PROJECT REPORT

FOR

Empowering Villages Center and Agricultural Training Facility

IN

Rubagabaga Village, Rwanda

FOR

Journeyman International

Written by Jenna Williams and Julia De Hart

Advised by Dr. James Mwangi

California Polytechnic State University, San Luis Obispo

June 5th, 2019

TABLE OF CONTENTS

ABSTRACT	1
INTRODUCTION	2
JOURNEYMAN INTERNATIONAL	2
EMPOWERING VILLAGES	2
RWANDA: THE HISTORY	2
PROJECT DESCRIPTION	3
PURPOSE	3
DESIGN TEAM	4
DESIGN OVERVIEW	4
DELIVERABLES	6
CALCULATIONS	6
DRAWINGS	7
CHALLENGES	8
MATERIALS	8
CONFINED MASONRY DESIGN	8
INTERDISCIPLINARY TEAMWORK	8
THE FINAL IMPACT	9
GLOBAL CONSIDERATIONS	9
CULTURAL CONSIDERATIONS	9
SOCIAL CONSIDERATIONS	9
ENVIRONMENTAL CONSIDERATIONS	10
ECONOMIC CONSIDERATIONS	10
CONSTRUCTABILITY CONSIDERATIONS	10
TRAVEL EXPERIENCE	11
TEAM EVALUATIONS	12
TEAM DYNAMICS	12
PERSONAL REFLECTION - JULIA DE HART	12
PERSONAL REFLECTION - JENNA WILLIAMS	13
APPENDIX A: STRUCTURAL CALCULATIONS	A1
APPENDIX B: STRUCTURAL DRAWINGS	B1
APPENDIX C: PRESENTATION	C1
APPENDIX D: WORKS CITED	D1

ABSTRACT

By partnering with non-profit organizations such as Journeyman International and Empowering Villages, undergraduate students can engage in senior projects that have far reaching humanitarian impacts. Journeyman International is well known for creating powerful teams of students who tackle design challenges in developing countries. This paper details the work of two architectural engineering students from California Polytechnic State University, San Luis Obispo on a design for the Empowering Villages Center (EVC) and Agricultural Training Facility (ATF) in Rubagabaga Village, Rwanda. The EVC and ATF project was proposed by Empowering Villages, an organization that aims to bring electricity and socioeconomic growth to rural communities in East Africa. The students collaborated on an interdisciplinary team for nine months to produce structural calculations and drawings for the project. In addition to the structural calculations and drawings, this report includes a project overview, challenges, the final impact, team dynamics, and personal reflections.

INTRODUCTION

JOURNEYMAN INTERNATIONAL

Journeyman International (JI) is a non-profit organization founded in 2009 with the mission statement to "Build What Matters Most". By partnering undergraduate students from the Architecture, Architectural Engineering, and Construction Management disciplines at Cal Poly, JI creates interdisciplinary teams to design humanitarian projects around the world. Student volunteers serve as the project designers in order to make JI a low cost option for building in developing and underprivileged areas.

EMPOWERING VILLAGES

JI partners with other nonprofit organizations to provide quality and meaningful design work for a variety of sectors. For this project, JI partnered with Empowering Villages, a rural community development model that helps bring socio-economic sustainability to developing areas. Empowering Villages is funded by East African Power who construct hydropower plants in developing villages throughout East Africa. These hydropower plants bring electricity to villages that may otherwise not have access to power and allows them to develop their small villages effectively and efficiently. Empowering Villages reached out to JI to design the Empowering Villages Center (EVC) and Agricultural Training Facility (ATF) in Rubagabaga Village, Rwanda.

RWANDA: THE HISTORY

From the 1300s to late 1800s, the Hutu and Tutsi were harmonious under a centralized monarchy with Tutsi kings. However, leadership was passed around under colonial rule—the Germans in 1899 and the Belgians in 1919. These sudden leadership changes were followed by the hostile Rwandan leadership of President Gregoire Kayibanda and President Juvenal Habyarimana. Discrimination against Tutsi was institutionalized, thus beginning one of the most extensive genocides the world has seen. The Tutsi were targeted from 1959 onwards—leading to hundreds of thousands of deaths and nearly two million exiles.

In 1979, the Rwandese Alliance for National Unity (RANU) was created to support Rwanda refugees in exile and mobilize against aggressive political actions and genocide ideology. The RANU was renamed the Rwandese Patriotic Front (RPF) in 1987, followed by the launch of an armed liberation struggle in 1990. The dictatorship was removed in 1994, ending the genocide of over one million Tutsi.

PROJECT DESCRIPTION

PURPOSE

The Empowering Villages Center was proposed to provide space for assembly, social programs, skills trainings, and recreation. Most importantly, the EVC will serve as a gathering place for the people of Rubagabaga Village and the surrounding areas. The creation of a centralized space where local people can congregate allows villagers to take ownership of their community.

The Agricultural Training Facility was proposed to allow local farmers to adopt innovative strategies that can make their land more profitable. As seen in *Figure 2*, the project site is located near steep mountainside slopes that local farmers currently struggle to stabilize. The goal is to provide local farmers with the tools to maximize crop yields and income while also emphasizing environmental sustainability.

Figure 1: Kaseke Village, Down the river from Rubagabaga Village

Figure 2: Project site, Located on the plateau

The overarching goal of this project was to promote a healthy community dynamic and a sense of place for the people in Rubagabaga Village. East African Power recently completed a hydropower plant adjacent to the project site, proving their ability to employ local people, through construction and development, helping bring financial stability to the villagers. The goal of the design team for the EVC and ATF was to create a building that could be constructed by villagers to continue monetary flow into Rubagabaga Village.

DESIGN TEAM

The project design team consisted of architecture student Mackenzie Dias, construction management student Jake Stom, and architectural engineering students Jenna Williams and Julia De Hart. While this project fulfilled the student's senior thesis projects for Cal Poly, they each joined the project to help the people of Rubagabaga Village. The team worked together for nine months to generate a final design product.

DESIGN OVERVIEW

It was decided by the design team that the best way to incorporate the goals of both the EVC and ATF was to bring them together as one building with two wings. As shown in beige in *Figure 3*, the ATF would be set up as a classroom with adjacent administration offices and storage rooms. A crops testing area is located outside the ATF for farmers to practice the techniques they learn about during their training. The EVC, as seen in red below, serves as the second wing of the combined-use building. The open floor plan offers flexibility so the people of Rubagabaga Village can utilize the space as needed. Large sliding doors serve as entrances to the ATF from either side of the building while a sliding door between program spaces offers separation during class time. An auxiliary building at the back of the site serve as bathrooms. A steel canopy is also located in front of the structure to provide covered outdoor seating.

Figure 3: Floor Plan

The structural system of the building was chosen based on material availability and onsite constructability. The gravity system consists of a steel decking roof and milled eucalyptus trusses. The trusses over the EVC are monosloped while those over the ATF are in a butterfly configuration as illustrated in *Figures 4 and 5*, respectively. Both systems allow natural sunlight and fresh air to enter and circulate throughout the building. Steel rod-braces serve as the roof diaphragm and the main lateral force resisting system consists of confined masonry walls with concrete tie beams and columns. The entire structure sits on a concrete slab on grade with robust concrete foundation walls.

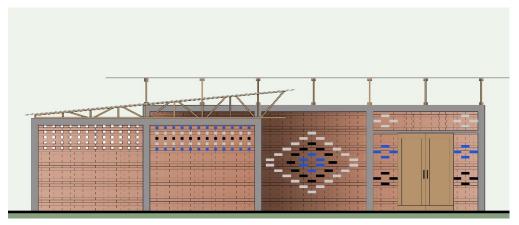


Figure 4: North Elevation

Figure 5: South Elevation

DELIVERABLES

The deliverables required of the architectural engineering students were structural calculations (Appendix A) and structural drawings (Appendix B) for the project.

CALCULATIONS

The gravity calculations for this project began with estimating member sizes to find a building weight. Load take-offs were produced separately for the EVC and ATF since the buildings had separate roof systems and different wall heights. Next, a corrugated, concealed fix decking was chosen from a Rwandan manufacturer, Safintra, to prevent water leakage and to define a water runoff direction. A purlin spacing was chosen based on the decking specifications. Truss demands were determined in RISA-3D modeling. The students did not have sufficient information on the design properties of Rwandan eucalyptus for the purlins and trusses. The design values for Douglas Fir Larch Grade 2 were used instead, as they were determined to be conservative for the eucalyptus member design. All timber members and truss connections were designed using the 2015 National Design Specification (NDS) by the American Wood Council (AWC). Due to the variability of eucalyptus in a wet region like Rwanda, temperature and moisture content factors were taken into consideration. The final truss member sizes were taken to be the same for both program areas for constructability ease. The slab on grade design was chosen from a typical U.S. standard design for 1-2 story buildings, a 5" thick slab with #3 bars at 18" on center each way.

The lateral calculations considered both wind and seismic forces to determine the governing load case. A wind speed for the region near Rubagabaga Village was difficult to find, so the design team proceeded with a conservative wind speed of 110 mph. This is the lowest wind pressure found on maps for the U.S., but still highly conservative for Rwanda. Seismic values were easier to find, and the final values used are from a conference paper, Seismic Design Considerations for East Africa [2]. In accordance with ASCE 7-16 procedures, it was determined that the seismic loads governed for the project site.

Lateral load calculations were completed to determine the diaphragm design. Rod braces were designed to be placed between the purlins around the perimeter of the EVC and the ATF to serve as the load resisting system for governing seismic forces at the roof. Rod braces were also added in elevation, perpendicular to the trusses at midspan in the EVC and ATF to provide out of plane bracing to the bottom chord of both sets of trusses.

Confined masonry walls were designed in accordance with the manual created by EERI and IAEE, Seismic Design Guide for Low-Rise Confined Masonry Buildings [3]. The walls were designed for a lateral wall density based on seismic hazard, number of stories, brick type, and soil type. The walls were also designed for a gravity wall density based on the gravity load, brick strength, and mortar strength. The walls consist of two wythes made from custom size clay bricks that can be made by local people. The concrete tie-columns and tie-beams were sized and reinforced by the prescriptive design recommended by the Seismic Design Guide.

