab density treatment had a steady increase in W. subatra abundance over 

time, whereas all other treatments experienced a decline in W. subatra 

abundance in January. 

 

Figure 4. Modeled mean percent cover of Watersipora subatra across months, 
including data for all treatment groups. Months are listed in chronological order 
from September 2017 through March 2018. Values have been back transformed 
from the logit percent scale to the standard percent scale. Error bars represent 
standard error about the mean. Different letters denote significantly different 
means based on a post hoc Tukey test with α =0.05. 
 

3.2 Patterns in Watersipora subatra abundance across vertical panel 

position and cage orientation 

         The percent cover of W. subatra varied significantly across cage 

orientation and vertical panel position (p=<0.0001, Table 1). The percent cover of 

W. subatra within the west facing treatment groups was significantly higher than 
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both north and south facing treatments, but did not differ from east facing 

treatments (Fig. 5). The relationship between the percent cover of W. subatra 

and vertical panel position varied significantly across months (p=<0.0001), but 

not across treatments (p=0.7068, Table 1). Although the interaction between 

position and month was significant (p=<0.0001), we observed a similar pattern 

across months, where the shallowest settlement plate (position 1) consistently 

had the lowest abundance of W. subatra (Fig. 6A). Based on post hoc 

comparisons using a Bonferroni correction (alpha=0.0033), position 1 

(shallowest) had a significantly lower abundance of W. subatra than position 5 in 

November and position 6 (deepest) in September (Fig. 6A). Overall, the 

shallowest settlement plate (position 1) had a significantly lower abundance of W. 

subatra than all other settlement plates (Fig. 6B), which reflected the pattern 

observed across vertical positions within each month. 
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Figure 5. Modeled mean percent cover of Watersipora subatra by cage 
orientation (cardinal directions: North, East, South and West) across the entire 
duration of the experiment and across all treatments. Values have been back 
transformed from the logit percent scale to the standard percent scale. Error bars 
represent standard error about the mean. Different letters denote significantly 
different means based on post hoc Tukey test with α =0.05. 



30 
 

  

Figure 6. A) Plot of modeled mean percent cover of Watersipora subatra across 
vertical panel positions by month, including data from all treatments. Position 1 is 

A

B
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the shallowest settlement plate, and position 6 is the deepest. Values have been 
back transformed from the logit percent scale to the standard percent scale. Error 
bars represent standard error about the mean. Red arrows denote means that 
are significantly different from one another based on a post hoc test with α 
=0.0033 using a Bonferroni correction. Statistical comparisons were only done 
between vertical panel positions within the same month. B) Modeled mean 
percent cover of Watersipora subatra by vertical panel positions (1=shallowest, 
6=deepest) across the entire duration of the experiment, including data from all 
treatments. Values have been back transformed from the logit percent scale to 
the standard percent scale. Error bars represent standard error about the mean. 
Different letters denote significantly different means based on post hoc test with α 
=0.05. 
 

3.3 Patterns in Watersipora abundance across pilings and settlement plates  

The initial percent cover of W. subatra within each treatment area 

(p=0.1091, Table 1) and the random effect of piling (p=0.2485, Table 2) were not 

significant predictors of the abundance of W. subatra. There was significant 

variation in the abundance of. W. subatra across settlement plates (p=<0.0001, 

Table 2).   

 

Table 2. Summary statistics of the random effects for the linear mixed model 
analyzing logit transformed Watersipora subatra percent cover across piling and 
individual settlement plates. Significant p-values at α=0.05 are in bold font. 
Random 
Effect 

Variance 
Ratio 

Variance 
Component 

Std 
Error 

Wald p-
Value 

Percent of Total 
Variation 

Piling 0.1169 0.0839 0.0727 0.2485 6.40 
Settlement 
Plate.ID 0.7107 0.5101 0.0932 <.0001 38.88 
Residual  0.7178 0.0504  54.72 
Total   1.3118 0.1211   100 
 

3.4 Crab density surveys 

         Romaleon antennarium (pacific rock crab), Loxorhynchus spp., 

Loxorhynchus crispatus (decorator crab), and Pachygrapsus crassipes (striped 
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shore crab) were observed on the piling surface and settlement plates within the 

un-caged treatments. We were not able to distinguish between juvenile L. 

