Fire Protection/Life Safety Analysis

FPE 596 Culminating Project Garner A. Palenske

June 2019

MS Fire Protection Engineering
California Polytechnic State University
San Luis Obispo, CA

Statement of Disclaimer

This project report is a result of a class assignment; it has been graded and accepted as fulfillment of the course requirements. Acceptance of this report in fulfillment of the course requirements does not imply technical accuracy or reliability. Any use of information in this report is done at the risk of the user. These risks may include, but may not be limited to, catastrophic failure of the device or infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the project.

Keywords

Hotel, Life Safety Analysis, Performance-based Analysis, FDS

EXECUTIVE SUMMARY

The Gaslamp Hotel was analyzed for fire protection/life safety using two different methodologies; a prescriptive approach and a performance- based approach. Both considered the same features of the building.

The prescriptive analysis studied the variation of the building's fire protection/life safety components from those required by the applicable codes and standards. This analysis included building construction, fire resistance, fire suppression, fire detection, smoke control system, and egress systems.

The results of the analysis indicate that the building complies with the requirements of the applicable codes and standards, with three exceptions relating to occupant egress:

- The first-floor bar area: One exit is provided, however two are required. An additional exit through the restaurant is recommended.
- The 8th floor East and West Terrace areas: Only one exit from each space is provided, two are required. The use of horizontal exits along the east and west exterior walls are recommended. In addition, the east terrace requires the addition of a corridor and new exit door at the north end. The west horizontal exit can also be used to disperse pre-function occupants to the west.
- Eighth Floor Corridor 885: This is a dead end, which exceeds 20 feet in length. A door should be installed at the beginning of the corridor.

The performance-based approach included the evaluation of building occupant safety given two reasonable worst-case scenarios and two evacuation conditions.

The results of the time-based egress analysis indicate that occupants, both remote from and intimate with the fire origin, could safely egress the building prior to tenability conditions degrading to life threatening conditions. Despite the successful outcome of the analysis, a recommendation was made to add additional low-level exit signs with the intent of improving the inclination of occupants to egress through the corridors in low visibility conditions.

The structural analysis simulated the total burn out of the room of fire origin, which produced high temperatures for an extended period of time, 24 minutes. Two reasonable worst-case scenarios were considered.

The results of the first scenario indicate the increase in temperature of the reinforcing bars within the concrete floor slab did not cause a significant reduction in steel yield strength and that even at elevated temperatures the reinforced concrete floor slab could adequately support the applied load.

The results of the second scenario indicate that the reinforced concrete floor slab can still support the applied load, but only by a small margin. A recommendation is made to complete a higher order analysis to clarify the situation.

TABLE OF CONTENTS

EXE	ECUTIV	E SUMMARY	3
1		DDUCTION	
2	APPLI	12	
3	PRES	CRIPTIVE ANALYSIS	12
3.1		e Construction Elements	
	3.1.1	Fire Resistance Analysis	
	3.1.2	Interior Finish	
3.2	Smoke	e Control System	
		Supply System / Fire Flow Requirements	
3.4	Fire Su	uppression System	16
	3.4.1	Automatic Sprinkler System	16
	3.4.2	Fire Pump, Secondary Water Supply, and Standpipe Systems	
	3.4.3	Fire Suppression System Hydraulic Analysis	
	3.4.4	Kitchen Fire Suppression System	
	3.4.5	System Inspection, Testing and Maintenance Requirements	
3.5	Fire Er	mergency Voice/Alarm Communication System	
	3.5.1	System Description	22
	3.5.2	Initiation Devices	
	3.5.3	Notification Devices	
	3.5.4	System Documentation	26
	3.5.5	Record of Completion Documentation	26
	3.5.6	System Inspection, Testing and Maintenance	27
3.6	Secon	dary Power Systems	27
3.7	Occup	ant Egress System	27
	3.7.1	Egress Analysis	29
3.8	Conclu	usion-Prescriptive Analysis	30
4		ORMANCE-BASED ANALYSIS	
4.1	Goals	and Objectives	31
4.2	Egress	s Analysis	31
	4.2.1	Egress Calculations	31
	4.2.2	Fire Modeling Analysis	
	4.2.3	Time-based Egress Calculations	
		4.2.3.1 Limitations	40
	4.2.4	Tenability Analysis	
		4.2.4.1 Tenability Analysis Results	43
	4.2.5	Discussion/Conclusion	44
4.3	Structu	ural Fire Protection	

4.3.1.1 Design Fire Analysis	52
4.3.1.2 Structural Fire Analysis	54
4.3.1.3 Failure Analysis	55
4.3.1.4 Discussion/Conclusion	56
4.4 Conclusion- Performance-based Analysis	56
5 FIRE SAFETY MANAGEMENT PLAN	57
6 PROJECT CONCLUSION AND RECOMMENDATIONS	57
7 REFERENCES	59
8 APPENDICES	60
TABLE OF APPENDICES	
APPENDIX A - FLOOR PLANS	61
APPENDIX B - FIRE PROTECTION SYSTEM PLANS	62
APPENDIX C - FIRE PROTECTION SYSTEM HYDRAULIC CALCULATIONS	74
APPENDIX D - FIRE SUPPRESSION SYSTEM INSPECTION, TESTING, AND MAINTENANCE REQUIREMENTS	83
APPENDIX E - EVACS FLOOR PLANS	89
APPENDIX F - SEQUENCE OF OPERATION	97
APPENDIX G - SELECTED NOTIFICATION DEVICE CALCULATIONS	99
APPENDIX H - STANDBY POWER CALCULATIONS	101
APPENDIX I - EVACS RECORD OF COMPLETION	103
APPENDIX J - EVACS INSPECTION, TESTING, AND MAINTENANCE REQUIREMENTS _	116
APPENDIX K - OCCUPANT EGRESS PLANS	134
APPENDIX L - OCCUPANT EGRESS CALCULATIONS	141
APPENDIX M - COMPOSITE LIFE SAFETY PLANS	149
APPENDIX N - AVAILABLE STRUCTURAL DRAWINGS	156
APPENDIX O - STRUCTURAL CALCULATIONS	159
APPENDIX P - FIRE SAFETY MANAGEMENT PLAN	165

4.3.1 Fire Strategy _______52

INDEX OF FIGURES

Figure 1A and 1: Building Aerial View/ View from the South	8,9
Figure 2: First Floor Restaurant Area	9
Figure 3: Lobby Entrance	10
Figure 4: 8th Floor Gaslamp Terrace Area	10
Figure 5: 8 th Floor Employee Terrace Area	10
Figure 6: 8 th Floor Typical Ballroom/Meeting Room	11
Figure 7: Typical Guestroom	11
Figure 8: Fire Sprinkler Supply System	18
Figure 9: Standpipe System	18
Figure 10: Fire Pumps Discharge vs Sprinkler Demand Requirements	21
Figure 11: Design Fire Heat Release Rate Curve	35
Figure 12: Cell Size Input Data	36
Figure 13: ASET vs RSET	38
Figure 14: Delay Time Estimation	39
Figure 15: Limiting Conditions for Tenability Caused by Heat	42
Figure 16: Guestroom Door Closed - Guestroom Visibility	46
Figure 17: Guestroom Door Closed - Guestroom Co%	47
Figure 18: Guestroom Door Closed Temperature	47
Figure 19: Guestroom Door Open - Guestroom Visibility	48
Figure 20: Guestroom Door Open - Guestroom C0%	48
Figure 21: Guestroom Door Open - Guestroom Temperature	49
Figure 22: Guestroom Door Open - Fire Floor Visibility Lost @ 205 secs	49
Figure 23: Guestroom Door Open - Fire Floor Visibility @ 390 seconds	50
Figure 24: Guestroom Door Open - Fire Floor Temperature @ 390 secs	50
Figure 25: Guestroom Door Open - Fire Floor CO% @ 390 secs	51

INDEX OF TABLES

Table 1: Construction Resistance Requirements	12
Table 2: Fire Resistance Requirements	13
Table 3: Interior Finish Requirements	14
Table 4: Stairway and Elevator Hoistway Pressurization System Fan Information	14
Table 5: Sprinkler Design Criteria	16
Table 6: Sprinkler Hose Allowance and Duration Requirements	16
Table 7: Automatic Sprinkler Design Analysis Summary	20
Table 8: Standpipe System Design Analysis Summary	20
Table 9: EVACS Initiation and Notification Device Summary	24
Table 10: Notification Circuit Voltage Drop Calculations	25
Table 11: System Documentation	26
Table 12: Summary of Floor Occupancy and Required Number of Exits	28
Table 13: Per Floor Occupant Exit Width Analysis	30
Table 14: Design Fire Specification	35
Table 15: Fire Sprinkler and Smoke Detector Details	35
Table 16: Design Fire Fuel Reaction Data	36
Table 17: Fire Modeling Results	37
Table 18: RSET Calculations Evacuation Condition 1 - Global Evacuation	40
Table 19: RSET Calculations Evacuation Condition 2 - Zoned Evacuation of Fire Floor, Floor Above, and Floor Below	40
Table 20: Tenability Criteria	43
Table 21: %COHb Calculations Error! Bookmark not de	fined.
Table 22: Modeling Results-Evacuation	44
Table 23: Fuel Load Densities	
Table 24: Fuel Load Densites	54
Table 25: Compartment Dimensions	54
Table 26: Thermal Calculations	54
Table 27: Structural Analysis Results	56

1 INTRODUCTION

The Gaslamp Hotel, originally named the Water Front Tower, was constructed in the mid-late 1980s. Located in the Gaslamp District of the City of San Diego, the establishment is a favorite for business travelers.

The building recently underwent a major remodel, which included the change of franchise operator. Due to the extent of the work, the City of San Diego and the new hotel franchise required the building to be upgraded to the requirements of the 2016 edition of the California Building and Fire Codes.

The building is constructed of Type IA construction. This fully sprinklered building is 20 stories tall (no 13th floor), with a roof height of 180 feet (highest occupied floor 171 feet above grade), and thus considered a high-rise building. Total floor area is approximately 535,300 square feet.

Occupancy of the first floor includes entry, front desk, restaurant, kitchen, business center, and other hotel services. Floors 2-7 are utilized for automobile parking. In addition, a portion of the 7th floor is used for mechanical, laundry, and maintenance office space.

The 8th floor contains primarily assembly space consisting of small meeting rooms, the ballroom and space for necessary support functions (kitchen, mechanical, etc.). Floors 9-21 are guest room floors. The roof is unoccupied.

Representative photographs are shown in Figures 1-7. Floor plans can be found in Appendix A.

A fire protection/life safety analysis was performed for the Gaslamp Hotel. Two approaches were used, a prescriptive and a performance-based approach.

The prescriptive analysis investigates the building's compliance with the prescriptive requirements of the current edition of the applicable codes. However, the fire sprinkler, the secondary water supply, and the stairway pressurization systems were evaluated based upon the code adopted at the time of their original installation.

The performance-based approach evaluates the building's performance in two specially selected fire scenarios. Scientifically based performance objectives were developed upon which the building's performance was measured.

For liability reasons, the ownership of the building requested various details be modified such that any collusions drawn from this analysis would not be applicable to the actual building. This requested was honored.

Figure 1A: Building Aerial View

Figure 2: Building View from the South

Figure 3: First Floor Restaurant Area

Figure 4: Lobby Entrance

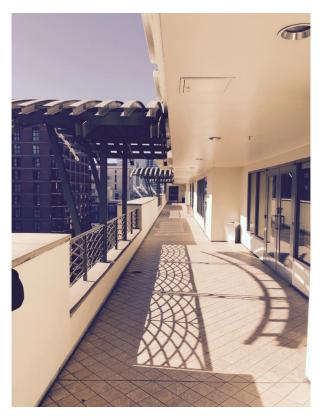


Figure 5: 8th Floor Gaslamp Terrace Area

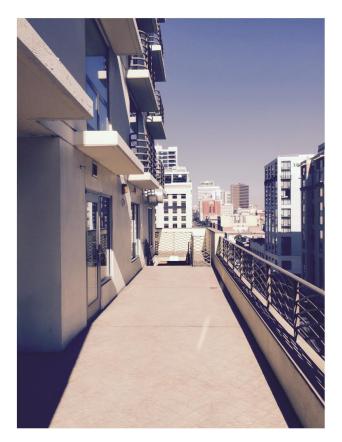


Figure 6: 8th Floor Employee Terrace Area

Figure 7: 8th Floor Typical Ballroom/Meeting Room

Figure 8: Typical Guestroom

2 APPLICABLE CODES AND STANDARDS

The following codes, standards, and other resources were used in the preparation of this report:

- California Building Code (CBC), 2016 Edition.
- California Fire Code (CFC), 2016 Edition.
- Uniform Building Code (UBC), 1979-1985 Editions.
- National Fire Protection Association (NFPA) 13, "Installation of Sprinkler Systems," 2016 Edition.
- National Fire Protection Association (NFPA) 13, "Installation of Sprinkler Systems," 1980 Edition.
- National Fire Protection Association (NFPA) 92, "Standard for Smoke Control Systems," 2012 Edition.
- National Fire Protection Association (NFPA) 72, "National Fire Alarm and Signaling Code," 2016 Edition.
- National Fire Protection Association (NFPA) 25, "Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems," 2013 California Edition.
- National Fire Protection Association (NFPA) 101, "Life Safety Code," 2015 Edition.
- National Fire Protection Association Hand Book (NFPA HB), "Fire Protection Handbook," 20th Edition.
- Society of Fire Protection Engineers Handbook of Fire Protection Engineering (SFPE HB),
 4th and 5th Editions.
- Numerous Papers and Literature as Referenced. See Reference section, Section 7.

3 PRESCRIPTIVE ANALYSIS

The following subsections summarize the fire protection/life safety features of the Gaslamp Hotel.

3.1 Passive Construction Elements

The Gaslamp Hotel is an example of Brutalism architecture, which was popular in the United States during the 1980's. Despite its apparently appropriate name, Brutalism is derived from the French term, beton brut, which translates to "rough concrete." It is essentially based on shaped and molded forms of concrete, a thick, masonry variation of modernist architecture. Although unpopular today, this type of construction has excellent fire-resistant characteristics.

The required fire resistance ratings of key non-structural life safety elements are shown in Table 1. As previously noted, the building construction is Type IA. Construction material is poured in place reinforced concrete.

Fire Resistance Element Reference **Notes** Rating (CBC) CBC 713.4 4 Stair Enclosures 2-hour (Connecting three floors or more) Exit Corridors (R-1 only) Table 1020.1 1-hour 2 Elevator Shafts 2-hour CBC 713.4 Other Shafts 1-hour CBC 403.2.1.2 Sprinklers at top and at (Connecting three floors or more) alternate floor levels

Table 1: Construction Resistance Requirements

¹ Paradis, Thomas, American Styles of Architecture, https://architecturestyles.org/

3.1.1 Fire Resistance Analysis

The fire resistance requirements for this Type IA building were evaluated using the 2016 edition of the CBC. Table 2 provides a summary of these requirements as well as the materials of construction. Based upon drawing review, and minimal site observation, the building complies with these CBC requirements.

Table 2: Fire Resistance Requirements

Element	Required Fire Resistance Rating	Reference (CBC)	Construction Materials
Columns (Primary structural frame)	3-hour	Table 601	Poured in place, reinforced concrete, 12-36 inches thick (12 inches required Table 721.1 Min cover over reinforcing steel in accordance with Table 722.2.3.
Beams (Primary structural frame)	3-hour	Table 601	Poured in place, reinforced concrete, 12-30 inches thick (10 inches minimum required CRST ETN-B-1-16). Min cover over reinforcing steel in accordance with Table 722.2.3.
Floor, Ceiling Assemblies	2-hour	Table 601	Poured in place, reinforced concrete, 9-inches thick (5 inches required Table 7.21.1(3)). Min cover over reinforcing steel in accordance with Table 722.2.3.
Roof Assembly	1½-hour	Table 601	Same
Exterior Walls	Non-rated on south, east, and west sides of the building due to > 30 ft. yards. 3-hour on north side of the building	Table 602	Poured in place, reinforced concrete, 8-inches thick (6.2 inches required Table 722.2.31). Min. cover over reinforcing steel in accordance with Table 722.2.3.
Exterior Wall Opening Protection	Non-rated on south, east, and west sides of the building. North side requires 1½-hour.		No openings provided in 3-hour north wall.
Interior Bearing Walls	3-hour fire barrier, Openings 3-hour	Table 601	Poured in place, reinforced concrete, 12-30 inches thick (6.2 inches required Table 722.1.1(3)). Min. cover over reinforcing steel in accordance with Table 722.2.3.
Interior Non-bearing Walls and Partitions	Non-rated (unless required by other parts of the CBC)	Table 601	Two-layers of 3/8 in. Type X gypsum board, UL assembly No. U-465.
Fire Resistant Assembly Joints (The building does not have a curtain wall system)	Tested in accordance with ASTM E1966 or UL 2079. Exterior wall joint rating is required only for north side of the building, as other sides are non-rated.	715	No documentation found. Destructive testing with replacement of joints required.
Fire Resistant Assembly Penetrations	Approved penetration fire stop system tested in accordance with ASTM E814 or UL 1479.	714	No documentation found. Replacement of fire stop systems required.
Stair Enclosures (Connecting three floors or more)	2-hour fire barrier, Openings 1½-hour.	713.4	Poured in place, reinforced concrete, 8-inches thick (5 inches required Table 721.1(3)). Min cover over reinforcing steel in accordance with Table 722.2.3.
Exit Corridors (R-1 Occupancy only, others non-rated)	1-hour fire barrier, 20-minute door or opening protection.	Table 716.5, Table 1020.1	Two- layers of 3/8 in. Type X gypsum board, UL assembly No. U-465.
Elevator Shafts	2-hour fire barrier, Openings 1½-hour	713.4	Poured in place, reinforced concrete, 8-inches thick (5 inches required Table 7.21.1(3)). Min cover over reinforcing steel in accordance with Table 722.2.3.
Other Shafts (Connecting three floors or more)	1-hour	403.2.1.2	Poured in place, reinforced concrete, 8-inches thick (3.5 inches required Table 721.1(3)). Min cover over reinforcing steel in accordance with Table 722.2.3.

3.1.2 Interior Finish

The building complies with the interior finish requirements of the CBC as shown in Table 3. These requirements are based upon the assumption that the building is fully sprinklered.

Table 3: Interior Finish Requirements

Occupancy	Occupancy Stairs, Exit Passageways		Rooms
A-2, A-3	В	В	С
B, M, R-1	В	С	С
F	С	С	С
S	С	С	С

3.2 Smoke Control System

The building is provided with stairway and elevator hoistway pressurization. The design approach of both systems is to maintain a pressure differential of 0.05 inches of water column from inside of the shaft to surrounding areas. This pressure difference is intended to prevent smoke migration into the stair and elevator shafts thereby compromising tenability in the stairs and allowing smoke migration into other portions of the building.

System fan sizes are shown in Table 4. Fans are located upon the top of each shaft, providing only one injection point for the supply air. The current CBC requires multiple injection points to prevent the opening of an adjacent door from marginalizing the pressure differential. The legacy codes do not. The fan sizes are consistent with the general guideline of 800 cfm per floor.²

Until 1994, the City allowed vestibules to be excluded if a heliport was provided at the top of the building.³ The building complies with these requirements, a heliport is provided and vestibules are not.

The system is activated upon sprinkler system water flow or system smoke detection activation. Alarm signals are sent to the EVACS panel and then to the mechanical control system. An alarm signal is then sent to the central station.

In addition, passive smoke control features, including auto and self-closing doors close upon activation of the EVACS. Smoke and fire dampers are closed upon activation of duct or system smoke detectors. The Sequence of Operation is shown in Appendix F.

Overall, the system does not comply with current requirements, but was allowed to remain in current condition because it apparently compiles with the requirements of the original code of record. For this analysis, it is considered acceptable.

Table 4: Stairway and Elevator Hoistway Pressurization System Fan Information

Zone	Fan Size (supply)
Stair 1	14,500 cfm
Stair 2	16,800 cfm
Elevator Shafts 1-5	12,000 cfm

² Palenske, Garner, Aon Fire Protection, Comparisons of High-rise Building Supply Fan Capacities, 2009.

³ San Diego Municipal Code, Pre-1994.

3.3 Water Supply System / Fire Flow Requirements

The building is supplied by the San Diego City water system. This system can be described as well gridded, with a system of pumps and pressure reducing valves strategically placed to maintain adequate pressure. The water system is considered reliable. Water supply data furnished by the City of San Diego hydraulic model is as follows:

Static Pressure: 85 psiResidual pressure: 76 psi

• Flow: 1,335 gpm

The effective point of the test is on 7th Street between J and K Streets, which is on the east side of the building where the building's 6-inch fire protection connection is located. Since this data was developed by a hydraulic model, adjustments for seasonally pressure or flow fluctuations (i.e. safety factor) have been included in the data. A 6-inch Zurn Wilkin backflow prevention device is provided at the connection to the public water supply.

CBC Appendix B, Sections B104 and B105 provide the requirements for the fire flow needed for manual firefighting. Section B105.3 allows the fire flow for buildings equipped with an automatic sprinkler system to be based upon either the fire sprinkler demand, including hose allowance, or the area of the largest three successive floors, whichever is greater. Using the latter criterion, the fire area is 80,295 square feet (535,300 square feet/ 20 floors x 3 floors), resulting in a flow of 3,000 gpm at 20 psi. The largest fire sprinkler flow demand is 490 gpm (0.16 gpm/sq.ft. x 1,500 sq.ft. + 250 gpm hose allowance). Therefore, a fire flow of 3,000 gpm at 20 psi is required. Section B105 also requires minimum flow durations. The public water supply provides a reliable source thus, flow durations are assumed to be adequate. It should be noted that the required fire flow is greater than the flow provided by the water model. Discussions with City officials indicates that the slope of the water flow curve should remain constant up to at least 4,000 gpm.

The available pressure at a given flow can be calculated from the water test data provided by the City. Calculations are as follows⁴:

$$R_2 = -((S-R_1)(Q_2/Q_1)1.85 - S)$$

Given:

 Q_1 = Flow at Point 1 = 1,335 gpm

 Q_2 = Flow at Point 2 = 3,000 gpm

S = Static Pressure = 85 psi

 R_1 = Residual Pressure at Point 1 = 76 psi

R₂ = Residual Pressure at Point 2 = 45 psi

Or solving for Q2 at 20psi

 $Q_2 = Q_1(S-R_2)/S-R_1)^{0.54}$

Given:

 R_2 = Residual Pressure at Point 2 = 20 psi

 $Q_2 = 3,883 \text{ gpm}$

At 3,000 gpm, a pressure of 45 psi is available. Calculations also show the flow at 20 psi is 3,883 gpm. These flows and pressures are effective in the City main in 7th Street on the east side of the building. As shown by the calculations, adequate fire flow is provided by the City water system.

⁴ NFPA Fire Protection Handbook, page 1-101, 19th Edition.

3.4 Fire Suppression System

3.4.1 Automatic Sprinkler System

The building is protected by an automatic sprinkler system throughout. Quick response, ½-inch orifice, K=5.6 spray sprinklers are installed throughout the building, except in the parking garage areas, which are standard response. Sprinklers include recessed, pendant, and sidewall types (guest rooms and corridors). Sprinklers in the garage areas are corrosion resistant type. All sprinklers, with the exception of the sprinklers in the parking garage, were replaced during the 2000 building renovation. Design criteria by area is shown in Table 5. Hose stream allowance and water supply duration are shown in Table 6.

Table 5: Sprinkler Design Criteria

(NFPA 13, Section A5.2-5.3.1)⁵

Floor	Occupancy	Hazard Classification	Design Criteria
1	Lobby, Restaurants, Assembly	Light Hazard	0.10 gpm /sq.ft. for most remote 1,500 sq.ft. (225 sq.ft. max. per sprinkler)
	Back of House and Storage	Ordinary I	0.16 gpm/sq.ft. for the most remote 1,500 sq.ft (130 sq.ft. max. per sprinkler)
	Retail (Sundry Shop)	Ordinary II	0.21 gpm/sq.ft. for the room area (200 sq.ft. in size). (130 sq.ft. max. per sprinkler)
2-6	Automobile Parking	Ordinary I	0.16 gpm/sq.ft. for most remote 1,500 sq.ft. (130 sq.ft. max. per sprinkler)
7	Automobile Parking	Ordinary 1	0.16 gpm/sq.ft. for most remote 1,500 sq.ft. (130 sq.ft. max. per sprinkler.)
	Offices	Light Hazard	0.10 gpm/sq.ft. for most remote 1,500 sq.ft. (225 sq.ft. max. per sprinkler)
8	Assembly	Light Hazard	0.10 gpm/sq.ft. for most remote 1,500 sq.ft. (225 sq.ft. max. per sprinkler)
9-12, 14-21	Guest Rooms	Light Hazard	0.10 gpm/sq.ft. for largest room (225 sq.ft. max. per sprinkler)
	Corridors	Light Hazard	0.10 gpm/sq.ft. for most remote 1,500 sq.ft. (225 sq.ft. max. per sprinkler)
	Common areas, public assembly	Light Hazard	0.10 gpm/sq.ft. for most remote 1,500 sq.ft. (225 sq.ft. max. per sprinkler)

Table 6: Sprinkler Hose Allowance and Duration Requirements

(NFPA 13, Table 11.2.3.1.2)6

Occupancy	Inside Hose	Combined Inside/Outside Hose	Duration
Light Hazard	100 gpm	100 gpm	30 minutes
Ordinary Hazard	100 gpm	250 gpm	60 minutes

⁵ 1980 edition of NFPA 13, as indicative of the criteria used during the original building design.

⁶ Supervised sprinkler system, NFPA 13, Section 11.2.3.1.3.

3.4.2 Fire Pump, Secondary Water Supply, and Standpipe Systems

A 6-inch bulk main travels from the City connection through the first floor to the pump room and fills a 7,500-gallon atmospheric steel water storage tank. The tank level is maintained by a 6-inch modulating float valve located on the top of the tank. The tank feeds the fire pump, which supplies the fire sprinkler and standpipe systems. Schematic drawings of the systems are shown in Figures 8 and 9. The fire pump specifics are presented below.

• SPP Pumps, Model No. PCO5G, Serial No. USF-01-14-4504. U.L. listed, electric driven, spilt case centrifugal fire pump.

Rated Capacity: 1,000 gpmRated Net Pressure: 210 psi

Net Pressure at 150% Capacity: 136 psi (65% of rated pressure)

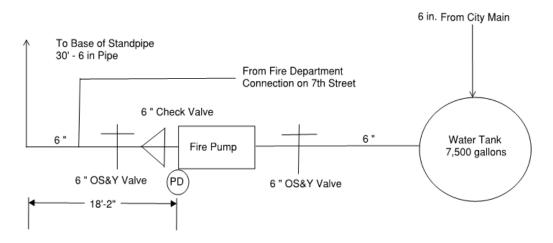
Rated Speed: 3,550 RPMMaximum Power: 227 bhp

The fire pump and water tank were installed when the building was originally built in the 1980s. The water tank was required by the Building Code (Uniform Building Code 1979-1985) to provide a secondary source of water in the event of a seismic event.

The criteria used during this period to determine the size of the water tank was the maximum sprinkler flow, plus 100 gpm hose stream allowance for a minimum of 30 minutes. Therefore, the calculated minimum tank size is 10,200 gallons (340 gpm (0.16 gpm/sq.ft. x 1,500 sq. + 100-gpm hose allowance) x 30 minutes). However, in the 1980s the local interpretation of this requirement was that the secondary supply was only for the protection of the high-rise portion of the building containing residential or business occupancies. These areas require light hazard protection. The size of the tank would then be 7,500 gallons (250 gpm (0.10 gpm/sq.ft. x 1,500 sq. + 100-gpm hose allowance) x 30 minutes) as was found during the site visit.

A 6-inch modulating fill valve is provided to fill the tank as the fire pump is discharging. This arrangement is defined as a break tank assembly, which was developed by FM Global in the 1970s or '80s. Using this design approach, the sizing of the tank inlet piping and the capacity of the public water supply are required to meet the fire pump discharge at 150% capacity, which is 1,500 gpm.

The public water supply is capable of providing 1,500 gpm at 74 psi effective at the connection in 7th Street (same calculation method as Section 3.3). Considering the pressure loss of the backflow device (19 psi), and the friction loss in the 6-inch lateral to the building, and piping to the water tank, the public water supply is capable of providing the needed flow. The break tank arrangement, which supplements the somewhat dubious tank sizing methodology, provides the fire pump an adequate water supply to supply the fire sprinkler system indefinitely. Assuming of course, the City water system is not impaired by a seismic event. Considering all these factors, the fire pump and tank assembly arrangement is considered adequate for the building. Section 3.6 presents a hydraulic analysis of the adequacy of the fire pump to provide the specific demands of the automatic sprinkler and standpipes systems.


Class I Standpipes are located in Stairs 1, 2, 3, and 4. Hose valves, 2½ inches in diameter, are provided on each floor level of each standpipe. The sprinkler system is supplied by a combination standpipe located in Stair 2. Roof manifolds are provided for the standpipes located in Stairs 1 and 2 (Stairs 3 and 4 serve only Floors 8 and below). The pump is designed to provide a pressure of 65 psi at a flow of 250 gpm at each standpipe for a total flow of 1,000 gpm at the roof or highest standpipe outlet¹⁰.

⁷ 1979-1985 UBC Section 1807

⁸ City of San Diego policies based upon 1979-1882 UBC Section 1807 defining a high-rise building as only a R-1 or B Occupancy.
⁹ In the mid-1990s the author requested a California State Fire Marshal (CSFM) opinion of this subject. As a result, the CSFM published the formal interpretation which states the pump and tank are required to be designed to protect all areas of a high-rise building, not just the portion above 75 feet from the fire department access point.

¹⁰ 1979 Uniform Building Code Standard 38-3, Section 38.303, 2(B)

The fire department connection located on 7th Street connects to the standpipe on the first floor, downstream of the fire pump. Should the standpipe system be used for manual firefighting, additional pressure, flow, and supply duration is provided by fire department apparatus via connection to the nearest fire hydrant.

Fire Pump Schematic Section (NTS)

Figure 9: Fire Sprinkler Supply System

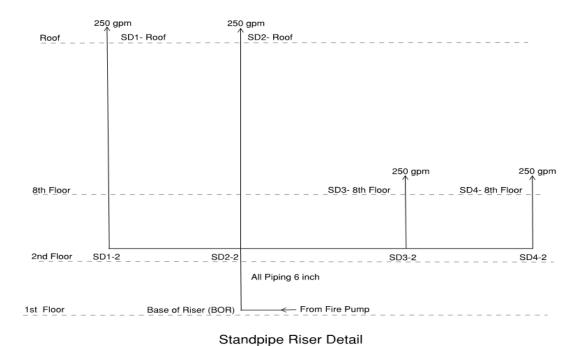


Figure 10: Standpipe System

(NTS)

3.4.3 Fire Suppression System Hydraulic Analysis

Plans of the fire protection systems for the building were not available. Basic schematic plans were prepared based upon information acquired by site survey (See Appendices B and C). These plans and calculations were used to evaluate the hydraulic adequacy of the fire protection systems.

The review of the architectural plans identified the most hydraulically demanding areas for the sprinkler system. Given the ceiling of the top floor of the building is approximately 180 feet from the ground floor where the fire pump is located, areas on this floor (21st floor) were considered the most hydraulically demanding due to the 78-psi loss for elevation gain. Three areas were evaluated on this floor; Guestrooms 2101 and 2105, and Room 2119/2120, which is the Club Lounge. The two guest rooms are typical in size of those found throughout the building. The Club Lounge is the largest non-residential room on the floor.

The automobile parking areas were considered as well. The required design criteria for the protection of these areas is the largest of the building, 0.16 gpm / sq.ft. for the most remote 1,500 sq.ft. However, the parking areas are located in the lower areas of the building, the highest level occurring on the 7th floor. Intuitively, due to their low elevation, these areas were not considered among the most hydraulically demanding.

This is proven by the approximation shown below:

- Sprinkler discharge: 0.16 gpm. / sq.ft. x 1,500 sq.ft. = 240 gpm
- Hose allowance: 250 gpm
- Total flow required at pump discharge: 490 psi
- Pressure required (without 7th floor piping network losses): 7 psi sprinkler discharge + 27 psi elevation loss = 34 psi
- Standpipe and friction loss from the base of the standpipe to the pump discharge: Assumed negligible.
- Fire pump discharge at 490 gpm = 240 psi, reduced to 175 psi due to potential pressure reducing valves.
- Available 7th floor sprinkler piping network friction loss: 175-34 psi = 141 psi

Given the large pressure available for 7th floor piping network losses, it was concluded that the fire pump system provides adequate flow and pressure for the parking areas.

The largest conference room on the 8th floor, Room 808/809/810, located the farthest distance from the sprinkler riser was evaluated. This space is the most hydraulically demanding of the light hazard areas of the building due to size and height within the building.

Hotel guest rooms are separated from each other and other areas by one-hour rated walls with 20-minute opening protection (doors). Because of this compartmentalization, the room design method was used as allowed by NFPA 13, Section 11.2.3.3. All the sprinklers within the individual rooms were calculated.

The same design approach was used in the analysis of the Club Lounge.

The 8th floor conference was calculated using the standard density area method. However, the remote area was reduced due to the use of quick response sprinklers as allowed by NFPA 13 Section 11.2.3.2.3. Starting with a base 1,500 sq.ft. design area, a 40% reduction was taken given the 9-foot ceiling height (NFPA 13 Figure 11.2.3.2.3.1). This resulted in a remote area of 900 sq.ft.

As presented in Tables 7 and 8, adequate flow and pressure is provided by the fire pump and water tank for the automatic sprinkler and standpipe systems. See Figure 10 for a graphic presentation of this data.

Table 7: Automatic Sprinkler Design Analysis Summary

Floor/Area	Occupancy	Design Method/Criteria Used	Required Flow/Pressure at Pump Discharge	Provided Flow/Pressure at Pump Discharge ¹¹
21st Floor Room 2101	Guest Room	Room design method 0.10 gpm/sq.ft. for all sprinklers within room.	189 gpm/ 128 psi	189 gpm/ 175 psi
21st Floor Room 2015	Guest Room	Room design method 0.10 gpm/sq.ft. for all sprinklers within room	190 gpm/ 119 psi	190 gpm/ 175 psi
21st Floor Room 2119/2120	Club Lounge	Room design method 0.10 gpm/sq.ft. for all sprinklers within room	246 gpm/ 125 psi	246 gpm/ 175 psi
8th Floor Room 808/809/810	Conference Rooms	Standard density area method with quick response sprinkler area reduction. 0.10 gpm/sq.ft. for the most remote 900 sq.ft.	237 gpm/ 85 psi	237 gpm/ 175 psi

Table 8: Standpipe System Design Analysis Summary

Standpipe No.	Design Flow/Pressure	Required Standpipe Demand at Pump Discharge	Provided Standpipe Pressure/Flow at Pump Discharge
SP1	250 gpm/65 psi		
SP2	250 gpm/65 psi		
SP3	250 gpm/65 psi		
SP4	250 gpm/65 psi		
Total Standpipe System	1000 gpm/65 psi	1352 gpm/160 psi	1352 gpm/160 psi

¹¹ Pressure reducing valves set at 175 psi are provided at the sprinkler pipe connection to the riser on all floors. In reality, the maximum pressure available at the standpipe sprinkler system connection at each floor is 175 psi.

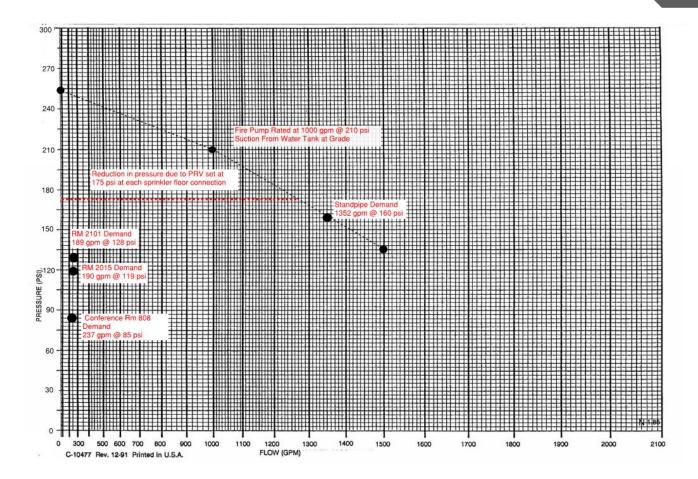


Figure 11: Fire Pumps Discharge vs Sprinkler Demand Requirements

3.4.4 Kitchen Fire Suppression System

The cooking areas of the kitchen are protected with a kitchen hood fire protection system. The system is a dry type and is activated automatically by fusible links locate over cooking devices or by manual pull as allowed by the CBC. The system is designed in accordance with the applicable standards.

3.4.5 System Inspection, Testing and Maintenance Requirements

NFPA 13 requires inspection, testing, and maintenance of fire sprinkler, standpipe, and fire pump/tank systems in accordance with the requirements of NFPA 25(California edition for this project) to provide at least the same level of performance and protection as designed. The owner or authorized representative bear the responsibility for completion of this program.

NFPA 25, Section 3.3.19 requires the service to be provided by a qualified State of California State Licensed C-16 contractor, a California State Fire Marshal Licensed A contractor, or a qualified owner's representative as permitted by Title 19.

Chapters 5-9 of NFPA 25 provides the minimum requirements for the inspection, testing, and maintenance of these systems. A detailed summary of inspection, testing, and maintenance scope and frequency is shown in Appendix D.

Review of the records for the programs shows that the Owner is following the requirements of NFPA 25. The inspections are completed by certified hotel staff and a State of California Licensed C16 sprinkler contractor. Repairs are made by the same contractor.

3.5 Fire Emergency Voice/Alarm Communication System

3.5.1 System Description

The original fire alarm system was recently replaced with a fire emergency voice/alarm communication system (EVACS) (CBC Section 907.5.2.2). The operation of any automatic fire or smoke detector, sprinkler waterflow device, or manual pull station will automatically sound an alert tone followed by voice instructions, which provide directions for occupant evacuation in accordance with the building's evacuation plan (CBC Section 907.5.2.2). Notification is zoned such that the fire floor, floor above, and floor below are notified simultaneously. The system also has the capability to broadcast live voice messages on a selective zone or all-call basis (CBC Section 907.5.2.2).

Drawings of the EVACS for the building were not available. Basic schematic drawings were prepared based upon information acquired by site survey. Drawings include the 8th floor, which is the home of the hotel's assembly space, and the 21st floor, which is a typical guest room floor. The location of the fire alarm control panel, inside the fire fighter control room on the first floor, is shown as well. The drawings are found in Appendix E.

All alarm, trouble, and supervisory signals received at the main FACP are sent off-site to a central monitoring station. The system is defined as a supervising station fire alarm system (NFPA 72, Section 3.3.282.). The sequence of operation for the system is shown in Appendix F.

The EVACS functions as an in-building Layer 1 Mass Notification System, which is defined as a means of notification of occupants by systems installed inside a building and controlled only by authorized users (NFPA 72, Section 24.3.8). The major difference between the EVACS and the mass notification system is the latter is designed based upon the findings of a risk analysis (NFPA 72, Section 24.3.11). The onsite risk analysis was reviewed and found to be adequate. The risk analysis is specific to the nature and anticipated risks of the facility. An emergency response plan was prepared (NFPA 72, Section 24.3.12). See Section 5.

Pathway survivability is a requirement for both EVACS and mass notification systems (NFPA 72, Section 24.3.13). The intent of this provision is to provide adequate protection of the system conductors such that fire exposure from within the building will not compromise system integrity. Because the occupant egress protocol requires only the fire floor, floor above, and floor below to evacuate in a fire condition, Level 2 or 3 pathway survivability is required (NFPA 72, Section 24.3.13.4.1). However, exception 1, allows Level 1 survivability when the notification zones are separated by less than 2-hour fire-rated construction. Level 1 survivability requires the building to be protected with a fire sprinkler system designed in accordance with the requirements of NFPA 13, and that all conductors are installed in metal raceways (NFPA 72, Section 12.4.2). Site inspection indicates the EVACS conductors are installed in metal raceways and, as previously presented in the fire sprinkler section, the building is properly sprinklered. Therefore, pathway survivability meets the requirements of NFPA 72.

The EVACS is controlled by an Edwards EST-3 fire alarm control panel (FACP). The FACP is located in Room 108, the fire fighter control room. The room is located adjacent to the main lobby of the building. The system supervises and controls initiating points such as detectors, manual fire alarm boxes, and input modules for monitoring other suppression systems and fire alarm equipment. Table 9 presents a summary of the fire alarm system notification and initiating devices installed in the building.

3.5.2 Initiation Devices

Smoke detection is provided:

- Above the FACP in the fire fighter control room (NFPA 72 Section 10.4.4)
- In each corridor serving guestrooms (CBC Section 907.2.8.2).
- At each door magnetically help open (CBC 907.3.3)
- In the elevator lobbies for elevator recall control functions (CBC Section 907.3.3, NFPA 72 Section 21.3.5).
- In each elevator machine rooms (CBC 907.2.13.1.1(1-2))
- In the main return air and exhaust plenums of each air-conditioning system having a capacity greater than 2,000 cfm and at each connection to a vertical duct or riser serving two or more stories from a return air duct or plenum of an air conditioning system. These are duct type smoke detectors (CBC 907.2.13.1.2(1-2).
- In guestrooms to provide local notification (CFC Section 907.2.11).
- Throughout the assembly space on the 8th floor. This was provided by the hotel's operator's fire protection requirements. The CBC does not require this.

The smoke detectors are Edwards Model SIGA2-PS Intelligent Photoelectric smoke detectors. These intelligent devices use an optical sensing chamber to detect smoke. The detector analyzes the sensor data to determine whether to initiate an alarm. The guestroom smoke detectors are provided with Edwards Model SIGA-AB4G sounder bases for local notification.

The maximum smoke detector spacing is 30 ft., and detectors are required to be located within 15 ft. of all walls. In addition, all points of the ceiling are required to have a detector within 0.7 times the listed spacing of the detector, 21 ft. (NFPA 72 Section 17.6.3.1.1). The system was found to comply with these requirements.

One manually activated initiating device (manual pull station) is provided adjacent to the FACP in the fire department control room (CFC Section 907.2). The pull station is located between 42 and 48 inches above the floor as required by the code (NFPA 72 Section 17.14.5).

Other initiating devices provided:

- Sprinkler water flow supervision devices
- Kitchen fire suppression system activation
- Addressable input modules are provided for monitoring the sprinkler system fire pump and control valves.

3.5.3 Notification Devices

The building is equipped with both audible and visual notification for all accessible public and common use areas (CBC Sections 907.5.2.1 and 907.5.2.3). Guestrooms are also provided with audible notification devices.

ADA complaint guest rooms are provided as required by the CBC. Of the 321 rooms in the facility, 20 are designated as ADA complaint and are provided with ADA complaint strobes (CBC Section 907.5.2.3.2). These guestrooms are located on the 11th, 15th, 18th, and 21st floors; there are five ADA-complaint rooms per floor. The guestrooms that were designated as accessible also included visual notification appliances activated by the building fire alarm system.

Activation of a guestroom smoke detector will sound a local alarm, activate the guestroom visual notification device, and send a supervisory alarm to the FACP.

The audible devices provided are designed to provide an average sound pressure level of 15 decibels above the average ambient noise level or 5 decibels above the maximum sound level having a duration of at least 60 seconds, whichever is greater (CBC 907.5.2.1.1). In addition, the maximum sound pressure level does not exceed 110 decibels at the minimum hearing distance from the audible device (CBC Section 907.5.2.1.2). In sleeping areas, the audibility is measured at pillow level.

The speakers are required to be located such that the bottoms of the devices are not less than 90 inches above the finished floor and a minimum of 6 inched below the ceiling (NFPA 72 18.4.8.1). The combination speaker strobe notification devices are required to be a minimum of 80 inches and maximum of 96 inches above the finished floor. In ceilings lower than 80 inches, the devices are allowed to be located within 6 inches of the ceiling (NFPA 72, Sections 18.5.5.1 and 18.5.5.2 respectively). The notification devices were found to comply with these requirements.

The horizontal spacing of the audible devices is required to be determined by calculation based upon this audibility performance criteria. The visual device horizontal spacing is required to be determined by the spacing criteria found in NFPA 72 Tables 18.5.5.4.1(a) and Figure 18.5.5.4.1(a) or Table 18.5.5.4.1(b). Appendix G shows a summary of calculated notification device spacing for selected areas, the 8th floor assembly space and the 21st floor, which is a typical guest room floor and other areas of the building.

The spacing of the audible and visual notification devices installed within the building were found to comply with the noted NFPA 72 requirements.

Table 9: EVACS Initiation and Notification Device Summary

Product Name	Model Number	Function	Audible Characteristics	Visual Characteristics
Edwards Genesis G4 Series	G4RS2VM (Clear lenses)	Speaker/strobe	80-89 dBa	15-110 cd
Edwards Genesis G4 Series	G4FS2	Speaker	80-89 dBA	NA
Edwards Signature Series	SIGA2-PS	PS Intelligent Photoelectric smoke detector. Used in both common spaces and in guest rooms (local alarm)	NA	NA
Edwards Signature Series	Model SIGA-AB4G Sounder base	Provides audible signal for detectors located in the guest rooms.		
Edwards 270 Series	270 DPO Fire alarm station	Manual pull station initiates fire alarm system	NA	NA
Potter	VSR	Vane water flow switch		
Potter	PCVS	Control valve supervisory switch		

Intelligibility of the EVACS is not required to be determined through quantitative methods (NFPA 72 Section 18.4.10.4). Standard practice in the city of San Diego, where the building is located, is to verify intelligibility during system acceptance testing. Brief testing of the fire alarm/emergency communication system was witnessed and the voice messages, both prerecorded and live where intelligible.

The design of the EVACS was reviewed to determine if the notification appliance circuits meet the maximum voltage drop criteria and that adequate backup power is provided. A maximum voltage drop of 10% was allowed by City of San Diego policy when the new EVACS was installed. Calculations shown in Table 10 confirm that the worst-case voltage drop is 8%, which complies with this requirement.

Standby power is required for the EVACS. The standby power supply is required to have a sufficient capacity to operate the system for 24 hours on standby condition (non-alarm) and 15 minutes in alarm condition (NFPA 72, Section 10.6.7.2.1.2). The required standby is 25.35 amp-hrs. See Appendix H for calculations. The provided standby power system is of adequate capacity.

Table 10: Notification Circuit Voltage Drop Calculations

Circuit No.	Speakers	Speaker Strobes	One-way Circuit Length (ft.)	Total Current (amps)	Voltage Drop (volts)	Voltage Drop %
NAC 1 Typical Guestroom Floor*	23	8	337	1.47	1.962	8.174
NAC 2-1 8th Floor*		16	150	1.744	1.036	4.316
NAC 2-2 8th Floor*		17	150	1.853	1.101	4.586
*Assumed to be worst case						
Input						
Speaker Strobe Current Draw (15cd) (amps)	0.109					
Speaker Current Draw (80 dBA) (amps)	0.026					
Wire size(AWG)	12					
Wire Resistance (ohms/1000 ft.)	1.98					
Specific Voltage(VDC)	24					

The fire alarm devices for monitoring the building sprinkler systems are located at the sprinkler risers and include supervision of all control valves, waterflow switches, and the electric driven fire pump.

3.5.4 System Documentation

NFPA 72, Section 7.2 requires that documentation be submitted upon completion of the system installation. The information is vital for the proper maintenance of the system and to document system components for use in future expansion or modification of the system. Table 11 shows an excerpt from NFPA 72, which lists the required documentation of all items.