The wall foundations were designed to resist forces obtained from a lateral seismic load distribution. A conservative allowable soil bearing pressure was obtained from the 2015 International Building Code (IBC) since students were unable to obtain a geotechnical report for the site. The footing sizes and flexural reinforcement were determined using the American Concrete Institute (ACI) 318-14. The governing allowable stress design load combination was used to determine a sufficient footing size and the governing strength design combination was used to determine the flexural reinforcement, both transverse and longitudinal.

The restroom was dimensionally set to be the same plan size as one of the storage rooms in the ATF in order to minimize design calculations and provide uniformity throughout the design to make construction easier. The restroom gravity system was designed to mimic the ATF design, as the trusses were of the same size and spacing. The lateral system was designed with the same procedure used for the EVC and ATF.

Finally, a steel canopy area was designed using hollow structural steel sections for the beam, girder, and column members. The Safintra corrugated steel decking previously described for the EVC and ATF is also used for the canopy roofing and spans between beams.

DRAWINGS

The structural drawings consist of a foundation plan, roof framing plan, wall elevations, truss elevations, and supplementary details. The structural details included in the construction documents outline roof connections, truss connections, wall connections, and foundations. General notes are provided to specify materials and construction practices for this project. The structural drawings were coordinated with architectural drawings provided by the architecture student and were completed in metric units for ease of use in Rwanda.

CHALLENGES

Throughout this project, the students were met with different roadblocks that arise from considering international design aspects and working within an interdisciplinary team.

MATERIALS

One challenge was the availability and quality of materials available in Rwanda. The students were in contact with Rwandan engineers and JI staff members to determine the best design values for unfamiliar materials in the U.S., like eucalyptus. Eucalyptus in Rwanda also varies across the country, so it was established that controlling the species of eucalyptus that would be used for the project was impossible. Extensive research was conducted to attempt to find the compressive and bending values for Rwandan eucalyptus before it was decided to assume a conservative value that could account for discrepancies in wood quality, moisture content, and temperature effects.

CONFINED MASONRY DESIGN

Students were required to self-educate themselves on the design of confined masonry for this project. It was the chosen construction technique because of its success in previous

earthquakes, unlike masonry infill. Confined masonry engages the masonry with concrete tie beams and tie columns, as shown in *Figure 6*. Using the Seismic Design Guide from EERI, the students were able to follow prescriptive design practices used for similar low-rise, confined masonry buildings.



Figure 6: Confined Masonry versus Infill masonry

INTERDISCIPLINARY TEAMWORK

The third challenge experienced by the students was working with an interdisciplinary team. Coordinating ideas with students from different disciplines required each student to present and communicate their ideas effectively so that other team members could understand the design intention. At times, the architecture student would move forward with an idea without consulting the other disciplines, and this required compromise from all students to come to an agreement on the final design.

THE FINAL IMPACT

Perhaps the most exciting part of this project is that construction of the EVC and ATF will begin in the summer of 2019. The hydropower plant has been completed since team members visited the site in December 2018 and it won an award at the annual Infrastructure Industry Conference in Cape Town, South Africa. The most rewarding part of completing a Journeyman International project is reflecting on the international scale of the project and all the people that the design will benefit. There were numerous considerations for the global, cultural, social, environmental, economic, and constructability impact that this project would have in Rwanda and around the world.

GLOBAL CONSIDERATIONS

Designing a building for Rwanda, a country located half-way around the world from the design team, produces inherent far-reaching impacts. The team designed an agricultural training facility and community center for a village that otherwise would remain fairly underdeveloped and underprivileged. The local people will also have electricity from the hydropower plant located around the river bend from the team's project. The Rubagabaga Village community will have access to new technology and resources that will allow them to become more integrated with the larger Rwandan as well as global society.

CULTURAL CONSIDERATIONS

Rwanda underwent a loss of identity followed by the birth of a new identity in a very short time period. Julia had the opportunity to experience Rwandan culture firsthand, and see the residual effects of the Rwandan genocide. Building in a small, somewhat remote village meant that we could be dealing with a community that has not yet recovered. By incorporating traditional practices into the building design, like the Rwandan paintings on the brick walls, we are able to establish a known identity that the local people can connect with.

SOCIAL CONSIDERATIONS

The building of the EVC and ATF will greatly impact the lives of the people in Rubagabaga Village. Farmers have the opportunity to become educated in high yield crops and environmentally friendly farming techniques. The community center will provide local people with a place to gather and discuss community concerns as well as organize local events. The entangled cultural and social value that this project brings to the local people will foster an engaged, tight-knit community.

ENVIRONMENTAL CONSIDERATIONS

Rubagabaga Village is located on the Rubagabaga River, 25 kilometers south of the city of Musanze. There are vehicle accessible roads that land on the opposite side of the river, facing the site. This posed the challenge for our site to be built with materials that could be transported across the river. All materials were restricted in length and weight to ensure they were manageable to be hauled across the river. The proximity to the river also required the team to direct any site runoff away from the river to avoid pollution. Another environmental concern that the team took into consideration was providing a roof water collection system for rainfall. Using a water cistern, rainfall will go pass through different natural filters to produce clean, potable water.

ECONOMIC CONSIDERATIONS

All designs of this building were created so that local people could contribute to the construction. The villagers are paid for their labor contributions, establishing an economic flow throughout the village and surrounding areas. Labor is extremely inexpensive in Rwanda. For example, a laborer will be paid \$2.00 a day to break rocks into gravel. This is much more cost effective and much better for the local laborers and their families than it would be to bring a concrete truck in from a third party for pouring. Not only will the construction of this project provide money for villagers, but the agricultural training facility will teach farmers how to produce more abundant crops—leading to an even more prosperous outcome for Rubagabaga Village.

CONSTRUCTABILITY CONSIDERATIONS

Each piece of the design was carried out with the intention that the Rubagabaga community could contribute to its construction. All buildings will have bamboo woven mat ceilings and brick walls painted with traditional Rwandan designs, both of which can be fabricated by local people. Given proper instruction and tools, locals can mill eucalyptus trees from the area to form the trusses, make handmade clay bricks for the walls, and mix the concrete for the site.

TRAVEL EXPERIENCE

In December 2018, project team member Julia De Hart travelled to Rwanda with six other students also partnering with JI. We landed in the country's capital, Kigali, and were met by Carly Althoff, a Cal Poly architecture alumni who now lives in Rwanda as a full-time JI staff member, as well as other JI and Empowering Villages staff. The main purpose of the trip was to visit each JI team's site while taking in as much culture and history along the way.

First, the site at Rubagabaga Village was visited, located about 30km south of Musanze, the nearest city of notable size. We travelled through villages and banana plantations on dirt roads before finally crossing a river in our car to arrive at our destination. The hydropower plant commissioned by the country of Rwanda with East African Power, was under construction while we were there. It was eye-opening to see how something as large-scale as a hydropower plant is constructed in a developing country. They compensate the lack of heavy machinery with sheer manpower. Huge groups of people line up to carry rocks uphill, dig trenches with shovels, and break rocks on site with a hammer and chisel to make aggregate.

The best part of the entire experience was

Cal Poly Students in Rwanda

Hydropower plant adjacent to project site

Students engaging with local children

interacting with the people, especially the kids, whom our project will impact. When we hiked through villages and country sides, kids would gather and follow us for miles, helping us take the right path and use the right footholds after laughing at us when we took the wrong ones. The native Rwandans travelling with us would tell elder members of the communities why we were there and their faces would light up and come over to shake our hands. Barriers of language and culture have no substance when compared to laughter and humanity.

TEAM EVALUATIONS

TEAM DYNAMICS

Unlike the architecture student or the construction management student, who work independently on their own tasks, the architectural engineering students on the team had a unique opportunity to work together on their deliverables. The students gravitated towards the parts of the project that best fit their skill sets. Jenna had previously completed a research project for a class on confined masonry, so she was more comfortable taking on this task. Julia had held a drafting internship for the past two years, so she was more efficient in creating the drawings for the project. The students usually worked at the same time, setting up work days so that they could bring any questions or concerns to each other easily. The students had already created a solid team dynamic foundation last quarter working on the Cal Poly EERI Seismic Design Competition Team, so they were quick to understand how each other communicated and worked best.

PERSONAL REFLECTION - JULIA DE HART

I am so grateful to be a part of a Journeyman project and the greater Journeyman team. I heard JI founder, Daniel Wiens, speak at a SEAOC student chapter meeting as an underclassman and was immediately convinced that I wanted to partner with them for my senior project. This project forced me to find solutions for things that I would not normally be faced with when designing in the United States. My design labs at Cal Poly prepared me to design a project of this scale. I had experience in all of the materials, but I had to adapt to the construction means and methods that are typical for a developing country like Rwanda.

Understanding the global scale of the project helped put everything into perspective. The enormous amount of pride I have for the impact our design will have on the Rwandan people makes every ounce of work worth the effort. I was fortunate enough to travel to Rwanda and interact with the people first hand. Being able to embrace their culture, learn about their history, and eat their food are all life-changing experiences that have earned a special place in my heart forever. I plan to return so that I can witness my first completed project as a structural engineer.

PERSONAL REFLECTION - JENNA WILLIAMS

Completing this humanitarian project taught me numerous technical and life lessons. From working on an interdisciplinary team to realizing the impact that this project will have in Rwanda, I have learned the importance of recognizing and embracing the big picture.

The international aspect of this project required me to engage in self-education. Even though we had learned how to assemble a calculations and drawings packet from design lab, this project required more research into Rwanda. Challenges with material availability and confined masonry design were new topics that I had to invest time learning about. In addition to learning on my own, I had to evaluate when it was best to contact our on-ground contacts at JI and Empowering Villages when I had a bigger question. This project began my regular use of "engineering judgement" to inform my decisions.

Working on an interdisciplinary team allowed me to learn the needs of everyone on a project: architect, engineer, contractor, and most importantly, the client. When a challenge was present, it was always most beneficial to consider how the project served the client. Journeyman International provided me the opportunity to develop my interpersonal skills for the workplace and for life.