crispatus (decorator crab) and L. grandis (sheep crab), so they were both 

categorized as Loxorhynchus spp. The overall mean crab density in the un-

caged treatment was 3.08 crabs/m2 with a mean size of 26.4 mm. While the 

overall mean density of the un-caged treatment resembled the high crab density 

treatment of 3 crabs/m2, the mean crab size was substantially smaller in the un-

caged treatment. The smallest crab placed in the high crab density treatment 

was 60 mm. The mean R. antennarium crab density in the un-caged treatment 

was 1.33 crabs/m2, and the mean size was 32.6 mm, with a range from 14 mm to 

78 mm. The mean R. antennarium density in the uncaged treatment more closely 

resembled the density of crabs in the low crab density treatment (1 crab/m2); 

however, the size of the R. antennarium crabs in the low crab density treatment 

ranged between 60 mm and 112 mm. The overall mean crab density and the 

mean R. antennarium crab density decreased over time, with the exception of a 

slight increase in the mean R. antennarium crab density from January to March. 

3.5 Sea Otter Diet and Predator Presence 

Sea otters were observed foraging at the study site throughout the entire 

duration of the experiment. Based on data collected from 851 sea otter foraging 

dives, we found that sea otters primarily consumed clams and crabs, comprising 

45.9% and 25.1% of their diet, respectively (Fig. 7). We confirmed the Needles et 

al. (2015) observations of sea otters preying on mussels within Morro Bay, and 

found that mussels comprised 12.2% of the otter diet. Octopus, other bivalves, 
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urchins, worms, sea stars, barnacles, and non-prey items (i.e., empty shells, 

litter) collectively comprised 4.1% of the otter diet. The remainder of the otter diet 

(12.7%) consisted of unknown prey items (Fig. 7), which we were not able to 

identify due to small sizes, obstructed view, or rapid handling times. Although not 

all crabs were identified to species level, R. antennarium, other rock crabs 

(Cancer productus), shore crabs (Pachygrapsus crassipes, Hemigrapsus 

oregonensis), kelp crabs (Pugettia producta), and decorator crabs (Loxorhynchus 

crispatus) were present in the otter diet. We observed one foraging bout in which 

the otter consumed crabs almost exclusively, eating 47 crabs in 60 minutes. On 

several occasions while diving and performing other fieldwork, we observed sea 

otters surfacing with R. antennarium crabs next to pier pilings at the study site, 

but these observations were not included in the diet calculations. 
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Figure 7. Relative percent of each prey type in the sea otter diet at the Morro Bay 
North T-Pier based on observational foraging data collected from May 2016 
through March 2018, including 851 foraging dives. The “other” prey category 
consists of prey items rarely eaten, including octopus, sea stars, other bivalves 
(i.e. cockles, scallops), worms, urchins, barnacles, sea stars, and non-prey items 
(i.e., empty shells, litter). 
 

In addition to otters actively foraging at the study site, we observed 

Pisaster ochraceus sea stars present on the un-caged surface of the pier pilings 

and Octopus spp. both near the un-caged treatments and occasionally within the 

caged treatments. On one occasion, we observed an octopus within the high 

crab density caged treatment consuming a Romaleon antennarium crab. All 

octopus were removed from the cages to prevent crab mortality. No sea stars 

were observed within the caged treatments, because the small openings 

prevented their access. 
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4. DISCUSSION 

Several studies have highlighted the importance of predators in providing 

biotic resistance to invasion (Elton 1958, Reusch 1998, Carlsson et al. 2009, 

Carlsson et al. 2011, Morris et al. 2015). However, there is a growing body of 

literature that suggests that predators could also indirectly facilitate the invasion 

of exotic species by preferentially consuming native species, and thereby 

releasing invaders from predation pressure and competition for resources (Shea 

and Chesson 2002, Keane & Crawley 2002, Colautti et al. 2004, Maron & Vila 

2001, Needles et al. 2015). Our study demonstrates that predators can also 

indirectly increase the abundance of invasive species by removing 

mesopredators that would otherwise reduce the abundance of the invader. The 

results of the sea otter foraging surveys and the caging experiment indicated that 

removal of crabs by sea otters can indirectly increase the abundance of W. 

subatra within the Morro Bay fouling community.  