Table 11: System Documentation

(NFPA 72, Section 7.2) Description Item *Written narrative providing intent and system description (1) (2) Riser diagram (3) Floor plan layout showing locations of all devices, control equipment, and supervising station and sharing communications equipment with each sheet showing the following: (a) Point of compass (north arrow) (b) A graphic representation of the scale used (c) Room use identification (d) Building features that will affect the placement of initiating devices and notification appliances (4) Sequence of operation in either an input/output matrix or narrative form Equipment technical data sheets (5)Manufacturers' published instructions, including operation and maintenance instructions (6)(7)Batter capacity and de-rating calculations (where batteries are provided) Voltage drop calculations for notification appliance circuits (8)(9)Mounting height elevation for wall-mounted devices and appliances Where occupant notification is required, minimum sound pressure levels that must be produced by the (10)audible notification appliances in applicable covered areas Pathway diagrams between the control unit and the supervising station and shared communications (11)equipment (12)Completed record of completion in accordance with 7.5.6 and 7.8.2 For software-based systems, a copy of site-specific software, including specific instructions on how to (13)obtain the means of system and software access (password) (14)Record (as-built) drawings (15)Records, record retention, and record maintenance in accordance with Section 7.7 (16)Completed record of inspection and testing in accordance with 7.6.6 and 7.82

3.5.5 Record of Completion Documentation

NFPA 72, Section 7.66 (Item 12 from Table 11) requires a record of completion for the project. This document provides a detailed itemization of the system including the equipment installed, method of installation, and testing conformation. A statement that documents the system was designed and installed in accordance with NFPA 72 is also included. See Appendix I for the record of completion for the project.

3.5.6 System Inspection, Testing and Maintenance

Chapter 14 of NFPA 72 contain rigorous inspection, testing, and maintenance (ITM) requirements. These requirements are typically adopted by the various states for inclusion in their state building or fire codes. In this case, the 2016 California Fire Code adopts these requirements.

The purpose for the initial testing is to verify the system is in compliance with the design standards and is fully functional. The re-inspection of the system is to confirm changes to the system do not affect the system in a derogatory manner. Also, that the system is functional and reliable.

The responsibility of the ITM program belongs to the owner of the property or his designated representative. Records are required to be maintained which documents the specifics of the program. Representatives of the San Diego Fire Department, High-Rise Safety Division, inspect high-rise buildings on a yearly frequency. During these inspections, the records of the ITM are reviewed. Appendix J shows the requirements of NFPA 72 for ITM.

3.6 Secondary Power Systems

Adequate emergency power is provided by the diesel-powered generator or back-up batteries. The following systems are included:

- Exit signs and exit illumination*
- Elevator car lighting
- Fire alarm and supervisory systems *
- Fire detection and supervisory systems*
- Sprinkler alarm and supervisory systems*
- Emergency voice evacuation system (See Section 3.2)
- Elevators (one at a time each bank)
- Smoke-Control system
- Power for magnetic door hold open devices
- Kitchen exhaust hoods
- Fire pump

3.7 Occupant Egress System

Two exits from each floor are provided by Stairs 1 and 2. The stairs are continuous from the roof to the ground floor where they transfer occupants into exit passages that terminate at the building exterior on the sidewalks along 6th and 7th Avenues respectively.

Stairs 3 and 4 provide additional exits for occupants of the 8th floor conference, meeting rooms or exterior terrace. Occupants from the 2nd through 7th floors have access to these stairs as well. Another stair, referenced as the Northwest Stair, provides egress from the 8th floor down to the 7th floor. Vestibules are not provided for any of the stairs.

^{*}These systems are typically provided with battery back-up.

A summary of occupants per floor vs exits required is shown in Table 12.

Table 12: Summary of Floor Occupancy and Required Number of Exits

Floor No.	Occupants Per Floor	Floor Area (sf)	Required No. of Exits	Provided No. of Exits
1	1015	26209	4	8
2	193	38976	2	4
3	193	38976	2	4
4	193	38976	2	4
5	193	38976	2	4
6	193	38976	2	4
7	185	37129	2	4
8	915	41206	3	5
9	113	19659	2	2
10	113	19659	2	2
11	113	19659	2	2
12	113	19659	2	2
14	113	19659	2	2
15	113	19659	2	2
16	113	19659	2	2
17	113	19659	2	2
18	113	19659	2	2
19	113	19659	2	2
20	113	19659	2	2
21	216	19629	2	2
Total	4624	535302		

Applicable CBC occupant egress requirements are summarized as follows:

- Maximum travel distance- Group A, M, S-2, R-1= 250 feet (CBC Table 1017.2)
- Exit separation- 1/3 the diagonal dimension of the area/floor (CBC Section 1007.1.1)
- Common path of travel- A-2 or 3= 30 feet, B and R-1=75 feet (CBC Table 1006.2.1)
- Dead end corridors- A-2 or 3=20 feet maximum, Other occupancies =50 feet maximum (CBC Sections 1029.9.5 and 1020.4 respectively)
- Exit Signage placement- Exits and exit access doors shall be provided with exit signs readily
 visible from any direction of travel. In addition, signs are required to be placed such that no point in
 an exit access corridor or exit passageway is greater than 100 feet, or the listed viewing distance,
 whichever is less from the nearest exit sign (CBC Section 1013). Finally, low-level exit signs are
 required in hotel corridors of the building (CBC Section 1013.7).

3.7.1 Egress Analysis

All areas of the building, with the exception of the first floor bar area and the 8th floor, comply with the requirements of the CBC for egress. The number of exits required per floor, exit capacity from each floor, and from each space, travel distance, common path of travel, and exit separation are in accordance with CBC requirements. A summary of required exit width vs provided exit width on a per floor basis is shown in Table 13. Occupant egress plans are provided in Appendix K. Detailed calculations can be found in Appendix K.

The first-floor bar has an occupant load of 165 (31 occupants standing at the bar, 134 in the rest of the space). Two exits are required, one exit is provided. Another exit should be provided in the north bar area which would take occupants thru the restaurant and to one of the south exit doors.

The 8th floor has an occupant load that the floor egress system cannot support. See Appendix K and L for calculations. To resolve this, it is recommended that the horizontal exits be provided at the east and west walls as described below:

West Terrace area: This open-air area is used as access to the Northwest exit stair. It can also be used for assembly space. Unfortunately, this space has only one exit. The area could be interpreted as circulation from the pre-function area and not be required to be loaded. In addition, it is unlikely that this space and the pre-function will be loaded concurrently. However, the conservative approach that the space will be loaded was taken. In addition, the horizontal exit will be used to disperse occupant load from the pre-function area.

A horizontal exit at the building exterior wall is suggested to resolve this issue. This will allow 50% of the occupant load from the pre-function area (203 or 230 occupants) or the ballroom/conference room occupant load to egress west thru the horizontal exit. Once on the other side of the horizontal exit they are assumed to be in a safe area of refuge and do not egress from the building until escorted by authorize personnel. The exterior terrace is approximately 1,177 sq.ft., which can be used for the area of refuge for a maximum of 392 occupants (3 sf per occupant). In addition, as previously mentioned, the terrace itself has only one exit, the second required exit can be thru the horizontal exit to the east. The addition of a door which swings to the east will be required in the horizontal exit wall to accommodate 50% of the terrace occupant (40 occ.). There is ample space in the pre-function area for the area of refuge (120 sf. needed).

The horizontal exit wall is required to comply with the requirements for a fire barrier, with a minimum fire resistance rating of two- hours. The building floor is two- hour rated so the wall does not need to extend vertically thru the building. (CBC 1026.1) Openings in the horizontal exit wall are required to be 1½ hour rated. Doors are required to be self or automatic closing (CBC 716).

East Terrace area: This open-air area is used as a break area for employees. Unfortunately, only one exit is provided. To resolve this issue, a horizontal exit along the east exterior wall is recommended. In addition, a new door and corridor should be provided at the north portion of the terrace which will send occupants to Exit Stair No. 2. The other exit will be through the existing door into the employee lounge, which will be required to be reversed in swing. The employee lounge can provide the area of refuge (46 occupants at 3 sf. per occupant =138 sf.). This area is 1389 sf. Other requirements for the horizontal exit mirror those of the West Terrace area.

Eighth floor corridor 885 is a dead end which exceeds 20 feet in length. One solution is to provide a door at the beginning of the corridor (see egress drawings). Although frowned upon by jurisdictions, the door would prohibit occupants from accidentally going down the dead-end corridor to the end.

Table 13: Per Floor Occupant Exit Width Analysis*

Floor	Exit Path	Total Occ.	Floor Area (sf)	Total Occ. Per Floor	Required Stair Entry Door Width (in.)	Provided Stair Entry Door Width (in.)	Required Stair Width (in.)	Provided Stair Width (in.)	Required Ground Level Exit Door Width (in.)	Provided Ground Level Exit Door Width (in.)
1	From Floor	1015	26209	1015	NA	NA	NA	NA	213	552
	From Bldg.						NA			
2-6 Typ.	From Floor	193	38976	193	128	232	128	272		
	From Bldg.	193		193			128	272	128	272
7	From Floor	201	37129	201	128	232	128	272		
	From Bldg.	185		185			128	272	128	272
8	From Floor	915	41026	909	138	232	183	340		
	From Bldg.	915		909			183	272	138	272
9-12, 14-20	From Floor	113	19650	113	64	136	64	116		
	From Bldg.	113		113			64	116	64	116
21	From Floor	216	19629	216	64	136	64	116		
	From Bldg.	216		216			64	116	64	116

^{*} See Appendix L for detailed calculations

3.8 Conclusion-Prescriptive Analysis

The prescriptive analysis studied the variation of the building's fire protection/life safety components from those required by the applicable codes and standards. The analysis included building construction, fire resistance, fire suppression, fire detection, smoke control system, and egress systems.

The results of the analysis indicate that the building complies with the requirements of the applicable codes and standards, with three exceptions relating to occupant egress:

- The first-floor bar area: One exit is provided, however two are required. An additional exit through the restaurant is recommended.
- The 8th floor East and West Terrace areas: Only one exit from each space is provided, two are required. The use of horizontal exits along the east and west exterior walls are recommended. In addition, the east terrace requires the addition of a corridor and new exit door at the north end. The west horizontal exit can also be used to disperse pre-function occupants to the west.
- Eighth Floor Corridor 885: This is a dead end, which exceeds 20 feet in length. A door should be installed at the beginning of the corridor.

In the next section of this report, a performance-based analysis will be completed. This involves the use of scientific analytical methods to evaluate the performance of the fire protection/life safety systems.

4 PERFORMANCE-BASED ANALYSIS

4.1 Goals and Objectives

The Life Safety Code is unique among the currently published building codes because a performance-based option is provided. This option is outlined in Chapter 4, Section 4.4.2 and Chapter 5 of the code.

The primary goal of this approach is to provide an environment for the occupants that is reasonably safe from fire by the following means (Section 4.4.2):

- · Protection of occupants not intimate with the initial fire development
- Improvement of the survivability of occupants intimate with the initial fire development.

The objectives to meet these goals are:

- Occupant protection A structure shall be designed, constructed, and maintained to protect
 occupants who are not intimate with the initial fire development for the time needed to evacuate,
 relocate, or defend in place.
- Structural integrity Structural integrity shall be maintained for the time needed to evacuate, relocate, or defend in place occupants who are not intimate with the initial fire development.
- System effectiveness Systems utilized to achieve these goals shall be effective in mitigating the
 hazard or condition for which they are being used, shall be reliable, and shall be maintained to a
 level at which they were designed to operate.

The performance criterion for this approach is that any occupant who is not intimate with ignition shall not be exposed to instantaneous or cumulative untenable conditions (Section 5.2.2). Untenable conditions will be defined by the establishment of detailed performance criteria which is based upon well founded scientific principals or research.

4.2 Egress Analysis

4.2.1 Egress Calculations

Two evacuation conditions were analyzed:

- Condition 1-Global evacuation of the building
- Condition 2-Zoned evacuation of the fire floor, floor above, and floor below

Evacuation Condition 1 will be used later in this analysis to evaluate structural integrity. Evacuation Condition 2 is based upon the required City of San Diego EVACS sequence of operation and is commonly used by jurisdiction throughout the Western United States.¹³

¹² The CBC does not offer a performance-based option. This can be achieved by use of the alternate materials and methods provisions of the CBC. Unfortunately, it is a discretionary decision of the building official to allow this approach.

¹³ Author's experience

The hydraulic flow model methodology was used to establish the travel time for building occupants to move to a location of safety, which is defined as the building exterior or public way. This approach is considered a first order approximation. The following assumptions were made:

- All occupants start egress at the same time.
- The population will use all facilities in the optimum balance.
- The prime controlling factors will be either the enclosed stairs or the doors discharging from the stairs at ground level.
- The stairs have a code complying rise and run of 7 inches and 11 inches respectively.
- Cueing will occur; therefore, the specific flow of the evacuating occupants is equal to the maximum specific flow (Fs = Fsm).
- The four egress stairs are 68 inches wide.
- The four ground floor exit doors are 67 inches wide (the stairs were made wider at the floor to accommodate this).
- Exit boundary layer widths for both stairs and corridors = 6 inches each side (NFPA HB Table 4.2.4).
- Building size is 535,302 square feet.
- For Evacuation Condition 1, the total number of occupants, minus the first-floor occupants who
 egress directly to the outside, is 3609. For Evacuation Condition 2, the total number of occupants
 is 1229, which is the occupants from the fire floor, floor above and floor below.¹⁴

This analysis begins with the estimation of the flow capacity of the two controlling elements in the occupant flow, the stairways, and the ground floor stairway doors.

Estimation of stairway flow capacity:

The specific flow, Fs is defined as the flow of evacuating persons past a point in the exit route per unit time and unit effective width of the exit route. Since queuing will occur, Fs is assumed to Fsm, which is the maximum specific flow. For the stairs, the Fsm is 18.5 per/min/effective width (NFPA HB Table 4.2.8).

The effective width (We) is the width of the stairs minus the exit boundary widths on each side of the stair. The We for the stairs is 4.67 feet ((68 inches - (6 inches x 2))/12).

The calculated flow (Fc) = Fs \times We (per/min).

For the stairway, Fc = 18.5 p/m/We X 4.67 ft. = 86.33 p/m

Estimation of stairway exit door flow capacity:

Fs= Fsm = 24.0 p/m/We. We for the door is 4.58 feet ((67 inches- (6 inches x 2))/12).

Fc= $24.0/p/m/We \times 4.58 \text{ ft.} = 110 \text{ p/m}.$

Since the flow capacity of the stairway is less than the flow capacity of the door, the flow is controlled by the stairway.

The Condition 1 building evacuation time is estimated to be 3609 p/4 exit stairs = 902.25 p / 86.33 p/m = 10.45 or 11 minutes.

¹⁴ The occupant loads of floors 7, 8, and 9 were used due to the high occupant load on the 8th floor.

The Condition 2 building evacuation time is estimated to be 1229 p/ 4 exit stairs = 307.25 p / 86.33 p/m =3.55 or 4 minutes. However, it can be assumed that smoke from the fire does not migrate vertically to the floor above or below. Therefore, only the occupants on the fire floor are exposed to smoke during evacuation. This exposure period begins when occupants leave their guestroom and continues until they enter the stairs. Once inside the stairs, tenability is maintained due to the operation of the stairway pressurization system.

Between a population density of 0.05 persons /ft² to 0.35 persons /ft² the relationship between speed and population density is assumed to be a linear function represented by the flowing equation 15.

S=k-akD

Where:

S= Speed along the line of travel (ft. /min)

D= Population density (persons /ft²)

k= constant (275 for corridors)

a= 2.86 ft. /min.

Therefore:

D= 0.137 (persons /ft²) - 201 occupants/1469 ft² (for the exit corridor area)

S= 168 ft. / min.

Given a worst-case distance to the most remote stairway door of 220 ft., travel time to the stairway is approximately 2 minutes, which will be used for calculation of required egress time.

4.2.2 Fire Modeling Analysis

Fire Dynamic Simulator (FDS) was used to determine the time of smoke detector activation and sprinkler activation, two cues which initiate the egress process. In addition, modeling was used in the tenability analysis.

Developed at the National Institute of Standards and Technology (NIST), FDS is a computational fluid dynamics model of fire-driven fluid flow. FDS solves a form of the Navier-Stokes equations appropriate for low speed, thermally driven flow emphasizing smoke and heat transport from fires. ¹⁶

Two fire scenarios were selected for this analysis:

Scenario 1: A fire within Guest Room 2101 on the 21st floor (typical guestroom) with the entry door shut. Occupants are assumed to be asleep at the time of fire ignition.

Scenario 2: Repeat of the first scenario, only with the entry door open.

Guestroom fire scenarios were obvious candidates given occupants can be in various states of awareness while in their guestrooms; including asleep, intoxicated, or otherwise distracted. Fire data supports this assumption, bedroom areas are the primary location of unconfined fires within hotels (28%).¹⁷ Guestroom layout is in shown in Figure 11.

A fire within a meeting room or ballroom was also considered due to the potential for a high density of fuel and large occupant loads. After careful deliberation, the meeting scenario was eliminated.

¹⁵ SFPE HB 4th edition, page 3-379.

¹⁶ FDS User's Guide, NIST Special Publication 1019, 6th edition, page 149.

¹⁷ U.S. Fire Administration National Fire Incident Reporting System, 2005-2007.

Although the initial concerns are accurate, occupants attending events are generally alert and ample egress opportunities are provided. A fire in these spaces should be discovered early such that prompt egress could then ensue.

The design fire selected simulates a fire ignited within a guest room trash can that then ignites a mattress. The mattress is assumed to be unmodified flexible polyurethane foam covered with bedding material. Characteristics of the fire are based upon full-scale testing by NIST for the validation of the fire model Hazard I. ¹⁸

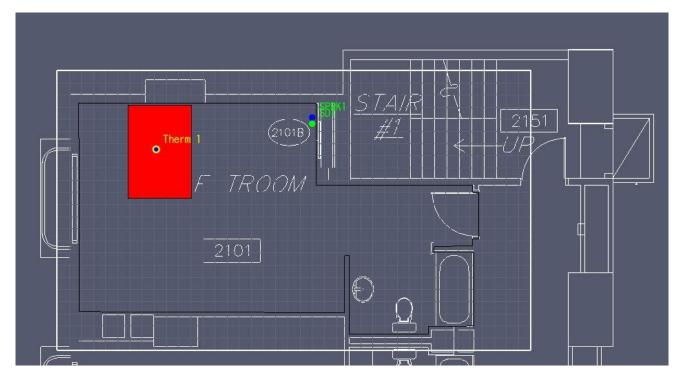


Figure 11: Guestroom Layout

Selection of this design fire is considered very conservative. Due to the high frequency of fires occurring in sleeping rooms, many involving fatalities, much work has been completed to modify the burning characteristics of mattresses. The Consumer Product Safety Commission (CPSC) published the updated version of the *Standard for the Flammability of Mattresses and Mattress Pads* (16 C.F.R. part 1632) in 2014. The intent of this standard was to reduce the unreasonable risk of property damage, burn injuries, and deaths from fire associated with mattresses and mattress pads when exposed to a smoldering ignition source, such as lit cigarette. ¹⁹ The performance requirement of this standard is a limitation of char length of the specimen to 2 inches. Pilot ignition is used to simulate a smoldering cigarette.

A more recent standard was published by the CPSC to address the ignition of mattresses by open flame. The igniter for the test is two gas burners intended to simulate burning bedclothes. Mattresses complying with CPSC *Standard for the Flammability (Open Flame) of Mattress Sets* (16 CFR 1633, March 15, 2006) will generate a smaller fire size with a slower growth rate, thus reducing the possibility of flashover occurring. ²⁰ The performance standards used for this testing are a limitation of peak heat release rate to 200 kW within a 30-minute test and a total heat release of 15 MJ, for the first 10 minutes of the test.²¹

¹⁸ Kim, Hyeong-Jim and Lilley, David G., Heat Release Rates of Burning Items in Fires, AIAA 2000-0722. January 10, 2000.

¹⁹ Consumer Product Safety Commission (CPSC), Standard for the Flammability of Mattresses and Mattress Pads (16 C.F.R. part 1632).

²⁰ Consumer Product Safety Commission (CPSC), Standard for the Flammability (Open Flame) of Mattress Sets (16 C.F.R. part 1633).

²¹ IBID.

The use of the unmodified polyurethane mattress is a conservative assumption given the difference in heat release rates between the unmodified mattress and the CPCS complaint mattress (1577 kW vs 200kW, respectively).

To simulate a sprinkler-controlled fire, sprinkler activation time was predicted using FDS. Results showed that the sprinkler activation occurred at 70 seconds. After the point, fire growth was assumed to be constant for the remainder of the simulation. The heat release rate of the fire, design fire specifications, and sprinkler/smoke detector details are shown in Figure 12, Table 14, and Table 15 respectively.

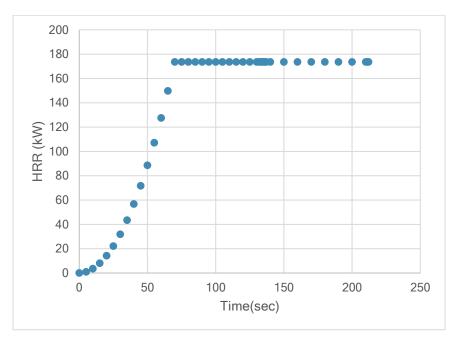


Figure 12: Design Fire Heat Release Rate Curve

Table 14: Design Fire Specification

Fuel Description	Fire Characteristics	Ignition Method	Source of Data ²²
Mattress, Polyurethane foam with rayon ticking and bedding. 2.5 meters ²	Fire growth constant = 0.035431 (kW/sec²) Fire decay constant = 0.007687 (kW/sec²) Flexible Polyurethane foam material (Heat of combustion- 17.4 kJ/g) Max HRR=1577.4 kW, HRR at sprinkler operation = 173 kW	Wastepaper Basket, 0.74 Kg	Mattress MAT001

Table 15: Fire Sprinkler and Smoke Detector Details

Compartment	Device Type	Device Location	Ceiling Height (m)	RTI (m-s) ½	Activation Temperature (°C)	Activation Obscuration (%/m)
Guest Room 2101	Photoelectric smoke detector	See guestroom layout	2.6	NA	NA	21
	Sidewall residential sprinkler, ½ in. orifice	See guestroom layout	2.6	50	74	NA

²² Kim, Hyeong-Jim and Lilley, David G., Heat Release Rates of Burning Items in Fires, AIAA 2000-0722. January 10, 2000.

FDS uses the *simple chemistry model* to predict combustible. This model considers a single fuel species primarily consisting of carbon, hydrogen, and oxygen that reacts with oxygen to form water vapor, carbon dioxide, soot, and carbon monoxide.²³ The fuel reaction data used in the model is shown in Table 16. Fire product yield data is from Test GM 27, as measured in the ASTM E2058 fire apparatus. ²⁴

Table 16: Design Fire Fuel Reaction Data

Reaction Fuel	Atom Count	Species	Yield ²⁵
Carbon	1.0	Carbon Monoxide	0.042
Hydrogen	1.7	Soot	0.198
Oxygen	0.3		
Nitrogen	0.08		

FDS calculations are performed within a domain that is comprised or rectangular volumes know as mesh. The mesh is divided into rectangular cells. The resolution of the flow dynamics is dependent upon the cell size. The default cell size of $0.25 \, \text{m} \times 0.25 \, \text{m} \times 0.25 \, \text{m}$ was used for this analysis. Using the NIST Cell Estimator tool the cell size used is between course and moderate size. This cell size was selected due to the large geometry of the model (entire hotel floor) which could potentially slow down the calculations. Figure 13 shows cell size input data.

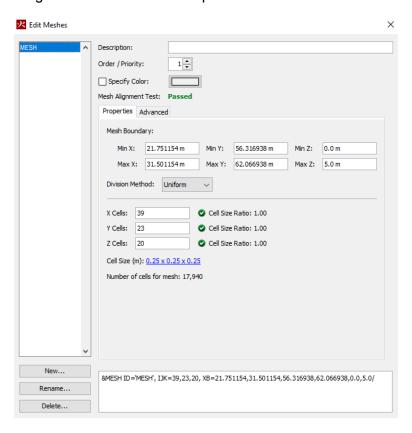


Figure 13: Cell Size Input Data

²³ FDS User's Guide, NIST Special Publication 1019, 6th edition, page 149.

²⁴ SFPE Handbook Table 3-4.16, Footnote A.

²⁵ Fraction of fuel mass converted to the various species

FDS was used to measure the mass optical density to calculate the activation time of the smoke detector. The challenging aspect to analyzing smoke detector activation using the optical density method is selecting a prudent optical density alarm threshold. Due to the uncertainties in calculating the optical density alarm threshold, numerous fire testing programs have been completed. There is a wealth of data published on this subject. Work completed by Gottuk and Geimen was selected for determination of the optical density alarm threshold.²⁶ From this study, an alarm threshold of 0.14 OD/m (25 obscuration %/m) was selected. The testing results show that 86% of the photoelectric detectors alarmed for flaming fires and 83% for smoldering fires alarmed at this level.

The results of the fire modeling are shown in Table 17. Very little variation is seen between the two scenarios.

Scenario Number	Room Smoke Detector Activation Time (s)	HRR at Detector Activation (kW)	Sprinkler Activation Time (s)	HRR at Sprinkler Activation (kW)
1	25	16	70	173
2	25	16	70	173

Table 17: Fire Modeling Results

4.2.3 Time-based Egress Calculations

For occupant egress, the concept of required safe egress time (RSET) and available safe egress time (ASET) is used. RSET is the time needed for an occupant to safely egress from their location to a safe location where they are not threated by the effects of the fire. ASET is the time for the occupant to evacuate prior to conditions becoming untenable or life threating.

RSET is comprised of four main components (see Figure 13):27

- Time to notification
- Reaction time
- Pre-evacuation time
- Travel or movement time

²⁶ Geiman, Justin A., and Gottuk, Daniel T., Alarm Thresholds for Smoke Detector Modeling, Fire Safety Science, 7th International Symposium.

²⁷ Mowrer & Rosenbaum, Fire Protection Handbook Information and Analysis for Fire Protection. Figure 3.11.4 Example Time Line for Evaluation of Available Versus Required Safe Egress Times, 2008.

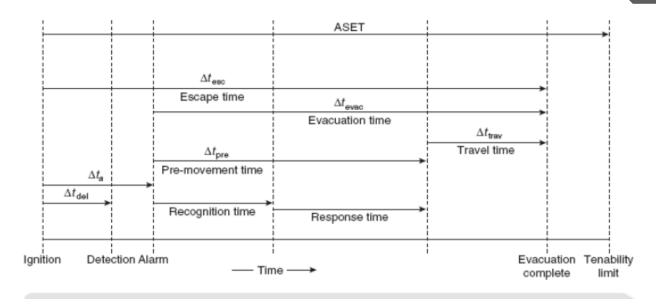


Figure 14: ASET vs RSET

The first three components can be grouped together into a general category of delay time, resulting in Evacuation time = Delay time + Travel time. These components, as applicable to this project, are discussed below.

The occupants of the hotel may consist of a diverse population. However, the hotel's brand caters to business travelers, who are assumed to be between the ages of 23-65 years old. The property is located within a historic district and thus tourists may also stay at the hotel. These two groups are generally considered ambulatory, so the egress analysis does not consider evacuation of disabled persons. Other provisions are made for this group, including specially designed rooms located in the lower hotel floors and elevator lobbies which may serve as areas of refuge, until responders arrive to provide evacuation assistance.

The time to notification is the period before occupants begin to sense the cues of the fire. As explained earlier, the Gaslamp Hotel has a modern EVACS, which includes system smoke detectors in the corridors and local smoke detectors in each guest room.

The time to notification is the period before occupants begin to sense the cues of the fire. Based upon the fire modeling analysis the local room smoke detector activates in 25 seconds from ignition, depending on fire location and characteristics. Activation of the first room fire sprinkler will result in a water flow alarm, which activates the building's fire alarm system. Based upon the fire modeling analysis the sprinkler will activate within 70 seconds from fire ignition.

Very early, within the initial fire development period, however, the occupants within the hotel room of fire origin may be exposed to variety of cues which signify a fire event. This can include smell, sight of flames, or sounds of glass breaking. Since the room occupants are likely intimate to the fire ignition (smoking cigarettes in bed, malicious activity, building device short circuit, etc.) the recognition of the fire event may occur promptly. It is assumed these occupants respond to local smoke detector activation and are out of the room within 60 seconds.

Quantification of when occupants not intimate with fire ignition will recognize a fire situation is very challenging given the lack of hard data to analyze. It is prudent to assume that the notification time is when building fire alarm system activates. Once a sprinkler activates, the flow switch sends a signal to the fire alarm panel. The flow switch is equipped with a delay, or retard feature, which can be programmed to delay the delivery of the alarm signal to the fire alarm panel. The purpose of this is to eliminate false alarms caused by fluctuations in water pressure. NFPA 72 Section 10.13.1 allows a maximum delay time of 90 seconds. Once the signal is received by the fire alarm panel, the building EVACS will activate flashing strobe lights and a pre-recorded message.

Given the first sprinkler activation at 70 seconds and the subsequent activation of the fire alarm system, the time to notification is assumed to be 160 seconds. For the Evacuation Condition 2, this would include notification of the occupants located on the fire floor, floor above. For Evacuation Condition 1 this would include all occupants of the building. The occupants of the guestroom of fire origin are assumed to have left the room much earlier, as previously discussed.

The reaction time is the time it takes occupants to perceive the fire cues or alarm signals and take action. It is expected the processing time would be limited within the room of fire origin, given the simplicity of the situation. However, occupants not intimate with fire ignition will need additional time to recognize the available clues.

Pre-evacuation is the time it takes the occupant to begin evacuation or seek refuge once the decision has been made to react. The occupants could exhibit a variety of behaviors, including packing their belongings, prior to exiting the room.

As previously stated, calculating the delay time until occupants react is very difficult. Work done by the British Standards Institute in 1997 provides a credible estimate that can be used for RSET calculations.²⁸ As shown in Figure 14, for hotel occupancies, given a voice evacuation system is provided, a delay time of 4 minutes is estimated.

Table 3-13.1 Estimated Delay Time to Start Evacuation in Minutes

in Minutes			
Occupancy Type	W1 (min)	W2 (min)	W3 (min)
Offices, commercial and Industrial buildings, schools, colleges and universities (Occupants awake and familiar with the building, the alarm system, and evacuation procedure.)	< 1	3	> 4
Shops, museums, leisure-sport centers, and other assembly buildings (Occupants awake but may be unfamiliar with building, alarm system, and evacuation procedure.)	< 2	3	> 6
Dormitories, residential mid-rise and high- rise (Occupants may be asleep but are predominantly familiar with the building, alarm system, and evacuation procedure.)	<2	4	> 5
Hotels and boarding houses (Occupants may be asleep and unfamiliar with the building, alarm system, and evacuation procedure.)	< 2	4	> 6
Hospitals, nursing homes, and other institutional establishment (A significant number of occupants may require	- 0	_	
assistance.)	< 3	5	> 8

Figure 15: Delay Time Estimation

²⁸ British Standard Institute, DD London 1997. Fire Safety Engineering in Buildings, Part 1, Guide to the Application of Fire Safety Principals, Table 21.

The RSET for each evacuation condition is shown in Tables 18 and 19.

Table 18: RSET Calculations Evacuation Condition 1 - Global Evacuation

Time Increments	Calculated Time (min)	Notes
Time to notification	2.6	Sprinkler activation plus alarm signal delay
Delay to start of evacuation	4	Defining this as reaction and pre-evac time (i.e. time to notification is added separately) From British Standards Institute, 1997 work.
Travel time	11	
Subtotal	17.5	
Safety Factor (1.5)	8.75	Engineering judgement, considered CBC Section 909.4.6
RSET	26.25≈ 26	

Table 19: RSET Calculations Evacuation Condition 2 - Zoned Evacuation of Fire Floor, Floor Above, and Floor Below

Time Increments	Calculated Time (min)	Notes
Time to notification	2.6	Sprinkler activation plus alarm signal delay
Delay to start of evacuation	4	Defining this as reaction and pre-evac time (i.e. time to notification is added separately) From British Standards Institute, 1997 work.
Travel time	2	
Subtotal	8.5	
Safety Factor (1.5)	4.25	Engineering judgement, considered CBC Section 909.4.6
RSET	12.75≈13	

4.2.3.1 Limitations

The science of occupant behavior and egress characteristics is still developing. The broad range of variables that affect occupant behavior and egress ability is staggering and can differ greatly depending on numerous factors. For example, occupants in one region of the United States may have lower overall physical fitness due to eating habits, exercise opportunities, etc. than groups in other areas. One would conclude that movement times for the former group would then be slower that the latter group. However, the criteria found in various sources commonly used to calculate egress times are not categorized to this level.

Work completed by Gwynne showed that the maximum specific flow rates for stairs found in various sources are generally optimistic²⁹. In other words, occupants may travel through stairs much slower than thought.

In addition to the variability of the various factors which affect occupant behavior and egress, these factors are potentially ever changing. Education, situational awareness, and other factors are generationally variable. The behavior of a population from the mid-1970s may not behave the same as a similar group in 2017.

²⁹ Gwynne, Steven, et al, Fire Safety Journal 44, 2009, Questioning the Linear Relationship Between Door Width and Achievable Flow Rate.

All this information should be considered when preparing a performance-based egress analysis. Engineering judgement should be used to develop and apply adequate safety factors which can compensate for the uncertainties of occupant behavior and egress.

A safety factor of 1.5 was used in the analysis based upon the requirements of the California Building Code, and engineering judgement.

4.2.4 Tenability Analysis

To evaluate the conditions created by the fire at a point in time, and how these conditions will affect occupant evacuation, a tenability analysis is completed. This process allows one to thoughtfully establish thresholds beyond which occupants will not be safe during their evacuation from the building. Once these limits were set, FDS is used to calculate the experimental conditions which will result from a given fire scenario. From this evaluation, ASET or available safe egress time is determined.

Conditions to be considered include:

- Time to incapacitation due to the effects of asphyxiant gases
- Time to incapacitation due to heat exposure
- Time when optical density is significantly impaired such that egress efficiency is lost

The most common asphyxiant gases produced by fires are carbon monoxide (CO) and Hydrogen Cyanide (HCN). Review of fire fatality data suggests that CO exposure may be the major ultimate cause of death in most fires where serious burns are not present.³⁰

CO affects victims by replacing the oxygen carried by hemoglobin in the blood. The two form a substance known as carboxyhemoglobin (COHb) which hinders oxygen absorption and ultimately causes death due to asphyxiation. The results of several studies are presented below:

- In a study of fire victims, 54% of the fatalities were found to have COHb levels in excess of 50%, which is considered a lethal level, and 69% of the fatalities were found to have COHb levels in excess of 30%, which is considered to be an incapacitating level.³¹
- Data from accidental exposures and low-level experimental human exposures indicate that loss of consciousness can occur at COHb levels of 30% to 40%.³²
- The first effects in human subjects, which normally consisted of headaches, occurred at COHb levels of 15% to 20%, but at these levels, there were only minor deficits in behavioral performance.³³

From this data, it is prudent to establish a level of 30% COHb as threshold for incapacitation (due to the loss of consciousness).

Unlike CO, which is absorbed into the blood stream relatively slowly, hydrogen cyanide affects victims much quicker. Because one of the early symptoms of hydrogen cyanide is hyperventilation, the rate of uptake of species increases greatly. Limited data on human exposure to concentrations of 100 ppm indicates that incapacitation occurs after 20 minutes, and at concentrations of 180 ppm, incapacitation occurs after only two minutes.³⁴

³⁰ SFPE Handbook, 5th edition, page 2220.

³¹ SFPE Handbook, 5th edition, page 2334.

³² SFPE Handbook, 5th edition, page 2347.

³³ SFPE Handbook, 5th edition, page 2331.

³⁴ SFPE Handbook, 5th edition, page 2222.

The analysis of this hazard is problematic because fuel composition data for hydrogen cyanide production is not readily available. Therefore, an evaluation of hydrogen cyanide concentrations was not performed for this project. The effect of other asphyxiant gases and irritants produced by the fire were considered minor for the purposes of this analysis as well.

The consequences of exposure to heat is another factor to consider when completing a tenability analysis. Radiant heat exposure can affect occupants who are intimate to the fire origin. The effects of this exposure include pain, redness, and burns. Figure 15 summarizes the limits of tenability from heat exposure. Heat exposure seems unlikely given the building is fully sprinklered. However, a limiting heat flux of approximately 2.5 kW/m², was selected.³⁵

Exposure to convective heat is also important to consider. Potential consequences of such exposure include heat stroke (Hyperthermia), skin burns, and respiratory tract burns. It is assumed that convection heat exposure could occur when guestroom occupants are traveling down the corridor to the stair enclosure due to smoke that has migrated out of the room of origin via an open door. Using a maximum unimpeded flow speed of 168 ft. /min.³⁶, and a travel distance of 220 feet, results in travel time of 1 minute. Adding a safety factor of 2, a travel time of two minutes is estimated. Therefore, a two-minute exposure to a dry air temperature of 160° F will be used as the limiting convection heat exposure criteria.

Table 63.20	Limiting	conditions	for	tenability	caused
by heat [18]					

Mode of heat transfer	Intensity	Tolerance time
Radiation	<2.5 kW · m ⁻²	>5 min
	2.5 kW · m ⁻²	30 s
	$10 \text{ kW} \cdot \text{m}^{-2}$	4 s
Convection	<60 °C 100 %	>30 min
	saturated	
	100 °C <10 % H ₂ O ^a	12 min
	120 °C <10 % H ₂ O	7 min
	140 °C <10 % H ₂ O	4 min
	160 °C <10 % H ₂ O	2 min
	180 °C <10 % H ₂ O	1 min

Figure 16: Limiting Conditions for Tenability Caused by Heat ³⁷

Visibility is an important consideration when predicting occupant fire behavior. Studies indicate that occupants will move through smoke to evacuate a fire condition. Occupant movement thru smoke can occur when visibility is in the range of 3-4 meters. It is recognized that some percentage of occupants will change direction and retreat in reduced visibility situations. Studies show that approximately 30% of occupants turned back rather than travel through low visibility conditions. The average visibility at which people retreat was 3 meters. Based upon this information, a 3-meter visibility criterion will be used.

³⁵ SFPE Handbook, Table 4.2.7.

³⁶ IBID.

³⁷ SFPE Handbook of Fire Protection Engineering, 5th Edition, Table 63.20.

³⁸ J.L. Bryan, Smoke as a Determinant of Human Behavior in Fire Situation, National Bureau of Standards, Washington, D.C., 1977. SFPE Guide to Human Behavior in Fire, Second edition, pages 46-47. Conversations with Dan O'Connor, Chair, SFPE Task Group on Human Behavior in Fire

³⁹ IBID

⁴⁰ IBID

In summary, the tenability criteria that was selected is shown below.

Table 20: Tenability Criteria

Criteria	Limit
Carbon Monoxide	30% COHb
Visibility	3 meters
Radiant Heat Flux	2.5 kW/m ²
Temperature	160°C (320°F) air < 10% H2O for 2 minutes

FDS modeling is used to establish the actual conditions which occupants were exposed to as they evacuate. This data was analyzed and ultimately compared to the previously established tenability criteria.

If occupants can evacuate the building prior to conditions become untenable (ASET>RSET) the egress system will be meet the performance criterion established, that any occupant who is not intimate with ignition will not be exposed to instantaneous or cumulative untenable conditions. Then the egress system meets the requirements of the Life Safety Code. Since this building is in a jurisdiction which uses the CBC, the analysis would be submitted for approval as an alternate design approach.

4.2.4.1 Tenability Analysis Results

Figure 16A presents a rendering of the fire floor. Guestroom 2101, the room of fire origin, is shown in the upper left corner of the rendering. The corridor evaluated in the model is also shown. Conditions were evaluated at 1.82 meters (6 ft.) above the floor level. Figures 16-25 show slice file renderings of various conditions. Note that only the results for Evacuation Condition 2 - Zoned Evacuation of the fire floor, floor above, and floor below, are presented. Evacuation Condition 1 - Global Evacuation of the building is used for the structural analysis, which is described later in this report.

Figures 17, 20, and 25 show the CO levels within the guestroom and the fire floor corridor at various times. The CO data was converted to percentage COHb for comparison to the tenability limit sent. From experimental human exposure testing, Steward derived the following equation, which was used to calculate %COHb from CO data:⁴¹

%COHb= (3.317×10^{-5}) (ppm CO)^{1.036} (RMV)(t)

Where:

ppm CO= CO concentration(ppm)
RMV= Volume of air breathed(L/min)
T= exposure time(minutes)

An RMV number of 25 liters/min was used, which is based upon lite walking during egress.⁴²

COHb calculations are presented in Table 21. Values are below the established performance criteria.

⁴¹ SFPE Handbook, 4th edition, page 2-116.

⁴² IBID.

Table 21: %COHb Calculations

Scenario	Location	Exposure Time (mins)	RMV (L/min)	CO Mole/mole	CO (ppm)	COHb (%)
1-Door closed	Guest Room	1	25	0.00031	310	0.32
2-Door open	Guest Room	1	25	0.00016	160	0.16
2-Door open	Fire Floor Corridor	2	25	0.00022	220	0.44
2-Door open	Fire Floor Corridor	2	25	0.00061	610	1.27

The overall results of the modeling effort are shown in Table 22. The results show that the occupants within the guestroom of origin will safely egress the guestrooms prior to loss of tenability, regardless of the door position, ASET>RSET. Egress of these occupants is considered reasonably safe.

The results also show that the fire floor corridor losses visibility at 205 secs (see Figure 22). Using the calculated RSET value of 780 secs., ASET <RSET, and therefore conditions are considered unsafe.

Occupants above or below the fire floor are protected by passive construction and therefore unaffected.

Table 22: Modeling Results-Evacuation⁴³

Scenario	Location	Guest RM Door Position	Visibility (m)	COHb %	Temp (C)	RSET (secs)	ASET (secs)	Pass/Fail
Number 1	Guest Room	Closed	3@60s	8@60 s	71@97 s	60	60	Р
	Fire floor corridor		Unaffected	Unaffected	Unaffected	Unaffected	Unaffected	Р
	Floor above or below		Unaffected	Unaffected	Unaffected	Unaffected	Unaffected	Р
Number 2	Guest Room	Open	3@60 s	2.28@60 s	71@110 s	60	60	Р
	Fire floor corridor		3@250 s	2.4 @ 800 s	42@800 s	780	205	P (See discussion)
	Floor above or below		Unaffected	Unaffected	Unaffected	Unaffected	Unaffected	Р

4.2.5 Discussion/Conclusion

Most complex issues are clouded by an abundance of complication. The visibility criteria used is based upon the opinions of a group of well recognized human behavioral scientists. ⁴⁴ However, in this case there is more information to consider.

The guestroom occupants will be entering the corridor at approximately 390 secs. (time to notification plus delay to start of evacuation) and make their way towards the stair enclosure. Visibility at this point will be less than 3 meters. They continue in the corridor for 120 seconds and then enter the stair enclosure where conditions are tenable.

⁴³ Only results for Evacuation Condition 2- Zoned evacuation of the fire floor, floor above, and floor below are shown.

⁴⁴ SFPE Guide to Human Behavior in Fire, Second edition

As noted previously, the visibility performance criteria used is based upon data that suggests 30% of the occupants will retreat when visibility decreases to 3 meters, at 1.82 meters above the floor.

Human behavior studies have shown that the presence of others can influence behavior and decision making. ⁴⁵ Informational social influence, as it is called, is when people observe the behavior of others and possibility follow that behavior. ⁴⁶ Informational social influence has been demonstrated in the herding behavior which can occurs during exit choice. ⁴⁷ During the evacuation of the fire floor, approximately 200 people will exit their guestrooms to investigate conditions or egress to the exit. From the research presented, 70% of the occupants will continue through the low visibility condition to the exit. Social influence could increase that percentage.

Familiarity with the exit route also may influence occupants to travel through low visibility conditions. Research shows occupants tend to exit the building through familiar routes, the same routes they entered the building thru. ⁴⁸ Other than using the elevator vs stairs to travel vertically in the building, the Gaslamp Hotel ingress and egress systems are the same. The use of the exit system in non-emergency conditions will provide occupants with some level of familiarity should emergency evacuation be required.

The visibility tenability limit is measured at 1.82 meters (6 feet), which is assumed to be above the head level of most occupants. Visibility is improved below this level which may motivate occupants to duck below the smoke layer to egress the floor.

Conservative assumptions have been made regarding design related issues. The design fire heat release rate is assumed to stay constant after sprinkler operation when in most cases the heat release will decrease or the fire will be extinguished. As a result, smoke production would be decreased and visibility would be improved from that modeled. ⁴⁹ The delay in fire alarm activation due to sprinkler water flow has been maximized at 90 seconds. This further delays the start of egress.

Based upon the above narrative, it is determined that the occupants on the fire floor can safely exit through the corridor to reach the stairway despite the reduced visibility. Given temperature and toxicity are not within harmful levels, safe egress can be accomplished. The occupants will be provided with an environment that is reasonably safe from the fire event. The primary goal of the performance-based analysis is then accomplished. The results also show that the occupants of the guestroom of fire origin should exit their room prior to conditions becoming untenable. This assumes the occupants are ambulatory when the fire event occurs.

Despite the convection of the above statements, a minor addition to fire protection/life safety features of the building is suggested. Additional low-level exit signs should be added to the guestroom corridors to provide enhanced directional clues during occupant egress. The signs should be spaced at 6 meters along the corridor walls. Other installation requirements of CBC Section 1013.7, regarding low-level exit signs, should be followed as well.

⁴⁵ G. Proulx, "Occupant Behavior and Evacuation," National Research Council Canada, Ottawa, Canada, 2001

⁴⁶ D. Nilsson and A. Johansson, "Social influence during the initial phase of a fire evacuation- Analysis of evacuation experiments in a cinema theater," Fire Safety Journal, vol 44, no.1, pp 71-79, 2009.

⁴⁷ B. Lantane and J.M. Darley, "Group Inhibition of Bystander Intervention in Emergencies," Journal of Personality and Social Psychology, vol.10, no.3, pp 215-221, 1968.