Oddly enough, I never felt as if this was a "requirement", but instead it was something that I was truly passionate about. I began working on humanitarian projects with Cal Poly Structural Engineering Students for Humanity (SESH) in 2018, and since then I've caught the "humanitarian bug". My ambition to help others and spread safe engineering practices around the world has been met through designing for Rubagabaga Village. Having the opportunity to work with Journeyman International and continue my growth as a member of the structural engineering industry who gives back was extremely rewarding. I plan to continue my involvement in humanitarian work after I complete my graduate degree in June 2020.

APPENDIX A: CALCULATIONS

STRUCTURAL CALCULATIONS

FOR

Empowering Village Center and Agricultural Training Facility

IN

RUBAGABAGA VILLAGE, RWANDA

Prepared For:

Journeyman International

Prepared By:

Jenna Williams

and

Julia De Hart

Prepared At:

California Polytechnic State University, San Luis Obispo

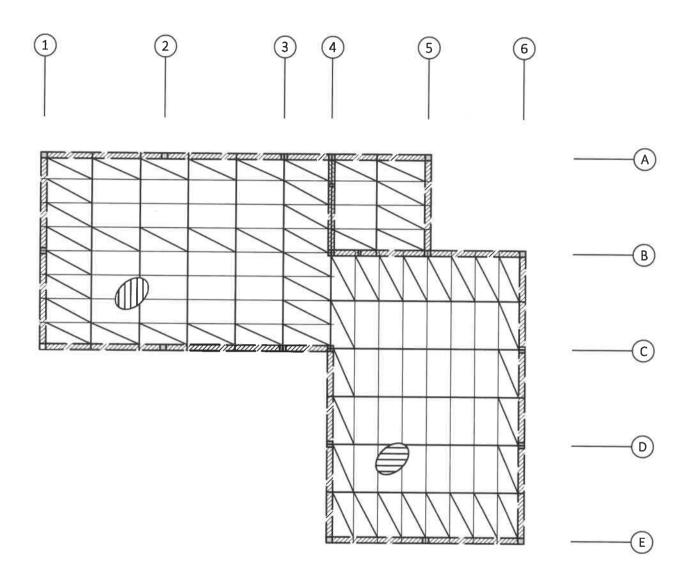
Prepared On:

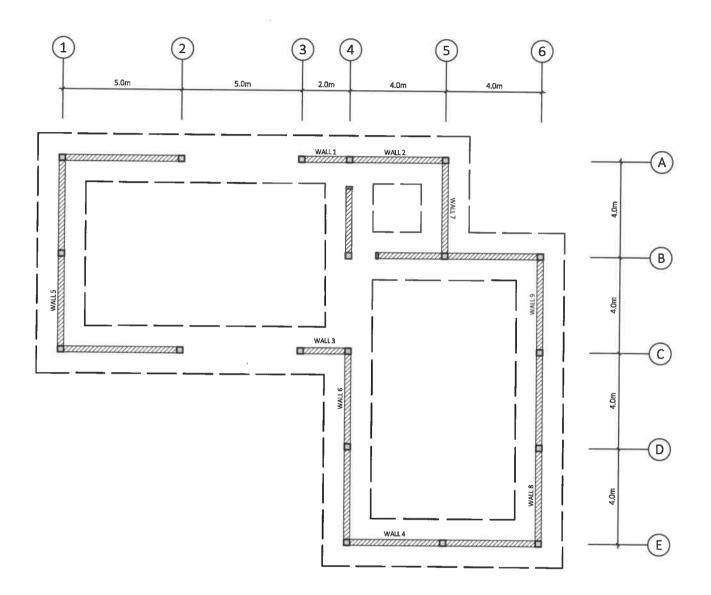
June 5th, 2019

Journeyman International Rubagabaga Village EVC and ATF

TABLE OF CONTENTS

DESIGN CRITERIA	1
EVC AND ATF	
EVC LOAD TAKE OFF	2
ATF LOAD TAKE OFF	3
KEY PLANS	4
DECKING DESIGN	6
PURLIN DESIGN	7
ATF TRUSS DESIGN	8
EVC TRUSS DESIGN	11
SLAB ON GRADE DESIGN	15
SEISMIC LOAD CALCULATIONS	16
WIND LOAD CALCULATIONS	17
EVC DIAPHRAGM DESIGN	18
ATF DIAPHRAGM DESIGN	20
CONFINED MASONRY WALL DESIGN	22
SEISMIC LOAD DISTRIBUTION	26
WALL FOUNDATION DESIGN	29
RESTROOM	
RESTROOM LOAD TAKE OFF	
KEY PLANS	
DECKING DESIGN	
PURLIN DESIGN	
TRUSS DESIGN	
SLAB ON GRADE DESIGN	
SEISMIC LOAD CALCULATIONS	
DIAPHRAGM DESIGN	
CONFINED MASONRY WALL DESIGN	-
SEISMIC LOAD DISTRIBUTION	
WALL FOUNDATION DESIGN	86
TRUSS TO WALL CONNECTION DESIGN	92
STEEL CANOPY	
STEEL CANOPY LOAD TAKE OFF	93
KEY PLANS	94
STEEL CANOPY FRAMING DESIGN	95
STEEL CANOPY PAD FOOTING DESIGN	98
APPENDIX	99


Journeyman International Rubagabaga Village EVC and ATF


Julia De Hart Jenna Williams

	Jenna Willia
	DESIGN CRITERIA
odes: IBC 201	5
ASCE 7-	16
ACI 318	~14
AISC 360	0-16
NDS-15	
gory: II	
	-
$S_{D1} = 0.1$.52 g
l _e = 1.0	
Site Class: D	
Wind Exposure:	Partially Enclosed
Wind Speed:	110 mph
Concrete:	ťc = 3000 psi (20.7 MPa)
Steel Reinforcemen	t: fy = 40 ksi (275 MPa)
-	f'm = 3000 psi (20.7 MPa)
Timber:	Eucalyptus (Design Values taken from DF #2)
and Demonstration Alexander	
USE IBU U	Chapter 18 Soil Pressure Values
	ASCE 7- ACI 318 AISC 364 NDS-15 gory: II Seismic Coefficient: $S_{DS} = 0.6$ $S_{D1} = 0.1$ Importance Factor: $I_e = 1.0$ Site Class: D Wind Exposure: Wind Speed: Concrete: Steel Reinforcemen Masonry: Timber: Cal Report: Not Avai

	n International a Village EVC and ATF			Julia De Ha Jenna Willian
References		Calculations		
		EVC LOAD TAKE O	FF	
	DEAD LOAD	<u> </u>	WEIGHT (PSF)	WEIGHT(kg/m^2
	METAL DECKING		0.50	2.44
	BAMBOO WEAVE CEILING		0.50	2.44
	MISC.		2.00	9.76
		TOTAL TO PURLINS:	3.00	14.65
	PURLINS		2.08	10.16
		TOTAL TO TRUSSES:	5.08	24.81
	WOOD TRUSSES		11.96	58.41
	τοτα	L TO COLUMNS AND WALLS:	17.04	83.22
	CONCRETE COLUMNS		8.79	42.91
	MASONRY WALLS		210.97	1029.76
		TOTAL TO FOUNDATION:	236.81	1156.19
			WEIGHT (PSF)	WEIGHT(kg/m^2
	<u>LIVE LOAD</u> ROOF		20.00	97.65
		112		
	<u>TOTAL AREA</u>	112 m^2		

	n International a Village EVC and ATF			Julia De Ha Jenna Willian							
anaPanaP				Jernia willian							
eferences		Calculations									
	ATF LOAD TAKE OFF										
			WEIGHT (PSF)	WEIGHT(kg/m^2							
	DEAD LOAD										
	METAL DECKING		0.50	2.44							
	BAMBOO WEAVE CEILING		0.50	2.44							
	MISC.		2.00	9.76							
		TOTAL TO PURLINS:	3.00	14.65							
	PURLINS		2.08	10.16							
		TOTAL TO TRUSSES:	5.08	24.81							
	WOOD TRUSSES		11.18	54.60							
	TOTAL	. TO COLUMNS AND WALLS:	16.26	79.41							
	CONCRETE COLUMNS		14.10	68.83							
	MASONRY WALLS										
			164.09	800.92							
		TOTAL TO FOUNDATION:	194.45	949.38							
			WEIGHT (PSF)	WEIGHT(kg/m^2							
	LIVE LOAD										
	ROOF		20.00	97.65							
	TOTAL AREA	96 m^2									
	3										

	n International				Julia De	e Hart
Rubagabaga	Village EVC and ATF				Jenna Wi	lliams
References			Calculatior	15		
			DECKING DES	IGN		
	Purlin Spacin	g:	1 m			
	Load:		2.44 kg/m^2	self	weight of decking	
See Appendix Page		OK 700 concea nc, 0.5mm gau	led fix roofing ge			
99-100	Allowable Sp Allowable Loa	-	1.4 m 153 kg/m^2	> 1m > 2.44 kg/m^2	GOOD GOOD	5
	USE SAFLOK 7	700 ALUMINU	M-ZINC 0.5mm G			

Journeyma Rubagabag						Julia De Ha
unaganag	a village	EVC and ATF				Jenna Williar
References			Calc	ulations		
				PURLIN DE	SIGN	
	WD =		b/ft	0.25 lb/in		
	WL =	20 li 2 r		1.67 lb/in 78.74 in		
		21	11	/0./4 111		
IDS T4.3.1	F6' =	Fb(CD*CM*Ct	*CL*CF*Cfu*Ci	*Cr)		
		Fb =	525 psi		*use DF#2 design	
		CD =	1.0		values, conservative	
		См =	1.0			
		Ct =	1.0			
		CL =	1.0			
		CF =	1.5			
		Cfu =	1.0			
		Ci =	1.0			
		Cr =	1.0			
	Fb' =	787.5 p				
	fb =	M/S				
		M =	1485.4 lb-ir	1		
		Sreq =	1.89 in^3		10 mm^3	
				is @ 1m o.c. (S=	83,333 mm^3)	
		Use 2x4 puri	ins @ 40" o.c.			