The sea otter foraging surveys indicated that sea otters can limit the 

abundance of crabs on pier pilings through direct predation. Crabs were a main 

prey item in the sea otter diet within Morro Bay, comprising 25.1% of their diet. 

While we were not able to identify all crabs to the species level, we observed sea 

otters consuming Romaleon antennarium crabs at the study site. Even a few 

otters at a site could have large impacts.  We suspect that at our study site, some 

sea otters specialize on crabs, since we observed several foraging bouts where 

otters consumed crabs almost exclusively. Cancer crab specialization (including 

Romanelon antennarium- formerly Cancer) is well documented within Central 
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California (Estes et al. 2003, Tinker et al. 2006, Oftedal 2007). Moreover, the 

percentage of crabs in the sea otter diet within Morro Bay may be 

underrepresented due to the timing of our observations. Sea otters do actively 

forage at night when Cancer crabs are active, but our foraging surveys only 

included diurnal observations (Ostfeld 1982).  

While our foraging studies demonstrated the impact of otters on crab 

populations, our caging experiment demonstrated that Romaleon antennarium 

crabs reduce the abundance of W. subatra. This was supported by the 

significantly lower abundance of W. subatra in the high crab density treatment 

compared to the other caged treatments for all months combined (Fig. 3B) and 

an inverse relationship between crab density and W. subatra abundance within 

each month (Fig. 3A).  Although the mechanism behind why Romaleon 

antennarium crabs reduce W. subatra abundance is unknown, Aiken (2014) 

observed Metacarcinus gracilis crabs (formerly Cancer gracilis) destroying W. 

subatra bryoliths (large un-attached free-living colonies) while foraging for 

invertebrates (shrimp, annelids, and flatworms) living within the W. subatra 

colonies. Romaleon antennarium crabs are also scavengers (Carroll & Winn 

1989) and likely reduced the abundance of W. subatra on pier pilings through a 

similar mechanism. Although large W. subatra bryoliths may facilitate further 

spread of W. subatra (Aiken 2014), small fragments resulting from crab 

destruction of existing colonies are unlikely to aid in W. subatra dispersal, 

because small W. subatra fragments cannot reattach to hard substrates (Hopkins 

et al. 2011). Another mechanism by which Romaleon antennarium crabs could 
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reduce W. subatra abundance is through trampling newly settled W. subatra 

recruits, preventing successful establishment of W. subatra; we observed 

significant differences in W. subatra abundance across treatments before large 

3-dimensional foliose W. subatra structures had formed (Fig 3A). While this has 

not been studied in crabs, studies of limpets show that limpets bulldoze W. 

subatra recruits (Nydem & Stachowicz 2007).  

The significantly greater abundance of W. subatra in the un-caged 

treatment compared to the low and high crab density treatments (Fig 3B) could 

potentially be attributed to the presence of other crab species in the un-caged 

treatment or to smaller sized crabs in the un-caged treatment. In the caged 

treatments, all other species of crabs were removed from the cages every 2 

weeks and the average carapace size of R. antennarium was similar among the 

3 caged treatments (average size >60 mm). However, other crab species were 

present in our surveys of the uncaged treatment area and the crabs found had a 

much smaller carapace size (average size 26.4 mm). To understand whether 

other crab species affected the W. subatra abundance found in the uncaged 

treatment, we compared the low-density crab treatment to the uncaged 

treatment, as they had similar R. antennarium densities (uncaged R. 

antennarium density: 1.33/m2, low: 1/m2). If other crab species were negatively 

impacting W. subatra abundance, we would expect that the un-caged treatment 

would have a lower abundance of W. subatra than the low crab density 

treatment. However, if other crab species are not impacting W. subatra, we 

would expect there to be a similar abundance of W. subatra between the low 
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crab density and the un-caged treatment. We observed neither of these patterns. 

Instead, the un-caged treatment had a significantly greater abundance of W. 

subatra than the low crab density treatment, indicating that either other crab 

species have a positive effect on W. subatra abundance, or that some other 

factor is contributing to the increased abundance of W. subatra in the un-caged 

treatment. It is unlikely that other crab species would have a positive effect on W. 

subatra abundance, because Aiken (2014) found that another species, 

Metacarcinus gracilis, destroys W. subatra bryoliths. The underlying mechanism 

behind the destruction of W. subatra colonies was mechanical – crabs walking on 

and breaking apart pieces of the colony while foraging (Aiken 2014), which is 

likely a shared behavior across other crab species. 