⁴⁸ SFPE Guide to Human Behavior in Fire, Second edition 2019, page 16

⁴⁹ M. Ahrens, U.S Experience with Sprinklers, NFPA, July 2017, Fact Sheet-Research

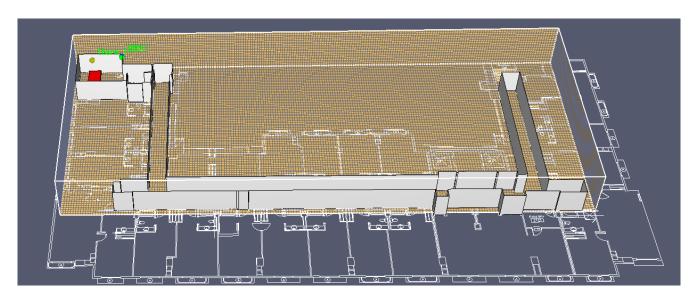


Figure 17: FDS Modeling Orientation

Figure 18: Guestroom Door Closed - Guestroom Visibility

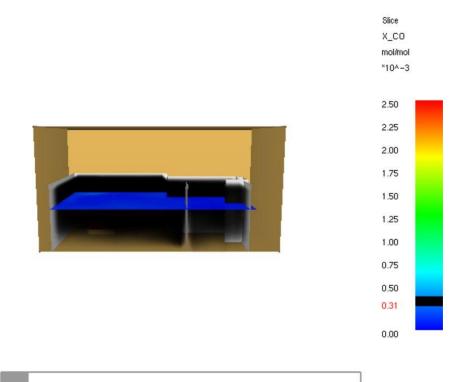


Figure 19: Guestroom Door Closed - Guestroom Co%

Time: 60.5

Time: 60.5

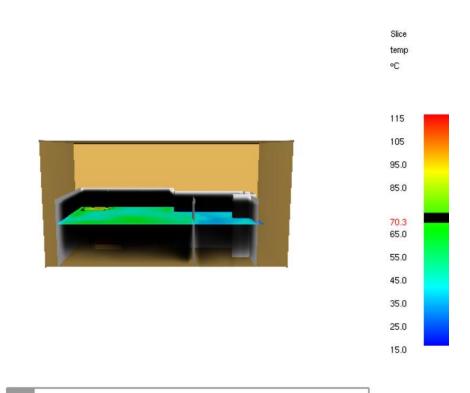


Figure 20: Guestroom Door Closed Temperature

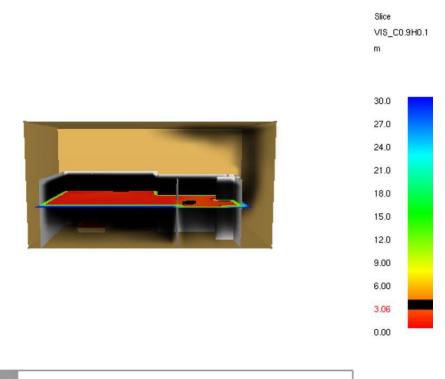


Figure 21: Guestroom Door Open - Guestroom Visibility

Time: 60.5

Time: 60.5

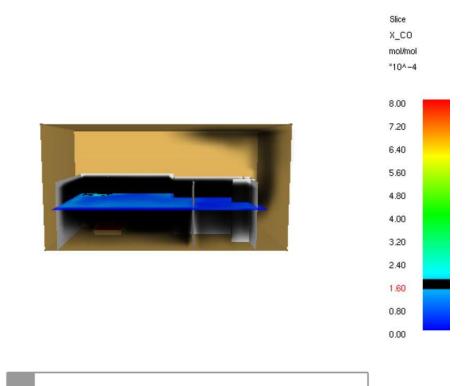


Figure 22: Guestroom Door Open - Guestroom C0%

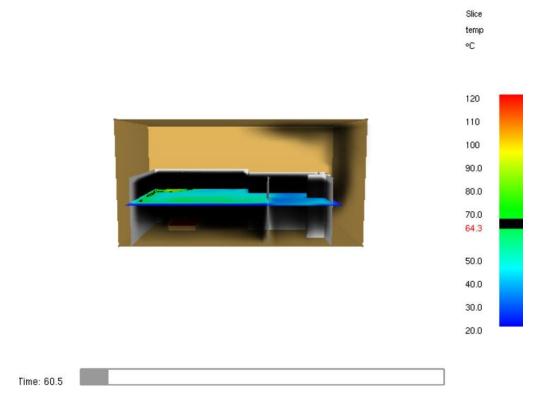


Figure 23: Guestroom Door Open - Guestroom Temperature

Figure 24: Guestroom Door Open - Fire Floor Visibility Lost @ 205 secs

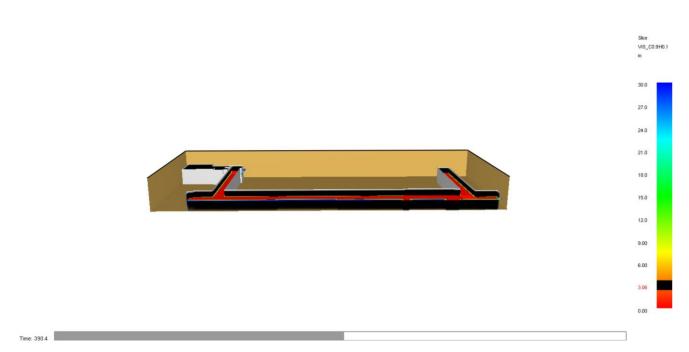


Figure 25: Guestroom Door Open - Fire Floor Visibility @ 390 seconds

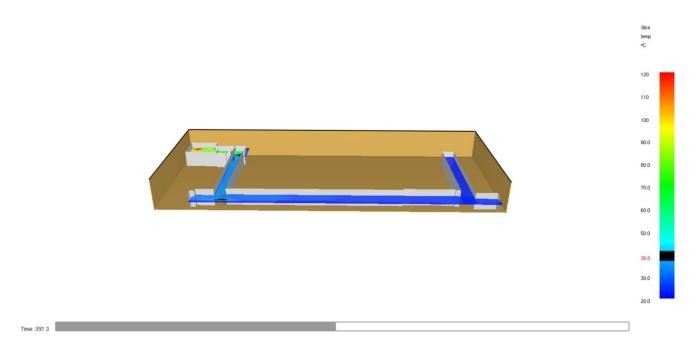


Figure 26: Guestroom Door Open - Fire Floor Temperature @ 390 secs

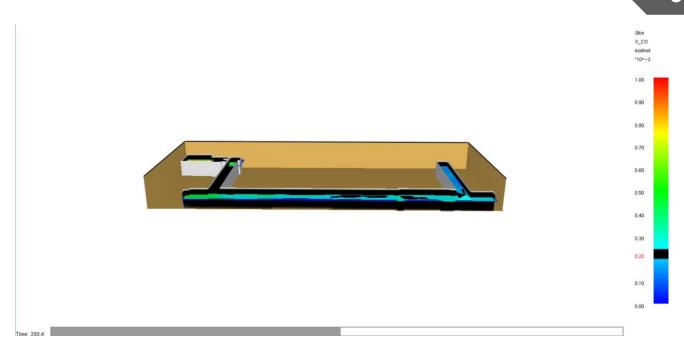


Figure 27: Guestroom Door Open - Fire Floor CO% @ 390 secs

4.3 Structural Fire Protection

4.3.1 Fire Strategy

Whether intended by the architect or not, the noncombustible nature of the building's construction is the foundation of the structural fire safety strategy. The primary goal is for the building to maintain structural stability through the burn out phase (complete consumption of the contents with the room of fire origin). The intent is to provide ample time for building evacuation and fire fighter operations.

An estimate of required safe egress time (RSET) is 26 minutes, as presented in Table 18, found within Section 4.2.3, Time-based Egress Calculations. Firefighting operations are expected to take more time. Standard response time in the downtown area is 6 minutes from notification. It is assumed fire department suppression activities could begin within 30 minutes from notification.

Maintaining structural stability is accomplished through the use of noncombustible building elements; the floors, ceilings, structural system, and walls are poured in place reinforced concrete. The passive elements of the fire safety strategy are shown on the composite life safety plans, Appendix M. See Appendix M for available structural drawings.

Supplemental protection is provided by the building's fire sprinkler system. During the time at which the building was designed, fire sprinklers were considered only a property protection safeguard. Today, because of the invention of the quick response sprinkler, sprinklers have the ability to activate during the early stages of fire development, thereby limiting fire spread and reducing smoke production rates. The sprinkler system works in conjunction with the building construction to limit the fire to the room of origin, which is a primary goal of the fire safety strategy.

Providing early notification and maintaining tenability during occupant evacuation is another important component of the fire safety strategy. The fire alarm system provides early notification of the fire event.

The structural fire safety strategy of the building can be summarized as multiple elements working together to provide safety to occupants and responding fire personnel. Additional details of the active elements of the strategy are found in the fire sprinkler and fire alarm sections of this report.

4.3.1.1 Design Fire Analysis

An analysis of the structural system's ability to resist the impact of thermal exposure was completed. Construction type of the building is reinforced concrete, so a concrete floor/ceiling assembly was analyzed for each condition. The analysis included calculation of the maximum temperature within the room of fire origin followed by establishment of the fire duration. The resulting data was used to predict the temperature of the reinforcing bars within the concrete slab. The heat transfer boundary conditions were calculated by using the finite difference method.

The Thomas plot approach was used to calculate maximum ceiling temperatures. The following equation developed by Law in 1983 also was used: 50

 $T_{\text{max}} = 6000(1 - e^{-0.1\Omega}) / \sqrt{\Omega}$

T_{max}= Maximum compartment temperature

 $\Omega = (A_t - A_v) / (A_v \sqrt{H_v})$

A_t= Surface area of the compartment

 A_v = Area of the vent

 H_v = Height of the top of the vent

⁵⁰ Law, M. A Basis for the Design of Fire Protection Building Structures, The Structural Engineer, February 1983.

Time to burn out, which is defined as the time for complete combustion of the fuel within the compartment of fire origin, was calculated to establish the fire duration. Fuel load density data was selected from work completed by Chen.⁵¹ See Tables 23 and 24.

 $Tb = M_f/R$

Tb = Time to burn out

 $M_f = Mass of fuel (MJ/m^2)$

= Fuel load density/ Δh_c

Δh_c =heat of combustion of the fuel (MJ/kg)

 $R = 0.1A_o \sqrt{H_o}$

 A_o = Area of the opening

H_o = Height of the opening

The finite difference method was used to calculate the temperature of the steel reinforcing bar based upon the exposure created by the compartment ceiling temperatures.

Table 23: Fuel Load Densities

	Movea	ble Fire Lo	ad Density	Total	l Fire Load	Density
	Motels (MJ/m ²)	Hotels (MJ/m ²)	All Rooms (MJ/m²)	Motels (MJ/m ²)	Hotels (MJ/m ²)	All Rooms (MJ/m²)
Minimum	202	145	145	371	279	279
Maximum	569	571	571	736	848	848
Mean	383	391	388	535	560	550
80%	436	453	453	605	638	632
95%	501	544	539	712	776	753
Standard deviation	89	105	98	100	123	115

Table 24 Fuel Load Densities

Building Occupancy	Surveyed		Robertson & Gross, 1970		Barnett, 1984		Narayanan, 1994	
	(kg/m^2)	(MJ/m^2)	(kg/m^2)	(MJ/m^2)	(kg/m^2)	(MJ/m^2)	(kg/m^2)	(MJ/m^2)
Offices	57	950	35-212	585-3540	22	436	37.8	681
Residence (bedroom)	43	724	40-69	668-1152	/	/	/	/
Motel	33	552	/	/	/	/	_/	/

⁵¹ Chen, Zhengrong, Design Fires for Hotels and Motels, Thesis Ottawa-Carleton Institute for Civil Engineering.

Three fire scenarios were analyzed as described below. The guestroom fire scenario was selected because fire data shows that bedroom areas are the primary location of unconfined fires within hotels (28%). ⁵² The meeting room scenario were selected due to the potential for a high density of combustibles. Compartment Dimensions are shown in Table 25.

Scenario 1: A fire within Guest Room 2101 on the 21st floor (typical guestroom). The fuel load density selected was 560 MJ/m² from Chen's work. It was assumed fire sprinklers did not operate.

Scenario 2: A fire within Guest Room 2101 on the 21st floor (typical guestroom). In this case, however it was assumed that a seismic event damaged the bottom of the concrete slab such that the steel reinforcing bars were exposed (direct exposure to the hot gas layer). The fuel load density selected was 560 MJ/m² from Chen. It was assumed fire sprinklers did not operate.

Table 25: Compartment Dimensions

Room Name	Room Area	Room Dimensions	Ceiling Height
Guest Room 2101	23.6 m	4.29 m x 5.49 m	2.97 m

The results of this analysis are presented in Table 26. Detailed calculations are provided in Appendix N.

Table 26: Thermal Calculation Results

Scenario Number	T _b (Mins)	T _{max} (°C)	Max. Reinforcing Steel Temperature (°C)
No. 1	23.6	800	225
No. 2	Same	Same	800

4.3.1.2 Structural Fire Analysis

The performance objective is applied load (U^*_{fire}) during the fire must be less than or equal to the capacity of the structural element during the fire (R_{fire}), or shown in equation form:

$$U^*_{fire} \leq \Phi R_{fire}$$

For the structural systems analyzed for this project, the moment created by the prescribed loading produced the maximum stress. Therefore, only moment calculations were completed. The statement for this relation can be written as:

$$M_u \leq \phi M_n$$

Where:

• = Strength reduction factor (0.90)

 M_n = Load capability (moment)

M_{II} = Applied load (moment)

⁵² U.S. Fire Administration National Fire Incident Reporting System, 2005-2007.

4.3.1.3 Failure Analysis

The loading on the reinforced concrete slab was calculated as follows:

$$M = w I^2/8$$

Where:

M = moment (kip-ft)W= Distributed loading (pound/lf)I= Length of the span (ft)

The loading was calculate using a load fire reduction design of 1.2D x 0.5 L

Where:

D= Dead Load (pound/lf) L= Live Load (pound/lf)

CBC requirements for live load criteria were used. For the hotel guest rooms L= 40 psf. Dead load criteria were difficult to quantify, however 15 psf for partitions was added to the weight of the concrete slab (112.5 p/ft²) for a total dead load of 127.5 p/lf.

```
W= 1.2D \times 0.5 L
= 1.2 \times 127.5 + 0.5 \times 40 \text{ p/sf} \times 1 \text{ft (slab width)} = 173 \text{ p/lf for the guest rooms}.
```

For the meeting room a dead load of 127.5 p/sf and a live load of 100 p/sf and slab width of 1lf, results in:

$$W= 1.2 \times 127.5 \text{ p/sf+ } 0.5 \times 100 \text{ p/sf} \times 1 \text{ ft= } 203 \text{ p/ lf}$$

The applied load to the slab is then

M= w $l^2/8$ = 173p/lf (28 ft) 2 /8 = 16.954 k-ft for the guest rooms and = 203 p/lf ((28 ft) 2 /28 = 19.89 k-ft for the meeting room

The moment capacity of the slab during fire conditions was calculated as follows:

```
M_{nf}=A_s f_y (d-a/2)/0.85 f_c b
M_{nf}=Load capability during fire (k-ft)
A_s=Area of steel (in²)
f_y=Modulus of elasticity of steel(kips)
d=Effect depth of the cross section of the slab (in)
a=Stress block depth (in)
=A_s f_y/0.85 * f_c b
f_c=Yield strength of concrete (kips)
b=Width (in)
```

Results are shown in Table 27. In Scenario 1, the reinforced concrete slab had ample strength to support the applied load during fire conditions.

In Scenario 2, which included exposed reinforcing bar, the slab was near maximum capacity. However, concrete temperatures exceeded 500 °C from the bottom of the slab to a thickness of 0.0285 inches. Concrete with temperatures above 500 °C is assumed not to contribute to the load bearing capacity of the slab, while the rest of the slab retains its original strength. The 500 °C Isotherm Calculation Method was used to calculate the new slab dimension D. Then the new moment capacity of the slab was calculated. The slab is not capable of supporting the applied loads.

See Appendix N for spreadsheet calculations.

 Scenario Number
 Applied Load Mu (k-ft)
 Load Capacity •Mn(k-ft)

 No. 1
 16.95
 99.0

 No. 2
 16.95
 18.0

 No. 2 500 °C Isotherm Calculation Method
 16.95
 15.6

Table 27: Structural Analysis Results

4.3.1.4 Discussion/Conclusion

The reinforced concrete slab performed exceptional except when damaged and the reinforcing bars were exposed to the hot gas layer. Increasing the thickness is potential solution. However, given this is an existing occupied hotel that solution is impractical. It is suggested a higher order of analysis be performed to confirm results.

4.4 Conclusion- Performance-based Analysis

A performance-based analysis was completed for the Gaslamp Hotel building. The analysis included the evaluation of building occupant safety given two reasonable worst-case scenarios; a fire located in a typical guestroom with limited ventilation (entry door closed), and a repeat of the first scenario with improved ventilation (entry door open). Two evacuation conditions were considered; global egress of the entire building and zoned egress of the fire floor, floor above, and floor below. The former was used in the structural analysis to predict conditions resulting from a total burnout of the room of fire origin. The latter, a more contemporary evacuation condition, was used in the time-based egress analysis.

The results of the time-based egress analysis showed that occupants both remote from and intimate with the fire origin could safely egress the building prior to tenability conditions degrading to life threatening conditions. Visibility within the guestroom corridors degraded prior to the other two tenability criteria, temperature and toxicity. Despite the successful outcome of the analysis, a recommendation is made to add additional low-level exit signs at a spacing of 6 meters within the hotel guest room corridors with intent of improving the inclination for occupants to egress through the corridors in low visibility conditions.

The structural analysis simulated the total burn out of the room of fire origin which produced high temperatures within the compartment of fire origin for an extended period of time, 24 minutes. Two reasonable worst-case case scenarios were considered; the total burn out of the room of origin, and a repeat of the first scenario assuming steel reinforcing bars were exposed to the hot gas layer due to a seismic event. In both cases the fire sprinklers were assumed to be impaired.

The results of the first scenario showed the increase in temperature of the reinforcing bars did not cause a significant reduction in steel yield strength and that even at elevated temperatures the reinforced concrete floor slab could still adequately support the applied loads.

The results of the second scenario indicated that the reinforced concrete floor slab could not support the applied loads, but only by a small margin. A higher order analysis is recommended to clarify the situation.

The fire suppression and detection systems upon which this analysis is based are maintained as required by the applicable standards and thus should performed as designed, which satisfies another objective of the performance-based design.

5 FIRE SAFETY MANAGEMENT PLAN

The purpose of this Fire Safety Management Plan (FSMP) is to establish procedures required by the CBC for pre-fire planning and occupant evacuation. The plan is also designed to provide information to emergency services about the nature of the emergency so that a safe and effective response may be initiated. A FSMP was drafted to fortify the hotel's preset plan. See Appendix P.

6 PROJECT CONCLUSION AND RECOMMENDATIONS

The Gaslamp Hotel was analyzed for fire protection/life safety using two different methodologies; a prescriptive approach and a performance- based approach. Both considered the same features of the building, but through different lenses.

The prescriptive analysis studied the variation of the building's fire protection/life safety components from those required by the applicable codes and standards. This analysis included building construction, fire suppression, fire detection, smoke control system, and egress systems.

The results of the analysis indicate that the building complies with the requirements of the applicable codes and standards, with three exceptions relating to occupant egress:

- The 1st floor bar area: One exit is provided, two are required. An additional exit through the
 restaurant is recommended.
- The 8th floor East and West Terrace areas: Only one exit from each space is provided, two are required. The use of horizontal exits along the east and west exterior walls is recommended. In addition, the east terrace requires the addition of a corridor and new exit door at the north end. The west horizontal exit can also be used to disperse pre-function occupants to the west.
- Eighth floor Corridor 885: This dead end exceeds 20 feet in length. A door should be installed at the beginning of the corridor.

The performance-based approach included the evaluation of building occupant safety given two reasonable worst-case scenarios and two evacuation conditions.

The results of the time-based egress analysis indicate that occupants, both remote from and intimate with the fire origin, could safely egress the building prior to tenability conditions degrading to life threatening conditions. Despite the successful outcome of the analysis, a recommendation is made to add additional low-level exit signs with the intent of improving the inclination for occupants to egress through the corridors in low visibility conditions.

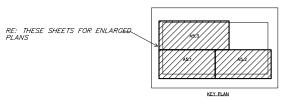
The structural analysis simulated the total burn out of the room of fire origin which produced high temperatures within the compartment of fire origin for an extended period of time, 24 minutes. Two reasonable worst-case case scenarios were considered.

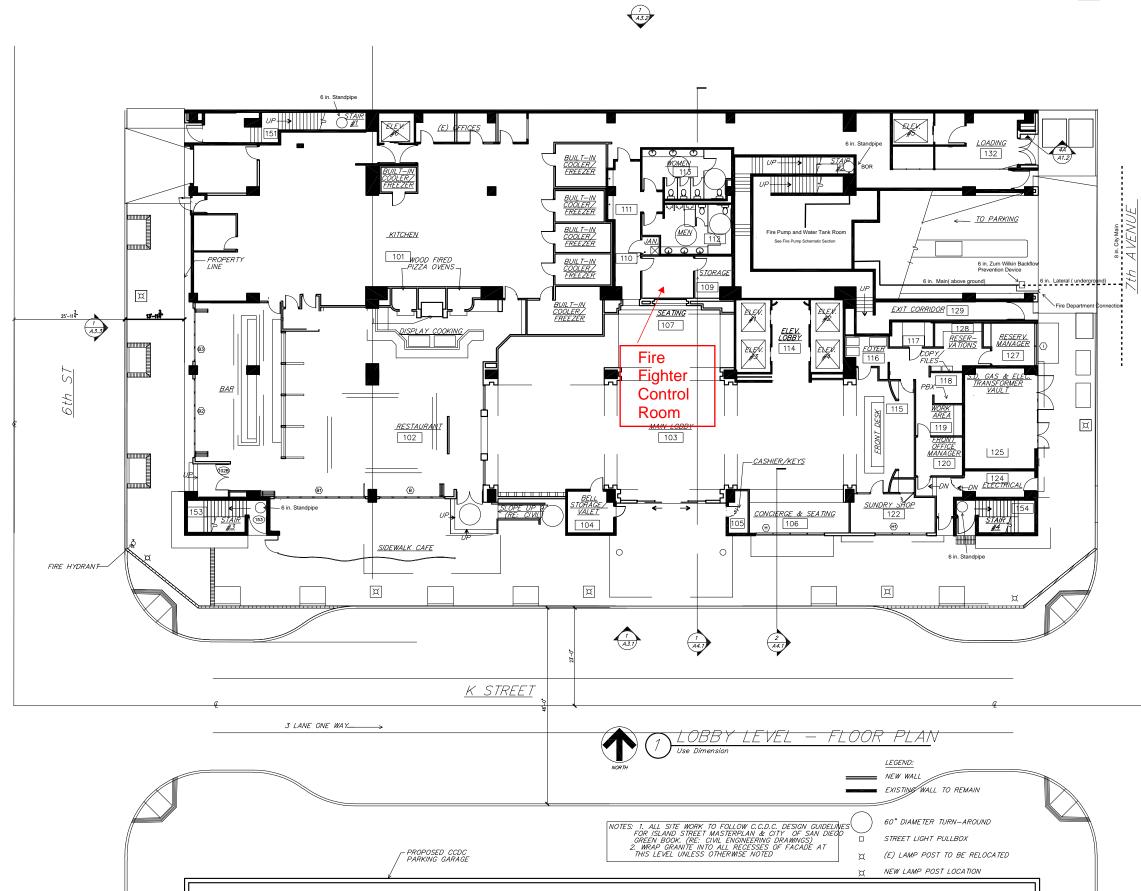
The results of the first scenario indicate the increase in temperature of the reinforcing bars did not cause a significant reduction in steel yield strength and that even at elevated temperatures the reinforced concrete floor slab could still adequately support the applied loads.

The results of the second scenario indicated that the reinforced concrete floor slab could not support the applied loads, but only by a small margin. A recommendation is made to complete a higher order analysis to clarify the situation.

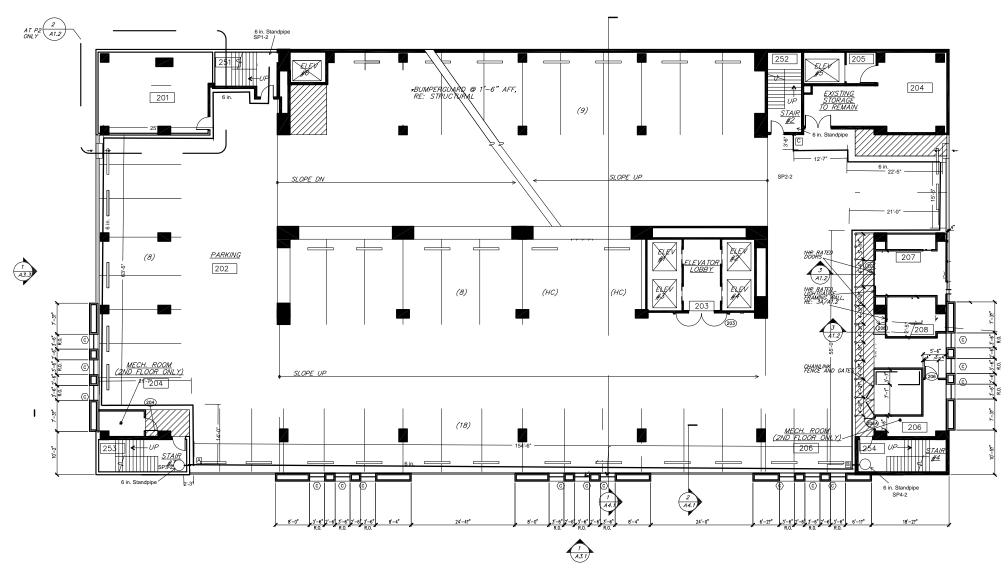
Respectfully submitted:

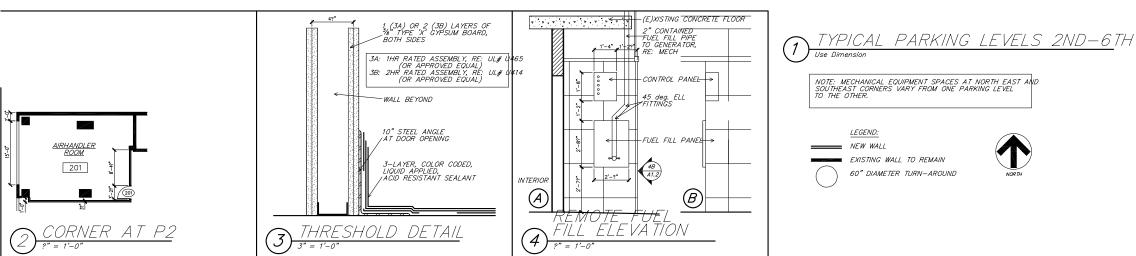
Garner A. Palenske, P.E.

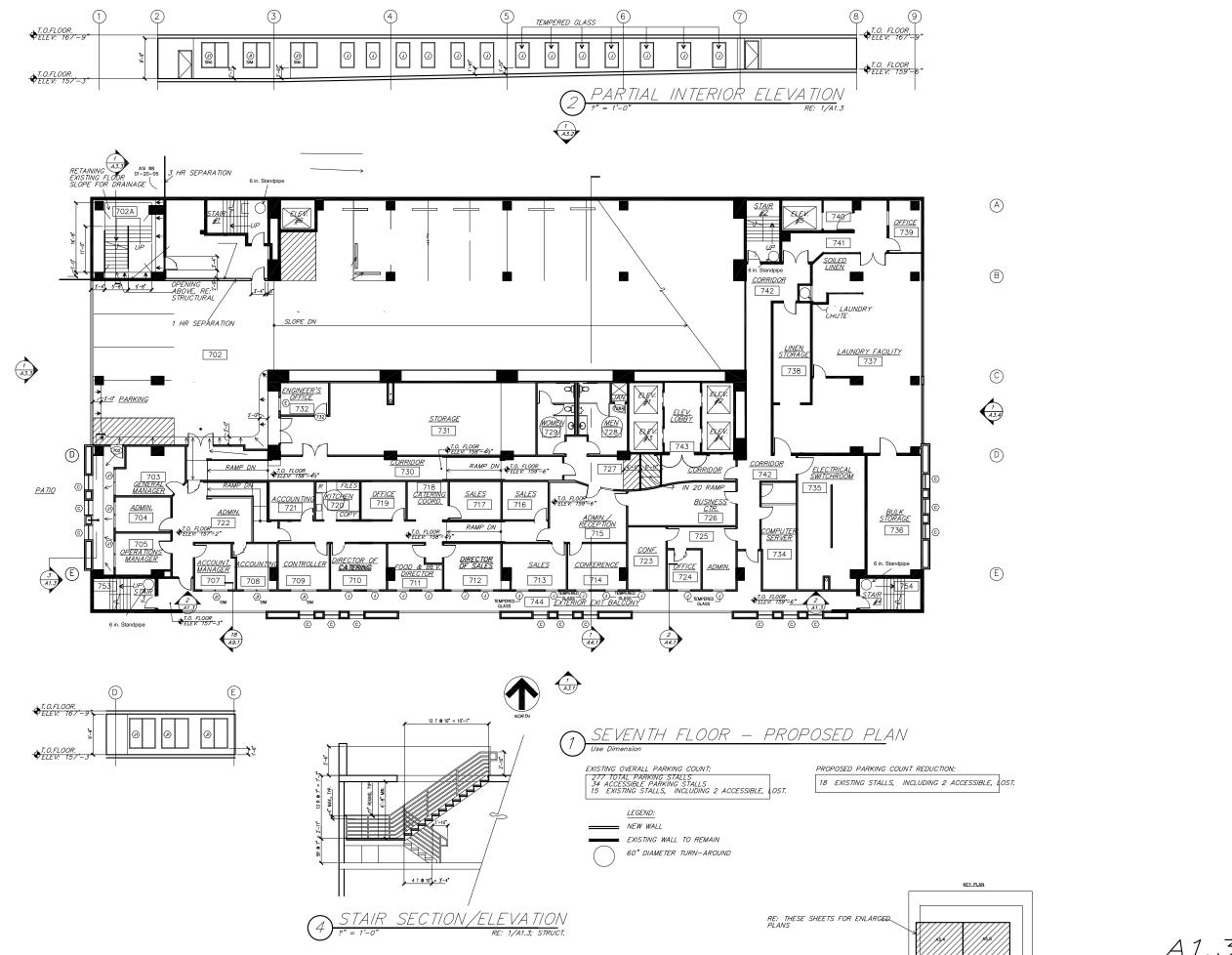

Lan a Palenshe

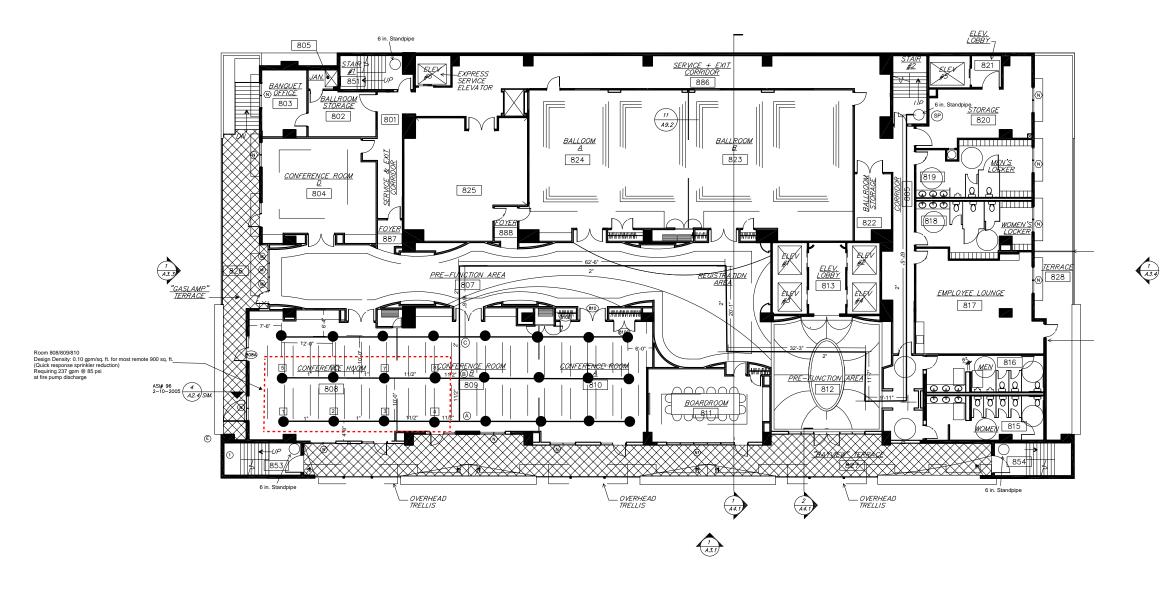

7 REFERENCES

- 1. Uniform Building Code, Standard 38-3, Section 38.303, 2(B), 1979.
- 2. Uniform Building Code, Section 1807, 1979-1982.
- 3. Ahrens, Marty, US Experience with Sprinklers, NFPA 2017.
- 4. B. Lantane and J.M. Darley, *Group Inhibition of Bystander Intervention in Emergencies*, Journal of Personality and Social Psychology, vol.10, no.3, 1968, 215-221.
- 5. British Standard Institute, DD London 1997. Fire Safety Engineering in Buildings, Part 1, Guide to the Application of Fire Safety Principals, Table 21.
- 6. Chen, Zhengrong, Design Fires for Hotels and Motels, Thesis Ottawa-Carleton Institute for Civil Engineering.
- 7. City of San Diego policies based upon 1979-1882 UBC Section 1807 defining a high-rise building as only an R-1 or B Occupancy.
- 8. Consumer Product Safety Commission, *Standard for the Flammability of Mattresses and Mattress Pads* (16 C.F.R. part 1632).
- 9. Consumer Product Safety Commission, *Standard for the Flammability (Open Flame) of Mattress Sets,* (16 C.F.R. part 1633).
- 10. D. Nilsson and A. Johansson, Social influence during the Initial Phase of a Fire Evacuation- Analysis of Evacuation Experiments in a Cinema Theater," Fire Safety Journal, vol 44, no.1, pp 71-79, 2009.
- 11. FDS User's Guide, NIST Special Publication 1019, 6th edition, page 149.
- 12. G. Proulx, Occupant Behavior and Evacuation, National Research Council Canada, Ottawa, Canada, 2001.
- 13. Geiman, Justin A., and Gottuk, Daniel T., Alarm Thresholds for Smoke Detector Modeling, Fire Safety Science, 7th International Symposium.
- 14. Gwynne, Steven, et al, *Questioning the Linear Relationship between Door Width and Achievable Flow Rate*, Fire Safety Journal 44, 2009.
- 15. J.L. Bryan, *Smoke as a Determinant of Human Behavior in Fire Situation*, National Bureau of Standards, Washington, D.C., 1977. SFPE Guide to Human Behavior in Fire, Second edition, pages 46-47. Conversations with Dan O'Connor, Chair, SFPE Task Group on Human Behavior in Fire
- 16. Kim, Hyeong-Jim and Lilley, David G., *Heat Release Rates of Burning Items in Fires*, AIAA 2000-0722. January 10, 2000.
- 17. Law, M., A Basis for the Design of Fire Protection Building Structures, the Structural Engineer, February 1983.
- 18. Mowrer & Rosenbaum, *Fire Protection Handbook Information and Analysis for Fire Protection*, Figure 3.11.4 Example Time Line for Evaluation of Available Versus Required Safe Egress Times, 2008.
- 19. NFPA Fire Protection Handbook, page 1-101, 19th Edition.
- 20. Paradis, Thomas, American Styles of Architecture. https://architecturestyles.org/
- 21. Pressure reducing valves set at 175 psi are provided at the sprinkler pipe connection to the riser on all floors. In reality, the maximum pressure available at the standpipe sprinkler system connection at each floor is 175 psi.
- 22. San Diego Municipal Code, Pre-1994.
- 23. SFPE Guide to Human Behavior in Fire, Second Edition 2019, page 16.
- 24. SFPE Handbook of Fire Protection Engineering, 5th Edition, Table 63.20.
- 25. SFPE Handbook Table 3-4.16, Footnote A.
- 26. SFPE Handbook, 4th edition, page 2-116.
- 27. SFPE Handbook, 5th edition, page 2220.
- 28. SFPE Handbook, 5th edition, page 2222.
- 29. SFPE Handbook, 5th edition, page 2331.
- 30. SFPE Handbook, 5th edition, page 2334.
- 31. SFPE Handbook, 5th edition, page 2347.
- 32. SFPE Handbook, Table 4.2.7.
- 33. SFPE HB 4th Edition, page 3-379.
- 34. Supervised Sprinkler System, NFPA 13, Section 11.2.3.1.3.
- 35. U.S. Fire Administration National Fire Incident Reporting System, 2005-2007.

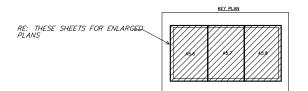

8 APPENDICES


APPENDIX A - FLOOR PLANS





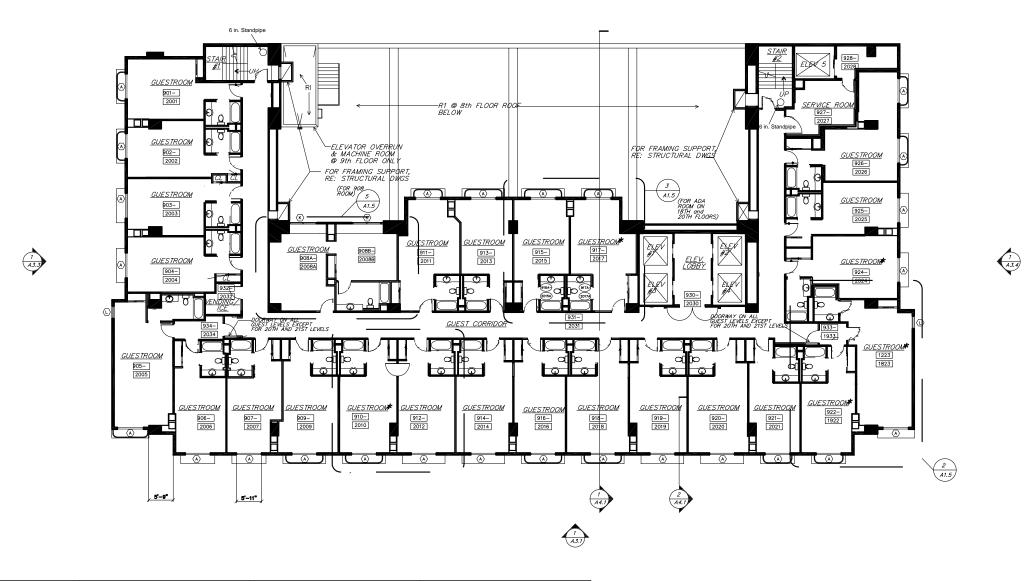
1) EIGHTH FLOOR (CONFERENCE LEVEL) - PROPOSED PLAN

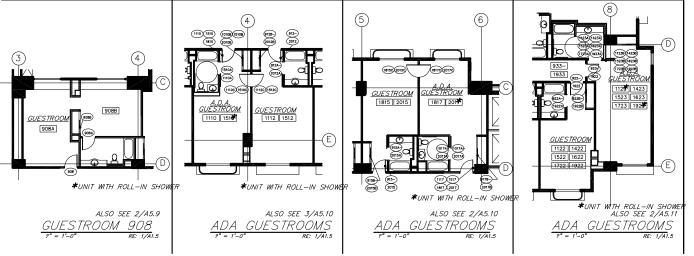

(1) Use Dimension

LEGEND:

NEW WALL - MINIMUM 54 STC RATING (1 HR RATED)

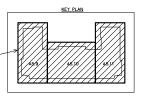
EXISTING WALL TD REMAIN


60" DIAMETER TURN-AROUND



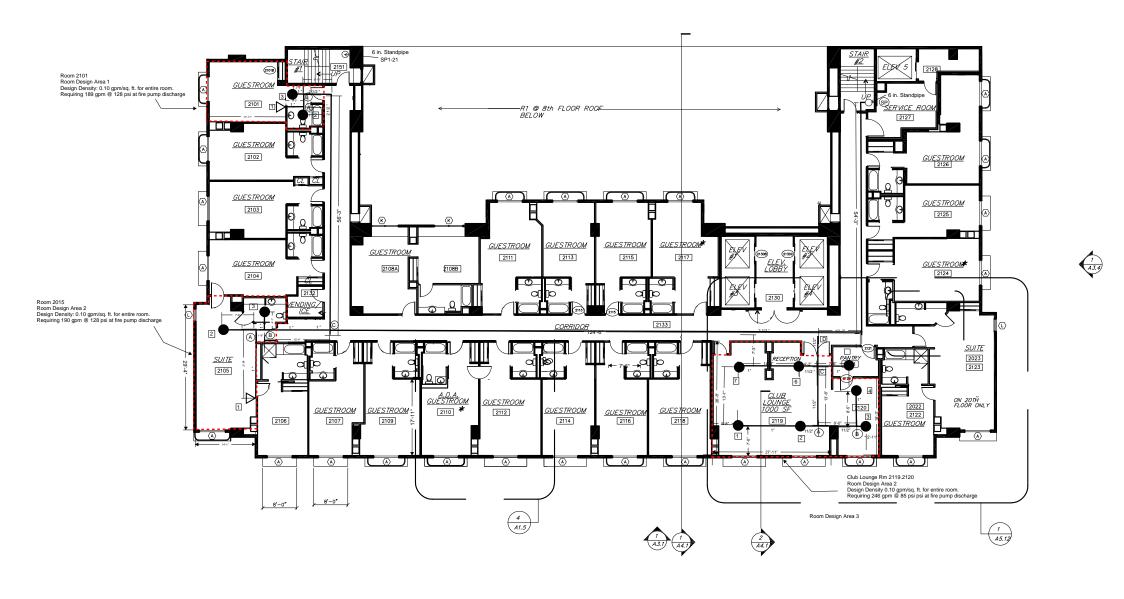
A1.4

13 MAY 2004

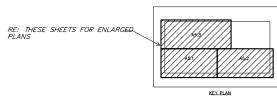

TYPICAL GUESTROOM FLOOR PLAN (9th-12th & 14th-20thFLOORS) NOTE: THERE IS NO 13th FLOOR

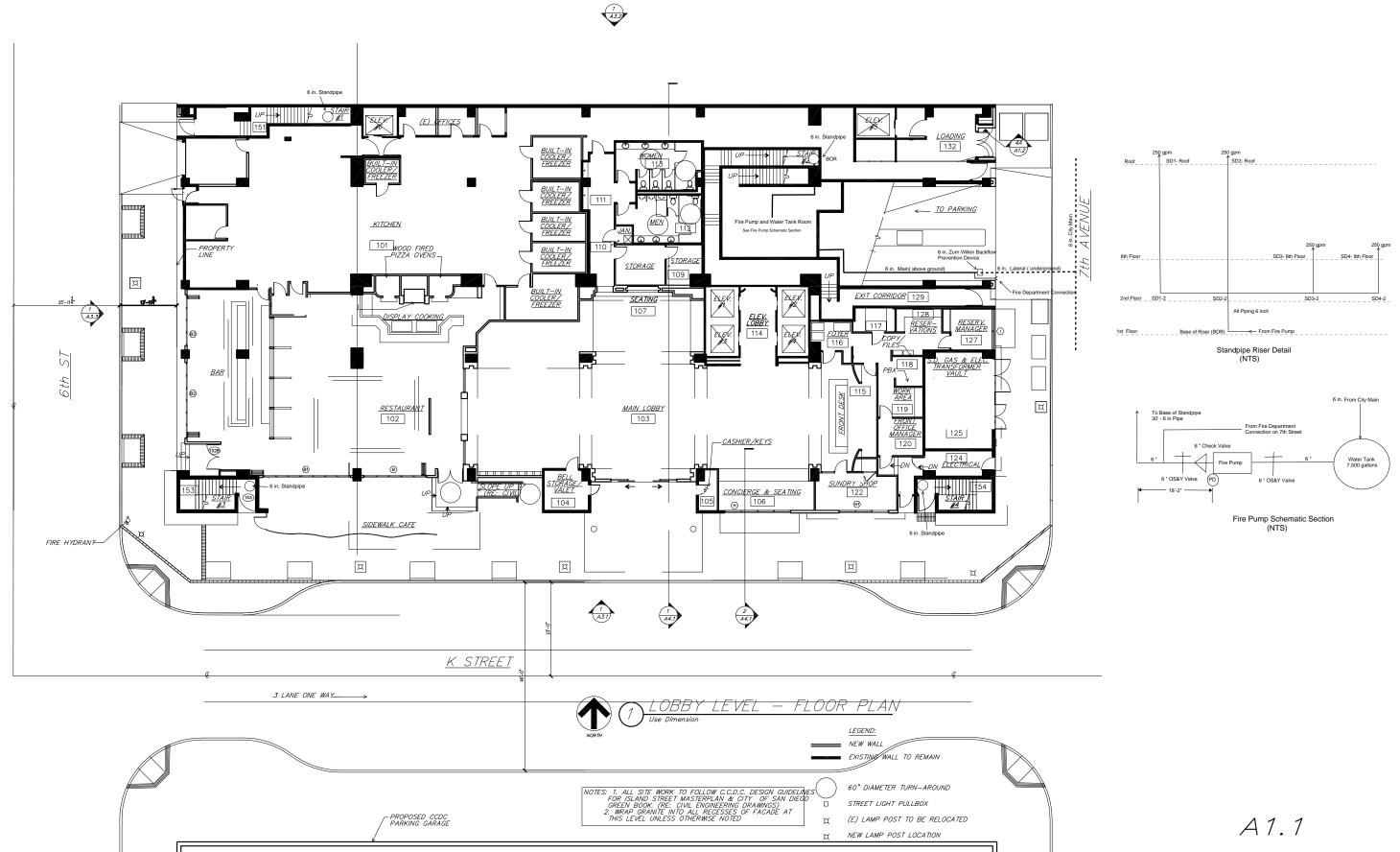
NOTE 1: GUESTROOM LAYOUTS BASED ON ORIGINAL CONSTRUCTION DOCUMENTS. SPACES HAVE NOT BEEN CONFIRMED BY RECENT OBSERVATION. NOTE 2: NUMBER OF GUESTROOMS: 321 PLUS CLUB LEVEL LOUNGE NOTE 3: ADA COMPLIANT GUESTROOMS LOCATED ON ELEVENTH, FIFTEENTI EIGHTEENTH, AND TWENTY—FIRST FLOORS.