Journeymar Rubagabaga		VC and ATF				Julia De H Jenna Willia		
References			Calc	ulations				
	ATF TRUSS DESIGN (TRUSS A&B)							
See Appendix		rd Force =	2086 kg	4598				
Page 102-108	Max Web Max Diag	o Force = gonal Force =	490 kg 1525 kg	1080 3362				
NDS T4.3.1	Fc' =	Fb(CD*CM*C	t*CL*CF*Cfu*Ci*	°Cr)				
NDS T4.3.1	Fc' =	$F_c = C_D = C_M = C_f = C_F = C_i = 713.0$	775 psi 1.0 0.8 1.0 1.15 1.0			*use DF#2 design values, conservative *use DF#2 design values, conservative		
	Ft' =	CF = Ci = 487.5	1.50 1.0 psi					
	CHORD							
			P/A A _{req} =	6.45 in^2		in^2 per chord mm^2 per chord		
			P/A A _{req} =	9.43 in^2		in^2 per chord mm^2 per chord		
				m chord membe nbers (A= 5.25in		m^2)		

Journeymai	n Internatio	onal				Julia De Hart				
Rubagabaga	a Village EV	C and ATF				Jenna Williams				
References		Calculations								
			ATF	TRUSS DESIGN (TRUSS A&B)					
	WEB	fc =	P/A							
		10 -	Areq =	1.52 in^2	977.48 mm^2					
		ft =	P/A							
			Areq =	2.22 in^2	1429.63 mm^2					
			n x 100mm vertio							
		Use doub	le 2x4 vertical me	embers (A= 5.25)	in^2)					
	DIAGONA									
		fc =	P/A							
			Areq =	4.72 in^2	3042.16 mm^2					
		ft =	P/A							
			Areq =	6.90 in^2	4449.35 mm^2					
			m x 100mm diago							
		Use doub	le 2x4 diagonal m	nembers (A= 5.2	5in^2)					
		N 1	450 1	(A	7500 40					
			m x 150mm diago Iss B and C memb		= /500mm^2)					
			iss b and c memic							
		(double 2	x6 diagonal mem	bers equivalent))					

Journeymar Rubagabaga					Julia De Ha Jenna William
			alculations		
References					
			TF TRUSS DESIG	N (TRUSS A&B)	
	ATF TRU	SS CONNECTIONS			
		MBER TO CHORD			
	V	Vidth of main member =	5.5 in	150 mm	
	\	Width of side member =	5.5 in	150 mm	
		kness of main member =		50 mm	
	Thie	ckness of side member =	1.5 in	50 mm	
		G =	0.55	0.55	
		Bolt diameter =	0.5 in	12.7 mm	
	DEMAND) =			
	Truss A	1107 kg	2440.5 lb		
	Truss B	462 kg	1018.5 lb		
	CAPACIT	v			
NDS TA 12F		ZII(CD*CM*Ct*Cg*CΔ)			
105 17 121		Z = 1150	b		
		$C_D = 1.25$	-		
		См = 1			
		Ct = 1			
		Cg = 0.99			
		C∆ = 1			
	Z '=	1423.1 lb per bolt			
	Truss A	# boltsreq = 1.71			
	Truss B	# boltsreq = 0.72			
	TRUSS A	Use 2-12.7mm ø bolts (2-1/2" a holts)		
	TRUSS B	Use 1-12.7mm ø bolt (1			
			, 2 Ø 501(j		

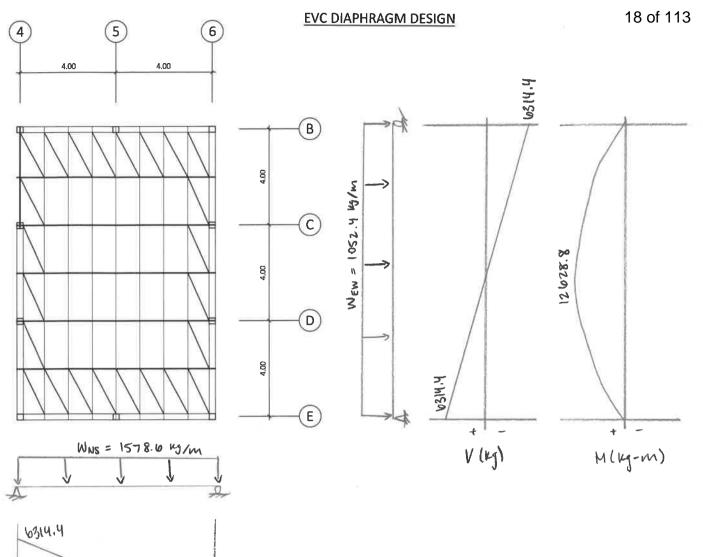
	ional				Julia De H Jenna Willia
		С	alculations		
			EVC TRUSS DE		
				<u></u>	
		3495 k	g	7705.2 lb	
1			g	2716.1 lb	
Max Diag	gonal Force =	1827 k	g	4027.8 lb	
Fc' =	Fb(Cd*Cm*	Ct*CL*CF*Cfu*	'Ci*Cr)		
	Fc =	775 p	si		*use DF#2 design
	CD =	1.0			values, conservative
	См =	0.8			
	Ct =	1.0			
	CF =	1.15			
	Ci =	1.0			
Fc' =	713.0	psi			
Ft' =	Fb(Cd*Cm*	Ct*CL*CF*Cfu*	Ci*Cr)		
	Ft =	325 p	si		*use DF#2 design
	CD =	1.0			values, conservative
		1.0			
		1.0			
		1.50			
- 1					
Ft' =	487.5	psi			
CHORD					
	fc =	P/A			
		Areq =	10.81 in^2	2 5.40	in^2 per chord
				3486.02	mm^2 per chord
	ft =				
		Areq =	15.81 in^2		in^2 per chord
				5098.52	mm^2 per chord
	Max Wel Max Diag Fc' = Fc' = Ft' =	Fc' = Fb(CD*CM*) Fc = CD = CM = Ct = CF = Ci = Fc' = Fb(CD*CM*) Ft = Fb(CD*CM*) Ft = CD = CM = Ct = CF = Ci = Ft = 487.5 CHORD	$\begin{array}{rcl} \mbox{Max Chord Force} &=& 3495 \mbox{ k} \\ \mbox{Max Web Force} &=& 1232 \mbox{ k} \\ \mbox{Max Diagonal Force} &=& 1827 \mbox{ k} \\ \mbox{Fc}' &=& Fb(CD^*CM^*Ct^*CL^*CF^*Cfu^* \\ \mbox{Fc} &=& 775 \mbox{ p} \\ \mbox{CD} &=& 1.0 \\ \mbox{CM} &=& 0.8 \\ \mbox{Ct} &=& 1.0 \\ \mbox{CF} &=& 1.0 \\ \mbox{CF} &=& 1.0 \\ \mbox{CF} &=& 1.0 \\ \mbox{Fc}' &=& 713.0 \mbox{ psi} \\ \mbox{Ft}' &=& Fb(CD^*CM^*Ct^*CL^*CF^*Cfu^* \\ \mbox{Ft} &=& 325 \mbox{ p} \\ \mbox{CD} &=& 1.0 \\ \mbox{CM} &=& 1.0 \\ \mbox{CF} &=& 1.0 \\ \mbox{ChORD} $	$\begin{array}{rcl} \mbox{Max Chord Force} &=& 3495 \ \mbox{kg} \\ \mbox{Max Web Force} &=& 1232 \ \mbox{kg} \\ \mbox{Max Diagonal Force} &=& 1827 \ \mbox{kg} \\ \mbox{Fc'} &=& Fb(CD^*CM^*Ct^*CL^*CF^*Cfu^*Ci^*Cr) \\ & Fc &=& 775 \ \mbox{psi} \\ \mbox{Cb} &=& 1.0 \\ \mbox{Cm} &=& 0.8 \\ \mbox{Ct} &=& 1.0 \\ \mbox{Cm} &=& 0.8 \\ \mbox{Ct} &=& 1.0 \\ \mbox{CF} &=& 1.15 \\ \mbox{Ci} &=& 1.0 \\ \mbox{Fc'} &=& 713.0 \ \mbox{psi} \\ \mbox{Ft'} &=& Fb(CD^*CM^*Ct^*CL^*CF^*Cfu^*Ci^*Cr) \\ \mbox{Ft} &=& 325 \ \mbox{psi} \\ \mbox{Cb} &=& 1.0 \\ \mbox{Cm} &=& 1.0 \\ \mbox{Cf} &=& $	$\begin{array}{rcl} Max Web Force = & 1232 kg & 2716.1 lb \\ Max Diagonal Force = & 1827 kg & 4027.8 lb \\ \hline Fc' = & Fb(CD^*CM^*Ct^*Ct^*Cfu^*Ci^*Cr) \\ Fc = & 775 psi \\ CD = & 1.0 \\ CM = & 0.8 \\ Ct = & 1.0 \\ CF = & 1.15 \\ Ci = & 1.0 \\ Fc' = & 713.0 psi \\ \hline Ft' = & Fb(CD^*CM^*Ct^*Ct^*Cfu^*Ci^*Cr) \\ Ft = & 325 psi \\ CD = & 1.0 \\ CM = & 1.0 \\ CM = & 1.0 \\ CM = & 1.0 \\ Cr = & 1.0 \\ Cr = & 1.0 \\ Cr = & 1.0 \\ Ft' = & 487.5 psi \\ \hline \hline CHORD \\ \hline fc = & P/A \\ Areq = & 15.81 in^2 2 5.40 \\ 3486.02 \\ ft = & P/A \\ Areq = & 15.81 in^2 2 7.90 \\ \hline \end{array}$

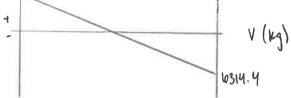
Journeymai			_			Julia De Hart
Rubagabaga	a village Ev		_			Jenna Williams
References						
				EVC TRUSS DESIGN	(TRUSS C)	
	WEB					
		fc =	P/A			
			Areq =	3.81 in^2	2457.67 mm^2	
		ft =	P/A			
			Areq =	5.57 in^2	3594.49 mm^2	
				rtical members (A= members (A= 5.25i		
	DIACONA			inciniscis (n= 0.201		
	DIAGONAI	∟ fc≃	P/A			
			Areq =	5.65 in^2	3644.61 mm^2	
		ft =	P/A			
			Areq =	8.26 in^2	5330.47 mm^2	
			m v 150mm dir	agonal mombors (A	- 7500mm (2)	
				agonal members (Aa al members (A= 8.25		
			_			.5
			m x 150mm me uss A members	embers (A= 7500mr	n^2)	
			uss A members			
		(double :	2x6 diagonal m	embers equivalent)		
				34		
		ذ				
		•				