The most parsimonious explanation for the higher abundance of W. 

subatra in the un-caged treatment is that the crabs found in the uncaged 

treatment were smaller than crabs in the caged treatments. We can look at the 

effect of size by comparing the high crab density treatment with the uncaged 

treatment, as they have similar overall crab densities (not just R. antennarium 

densities as in the above comparison to the low crab density treatment, un-

caged: 3.08/m2, high: 3/m2) but different crab sizes. The average carapace size 

for the high crab density treatments was >60 mm, compared to the average 

carapace size for the un-caged treatment of 26.4 mm. The increased abundance 

of W. subatra in the un-caged treatment compared to the high crab density 

treatment suggests that larger sized crabs have a greater ability to decrease W. 

subatra than smaller crabs.  
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Otters have been shown to reduce both crab populations and decrease 

average carapace size (California Department of Fish and Game 1976, Ostfeld 

1982, Oftedal 2007, Hughes et al. 2013). Sea otters preferentially consume 

larger, more calorically rich prey to maximize their rate of energy intake (Ostfeld 

1982). Their preference for larger prey sizes can provide refuge for smaller 

juvenile prey (Ostfeld 1982). It is likely that sea otters indirectly increase W. 

subatra coverage by reducing sizes of crabs present on the pier pilings, in 

addition to controlling crab densities.  

While sea otter predation on crabs clearly plays a role in increasing W. 

subatra abundance, other predators may also influence fouling community 

composition. The uncaged treatment allowed other predators (e.g. octopus, 

cabezon (Scorpaenicthys marmoratus) and sea stars) access to the settlement 

plates, which may explain the increased abundance of W. subatra in the un-

caged treatment compared to the low and high crab density treatments. Cabezon 

prey on juvenile R. antennarium crabs (Carroll & Winn 1989) and octopus prey 

on both juveniles and adults (Ambrose 1984). Therefore, cabezon and octopus 

may be contributing to the reduced R. antennarium density. We observed an 

octopus consuming an R. antennarium crab on one occasion. In addition, we 

observed Pisaster ochraceus sea stars within the un-caged treatments, and sea 

stars are known to increase W. subatra abundance by removing native space 

competitors (Needles et al. 2015). If octopus and sea stars also indirectly 

increase the abundance of W. subatra, sea otter predation on octopus and sea 

stars could potentially reduce the facilitative effects of sea otters on W. subatra 
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abundance. However, octopus and sea stars are rarely consumed by sea otters 

along the central coast (Oftedal 2007) and in Morro Bay specifically (Fig. 7); 

therefore, sea otters likely do not limit the top-down effects of octopus and sea 

stars. 

The cages themselves could potentially have had an effect on W. subatra 

abundance as well. However, it is unlikely that cage effects were responsible for 

the difference between the caged treatments and un-caged treatment, as cages 

would be expected to promote W. subatra growth (Needles 2015). The cages 

reduced flow velocities and increased larval retention, which would increase 

abundance of W. subatra within the caged treatments (Needles et al. 2015). We 

used the same caging material and mesh size, and conducted the experiment at 

the same site as Needles et al. (2015), so we would expect a similar effect. 

Additionally, the caged treatments were more shaded than the un-caged 

treatments. Low light conditions favor bryozoans (Pomerat & Reiner 1942, Jokiel 

1980, Baynes 1999), and W. subatra abundance is greater on shaded areas of 

pier pilings and settlement plates (Glasby 1999, Connell 1999). Given that the 

cages likely promoted W. subatra growth to some extent, the difference in W. 

subatra abundance between the un-caged and low and high crab density 

treatments may be underestimated. 

Differences in light and flow velocity may have impacted W. subatra 

abundance across depths. The shallowest settlement plate (position 1) 

consistently had the lowest abundance of W. subatra across months (Fig. 6A). 