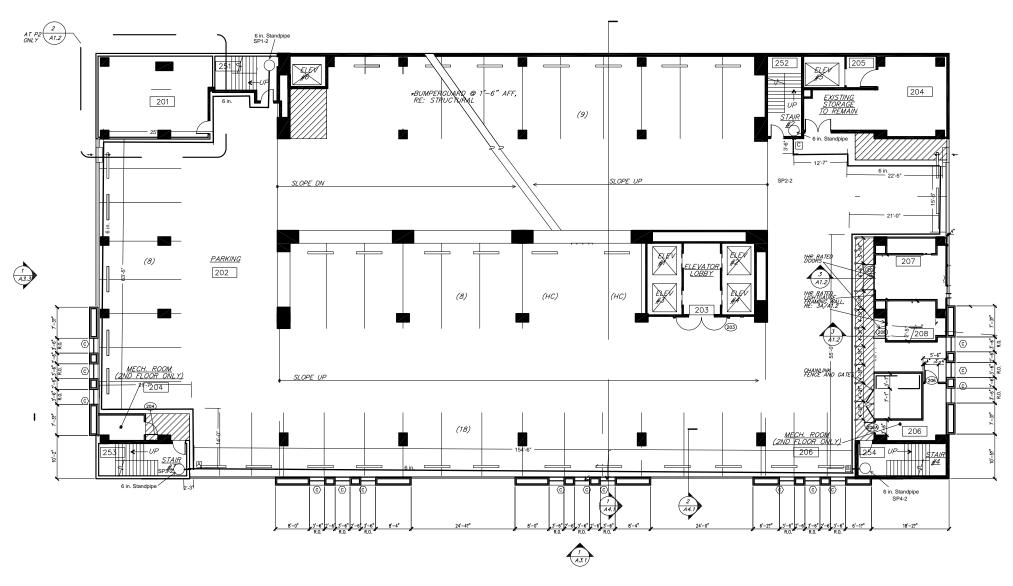
LEGEND: NEW WALL EXISTING WALL TO REMAIN ROOMS WITH VISUAL ALARMS ON SELECT LEVELS (SEE SHEET AO.O)

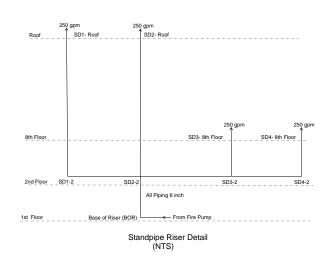

60" DIAMETER TURN-AROUND

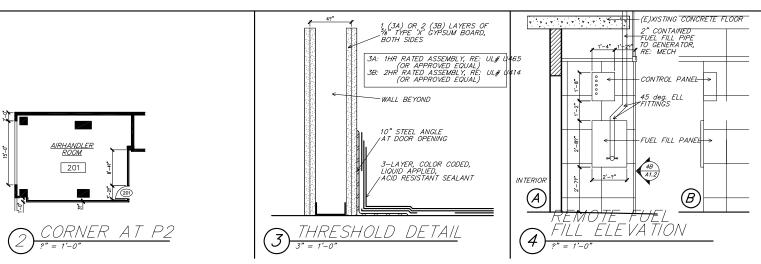
RE: THESE SHEETS FOR ENLARGED-PLANS

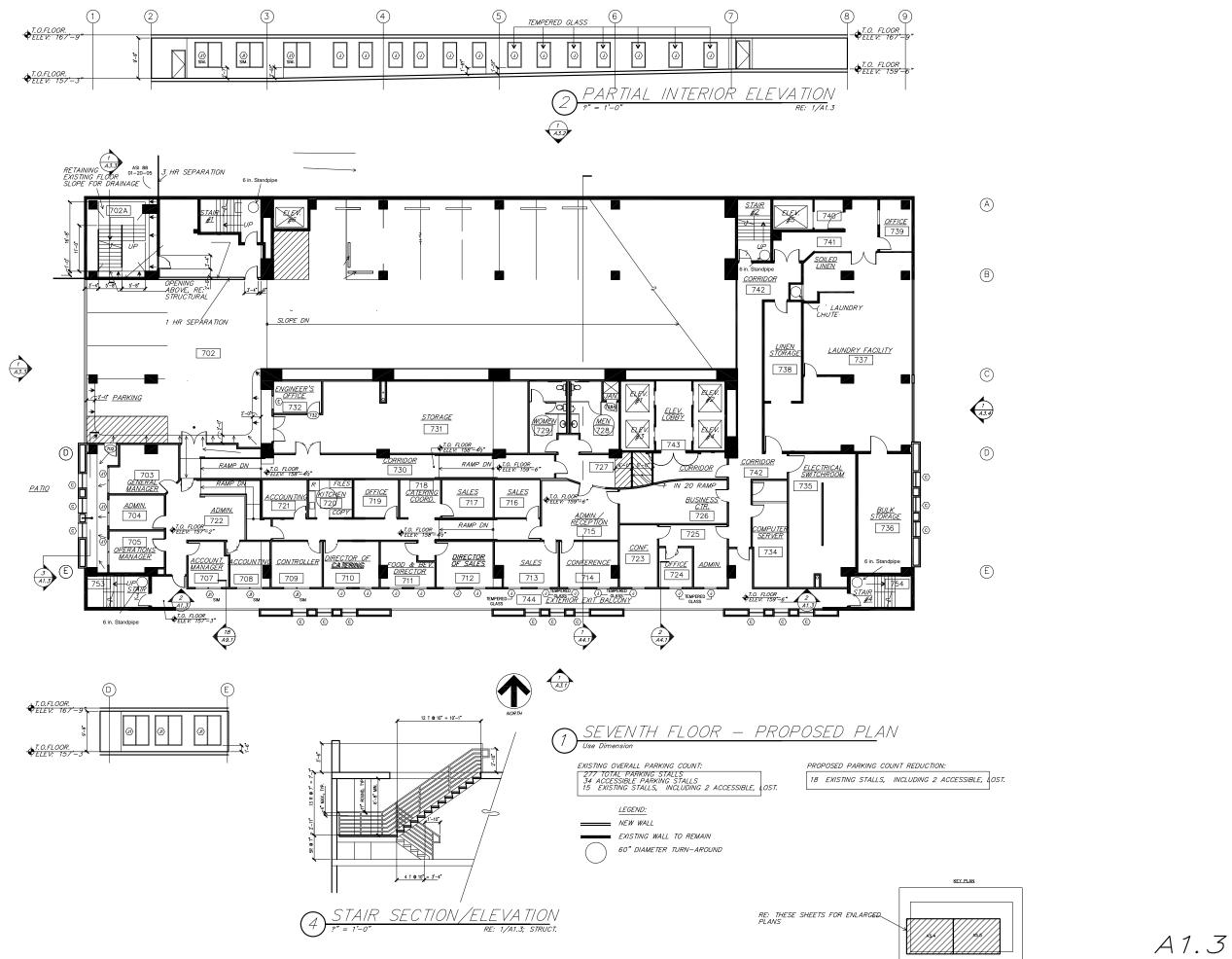


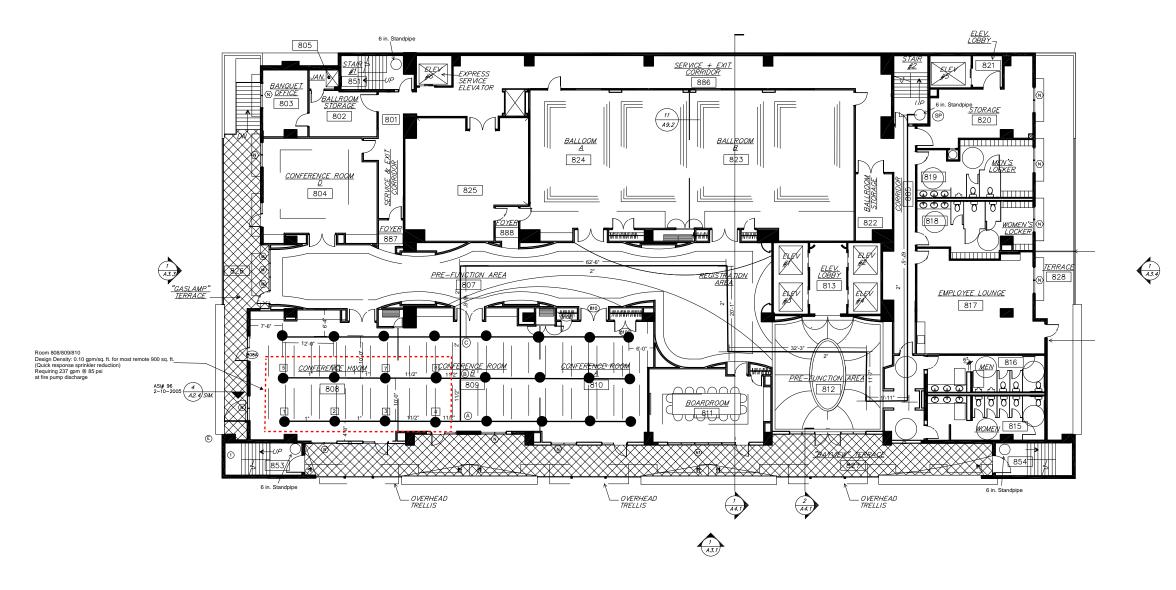




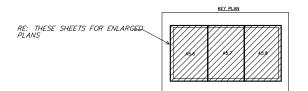

APPENDIX B - FIRE PROTECTION SYSTEM PLANS







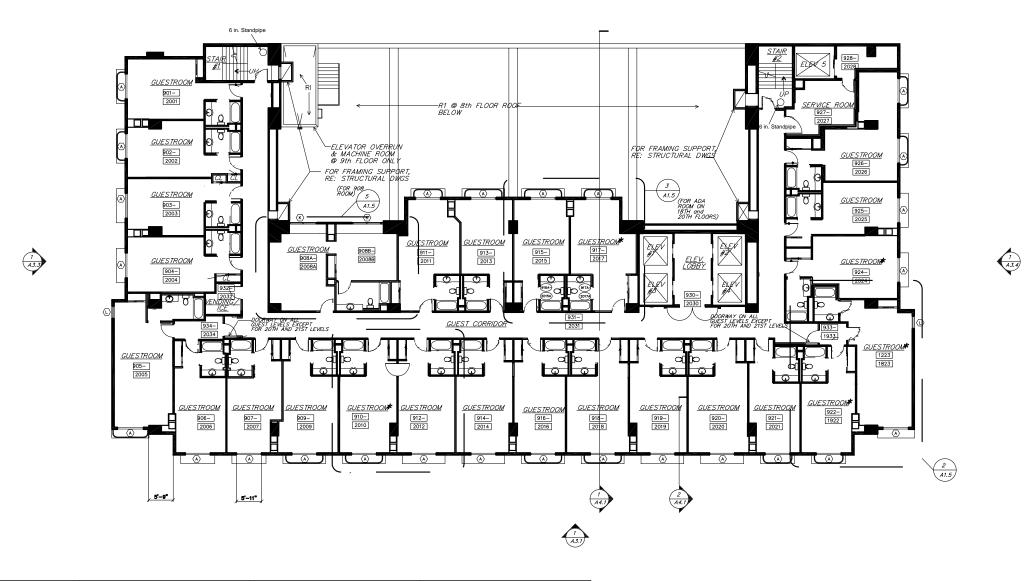
1) EIGHTH FLOOR (CONFERENCE LEVEL) — PROPOSED PLAN

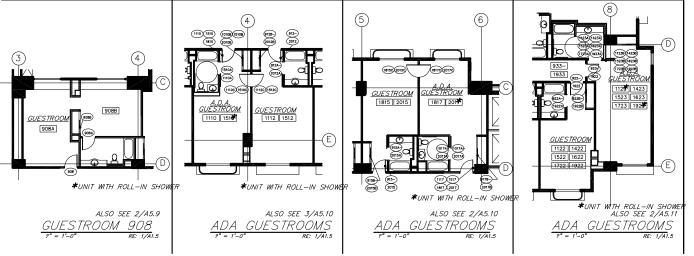

Use Dimension

LEGEND:

NEW WALL - MINIMUM 54 STC RATING (1 HR RATED)

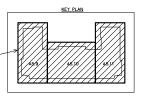
EXISTING WALL TD REMAIN


60" DIAMETER TURN-AROUND



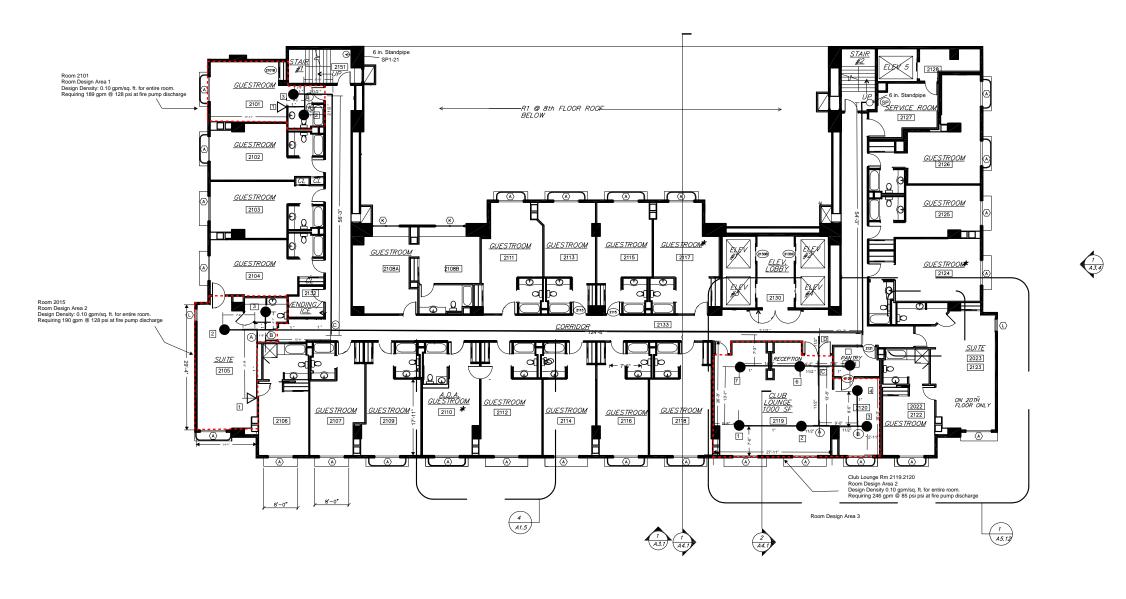
A1.4

13 MAY 2004


TYPICAL GUESTROOM FLOOR PLAN (9th-12th & 14th-20thFLOORS) NOTE: THERE IS NO 13th FLOOR

NOTE 1: GUESTROOM LAYOUTS BASED ON ORIGINAL CONSTRUCTION DOCUMENTS. SPACES HAVE NOT BEEN CONFIRMED BY RECENT OBSERVATION. NOTE 2: NUMBER OF GUESTROOMS: 321 PLUS CLUB LEVEL LOUNGE NOTE 3: ADA COMPLIANT GUESTROOMS LOCATED ON ELEVENTH, FIFTEENTI EIGHTEENTH, AND TWENTY—FIRST FLOORS.

LEGEND: NEW WALL EXISTING WALL TO REMAIN ROOMS WITH VISUAL ALARMS ON SELECT LEVELS (SEE SHEET AO.O)


60" DIAMETER TURN-AROUND

RE: THESE SHEETS FOR ENLARGED-PLANS

Sprinkler Legend	
Standard spray sprinkler 165 degree rated, quick response, pendent	
Extended coverage side wall sprinkler 165 degree rated, quick response Tyco Model TY3332 used as example	\triangleright

APPENDIX C - FIRE PROTECTION SYSTEM HYDRAULIC CALCULATIONS

Standpipe Hydraulic Calculations

Step No.	Nozzle Ident and Location		in gpm	Pipe size	Pipe Fittings and Devices	Р	Equivalent ipe Length	C=	Friction loss (psi/ft)	S	Pressure	I	Normal Pressure		Notes
1	SP1-Roof to SP1-2	q		6.065		F	162	C=	120	Pt Pe	65.0 70.1	Pt Pv		159.8	=8.8+4.3+2.6 + 8.3+ 10.8 +25.8+ 63.5+ 21.8 +14
		Q	250.0			T	162	pf	0.00271	Pf	0.4	Pn		100.0	-0.014.012.010.0120.0100.3121.0114
1	SP1-2 to A	q		6.065	1-T	F	159.8	C=	120	Pt Pe	135.6	Pt		450.0	0.0.40.00.00.40.0.40.0.40.0.44
		Q	250.0		8-E	F	142 301.8	pf	0.003	Pf	0.8	Pv Pn		159.8	=8.8+4.3+2.6 + 8.3+ 10.8 +25.8+ 63.5+ 21.8 +14
			200.0			i i	301.0	Pi	0.003	Pt	136.4	1			
2	SP3-2 (balance 250 gpm to 136.4 psi)	q	362.00	6.065	1T	L	2.3	C=	120	Pt	136.4	Pt			k= q/p0.5
	q= 31x 136.4(0.5)=362					F	30			Pe	0.0	Pv	k=	31	p = 65 +0.4 = 65 psi, q= 250 solve for K = 250*65(0.5)= 31
		Q	612.0			Т	32.3	pf	0.014	Pf	0.5	Pn			
3	A to B	q		6.065		L	158.6	C=	120	Pt	136.4	Pt		158.6	313.1
		Q	C40.0		1E	F	14 172.6	4	0.044	Pe Pf	2.4	Pv Pn			
	SP4-	Q	612.0			-	172.6	pf	0.014	Pī	2.4	Pn			
4	2 (balance 250 to 138.8)	q	365.3	6.065		L		C=	120	Pt	138.8	Pt	k=	31	
	q= 31x 138.8(0.5)= 365.3					F				Pe		Pv			
5	B to C	Q	977.3	6.065		T	130.35	pf C=	0.034 120	Pf Pt	138.8	Pn Pt		130.35	130.35
5	B 10 C	q		6.065	6E	F	98	C=	120	Pe	130.0	Pv		130.35	130.33
		Q	977.3			T	228.35	pf	0.034	Pf	7.7	Pn			
6	SP2- 2 balance 250 to 146.1	q	374.6	6.065		L		C=	120	Pt	146.5	Pt			
	q= 31 x 146 (0.5)=	Q	1251.0			F	0	n.f	0.064	Pe	0.0	Pv Pn	k=	24	
7		Q	1351.9			F	0	pf	0.061	Pf Pt	0.0 146.5	Pv	κ=	31	
						T		pf		Pf		Pn			
	SP2-2 to BOR	q		6.065			9	C=	120	Pt	146.5	Pt			
					1E 1OS&Y,	F	49			Pe	4.0	Pv			
		Q	1351.9		105&1, 1CV	Т	58	pf	0.061	Pf	3.6	Pn			
8	BOR to PD			6.065		L	48.2	C=	120.000	Pt	154.1				Main pipe to riser
			1051.5		1T	F	49		0.007	Pe					
9	PD	Q	1351.9			T	97.2	pf C=	0.061 120	Pf Pt	6.0 160.1	Pt			
3	10	4				F		0-	120	Pe	100.1	Pv			
		Q				Т		pf		Pf		Pn			

Conference Room 808 Hydraulic Calculations

Step No.	Nozzle Ident and Location	Flow	in gpm	Pipe size	Pipe Fittings and Devices		uivalent e Length	Frictio	on loss (psi/ft)		ssure	Spacing sf	К	density(gpm/sf)	Q	Р
1	1	q	J J	1.049		1	12	C=	120	Pt	7.0	120	5.6	0.10	14.8	7.00
	•	7]		F			1.20	Pe	1.10		0.0	00		
				i		•										
		Q	14.7			Т	12	pf	0.074	Pf	0.9	Find ke for drop	Assume 1 "x 1 ' drop at each sprinkler			
2	2	q	15.7	1.049		L	12	C=	120	Pt	7.9	pf=	0.07	7.07		
						F				Pe		p t for drop= 7+ 0.07= 7.07, Q=k(p)0.5				
		Q	30.4			Т	12	pf	0.283	Pf	3.4	solve for ke	5.56	Q adjusted	14.7	
3	3	q	18.8	1.61		L	12	C=	120	Pt	11.3					
						F				Pe						
		Q	49.2	1		Т	12	pf	0.086	Pf	1.0					
4	4	q	19.6	1.61	1T	L	6	C=	120	Pt	12.3					
						F	8			Pe						
		Q	68.9			Т	14	pf	0.159	Pf	2.2					
5	Α	q	0.0	1.61		L	10	C=	120	Pt	14.5	Ke =	17.15			
						F				Pe						
		Q	68.9			Т	10	pf	0.159	Pf	1.6					
6	В	q	68.9	2.067		L	10	C=	120	Pt	16.1	QB=	68.87			
						F				Pe						
		Q	137.7			Т	10	pf	0.170	Pf	1.7					
7	C to SP	q		2.067		L	177.7	C=	120	Pt	17.8					
					7-E	F	35			Pe						
		Q	137.7			Т	212.7	pf	0.170	Pf	36.1					
	SP to			0.005		١.	70	C=	400	D.	540			00 (1 0 5)		
8	2 BOR	q		6.065		F	72	C=	120	Pt	54.0	70(1) \ 0.400 = -1/(1	sch 40	20 floors x 9 Ft		
			137.7	1		T	70	pf	0.0008985	Pe Pf	31.2 0.0647	72ft X 0.433 psi/ft =				
	BOR to	Q	131.1				72	pr	0.0008985	Pī	0.0647					
9	3 PD	q		6.065		l i	48.2	C=	120	Pt	85.2					
	. .			1	1E	F	49			Pe						
				1	10S&Y,											
		Q	137.7		1CV	Т	97.2	pf	0.0008985	Pf	0.09					
10	PD	q	100.0							Pt	85.3	add hose 100 gpm				
		Q	237.7													
		×	231.1	1	l .	l .	l	1	1	1	1	l .			I	

Room 2101 Fire Sprinkler Hydraulic Calculations

Step No.	Noz	zzle Ident and cation		w in gpm	Pipe size	Pipe Fittings and Devices	Equiva Lengtl	alent Pipe	(psi/	tion loss (ft)		ssure nmary	spacing sf	k	density(gpm/sf	Q	Р
1		Sprinkler 1	q		1.049		L	4.25	C =	120	Pt	26.8	120	5.6		29	26.8 2
						1T	F	5			P e						
			Q	29.0		11	T	9.25	pf	0.259	Pf	2.4					
	Α									0.200	Pt	29.2					
2		Sprinkler 2	q	22.5	1.049		L	1.75	C =	120	Pt	16.1	225	5.6	0.10	22. 5	16.1 4
		Opinikioi 2	١ ٩	ZZ.O	1.040			1.70		120	P	10.1	ZZO	0.0	0.10		1
					_		F				е						
			Q	22.5			Т	1.75	pf	0.162	Pf	0.3					
			q		1.049		L	13	C =	120	Pt	16.4	120	5.6	0.15	18	10.3 3
			Ч		1.043		L	13	 -	120	P	10.4	120	5.0	0.13	10	3
							F				е						
				0.0			Т	12	n.f	0.000	Pf	0.0	V.	5.5			
		Balance Sp 2 @A	Q	30.0			l	13	pf	0.000	Pī	29.2	Ke	5.6			
	Α	Balarice Sp 2 @A	Ч	30.0								29.2		5.0			
	-								С							22.	16.1
3	В		q	29.0	1.61		L	2.9	=	120	Pt	29.2	225	5.6	0.10	5	4
						1T	F	8			Pe						
			Q	59.0			T	10.9	pf	0.120	Pf	1.3					
				00.0			-	1,010	С	• · · · · ·						22.	16.1
			q				L		=		Pt	30.5	225	5.6	0.10	5	4
							F				Pe						
			Q				T		pf		Pf						
			Q				•		C							22.	16.1
4		Sprinkler 3	q		1.049		L	2.5	=	120	Pt	16.1	225	5.6	0.10	5	4
							_				Р						
			Q	22.5			F T	2.5	pf	0.162	e Pf	0.4					
			٦	22.0			F	2.0	РΙ	0.102	Pt	16.5					
							T		pf		Pf	10.0					
									С					5.5			
5		Balance Sp 3 @B	q	30.1	1.049		L		=	120	Pt	29.6	Ke	3			
							F				Р						
	1		Q	89.1	1		T		pf		e Pf						

Room 2101 Fire Sprinkler Hydraulic Calculations

6	B to SP			2.469		L	241.83		120.000	Pt	29.6	241.83	6.8	56.25	125	54.2 5
					6E	F	52			P e	6.0					
			89.1		1 BFV	T	293.83	pf	0.032	Pf	9.4					
										Pt	45.0					
7	SP to BOR	q		6.065		L	171	C =	120	Pt	45.0	19 floors x 9 Ft				
						F				P e	74.0					
		Q	89.1			Т	171	pf	0.0004014	Pf	0.1					
8	BOR to PD	q		6.065		L	48.2	C =	120	Pt	119.1					
					1E	F	49			P e	9.0					
		Q	89.1		10S&Y , 1CV	Т	97.2	pf	0.0004014	Pf	0.04					
9	PD	q	100.0			L		C =		Pt	128.1	add hose		Table 11.2.3.1.2		
		Q	189.1									allowance				

Room 2105 Hydraulic Calculations

Nozzle I	dent and Location	Flow in gpm		Pipe size	Pipe Fittings and Devices	Equiva Length	alent Pipe	Frict	tion loss (ft)		ssure nmary(psi)		Spacing sf	k	Density (gpm/sf)	Q	Р
	Sprinkler 1			1.049		1	16	C=	120	Pt	26.8	Extended coverage sidewall	120	5.6		29	26.82
	Sprinkler	q		1.049	1T	F	5	C=	120	Pe	20.0	TY3332	120	5.6		29	20.02
		Q	29.0		''	T	21	pf	0.259	Pf	5.4	113332					
Α										Pt	32.3						
	Sprinkler 2	q	22.5	1.049		L	1.75	C=	120	Pt	16.1		225	5.6	0.10	22.5	16.14
						F				Pe							
		Q	22.5			Т	1.75	pf	0.162	Pf	0.3						
		q		1.049		L	13	C=	120	Pt	16.4		120	5.6	0.15	18	10.33
		_				F				Pe		_					
	D. I. O. O.	Q	0.0			Т	13	pf	0.000	Pf	0.0		Ke	5.55			
	Balance Sp 2 @A	q	31.5								32.3			5.6			
A-B	<u> </u>	q	29.0	1.61		L	1.9	C=	120	Pt	32.3		225	5.6	0.10	22.5	16.14
		٦			1T	F	8	Ť		Pe	02.0			0.0	0110		
		Q	60.5			Т	9.9	pf	0.125	Pf	1.2						
		q				L		C=	120	Pt	33.5		225	5.6	0.10	22.5	16.14
						F				Pe							
		Q				Т		pf		Pf							
	Sprinkler 3	q		1.049		L	4	C=	120	Pt	16.1		225	5.6	0.10	22.5	16.14
						F				Pe							
		Q	22.5			Т	4	pf	0.162	Pf	0.6						
						F				Pt	16.8						
	5.1.0.0					Т		pf		Pf							
	Balance Sp 3 @B		29.9	1.049				C=	120	Pt	29.6		Ke	5.49			
	@D	q	23.3	1.049		F		C=	120	Pe	29.0		IXE	5.48			
		Q	90.4			T		pf		Pf							
		~	30.4			_		Pi				Main pipe to					
	B to C			1.049	1	L	15.25		120.000	Pt	29.6	riser	241.83	6.83	56.25	124.5	54.25
					1T	F	5										
		Q	90.4			Т	20.25	pf	2.120	Pf	42.9						
										Pt	72.5						
	C to SD			2.460			100.75		120,000	Dŧ	20.6	Main pipe to	190.75		EG 25	124.5	
	C to SP			2.469	4E	F	180.75 20		120.000	Pt	29.6	riser	180.75		56.25	124.5	
		Q	90.4		40	T	200.75	pf	0.033	Pf	6.6						
		Q	30.4				200.73	Ы	0.033	Pt	36.2						
										FL	JU.2						

Room 2105 Hydraulic Calculations

SP to BOR	q		6.065		L	171	C=	120	Pt	36.2	sch 40	20 flrs x 9 Ft		
					F				Pe	74.0				
	Q	90.4			Т	171	pf	0.0004123	Pf	0.1				
BOR to PD	q		6.065		L	48.2	C=	120	Pt	110.3				
				1E	F	49			Pe	9.0				
	Q	90.4		10S&Y, 1CV	Т	97.2	pf	0.0004123	Pf	0.04				
PD	q	100.0			L		C=	120	Pt	119.3		hose allowance	Table 11.2.3.1.2	_
	Q	190.4												

- 11001112	2119/2120 Hydraulic Calcula	1		Т	1	1							T		1	_	
Cton	Nozzle Ident and			Dina	Pipe Fittings and	Ган	ivalant	Frictio	n loop								
Step No.	Location	Flow in gpm	1	Pipe size	Devices	Pine	ivalent Length	(psi/ft)		Pressu	re Summary	Notes	Spacing sf	k	Density(gpm/sf)	Q	Р
110.	Location	i iew iii gpii		GIEG	Bovices	1 100	Longin	(201711)		1 10000		225 x 0.10	Opacing or	I.	Bonony (gpm/or)	Ĩ	
1	Sprinkler 1	q		1.049		L	14.7	C=	120	Pt	16.1	= 22.5	225	5.6	0.10	22.5	16.14
						F				Pe							
		Q	22.5			Т	14.7	pf	0.162	Pf	2.4						
										Pt	18.5	-					
2	Sprinkler 2	q	24.1	1.61	1t	L	4.2	C=	120	Pt	18.5]	225	5.6	0.10	22.5	18.50
						F	5			Pe							
		Q	46.6			Т	9.2	pf	0.077	Pf	0.7						
3	А	q				L	4.2	C=	120	Pt	19.2	_	120	5.6	0.15	18	10.33
			10.			F	4.5			Pe			17	40.55			
		Q	46.6			Т	4.2	pf		Pf	0.0		Ke	10.63			
4	Balance @A	q	46.6	1.048			0.4	C=	120	Pt Pt	19.2 16.1		225	5.6 5.6	0.10	22.5	16.14
4	Sprinkler 4	q		1.048	4.	L F	8.4	C=	120	Pt	16.1	1	225	5.6	0.10	22.5	16.14
		Q	22.5		1T	T	16.4	pf	0.163	Pf	2.7						
5	В	q	22.5			<u>'</u>	10.4	C=	0.103	Pt	18.8		225	5.6	0.10	22.5	16.14
	5	- Ч				F		0-		Pe	10.0	1	220	0.0	0.10	22.0	10.14
		Q	22.5			T		pf		Pf	18.8	1					
6	Sprinkler 3	q		1.049		L	2.5	C=	120	Pt	16.1		225	5.6	0.10	22.5	16.14
	·	•				F				Pe							
		Q	22.5			Т	2.5	pf	0.162	Pf	0.4]					
7	В					F				Pt	16.5		Ke	5.53			
						Т		pf		Pf							
	Balance Sp		04.0						400	D.	40.0		17.	5.50			
	3 @B	q	24.0			F		C=	120	Pt Pe	18.8	-	Ke	5.53			
		Q	46.5			T		pf		Pf		-					
		Q	40.5			'		рι		FI		Main pipe					
8	B to A			1.61		L	9	C=	120.000	Pt	18.8	to riser	241.83	6.83	56.25	124.5	54.25
					1T	F	8			Pe]					
		Q	46.5			Т	17	pf	0.077	Pf	1.3						
	Balance																
	Sp1/2 BranchLine																
9	at A	q	47.7			L		C=	120	Pt	20.1		Ke	10.63		46.2	19.20
	200					F				Pe							
		Q	94.2			Т		pf		Pf							
												Main pipe					
10	A to C			1.61		Ļ	13.7	C=	120.000	Pt	20.1	to riser	241.83	6.83	56.25	124.5	54.25
			04.0			F	40.7	(0.004	Pe	100	4		<u> </u>		1	
	Balance	Q	94.2			Т	13.7	pf	0.284	Pf	3.9						
	Branchline																
	6/7		52.1							Pt	24.0						
													Ke	10.63			
						F				Pe							
		Q	146.2			Т		pf		Pf							
11	C to D	q		1.61		L	7.25	C=	120	Pt	24.0						
					1T	F	10			Pe							
40	D (- OD	Q	146.2	0.400	25	T	17.25	pf	0.641	Pf	11.1		C4 44	10.10	54.05		
12	D to SP	q	_1	2.469	3E	L	64.41	C=	120	Pt	35.0	<u> </u>	64.41	10.16	54.25	<u>I</u>	<u> </u>

Room 2119/2120 Hydraulic Calculations

						F	18			Pe					
		Q	146.2			Т	82.41	pf	0.080	Pf	6.6				
													20 flrs x 9		
13	SP to BOR	q		6.065		L	171	C=	120	Pt	6.6	sch 40	Ft		
						F				Pe	74.0				
		Q	146.2			Т	171	pf	0.0010036	Pf	0.2				
14	BOR to PD	q		6.065		L	48.2	C=	120	Pt	80.8				
					1E	F	49			Pe	9.0				
		Q	146.2		1OS&Y, 1CV	Т	97.2	pf	0.0010036	Pf	0.10				
	PD	q	100.0			L		C=		Pt	89.9		add hose	Table 11.2.3.1.2	
		Q	246.2												

APPENDIX D – FIRE SUPPRESSION SYSTEM INSPECTION, TESTING, AND MAINTENANCE REQUIREMENTS

NFPA 25, Section 3.3.19 requires the service to be provided by a qualified State of California State Licensed C-16 contractor, a California State Fire Marshal Licensed A contractor, or a qualified owner's representative as permitted by Title 19.

Chapters 5-9 of NFPA 25 provides the minimum requirements for the inspection, testing, and maintenance of these systems. A brief overview of the requirements for the various components follows. A detailed summary of inspection, testing, and maintenance scope and frequency is shown in Tables 7-10.

1.1.1 Sprinkler Inspection

(NFPA 25, Section 5.2.1)

Sprinkler are required to be inspected from the floor level annually. Sprinklers in concealed spaces where access is provided are required to be inspected very five years. Sprinklers installed in inaccessible spaces are not required to be inspected. Sprinklers which show any signs of leakage, corrosion, physical damage, loss of glass bulb liquid, or that have been painted require replacement. Stock, equipment, or other materials closer to the sprinkler is required to be moved.

The supply of spare sprinkler is required to be inspected and additional sprinklers added if the type or quantity is deficient. A sprinkler wrench for each type of sprinkler is also to be verified.

1.1.2 Pipe and Fittings

(NFPA 25, Section 5.2.2)

Sprinkler pipe and fittings installed under an exposed ceiling is required to be inspected annually from the floor. This equipment is required to be in good working order and free of mechanical damage, leakage, or corrosion. The piping is not allowed to support other materials.

Pipe and fittings installed in concealed spaces where access is provided are required to be inspected a maximum of every five years using the same guidelines. Sprinkler pipe and fittings installed in inaccessible spaces are not required to be inspected.

1.1.3 Hangers, Seismic Bracing, and Gauges

(NFPA 25, Sections 5.2.3 and 5.2.4)

Hangers and bracing are required to be inspected for damage or attachment instability annually. Gauges are required to be inspected quarterly to verify they are in functional and in good working order.

1.1.4 Waterflow Alarm and Supervisory Devices

(NFPA 25, Section 5.2.5)

These devices are required to be functionally tested annually. The system's audible device is required to activate within 90 seconds of the opening of the inspector's drain.

1.1.5 Hydraulic Design Information Placard

(NFPA 25, Section 5.2.6)

The placard is required to be inspected to verify secure attachment on a quarterly basis.

1.1.6 Sprinkler Testing

(NFPA 25, Section 5.3.1)

Sprinklers which reach a specific age, 20 -50 years, are required to be tested to confirm proper functionality. A specific sample size is provided to a nationally recognized for the testing. Generally, not less than 4 sprinklers, or 1% of the number of sprinklers of a specific type are required to be tested. Sprinklers manufactured prior to 1920 are required to be replaced.

Gauges are required to be recalibrated or replaced every five years.

1.1.7 Sprinkler Maintenance

(NFPA 25, Section 5.4)

Replacement sprinklers are required to be the proper style, K factor, deflector type, and orifice size. Only new sprinklers are allowed to be used for replacement.

Table 1: NFPA 25 Fire Sprinkler Inspection, Testing, and Maintenance Requirements

Table 5.1.1.2 Summary of Sprinkler System Inspection, Testing, and Maintenance

Item	Frequency	Reference
Inspection		
Gauges (dry, preaction, and deluge systems)	Weekly/monthly Quarterly	5.2.4.2, 5.2.4.3, 5.2.4.4
Control valves		Table 13.1.1.2
Waterflow alarm devices	Quarterly	5.2.5
Valve supervisory alarm devices	Quarterly	5.2.5
Supervisory signal devices (except valve supervisory switches)	Quarterly	5.2.5
Gauges (wet pipe systems)	Monthly Quarterly	5.2.4.1
Hydraulic nameplate	Quarterly	5.2.6
Buildings	Annually (prior to freezing weather)	4.1.1.1
Hanger/seismic bracing	Annually	5.2.3
Hanger/seismic bracing in accessible concealed spaces	5 years	5.2.3.3
Pipe and fittings	Annually	5.2.2
Pipe and fittings in accessible concealed spaces	5 years	5.2.2.3
Sprinklers	Annually	5.2.1
Sprinklers in accessible concealed spaces	5 years	5.2.1.1.6
Spare sprinklers	Annually Quarterly	5.2.1.4
Information sign	Annually	5.2.8
Fire department connections		Table 13.1.1.2
Valves (all types)		Table 13.1.1.2
Obstruction, internal inspection of piping	5 years	14.2
Test		
Waterflow alarm devices		
Mechanical devices	Quarterly Annually	5.3.3.1
Vane and pressure switch type devices	Semiannually Annually	5.3.3.2
Valves supervisory alarm devices		Table 13.1.1.2
Supervisory signal devices (except valve supervisory switches)		Table 13.1.1.2
Main drain		Table 13.1.1.2
Antifreeze solution	Annually	5.3.4
Gauges	5 years	5.3.2
Sprinklers — extra-high temperature	5 years	5.3.1.1.1.4
Sprinklers — fast-response	At 20 years and every 10 years thereafter	5.3.1.1.1.3
Sprinklers	At 50 years and every 10 years thereafter	5.3.1.1.1
Sprinklers	At 75 years and every 5 years thereafter	5.3.1.1.1.5
Sprinklers — dry	At 10 years and every 10 years thereafter	5.3.1.1.1.6
Maintenance		
Valves (all types)		Table 13.1
Low-point drains (dry pipe system)		13.4.4.3.2
Sprinklers and automatic spray nozzles protecting commercial		
cooking equipment and ventilation systems	Annually	5.4.1.9
Investigation		
Obstruction		14.3

1.1.8 Standpipe System Inspection

(NFPA 25, Section 6.1)

Components of the standpipe system are required to be visually inspected annually. Standpipe systems are required to be flow tested every five years. The testing is required to verify that the system can still provide the required design and flow.

Gauges and waterflow alarm supervisory devices are required to be tested at the same frequency as such devices attached to sprinkler systems.

Table 2: NFPA 25 Standpipe and Hose System Inspection, Testing, and Maintenance Requirements

Table 6.1.1.2 Summary of Standpipe and Hose Systems Inspection, Testing, and Maintenance

Item	Frequency	Reference
Inspection		
Control valves		Table 13.1 13.1.1.2
Pressure regulating devices		Table 13.1 13.1.1.2
Piping	Annually	6.2.1
Hose connections		Table 13.1 13.1.1.2
Cabinet	Annually	NFPA 1962
Gauges	Weekly Quarterly	6.2.2
Hose	Annually	NFPA 1962
Hose storage device	Annually 5 years	NFPA 1962
Alarm Device		
Hose nozzle	Annually and after each use	NFPA 1962
Hydraulic design information sign	Annually Quarterly	6.2.3
Test		
Waterflow alarm devices		Table 13.1
Valve supervisory alarm devices		Table 13.1
Supervisory signal devices (except valve supervisory switches)		Table 13.1
Hose storage device	Annually 5 years	NFPA 1962
Hose	5 years/3 years	NFPA 1962
Pressure control valve		Table 13.1
Pressure reducing valve		Table 13.1
Hydrostatic test	5 years	6.3.2
Flow test	5 years	6.3.1
Main drain test		Table 13.1
Maintenance		
Hose connections	Annually	Table 6.1.2
Valves (all types)	Annually/as needed	Table 13.1

1.1.9 Fire Pump Inspection

(NFPA 25, Section 8.2)

Visual inspections are required to be performed weekly for diesel engine driven pumps and monthly for electric motor driven pumps.

1.1.10 Fire Pump Testing

(NFPA 25, Section 8.3)

Diesel engine driven pumps are required to be operated weekly. Electric motor driven pumps are required to be operated monthly. No flow condition tests are required to be conducted. The fire pumps

are required to be tested for automatic start up. Diesel engine driven pumps are required to run for a minimum of 30 minutes. Electric motor driven pumps a minimum of 10 minutes. A comprehensive review of the fire pump system components is required to be completed during these tests.

Fire pumps are required to be flow tested yearly. Flow and pressure reading are required to made at churn, rated and 150% flow capacity.

Table 3: NFPA 25 Fire Pump System Inspection, Testing, and Maintenance Requirements

Table 8.1.1.2 Summary of Fire Pump Inspection, Testing, and Maintenance

Item	Frequency	Reference
Inspection	,	
Pump house, heating ventilating louvers	Weekly/Monthly	8.2.2(1)
Fire pump system	Weekly/Monthly	8.2.2
Test		
Pump operation		
No-flow condition		8.3.1
Diesel engine driven fire pump	Weekly	
Electric motor driven fire pump	Monthly	
Flow condition	Annually	8.3.3
Fire pump alarm signals	Annually	8.3.3.5
Maintenance		
Hydraulic	Annually	8.5
Mechanical transmission	Annually	8.5
Electrical system	Varies	8.5
Controller, various components	Varies	8.5
Motor	Annually	8.5
Diesel engine system, various components	Varies	8.5

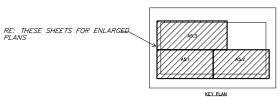
1.1.11 Water Tank Inspection

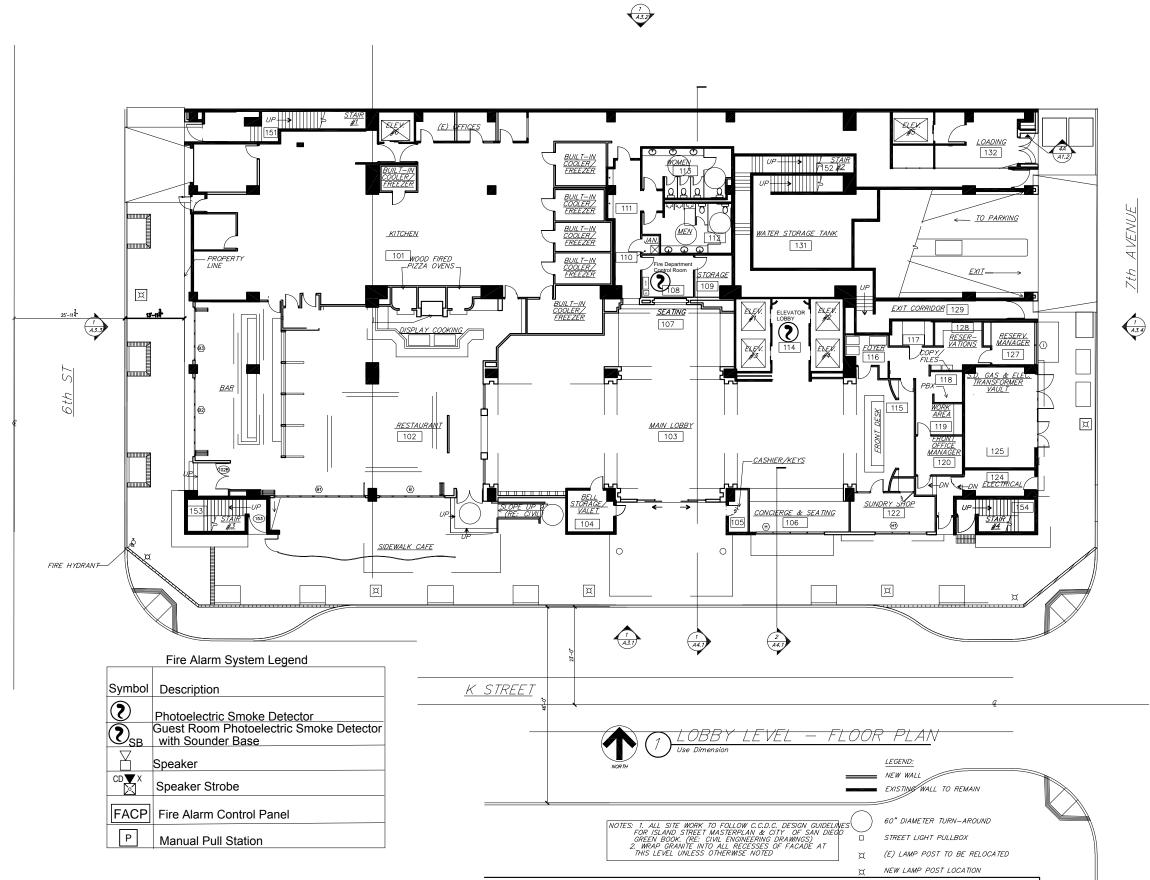
(NFPA 25, Section 8.3)

Water tanks are required to be inspected quarterly. This includes inspection of the water level alarms, exterior of the tank, and tank supports. The interior of steel water tanks without corrosion protection are required to be inspected every 5 years.

Table 4: NFPA 25 Water Storage Tank System Inspection, Testing, and Maintenance Requirements

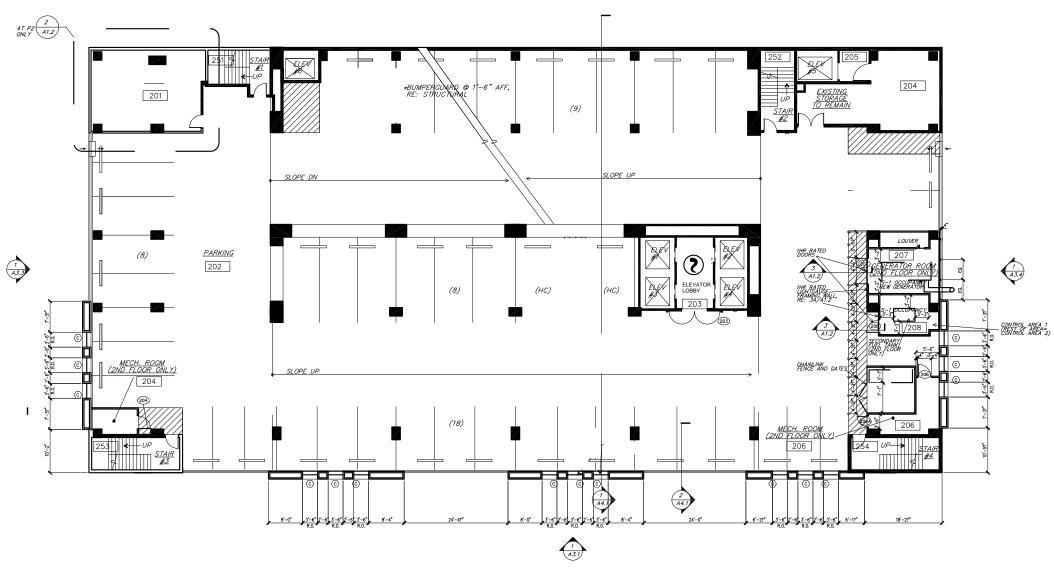
Table 9.1.1.2 Summary of Water Storage Tank Inspection, Testing, and Maintenance

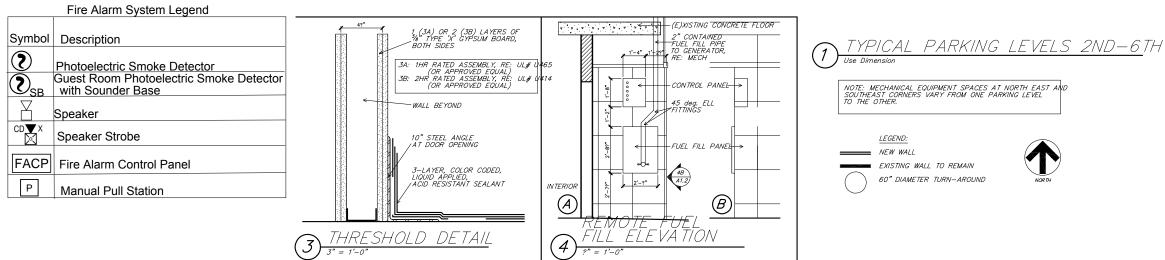

Item	Frequency	Reference
Inspection		
Water temperature — low temperature alarms connected to constantly attended location	Monthly	9.2.4.2
Water temperature — low temperature alarms not connected to constantly attended location	Weekly	9.2.4.3
Heating system — tanks with supervised low temperature alarm connected to constantly attended location	Weekly*	9.2.3.1
Heating system — tanks without supervised low temperature alarm connected to constantly attended local	tion Daily*	9.2.3.2
Control valves		Table 13.1
Water level — tanks equipped with supervised water level alarms connected to constantly attended location	on Quarterly	9.2.1.1
Water level — tanks without supervised water level alarms connected to constantly attended location	Monthly	9.2.1.2
Air pressure — tanks that have their air pressure source supervised	Quarterly	9.2.2.1
Air pressure — tanks without their air pressure source supervised	Monthly	9.2.2.2
Tank — exterior	Quarterly	9.2.5.1
Support structure	Quarterly	9.2.5.1
Catwalks and ladders	Quarterly	9.2.5.1
Surrounding area	Quarterly	9.2.5.2
Hoops and grillage	Annually	9.2.5.4
Painted/coated surfaces	Annually	9.2.5.5
Expansion joints	Annually	9.2.5.3
Interior — tanks without corrosion protection	3 5 years	9.2.6.1.1
Interior — all other tanks	5 years	9.2.6.1.2
Temperature alarms — connected to constantly attended location	Monthly*	9.2.4.2
Temperature alarms — not connected to constantly attended location	Weekly*	9.2.4.3
Check valves		Table 13.1
Test		
Tank heating system	Prior to heating season	1 9.3.2
Low water temperature alarms	Monthly*	9.3.3
High temperature limit switches	Monthly*	9.3.4
Water level alarms	Semiannually Annually	9.3.5
Level indicators	5 years	9.3.1
Pressure gauges	5 years	9.3.6
Maintenance	-	
Water level	_	9.4.2
Control valves	_	Table 13.1
Embankment-supported coated fabric (ESCF)	_	9.4.6
Emountaine supported could labite (EBCI)		

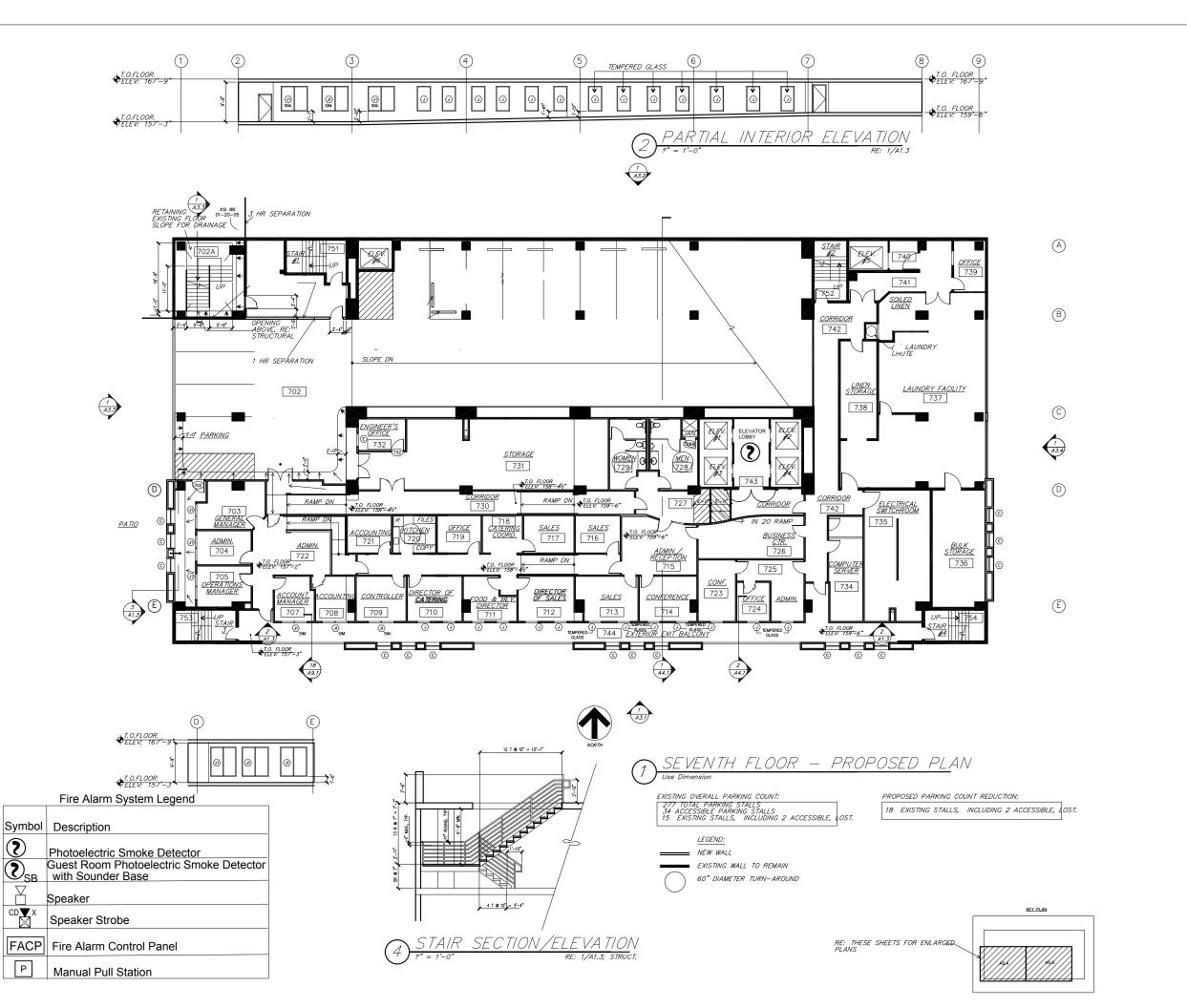

^{*}Cold weather/heating season only.