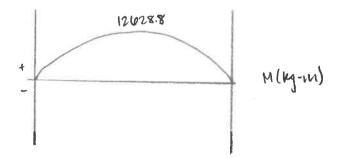
	n Internatio a Village E\	onal /C and ATF				Julia De Ha Jenna Williar				
References						Jenna Winnar				
Vererences			Ca	alculations						
		EVC TRUSS DESIGN (TRUSS C)								
	EVC TRUS	S CONNECTIONS								
	WEB MEN	ABER TO CHORD								
		idth of main mem	nber =	5.5 in	150 mm					
	1	/idth of side mem		5.5 in	150 mm					
		ness of main mem		1.5 in	50 mm					
	Thick	kness of side mem		1.5 in	50 mm					
				0.55	0.55					
	В	olt diameter =		0.5 in	12.7 mm					
	DEMAND	= 1200 kg		2645.5 lb						
	CAPACITY									
DS TA 12F		ZII(CD*CM*Ct*Cg	σ* CΛ)							
			, ch, 1150 lb							
		Cp =	1.25							
		См =	1							
		Ct =	1							
		Cg =	0.99							
		CΔ =	1							
	Z{{}'=	1423.1 lb	_							
		# boltsreq =	1.86							
	SPACING									
			4D =	2 in	50.8 mm					
		Minimum spacing	g of bolt							
			4D =	2 in	50.8 mm					
		Minimum edge d	istance		0010 1111					
			.5D =	0.75 in	19.05 mm					
		Use 2-12.7mm ø	bolts (2-	1/2" ø bolts)						
	Check Bolt	Spacing on Chord	Membe	er						
	50 8	mm end clear								
		mm spacing								
		mm edge clear								
ł		mm min. chord m	amhar	150	n deep chord necessary	f., 1 1 1				

Journeyman Inte Rubagabaga Villa			Julia De Har Jenna William
	50 LV 0 0110 / 111		Jenna william
References		Calculations	
	TRUSS DESIGN	SUMMARY	
	TRUSS A	Metric	U.S. Equivalent
	Chords	50x150mm	2x6
	Web	50x100mm	2x4
	Diagonals	50x100mm	2x4
	Bolts	2-12.7mm ø bolts	2-1/2" ø
	TRUSS B		
	Chords	50x150mm	2x6
	Web	50x100mm	2x4
	Diagonals	50x100mm	2x4
	Bolts	1-12.7mm ø bolts	1-1/2" ø
-			
	TRUSS C Chords	50x150mm	2x6
	Vertical	50x150mm	2x6
	Diagonal	50x100mm	2x6 2x4
	Bolts	2-12.7mm ø bolts	2-1/2" ø
	20110		

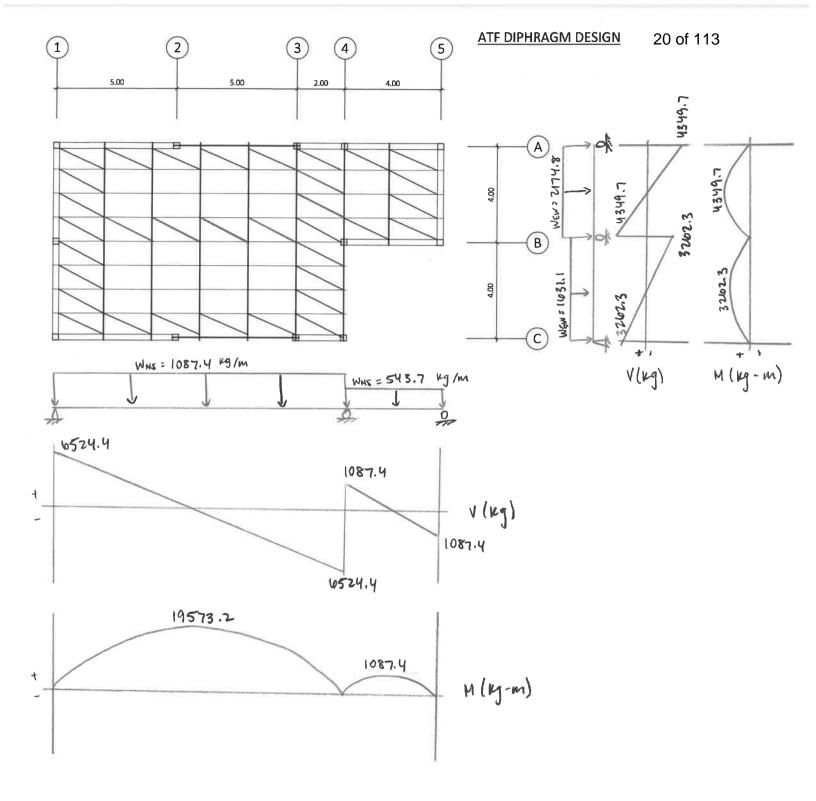
Journeyman International


Rubagabaga Village EVC and ATF


Julia De Hart Jenna Williams


eferences	Calculations						
	SLAB ON GRADE DESIGN - EVC AND ATF						
	Slab on grade to be constructed by typical slab on grade construction and minimum reinforcing:						
	Imperial Equivalent: 5" thick slab with #3 @18" o/c each way						
	SI Equivalent: USE 125mm THICK SLAB w/ 10mm REINFORCING BARS @ 0.4m EACH WAY						

•	n International a Village EVC and ATF						Julia De Jenna Will	
References			C	alculations				
		SEISMI	<u>IC LOAD CAI</u>	LCULATION:	<u>S - EVC AND</u>	ATF		
ASCE 7-16	SEISMIC INPUT VALUES							
	Ss =	0.76	g See Ap	opendix				
	S1 =	0.19	g Page	e 113				
12.2-1	R =	1	(Ordinary F	Reinforced T	Masonry She	ear Wall)		
	le =	1.0	(Risk Categ	ory II Buildi	ng)			
	Site Class:	E	E (Soft Clay)					
L1.4-1	Sms =	FaSs =	0.912	g				
L1.4-2	Sm1 =	$F_vS_1 =$	0.228	g				
		Fa =	1.2					
		Fv =	1.2					
L1.4-3	Sds =	2Sмs/3 =	0.608	g				
1.4-4	Sd1 =	2Ѕм1/З =	0.152	g				
	SEISMIC WEIGHT			•				
	ITEM	psf	kg/m^2	ECV trib	kg	ATF trib	kg	
	Ceiling	3.0	14.6	96	1406	112	1640	
	Purlins	2.08	10.2	96	975	112	1137	
	EVC Truss	12.0	58.4	96	5606			
	ATF Truss	11.2	54.6			112	6114	
	Walls (10")	125	610.3	72	43942	88	53707	
				Σ	51929	Σ	62598	
	Wevc =	51929	kg	114.5	kips			
	WATF =	62598	÷	138.0	-			
	Wtotal =	114527	kg	252.5	kips			
	BASE SHEAR							
	V = CsW							
		Cs =	$S_{DS}/(R/I_e) =$	0.608				
			0.044SDSle	0.027				
		Cs max =	SD1/T(R/Ie)	1.852				
			Τ=	Cthn^x =	0.082			
	V =	69632	kg	153.5	kips			


lourneyman Intei Rubagabaga Villa			3	Julia De Ha Jenna William
	50 200 0000 711			Jenna willian
eferences			Calculations	
ASCE 7-16				
WINI	O SPEED VALUES			
	V =	110 mph	49.17 m/s	
T26.6-1	Kd =	0.85		
26.7	Exposure:	B		
F26.8-1	Kzt =	1.0		
T26.9-1	Ke =	1.0		
26.11	G =	0.85		
26.12	Enclosure: Pa	artially Enclosed		
T26.13-1	GCpi =	-0.55		
T26.10-1	Kz =	0.7		
26.10-1	a 0	613*(Kz*Kzt*Kd*	K~*\/^?) _	
20.10-1	4z – 0.	18.43 psf	ke v··z) =	
		10.45 psi		
F27.3-1	Cp =	0.8		
27.3-1	p=qz	*(GCp-Gcpi) =		
		22.67 psf	110.68 kg/m^2	
	General Build	ing Parameters:		
	height =	4.5 m	(tallest wall)	
	length =	20 m	(longest wall length)	
	icigin –	20 11	(iongest wan iength)	
DETE	RMINE GOVERNING			
	WIND LOADIN			
	Vw = p*	h*l =		
		9962 kg		
	SEISMIC LOAD			
	Vs =	69632 kg		
		Ū		
SEISM	IIC LOADING GOVE			

Journeymai						J	ulia De Hart
Rubagabaga	a Village EV	C and ATF				Jen	na Williams
References				Calc	ulations		
ASCE 7-16				EVC DIAPH		5N	
	DIAPHRAG	M FORCES	F1000	1			
		Wevc = Fp = Vs =	51929 31573				
		Fpmin =	0.2*Sps*le	-	6315 kg		
		Fp _{max} =	0.4*Sps*le		12629 kg		
		Fpevc =	12629	kg	27.8 kips	s	
	N/S			E/W			
	Fline =	6314.5	kg	Fline =	6314.5 kg		
	# rods =	6	i	# rods =	8		
	Frod =		kg/rod	Frod =	789.3 kg/	rod	
	component =			component =	0.4		
	Faxial =	941.3	kg/rod	Faxial =	353.0 kg/	rod	
	DIAGONAL		GN				
	N/S						
		Pu =	941.3	kg	2.08 k		
		φPn =	φFyAg =	2.08			
			φ =	0.9			
			Fy =	50 ks			
		φPn - Pu =	Ag req = 0.00	0.046 in	<u>`2</u>		
		φειι - Fu –	0.00				
			diam req =	0.24 in	=	6.15 mm	
			6.35mm dia	ameter rod ad	equate for E\	/C in N/S direction (.25" Ø)	_
	E/W						
		Pu =	353.0	kg	0.78 k		
		φPn =	φFyAg =	0.78			
			φ =	0.9			
			Fy =	50 ksi			
		φPn - Pu =	Ag req = 0.00	0.017 in [,]	2		
			diam req =	0.15 in	=	3.77 mm	

