
 

Radish: A Cross Platform Meal Prepping App For Beginner 

Weightlifters 
  

  

  

 

  

  

A Senior Project 

presented to 

the Faculty of the Computer Science Department 

California Polytechnic State University – San Luis Obispo 

  

  

  

  

   

  

In Partial Fulfillment 

of the Requirements for the Degree 

Bachelor of Science in Computer Science/Software Engineering 

  

  

By  

Tanay Gottigundala, Cory Baxes, Spoorthy Vemula 

 

  

June 13th, 2019 
 

 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

Introduction 2 

Background 2 

Technologies 2 

Figma 3 

Flutter 3 

Node.JS/Express 3 

Google Cloud Platform 3 

Google Cloud Datastore 4 

API Hurdles 4 

Fitness and Diet 5 

Description 5 

Requirements 6 

Nonfunctional Requirements 6 

Functional Requirements 6 

Use Cases 7 

System Architecture 8 

Development Process 9 

Roles 9 

Starting Point 9 

Timeline 10 

Evaluation 11 

Requirements 11 

Nonfunctional Requirements 12 

Functional Requirements 12 

Cross-Platform Consistency 13 

Onboarding Goals Screen Comparison 14 
Home Screen Comparison 15 
You Screen Comparison 15 

Shortcomings 16 

Weekly Plan Algorithm 16 

Rudimentary Logging 16 

Lack of Customization 16 

Big Picture 17 

Conclusions and Future Work 17 

Appendix A: Completed App Images 18 

1 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

Introduction 

With the increasing ease of access and decreasing price of most food, obesity 

rates in the developing world have risen dramatically in recent years. As of March 23rd, 

2019, obesity rates had reached 39.6%, a 6% increase in just 8 years. Research has 

shown that people with obesity have a significantly increased risk of heart disease, 

stroke, type 2 diabetes, and certain cancers, among other life-threatening diseases. In 

addition, 42% of people who begin weightlifting quit because it’s too difficult to follow a 

diet or workout regimen. 

We created Radish in an attempt to tackle these problems. Radish makes it easier 

for people to achieve fitness goals without having to do a large amount of diet and 

fitness research that generally overwhelms beginner weightlifters. Our contributions in 

this field are unique because we make decisions for the user so they have fewer 

disinhibitions from starting and continuing on their fitness journey. Our target 

demographic for this app are people with limited fitness experience who want to attempt 

to improve their health and aesthetics. We believe we’ve successfully created a strong 

proof of concept in the scope of this senior project. We will be continuing our work with 

this app after the completion of this quarter and we hope to release the app on the App 

Store and Google Play by the end of the year. 

Background 

Technologies 

Our biggest focus when picking technologies to work with was the importance of 

the application being both scalable and reliable. We sought to make this app as 

production ready as possible and that we kept that big picture in mind when we chose 

our technologies and throughout our development process.  

2 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

Figma 

Figma is an interface design application that enabled us to quickly prototype our 

ideas. Each of our sprints started out with a clear UI prototype of the screens we were 

going to develop during that sprint. We used these screens to guide our decision making 

for the both the backend and the app development. 

Flutter 

Flutter is an open-source mobile application development framework that is 

created and maintained by Google. Our decision to use Flutter rather than the 

alternatives are due to a few reasons. First, Flutter enables us to do cross-platform 

development which allowed us to make an Android app and it’s iOS equivalent without 

any extra effort. Second, since our application has no highly hardware-specific features, 

we did not feel the need to make a native application. As a side note, we did initially 

begin by using Android Studio when we were working on a different idea and eventually 

moved over to Flutter when we switched ideas because we didn’t have such strict 

hardware needs. Finally, Flutter has very low startup time due to both the programming 

language it utilizes(Dart) as well as its use of widgets to increase code reusability. 

Node.JS/Express 

Express is an open-source Node.JS framework that is widely considered the de 

facto standard server framework for Node.JS. It allowed us to manage everything 

including but not limited to routes, requests, and tokens. In addition, Node.JS is very 

lightweight, and allows for the building of fast and scalable applications, which we 

believe will be key to our success in the future as our user base grows bigger. 

Google Cloud Platform 

We hosted our server on Google Cloud Platform’s Compute Engine. Our decision 

was essentially between hosting on a local server or using a cloud platform and we 

chose the latter due to the scalability and reliability that we desired from this project. We 

3 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

ran our servers with PM2, a process manager for Node.JS that allowed us to maintain 

100% server uptime. 

Google Cloud Datastore 

  Our decision to use Google Cloud Datastore instead of the traditional relational 

database alternative was due to the type of data processing we anticipated on doing. 

Using NoSQL allows to run optimized queries for large amounts of data which is 

something we have to deal with since our server responses can be very large. 