1.1.12 Facility Inspection, Testing, and Maintenance Programs

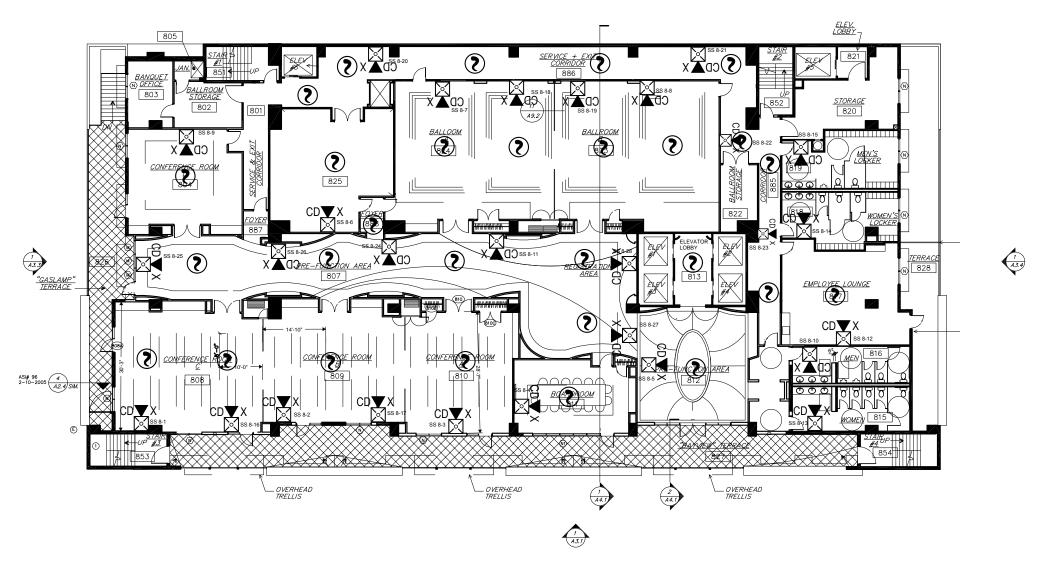
Review of the records for the programs shows that the Owner is following the requirements of NFPA 25. The inspections are completed by certified hotel staff and a State of California licensed C16 sprinkler contractor. Repairs are made by the same contractor.

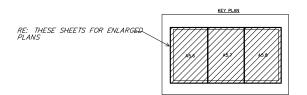

APPENDIX E – EVACS FLOOR PLANS





A1.1




Fire Alarm System Legend

Symbol	Description
	Photoelectric Smoke Detector
	Guest Room Photoelectric Smoke Detector
\bigcirc_{SB}	with Sounder Base
	Speaker
CD X	Speaker Strobe
FACP	Fire Alarm Control Panel
Р	Manual Pull Station

1) EIGHTH FLOOR (CONFERENCE LEVEL) — PROPOSED PLAN
Use Dimension

See Sheet A1.4A for Dimensions and Detector Coverage Overlay

A1.4

13 MAY 2004

60" DIAMETER TURN-AROUND

Symbol Description

Photoelectric Smoke Detector

Guest Room Photoelectric Smoke Detector with Sounder Base

Speaker

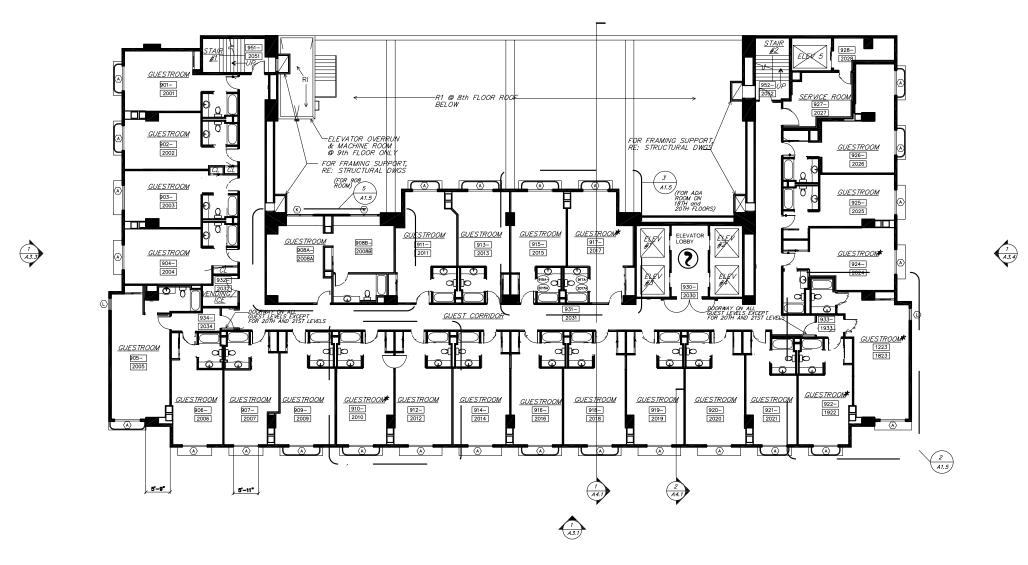
Speaker

Speaker Strobe

|FACP|| Fire Alarm Control Panel

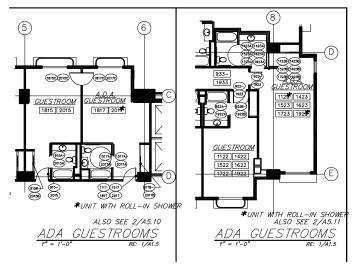
Manual Pull Station

tor

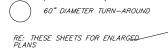

EIGHTH FLOOR (CONFERENCE LEVEL) — Dimensions and Detector Coverage Overlay

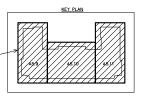
LEGEND:

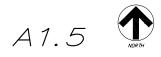
NEW WALL — MINIMUM 54 STC RATING (1 HR RATED)


EXISTING WALL TO REMAIN

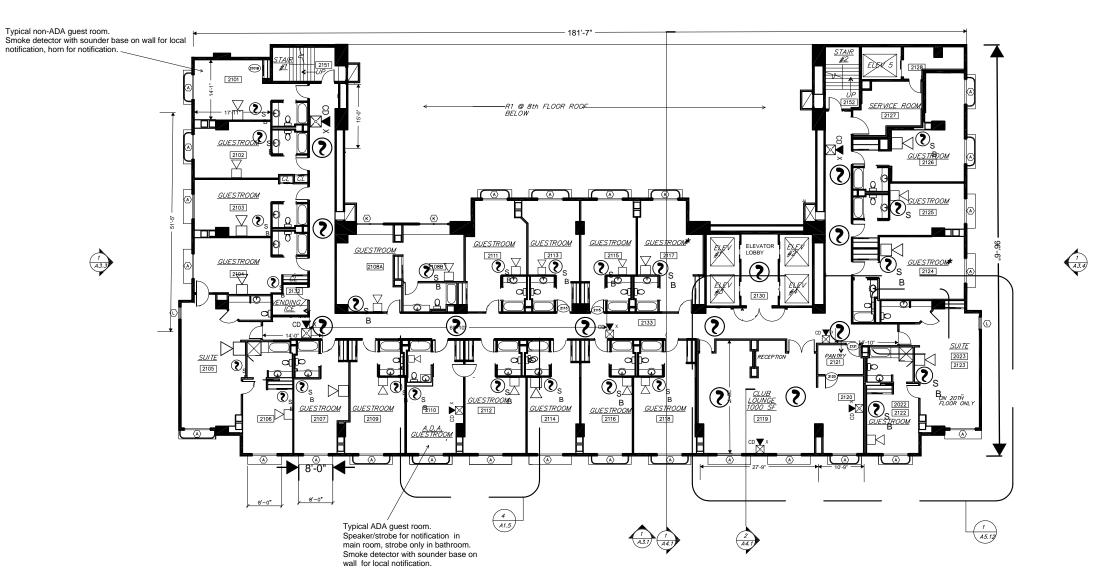
Fire Alarm System Legend

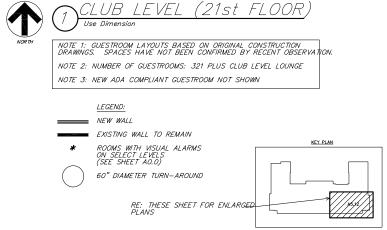

Symbol	Description
2	Photoelectric Smoke Detector
O _{SB}	Guest Room Photoelectric Smoke Detector with Sounder Base
	Speaker
CD X	Speaker Strobe
FACP	Fire Alarm Control Panel
Р	Manual Pull Station





NOTE 1: GUESTROOM LAYOUTS BASED ON ORIGINAL CONSTRUCTION
DOCUMENTS. SPACES HAVE NOT BEEN CONFIRMED BY RECENT OBSERVATION. NOTE 2: NUMBER OF GUESTROOMS: 321 PLUS CLUB LEVEL LOUNGE NOTE 3: ADA COMPLIANT GUESTROOMS LOCATED ON ELEVENTH, FIFTEENTH EIGHTEENTH, AND TWENTY—FIRST FLOORS.


LEGEND: NEW WALL EXISTING WALL TO REMAIN ROOMS WITH VISUAL ALARMS ON SELECT LEVELS (SEE SHEET AO.O)



Fire Alarm System Legend

Symbol	Description
2	Photoelectric Smoke Detector
SB	Guest Room Photoelectric Smoke Detector with Sounder Base
	Speaker
CD X	Speaker Strobe
FACP	Fire Alarm Control Panel
Р	Manual Pull Station

APPENDIX F – SEQUENCE OF OPERATION

	Manual Pull Station	Elevator Lobby Smoke Detector	Elevator Machine Room Smoke Detector	Elevator Machine Room Heat Detector	Area Smoke Detectors	Duct Smoke Detectors	Elevator Shaft Smoke/Heat Detectors	Sprinkler Waterflow Switch	Sprinkler Valve Tamper Switch
Annunciate At Fire Control Room	YES	YES	YES	YES	YES	YES	YES	YES	YES
Annunciate At 24 Hour Attended Remote Location	YES	YES	YES	YES	YES	YES	YES	YES	YES
Activate Audible and Visual Alarm Signals On Floor Of Alarm, Floor above, and Floor Below	YES	YES	YES	YES	YES	YES	YES	YES	NO
Shut Down All Air Handling On Floor of Alarm	YES	YES	YES	YES	YES	YES	NO	YES	NO
Close All Smoke/Fire Dampers On Floor of Alarm	YES	YES	YES	YES	YES	YES	NO	YES	NO
Release A7:K13All Motorized And Electro-Magnetically Held Doors On Floor of Alarm	YES	YES	YES	YES	YES	YES	NO	YES	NO
Recall All Elevators Serving Floor Of Alarm	NO	YES	YES	YES	NO	NO	YES	NO	NO
Activate Elevator Shunt Trip	NO	NO	NO	YES	NO	NO	NO	NO	NO
Release All Stair Shaft Door Locks In Building	YES	YES	YES	YES	YES	YES	YES	YES	NO
Activate All Stair Shaft Pressurization In Building	YES	YES	YES	YES	YES	YES	YES	YES	NO

APPENDIX G – SELECTED NOTIFICATION DEVICE CALCULATIONS

Location	Size	Device	Audibility Criteria *	Visibility*
Typical Non- ADA Guest Room (21st Floor)	17 ft. 11 in. x 14 ft. 6 in. (260 sq. ft.)	Speaker	Greater of 15 dB over ambient or 5 dB above max. sound level having a duration of at least 60 seconds measured at pillow level (Sec. 18.4.5) Bedroom ambient sound level 35 dBA (Table 18.4.3) + 15 dB = 50 dBA. Distance from device to pillow= 6 feet, so 50 dBA rated device is required. Square wave required. 80 dBA, ¼ W provided (smallest capacity device).	Not required
Typical ADA Guest Room (21st Floor)	15 ft. 10 in. x 12 ft. 2 in. (192 sq. ft.)	Speaker /strobe in main space, strobe in bathroom	Same calculation =50 dBA rated device required. Square wave required. 80 dBA, ¼ W provided (smallest capacity device).	Use 20 ft. x 20 ft. spacing. 15 cd strobe required and provided in main area. Strobe only required in bathroom, 15cd (Table 18.5.4.1(a)) and ADDAG.
Typical corridor	Less than 20 ft. wide	Speaker /strobe	Greater of 15 dB over ambient or 5 dB above max. sound level having a duration of at least 60 seconds measured at 5 ft. above the floor (Sec. 18.4.3.1) Corridor ambient sound level 35 dBA (Residential Table18.4.3) + 15 dB = 50 dBA. Worst case speaker spacing 70 ft. 6 dBA x 3 = 18 dBA. 50 dBA+ 18 dBa= 68 dBA. 80 dBA, ½ W provided (smallest capacity device).	Strobes to be located no greater than 15 ft. from the end of the corridor and no greater than 100 ft. between devices. Minimum 15 cd device required and provided. (Section 18.5.5.5)
Club Lounge 21 st floor	27 ft. 9 in. x 26 ft. 7 in. + 10 ft. 9 in. x 26 ft. 7 in. (1075 sq. ft.)		Greater of 15 dB over ambient or 5 dB above max. sound level having a duration of at least 60 seconds measured at 5 ft. above the floor (Sec. 18.4.3.1) Room ambient sound level 55 dBA (Assembly Table18.4.3) + 15 dB = 70 dBA. Worst case speaker spacing 27 ft. 6 dBA loss = 55 dBA+ 6 dBa= 61 dBA. Use 2- 80 dBA, ¼ W provided (smallest capacity device).	Use 2- 30 ft. x 30 ft. spacing. 15 cd strobe required and provided. (Table 18.5.4.1(a))

^{*} Section references are to NFPA 72

APPENDIX H - STANDBY POWER CALCULATIONS

Description	Standby Current Per Unit (amps)	Qty	Total Standby Current (amps)	Alarm Current Per Unit (amps)	Qty	Total System Alarm Current (amps)
FACP	0.145	1	0.145	0.155	1.00	0.16
Smoke Detectors	0.000070	480	0.03	0.06000	480.00	28.80
Speaker	0.00	276	0.00	0.09	276.00	24.84
Speaker Strobes	0.00	360	0.00	0.096	360.00	34.56
Duct Detectors	0.0006	100	0.0600	0.1000	100.00	10.00
Relays	0.0015	200	0.30	0.00		0.00
Total System Standby Current (amps)	0.54					
Total System Alarm Current (amps)	98.36					
Required Standby Capacity (amp-hrs.)	12.93					
Required Alarm Capacity (amp-hrs.)	8.20					
Total Required Capacity (amp-hrs.)	21.12					
Required Battery Capacity (amp-hrs.)	25.35					
Inputs						
Required Standby Time (hrs.)	24.00					
Requires alarm time (minutes)	5.00					
Safety Factor	1.20					
Device Count						
Area	Speakers	Speaker/ Strobe	Smoke Detectors			
Guestroom Floors (12)	276	96	444			
8th floor	0	33	26			
Typical Floors 1-7(7)		231	10			
Total Devices	276	360	480			

APPENDIX I – EVACS RECORD OF COMPLETION

FIRE ALARM AND EMERGENCY COMMUNICATION SYSTEM RECORD OF COMPLETION

To be completed by the system installation contractor at the time of system acceptance and approval. It shall be permitted to modify this form as needed to provide a more complete and/or clear record. Insert N/A in all unused lines.

Attach additional sheets, data, or calculations as necessary to provide a complete record.

. PROPERTY INFORMA	ATION	
Name of property:	· Gaslamp Hotel	
Address: 100 Schirmer	Way	
Description of property:	21 story hotel	
Occupancy type: R-1		
Name of property represer	ntative: Joe Smith	
Address: same		
Phone: 858-671-2345	Fax:	E-mail:
Authority having jurisdicti	ion over this property:	
		E-mail: ggreen@ sdfire .com
Installation contractor for	this equipment: Unknown	
Installation contractor for Address: License or certification nu	this equipment: Unknown	
Installation contractor for Address: License or certification nu Phone:	this equipment: Unknown umber: Fax:	E-mail:
Installation contractor for Address: License or certification nu Phone: Service organization for the	this equipment: Unknown umber: Fax:	
Installation contractor for Address: License or certification nu Phone: Service organization for the Address:	this equipment: Unknown Imber: Fax: nis equipment:	E-mail:
Installation contractor for Address: License or certification nu Phone: Service organization for the Address: License or certification nu	this equipment: Unknown Imber: Fax: inis equipment:	E-mail:
Installation contractor for Address: License or certification nu Phone: Service organization for the Address: License or certification nu Phone:	this equipment: This equipment: Fax: Inis equipment: This equipment: This equipment: This equipment: This equipment:	E-mail:
Installation contractor for Address: License or certification nu Phone: Service organization for the Address: License or certification nu Phone: A contract for test and installation for test and installation.	this equipment: The proof of t	E-mail: E-mail: dards is in effect as of:
Installation contractor for Address: License or certification nu Phone: Service organization for the Address: License or certification nu Phone: A contract for test and installation compared.	this equipment: The proof of t	E-mail:
Installation contractor for Address: License or certification nu Phone: Service organization for the Address: License or certification nu Phone: A contract for test and inspector contracted testing compared Address:	this equipment:	E-mail: E-mail: dards is in effect as of:
Installation contractor for Address: License or certification nu Phone: Service organization for the Address: License or certification nu Phone: A contract for test and inspector contracted testing compared Address:	this equipment: Unknown Imber: Fax: inis equipment: Fax: pection in accordance with NFPA standary: Fax:	E-mail: E-mail: dards is in effect as of: E-mail:

NFPA 72, Fig. 10.18.2.1.1 (p. 1 of 12)

☐ Two-way, in-building, emergency communication system

☑ Fire alarm with in-building fire emergency voice alarm communication system (EVACS)

☐ MNS

☐ Fire alarm system (nonvoice)

☐ Mass notification system (MNS)

☐ Fire alarm

☐ Other (specify):

☐ Combination system, with the following components: ☐ EVACS

3. DESCRIPTION OF SYSTEM OR SERVICE (continued)

NFPA 72 edition:	Additional desc	ription of sys	stem(s):	
3.1 Control Unit				
Manufacturer: Edwards			Model n	umber: EST-3
3.2 Mass Notification System			☐ This system d	oes not incorporate an MNS
3.2.1 System Type:				
☐ In-building MNS—combination				
☐ In-building MNS—stand-alone	☐ Wide-area MNS ☐	Distributed r	recipient MNS	
Other (specify):				
3.2.2 System Features:				
☐ Combination fire alarm/MNS	☐ MNS autonomous contr	rol unit	☐ Wide-area Minalerting interf	NS to regional national face
☐ Local operating console (LOC)	☐ Direct recipient MNS (I	DRMNS)	☐ Wide-area MN	NS to DRMNS interface
☐ Wide-area MNS to high-power spea	aker array (HPSA) interface	☐ In-buildi	ing MNS to wide-	area MNS interface
Other (specify):				
3.3 System Documentation				
☑ An owner's manual, a copy of the n	nanufacturer's instructions, a	written sequ	ience of operation	, and a copy of
the numbered record drawings are	stored on site. Location:	In fire con	ntrol room	
3.4 System Software		This system	does not have alte	erable site-specific software.
Operating system (executive) software	revision level:			
Site-specific software revision date:		Revision co	ompleted by:	
☐ A copy of the site-specific software	is stored on site. Location:			
3.5 Off-Premises Signal Transmission	on	☐ This syst	tem does not have	off-premises transmission.
Name of organization receiving alarm	signals with phone numbers	:		
Alarm: ADP			Phone:	800-777-888-999
Supervisory: ADP			Phone:	same
Trouble: ADP			Phone:	same
Entity to which alarms are retransmitted	ed: ADP		Phone:	same
Method of retransmission: Both	wireless and by telephone			
If Chapter 26, specify the means of tra	nsmission from the protected	d premises to	the supervising s	tation:
Both wireless and by telephon				
If Chapter 27, specify the type of auxil	iary alarm system:	al energy	Shunt	☐ Wireless

4. CIRCUITS AND PATHWAYS

4.1 Signaling Line Pathway	S	
4.1.1 Pathways Class Desig	nations and Survivability	
Pathways class: (See NFPA 72, Sections 12.3	and 12.4) Survivability level:	Quantity:
4.1.2 Pathways Utilizing Tv	vo or More Media	
Quantity:	Description:	
4.1.3 Device Power Pathwa	ys	
No separate power pathwa	ys from the signaling line pathway	
☐ Power pathways are separa	ate but of the same pathway classification as the	e signaling line pathway
☐ Power pathways are separa	ate and different classification from the signalin	g line pathway
4.1.4 Isolation Modules		
Quantity: unknown		
4.2 Alarm Initiating Device	Pathways	
4.2.1 Pathways Class Desig	•	
Pathways class: unknown (See NFPA 72, Sections 12.3	Survivability level: Level 1	Quantity: unknown
4.2.2 Pathways Utilizing Tv	wo or More Media	
Quantity:	Description:	
4.2.3 Device Power Pathwa		
	sys from the initiating device pathway	
	ate but of the same pathway classification as the	e initiating device pathway
	ate and different classification from the initiatin	
4.3 Non-Voice Audible Syst		
-	•	
4.3.1 Pathways Class Desig Pathways class: unknown		Quantity: unknown
(See NFPA 72, Sections 12.3		Quantity: unknown
4.3.2 Pathways Utilizing Tv	wo or More Media	
Quantity: unknown	Description:	
4.3.3 Appliance Power Patl	hways	
	ys from the notification appliance pathway	
	ate but of the same pathway classification as the	e notification appliance pathway
	ate and different classification from the notifical	
		II TO THE TOTAL TO

5. ALARM INITIATING DEVICES

5.1 Manual Initiating Devices

5.1.1 Manual Fire Alarm Boxes		☐ This system does not have manual fire alarm boxes.					
Type and number of devices: Addressable: 1	Conv	ventional:	Coded:	Transmitter:			
Other (specify):							
5.1.2 Other Alarm Boxes			This system does n	ot have other alarm boxes.			
Description:							
Type and number of devices: Addressable:	Conv	ventional:	Coded:	Transmitter:			
Other (specify):							
5.2 Automatic Initiating Devices							
5.2.1 Smoke Detectors			This system does n	ot have smoke detectors.			
Type and number of devices: Addressable: 30	0 Con	ventional:					
Other (specify):							
Type of coverage: Complete area Partial	area 🗆 N	Nonrequired partia	al area				
Other (specify): complete in guest room corridor	rs and on 8	^h floor					
Type of smoke detector sensing technology: \square	Ionization	☐ Photoelectric	c ☐ Multicriteria	☐ Aspirating ☐ Beam			
Other (specify):							
5.2.2 Duct Smoke Detectors	□ T	his system does n	ot have alarm-causi	ng duct smoke detectors.			
Type and number of devices: Addressable: ?	Con	ventional:					
Other (specify): unknown							
Type of coverage:							
Type of smoke detector sensing technology: \square	Ionization	☐ Photoelectri	c Aspirating	Beam			
5.2.3 Radiant Energy (Flame) Detectors			stem does not have	radiant energy detectors.			
Type and number of devices: Addressable:	Con	ventional:					
Other (specify):							
Type of coverage:							
5.2.4 Gas Detectors			☐ This system do	es not have gas detectors.			
Type of detector(s):							
Number of devices: Addressable: Con	nventional:						
Type of coverage:							
5.2.5 Heat Detectors			☐ This system do	es not have heat detectors.			
Type and number of devices: Addressable:	Con	ventional:					
Type of coverage:	al area] Nonrequired par	tial area 🔲 Linea	ar 🗌 Spot			
Type of heat detector sensing technology:	xed temper	ature Rate-o	of-rise Rate co	ompensated			

5. ALARM INITIATING DEVICES (continued) 5.2.6 Addressable Monitoring Modules ☐ This system does not have monitoring modules. Number of devices: unknown 5.2.7 Waterflow Alarm Devices ☐ This system does not have waterflow alarm devices. Type and number of devices: Addressable: 23 Conventional: Coded: Transmitter: 5.2.8 Alarm Verification ☐ This system does not incorporate alarm verification. Number of devices subject to alarm verification: unknown Alarm verification set for 5.2.9 Presignal ☐ This system does not incorporate pre-signal. Number of devices subject to presignal: Describe presignal functions: 5.2.10 Positive Alarm Sequence (PAS) ☐ This system does not incorporate PAS. unknown Describe PAS: **5.2.11 Other Initiating Devices** ☐ This system does not have other initiating devices. Describe: 6. SUPERVISORY SIGNAL-INITIATING DEVICES 6.1 Sprinkler System Supervisory Devices ☐ This system does not have sprinkler supervisory devices. 23 Type and number of devices: Addressable: Coded: Conventional: Transmitter: Other (specify): 6.2 Fire Pump Description and Supervisory Devices ☐ This system does not have a fire pump. Type fire pump: ☐ Electric pump ■ Engine Type and number of devices: Addressable: 3 Conventional: Coded: Transmitter: Other (specify): **6.2.1 Fire Pump Functions Supervised** ☑ Power ☑ Running ☑ Phase reversal ☐ Selector switch not in auto ☑ Engine or control panel trouble ☑ Low fuel Other (specify): 6.3 Duct Smoke Detectors (DSDs) ☐ This system does not have DSDs causing supervisory signals. Type and number of devices: Addressable: Conventional: Other (specify): unknown Type of coverage: Type of smoke detector sensing technology: Innization Photoelectric Aspirating Beam **6.4 Other Supervisory Devices** ☐ This system does not have other supervisory devices. Describe:

7. MONITORED SYSTEMS 7.1 Engine-Driven Generator ☐ This system does not have a generator. 7.1.1 Generator Functions Supervised Selector switch not in auto ☐ Low fuel ☑ Engine or control panel trouble ☐ Generator running ☐ Other (specify): 7.2 Special Hazard Suppression Systems ☐ This system does not monitor special hazard systems. kitchen hood systems Description of special hazard system(s): 7.3 Other Monitoring Systems ☑ This system does not monitor other systems. Description of special hazard system(s): 8. ANNUNCIATORS ☐ This system does not have annunciators. 8.1 Location and Description of Annunciators only main panel in the fire fighter's control room Location 1: Location 2: Location 3: 9. ALARM NOTIFICATION APPLIANCES 9.1 In-Building Fire Emergency Voice Alarm Communication System ☐ This system does not have an EVACS. Number of single voice alarm channels: unknown Number of multiple voice alarm channels: Number of speakers: 340 Number of speaker circuits: unknown Location of amplification and sound-processing equipment: Location of paging microphone stations: fire fighter's control room Location 1: Location 2: Location 3: 9.2 Nonvoice Notification Appliances ☐ This system does not have nonvoice notification appliances. 200

Visible only:	100	Other (describe):	
9.3 Notificati	on Applia	ance Power Extender Panels	☑ This system does not have power extender panels.
Quantity:			
Locations:			

Bells:

With visible:

With visible:

Horns:

Chimes:

none

100

With visible:

10. MASS NOTIFICATION	N CONTROLS, APPLIANCES	, AND CIRCUITS	does not have an MNS.
10.1 MNS Local Operatin	ng Consoles		
Location 1:			
Location 2:			
Location 3:			
10.2 High-Power Speaker	Arrays		
Number of HPSA speaker i	nitiation zones:		
Location 1:			
Location 2:			
Location 3:			
10.3 Mass Notification De	evices		
Combination fire alarm/MN	NS visible appliances:	MNS-only visible appliance	es:
Textual signs:	Other (describe):		
Supervision class:			
10.3.1 Special Hazard No	tification		
☐ This system does not have	ve special suppression predischarge	notification.	
☐ MNS systems DO NOT predischarge notification		quired to provide special suppression	
11. TWO-WAY EMERGE	NCY COMMUNICATION SYS	TEMS	
11.1 Telephone System		☐ This system does not have a two-v	vay telephone system.
Number of telephone jacks	installed: 21	Number of warden stations installed	:
Number of telephone hands	sets stored on site: 23		
Type of telephone system in	nstalled: Electrically powered	☐ Sound powered	
11.2 Two-Way Radio Con	mmunications Enhancement Syst	em	
☐ This system does not have	ve a two-way radio communication	s enhancement system.	
Percentage of area covered	by two-way radio service: Critica	l areas: % General buildir	ng areas: %
Amplification component le	ocations:		
Inbound signal strength:	dBm (Outbound signal strength:	dBm
Donor antenna isolation is:	dB above	e the signal booster gain	
Radio frequencies covered:			
Radio system monitor pane	l location:		

11. TWO-WAY EMERGENCY COMMUNICATION SYSTEMS (continued)

11.3 Area of Refuge (Area of Rescue Assistance) Eme	ergency Communications Systems							
☐ This system does not have an area of refuge (area of re	escue assistance) emergency communications system.							
Number of stations: Location of ce	ntral control point:							
Days and hours when central control point is attended:								
Location of alternate control point:								
Days and hours when alternate control point is attended:								
11.4 Elevator Emergency Communications Systems	Elevator Emergency Communications Systems							
☐ This system does not have an elevator emergency com	nmunications system.							
Number of elevators with stations:	Location of central control point:							
Days and hours when central control point is attended:								
Location of alternate control point:								
Days and hours when alternate control point is attended:								
11.5 Other Two-Way Communication Systems								
Describe:								
12. CONTROL FUNCTIONS								
This system activates the following control fuctions:								
☐ Hold-open door releasing devices ☐ Smoke mana	agement HVAC shutdown SF/S dampers							
☐ Door unlocking ☐ Elevator recall ☐ Fuel s	ource shutdown							
☐ Mass notification system o	verride of fire alarm notification appliances							
Other (specify):								
12.1 Addressable Control Modules	☐ This system does not have control modules.							
Number of devices: unknown								
Other (specify):								
13. SYSTEM POWER								
13.1 Control Unit								
13.1.1 Primary Power								
Input voltage of control panel: 120 v	Control panel amps: unknown							
Overcurrent protection: Type: unknown	Amps:							
Location (of primary supply panel board):								
Disconnecting means location:								
13.1.2 Engine-Driven Generator	☐ This system does not have a generator.							
Location of generator: roof								
Location of fuel storage: ground floor	Type of fuel: diesel							

NFPA 72, Fig. 10.18.2.1.1 (p. 8 of 12)

13. SYSTEM POWER (continued)

13.1.3 Uninterruptible Power System	\square This system does not have a UPS.
Equipment powered by a UPS system:	
Location of UPS system:	
Calculated capacity of UPS batteries to drive the system con	mponents connected to it:
In standby mode (hours):	In alarm mode (minutes):
13.1.4 Batteries	
Location: On each floor Type: unknown	Nominal voltage: Amp/hour rating:
Calculated capacity of batteries to drive the system:	
In standby mode (hours): 24 hours	In alarm mode (minutes): 15 minutes
☐ Batteries are marked with date of manufacture ☐ I	Battery calculations are attached
13.2 In-Building Fire Emergency Voice Alarm Commun	nication System or Mass Notification System
☐ This system does not have an EVACS or MNS system.	·
13.2.1 Primary Power	
Input voltage of EVACS or MNS panel: 120 v	EVACS or MNS panel amps: unknown
Overcurrent protection: Type: unknown	Amps:
Location (of primary supply panel board): first floor utility	y room
Disconnecting means location: same	
13.2.2 Engine-Driven Generator	☐ This system does not have a generator.
Location of generator: same as fire alarm system	
Location of fuel storage:	Type of fuel:
13.2.3 Uninterruptible Power System	☐ This system does not have a UPS.
Equipment powered by a UPS system:	
Location of UPS system:	
Calculated capacity of UPS batteries to drive the system cor	mponents connected to it:
In standby mode (hours):	In alarm mode (minutes):
13.2.4 Batteries	
Location: see fire alarm system Type:	Nominal voltage: Amp/hour rating:
Calculated capacity of batteries to drive the system:	
In standby mode (hours):	In alarm mode (minutes):
Batteries are marked with date of manufacture	Battery calculations are attached

13. SYSTEM POWER (continued)

13.3.1 Primary Power								
Input voltage of power extender panel(s): unknown	Power extender panel amps:							
Overcurrent protection: Type:	Amps:							
Location (of primary supply panel board):								
Disconnecting means location:								
13.3.2 Engine-Driven Generator	☐ This system does not have a generator							
Location of generator: see fire alarm system								
Location of fuel storage:	Type of fuel:							
13.3.3 Uninterruptible Power System	☐ This system does not have a UPS.							
Equipment powered by a UPS system:								
Location of UPS system:								
Calculated capacity of UPS batteries to drive the system composition								
In standby mode (hours):	In alarm mode (minutes):							
13.3.4 Batteries								
Location: unknown Type:	Nominal voltage: Amp/hour rating:							
Calculated capacity of batteries to drive the system:								
In standby mode (hours):	In alarm mode (minutes):							
☐ Batteries are marked with date of manufacture ☐ Batt	tery calculations are attached							
☐ Batteries are marked with date of manufacture ☐ Batteries. ■ RECORD OF SYSTEM INSTALLATION	tery calculations are attached							
	hecked for opens, shorts, ground faults, and improper							
P. RECORD OF SYSTEM INSTALLATION Fill out after all installation is complete and wiring has been complete.	hecked for opens, shorts, ground faults, and improper							
B. RECORD OF SYSTEM INSTALLATION Fill out after all installation is complete and wiring has been contained branching, but before conducting operational acceptance tests.	hecked for opens, shorts, ground faults, and improper . system Permit number: x1122							
Fill out after all installation is complete and wiring has been controlled branching, but before conducting operational acceptance tests. This is a: □ New system ☑ Modification to an existing	hecked for opens, shorts, ground faults, and improper . system Permit number: x1122							
Fill out after all installation is complete and wiring has been controlled branching, but before conducting operational acceptance tests. This is a: New system Modification to an existing The system has been installed in accordance with the following	hecked for opens, shorts, ground faults, and improper . system Permit number: x1122							
Fill out after all installation is complete and wiring has been controlled branching, but before conducting operational acceptance tests. This is a: New system Modification to an existing The system has been installed in accordance with the following MFPA 72, Edition:	hecked for opens, shorts, ground faults, and improper . system Permit number: x1122							
Fill out after all installation is complete and wiring has been controlled by the fore conducting operational acceptance tests. This is a: □ New system □ Modification to an existing The system has been installed in accordance with the following □ NFPA 72, Edition: □ NFPA 70, National Electrical Code, Article 760, Edition:	hecked for opens, shorts, ground faults, and improper . system Permit number: x1122							
Fill out after all installation is complete and wiring has been controlled branching, but before conducting operational acceptance tests. This is a: New system Modification to an existing The system has been installed in accordance with the following NFPA 72, Edition: NFPA 70, National Electrical Code, Article 760, Edition: Manufacturer's published instructions	hecked for opens, shorts, ground faults, and improper system Permit number: x1122 g requirements: (Note any or all that apply.)							
Fill out after all installation is complete and wiring has been of branching, but before conducting operational acceptance tests. This is a: □ New system □ Modification to an existing The system has been installed in accordance with the following □ NFPA 72, Edition: □ □ NFPA 70, National Electrical Code, Article 760, Edition: □ Manufacturer's published instructions Other (specify): □	hecked for opens, shorts, ground faults, and improper system Permit number:x1122 g requirements: (Note any or all that apply.)							

15. RECORD OF SYSTEM OPERATIONAL ACCEPTANCE TEST ☐ New system All operational features and functions of this system were tested by, or in the presence of, the signer shown below, on the date shown below, and were found to be operating properly in accordance with the requirements for the following: ☑ Modifications to an existing system All newly modified operational features and functions of the system were tested by, or in the presence of, the signer shown below, on the date shown below, and were found to be operating properly in accordance with the requirements of the following: NFPA 72, Edition: ☑ NFPA 70, National Electrical Code, Article 760, Edition: Manufacturer's published instructions Other (specify): ☐ Individual device testing documentation [Inspection and Testing Form (Figure 14.6.2.4) is attached] 6.11.18 Signed: Printed name: Garner Palenske Date: 858-713-2492 Palenske Alarm Title: Field Guy Organization: Phone: 16. CERTIFICATIONS AND APPROVALS 16.1 System Installation Contractor: This system, as specified herein, has been installed and tested according to all NFPA standards cited herein. unknown Signed: Printed name: Date: Organization: Title: Phone: 16.2 System Service Contractor: The undersigned has a service contract for this system in effect as of the date shown below. unknown Printed name: Date: Signed: Phone: Organization: Title: 16.3 Supervising Station: This system, as specified herein, will be monitored according to all NFPA standards cited herein. Mr. Jones Signed: Х Printed name: Date: 6.11.18 ADP 800-7778880 Organization: Title: Supervisor Phone:

16. CERTIFICATIONS AND APPROVALS (continued)

16.4 Property or Owner Representative:

I accept this system as having been installed and tested to its specifications and all NFPA standards cited herein.

Signed: X		Printed name: Mr. Smith	Date:	6.11.18
Organization:	Schirmer Hotels	Title: President	Phone:	800- 538- 4292
16.5 Authority	Having Jurisdiction:			
	ith its approved plans and	test of this system and find it to be it specifications, with its approved seq	1 01 1	•
Signed: not	signed	Printed name:	Date:	
Organization:		Title:	Phone:	

APPENDIX J - EVACS INSPECTION, TESTING, AND MAINTENANCE REQUIREMENTS

Copyright 2015 National Fire Protection Association (NFPA), Licensed, by agreement, for individual use and download on November 12, 2015 to HUGHES ASSOCIATES INC, No other reproduction or transmission in any form permitted without written permission of NFPA, For inquires or to report unauthorized use, contact licensing@nfpa.org...

Chapter 13 Reserved

Chapter 14 Inspection, Testing, and Maintenance

14.1 Application.

- 14.1.1 The inspection, testing, and maintenance of systems, their initiating devices, and notification appliances shall comply with the requirements of this chapter.
- 14.1.2 The inspection, testing, and maintenance of singleand multiple-station smoke and heat alarms and household fire alarm systems shall comply with the requirements of this chapter.
- 14.1.3 Procedures that are required by other parties and that exceed the requirements of this chapter shall be permitted.
- **14.1.4** The requirements of this chapter shall apply to both new and existing systems.
- 14.1.5 The requirements of Chapter 7 shall apply where referenced in Chapter 14.

14.2 General.

14.2.1 Purpose.

- 14.2.1.1* The purpose for initial and reacceptance inspections is to ensure compliance with approved design documents and to ensure installation in accordance with this Code and other required installation standards.
- 14.2.1.2* The purpose for initial and reacceptance tests of fire alarm and signaling systems is to ensure system operation in accordance with the design documents.
- 14.2.1.3* The purpose for periodic inspections is to assure that obvious damages or changes that might affect the system operability are visually identified.
- 14.2.1.4* The purpose for periodic testing is to statistically assure operational reliability.

14.2.2 Performance.

- 14.2.2.1 Performance Verification. To ensure operational integrity, the system shall have an inspection, testing, and maintenance program.
- 14.2.2.1.1 Inspection, testing, and maintenance programs shall satisfy the requirements of this Code and conform to the equipment manufacturer's published instructions.
- 14.2.2.1.2 Inspection, testing, and maintenance programs shall verify correct operation of the system.

14.2.2.2 Impairments/Deficiencies.

- 14.2.2.2.1 The requirements of Section 10.20 shall be applicable when a system is impaired.
- 14.2.2.2.2 System deficiencies shall be corrected.

- 14.2.2.2.3 If a deficiency is not corrected at the conclusion of system inspection, testing, or maintenance, the system owner or the owner's designated representative shall be informed of the impairment in writing within 24 hours.
- 14.2.2.2.4 In the event that any equipment is observed to be part of a recall program, the system owner or the system owner's designated representative shall be notified in writing.

14.2.3 Responsibilities.

- 14.2.3.1* The property or building or system owner or the owner's designated representative shall be responsible for inspection, testing, and maintenance of the system and for alterations or additions to this system.
- 14.2.3.2 Where the property owner is not the occupant, the property owner shall be permitted to delegate the authority and responsibility for inspecting, testing, and maintaining the fire protection systems to the occupant, management firm, or managing individual through specific provisions in the lease, written use agreement, or management contract.
- 14.2.3.3 Inspection, testing, or maintenance shall be permitted to be done by the building or system owner or a person or organization other than the building or system owner if conducted under a written contract.
- 14.2.3.4 Where the building or system owner has delegated any responsibilities for inspection, testing, or maintenance, a copy of the written delegation required by 14.2.3.3 shall be provided to the authority having jurisdiction upon request.
- 14.2.3.5 Testing and maintenance of central station service systems shall be performed under the contractual arrangements specified in 26.3.3.
- 14.2.3.6* Service Personnel Qualifications and Experience. Service personnel shall be qualified and experienced in accordance with the requirements of 10.5.3.

14.2.4* Notification.

- 14.2.4.1 Before proceeding with any testing, all persons and facilities receiving alarm, supervisory, or trouble signals and all building occupants shall be notified of the testing to prevent unnecessary response.
- 14.2.4.2 At the conclusion of testing, those previously notified (and others, as necessary) shall be notified that testing has been concluded.
- 14.2.4.3 The owner or the owner's designated representative and service personnel shall coordinate system testing to prevent interruption of critical building systems or equipment.
- 14.2.5 System Documentation. Prior to system maintenance or testing, the record of completion and any information required by Chapter 7 regarding the system and system alterations, including specifications, wiring diagrams, and floor plans, shall be provided by the owner or a designated representative to the service personnel upon request.
- 14.2.5.1 The provided documentation shall include the current revisions of all fire alarm software and the revisions of software of any systems with which the fire alarm software interfaces.
- 14.2.5.2 The revisions of fire alarm software, and the revisions of the software in the systems with which the fire alarm software interfaces, shall be verified for compatibility in accordance with the requirements of 23.2.2.1.1.

- **14.2.6 Releasing Systems.** Requirements pertinent to testing the fire alarm systems initiating fire suppression system releasing functions shall be covered by 14.2.6.1 through 14.2.6.6.
- **14.2.6.1** Testing personnel shall be qualified and experienced in the specific arrangement and operation of a suppression system(s) and a releasing function(s) and shall be cognizant of the hazards associated with inadvertent system discharge.
- **14.2.6.2** Occupant notification shall be required whenever a fire alarm system configured for releasing service is being serviced or tested.
- **14.2.6.3** Discharge testing of suppression systems shall not be required by this Code.
- 14.2.6.4 Suppression systems shall be secured from inadvertent actuation, including disconnection of releasing solenoids or electric actuators, closing of valves, other actions, or combinations thereof, for the specific system, for the duration of the fire alarm system testing.
- **14.2.6.5** Testing shall include verification that the releasing circuits and components energized or actuated by the fire alarm system are electrically monitored for integrity and operate as intended on alarm.
- **14.2.6.6** Suppression systems and releasing components shall be returned to their functional operating condition upon completion of system testing.

14.2.7 Interface Equipment and Emergency Control Functions.

14.2.7.1* Testing personnel shall be qualified and experienced in the arrangement and operation of interface equipment and emergency control functions.

14.2.7.2 Testing shall be accomplished in accordance with Table 14.4.3.2.

14.2.8 Automated Testing.

- 14.2.8.1 Automated testing arrangements that provide equivalent means of testing devices to those specified in Table 14.4.3.2 at a frequency at least equivalent to those specified in Table 14.4.3.2 shall be permitted to be used to comply with the requirements of this chapter.
- 14.2.8.2 Failure of a device on an automated test shall result in an audible and visual trouble signal.
- **14.2.9* Performance-Based Inspection and Testing.** As an alternate means of compliance, subject to the authority having jurisdiction, components and systems shall be permitted to be inspected and tested under a performance-based program.

14.2.10* Test Plan.

- **14.2.10.1** A test plan shall be written to clearly establish the scope of the testing for the fire alarm or signaling system.
- **14.2.10.2** The test plan and results shall be documented with the testing records.

14.3 Inspection.

14.3.1* Unless otherwise permitted by 14.3.2, visual inspections shall be performed in accordance with the schedules in Table 14.3.1 or more often if required by the authority having jurisdiction.