This pattern was reflected in the significantly lower overall abundance of W. 
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subatra in position 1 compared to all other positions (Fig. 6A). The deeper 

settlement plates had decreased light and flow velocity (pers. obs.), which favors 

W. subatra growth (Glasby 1999, Connell 1999, Svanfeldt 2017).  

The differences in W. subatra abundance across cage orientations (Fig. 5) 

were likely an artifact of our experimental design rather than due to directional 

flow velocities. Morro Bay has mixed semidiurnal tides and the flow direction 

follows the channel (Walter et al. 2018), running Northwest (incoming) and 

Southeast (outgoing) along the North T-Pier (Fig. 1). Although W. subatra is 

generally more abundant in protected areas and low flow environments (Davis et 

al. 2002, Svanfeldt 2017), all orientations should be equally impacted by current. 

Therefore, the differences across orientations were likely due to an uneven 

distribution of treatments across orientations (Supplementary material, Appendix 

1, Table 3); the north and south facing sides had more high crab density 

treatments, which are associated with a lower abundance of W. subatra.  

The overall cover of W. subatra and the impact of treatments varied over 

time. The overall percent cover of W. subatra was lowest in September and 

generally increased over time with die-back in January (Fig. 4). This pattern was 

also reflected when comparing treatment impacts over time. The difference in W. 

subatra abundance between the high crab density and un-caged treatments was 

smallest in September and January. In addition, the un-caged treatment had a 

substantially higher percent cover of W. subatra than the low crab density 

treatment in every month except September. Run-off associated with seasonal 

variation in rainfall may influence fouling community composition (Rodriguez & 
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Ibarra-Obando 2008), and storm water run-off enters Morro Bay near the North-T 

pier (Morro Bay Power Plant 2001). However, the seasonal trends in rainfall 

(NOAA 2018) did not coincide with seasonal patterns in W. subatra abundance. 

Temporally variable recruitment may explain die back in January, but likely did 

not contribute to the low abundance of W. subatra in September (Nydam & 

Stachowicz 2007); W. subatra recruitment peaks September-November (Nydam 

& Stachowicz 2007). The lower abundance of W. subatra in September may 

instead be due to the timing of the experiment. September was the first measure 

of W. subatra abundance and the settlement plates had only been deployed for 3 

months. In addition, the relatively low abundance of W. subatra in the un-caged 

treatment in September may be explained by seasonal patterns in the 

abundance of R. antennarium crabs, which peak in the fall (Carroll 1982). The R. 

antennarium crab density within the un-caged treatment was highest in 

September (2.9 crabs/m2), and higher R. antennarium densities are associated 

with lower abundances of W. subatra. The seasonal patterns in W. subatra 

abundance are likely not linked to temporal variation in sea otter foraging, 

because sea otters actively foraged at the study site throughout the entire 

duration of the experiment.  

Sea otter predation has the potential to dramatically increase W. subatra 

abundance, because sea otters can facilitate the spread of W. subatra through 

two mechanisms. Sea otters can increase the abundance of W. subatra by 

removing R. antennarium crabs, which would otherwise reduce the abundance of 

W. subatra. Additionally, the relatively large proportion of mussels (12.2%) in the 
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sea otter diet supports the Needles et al. (2015) finding that sea otter predation 

on mussels facilitates the invasion of W. subatra by freeing up settlement space. 

Therefore, a large portion of the sea otter diet (>35% crabs and mussels 

combined) could contribute to the increased abundance of W. subatra in Morro 

Bay, potentially creating a conflict between sea otter recovery and management 

of invasive W. subatra.  

4.1 Implications for management of Watersipora subatra 

 Adopting preventative strategies and improving early detection of invaders 

is important for minimizing the conflict between sea otter recovery and invasive 

species management. Sea otters can indirectly increase the abundance of 

Watersipora subatra on pier pilings within Morro Bay through multiple 

mechanisms, and may therefore contribute to further spread of W. subatra. 

Harbors and estuaries serve as potential source populations for the spread of 

invasive species to the outer-coast (Zabin et al. 2018) and to other estuaries 

(Wasson et al. 2001; Ruiz et al. 2011; Zabin et al. 2014). Watersipora subatra 

populations within Morro Bay may contribute to further spread of W. subatra into 

the open coast and other estuaries. Thus, it is important for managers to focus 

on preventative measures (Hewitt et al. 2004, Hunsucker et al. 2019), and early 

detection and rapid response (Secord 2003, Williams & Grosholz 2008, Williams 

2007) to limit further spread of W. subatra. Specialized grooming, which involves 

regularly wiping hulls to dislodge newly settled fouling species before they can 

become established, can limit the spread of the Watersipora sp. complex via hull-

fouling (Hunsucker et al. 2019).  
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In addition, monitoring areas with high invasion risk has been suggested 

as an effective preventative strategy (Lodge et al. 2006, Simberloff et al. 2013). 