API Hurdles 

Picking an API proved to be a very challenging problem given our constraints. 

While there are a lot of recipe APIs in the market, the recipes were user provided which 

has its disadvantages because it has the ability to make for poor recommendations. In 

addition, a lot of APIs cost a lot of money and we weren’t ready to spend thousands of 

dollars each month on a commercial API. This meant that we were forced to deal with 

undetailed nutrition data and recipe information.  

We solved this problem by curating the list of recipes that we allowed to be used 

in our database. This gave us more control of what we showed to users and ultimately 

felt like a much more personal experience. The tradeoff with this approach is that we 

were forced to put in a lot of manual work selecting recipes that we believed fit our 

desired characteristics for the meal plan. Ultimately, this meant that we did not have the 

resources to get a large amount of recipe data into our database. Currently, our 

datastore only has about 50 total recipes. On the flip side, this is something we plan to 

market heavily when we release the app since we are putting in a lot of effort into simply 

determining what belongs on our meal plan. 

Finally, we solved our API problem in a somewhat unique and “hacky” manner by 

simply web scraping a popular recipe website called FatSecret.com. While we are 

allowed to use this for development purposes. In the long run, we will either need to hire 

a team to create our own recipes or find an API that we are satisfied with and buy a 

commercial license. I believe we will take the former approach in the long run so that we 

4 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

have full control of the process rather than relying on external sources but the initial 

release of the app is likely to use a commercial recipe API. 

Fitness and Diet 

The fitness realm is one that involves a lot of contradictory research and an 

oversaturation of information. Going through this research ourselves and understanding 

it was a large part of our preliminary work. It helped that we have a lot of experience in 

this field but creating a plan specifically for this niche proved to be challenging. All the 

research pointed to a few key aspects necessary in order to achieve these goals. In 

order to lose weight, an individual had to be in a caloric deficit in order for the body to be 

in a catabolic stage to burn fat. In order to gain weight, an individual had to be in a caloric 

surplus in order to be in an anabolic state to gain muscle. Using the Mifflin St. Jeor 

equation, we were able to calculate the Basal Metabolic Rate (BMR) for an individual after 

being given their age, sex, height, and weight. In conjunction with the individual’s activity 

level, the BMR can help estimate the individual’s total daily energy expenditure (TDEE). 

Additionally, the body requires at least 0.8g/lb of body mass for optimal muscle gain. 

From these values, we were able to determine the macronutrient needs for each user. 

Our workout routines are from a popular Reddit user named nSuns. His program 

has proved to be very effective for building muscle through linear progression for 

beginners. Linear progression means that the amount of weight the individual lifts each 

week, which is something that only happens in newer lifters. In addition, this workout 

routine has been widely documented to make one stronger while still achieving 

hypertrophy to make the individual look bigger. 

Description 

We began the project by clearly defining technical requirements of the app, 

defining how users would be able to use the app, and picking our technology stack. 

Shortly before beginning the development process we defined each team member’s role 

and planned out each development sprint. 

5 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

Requirements 

Based on our goals for the app and our target demographic, we developed the 

following nonfunctional and functional requirements: 
 

Nonfunctional Requirements 

Designation  Requirement 

NFR-1  The app must look and function the same on both iOS and Android devices. 

NFR-2  The app must store user data securely in a way that only the app can access the 
data. 

NFR-3  The app development must be completed in 10 weeks. 

 
Functional Requirements 

Designation  Requirement 

FR-1  The app must develop one-week meal and workout plans based on each user’s 
personal fitness goals and personal preferences. 

FR-2  The app must allow users to create a new account by providing information 
about their name, email, age, sex, height, weight, fitness goals, and dietary 
preferences. 

FR-3  The app must generate a new meal and workout plan when an existing plan’s 
timeline is completed. 

FR-4  The app must allow users to check off meals, workouts, and grocery items as 
they are completed or purchased. 

FR-5  The app must provide recipe information, including macronutrients, ingredients, 
and cooking instructions, for each meal in a plan.  

FR-6  The app must provide instructions and a video demonstration for each exercise 
in a workout. 

FR-7  The app must generate a grocery list that includes all ingredients required to 
prepare the meals included in a given plan. 

FR-8  The app must allow users to add additional grocery items to the 
automatically-generated grocery list. 

6 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

FR-9  The app must require users to login using a personally-created account where 
all progress and weekly plans are kept. 

FR-10  The app must allow users to view their account information and fitness goals 
after account creation. 

FR-11  The app must allow users to update their weight after account creation to track 
progress. 