Table 14.3.1 Visual Inspection

	Component	Initial Acceptance	Periodic Frequency	Method	Reference
1.	All equipment	X	Annual	Ensure there are no changes that affect equipment performance. Inspect for building modifications, occupancy changes, changes in environmental conditions, device location, physical obstructions, device orientation, physical damage, and degree of cleanliness.	14.3.4
2.	Control equipment: (a) Fire alarm systems monitored for alarm, supervisory, and trouble signals			Verify a system normal condition.	
	(1) Fuses	X	Annual		
	(2) Interfaced equipment	X	Annual		
	(3) Lamps and LEDs	X	Annual		
	(4) Primary (main) power supply	X	Annual		
	(5) Trouble signals	X	Semiannual		
	(b) Fire alarm systems unmonitored for alarm, supervisory, and trouble signals			Verify a system normal condition.	
	(1) Fuses	X	Weekly		
	(2) Interfaced equipment	X	Weekly		
	(3) Lamps and LEDs	X	Weekly		
	(4) Primary (main) power supply	X	Weekly		
	(5) Trouble signals	X	Weekly		

Copyright 2015 National Fire Protection Association (NFPA), Licensed, by agreement, for individual use and download on November 12, 2015 to HUGHES ASSOCIATES INC, No other reproduction or transmission in any form permitted without written permission of NFPA, For inquires or to report unauthorized use, contact licensing@nfpa.org,

Table 14.3.1 Continued

	Component	Initial Acceptance	Periodic Frequency	Method	Reference
3.	Reserved				
4.	Supervising station alarm systems — transmitters			Verify location, physical condition, and a system normal condition.	
	(a) Digital alarm communicator transmitter (DACT)	X	Annual	,	
	(b) Digital alarm radio transmitter (DART)	X	Annual		
	(c) McCulloh	X	Annual		
	(d) Radio alarm transmitter (RAT)	X	Annual		
	(e) All other types of communicators	X	Annual		
5.	In-building fire emergency voice/ alarm communications equipment	X	Semiannual	Verify location and condition.	
6.	Reserved				
7.	Reserved				
8.	Reserved				
9.	Batteries			Inspect for corrosion or leakage. Verify tightness of connections. Verify marking of the month/year of manufacture (all types).	10.6.10
	(a) Lead-acid	X	Monthly	Visually inspect electrolyte level.	
	(b) Nickel-cadmium	X	Semiannual		
	(c) Primary (dry cell)(d) Sealed lead-acid	X X	Monthly Semiannual		
10.	Reserved				
11.	Remote annunciators	X	Semiannual	Verify location and condition,	
12.	Notification appliance circuit power extenders	X	Annual	Verify proper fuse ratings, if any. Verify that lamps and LEDs indicate normal operating status of the equipment.	10.6
13.	Remote power supplies	X	Annual	Verify proper fuse ratings, if any. Verify that lamps and LEDs indicate normal operating status of the equipment.	10.6
14.	Transient suppressors	X	Semiannual	Verify location and condition.	
15.	Reserved				
16.	Fiber-optic cable connections	X	Annual	Verify location and condition.	
17.	Initiating devices			Verify location and condition (all devices).	
	(a) Air sampling	v	Camica	Varify that in line filters if any are also	17796
	(1) General(2) Sampling system piping and	X	Semiannual N/A	Verify that in-line filters, if any, are clean. Verify that sampling system piping and	17.7.3.6 17.7.3.6
	sampling ports	A	IV/ A	fittings are installed properly, appear airtight, and are permanently fixed. Confirm that sampling pipe is conspicuously identified. Verify that	17.7.5.0
				Confirm that sampling pipe is	120

Table 14.3.1 Continued

	Component	Initial Acceptance	Periodic Frequency	Method	Reference
*	(b) Duct detectors				
	(1) General	X	Semiannual	Verify that detector is rigidly mounted. Confirm that no penetrations in a return air duct exist in the vicinity of the detector. Confirm the detector is installed so as to sample the airstream at the proper location in the duct.	17.7.5.5
	(2) Sampling tube	X	Annual	the proper location in the duct. Verify proper orientation. Confirm the sampling tube protrudes into the duct in accordance with system design.	17.7.5.5
	(c) Electromechanical releasing devices	X	Semiannual	in accordance with system design.	
	(d) Fire extinguishing system(s) or suppression system(s) switches	X	Semiannual		
	(e) Manual fire alarm boxes	X	Semiannual		
	(f) Heat detectors	X	Semiannual		
	(g) Radiant energy fire detectors	X	Quarterly	Verify no point requiring detection is obstructed or outside the detector's field of view.	17.8
	(h) Video image smoke and fire detectors	X	Quarterly	Verify no point requiring detection is obstructed or outside the detector's field of view.	17.7.7; 17.11.5
	(i) Smoke detectors (excluding one- and two-family dwellings)	X	Semiannual		
	(j) Projected beam smoke detectors	X	Semiannual	Verify beam path is unobstructed.	
	(k) Supervisory signal devices (l) Waterflow devices	X X	Quarterly Quarterly		
18.	Reserved				
19.	Combination systems (a) Fire extinguisher electronic monitoring device/systems	X	Semiannual	Verify location and condition (all types).	
	(b) Carbon monoxide detectors/systems	X	Semiannual		
20.	Fire alarm control interface and emergency control function interface	X	Semiannual	Verify location and condition.	
21.	Guard's tour equipment	X	Semiannual	Verify location and condition.	
22.	Notification appliances			Verify location and condition (all appliances).	
	(a) Audible appliances	X	Semiannual		
	(b) Audible textual notification appliances(c) Visible appliances	X	Semiannual		
	(1) General	X	Semiannual		18.5.5
_	(2) Candela rating	X	N/A	Verify that the candela rating marking agrees with the approved drawings.	18.5.5
23.	Exit marking audible notification appliances	X	Semiannual	Verify location and condition.	5),

Copyright 2015 National Fire Protection Association (NFPA), Licensed, by agreement, for individual use and download on November 12, 2015 to HUGHES ASSOCIATES INC. No other reproduction or transmission in any form permitted without written permission of NFPA, For inquires or to report unauthorized use, contact licensing@nfpa.org.

Table 14.3.1 Continued

	Component	Initial Acceptance	Periodic Frequency	Method	Reference
24.	Reserved				
25.	Area of refuge two-way communication system	X	Annual	Verify location and condition.	
26.	Reserved				
27.	Supervising station alarm systems —				
	(a) Signal receipt	X	Daily	Verify receipt of signal.	
	(b) Receivers	X	Annual	Verify location and normal condition,	
28.	Public emergency alarm reporting system transmission equipment			Verify location and condition.	
	(a) Publicly accessible alarm box	X	Semiannual		
	(b) Auxiliary box	X	Annual		
	(c) Master box				
	(1) Manual operation	X	Semiannual		
	(2) Auxiliary operation	X	Annual		
29.	Reserved				
30.	Mass notification system				
	(a) Monitored for integrity			Verify a system normal condition.	
	(1) Control equipment				
	(i) Fuses	X	Annual		
	(ii) Interfaces	X	Annual		
	(iii) Lamps/LED	X	Annual		
	(iv) Primary (main) power supply	X	Annual		
	(2) Secondary power batteries	X	Annual		
	(3) Initiating devices	X	Annual		
	(4) Notification appliances	X	Annual		
	(b) Not monitored for integrity;		2 44111 (414)	Verify a system normal condition.	
	installed prior to adoption of the 2010 edition			verny a system rooman containant	
	(1) Control equipment				
	(i) Fuses	X	Semiannual		
	(ii) Interfaces	X	Semiannual		
	(iii) Lamps/LED	X	Semiannual		
	(iv) Primary (main) power supply	X	Semiannual		
	(2) Secondary power batteries	X	Semiannual		
	(3) Initiating devices	X	Semiannual		
	(4) Notification appliances	X	Semiannual		
	(c) Antenna	X	Annual	Verify location and condition.	
	(d) Transceivers	X	Annual	Verify location and condition.	

Note: N/A = not applicable, no minimum requirement established.

14.3.2 Devices or equipment that is inaccessible for safety considerations (e.g., continuous process operations, energized electrical equipment, radiation, and excessive height) shall be permitted to be inspected during scheduled shutdowns if approved by the authority having jurisdiction.

14.3.3 Extended intervals shall not exceed 18 months.

14.3.4 Initial and reacceptance inspections shall be made to ensure compliance with approved design documents and to ensure installation in accordance with this Code and other required installation standards.

14.3.5 Periodic visual inspections in accordance with Table 14.3.1 shall be made to assure that there are no changes that affect equipment performance.

14.4 Testing.

14.4.1 Initial Acceptance Testing.

- 14.4.1.1 All new systems shall be inspected and tested in accordance with the requirements of Chapter 14.
- 14.4.1.2 The authority having jurisdiction shall be notified prior to the initial acceptance test.

14.4.2* Reacceptance Testing.

- 14.4.2.1 When an initiating device, notification appliance, or control relay is added, it shall be functionally tested.
- 14.4.2.2 When an initiating device, notification appliance, or control relay is deleted, another device, appliance, or control relay on the circuit shall be operated.
- 14.4.2.3 When modifications or repairs to control equipment hardware are made, the control equipment shall be tested in accordance with Table 14.4.3.2, items 2(a) and 2(d).
- 14.4.2.4 When changes are made to site-specific software, the following shall apply:
- (1) All functions known to be affected by the change, or identified by a means that indicates changes, shall be 100 percent tested.

- (2) In addition, 10 percent of initiating devices that are not directly affected by the change, up to a maximum of 50 devices, also shall be tested and correct system operation shall be verified.
- (3) A revised record of completion in accordance with 7.5.6 shall be prepared to reflect these changes.
- 14.4.2.5 Changes to the system executive software shall require a 10 percent functional test of the system, including a test of at least one device on each input and output circuit to verify critical system functions such as notification appliances, control functions, and off-premises reporting.

14.4.3* Test Methods.

- 14.4.3.1* At the request of the authority having jurisdiction, the central station facility installation shall be inspected for complete information regarding the central station system, including specifications, wiring diagrams, and floor plans that have been submitted for approval prior to installation of equipment and wiring.
- 14.4.3.2* Systems and associated equipment shall be tested according to Table 14.4.3.2.

Table 14.4.3.2 Testing

	Component	Initial Acceptance	Periodic Frequency	Method
1. 2.	All equipment Control equipment and transponder	X		See Table 14.3.1.
	(a) Functions	Х	Annually	Verify correct receipt of alarm, supervisory, and trouble signals (inputs); operation of evacuation signals and auxiliary functions (outputs); circuit supervision, including detection of open circuits and ground faults; and power supply supervision for detection of loss of ac power and disconnection of secondary batteries.
	(b) Fuses	X	Annually	Verify rating and supervision.
	(c) Interfaced equipment	X	Annually	Verify integrity of single or multiple circuits providing interface between two or more control units. Test interfaced equipment connections by operating or simulating operation of the equipment being supervised. Verify signals required to be transmitted at the control unit.
	(d) Lamps and LEDs	X	Annually	Illuminate lamps and LEDs.
	(e) Primary (main) power supply	X	Annually	Test under maximum load, including all alarm appliances requiring simultaneous operation. Test redundant power supplies separately.
3.	Fire alarm control unit trouble sig	gnals		
	(a) Audible and visual	X	Annually	Verify operation of control unit trouble signals. Verify ring-back feature for systems using a trouble-silencing switch that requires resetting.
	(b) Disconnect switches	X	Annually	If control unit has disconnect or isolating switches, verify performance of intended function of each switch. Verify receipt of trouble signal when a supervised function is disconnected.
	(c) Ground-fault monitoring circuit	X	Annually	If the system has a ground detection feature, verify the occurrence of ground-fault indication whenever any installation conductor is grounded.
	(d) Transmission of signals to off-premises location	X	Annually	Actuate an initiating device and verify receipt of alarm signal at the off-premises location.
	•			Create a trouble condition and verify receipt of a trouble signal at the off-premises location.
				Actuate a supervisory device and verify receipt of a supervisory signal at the off-premises location. If a transmission carrier is capable of operation under a single- or multiple-fault condition, activate an initiating device during such fault condition and verify receipt of an alarm signal and a trouble signal at the off-premises location.

Copyright 2015 National Fire Protection Association (NFPA). Licensed, by agreement, for individual use and download on November 12, 2015 to HUGHES ASSOCIATES INC, No other reproduction or transmission in any form permitted without written permission of NFPA, For inquires or to report unauthorized use, contact licensing@nfpa,org.

Table 14.4.3.2 Continued

4.

	Component	Initial Acceptance	Periodic Frequency	Method
١.	Supervising station alarm systems - (a) All equipment	– transmission X	equipment Annually	^a Test all system functions and features in accordance with the equipment manufacturer's published instructions for correct operation in conformance with the applicable sections of Chapter 26.
				Except for DACT, actuate initiating device and verify receipt of the correct initiating device signal at the supervising station within 90 seconds. Upon completion of the test, restore the system to its functional operating condition. If test jacks are used, conduct the first and last tests without the use of the
				test jack.
	(b) Digital alarm communicator transmitter (DACT)	X	Annually	Except for DACTs installed prior to adoption of the 2013 edition of NFPA 72 that are connected to a telephone line (number) that is also supervised for adverse conditions by a derived local channel, ensure connection of the DACT to two separate means of transmission. Test DACT for line seizure capability by initiating a signal while using the telephone line (primary line for DACTs using two telephone lines) for a telephone call. Ensure that the call is interpreted and that the
				telephone call. Ensure that the call is interrupted and that the communicator connects to the digital alarm receiver. Verify receipt of the correct signal at the supervising station. Verify each transmission attempt is completed within 90 seconds from going off-hook to on-hook. Disconnect the telephone line (primary line for DACTs using two telephone
				lines) from the DACT. Verify indication of the DACT trouble signal occurs at the premises fire alarm control unit within 4 minutes of detection of the fault. Verify receipt of the telephone line trouble signal at the supervising station. Restore the telephone line (primary line for DACTs using two telephone lines), reset the fire alarm control unit, and verify that the telephone line fault trouble signal returns to normal. Verify that the supervising station receives the restoral signal from the DACT.
				Disconnect the secondary means of transmission from the DACT. Verify indication of the DACT trouble signal occurs at the premises fire alarm control unit within 4 minutes of detection of the fault. Verify receipt of the secondary means trouble signal at the supervising station. Restore the secondary means of transmission, reset the fire alarm control unit, and verify that the trouble signal returns to normal. Verify that the supervising station receives the restoral signal from the secondary transmitter.
				Cause the DACT to transmit a signal to the DACR while a fault in the telephone line (number) (primary line for DACTs using two telephone lines) is simulated. Verify utilization of the secondary communication path by the DACT to complete the transmission to the DACR.
	(c) Digital alarm radio transmitter (DART)	X	Annually	Disconnect the primary telephone line. Verify transmission of a trouble signal
	(d) McCulloh transmitter	X	Annually	to the supervising station by the DART occurs within 4 minutes. Actuate initiating device. Verify production of not less than three complete rounds of not less than three signal impulses each by the McCulloh transmitter.
				If end-to-end metallic continuity is present and with a balanced circuit, cause each of the following four transmission channel fault conditions in turn, and verify receipt of correct signals at the supervising station: (1) Open
				(2) Ground
				(3) Wire-to-wire short (4) Open and ground
				If end-to-end metallic continuity is not present and with a properly balanced circuit, cause each of the following three transmission channel fault conditions in turn, and verify receipt of correct signals at the supervising station:
				(1) Open
				(2) Ground

Table 14.4.3.2 Continued

	Component	Initial Acceptance	Periodic Frequency	Method
	(e) Radio alarm transmitter (RAT)	X	Annually	Cause a fault between elements of the transmitting equipment. Verify indication of the fault at the protected premises, or transmission of trouble signal to the supervising station.
	(f) Performance-based technologies	X	Annually	Perform tests to ensure the monitoring of integrity of the transmission technology and technology path. Where shared communications equipment is used as permitted by 26.6.3.1.14, provided secondary (standby) power sources shall be tested in accordance with Table 14.4.3.2, item 7, 8, or 9, as applicable. Where a single communications path is used, disconnect the communication path. Manually initiate an alarm signal transmission or allow the check-in (handshake) signal to be transmitted automatically. Verify the premises unit annunciates the failure within 200 seconds of the transmission failure. Restore the communication path. Where multiple communication paths are used, disconnect both communication paths. Manually initiate an alarm signal transmission, Verify the premises control unit annunciates the failure within 200 seconds of the transmission failure. Restore both communication paths.
5.	Emergency communications equipment		4 31	***
	(a) Amplifier/tone generators (b) Call-in signal silence	X X	Annually Annually	Verify correct switching and operation of backup equipment. Operate/function and verify receipt of correct visual and audible signals at control unit.
	(c) Off-hook indicator (ring down)	X	Annually	Install phone set or remove phone from hook and verify receipt of signal at control unit.
	(d) Phone jacks	X	Annually	Visually inspect phone jack and initiate communications path through jack.
	(c) Phone set (f) System performance	X X	Annually Annually	Activate each phone set and verify correct operation. Operate the system with a minimum of any five handsets simultaneously. Verify voice quality and clarity.
6.	Engine-driven generator	X	Monthly	If an engine-driven generator dedicated to the system is used as a required power source, verify operation of the generator in accordance with NFPA 110 by the building owner.
7.	Secondary (standby) power supply ^c	Х	Annually	Disconnect all primary (main) power supplies and verify the occurrence of required trouble indication for loss of primary power. Measure or verify the system's standby and alarm current demand and verify the ability of batteries to meet standby and alarm requirements using manufacturer's data. Operate general alarm systems a minimum of 5 minutes and emergency voice communications systems for a minimum of 15 minutes. Reconnect primary (main) power supply at end of test.
8.	Uninterruptible power supply (UPS)	X	Annually	If a UPS system dedicated to the system is used as a required power source, verify by the building owner operation of the UPS system in accordance with NFPA [1].
9.	Battery tests			Prior to conducting any battery testing, verify by the person conducting the test, that all system software stored in volatile memory is protected from loss.
	(a) Lead-acid type (1) Battery replacement	X	Annually	Replace batteries in accordance with the recommendations of the alarm equipment manufacturer or when the recharged battery voltage or current falls below the manufacturer's recommendations.
	(2) Charger test	X	Annually	With the batteries fully charged and connected to the charger, measure the voltage across the batteries with a voltmeter. Verify the voltage is 2.30 volts per cell ±0.02 volts at 77°F (25°C) or as specified by the equipment manufacturer.
	(3) Discharge test	X	Annually	With the battery charger disconnected, load test the batteries following the manufacturer's recommendations. Verify the voltage level does not fall below the levels specified. Load testing can be by means of an artificial load equal to the full fire alarm load connected to the battery.
	(4) Load voltage test	X	Semiannually	With the battery charger disconnected, load test the batteries following the manufacturer's recommendations. Verify the voltage level does not fall below the levels specified. Load testing can be by means of an artificial load equal to the full fire alarm load connected to the battery. Verify the battery does not fall below 2.05 volts per cell under load.

Copyright 2015 National Fire Protection Association (NFPA), Licensed, by agreement, for individual use and download on November 12, 2015 to HUGHES ASSOCIATES INC, No other reproduction or transmission in any form permitted without written permission of NFPA, For inquires or to report unauthorized use, contact licensing@nfpa,org,

Table 14.4.3.2 Continued

Component	Initial Acceptance	Periodic Frequency	Method
(5) Specific gravity	X	Semiannually	Measure as required the specific gravity of the liquid in the pilot cell or all of the cells. Verify the specific gravity is within the range specified by the manufacturer. Although the specified specific gravity varies from manufacturer to manufacturer, a range of 1.205–1.220 is typical for regular lead-acid batteries, while 1.240–1.260 is typical for high-performance batteries. Do not use a hydrometer that shows only a pass or fail condition of the battery and does not indicate the specific gravity, because such a reading does not give a true indication of the battery condition.
(b) Nickel-cadmium type (1) Battery replacement	x	Annually	Replace batteries in accordance with the recommendations of the alarm equipment manufacturer or when the recharged battery voltage or current falls below the manufacturer's recommendations.
(2) Charger test ^d	X	Annually	With the batteries fully charged and connected to the charger, place an ampere meter in series with the battery under charge. Verify the charging current is in accordance with the manufacturer's recommendations for the type of battery used. In the absence of specific information, use 1/30 to 1/25 of the battery rating.
(3) Discharge test	X	Annually	With the battery charger disconnected, load test the batteries following the manufacturer's recommendations. Verify the voltage level does not fall below the levels specified. Load testing can be by means of an artificial load equal to the full fire alarm load connected to the battery.
(4) Load voltage test	X	Semiannually	With the battery charger disconnected, load test the batteries following the manufacturer's recommendations. Verify the voltage level does not fall below the levels specified. Load testing can be by means of an artificial load equal to the full fire alarm load connected to the battery. Verify the float voltage for the entire battery is 1,42 volts per cell, nominal, under load. If possible, measure cells individually.
(c) Sealed lead-acid type			, ,
(1) Battery replacement	X	Annually	Replace batteries in accordance with the recommendations of the alarm equipment manufacturer or when the recharged battery voltage or current falls below the manufacturer's recommendations.
(2) Charger test	X	Annually	With the batteries fully charged and connected to the charger, measure the voltage across the batteries with a voltmeter. Verify the voltage is 2.30 volts per cell ±0.02 volts at 77°F (25°C) or as specified by the equipment manufacturer.
(3) Discharge test	Х	Annually	With the battery charger disconnected, load test the batteries following the manufacturer's recommendations. Verify the voltage level does not fall below the levels specified. Load testing can be by means of an artificial load equal to the full fire alarm load connected to the battery.
(4) Load voltage test	X	Semiannually	Verify the battery performs under load, in accordance with the battery manufacturer's specifications.
10. Public emergency alarm reporting system — wired system	X	Daily	Manual tests of the power supply for public reporting circuits shall be made and recorded at least once during each 24-hour period. Such tests shall include the following: (1) Current strength of each circuit. Changes in current of any circuit exceeding 10 percent shall be investigated immediately. (2) Voltage across terminals of each circuit inside of terminals of protective devices. Changes in voltage of any circuit exceeding 10 percent shall be investigated immediately. (3) Voltage between ground and circuits. If this test shows a reading in excess of 50 percent of that shown in the test specified in (2), the trouble shall be immediately located and cleared. Readings in excess of 25 percent shall be given early attention. These readings shall be taken with a calibrated voltmeter of not more than 100 ohms resistance per volt. Systems in which each circuit is supplied by an independent current source (Forms 3 and 4) require tests between ground and each side of each circuit. Common current source systems (Form 2) require voltage tests between ground and each terminal of each battery and other current source.

Table 14.4.3.2 Continued

Component	Initial Acceptance	Periodic Frequency	Method
			 (4) Ground current reading shall be permitted in lieu of (3). If this method of testing is used, all grounds showing a current reading in excess of 5 percent of the supplied line current shall be given immediate attention. (5) Voltage across terminals of common battery on switchboard side of fuses. (6) Voltage between common battery terminals and ground. Abnormal ground readings shall be investigated immediately. Tests specified in (5) and (6) shall apply only to those systems using a common battery. If more than one common battery is used, each common battery shall be tested.
11: Remote annunciators	X	Annually	Verify the correct operation and identification of annunciators. If provided, verify the correct operation of annunciator under a fault condition.
12. Reserved			
13. Reserved			
14, Reserved			
15. Conductors — metallic			
(a) Stray voltage	X	N/A	Test all installation conductors with a volt/ohnmeter to verify that there are no stray (unwanted) voltages between installation conductors or between installation conductors and ground. Verify the maximum allowable stray voltage does not exceed 1 volt ac/dc, unless a different threshold is specified in the published manufacturer's instructions for the installed equipment.
(b) Ground faults	X	N/A	Test all installation conductors, other than those intentionally and permanently grounded, for isolation from ground per the installed equipment manufacturer's published instructions.
(c) Short-circuit faults	X	N/A	Test all installation conductors, other than those intentionally connected together, for conductor-to-conductor isolation per the published manufacturer's instructions for the installed equipment. Also test these same circuits conductor-to-ground.
(d) Loop resistance	X	N/A	With each initiating and indicating circuit installation conductor pair short-circuited at the far end, measure and record the resistance of each circuit. Verify that the loop resistance does not exceed the limits specified in the published manufacturer's instructions for the installed equipment.
(e) Circuit integrity	Х	N/A	For initial and reacceptance testing, confirm the introduction of a fault in any circuit monitored for integrity results in a trouble indication at the fire alarm control unit. Open one connection at not less than 10 percent of the initiating devices, notification appliances and controlled devices on every initiating device circuit, notification appliance circuit, and signaling line circuit. Confirm all circuits perform as indicated in Sections 23.5, 23.6, and 23.7.
	N/A	Annually	For periodic testing, test each initiating device circuit, notification appliance circuit, and signaling line circuit for correct indication at the control unit. Confirm all circuits perform as indicated in Sections 23.5, 23.6, and 23.7.
16. Conductors — nonmetallic			
(a) Fiber optics	X	N/A	Test the fiber-optic transmission line by the use of an optical power meter or by an optical time domain reflectometer used to measure the relative power loss of the line. Test result data must meet or exceed ANSI/TIA 568-C.3, Optical Fiber Cabling Components Standard, related to fiber-optic lines and connection/splice losses and the control unit manufacturer's published specifications.
(b) Circuit integrity	X	N/A	For initial and reacceptance testing, confirm the introduction of a fault in any circuit monitored for integrity results in a trouble indication at the fire alarm control unit. Open one connection at not less than 10 percent of the initiating devices, notification appliances, and controlled devices on every initiating device circuit, notification appliance circuit, and signaling line circuit. Confirm all circuits perform as indicated in Sections 23.5, 23.6, and 23.7.
	N/A	Annually	For periodic testing, test each initiating device circuit, notification appliance circuit, and signaling line circuit for correct indication at the control unit. Confirm all circuits perform as indicated in Sections 23.5, 23.6, and 23.7.

Copyright 2015 National Fire Protection Association (NFPA). Licensed, by agreement, for individual use and download on November 12, 2015 to HUGHES ASSOCIATES INC, No other reproduction or transmission in any form permitted without written permission of NFPA. For inquires or to report unauthorized use, contact licensing@nfpa.org,

Table 14.4.3.2 Continued

Component	Initial Acceptance	Periodic Frequency	Method
Initiating devices ^f (a) Electromechanical releasing device			
(1) Nonrestorable-type link	X	Annually	Verify correct operation by removal of the fusible link and operation of the associated device. Lubricate any moving parts as necessary.
(2) Restorable-type link ^g	X	Annually	Verify correct operation by removal of the fusible link and operation of the associated device. Lubricate any moving parts as necessary.
(b) Fire extinguishing system(s) or suppression system(s) alarm switch	X	Annually	Operate the switch mechanically or electrically and verify receipt of signal by the fire alarm control unit.
(c) Fire–gas and other detectors (d) Heat detectors	X	Annually	Test fire–gas detectors and other fire detectors as prescribed by the manufacturer and as necessary for the application.
(1) Fixed-temperature, rate-of-rise, rate of compensation, restorable line, spot type (excluding pneumatic tube type)	X	Annually (see 14.4.4.5)	Perform heat test with a listed and labeled heat source or in accordance with the manufacturer's published instructions. Assure that the test method for the installed equipment does not damage the nonrestorable fixed-temperature element of a combination rate-of-rise/fixed-temperature element detector.
(2) Fixed-temperature, nonrestorable line type	X	Annually	Do not perform heat test. Test functionality mechanically and electrically. Measure and record loop resistance. Investigate changes from acceptance test.
(3) Fixed-temperature, nonrestorable spot type	X	See Method	After 15 years from initial installation, replace all devices or have 2 detectors per 100 laboratory tested. Replace the 2 detectors with new devices. If a failure occurs on any of the detectors removed, remove and test additiona detectors to determine either a general problem involving faulty detectors a localized problem involving 1 or 2 defective detectors. If detectors are tested instead of replaced, repeat tests at intervals of 5 years.
(4) Nonrestorable (general)(5) Restorable line type, pneumatic tube only	X X	Annually Annually	Do not perform heat tests. Test functionality mechanically and electrically. Perform heat tests (where test chambers are in circuit), with a listed and labeled heat source or in accordance with the manufacturer's published
(6) Single- and multiple-station	X	Annually	instructions of the detector or conduct a test with pressure pump. Conduct functional tests according to manufacturer's published instructions.
heat alarms (e) Manual fire alarm boxes	X	Annually	Do not test nonrestorable heat detectors with heat. Operate manual fire alarm boxes per the manufacturer's published instructions, Test both key-operated presignal and general alarm manual alarm boxes.
(f) Radiant energy fire detectors	X	Semiannually	Test flame detectors and spark/ember detectors in accordance with the manufacturer's published instructions to determine that each detector is operative. Determine flame detector and spark/ember detector sensitivity using any of the following: (1) Calibrated test method (2) Manufacturer's calibrated sensitivity test instrument (3) Listed control unit arranged for the purpose (4) Other approved calibrated sensitivity test method that is directly proportional to the input signal from a fire, consistent with the detector listing or approval If designed to be field adjustable, replace detectors found to be outside of the approved range of sensitivity or adjust to bring them into the approved range. Do not determine flame detector and spark/ember detector sensitivity using light source that administers an unmeasured quantity of radiation at an undefined distance from the detector.
(g) Smoke detectors — functional test	*7	A 11	here
(1) In other than one- and two-family dwellings, system detectors	Х	Annually	"Test smoke detectors in place to ensure smoke entry into the sensing chamber and an alarm response. Use smoke or a listed and labeled produce acceptable to the manufacturer or in accordance with their published instructions, Other methods listed in the manufacturer's published instructions that ensure smoke entry from the protected area, through the vents, into the sensing chamber can be used.

Table 14.4.3.2 Continued

Component	Initial Acceptance	Periodic Frequency	Method
(2) Single- and multiple-station smoke alarms connected to protected premises systems	X	Annually	Perform a functional test on all single- and multiple-station smoke alarms connected to a protected premises fire alarm system by putting the smoke alarm into an alarm condition and verifying that the protected premises system receives a supervisory signal and does not cause a fire alarm signal.
(3) System smoke detectors used in one- and two-family dwellings	X	Annually	Conduct functional tests according to manufacturer's published instructions.
(4) Air sampling	X	Annually	Test with smoke or a listed and labeled product acceptable to the manufacturer or in accordance with their published instructions. Test from the end sampling port or point on each pipe run. Verify airflow through all other ports or points.
(5) Duct type	X	Annually	In addition to the testing required in Table 14.4.3.2(g) (1) and Table 14.4.3.2(h), test duct smoke detectors that use sampling tubes to ensure that they will properly sample the airstream in the duct using a method acceptable to the manufacturer or in accordance with their published instructions.
(6) Projected beam type	X	Annually	Test the detector by introducing smoke, other aerosol, or an optical filter into the beam path.
(7) Smoke detector with built-in thermal element	X	Annually	Operate both portions of the detector independently as described for the respective devices.
(8) Smoke detectors with control output functions	X	Annually	Verify that the control capability remains operable even if all of the initiating devices connected to the same initiating device circuit or signaling line circuit are in an alarm state.
(h) Smoke detectors — sensitivity testing In other than one- and two-family dwellings, system detectors	N/A	See 14.4.4.3	Perform any of the following tests to ensure that each smoke detector is within its listed and marked sensitivity range:
			 (1) Calibrated test method (2) Manufacturer's calibrated sensitivity test instrument (3) Listed control equipment arranged for the purpose (4) Smoke detector/control unit arrangement whereby the detector causes a signal at the control unit when its sensitivity is outside its listed sensitivity range (5) Other calibrated sensitivity test method approved by the authority having jurisdiction
(i) Carbon monoxide detectors/carbon monoxide alarms for the purposes of fire detection(j) Initiating devices, supervisory	X	Annually	Test the devices in place to ensure CO entry to the sensing chamber by introduction through the vents, to the sensing chamber of listed and labeled product acceptable to the manufacturer or in accordance with their published instructions.
(1) Control valve switch	X	Semiannual	Operate valve and verify signal receipt to be within the first two revolutions of the handwheel or within one-fifth of the travel distance, or per the manufacturer's published instructions.
(2) High- or low-air pressure switch	X	Annually	Operate switch and verify receipt of signal is obtained where the required pressure is increased or decreased a maximum 10 psi (70 kPa) from the required pressure level.
(3) Room temperature switch	X	Annually	Operate switch and verify receipt of signal to indicate the decrease in room temperature to 40°F (4.4°C) and its restoration to above 40°F (4.4°C).
(4) Water level switch	X	Annually	Operate switch and verify receipt of signal indicating the water level raised or lowered a maximum 3 in. (70 mm) from the required level within a pressure tank, or a maximum 12 in. (300 mm) from the required level of a nonpressure tank. Also verify its restoral to required level.
(5) Water temperature switch	X	Annually	Operate switch and verify receipt of signal to indicate the decrease in water temperature to 40°F (4.4°C) and its restoration to above 40°F (4.4°C).
(k) Mechanical, electrosonic, or pressure-type waterflow device	X	Semiannually	Water shall be flowed through an inspector's test connection indicating the flow of water equal to that from a single sprinkler of the smallest orifice size installed in the system for wet-pipe systems, or an alarm test bypass connection for dry-pipe, pre-action, or deluge systems in accordance with NFPA 25.

Copyright 2015 National Fire Protection Association (NFPA), Licensed, by agreement, for individual use and download on November 12, 2015 to HUGHES ASSOCIATES INC, No other reproduction or transmission in any form permitted without written permission of NFPA. For inquires or to report unauthorized use, contact licensing@nfpa.org.

INSPECTION, TESTING, AND MAINTENANCE

Table 14.4.3.2 Continued

	Component	Initial Acceptance	Periodic Frequency	Method
	(l) Multi-sensor fire detector or multi-criteria fire detector or combination fire detector	X	Annually	Test each of the detection principles present within the detector (e.g., smoke/heat/CO, etc.) independently for the specific detection principle, regardless of the configuration status at the time of testing. Also test each detector in accordance with the published manufacturer's instructions. Test individual sensors together if the technology allows individual sensor responses to be verified. Perform tests as described for the respective devices by introduction of the physical phenomena to the sensing chamber of element. An electronic check (magnets, analog values, etc.) is not sufficient to comply with this requirement. Verify by using the detector manufacturer's published instructions that the test gas used will not impair the operation of either sensing chamber of multisensor, multicriteria, or combination fire detector. Confirm the result of each sensor test through indication at the detector of control unit. Where individual sensors cannot be tested individually, test the primary sensor. I
_				Record an tests and results.
١8.	Special hazard equipment (a) Abort switch (dead-man type)	X	Annually	Operate about suitch and verify correct sequence and operation
	(b) Abort switch (recycle type)	x	Annually	Operate abort switch and verify correct sequence and operation. Operate abort switch and verify development of correct matrix with each sensor operated.
	(c) Abort switch (special type)	X	Annually	Operate abort switch and verify correct sequence and operation in accordance with authority having jurisdiction. Observe sequencing as specified on as-built drawings or in system owner's manual.
	(d) Cross-zone detection circuit	X	Annually	Operate one sensor or detector on each zone. Verify occurrence of correct sequence with operation of lirst zone and then with operation of second zone.
	(e) Matrix-type circuit	X	Annually	Operate all sensors in system. Verify development of correct matrix with each sensor operated.
	 (f) Release solenoid circuit^k (g) Squibb release circuit 	X X	Annually Annually	Verify operation of solenoid. Use AGI flashbulb or other test light approved by the manufacturer. Verify operation of flashbulb or light.
	(h) Verified, sequential, or counting zone circuit	X	Annually	Operate required sensors at a minimum of four locations in circuit. Verify correct sequence with both the first and second detector in alarm.
	(i) All above devices or circuits or combinations thereof	X	Annually	Verify supervision of circuits by creating an open circuit.
19.	Combination systems (a) Fire extinguisher electronic monitoring device/system	X	Annually	Test communication between the device connecting the fire extinguisher electronic monitoring device/system and the fire alarm control unit to ensure proper signals are received at the fire alarm control unit and remote annunciator(s) if applicable.
	(b) Carbon monoxide ^l device/system	Х	Annually	Test communication between the device connecting the carbon monoxide device/system and the fire alarm control unit to ensure proper signals are received at the fire alarm control unit and remote annunciator(s) if applicable.
20.	Interface equipment ^m	X	See 14.4.4.4	Test interface equipment connections by operating or simulating the equipment being supervised. Verify signals required to be transmitted are received at the control unit. Test frequency for interface equipment is the same as the frequency required by the applicable NFPA standard(s) for the equipment being supervised.
21.	Guard's tour equipment	X	Annually	Test the device in accordance with the manufacturer's published instructions.
22.	Alarm notification appliances (a) Audible ⁿ	X	N/A	For initial and reacceptance testing, measure sound pressure levels for signals with a sound level meter meeting ANSI S1.4a, Specifications for Sound Level Meters, Type 2 requirements. Measure sound pressure levels throughout the protected area to confirm that they are in compliance with Chapter 18. Set the sound level meter in accordance with ANSI S3.41, American National Standard Audible Evacuation Signal, using the time-weighted characteristic F (FAST).

Table 14.4.3.2 Continued

	Component	Initial Acceptance	Periodic Frequency	Method
	(b) Audible textual notification appliances (speakers and other appliances to convey voice messages)	N/A X	Annually N/A	"For periodic testing, verify the operation of the notification appliances. For initial and reacceptance testing, measure sound pressure levels for signals with a sound level meter meeting ANSI S1.4a, Specifications for Sound Level Meters, Type 2 requirements. Measure sound pressure levels throughout the protected area to confirm that they are in compliance with Chapter 18. Set the sound level meter in accordance with ANSI S3.41, American National Standard Audible Evacuation Signal, using the time-weighted characteristic F (FAST). Verify audible information to be distinguishable and understandable and in
	(c) Visible	N/A X	Annually N/A	compliance with 14.4.11. "For periodic testing, verify the operation of the notification appliances. Perform initial and reacceptance testing in accordance with the manufacturer's published instructions. Verify appliance locations to be per approved layout and confirm that no floor plan changes affect the approved layout. Verify that the candela rating marking agrees with the approved drawing. Confirm that each appliance flashes.
_		N/A	Annually	For periodic testing, verify that each appliance flashes,
23.	Exit marking audible notification appliance	X	Annually	Perform tests in accordance with manufacturer's published instructions.
24.	Emergency control functions ^p	X	Annually	For initial, reacceptance, and periodic testing, verify emergency control function interface device activation. Where an emergency control function interface device is disabled or disconnected during initiating device testing, verify that the disabled or disconnected emergency control function interface device has been properly restored.
25.	Area of refuge two-way communication system	X	Annually	Use the manufacturer's published instructions and the as-built drawings provided by the system supplier to verify correct operation after the initial testing phase has been performed by the supplier or by the supplier's designated representative. Test the two-way communication system to verify operation and receipt of visual and audible signals at the transmitting unit and the receiving unit, respectively. Operate systems with more than five stations with a minimum of five stations operating simultaneously. Verify voice quality and clarity. Verify directions for the use of the two-way communication system, instructions for summoning assistance via the two-way communication system, and written identification of the location is posted adjacent to the two-way communication system. Verify that all remote stations are readily accessible. Verify the timed automatic communications capability to connect with a constantly attended monitoring location per 24.5.3.4.
26.	Special procedures (a) Alarm verification	x	Annually	Verify time delay and alarm response for smoke detector circuits identified as having alarm verification.
	(b) Multiplex systems	X	Annually	Verify communications between sending and receiving units under both primary and secondary power. Verify communications between sending and receiving units under open-circuit and short-circuit trouble conditions. Verify communications between sending and receiving units in all directions where multiple communications pathways are provided. If redundant central control equipment is provided, verify switchover and all required functions and operations of secondary control equipment. Verify all system functions and features in accordance with manufacturer's published instructions.
27.	Supervising station alarm systems – (a) All equipment	– receiving eq X	uipment Monthly	Perform tests on all system functions and features in accordance with the equipment manufacturer's published instructions for correct operation in conformance with the applicable sections of Chapter 26. Actuate initiating device and verify receipt of the correct initiating device signal at the supervising station within 90 seconds. Upon completion of the test, restore the system to its functional operating condition.

Table 14.4.3.2 Continued

Component	Initial Acceptance	Periodic Frequency	Method
			If test jacks are used, perform the first and last tests without the use of the test jack.
(b) Digital alarm communicator receiver (DACR)	X	Monthly	Disconnect each transmission means in turn from the DACR, and verify audible and visual annunciation of a trouble signal in the supervising station.
(c) Digital aların radio receiver (DARR)	X	Monthly	Cause a signal to be transmitted on each individual incoming DACR line (path) at least once every 6 hours (24 hours for DACTs installed prior to adoption of the 2013 edition of NFPA 72). Verify receipt of these signals. Cause the following conditions of all DARRs on all subsidiary and repeater station receiving equipment, Verify receipt at the supervising station of correct signals for each of the following conditions:
			(1) AC power failure of the radio equipment (2) Receiver malfunction (3) Antenna and interconnecting cable failure
			 (4) Indication of automatic switchover of the DARR (5) Data transmission line failure between the DARR and the supervising or subsidiary station
(d) McCulloh systems	X	Monthly	Test and record the current on each circuit at each supervising and subsidiary station under the following conditions: (1) During functional operation
			(2) On each side of the circuit with the receiving equipment conditioned for an open circuit
			Cause a single break or ground condition on each transmission channel. If such a fault prevents the functioning of the circuit, verify receipt of a trouble signal. Cause each of the following conditions at each of the supervising or subsidiary stations and all repeater station radio transmitting and receiving equipment; verify receipt of correct signals at the supervising station:
			(1) RF transmitter in use (radiating)(2) AC power failure supplying the radio equipment(3) RF receiver malfunction
(e) Radio alarm supervising station receiver (RASSR) and radio alarm repeater station receiver (RARSR)	X	Monthly	(4) Indication of automatic switchover Cause each of the following conditions at each of the supervising or subsidiary stations and all repeater station radio transmitting and receiving equipment; verify receipt of correct signals at the supervising station:
			(1) AC power failure supplying the radio equipment(2) RF receiver malfunction(3) Indication of automatic switchover, if applicable
(f) Private microwave radio systems	X	Monthly	Cause each of the following conditions at each of the supervising or subsidiary stations and all repeater station radio transmitting and receiving equipment; verify receipt of correct signals at the supervising station: (1) RF transmitter in use (radiating) (2) AC power failure supplying the radio equipment
			(3) RF receiver malfunction (4) Indication of automatic switchover
(g) Performance-based technologies	X	Monthly	Perform tests to ensure the monitoring of integrity of the transmission technology and technology path. Where a single communications path is used, disconnect the communication path. Verify that failure of the path is annunciated at the supervising station within 60 minutes of the failure (within 5 minutes for communication equipment installed prior to adoption of the 2013 edition of NFPA 72). Restore the communication path.
			Where multiple communication paths are used, disconnect both communication paths and confirm that failure of the path is annunciated at the supervising station within not more than 6 hours of the failure (within 24 hours for communication equipment installed prior to adoption of the 2013 edition of NFPA 72). Restore both communication paths.

Table 14.4.3.2 Continued

	Component	Initial Acceptance	Periodic Frequency	Method
28.	Public emergency alarm reporting			
	system transmission equipment (a) Publicly accessible alarm box	X	Semiannually	Actuate publicly accessible initiating device(s) and verify receipt of not less than three complete rounds of signal impulses, Perform this test under normal circuit conditions. If the device is equipped for open circuit operation (ground return), test it in this condition as one of the semiannual tests.
	(b) Auxiliary box	X	Annually	Test each initiating circuit of the auxiliary box by actuation of a protected premises initiating device connected to that circuit. Verify receipt of not less than three complete rounds of signal impulses.
	(c) Master box (1) Manual operation (2) Auxiliary operation	X X	Semiannually Annually	Perform the tests prescribed for 28(a). Perform the tests prescribed for 28(b).
29.	Low-power radio (wireless systems)	X	N/A	The following procedures describe additional acceptance and reacceptance test methods to verify wireless protection system operation: (1) Use the manufacturer's published instructions and the as-built drawings provided by the system supplier to verify correct operation after the initial testing phase has been performed by the supplier or by the supplier's designated representative. (2) Starting from the functional operating condition, initialize the system in accordance with the manufacturer's published instructions. Confirm the alternative communications path exists between the wireless control unit and peripheral devices used to establish initiation, indication, control, and annunciation. Test the system for both alarm and trouble conditions. (3) Check batteries for all components in the system monthly unless the control unit checks all batteries and all components daily.
30.	Mass notification systems (a) Functions	Х	Annually	At a minimum, test control equipment to verify correct receipt of alarm, supervisory, and trouble signals (inputs); operation of evacuation signals and auxiliary functions (outputs); circuit supervision, including detection of open circuits and ground faults; and power supply supervision for detection of loss of ac power and disconnection of secondary batteries.
	(b) Fuses (c) Interfaced equipment	X X	Annually Annually	Verify the rating and supervision. Verify integrity of single or multiple circuits providing interface between two o more control units. Test interfaced equipment connections by operating or simulating operation of the equipment being supervised. Verify signals required to be transmitted at the control unit.
	(d) Lamps and LEDs (e) Primary (main) power supply	X X	Annually Annually	Illuminate lamps and LEDs. Disconnect all secondary (standby) power and test under maximum load, including all alarm appliances requiring simultaneous operation. Reconnect all secondary (standby) power at end of test. For redundant power supplies, test each separately.
	Audible textual notification appliances (speakers and other appliances to convey voice messages)	X	Annually	Measure sound pressure level with a sound level meter meeting ANSI S1.4a, Specifications for Sound Level Meters, Type 2 requirements. Measure and record levels throughout protected area. Set the sound level meter in accordance with ANSI S3.41, American National Standard Audible Evacuation Signal, using the time-weighted characteristic F (FAST). Record the maximum output when the audible emergency evacuation signal is on. Verify audible information to be distinguishable and understandable.
	(g) Visible	Х	Annually	Perform test in accordance with manufacturer's published instructions. Verify appliance locations to be per approved layout and confirm that no floor plan changes affect the approved layout. Verify that the candela rating marking agrees with the approved drawing. Confirm that each appliance flashes.
	(h) Control unit functions and no diagnostic failures are indicated	X	Annually	Review event log file and verify that the correct events were logged. Review system diagnostic log file; correct deficiencies noted in file. Delete unneeded log files. Delete unneeded error files. Verify that sufficient free disk space is available. Verify unobstructed flow of cooling air is available. Change/clean filters, cooling fans, and intake vents.
	(i) Control unit reset (j) Control unit security	X X	Annually Annually	Power down the central control unit computer and restart it. If remote control software is loaded onto the system, verify that it is disabled to
	(k) Audible/visible functional test	X	Annually	prevent unauthorized system access. Send out an alert to a diverse set of predesignated receiving devices and confirm receipt. Include at least one of each type of receiving device.

Copyright 2015 National Fire Protection Association (NFPA), Licensed, by agreement, for individual use and download on November 12, 2015 to HUGHES ASSOCIATES INC, No other reproduction or transmission in any form permitted without written permission of NFPA. For inquires or to report unauthorized use, contact licensing@nfpa.org.

Table 14.4.3.2 Continued

Component	Initial Acceptance	Periodic Frequency	Method
(l) Software backup	X	Annually	Make full system software backup. Rotate backups based on accepted practice at site.
(m) Secondary power test	X	Annually	Disconnect ac power, Verify the ac power failure alarm status on central control equipment. With ac power disconnected, verify battery voltage under load.
(n) Wireless signals	X	Annually	Check forward/reflected radio power is within specifications.
(o) Antenna	X	Annually	Check forward/reflected radio power is within specifications. Verify soli electrical connections with no observable corrosion.
(p) Transceivers	X	Annually	Verify proper operation and mounting is not compromised.

aSome transmission equipment (such as but not limited to cable modems, fiber-optic interface nodes, and VoIP interfaces) are typically powered by the building's electrical system using a secondary (standby) power supply that does not meet the requirements of this Code. This is intended to ensure that the testing authority verifies full secondary (standby) power as required by Chapter 10. Additionally, refer to Table 14.4.3.2, items 7 through 9, for secondary (standby) power supply testing.

^bThe automatic transmission of the check-in (handshake) signal can take up to 60 minutes to occur.

^eSee Table 14.4.3.2, Item 4(a) for the testing of transmission equipment.

^dExample: 4000 mAh × ½5 = 160 mA charging current at 77°F (25°C).

eThe voltmeter sensitivity has been changed from 1000 ohms per volt to 100 ohms per volt so that the false ground readings (caused by induced voltages) are minimized.

Initiating devices such as smoke detectors used for elevator recall, closing dampers, or releasing doors held in the open position that are permitted by the Code (see NFPA 101 9.6.3) to initiate supervisory signals at the fire alarm control unit (FACU) should be tested at the same frequency (annual) as those devices when they are generating an alarm signal. They are not supervisory devices, but they initiate a supervisory signal at the FACU.

EFusible thermal link detectors are commonly used to close fire doors and fire dampers. They are actuated by the presence of external heat, which causes a solder element in the link to fuse, or by an electric thermal device, which, when energized, generates heat within the body of the link, causing the link to fuse and separate.

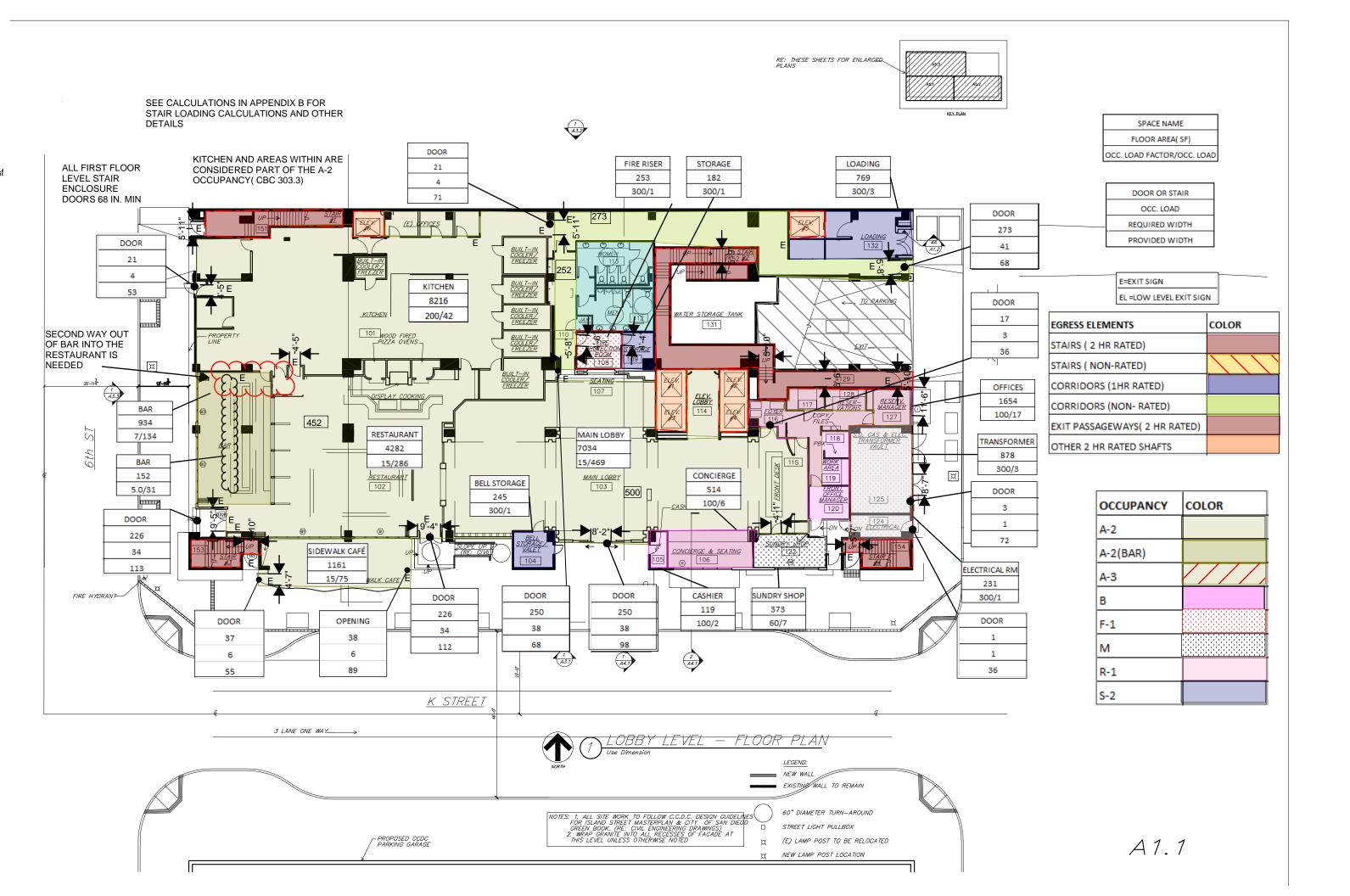
hNote, it is customary for the manufacturer of the smoke detector to test a particular product from an aerosol provider to determine acceptability for use in smoke entry testing of their smoke detector/ smoke alarm. Magnets are not acceptable for smoke entry tests.