Monitoring W. subatra abundance in regions just outside of the southern sea 

otter range could improve early detection, and thereby increase the likelihood of 

eradication before sea otter arrival. For example, this strategy may be applied in 

the Half Moon Bay region, which is in close proximity to San Francisco Bay – a 

potential source for many invaders (Wasson et al. 2001); W. subatra has not yet 

been detected on the outer-coast adjacent to Half Moon Bay (Zabin et al. 2018), 

and this region is just beyond the current range of southern sea otters (Hatfield et 

al. 2018). Therefore, continued monitoring of the Half-Moon Bay region for W. 

subatra, may be a worthwhile investment to prevent further spread of W. subatra. 

4.2 Future work & implications for general invasive species management 

While our study demonstrates that sea otters can facilitate the invasion of 

W. subatra, top predators, including sea otters, could promote biotic resistance to 

invasion as well (Needles et al. 2015, Kremer & da Rocha 2016). Predators can 

increase the abundance of a particular invasive species, yet reduce abundance 

of another invader, and therefore may not change the overall proportion of 

invasive species present (Kremer & da Rocha 2016). The impact of top predators 

on invasive species depends on the prey preferences of the predator (Needles et 

al. 2015) and existing biotic interactions in the community (Bulleri et al. 2008). 

Given the variable effects of top predators on invasive species, we cannot 

reliably predict the impact of sea otters on other invasive fouling organisms, on 

W. subatra populations along the rocky open coast, or on invasive 
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mesopredators (such as the European green crab). Therefore, further study is 

needed to assess the net impact of sea otters, and other top predators, on 

community susceptibility to invasion.  

We can apply knowledge gained from studying the impacts of top 

predators on invasive species to develop effective management strategies and 

better predict future invasions (Bulleri et al. 2008, Kremer & da Rocha 2016). 

Augmentative biocontrol, which involves increasing abundance of native 

predators to control invasive species, has been suggested as a lower risk 

alternative to traditional biocontrol in marine environments (Secord 2003). Native 

predators that reduce overall community susceptibility to invasive species could 

be good candidates for augmentative biocontrol. Moreover, further study on the 

effects of top predators in invaded systems can also be applied to improve early 

detection, by identifying invaders likely to increase with predator recovery. 

Focusing eradication efforts on invasive species likely to benefit from predator 

recovery could help to minimize the potential conflict between predatory recovery 

and invasive species management. 
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APPENDIX A – SUPPLEMENTARY MATERIAL 
 
Table 3. Assignment of the orientation for each of the four treatments on all 6 pier 
pilings. We ensured that each treatment faced each of the cardinal directions at 
least one time by blocking for cardinal orientation on the first 4 pilings, and then 
randomly assigning the direction of treatments for the last two pilings. 

 
  
 
 
 

 
Figure 8. PVC settlement plate with handle and small notch extending outward 
from the 24.7cm x 24.1 cm panel area. 
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Figure 9. Mean crab density per m2 for all species observed in preliminary crab 
density surveys conducted in February 2016 prior to the caging experiment. We 
surveyed 9 pier pilings at the North T-Pier in Morro Bay using SCUBA. The gray 
shaded regions represent the distribution of the data and error bars represent 
standard error about the mean. The common names for the species list are as 
follows (from left to right): yellow shore crab, decorator crab, sheep crab, lined 
shore crab, pacific rock crab. 
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Figure 10. A) Plot of residuals vs. predicted values for model with percent 
Watersipora subatra as the response variable. B) Plot of residuals vs. predicted 
values for model with logit percent transformed Watersipora subatra as the 
response variable. 
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Figure 11. Distribution of residuals, normal quantile plot, and Shapiro Wilk test for 
A) model with percent cover of Watersipora subatra as the response and B) 
model with logit percent transformed percent cover of Watersipora subatra as the 
response. 
  
  
Table 4. Model comparison table showing AIC and BIC values for models with 
compound symmetry, autoregressive, and Toeplitz covariance structures. 

 
 
 
 

 

 

 

 