 

Use Cases 

 

The diagram above shows the general use cases for users of our app. After 

opening the app, users will be prompted to either login or create an account. After 

logging in users have four tabs to choose from: Food, Groceries, Fitness, and You. The 

Meal, Groceries, and Fitness tabs allow some sort of item to be checked off as completed 

(either a meal, grocery item, or exercise respectively). Users can also view recipes by 

selecting a meal on the Food tab and view exercises by selection an exercise on the 

Fitness tab. On the Grocery tab, users can add additional items to the grocery list. On the 

You tab, users can update their weight to see their progress. 

 

7 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

System Architecture 

 

Our backend is hosted entirely in Google Cloud Platform. The API server is a 

Nods.JS/Express server running on a virtual machine in Google Compute Engine. The 

server communicates with Datastore to store and retrieve data, and it offers 

public-facing, secure endpoints for the frontend to access. 

Users can run the app on either iOS or Android devices. The app itself is 

developed in Flutter using the Dart language, and the Dart code compiles down to native 

iOS and Android code combined with a custom rendering engine for displaying the app. 

The “http” Flutter package communicates with our Node.JS API server to send and 

retrieve data from the backend. Our Flutter app uses the following packages to provide 

additional features: 

 

Package  Reason for Use 

http  Provides easy functions for consuming HTTP resources, allowing 
easy access to our API server. 

intl  Provides localization features used for parsing and formatting dates. 

url_launcher  Easy URL launching used for launching workout videos. 

json_annotation  Defines annotations for use by the json_serializable package. 

8 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

charts_flutter  Cross-platform data visualization library that conforms to Material 
Design standards. Used for displaying user weight over time. 

json_serializable  Allows generation of code for automatic serialization of an object 
into JSON and back from JSON into the object. Used for saving 
weekly plan progress locally. 

autocomplete_textfield  Textfield with autocomplete as user types. Used for easy searching 
and selection of dietary restrictions and favorite foods. 

flutter_secure_storage  Secure data storage using Keychain for iOS and AES encryption for 
Android. Used for storing login credentials and weekly plans locally 
and securely. 

 

 

Development Process 

Roles 

We assigned project roles based on the experience and expertise of each team 

member as follows: 

Team Member  Role  Description 

Cory Baxes  Front-end Developer  Implementing UI and app functionality in Flutter 

Tanay Gottigundala  Back-end Developer  Implementing API functionality in Node.JS 
running on Google Cloud services 

Spoorthy Vemula  UI/UX Designer  Designing how the app looks and feels and 
implementing this in Flutter. 

Dan Weeks  Advisor/Mentor  Guided us throughout the development phase 
of the app and will serve as our mentor after the 
completion of senior project 

 

Starting Point 

Since some work had been done on our original app idea during the Winter 2019 

quarter, our back-end technology stack was largely in place. The functionality of the 

Node.JS server needed to be mostly redeveloped to support new and different API calls, 

9 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

but we had a bare-bones Node.JS server running on Google Compute Engine and 

interacting with Firestore. The switch from Android to Flutter, however, meant that the 

previously-developed app technology would be scrapped and rebuilt from scratch in 

Flutter. 

 
Timeline 

We decided to use the Agile software development method so that we would 

have meaningful features completed frequently throughout the short 10-week 

development process. The development process was divided into five sprints that were 

each two weeks long. Each feature was planned into a specific sprint for completion in a 

way that made sense for building each feature’s functionality off of others. Below is the 

timeline we followed, including the functional requirement associated with each task: 

10 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

 

Evaluation 

Requirements 

Our app development was largely successful. We were able to fully implement 10 

of 11 functional requirements, partially implement the one remaining functional 

requirement, and simultaneously ensure all nonfunctional requirements were met. To see 

images of all app screens and cuntaionlity, refer to Appendix A. Below is the status of 

each requirement: 

 

11 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

Nonfunctional Requirements 

Designation  Requirement  Achieved? 

NFR-1  The app must look and function the same on both iOS and 
Android devices. 

Yes 

NFR-2  The app must store user data securely in a way that only the app 
can access the data. 

Yes 

NFR-3  The app development must be completed in 10 weeks.  Yes 

 
Functional Requirements 

Designation  Requirement  Completed? 

FR-1  The app must develop one-week meal and workout plans based 
on each user’s personal fitness goals and personal preferences. 

Partially 

FR-2  The app must allow users to create a new account by providing 
information about their name, email, age, sex, height, weight, 
fitness goals, and dietary preferences. 

Yes 

FR-3  The app must generate a new meal and workout plan when an 
existing plan’s timeline is completed. 

Yes 

FR-4  The app must allow users to check off meals, workouts, and 
grocery items as they are completed or purchased. 

Yes 

FR-5  The app must provide recipe information, including 
macronutrients, ingredients, and cooking instructions, for each 
meal in a plan.  

Yes 

FR-6  The app must provide instructions and a video demonstration for 
each exercise in a workout. 

Yes 

FR-7  The app must generate a grocery list that includes all ingredients 
required to prepare the meals included in a given plan. 