¹There are some detectors that use magnets as a manufacturer's calibrated sensitivity test instrument.

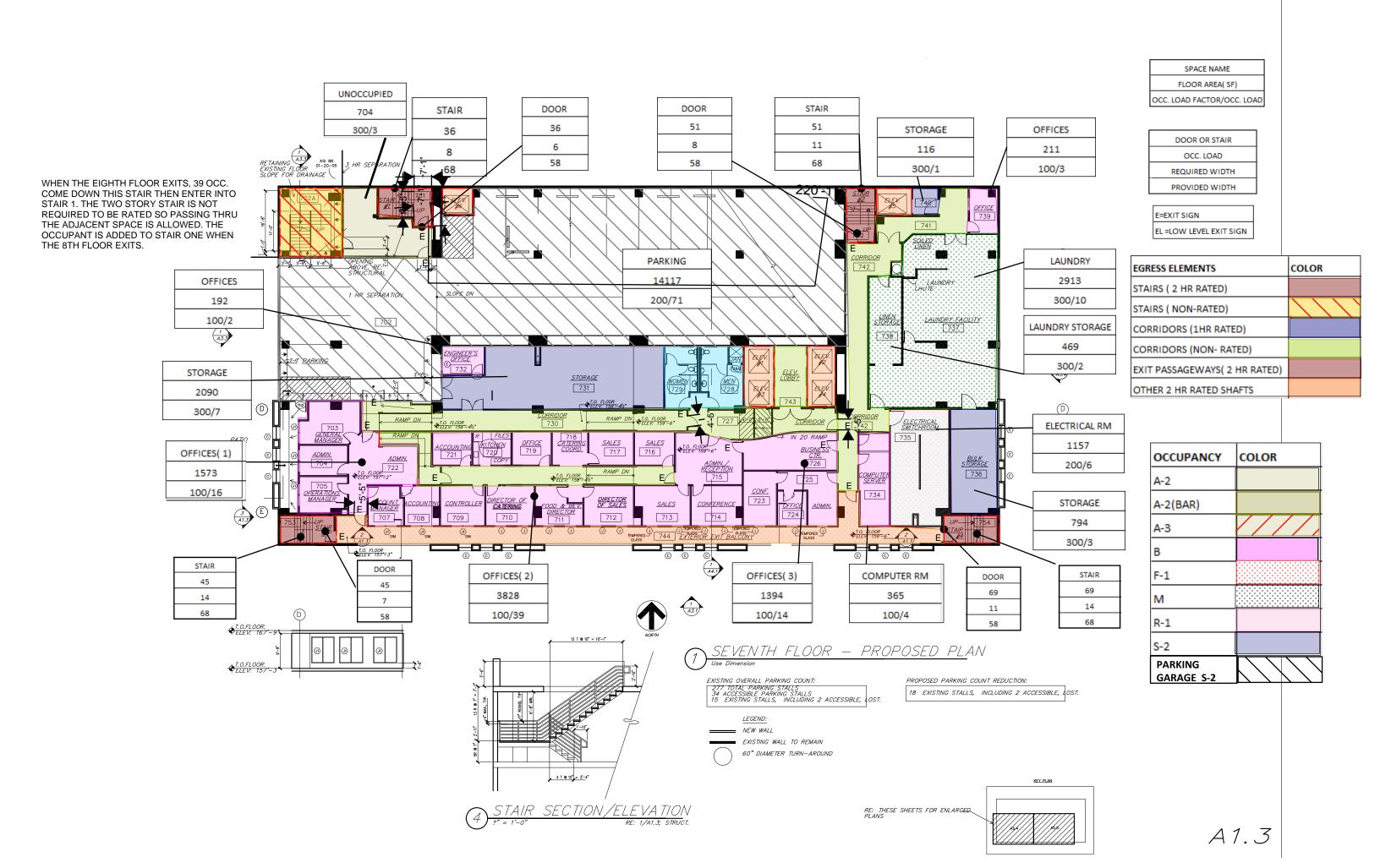
 $^{^{}m i}$ For example, it might not be possible to individually test the heat sensor in a thermally enhanced smoke detector.

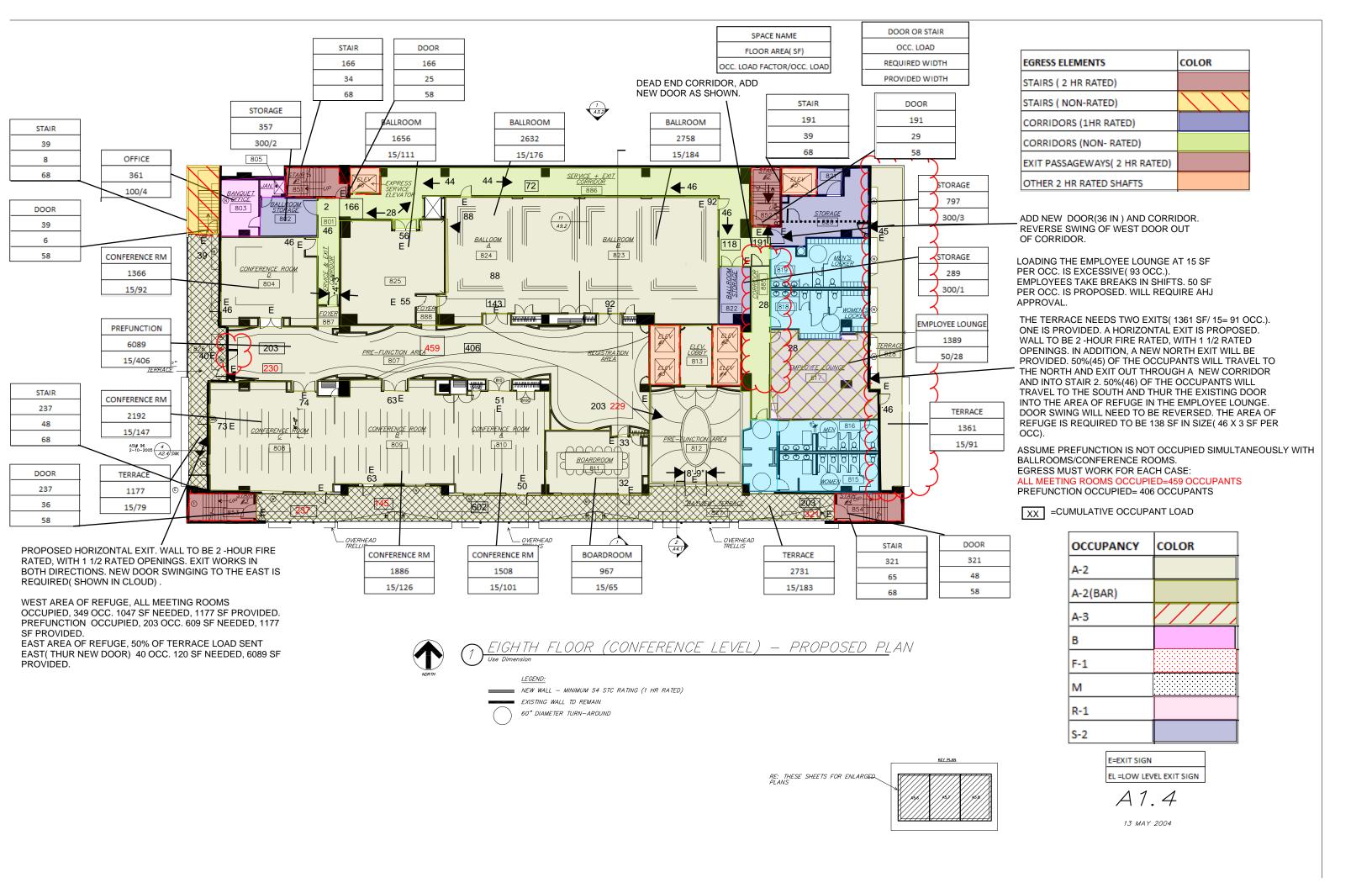
kManufacturer's instructions should be consulted to ensure a proper operational test. No suppression gas or agent is expected to be discharged during the test of the solenoid. See Test Plan of 14.2.10.

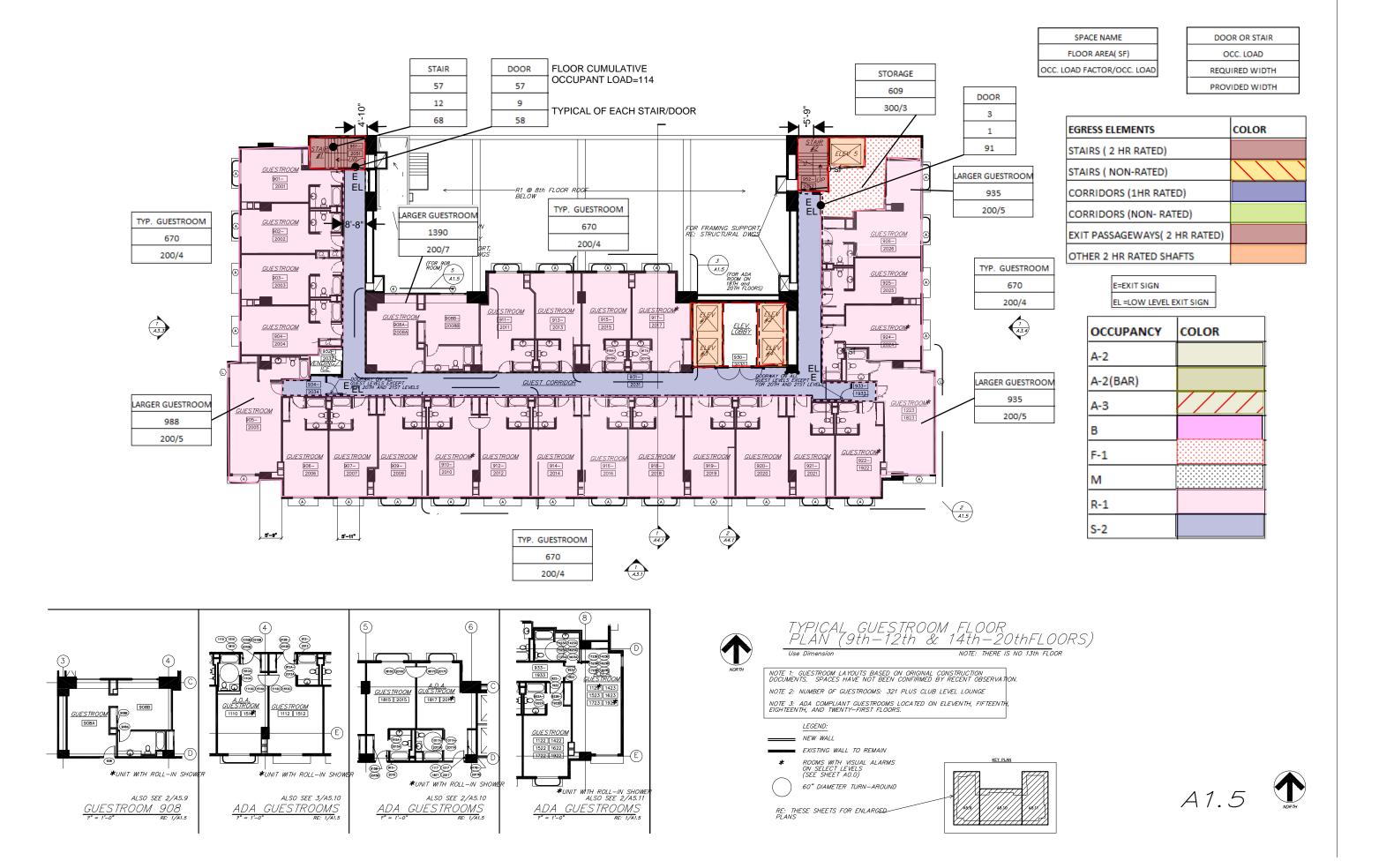
¹Testing of CO device should be done to the requirements of NFPA 720.

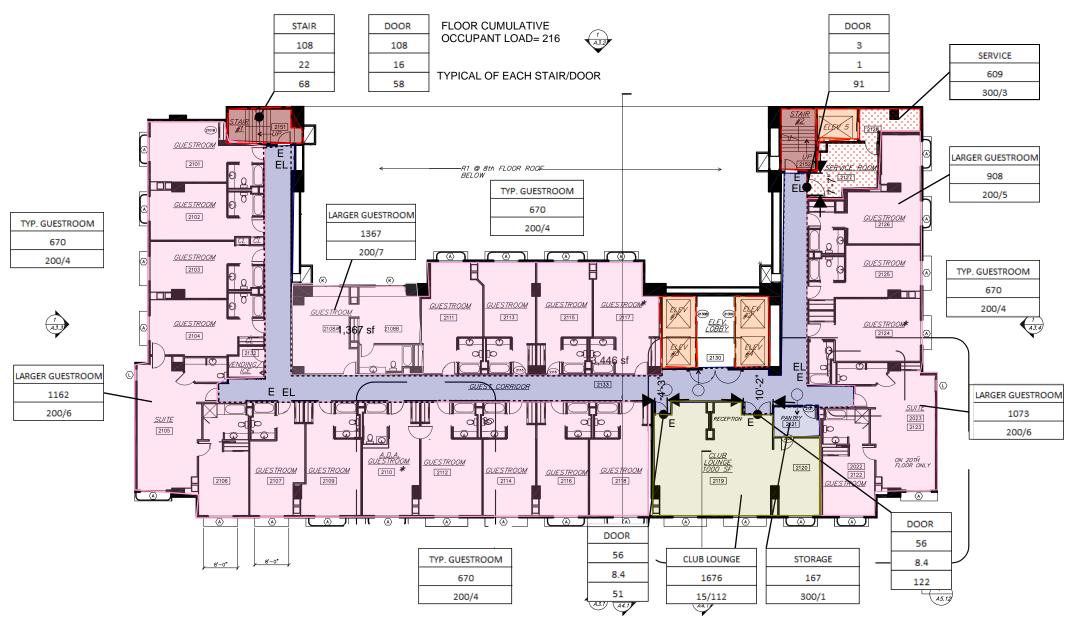

[&]quot;A monitor module installed on an interface device is not considered a supervisory device and therefore not subject to the quarterly testing frequency requirement. Test frequencies for interface devices should be in accordance with the applicable standard. For example, fire pump controller alarms such as phase reversal are required to be tested annually. If a monitor module is installed to identify phase reversal on the fire alarm control panel, it is not necessary to test for phase reversal four times a year.

Chapter 18 would require 15 dB over average ambient sound for public mode spaces. Sometimes the ambient sound levels are different from what the design was based upon. Private operating mode would require 10 dB over average ambient at the location of the device.


[&]quot;Where building, system, or occupancy changes have been observed, the owner should be notified of the changes. New devices might need to be installed and tested per the initial acceptance testing criteria.


PSee A.14.4.3.2, and Table 14.4.3.2, Item 24.


APPENDIX K – OCCUPANT EGRESS PLANS



SPACE NAME
FLOOR AREA(SF)
OCC. LOAD FACTOR/OCC. LOAD

OCC. LOAD

REQUIRED WIDTH

PROVIDED WIDTH

EGRESS ELEMENTS	COLOR
STAIRS (2 HR RATED)	
STAIRS (NON-RATED)	
CORRIDORS (1HR RATED)	
CORRIDORS (NON- RATED)	
EXIT PASSAGEWAYS(2 HR RATED)	
OTHER 2 HR RATED SHAFTS	

OCCUPANCY	COLOR
A-2	
A-2(BAR)	
A-3	
В	
F-1	
М	
R-1	
S-2	

E=EXIT SIGN
EL =LOW LEVEL EXIT SIGN

NOTE 1: GUESTROUM LAYOUTS BASED ON ORIGINAL CONSTRUCTION
DRAWINGS. SPACES HAVE NOT BEEN CONFIRMED BY RECENT OBSERVATIO
NOTE 2: NUMBER OF GUESTROOMS: 321 PLUS CLUB LEVEL LOUNGE
NOTE 3: NEW ADA COMPLIANT GUESTROOM NOT SHOWN

** NEW WALL

** EXISTING WALL TO REMAIN

** ROOMS WITH VISUAL ALARMS
ON SELECT LEVELS
(SEE SHEET AO.0)

60" DIAMETER TURN-AROUND

** RE: THESE SHEET FOR ENLARGED-PLANS

LEGEND:

A1.6

APPENDIX L - OCCUPANT EGRESS CALCULATIONS

ROOM NO.	DESCRIPT.	DESCRIPTION	OCCUPANCY	SIZE	OCCUPANT LOAD FACTOR	OCCUPANTS	
702	PARKING	PARKING	S-2	14117	200	71	
703	OFFICES	BUSINESS	В	369	100	4	
704		BUSINESS	В	244	100	3	
705		BUSINESS	В	273	100	3	
722		BUSINESS	В	605	100	6	
SUBTOTAL GROUP 1		TOTAL	В	1573		16	
707		BUSINESS	В	230	100	3	
708		BUSINESS	В	252	100	3	
709		BUSINESS	В	301	100	4	
710		BUSINESS	В	322	100	4	
711		BUSINESS	В	323	100	4	
712		BUSINESS	В	341	100	4	
713		BUSINESS	В	354	100	4	
714		BUSINESS	В	355	100	4	
715		BUSINESS	В	527	100	5	
716		BUSINESS	В	214	100	3	
717		BUSINESS	В	246	100	3	
718		BUSINESS	В	192	100	2	
719		BUSINESS	В	218	100	3	
720		BUSINESS	В	214	100	3	
721		BUSINESS	В	221	100	3	
SUBTOTAL GROUP 2		TOTAL		3828		52	
723		BUSINESS	В	321	100	4	
724		BUSINESS	В	167	100	2	
725		BUSINESS	В	363	100	4	
726		BUSINESS	В	543	100	6	
SUBTOTAL GROUP 3		TOTAL		1394		16	
31		STORAGE	S-2	2090	300	7	
32		BUSINESS	В	192	100	2	
33		STORAGE	S-2	91	300	1	
34		COMPUTER ROOM	В	365	100	4	
35		ELECTRICAL SWITCHGEAR	F-1	1157	200	6	
36		STORAGE	S-2	794	300	3	
37		LAUNDRY	F-1	2913	300	10	
38		LAUNDRY STORAGE	S-2	469	300	2	

FLOOR	EXIT PATH	TOTAL OCC.	FLOORR AREA SF	TOTAL OCC. PER FLOOR	REQED STAIR ENTRY DOOR WIDTH (IN.)	PROVD STAIR ENTRY DOOR WIDTH (IN.)	REQD STAIR WIDTH (IN.)	PROVD STAIR WIDTH (IN.)	REQD GROUND LEVEL EXIT DOOR WIDTH (IN.)	PROVD GROUND LEVEL EXIT DOOR WIDTH (IN.)
1	FROM FLOOR	1015	26209	1015	153	552	NA			
1	FROM BLDG	1015	26209	1013	153	552	NA NA			
2-6 Typ.	FROM FLOOR	193	38976	193	28.95	232	38.6	272		
2 0 тур.	FROM BLDG	193	30370	193	20.55	232	38.6	272	28.95	272
7	FROM FLOOR	201	37129	201	30.15	232	40.2	272		
	FROM BLDG	185		185			37	272	30.15	272
8	FROM FLOOR	915	41026	909	137.25	232	183	340		
	FROM BLDG	915		909			183	272	137.25	272
9-12,14- 20	FROM FLOOR	113	19650	113	16.95	232	22.6	272		
	FROM BLDG	113		113			22.6	272	16.95	272
21	FROM FLOOR	216	19629	216	32.4	232	43.2	272		
	FROM BLDG	216		216			43.2	272	32.4	272

Table A1: Occupant Egress Calculation Summary (Repeated from the body of the report for reader convenience)

FLOOR NO.	OCCUPANTS PER FLOOR	FLOOR AREA	REQUIRED NO. OF EXITS	PROVIDED NO. OF EXITS
1	1015	26209	4	8
2	193	38976	2	4
3	193	38976	2	4
4	193	38976	2	4
5	193	38976	2	4
6	193	38976	2	4
7	201	37129	2	4
8	915	41206	3	5
9	113	19659	2	2
10	113	19659	2	2
11	113	19659	2	2
12	113	19659	2	2
14	113	19659	2	2
15	113	19659	2	2
16	113	19659	2	2
17	113	19659	2	2
18	113	19659	2	2
19	113	19659	2	2
20	113	19659	2	2
21	216	19629	2	2
TOTAL	4555	535302		

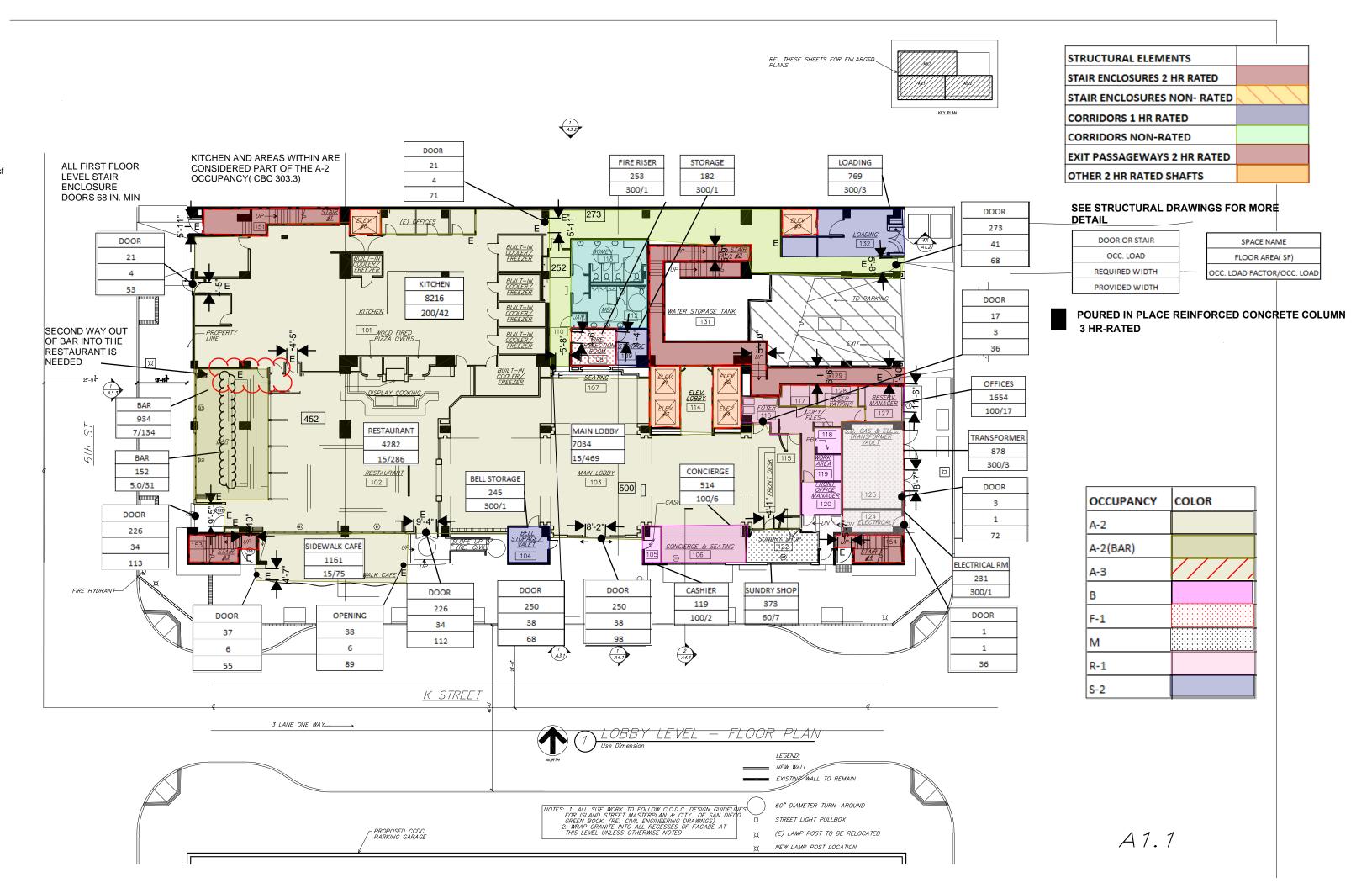
Table A2: Summary of Floor Occupancy and Required Number of Exits (Repeated from the body of the report for reader convenience)

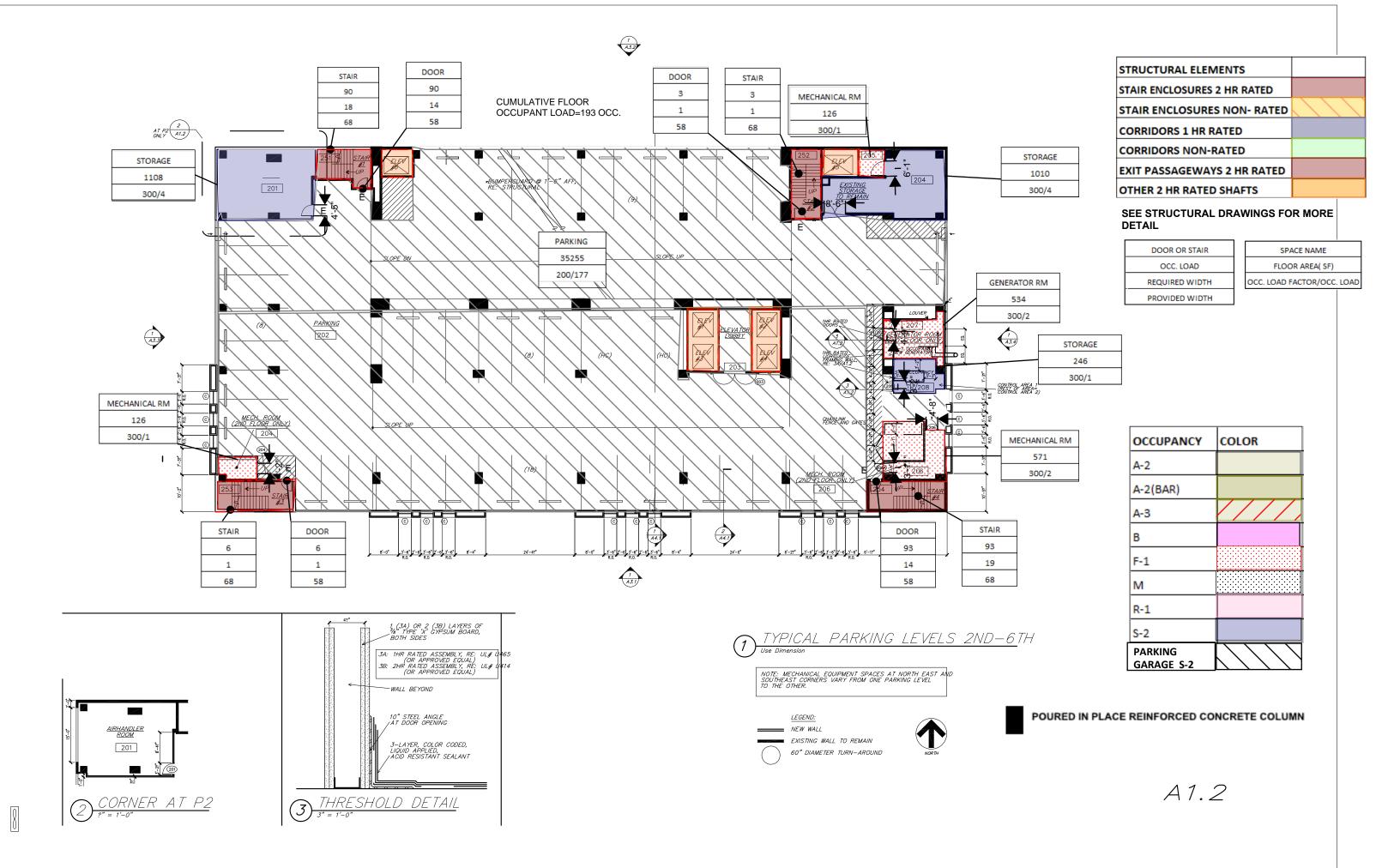
ROOM NO.	DESCRIPTION	OCCUPANCY	SIZE	OCCUPANT LOAD FACTOR (SQ./OCC)	GROSS OR NET	OCCUPANTS	ROUND UP	NOTES	EXIT CAPACITY FACTOR	REQD EXIT WIDTH (IN)	PRVD EXIT WIDTH (IN)	NUMBER EXITS REOD	NUMBER EXITS PRVD
101	KITCHEN	A-2	8216	200	G	41.08	42		0.15	6.3	124		2
102	RESTAURANT	A-2	4282	15	N	285.47	286		0.15	42.9	225	2	2
								934 SPACE AREA- BAR AND SPACE BEHIND. SECOND DOOR IS NEEDED INTO THE RESTAURA					
	BAR SPACE	A-2	934	7	N	133.43	134	NT	0.15	20.1		2	1
	STANDING AT BAR	A-2	152	5	N	30.40	31	STANDING AT BAR	0.15	4.65		2	1
103	MAIN LOBBY	A-2	7034	15	N	468.93	469		0.15	70.35	166	2	2
106	CONCIERGE	В	514	100	N	5.14	6		0.15	0.9	96	1	1
122	SUNDRY SHOP	М	373	60	G	6.22	7		0.15	1.05	49	1	1
104	BELL STORAGE	S-2	245	300	G	0.82	1		0.15	0.15	42	1	2
132	LOADING	S-2	769	300	G	2.56	3		0.15	0.45	108	1	1
109	STORAGE	S-2	182	300	G	0.61	1		0.15	0.15	52	1	1
108	FIRE RISER	S-2	253	300	G	0.84	1		0.15	0.15	54	1	1
105	CASHIER	В	119	100	N	1.19	2		0.15	0.3	36	1	1
125	TRANSFORME R VAULT	F-1	878	300	G	2.93	3		0.15	0.45	103	1	1
124	ELECTRICAL ROOM	F-1	231	300	N	0.77	1		0.15	0.15	36	1	1
122	SUNDRY SHOP	M	373	60	G	6.22	7		0.15	1.05	49	1	1
116	OFFICES	В	719	100	G	7.19	8		0.15	1.2		1	1
117	OFFICES	В	126	100	G	1.26	1		0.15	0.15		1	1
118	OFFICES	В	112	100	G	1.12	2		0.15	0.3		1	1
119	OFFICES	В	112	100	G	1.12	2		0.15	0.3		1	1
120	OFFICES	В	206	100	G	2.06	3		0.15	0.45		1	1
127	OFFICES	В	239	100	G	2.39	3		0.15	0.45		1	1
128	OFFICES	В	140	100	G	1.40	2		0.15	0.3		1	1
OFFICE S						16.54	17		0.15	3.15	36	1	1
TOTAL			26209				1015.00		0.15	152.2 5	565		
PATIO	SIDEWALK CAFÉ	A-2	1161	15	N	77.40	75		0.15	11.25	144	2	2

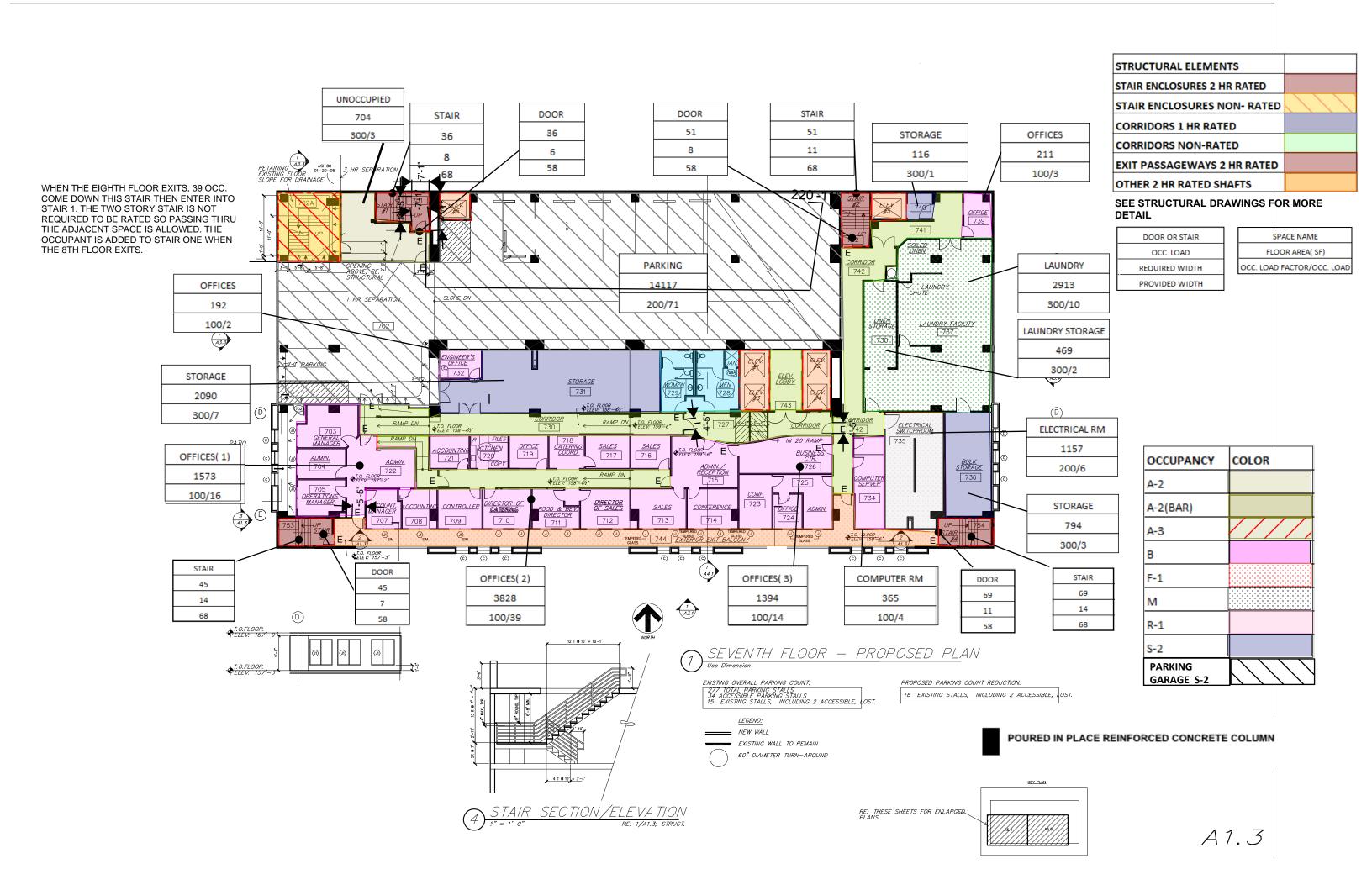
Table A3: First Floor Occupant Loading Calculations

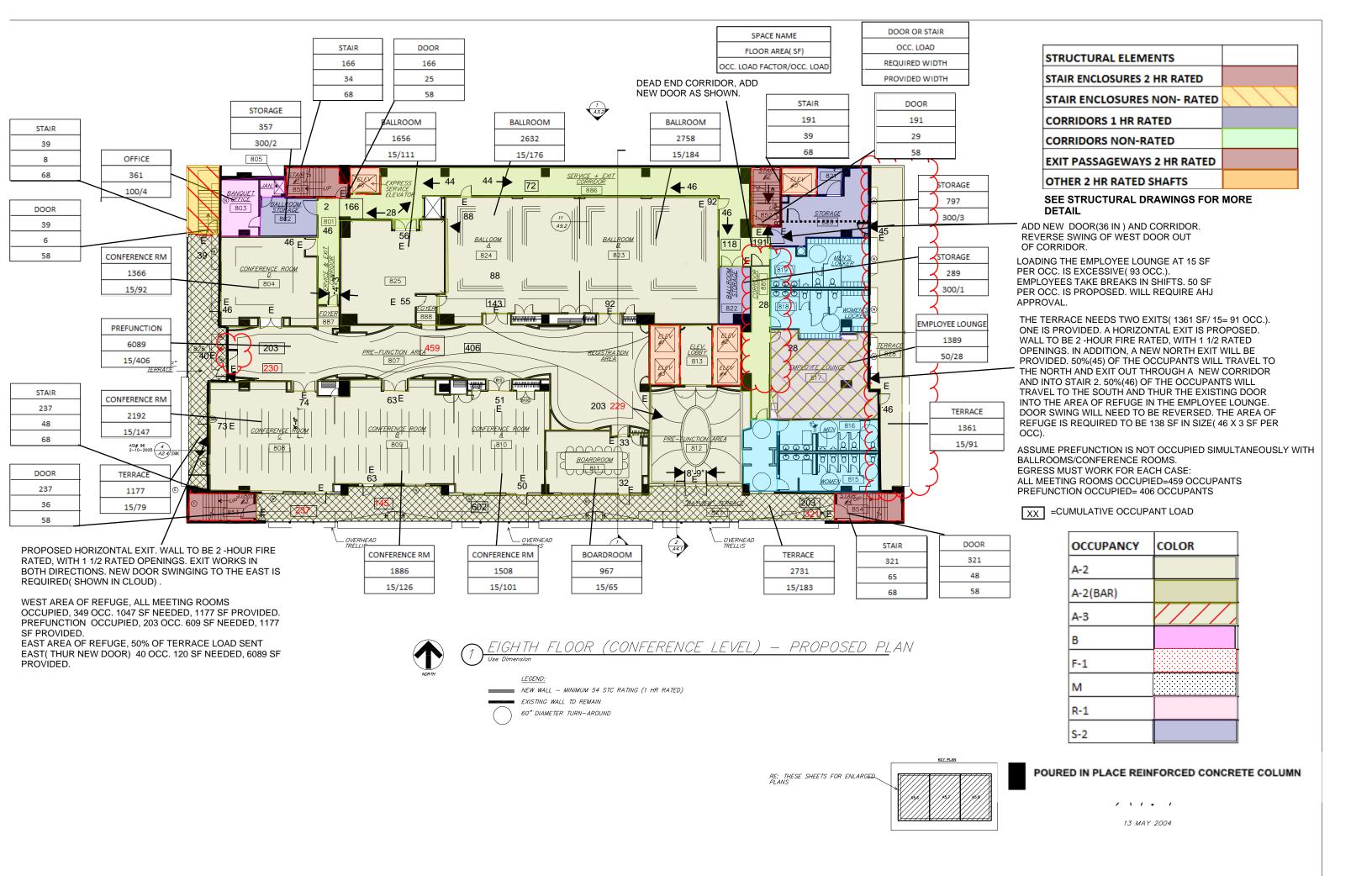
9	BUSINESS	В	211	100	3
40	STORAGE	S-2	116	300	1
51A	SPACE NEAR STAIR 751	В	624	100	7
SUBTOTAL					46
TOTAL			37129		201

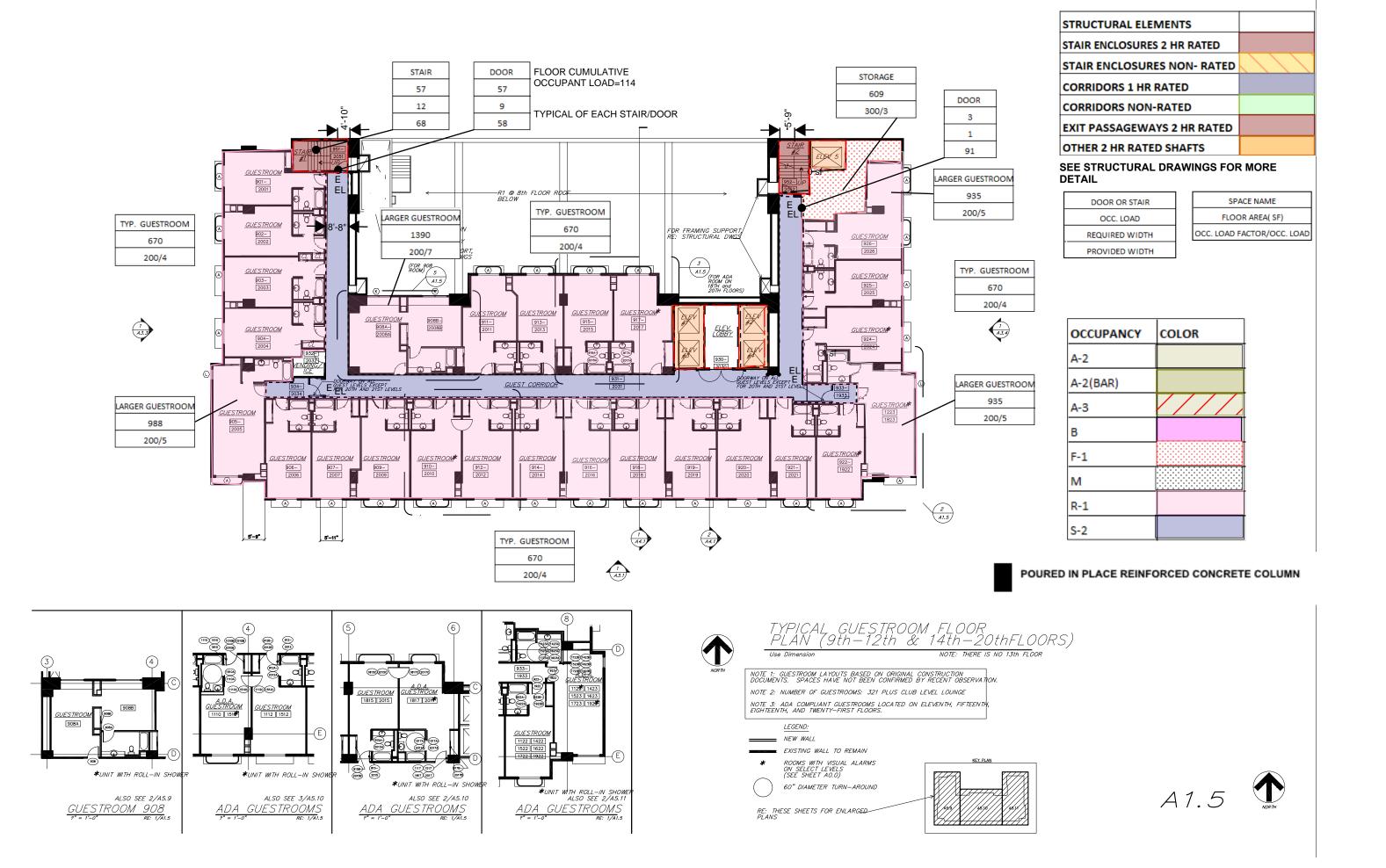
Table A4: 7th Floor Egress Details


STAIR NO. 1 TOTAL	OCCUPANT ORIGIN 702	NO. OCC. 36 36	REQ. DOOR WIDTH(IN.) 7.2 7.2	PROVIDED DOOR WIDTH (IN.) 58 58	REQ. STAIR WIDTH(IN.) 5.4 5.4	PROVIDED STAIR WIDTH(IN.) 68
2	702	35	5.25	58	7	68
_	734	2	0.3		0.4	
	735	2	0.3		0.4	
	736	3	0.45		0.6	
	737	5	0.75		1	
	738	1	0.15		0.2	
	739	2	0.3		0.4	
	740	1	0.15		0.2	
TOTAL		51	7.65	58	10	68
3	GROUP 1	8	1.6			
	GROUP 2	25	5			
	GROUP 3	7	1.4			
	731	4	0.8			
	732	1	0.2			
TOTAL		45	6.75		9	
4	GROUP 1	8				
	GROUP 2	27				
	GROUP 3	9				
	734	2				
	735	2				
	736	3				
	731	3				
	732	1				
	737	5				
	738	1				
	739	1				
	740	1				
TOTAL		69	10	58	13.8	68


Table A 5: 7th Floor Occupant Dispersion Calculations


ROOM NO.	DESCRIPTION	OCCUPANCY	SIZE	OCCUPANT LOAD FACTOR	GROSS OR NET	OCCUPANTS	ROUND UP
804	CONFERENCE ROOM D	A-2	1366	15	G	91.07	92
808	CONFERENCE ROOM C	A-2	2192	15	G	146.13	147
809	CONFERENCE ROOM B	A-2	1886	15	G	125.73	126
810	CONFERENCE ROOM A	A-2	1508	15	G	100.53	101
811	BOARDROOM	A-2	967	15	G	64.47	65
812	PREFUNCTION	A-2	6089	15	G	405.93	406
817	EMPLOYEE LOUNGE	A-3	1389	15	G	92.60	93
823	BALLROOM B	A-2	2758	15	G	183.87	184
824	BALLROOM A	A-2	2632	15	G	175.47	176
825	BALLROOM C	A-2	1656	15	G	110.40	111
802	BALLROOM STORAGE	S-2	357	300	N	1.19	2
803	BANQUET OFFICE	В	361	100	N	3.61	4
822	BALLROOM STORAGE	S-2	298	300	N	0.99	1
820	STORAGE	S-2	797	300	N	2.66	3
826	BAYVIEW TERRACE	A-2	1177	15	N	78.47	79
827	BAYVIEW TERRACE	A-2	2731	15	N	182.07	183
	MOVEABLE PARTION COMBINATIONS						
	BALLROOMS A AND B TOGETHER	A-2	5390	15	N	359.33	400
	CONFERENCE ROOMS A AND B TOGETHER	A-2	3394	15	N	226.27	227
	CONFERENCE ROOMS B AND C TOGETHER	A-2	4078	15	N	271.87	272
TOTAL			41026				


Table A 6: 8TH Floor Occupant Loading Calculations

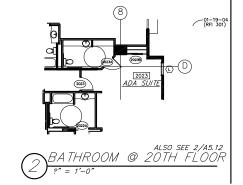

APPENDIX M – COMPOSITE LIFE SAFETY PLANS

SEE STRUCTURAL DRAWINGS FOR MORE DETAIL

DOOR OR STAIR	
OCC. LOAD	F
REQUIRED WIDTH	OCC. LOA
PROVIDED WIDTH	

SPACE NAME	
FLOOR AREA(SF)	
OCC. LOAD FACTOR/OCC. L	.OAD

A-2 A-2(BAR) A-3 B F-1	OCCUPANCY	COLOR
A-3 B	A-2	
В	A-2(BAR)	
***********	A-3	
F-1	В	
	F-1	
M	М	
R-1	R-1	
S-2	S-2	

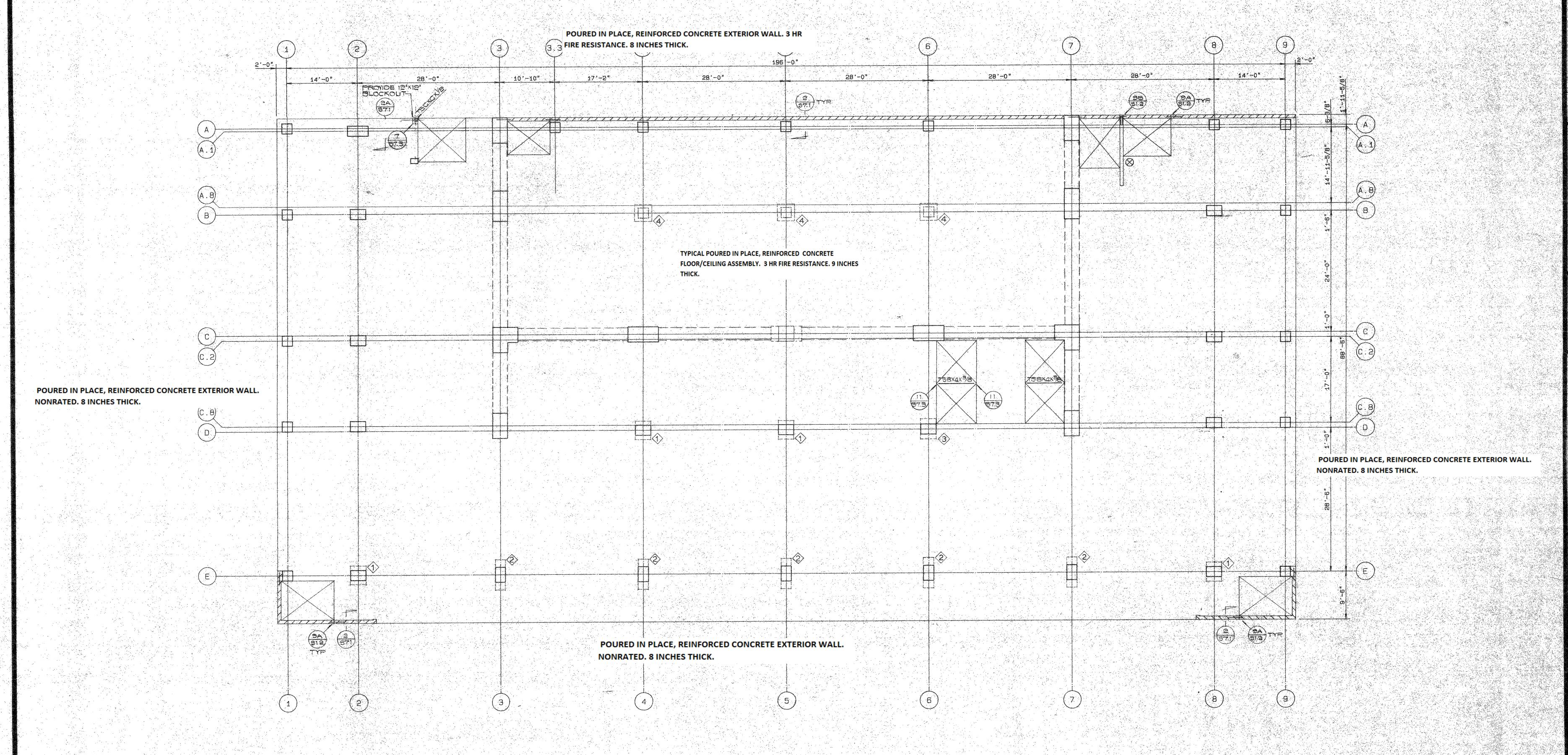

CLUB LEVEL (21st FLOOR)

NOTE 1: GUESTROOM LAYOUTS BASED ON ORIGINAL CONSTRUCTION DRAWINGS. SPACES HAVE NOT BEEN CONFIRMED BY RECENT OBSERVATION.