-	n Internatic a Village EV								ilia De H na Willia		
<u> </u>											
References		Calculations									
ASCE 7-16		ATF DIPHRAGM DESIGN									
		IM FORCES									
		WATF =	62598 kg								
		Fp = Vs =	-								
		Fpmin =	0.2*Sps*le*Wp	эх =	7612	2 kg					
		Fp _{max} =	0.4*Sos*le*Wp	= xe	15224	4 kg					
		Fр атғ=	15224 kg		33.0	6 kips					
	N/S	line 1-4	line 4-5		E/W	line A-	B lir	ne B-C			
	Area =	96	16		Area =		48	64	-		
	Fline =	6524.5	1087.4 kg		Fline =	32	62.3	4349.7 kg			
	# rods =	8	4		# rods =		6	8			
	Frod =	815.6	271.9 kg/	rod	Frod =	5	43.7	543.7 kg/rod			
	component =	- 0.4	0.4		component	=	0.9	0.9			
	Faxial =	364.7	121.6 kg/	rod	Faxial =	4	86.3	486.3 kg/rod			
	DIAGONAI N/S	L ROD DESIG	<u>5N</u>								
		Pu =	364.7 kg		0.80	0 k					
		φPn =	φFyAg =	0.80							
		·	φ=	0.9							
			Fy =	50	ksi						
			Ag req =	0.018	in^2						
		φPn - Pu =	0.00								
			diam req =	0.15	in =		3.83 m	ım			
			6.35mm diame	eter rod	adequate	for ATF	in N/S	direction (.25" Ø)			
	E/W								_		
		Pu =	486.3 kg		1.0	7 k					
		φPn =	φFyAg =	1.07							
			φ =	0.9							
			Fy =	50	ksi						
			Ag req =	0.024	in^2						
		φPn - Pu =	0.00								
			diam req =	0.17	in =		4.42 m	ım			
			6.35mm diame	eter rod	adequate	for ATF	in N/S	direction (.25" Ø)			

		onal VC and ATF						Julia De H Jenna Willia
eferences			Calcula	tions				
		<u>co</u>	NFINED MAS	ONRY	WALL DESIGN	- EVC AND	ATF	
	Performa	nce Objective:	Life Sa	fety				
	Lateral W	all Density						
Confined								
Masonry		Required Wall D	ensity = 1.0%	for fo	llowing condi	tions:		
Design		Low Seismic Haz			GA = 0.06g ≤			
Guide		n = 1			story buildin	-		
		Solid Clay Bricks			andmade, Mo	-	l cons	ervativelv
		Soil Type C			oft clay soil	,,		
		N/S Direction						
		Assume 2 wythe	s of 120mm k	orick				
		Floor area		\р =	192.00 m^	2		
		Wall area		- w		2		
		Wall density	d = Aw / A	Ap =	2.60 %	> 1.0	0 %	GOOD
		E/W Direction						
		Assume 2 wythe						
		Floor area		\p =	192.00 m^			
		Wall area		w =				
		Wall density	d = Aw / A	\p =	1.56 %	> 1.0)%	GOOD
	<u>Gravity W</u>	all Density						
		Strength Reducti	on Factor		Fr =	0.6		
		Gravity Load Fac	tor		Fc =	1.4		
		Safety Factor		Fs =	Fc / Fr =	2.33		
		Compressive Stre	ength, σR					
		Eccentricty/Slend		r	Fe =	0.7		for interior walls
		Masonry Comp S	trength		f'm =	15 kg/c	m^2	
			σR	= Fe (f	m + 4) =	13.3 kg/c	m^2	

Journeymar							a De Hart
Rubagabaga	Village EV	C and ATF				Jenna	Williams
References			C	alculations			
References							
		1	CONFINED	MASONRY WALL	DESIGN - EVC AND ATF		
Confined		Wall Density	Index, $\Sigma d \ge$	<u>Fc (n*w) / σR</u>			
Masonry		Weight	w =	83.22 kg/m^2			
Design		Stories	n =	1			
Guide							
		For both dire					
		-	• •	0.876 %	0.070.0/		
		۵ = ۵ For one direc		4.17 %	> 0.876 %	GOOD	
				0.438 %			
			-	1.56 %	> 0.438 %	GOOD	
			•••				
		Wall Distance	e/Thickness	Ratio, $B/t \le \sigma R/(F$	s*D*w)		
		Distance	D	4			
		Distance Thickness	B = t =	4 m 0.250 m			
		THERIC33	B/t =	16.0			
			D =	1.0			
		σR/(Fs	s*D*w) =	684.93	> 16.7	GOOD	
	Conclusio	n					
	conclusion		fined maso	onry walls are suffi	cient		

Journeyman	International	Julia De Hart
Rubagabaga	Village EVC and ATF	Jenna Williams
References	Calculations	
	CONFINED MASONRY WALL DESIGN - EVC AND ATF	
Confined	TIE-COLUMN DESIGN	
Masonry Design Guide	Spacing Maximum spacing of tie-columns shall not exceed 6m Smax = 5 m < 6m	GOOD
	<u>Minimum Dimensions</u> Minimum depth x width of a tie-column 150mm x t t = 250 mm	
	Tie-Columns shall be 250mm x 250mm > 150mm x 250mm	GOOD
	<u>Reinforcing</u> <u>Longitudinal</u> Minimum 4 deformed reinforcing bars of minimum 10-mm diamet	ter
	Reinforcing shall be (4) 13-mm diameter bars	GOOD
	<u>Tie Sizing and Spacing</u> Minimum 6-mm diameter bars with 135° hooked ends	
	Tie spacing cannot exceed 200mm with minimum 20mm cover	
	Ties shall be 10-mm diameter transverse stirrups, spaced at 200m, with 50mm cover	GOOD

	International	Julia De Hart
Rubagabaga	Village EVC and ATF	Jenna Williams
References	Calculations	
	CONFINED MASONRY WALL DESIGN - EVC AND ATF	
Confined Masonry Design Guide	<u>TIE-BEAM DESIGN</u> Spacing Tie-beams shall be provided at the top of each wall, and above and below each window opening	GOOD
	$\frac{\text{Minimum Dimensions}}{\text{Minimum depth x width of a tie-beam 150mm x t}}$	0000
	Tie-Beams shall be 250mm x 250mm > 150mm x 250mm	GOOD
	<u>Reinforcing</u> <u>Longitudinal</u> Minimum 4 deformed reinforcing bars of minimum 10-mm diamet	er
	To ensure the effectiveness of tie-beams in resisting earthquake lo longitudinal bars should have a 90° hooked anchorage at intersecti	
	Reinforcing shall be (4) 13-mm diameter bar, with 90° hooked anchorage at intersections	GOOD
	<u>Tie Sizing and Spacing</u> Minimum 6-mm diameter bars with 135° hooked ends	
	Tie spacing cannot exceed 200mm with minimum 20mm cover	
	Ties shall be 10-mm diameter transverse stirrups, spaced at 200m, with 50mm cover	GOOD

		Cand ATF							William		
eferences			С	alculation	S						
		SEISMIC LOAD DISTRIBUTION - EVC AND ATF									
		DURFCTION	1 (11/1	De	origin dist	d(m)	Rd	Rd^2		
-	WALL	DIRECTION	L (m)	H/L	Rc	origin dist. 16	d(m) 6.62	1.74	11.53		
	1	X	2	2.00	0.263 1.429	16	6.62	9.46	62.63		
	2	X	4	1.00		8		-0.36	02.03		
	3	X	2	2.00	0.263		-1.38	-0.56 -13.40	125.73		
	4	X	4	1.00	1.429	0	-9.38	-15.40	125.7		
	5	Y	4	1.00	1.429	0	-11.23		0.85		
	6	Y	4	1.00	1.429	12	0.77	1.10			
	7	Y	4	1.00	1.429	16	4.77	6.82	32.51		
	8	Y	4	1.00	1.429	20	8.77	12.53	109.91		
	9	Y	4	1.00	1.429	20	8.77	12.53	109.93		
								Σ	633.7		
		Xcm =	11.23 r	n		Xcr =	13.60 ו	m			
		Ycm =	9.38 r	n		Ycr =	8.62 (n			
		EAST/WE	ST (X)								
	ex = ().05*16m =	0.80 1	n		DIRECT	TORSION	WALL			
		-Xcr) + ex =	-1.57 ו			SHEAR	SHEAR	FORCE			
	C (//O//	Vbase =	70988		V1 =	5517	-306	5211	kg		
		Mtor =	-111451	-	V2 =		-1664	28313	-		
					V3 =		64	5581	-		
					V4 =		2357	32334	·		
		Largest East	/West Ford	ce:	32334	kg					
		NORTH/SC									
	ev = (0.05*20m =	1.00	m		DIRECT	TORSION	WALL			
		n-Ycr) + ey =	1.76			SHEAR	SHEAR	FORCE			
		Vbase =	70988		V5 =		-3160	11037	kg		
		Mtor =	124815		V6 =		217	14414	-		
		intoi -	12-1013	0	V0 =		1342	15540	-		
					V8 =		2468	16666	-		
					V9 =		2468	16666	-		
		Largest Nor	th/South F	orce:	16666	i kg					

Julia De Hart

Journeyman International

Rubagabaga Village EVC and ATF

Jenna Williams References Calculations WALL LINE A EAST/WEST FOUNDATION DESIGN Loads: PDL = 73996 kg PLL = 6249 kg Ve = 33524 kg Based on Wall 1 and 2 results Sds = 0.608 ASCE 7-16 Mot = 0.75*0.70*VE*Hwall = 70401 kg-m 12.13.4 Allowable Soil Bearing Pressure: IBC fibc = 7324 kg/m^2 TA 1806.2 fallow = 1.33*FIBC = 9740 kg/m^2 Try Footing Size: Length = 18 m Width = 2 m Depth = 1 m Wall length = 16 m Pfooting = 86501 kg Pdead = 73996 kg ΣP = 160497 kg USE 18m LONG x 2m WIDE x 1m DEEP FTG.