Yes 

FR-8  The app must allow users to add additional grocery items to the 
automatically-generated grocery list. 

Yes 

FR-9  The app must require users to login using a personally-created 
account where all progress and weekly plans are kept. 

Yes 

12 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

FR-10  The app must allow users to view their account information and 
fitness goals after account creation. 

Yes 

FR-11  The app must allow users to update their weight after account 
creation to track progress. 

Yes 

 

Cross-Platform Consistency 

One of the key nonfunctional requirements was for the app to correctly represent 

the Figma UI prototypes created in both iOS and Android. To better understand if this 

requirement was met, we directly compared three very different screens across Figma, 

iOS, and Android. 

We wanted to make sure our implementations on both Android and iOS matched 

the Figma designs as close as possible. Flutter allowed us to create custom UI 

components that worked on both platforms without too much hassle. There are only a 

few minor UI differences between the two. The back arrow style in the top right on the 

onboarding pages are slightly different on iOS and Android, the slider style we used on 

onboarding is a bit different since we decided to go with 5 discrete values instead of a 

continuous slider, and the checkbox style on the food page is a bit different because we 

wanted to reuse that component from another part of the app. Other than that they are 

all identical, so we met the cross-platform consistency requirement very well. 

 

13 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

Onboarding Goals Screen Comparison

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

Home Screen Comparison 

 
You Screen Comparison 

 

15 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

 

Shortcomings 

Even though we met nearly all requirements, our evaluation uncovered a few 

shortcomings we hope to improve in the future. 

 

Weekly Plan Algorithm 

The only functional requirement we failed to implement completely was 

customizing the meal and workout plans to the user’s preferences, goals, and personal 

information (FR-1). Currently, our weekly plan generation algorithm generates generic 

high-protein diets and workout plans that would work decently for anyone wanting to be 

more fit. Our app has all the necessary information to produce more personal weekly 

plans, but we prioritized having every page of the app functional over a more intelligent 

weekly plan algorithm under the time constraints of the project. Improving this algorithm 

will only require work on the backend and means that frontend work in this area is 

completed since no more data collection than already implemented is needed. 

 

Rudimentary Logging 

Though we met the requirement for allowing users to log meals, grocery items, 

and workouts as completed (FR-4), we think users could use more flexibility in how they 

log meals and workouts. Currently, they can only check off that a meal or exercise is 

completed. However, since may deviate from the recommended meal plan or exercise 

plan, we think users need the ability to add in different, off-plan meals they consumed or 

exercises they accomplished as well as adjust the amount of a meal or number of reps of 

exercises completed. Ideally, the app would allow for this more detailed logging and 

readjust the weekly plan to still work well for the user.  

 
Lack of Customization 

Even with improved weekly plan generation, users are likely going to find meals or 

exercises they dislike and want to remove or swap. Currently, users cannot change any 

16 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

items in the weekly plan, so we want to allow users to swap or remove individual items 

followed by an automatic update to the weekly plan that ensures fitness goals are met.  

 

Big Picture 

Overall, we successfully created a cross-platform app that can help people 

achieve their fitness goals, even in the app’s early stages of maturity. While the weekly 

plans are not catered to the individual user yet, we believe improvements to this area will 

be easy to implement. The app is effectively feature-complete and usable on a 

day-to-day basis, so users that follow the weekly plans generated for them in Radish will 

be one step closer to their fitness goals. The look and feel of the app is fully fleshed out, 

so users can simply expect a more personal experience of the same type as the app 

matures. 

Conclusions and Future Work 

With the completion of senior project, Radish is at a stage where we consider it a 

successful implementation as a proof of concept of what we hope to accomplish in the 

long run. We learned how to build scalable applications from start to finish, which is an 

invaluable skill in the industry. While we believe that we still have a solid amount of work 

to do before it is production ready, we’ve taken steps to ensure that the work that we 

have completed so far scales and translates very well into our next stage of 

development. 

There are some things we hope to accomplish before we will release this up. This 

list of key tasks that must be completed before it is market ready is as follows: 

● More meal and workout customization 

● Implementation of a user-based and item-based collaborative filtering algorithm to 

allows for better recommendations 

● More curated recipes 

● Ability to substitute meals from restaurants 

17 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

● Detailed instructions for exercises 

These are key features that we believe are essential to the value that our app will 

provide. We fully believe in Radish’s ability to capitalize on the market needs of beginner 

weightlifters and that we will be able to turn this app into a startup once we find the right 

product-market fit and revenue model. 

Appendix A: Completed App Images 

Onboarding: 

 

18 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

 

Meals: 

 

19 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

Workouts: 

 

Groceries: 

 

20 



Radish: A Cross Platform Meal Prepping App For Beginner Weightlifters 

You Page: 

 

21 