NOTE 2: NUMBER OF GUESTROOMS: 321 PLUS CLUB LEVEL LOUNGE

NOTE 3: NEW ADA COMPLIANT GUESTROOM NOT SHOWN

POURED IN PLACE REINFORCED CONCRETE COLUMN


* ROOMS WITH VISUAL ALARMS
ON SELECT LEVELS
(SEE SHEET AO.O)
60" DIAMETER TURN-AROUND

LEGEND:

A1.6

APPENDIX N – AVAILABLE STRUCTURAL DRAWINGS

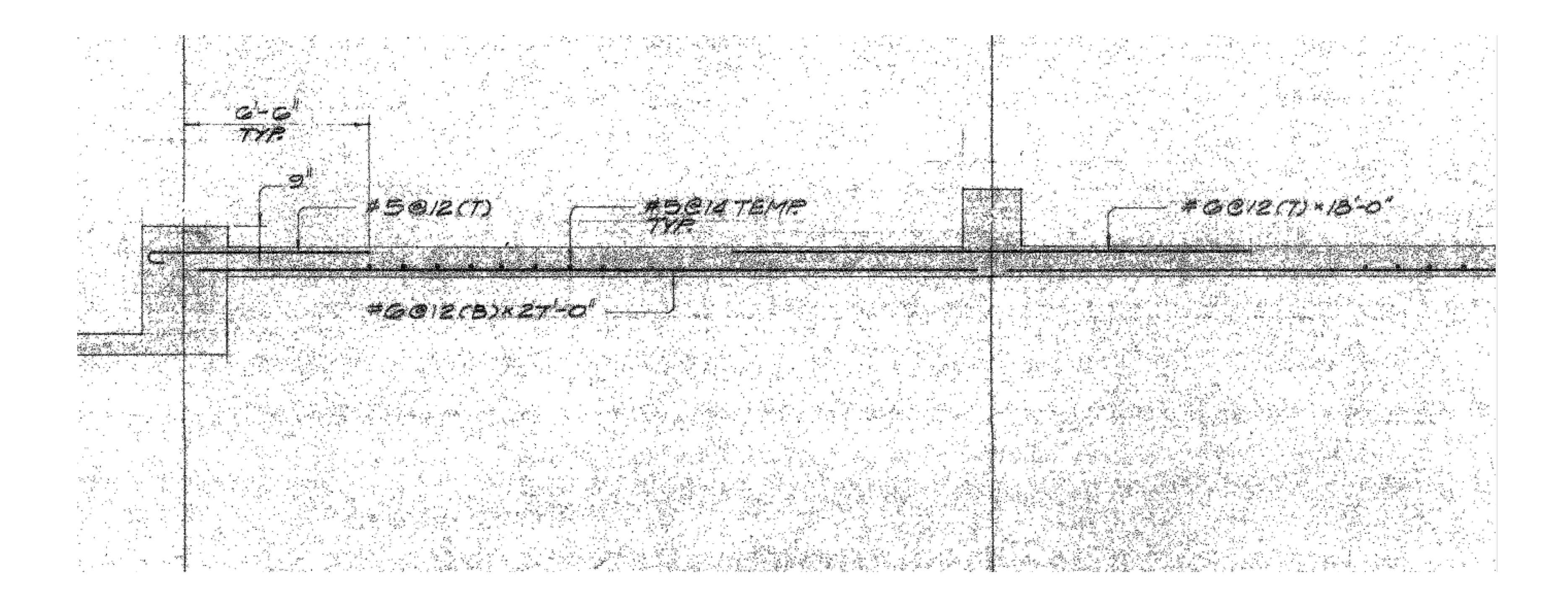
8TH FLOOR FRAMING PLAN

NOTES:

1. ELEVATION TOP OF CONCRETE SLAB AT 8TH FLA
SHALL BE +84.75 UNLESS NOTED OTHERWISE THUS (\$\frac{1}{2}\) (\$\frac{1}{2}\) 0.00)

2. 9" STRUCTURAL SLAB UNLESS NOTED OTHERWISE.

3. FOR COLUMN SIZES AND REINFORCING SEE SCHEDULE S3.1 AND S3.2


4. FOR FRAME ELEVATIONS SEE SHEETS S5.1, S5.2 AND S5.3

5. (2) INDICATES DROP PANELS SEE SCHEDULE \$3.1

PODGE ENGERING SELECTION OF SOLUTION OF SO

JOB NUMBER

\$2.9

APPENDIX O - STRUCTURAL CALCULATIONS

Scenario 1: Guestroom Fire

Time to burn out, Tb = Mf/R

Mf= Fuel Load Density (MJ/m²)

R= 0.1Ao√Ho

Given a standard guest room, 3 ft. x 6 ft. door.

Fuel Load Density = 560MJ/m²

 $M_f = Mass of fuel (MJ/m^2)$

= Fuel load density/ Δh_c

Δh_c =heat of combustion of the fuel (MJ/kg)

50% pine wood, 50% polypropylene = $(21.0 + 46.37)/2 = 33.69 \text{ MJ/kg}^{41}$

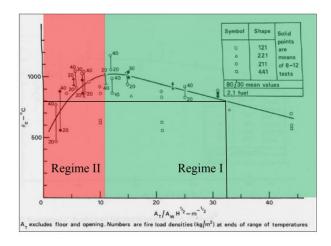
 $Ao = 1.67 \text{ m}^2$

H= 1.82 m

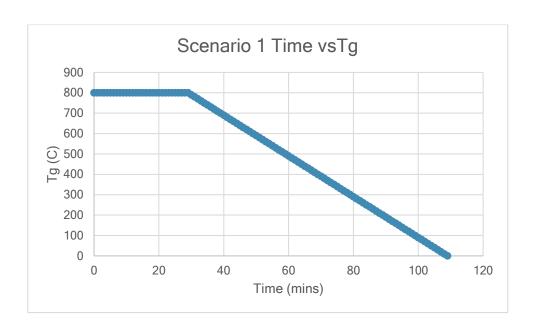
R= 0.225

Tb= 28.86 minutes

Ventilation factor = 32.226


From Thomas Plot temperature max = 800 °C

Design Fire


800 °C 0 ≤ t≤ 28.89 minutes

10°C/ minute decay > 28.89 minutes

Variables			Floor area of the compartment(m²)	Ao=Area of the openingt(m²)	R		Mass of fuel (kg)	To(mins)	Ventilation Factor(m-1)
Room width (m)	4.29	72.845777	23.5521	1.6715232	0.226045	16.6246	391.54449	28.869173	32.2261826
Room length (m)	5.49								
Room height (m)	2.97								
Height of the top of the vent (m)	1.829								
Width of the vent (m)	0.914								
Fuel load density(MJ/m²)	560								
Δhc(MJ/kg)	33.69								
polypro/wood									

⁴¹ SFPE Handbook, 4th edition, Table C.3

FDM

				i	i	i			to de	1.2	li. o	in a	1.0	li a	1. 2	1.0	li.a I	1.40	11.0000	12.0000	13.0000	14.0000	15.0000	# 0000	17.0000	10.0000	10,0000	20.0000	21,0000	22.0000	0.0
				q"net(KWm') exposed				ľ I		11.2	**	1.4	100	""	10.7	1*0	""	1 10	11.0000	12.0000	13.0000	14.0000	10.0000	16.0000	17.0000	10.0000	13.0000	20.0000	21.0000	22.0000	20
Variables		#(secs)	t(min)	face	unexposedface	i-1 0.0	Tg																								
								0.0095	0.0190	0.0285	0.0380	0.0475	0.0570	0.0665	0.0760	0.0855	0.0350	0.1045	0.1140	0.1235	0.1330	0.1425	0.1520	0.1615	0.1710	0.1805	0.1900	0.1995	0.2090	0.2185	0.228
						0.0000																								, ,	
		0	0	0	0	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20
K (Wm/K) Thermal conductivity Concrete	0.8	10	0.166666667	90.38246307	0.40000000	128.3840	800.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.4797
∆×(m)	0.0095	20	0.333333333	87.15360821	0.40000000	222.5055	800.0000	25,1988	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0230	20.9133
∆ t see sheet ((sec)	10	30	0.5	83.32891228	0.40000000	303.5027	800.0000	34.4136	20.2494	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0011	20.0646	21.3076
SB(Wm/K4)	0.0000000567	40	0.666666667	78.86153364	0.40000000	372.2564	800.0000	46.6416	20.7033	20.0120	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000		20.0000				20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0001	20.0041	20.1212	21.668
hc(w/m2K)	20	50	0.833333333	73.91786103	0.40000000	429.6591	800.0000	61.0161	21.3225	20.0446	20.0006	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0002	20.0095	20.1898	21.9993
E	1	60	1	68.77450363	0.40000000	476.7662	800.0000	76.7347	22.0711	20.1037	20.0027	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0007	20.0177	20.2679	22.3054
Cp(#kg/K) Specific heat concrete	880	70	1.166666667	63.73366217	0.40000000	514.8230	800.0000	93,3552	22.9174	20.1933	20.0074	20.0002				20.0000		20.0000							20.0000						22.5896
T surface(C)	20	80	1.333333333	59.04583880	0.40000000	545.1961	800.0000	110.1930	23.8333	20.3150	20.0159	20.0005	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0001	20.0027	20.0432	20.4453	22.8547
p (density Kg/m3) concrete	2100	30	1.5	54.86817713	0.40000000	563.2603	800.0000	126.9163			20.0296			20.0000				20.0000							20.0000						23.1033
		100	1.666666667	51.26118995	0.40000000	588.2961	800.0000	143.2357	25.7828			20.0025		20.0000				20.0000									20.0004				23.3372
		110	1.833333333	48.21078043	0.40000000	603.4128	800.0000	158,9500	26.7815	20.8726	20.0761	20.0046	20.0002	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0007	20.0102	20.1042	20.7438	23.5582
Fo	0.04797	120	2	45.65836536	0.40000000	615.5260	800.0000		27.7792		20,1109			20.0000				20.0000							20.0000						23,7679
		130	2.166666667	43.52704320	0.40000000	625.3584	800.0000	188.1013	28.7673	21.389	20.1543			20.0000				20.0000									20.0017		20.1533	20.9538	23.3675
		140	2.333333333	41.73916521	0.40000000	633.4631	800.0000	201.4324	29,7397	21.6838				20.0001				20.0000									20.0025			21.0602	24,158
		150	2.5	40.22556289	0.40000000	640.2542	800.0000	213.9200	30.6921	21,9993	20.2685	20.0269	20.0020	20.0001	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0003	20.0035	20.0320	20.2244	21.1671	24.3405
		160	2.666666667	38.92903917	0.40000000	646.0369	800.0000		31,6221			20.0373		20.0002											20.0000				20.2604	21.2741	24.5157
		170	2.833333333	37.80438719	0.40000000	651.0350	800.0000	236.4454	32.5280	22.6832					20.0000			20.0000											20.2985		24.6844
		180	3	36.81687213	0.40000000	655.4116	800.0000	246.5506	33.4083	23.0463	20.5118	20.0658	20.0066	20.0005	20.0000	20.0000		20.0000				20.0000	20.0000	20.0000	20.0001	20.0003	20.0073	20.0587	20.3384	21.4875	24.8472
		190	3.166666667	35.94022159	0.40000000	659.2865	800.0000	255,9387	34.2647	23,4224	20.6120	20.0843	20.0092	20.0008	20.0001	20.0000		20.0000					20.0000		20.0001	20.0012	20.0100	20.0696	20.3801	21.5935	25.0045
		200	3.333333333	35.15468405	0.40000000	662.7483	800.0000			23.8076	20.7215	20.1060		20.0012		20.0000		20.0000					20.0000			20.0015	20.0125	20.0817	20.4234	21.6383	25.157
		210	3.5	34.44538149	0.40000000	665.8635	800.0000	272.7372	35.9017	24.2010	20.8400	20.1311	20.0163	20.0016	20.0001	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0002	20.0020	20.0153	20.0947	20.4682	21.8036	25.3043

Moment Calculation

							Yield Strength			Yield Strength kip/in²
Variables			t(minutes)	t(sec)	Ts C	Yield Strength(KSI)	kip/in2 <=600	a (in)	Me k-ft	>600<=1000
			0	0	20.0000	60.0000	60.0000	5.882352941	132.7205882	50.0000
TA	Amb temp C	20.0000	0.1666667	10	20.0000	49.75152038	49.75152038	4.877600037	120.4650143	-75.72727273
Δt	time increment(sec)	10.0000	0.3333333	20	20.0000	49.75152038	49.75152038	4.877600037	120.4650143	-75.72727273
As	area steel (in²)	5.0000	0.5	30	20.24937138	49.7477231	49.7477231	4.877227755	120.4596782	-75.793916
D	(in)	8.2500	0.6666667	40	20.70333742	49.74077853	49.74077853	4.876546914	120.4499178	-75.91562529
b	(in)	12.0000	0.8333333	50	21.32246146	49.73124183	49.73124183	4.875611944	120.4365112	-76.08242834
F'c	(ksi)	5.0000	1	60	22.07112216	49.71961008	49.71961008	4.874471576	120.4201542	-76.28539681
Fy	(ksi)	60.0000	1.1666667	70	22.91739429	49.70633238	49.70633238	4.873169842	120.4014759	-76.51651427
			1.3333333	80	23.83327091	49.69181059	49.69181059	4.871746137	120.3810393	-76.76867973
			1.5	90	24.79492941	49.67639586	49.67639586	4.870234888	120.3593365	-77.03576015
			1.6666667	100	25.78282193	49.66038559	49.66038559	4.868665254	120.3367851	-77.31262346

Maximum Moment Reduction

					Yield Strength			Yield Strength kip/in²
					_			field Strength kip/in-
Variables	t(minutes)	t(sec)	Ts C	Yield Strength(KSI)	kip/in ² <=600	a (in)	Me k-ft	>600<=1000
	107.66667	6460	217.8060228	44.19304595	44.19304595	4.332651564	112.0233726	-599.1399154
	107.83333	6470	218.8060228	44.15353256	44.15353256	4.328777702	111.9588458	-626.6071487
	108	6480	219.8060228	44.11390394	44.11390394	4.324892543	111.8940668	-656.7947212
	108.16667	6490	220.8060228	44.07415999	44.07415999	4.320996077	111.8290349	-690.1278191
	108.33333	6500	221.8060228	44.03430059	44.03430059	4.317088294	111.7637492	-727.1251074
	108.5	6510	222.8060228	43.99432566	43.99432566	4.313169182	111.6982091	-768.4259129
	108.66667	6520	223.8060228	43.95423506	43.95423506	4.309238732	111.6324138	-814.8274796
	108.83333	6530	224.8060228	43.9140287	43.9140287	4.305296932	111.5663626	-867.3369358
	109	6540	225.8060228	43.87370647	43.87370647	4.301343772	111.5000547	-927.2452283

Scenario 2:

Same as Scenario 1, except steel rebar is exposed, so steel temperature is higher, the moment reduction due to fire is greatly reduced. See Scenario 1 for Thomas Plot analysis. However, the concrete temperature exceeded $500\,^{\circ}$ C. The $500\,^{\circ}$ C Isotherm Calculation Method was used to calculate a new D dimension.

FDM

			İ	q-*not(KWm+)	q-*not(KWm+)			i	i+1	i+2	i+3	i+4	i+5	i+6	i+7	i+8	i+9	i+10	11.0000	12.0000	13.0000	14,0000	15.0000	16.0000	17.0000	18.0000	19.0000	20.0000	21.0000	22.0000	23
Variables		t(reer)	t(min)	expuredface	unexpuredface	i-10.0	Tq																								
								0.0095	0.019	0.0285	0.0380	0.0475	0.0570	0.0665	0.0760	0.0855	0.0950	0.1045	0.1140	0.1235	0.1330	0.1425	0.1520	0.1615	0.1710	0.1805	0.1900	0.1995	0.2090	0.2185	0.22
						0.0000																							'		
		0	0	0	0	20.0000	20.0000	20.0000	20,000																			20.0000			
K (Wm/K) Thermal canductivity Cancrete		10		90.38246307		128.3840	800,0000																	20.0000				20.0000			
48(m)	0.0095	20	0.333333333			222.5055	800.0000	25.1988				20.0000												20.0000						20.0230	
å troorhoot 1(roc)	10	30	0.5	83.32891228	0.40000000	303.5027	\$00,0000	34.4136			20.0000		20.0000			20.0000							20.0000							20.0646	21.307
SB(W/m/K4)	0.0000000567	40	0.666666667	78.86153964	0.40000000	372.2564	800.0000	46.6416				20.0000				20.0000							20.0000					20.0001			21.66
he(u/m2K)	20	50	0.833333333	73.91786103	0.40000000	429.6591	800.0000	61,0161	21.3225	20.0446	20.0006	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20,0000	20.0000	20.0000	20.0000	20,0000	20.0000	20.0000	20.0002	20.0095	20,1898	21.999
E	1	60	1	68.77450363	0.40000000	476.7662	\$00,0000	76,7947				20.0000				20.0000					20,0000			20.0000						20.2679	
Cp(J/kq/K) Specific heat concrete		70		63.73366217		514.8230	800.0000	93.3552				20.0002		20.0000	20.0000		20.0000				20.0000	20.0000		20.0000	20.0000	20.0000	20.0000			20.3536	
Tzurface(C)		80	1.333333333	59.04583880		545.1961	\$00,0000	110.1930	23.8333		20.0159	20.0005	20.0000	20.0000	20.0000	20.0000	20.0000		20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0001	20.0027	20.0432	20.4453	22.854
p (donrity Kqfm3) concrete	2100	90	1.5	54.86817713	0.40000000	569.2609	800.0000	126,9163	24.794	20,4694	20.0296	20.0012	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0002	20.0045	20.0605	20.5416	23,103
		100	1.666666667	51.26118995	0.40000000	588.2961	800.0000	143.2357	25.782	20.6558	20.0493	20.0025	20.0001	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20,0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0004	20.0070	20.0809	20.6414	23.337
		110	1.833333333	48.21078043	0.40000000	603.4128	800,0000	158,9500	26,7819	20.8726	20.0761	20.0046	20.0002	20,0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20,0000	20.0000	20.0000	20.0000	20,0000	20.0000	20.0007	20.0102	20,1042	20.7438	23.558
Fo	0.04797	120	2	45.65836536	0.40000000	615.5260	800,0000	173.9297	27,7792		20,1109	20.0079		20.0000		20.0000	20.0000					20.0000	20.0000	20.0000	20.0000	20.0001	20.0011	20.0143	20,1304		
		130		43.52704920	0.40000000	625.3584	\$00,0000	188,1013			20.1543	20.0124	20.0007	20.0000	20.0000	20.0000	20.0000				20.0000		20.0000	20.0000	20.0000	20.0001	20.0017	20.0192	20.1593	20.9538	23.967
		140		41.73916521	0.40000000	633,4631	\$00,0000				20.2067	20.0187	20.0013	20,0001	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0002	20.0025	20.0251	20,1907	21.0602	24.15
		150	2.5	40.22556289	0.40000000	640.2542	800.0000	213.9200	30.692	21.9993	20.2685	20.0269	20.0020	20,0001	20.0000	20.0000	20.0000	20,0000	20.0000	20.0000	20,0000	20.0000	20.0000	20.0000	20.0000	20.0003	20.0035	20.0320	20.2244	21,1671	24.340
		160	2.666666667	38.92903917	0.40000000	646.0369	800.0000	225.5810	31.622	22,3333	20.3400	20.0373	20.0031	20.0002	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20,0000	20.0000	20.0000	20.0000	20,0000	20.0004	20.0047	20.0398	20.2604	21.2741	24.515
		170	2.833333333	37.80438719	0.40000000	651.0350	800,0000	236,4454	32.528	22,6832	20.4211	20.0502	20.0046	20.0003	20.0000	20.0000	20.0000	20,0000	20.0000	20.0000	20,0000	20.0000	20.0000	20.0000	20,0000	20.0006	20.0062	20.0487	20,2985	21.3810	24.684
		180	3	36.81687213	0.40000000	655.4116	\$00,0000	246.5506	33,408		20.5118	20.0658		20.0005		20.0000	20.0000	20.0000			20.0000	20.0000	20.0000	20.0000	20.0001	20.0009	20.0079		20.3384		24.847
		190		35.94022159	0.40000000	659.2865	\$00,0000	255.9387	34.264		20.6120		20.0092			20.0000	20.0000				20.0000	20.0000	20.0000	20.0000	20.0001	20.0012	20.0100	20.0696	20.3801	21.5935	25.004
		200	3.333333333	35.15468405	0.40000000	662.7483	800.0000	264.6530	35.0955			20.1060	20.0124	20.0012		20.0000	20.0000				20.0000	20.0000		20.0000	20.0002	20.0015	20.0125	20.0817	20,4234	21.6989	25.15
		210	3.5	34.44538149	0.40000000	665.8635	800.0000	272.7372	35.901	24,2010	20.8400	20.1311	20.0163	20.0016	20.000	20.0000	20.0000	20.0000	20.0000	20.0000	20,0000	20.0000	20.0000	20.0000	20.0002	20.0020	20.0153	20.0947	20.4682	21.8036	25.304
		220		33.80100825	0.40000000	668,6826	\$00,0000	280.2340				20.1596				20.0000	20.0000			20.0000		20.0000	20.0000	20.0000						21,9075	
		230	3.033333333	33.21284820	0.40000000	671.2452	800,0000	287.1843	37.442	25.0063	21,1028	20.1917	20.0269	20.0031	20.0003	20.0000	20.0000			20.0000		20.0000	20.0000	20.0000	20.0004	20.0032	20.0220	20.1240	20.5617	22.0106	
		240	4	32.67405397	0.40000000	673.5826	\$00,0000	293.6272	38,1787			20.2275						20.0000				20.0000		20.0001				20.1401			25.72
		250	4.166666667	32.17912917	0.40000000	675.7204	800.0000	299.5994	38.893	25.8278	21.3974	20.2670	20.0415	20.0053		20.0001						20.0000		20.0001	20.0006	20.0049	20.0304	20.1572	20.6597	22.2139	25.858
		260	4.333333333	31.72356131	0.40000000	677,6797	800.0000	305.1354	39.5865	26.2420	21.5557	20.3104	20.0506	20.0068		20.0001							20.0000	20.0001	20.0008	20.0059	20.0353	20.1752	20,7102	22,3141	25.988
		270	4.5	31.30356388	0.40000000	679,4784	800,0000	310.2676	40.259	26.6573	21.7208	20.3577	20.0610	20.0086		20.0001								20.0001	20,0010	20.0070	20.0406	20.1941	20.7615	22,4134	26,115
		280	4.666666667	30.91589578	0.40000000	681.1321	800,0000	315.0261	40.913	27.0730	21.8922	20.4088	20.0727	20.0108		20.0001												20.2140	20.8135	22,5118	26.239
		290	4.833333333	30.55773483	0.40000000	682.6542	\$00,0000	319.4387	41.549	27.4884	22.0695	20.4639	20.0858	20.0133	20.0017	20.0002	20.0000	20.0000	20.0000	20.0000	20,0000	20.0000	20.0000	20.0002	20.0016	20.0098	20.0525	20.2347	20.8662	22,6091	26.36
		300	5	30.22658872	0.40000000	684.0564	800,0000	323.5315	42.166	27.9029	22.2524	20.5228	20.1005	20.0162	20.0022	20.0003	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0003	20.0019	20.0115	20.0592	20.2562	20.9195	22.7055	26.48
		310	5.166666667	29.92023175	0.40000000	685.3494	800,0000	327.3286	42.7679	28.3161	22,4405	20.5855	20.1167	20.0196	20.0028	20.0003	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0003	20.0023	20.0133	20.0664	20.2786	20.9734	22.8010	26.59
		320	5.333333333	29.63665908	0.40000000	686,5426	800,0000	330.8522	43,351	28,7274	22.6334	20.6520	20.1345	20.0235	20.0035	20.0004	20,0001	20,0000	20.0000	20.0000	20,0000	20,0000	20,0001	20.0004	20.0027	20.0153	20.0740	20.3018	21.0277	22.8955	26,714
									-										-												-

Maximum Moment Reduction

							V. 116		1	W. 116
				l			Yield Strength			Yield Strength kip/in ²
Variables			t(minutes)	t(sec)	Ts C	Yield Strength(KSI)	kip/in ² <=600	a (in)	Me k-ft	>600<=1000
			0	0	20.0000	60.0000	60.0000	5.882352941	132.7205882	50.0000
TA	Amb temp C	20.0000	0.1666667	10	800.0000	6.071428571	-6.779194084	0.595238095	20.11763039	6.071428571
Δt	time increment(sec)	10.0000	0.3333333	20	800.0000	6.071428571	-6.779194084	0.595238095	20.11763039	6.071428571
As	area steel (in²)	5.0000	0.5	30	800	6.071428571	-6.779194084	0.595238095	20.11763039	6.071428571
D	(in)	8.2500	0.6666667	40	800	6.071428571	-6.779194084	0.595238095	20.11763039	6.071428571
b	(in)	12.0000	0.8333333	50	800	6.071428571	-6.779194084	0.595238095	20.11763039	6.071428571
F'c	(ksi)	5.0000	1	60	800	6.071428571	-6.779194084	0.595238095	20.11763039	6.071428571
Fy	(ksi)	60.0000	1.1666667	70	800	6.071428571	-6.779194084	0.595238095	20.11763039	6.071428571
			1.3333333	80	800	6.071428571	-6.779194084	0.595238095	20.11763039	6.071428571
			1.5	90	800	6.071428571	-6.779194084	0.595238095	20.11763039	6.071428571
			1.6666667	100	800	6.071428571	-6.779194084	0.595238095	20.11763039	6.071428571
			1.8333333	110	800	6.071428571	-6.779194084	0.595238095	20.11763039	6.071428571
			2	120	800	6.071428571	-6.779194084	0.595238095	20.11763039	6.071428571
			2.1666667	130	800	6.071428571	-6.779194084	0.595238095	20.11763039	6.071428571

Modified D Calculation (500 °C Isotherm Calculation Method)

							Yield Strength			Yield Strength kip/in ²
Variables			t(minutes)	t(sec)	Ts C	Yield Strength(KSI)	kip/in ² <=600	a (in)	Me k-ft	>600<=1000
			0	0	20.0000	60.0000	60.0000	5.882352941	105.1705882	50.0000
TA	Amb temp C	20.0000	0.1666667	10	800.0000	6.071428571	-6.779194084	0.595238095	17.32983277	6.071428571
Δt	time increment(sec)	10.0000	0.3333333	20	800.0000	6.071428571	-6.779194084	0.595238095	17.32983277	6.071428571
As	area steel (in²)	5.0000	0.5	30	800	6.071428571	-6.779194084	0.595238095	17.32983277	6.071428571
D	(in)	7.1480	0.6666667	40	800	6.071428571	-6.779194084	0.595238095	17.32983277	6.071428571
b	(in)	12.0000	0.8333333	50	800	6.071428571	-6.779194084	0.595238095	17.32983277	6.071428571
F'c	(ksi)	5.0000	1	60	800	6.071428571	-6.779194084	0.595238095	17.32983277	6.071428571
Fy	(ksi)	60.0000	1.1666667	70	800	6.071428571	-6.779194084	0.595238095	17.32983277	6.071428571
			1.3333333	80	800	6.071428571	-6.779194084	0.595238095	17.32983277	6.071428571
D=	8.25 in -1.102 in = 7.1480 in		1.5	90	800	6.071428571	-6.779194084	0.595238095	17.32983277	6.071428571
			1.6666667	100	800	6.071428571	-6.779194084	0.595238095	17.32983277	6.071428571

Scenario 3:

Fire in Meeting Room 824 A

Given a meeting room, 3.25 m x 2.5 m door.

Fuel Load Density = 950MJ/m²

 $M_f = Mass of fuel (MJ/m^2)$

= Fuel load density/ Δh_c

Δh_c=heat of combustion of the fuel (MJ/kg)

= 50% pine wood, 50% polypropylene = (21.0 +46.37)/2= 33.69 MJ/kg

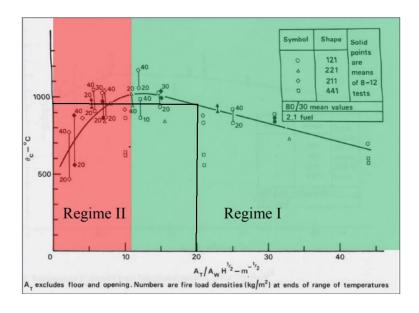
Ao= 8.22 m²

H= 1.82 m

R= 1.300

Tb= 43.18 minutes

Ventilation factor = 19.15


From Thomas Plot temperature max = 960 °C

Design Fire

960 °C 0 ≤ t≤ 43.18 minutes

10°C/ minute decay > 43.18 minutes

A	В	С	D	E	F	G	Н	I	J
Variables			Floor area of the compartment(m²)	Ao=Area of the openingt(m²)	R		Mass of fuel (kg)	To(mins)	Ventilation Factor(m-1)
Room width (m)	11.6	249.063	119.48	8.225	1.300487	28.2025	3369.6304	43.184223	19.15152245
Room length (m)	10.3								
Room height (m)	2.97								
Height of the top of the vent (m)	2.5								
Width of the vent (m)	3.29								
Fuel load density(MJ/m²)	950								
Δhc(MJ/kg)	33.69								
polypro/wood									

FDM

			Ī	q"not(KWm1)	q"not(KWm')		l.	i	i+1	i+2	i+3	i+4	i+5	i+6	i+7	i+8	i+9	i+10	11.0000	12.0000	13.0000	14.0000	15.0000	16.0000	17.0000	18.0000	19.0000	20.0000	21.0000	22.0000	23
Variables		t(recr)	t(min)	exparedface	unexpuredface	i-10.0	Tq			_	_	_					_	-					_				-	_	_		-
	1		1			1		0.0095	0.019	0.028	0.0384	0.0475	0.0570	0.0665	0.0760	0.0855	0.0950	0.1045	0.1140	0.1235	0.1330	0.1425	0.1520	0.1615	0.1710	0.1805	0.1900	0.1995	0.2090	0.2185	0.228
						0.0000				1		1																			(I
		0	0	0	0	20.0000	20.0000						20.0000					20,0000							20,0000			20.0000			20
K (Wm/K) Thormal canductivity Cancrot		10		149.49454350	0.40000000	199.2694	960,0000			0 20,000			20.0000					20,0000										20.0000			
48(m)	0.0095	20	0.333333333	143.50370359	0.40000000	354.1568	960.0000	28.5990	20,000	0 20.000	0 20,0000		20.0000								20.0000	20.0000	20.0000	20.0000	20,0000	20.0000	20,0000	20.0000	20.0000	20.0230	20.9133
atroorhoot1(res)	10	30	0.5	134.44997360	0.40000000	484,1533	960,0000	43,8025		5 20,000	20,000		20,0000					20,0000			20.0000						20,0000		20,0011		21.3076
SB(WłmłK4)	0.0000000567	40	0.666666667	121.98092413	0.40000000	588,1847	960,0000	63.8028	21.161	5 20.019	20,000	20.0000	20.0000	20.0000	20.0000	20.0000			20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0001	20.0041	20.1212	21.668
hc(u/m2K)	20	50		107.34123542	0.40000000	666,5993	960.0000	86.9103		7 20.073			20.0000				20.0000			20,0000	20.0000				20,0000				20.0095		21.9993
E	1	60		92.76004596	0.40000000	722.2227	960.0000	111.6110					20.0000					20.0000										20.0007	20.0177	20.2679	22.3054
Cp(J/kg/K) Specifeheat concrete		70		80.21104184	0.40000000	759.8312	960.0000	136.6679					20.0000					20,0000			20.0000				20,0000			20.0015			
Trurface(C)	20	80	1.333333333		0.40000000	784,6603	960,0000	161,1889					20.0000								20.0000				20,0000			20.0027	20.0432	20.4453	22.8547
p (donnity Kqfm3) concrete	2100	90	1.5	63.62730311	0.40000000	801,1484	960.0000		27.529	2 20.758			20.0001					20,0000							20.0000			20.0045			
		100		50.76671231	0.40000000	812,4734	960.0000	206,6536		6 21.048	\$ 20.0802	20.0041	20,0001			20,0000		20,0000		20,0000	20.0000	20,0000			20,0000			20.0070	20.0809	20.6414	23,3372
		110	1.833333333	55.30487449	0.40000000	820.6749	960.0000	227.1886	30.330	3 21.381	0 20.1234	20.0076	20.0003	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0007	20.0102	20.1042	20.7438	23.5582
Fe	0.04797	120		52,73376317	0.40000000	826,9764	960.0000	246.2136	31,682	2 21.749		20.0128	20.0007	20.0000		20,0000	20.0000		20.0000	20.0000	20.0000	20.0000		20.0000	20,0000	20.0001	20,0011	20.0143		20.8481	
		130	2.1666666667	50.72113392	0.40000000	832.0850	960.0000	263,7806		1 22,150			20.0012					20,0000		20,0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0001	20.0017	20.0192	20.1593	20.9538	23.9675
		140	2.333333333		0.40000000	836,4034	960.0000			2 22.579	6 20.3259	9 20.0300	20.0021	20.0001				20,0000						20.0000	20.0000	20.0002	20.0025	20.0251			
		150		47.64907496	0.40000000	840.1621	960,0000	294.8746		1 23,031	8 20,4191	20.0428	20.0033	20.0002	20.0000	20,0000		20,0000		20,0000	20.0000	20,0000		20.0000	20,0000	20.0003	20,0035	20.0320	20.2244	21.1671	24.3405
		160	2.666666667	46,40350796	0.40000000	843,4964	960.0000	308.5883	36,668	6 23.503	9 20.5270	20.0590	20.0051	20.0003	20.0000	20.0000		20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0004	20.0047	20.0398	20.2604	21.2741	24.5157
		170		45.28860794	0.40000000	846,4895	960.0000	321,2030		0 23.992	6 20.6474	4 20.0789	20.0074	20.0005	20.0000	20,0000	20.0000		20.0000	20,0000	20.0000		20.0000		20,0000	20.0006	20.0062	20.0487	20.2985	21,3810	24.6844
		180		44.27977252	0.40000000	849,1958	960.0000						20.0105					20.0000							20.000		20.0079	20.0587	20.3384	21.4875	24.8472
		190	3.1666666667		0.40000000	851,6539	960.0000			1 25.008			20.0145					20,0000			20.0000				20.0001			20.0696			
		200	3.333333333	42.52108442	0.40000000	853.8928	960,0000	353.2957	41,002	2 25.530			20.0194				20.0000				20.0000				20,0002			20.0817	20.4234	21.6989	25,157
		210	3.5	41.75153159	0.40000000	855.9359	960.0000	362.3281	41,994	4 26.059	21.2534	20.2006	20.0255	20.0026	20.0002	20,0000	20.0000	20,0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0002	20.0020	20.0153	20.0947	20.4682	21.8036	25.3049
		220	3,666666667	41.04549325	0.40000000	857,8028	960,0000						20.032#			20,0000		20,0000		20,0000	20.0000	20,0000	20,0000	20.0000	20,0003	20.0025	20.0184	20,1088	20.5143	21,9075	25,4487
		230	3.833333333	40.39716512	0.40000000	859,5106	960,0000	378.2891	43,880	6 27.130	21.6235	20.2897	20.0415	20.0048	20.0005	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0004	20.0032	20.0220	20.1240	20.5617	22.0106	25.5886
		240	4	39.80147111	0.40000000	861,0740	960.0000	385.3312	44,777	7 27.669			20.0516			20.0001	20.0000			20,0000	20.0000	20.0000		20.0001		20.0040		20.1401	20.6102	22.1127	25.725
		250	4.166666667		0.40000000	862,5063	960.0000			1 28.209			20.0634			20.0001	20.0000				20.0000				20.0006			20.1572	20.6597	22.2139	25.8582
		260	4.333333333	38.75032198	0.40000000	863,8195	960.0000	397.7887	46,487	2 28,749	9 22,2509	9 20.4612	20.0768	20.0106	20.0012	20,0001	20,0000	20,0000	20.0000	20,0000	20.0000	20.0000	20,0000	20.0001	20,0008	20.0059	20.0353	20.1752	20.7102	22.3141	25.9882
		270	4.5	38.28707604	0.40000000	865.0242	960,0000	403.2919		3 29.288					20.0016						20.0000	20.0000		20.0001		20.0070	20.0406		20.7615	22.4134	26,1154
		280	4.666666667	37.86076798	0.40000000	866.1301	960.0000	408.3640	48.092	7 29.826	22,710	1 20.6011	20.1092	20.0165	20.0021	20.0002	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0002	20.0013	20.0084	20.0463	20.2140	20.8135	22.5118	26.2399
		290	4.033333333		0.40000000	867,1458	960.0000	413.0405					20.1284					20,0000			20.0000				20,0016			20.2347			
		300	5	37.106888807	0.40000000	868,0793	960.0000	417.3539	49,604	3 30.892	9 23,1961	20.7613	20.1496	20.0246	20.0034	20.0004		20.0000										20.2562			
		310	5.166666667	36.77391403	0.40000000	868,9378	960,0000	421.3340	50,327	7 31.421	3 23,449	1 20.8488	20.1729	20.0296	20.0043	20,0005	20.0001	20,0000	20.0000	20,0000	20.0000	20,0000	20,0000	20.0003	20,0023	20.0133	20.0664	20.2786	20.9734	22.8010	26,599
		320	5.333333333	36,46702762	0.40000000	869,7277	960,0000	425,0081	51,031	0 31,945	23,7061	20,9411	20,1985	20,0353	20,0053	20,0007	20,0001	20,0000	20,0000	20,0000	20,0000	20,0000	20,0001	20,0004	20,0027	20,0153	20,0740	20,3018	21,0277	22,8955	26,7143

Variables		At= Area of the compartment(m²)	Av=Area of the vent(m²)	Ω= (At - Av) / (AvVHv)	Tmax C
Room width (m)	11.2	350.205	8.225	26.29630916	1085.68204
Room length (m)	10.3				
Room height (m)	2.97				
Height of the top of the vent (m)	2.5				
Width of the vent (m)	3.29				

Maximum Moment Reduction

Α	В	С	D	E	F	G	Н	I	J	K
							Yield Strength			Yield Strength kip/in
Variables			t(minutes)	t(sec)	Ts C	Yield Strength(KSI)	kip/in ² <=600	a (in)	Me k-ft	>600<=1000
			108	6480	153.3231289	46.50161423	46.50161423	4.558981787	115.6826297	-166.0593724
			108.16667	6490	153.4110802	46.4987828	46.4987828	4.558704196	115.678275	-166.210777
			108.33333	6500	153.4989536	46.49595302	46.49595302	4.558426767	115.6739225	-166.362355
			108.5	6510	153.5867493	46.49312489	46.49312489	4.558149499	115.6695722	-166.5141068
			108.66667	6520	153.6744674	46.4902984	46.4902984	4.557872392	115.6652242	-166.6660329
			108.83333	6530	153.7621083	46.48747354	46.48747354	4.557595445	115.6608783	-166.8181338
			109	6540	153.8496721	46.48465031	46.48465031	4.557318658	115.6565346	-166.97041

APPENDIX P - FIRE SAFETY MANAGEMENT PLAN

1 Fire Safety Management Plan

This facility Fire Safety Management Plan (FSMP) has been prepared to establish procedures required by the CBC for pre-fire planning and occupant evacuation. It is also designed to provide information to emergency services about the nature of the emergency so that a safe and effective response may be initiated. The

1.1 Responsibilities and Duties

An effective FSMP requires the coordination of all people within the building. All building occupants, including employees and guests, need to be aware of their roles and responsibilities in case of an emergency. This section outlines specific responsibilities for employees, as well as the evacuation director and wardens. Visitors should also be instructed on proper response to alarms and the need to evacuate.

1.1.1 Responsibilities of All Employees

- Be familiar with building emergency procedures and act in the event of an emergency.
- Participate in drills and training as required.
- Inform and assist visitors unfamiliar with building procedures as appropriate prior to and during an emergency.
- Supervisors orient new employees of this plan upon hire.
- Be familiar with guidelines herein to evacuate, take refuge, or stay in place if you are a person with mobility disabilities.

1.1.2 Responsibilities of Evacuation Director and Evacuation Wardens

The evacuation director, evacuation wardens, and their alternates are employees who have been appointed (or have volunteered) to serve in these positions have the following responsibilities:

- Evacuation Director Responsibilities The evacuation director is the administrative lead for
 this plan and acts as the liaison with the responding emergency services in the event of a
 building emergency. If an emergency occurs when the evacuation director or alternate is not
 available, an evacuation warden or a senior employee may serve as liaison.
- Evacuation Warden Responsibilities- The evacuation wardens are lead staff members who should perform the following duties:
 - Check the area for visitors and others who may need assistance responding to the emergency. Visitors and other transient occupants who may not be familiar with how to evacuate should be informed on the location of the nearest exit. Direct occupants to the exits and tell them where to assemble outside.
 - Direct persons with disabilities to follow their individual plan. It they don't have one direct them to an area of refuge.
 - Sweep the area by walking, calling out, knocking on doors, and closing doors if possible as you exit the building. Encourage others to respond promptly. Be assertive when communicating the need to evacuate. As a general rule, evacuation wardens should not fight fire with fire extinguishers or otherwise. Their primary role is

- to encourage occupants to move towards exits quickly and to communicate with the evacuation director at the evacuation assembly point.
- Exit the building and communicate with exiting occupants where to assemble outside. If fire or smoke is observed, wardens must discontinue their activities and evacuate immediately before the space becomes untenable.
- Once outside, assertively direct people to the evacuation assembly point so they don't obstruct traffic or emergency responders. Remain at least 30 feet from the affected building.
- If anyone has specific information about the nature or location of the emergency, immediately report the information to the evacuation director who will relay the information to first responders at the incident command location.
- Accounting for all personnel is optional. Attempt to identify persons who may have remained behind. This is especially important if the building emergency is known and the persons unaccounted for work in or near the affected area. Confer with supervisors and co-workers and use any available lists or floor plans.
- Immediately report to the evacuation director any missing persons who may be in the building or in jeopardy.
- When notified by the evacuation director, help communicate the all clear so the building may be reoccupied. Don't reoccupy in response to the alarm being silenced. Await a definitive message.

1.1.3 Required Training for Evacuation Director and Evacuation Wardens

The following training is required:

- Attendance at weekly in-house training classes.
- Review of hotel brand corporate training classes
- Organize and lead monthly fire drills (employees only not guests)
- Attend portable fire extinguisher training course.

1.1.4 Evacuation Procedures

These procedures focus on evacuation of occupants as a result of a fire or other building emergency:

- Assume all alarms are real unless an announcement has been made just prior to the alarm.
- Begin immediate evacuation of the building or area when outlined in building emergency procedures.
- Take keys and valuables and close doors behind you as you exit.
- Evacuate via the nearest stairwell or grade level exit. Do not prop doors open; doors
 must remain closed to keep prevent smoke migration in the event of a fire. Do not take
 elevators or go to the roof.
- Go to your pre-determined Evacuation Assembly Point (EAP), typically outdoors a safe distance from the building and out of the way of emergency services.
- Persons with disabilities who are unable to evacuate will follow their personal plan to take refuge or report to an area of evacuation assistance
- Evacuation floor plans help to identify exits and exit routes for the building. Occupants should go to the nearest exit when the alarm sounds. If access to the nearest exit is

obstructed, an alternate exit should be taken. The building's floor plans and evacuation routes are posted throughout the building.

1.1.5 Building Specific Information

The building is equipped with a monitored fire alarm system. In the event of a fire alarm activation, signals are sent to a central monitoring station who notifies the San Diego Fire Department. Evacuate and call 911 to report specific information about the emergency.

The Outdoor Evacuation Point (EAP), is located on J street across the street from the main entry. Occupants need to meet there after evacuation so that they may be accounted for or lend assistance as needed.

The building is equipped with an automatic fire sprinkler system. The control valves (shut off valves) for the guest room areas are located in the stairwell of each floor. Engineering staff should be aware of these locations in case shutdown of the sprinkler system is necessary.

1.1.6 Building Fire Protection Equipment Description and Maintenance Protocol

The building's fire protection equipment description can be found in the following sections of this report:

- Fire suppression, standpipe, and fire pump systems- Sections 4.3 and 4.4
- Fire emergency voice/alarm communication system Section 4.7

The building's fire protection equipment maintenance protocol can be found in the following sections of this report:

- Fire suppression, standpipe, and fire pump systems- Section 4.6
- Fire emergency voice/alarm communication system Section 4.9

1.1.7 Conclusion

The Fire Safety Management Plan was developed specifically for the Gaslamp Hotel. The plan presents the duties and responsibilities of employees and the requirements for the maintenance and testing of fire protection equipment. A detailed description of the various fire safety components of building are summarized as well. Adherence to the plan is critical to the safety of hotel guests, employees, and responding fire fighters. Based upon discussions with hotel staff, the plan will be implemented.