1	International	Julia De Hart
Kubagabaga	Village EVC and ATF	Jenna Williams
References	Calculations	
	WALL LINE A EAST/WEST FOUNDATION DESIGN	
	Allowable Stress Design Combinations	
ASCE 7-16		
2.4.5	Load Case 8: (1.0 + 0.14Sds)D + 0.7E	
	ΣPLC8 = 197626 kg	
	M _R = ΣP * L/2 = 1778632 kg	
	$x = (M_R - M_{OT}) / \Sigma P = 8.6 m$	
	l = 3x = 25.9 m	
	$f_{bearing} = 2*\Sigma P / I*w$ 6189 kg/m^2 < 9740 kg/m^2	GOOD
ASCE 7-16 2.4.5	Load Case 9: (1.0 + 0.105Sds)D + 0.525E + 0.75L	
	ΣPLC9 = 193031 kg	
	$M_R = \Sigma P * L/2 =$ 1737277 kg	
	$x = (M_R - M_{OT}) / \Sigma P = 8.6 m$	
	l = 3x = 25.9 m	
	$f_{bearing} = 2 \Sigma P / I_{W}$ 7451 kg/m ² < 9740 kg/m ²	GOVERNS, GOOD
ASCE 7-16 2.4.5	Load Case 10: (1.0 - 0.14Sds)D + 0.7E	
2.1.5	ΣPLC10 = 170303 kg	
	Mr = ΣP * L/2 = 1532725 kg	
	$x = (M_R - M_{OT}) / \Sigma P = 8.6 m$	
	l = 3x = 25.8 m	
	fbearing = 2*ΣP / I*w 6611 kg/m^2 < 9740 kg/m^2	GOOD
	Strength Design Combinations	
ASCE 7-16 2.3.6	Load Case 6: (1.2 + 0.2Sds)D + E + L	
2.3.0	ΣPLC6 = 96933 kg	GOVERNS
ASCE 7-16	Load Case7: (0.9-0.2Sds)D + E	
2.3.6	ΣPLC7 = 67190 kg	

ourneyman Inte Rubagabaga Villa				Julia De Har Jenna William
eferences	-	Colculations		
elerences		Calculations		
	WALL	LINE A EAST/WEST FO	UNDATION DESIGN	
	Check Footing Shear			
		00000 1-		
	Vu,lc6≤	96933 kg		
	Φ=	0.75		
	α =	2		
	f'c =	3000 psi		
	Acv = D*W =	3100 in^2		
	ΦVc = Φα(f'c^.5)Acv =	= 254691 lbs		
		115526 kg	> 96933 kg	GOOD
	Check for Longitudina	Il Flexural Reinforceme	ent (Bottom)	
	x = 8.6	i m	. –	V
	l = 3x = 25.9) m	Im	
	fbearing = 7451	. kg/m^2		
	Ptriangle = 193031	. kg	As LONG	~ ~
	Xarm = 0.36	-	1 -	r 1 - 1
	Mu = P*x = 70401			
	Try (6) #5 bars		fbearing	l ×
	# of bars =	12		
	bar diameter =	0.625 in		
	bar area =	0.31 in^2		
	cover =	3.00 in		
	As =	3.72 in^2		
	Fy =	60 ksi		
	T = AsFy =	223.2 k		
	a = T / 0.85*f'c*b =	1.11 in		
	c = a / β =	1.31 in		
	d =	35.19 in		
	εt = 0.003(d-c/c) =	0.0777 >>> 0.005	5	STRAIN PASSES
	Φ =	0.9		

lourneyman Inter Rubagabaga Villag								
References	Calculations							
ACI 318-14	WALL LINE A EAST/WEST FOUNDATION DESIGN							
	ФМп = ФAsFy(d-a/2) = 6957.2 k-in 80154 kg-m > 70401 kg-m GOOD							
	Imperial Equivalent: (6) #5 BARS							
	SI Equivalent: USE (6) 16mm BARS LONGITUDINAL (B)							
	Check for Transverse Flexural Reinforcement (Bottom)							
	wu =10985 kg/m^2Based on max soil pressureat end of ft $I = W / t =$ 0.875 mMu =4205 kg-m	g.						
	Try #5 bars @ 12" o/c							
	# of bars = 1 As TRANSIERS bar diameter = 0.625 in	_]						
	bar area = 0.31 in^2 WNAU cover = 3.00 in	-ř						
	As = 0.31 in^2 Fy = 60 ksi							
	T = AsFy = 18.6 k							
	a = T / 0.85*f'c*b = 0.61 in c = a / β = 0.72 in d = 35.44 in							
		r						
	$\epsilon t = 0.003(d-c/c) = 0.1457 >>> 0.005$ STRAIN PASSES $\Phi = 0.9$	•						
	ФMn = ФAsFy(d-a/2) = 588.2 k-in 6777 kg-m > 4205 kg-m GOOD							
	Imperial Equivalent:							
	SI Equivalent: USE 16mm BARS @ 0.3m O/C TRANSVERSE (B)							

ourneyman Inter ubagabaga Villa			Julia De Jenna Willi					
eferences		Calculations						
ACI 318-14	WA	WALL LINE A EAST/WEST FOUNDATION DESIGN						
	Check for Longitud	linal Flexural Reinforcem	nent (Top)					
	wu =	732 kg/m^2						
	=	9 m						
		331 kg-m	Based on ftg. rotating around toe					
	Try (6) #5 bars		- A Tim					
			L'an					
	# of bars =	6	As LONG					
	bar diameter =	0.625 in	8					
	bar area =	0.31 in^2						
	cover =	3.00 in						
	As =	1.86 in^2	* LWALL					
			P. Anten					
	Fy =	60 ksi						
	T = AsFy =	111.6 k						
	a = T / 0.85*f'c*b =	- 0.56 in						
	c = a / β =	0.65 in						
	d =	35.47 in						
	εt = 0.003(d-c/c) =	0.1597 >>> 0.00	5 STRAIN PASSES					
	Φ =	0.9						
	ФMn = ФAsFy(d-a/	2) = 3534.4 k-in						
		40720 kg-m	> 14831 kg-m GOOD					
	Imperial Equivalent	t: (6) #5 BARS						
	SI Equivalent:							
		ARS LONGITUDINAL (T)						

ourneyman Inter ubagabaga Villa				Julia De Ha Jenna Williar				
eferences	Ca	alculations						
ACI 318-14	WALL LIN	WALL LINE A EAST/WEST FOUNDATION DESIGN						
	Check for Transverse Fle	exural Reinforcement	t (Top)					
	wu = 732 k	g/m^2						
	l= 0.875 m	1						
	Mu = 280 k	g-m	Based on ftg. rote	ating around toe				
	Try #5 bars @ 12" o/c		Th	As TRANSVERSE				
	# of bars =	1						
	# of bars = bar diameter =	ı 0.625 in	11=11=11= X W					
			1-11-1U-					
	bar area =	0.31 in^2	X					
	cover =	3.00 in	M	WALL				
	As =	0.31 in^2						
	Fy =	60 ksi						
	T = AsFy =	18.6 k						
	a = T / 0.85*f'c*b =	0.61 in						
	$c = a / \beta =$	0.72 in						
	d =	35.44 in						
	εt = 0.003(d-c/c) =	0.1457 >>> 0.005		STRAIN PASSES				
	Φ=	0.9						
	ФMn = ФAsFy(d-a/2) =	588.2 k-in						
		6777 kg-m	> 280 kg-m	GOOD				
	Imperial Equivalent: #	5 BARS @ 12" O/C						
	SI Equivalent:							
		0.3m O/C TRANSVE	RSE (T)					

Journeyman Inter				Julia De Har
Rubagabaga Villag	ge EVC and ATF			Jenna William
References		Calculati		
References		Calculati	ons	
	<u>v</u>	VALL LINE B EA	ST/WEST FOUNDATION DESIGN	
	Loads:	.		
		86998 kg		
	PLL =	3125 kg		
	VE =	0 kg	No EQ Loads to Line B	
	Sds =	0.608		
ASCE 7-16 12.13.4	Mot = 0.75*0.70	*Ve*Hwall =	0 kg-m	
	Allowable Soil Be	earing Pressure	<u>:</u>	
ІВС	fıвc =		7324 kg/m^2	
TA 1806.2	fallow = 1.33*FIBC	=	9740 kg/m ²	
	Try Footing Size:	i g		
	Length =		10 m	
	Width =		2 m	
	Depth =		1 m	
	Wall length =		8 m	
	Pfooting =	480	56 kg	
	Pdead =		98 kg	
	ΣP =	850	54 kg	
	USE 10m LONG	x 2m WIDE x 1	m DEEP FTG.	

Journeyman Inte				Julia De Hart
Rubagabaga Villa	age EVC and ATF			Jenna Williams
References		Calculations		
	WALL	LINE B EAST/WEST FO	UNDATION DESIGN	
	Allowable Stress Desi	gn Combinations		
ASCE 7-16	Load Case 8: [1.0 0.			
2.4.5	<u>Load Case 8: (1.0 + 0.3</u>	14303/D + 0.7E		
	ΣPLC8 =	92294 kg		
	$M_R = \Sigma P * L/2 =$	461470.3 kg		
	$x = (MR - MOT) / \Sigma P =$	5.0 m		
	= 3x =	15.0 m		
	fbearing = 2*ΣP / I*w	5670 kg/mA2	$< 0.740 \text{ kg/m}^{2}$	GOOD
		5070 kg/11-2	< 9740 kg/11-2	6000
ASCE 7-16	Load Case 9: (1.0 + 0.2	105Sds)D + 0.525E + 0).75L	
2.4.5				
	ΣPLC9 =	92828 kg		
	$M_R = \Sigma P * L/2 =$	464138 kg		
	$x = (MR - MOT) / \Sigma P =$	5.0 m		
	l = 3x =	15.0 m		
	fbearing = $2*\Sigma P / I*w$	6189 kg/m^2	< 9740 kg/m^2	GOVERNS, GOOD
ASCE 7-16	Load Case 10: (1.0 - 0.	14Sds)D + 0.7E		
2.4.5	ΣPLC10 =	77814 kg		
	$M_R = \Sigma P * L/2 =$	389072.1 kg		
	x = (Mr - Mot) / ΣP =	5.0 m		
	l = 3x =	15.0 m		
	fbearing = $2*\Sigma P / I*w$	5188 kg/m^2	< 9740 kg/m^2	GOOD
	Strength Design Com	binations		
ASCE 7-16	Load Case 6: (1.2 + 0.2	2Sds)D + E + L		
2.3.6	Σ Ρ ιc6 =	34880 kg		GOVERNS
ASCE 7-16	Load Case7: (0.9-0.250	<u>is)D + E</u>		
2.3.6	ΣΡις7 =			

Journeyman Intern				Julia De Hart
Rubagabaga Village	EVC and ATF			Jenna Williams
References		Calculations		
	\A/A/I		OUNDATION DESIGN	
	WAL	LINE DEAST/WEST F	CONDATION DESIGN	
	Check Footing Shear			
	Vu,LC6 ≤	34880 kg		
	Φ=	0.75		
	α =	2		
	f'c =	3000 psi		
	Acv = D*W =	3100 in^2		
	$\Phi Vc = \Phi \alpha(f'c^{.5})Acv$			
		115526 kg	> 34880 kg	GOOD
	Check for Longitudin	al Flexural Reinforcer	<u>nent (Bottom)</u>	
	x = 5.	.0 m		
	= 3x = 15.	0 m	Jm	Y
	fbearing = 618	9 kg/m^2		
			As LONG	
	Ptriangle = 9282	.8 kg	his wind	
	Xarm = 0.0	10 m	1 1	111
	Mu = P*x =	0 kg-m		
			fbearing	
	Try (6) #5 bars		. 1	L
	# of bars =	12		
	bar diameter =	0.625 in		
	bar area =	0.31 in^2		
	cover =	3.00 in		
	As =	3.72 in^2		
	Fy =	60 ksi		
	T = AsFy =	223.2 k		
	a = T / 0.85*f'c*b =	1.11 in		
	$c = a / \beta =$	1.31 in		
	d =	35.19 in		
	ab = 0.002(d - d - d)	0.0777		
	εt = 0.003(d-c/c) =	0.0777 >>> 0.0	05	STRAIN PASSES
	Φ =	0.9		

Journeyman Inte	rnational			Julia De Hart
Rubagabaga Villa	ge EVC and ATF			Jenna Williams
Defe				
References		Calculations		
ACI 318-14	WALL	INE B EAST/WEST	FOUNDATION DESIGN	
	ФМп = ФАѕFу(d-а/2) =	6957.2 k-in 80154 kg-m	> 0 kg-m	GOOD
	Imperial Equivalent:	(6) #5 BARS		
	SI Equivalent:			
	USE (6) 16mm BARS	LONGITUDINAL (E	3)	
	Check for Transverse F	lexural Reinforcen	<u>nent (Bottom)</u>	
	wu = 10985	kg/m^2	Based on max soil	pressureat end of ftg.
	l = W / t = 0.875	m		yty I
	Mu = 4205	kg-m		TM
	Try #5 bars @ 12" o/c			
	# of bars =	1	ASTRANSVERSE	
	bar diameter =	0.625 in		
	bar area =	0.31 in^2	8	WNALL
	cover =	3.00 in		
	As =	0.31 in^2		
	Fy =	60 ksi		
	T = AsFy =	18.6 k		
	a = T / 0.85*f'c*b =	0.61 in		
	$c = a / \beta =$	0.72 in		
	d =	35.44 in		
	εt = 0.003(d-c/c) =	0.1457 >>> 0.0	005	STRAIN PASSES
	Φ =	0.1457 222 0.0		JINAIN FAJJEJ
		F00.0.1.1		
	ΦMn = ΦAsFy(d-a/2) =		N 1005 kg	C005
		6777 kg-m	> 4205 kg-m	GOOD
	Imperial Equivalent:			
	SI Equivalent:			
	USE 16mm BARS @ 0.3	m O/C TRANSVER	SE (B)	

	International Village EVC and ATF			Julia De Hart Jenna Williams
RubuBubuBu				Jerna Winanis
References	Ca	alculations		
ACI 318-14	WALL LIN	NE B EAST/WEST FOL	JNDATION DESIGN	
	Check for Longitudinal F	lexural Reinforceme	<u>nt (Top)</u>	
		g/m^2		
	l= 5 n			
	Mu = 4578 k	g-m	Based on ftg. rotating	g around toe
	Try (6) #5 bars		T	Im
	# of bars =	6		As LONG
	bar diameter =	0.625 in		8
	bar area =	0.31 in^2		
	cover =	3.00 in		11=11
				-1
	As =	1.86 in^2	1 - WA	u –
	Fy =	60 ksi		
	T = AsFy =	111.6 k		
	a = T / 0.85*f'c*b =	0.56 in		
	c = a / β =	0.65 in		
	d =	35.47 in		
	εt = 0.003(d-c/c) =	0.1597 >>> 0.005		STRAIN PASSES
	Φ =	0.9		
	ΦMn = ΦAsFy(d-a/2) =	3534.4 k-in 40720 kg-m	> 14831 kg-m	GOOD
	Imperial Equivalent: (6) #5 BARS		
	SI Equivalent:			3
	USE (6) 16mm BARS I	LONGITUDINAL (T)	1	
	.		-	
1				

Journeyman Inter Rubagabaga Villa			Julia De Har Jenna Williams	
Kubagabaga villa				
References	Ca	alculations		
ACI 318-14	WALL LINE B EAST/WEST FOUNDATION DESIGN			
	Check for Transverse Fle	exural Reinforcement	t (Top)	
	wu = 732 k	g/m^2		
	l = 0.875 n	n		
	Mu = 280 k	g-m	Based on ftg. rotating around toe	
	Try #5 bars @ 12" o/c		As TRANSVERSE	
	# of bars =	1	01	
	bar diameter =	0.625 in	11=11=11=11	
	bar area =	0.31 in^2	Y X	
	cover =	3.00 in	11=11=11=11=11 * WWALL	
	As =	0.31 in^2		
	Fy =	60 ksi		
	T = AsFy =	18.6 k		
	a = T / 0.85*f'c*b =	0.61 in		
	c = a / β =	0.72 in		
	d =	35.44 in		
	εt = 0.003(d-c/c) =	0.1457 >>> 0.005	STRAIN PASSES	
	Φ =	0.1437 >>> 0.003	STRAIN FASSES	
	¥ -	0.5		
	ΦMn = ΦAsFy(d-a/2) =	588.2 k-in		
		6777 kg-m	> 280 kg-m GOOD	
	Imperial Equivalent: #	5 BARS @ 12" O/C		
	SI Equivalent:			
		0.3m O/C TRANSVE	RSE (T)	
		· · · · · · · · · · · · · · · · · · ·		

Journeyman Inte	rnational		Julia De Hart
Rubagabaga Villa	ge EVC and ATF		Jenna Williams
References	Calcu	lations	
	WALL LINE C	EAST/WEST FOUNDATION DESIGN	
	Loads:		
	PDL = 55497 kg		
	PLL = 4687 kg		
	VE = 5581 kg	Based on Wall 3 results	
	Sds = 0.608		
ASCE 7-16	Mot = 0.75*0.70*Ve*Hwall =	11720 kg-m	
12.13.4		11/20 kg m	
	Allowable Soil Bearing Press	sure:	
IBC	fibc =	7324 kg/m^2	
TA 1806.2	fallow = 1.33*FIBC =	9740 kg/m^2	
	Try Footing Size:		
	Length =	14 m	
	Width =	2 m	
	Depth = Wall length =	1 m 12 m	
	wan length =	12 111	
	Pfooting = 6	57278 kg	
		55497 kg	
		22776 kg	
	USE 14m LONG x 2m WIDE	x 1m DEEP FTG.	

Journeyman Inte Rubagabaga Villa				Julia De Har Jenna William
	50 2 1 0 dild / 11			Jernia William
References		Calculations		
	WALL	LINE C EAST/WEST FC	UNDATION DESIGN	
	Allowable Stress Desi	ign Combinations		
ASCE 7-16	Load Case 8: (1.0 + 0.1	14Sds)D + 0.7E		
2.4.5				
	ΣPLC8 =	137133 kg		
	$M_{R} = \Sigma P * L/2 =$	959931.5 kg		
	$x = (MR - MOT) / \Sigma P =$	6.9 m		
	= 3x =	20.7 m		
	£	5010 k=/m 42		6000
	fbearing = $2*\Sigma P / I*w$	2919 KB/IIIZ	< 9740 kg/m^2	GOOD
ASCE 7-16	Load Case 9: (1.0 + 0.2	105Sds)D + 0.525E + 0	0.75L	
2.4.5				
	ΣΡις9 =	137059 kg		
	$MR = \Sigma P * L/2 =$	959413 kg		
	$x = (MR - MOT) / \Sigma P =$	6.9 m		
	l = 3x =	20.7 m		
	$f_{bearing} = 2*\Sigma P / I*w$	6607 kg/m^2	< 9740 kg/m^2	GOVERNS, GOOD
ASCE 7-16	Load Case 10: (1.0 - 0.	.14Sds)D + 0.7E		
2.4.5				
	ΣPLC10 =	116232 kg		
	$M_{R} = \Sigma P * L/2 =$	813622.1 kg		
	$x = (MR - MOT) / \Sigma P =$			
	= 3x =	20.7 m		
	fbearing = $2*\Sigma P / I*w$	5616 kg/m^2	< 9740 kg/m^2	GOOD
	Strength Design Com	binations		
ASCE 7-16 2.3.6	Load Case 6: (1.2 + 0.2	2Sds)D + E + L		
2.3.0	ΣPLC6 =	54726 kg		GOVERNS
ASCE 7-16	Load Case7: (0.9-0.25	ds)D + E		
2.3.6	ΣPlc7 =	31766 kg		

ourneyman Inte Rubagabaga Villa	rnational ge EVC and ATF			Julia De Ha Jenna William
eferences		Calculations		
	WALL L	INE C EAST/WEST FO	JNDATION DESIGN	
	Check Footing Shear			
	Vu,lc6 ≤	54726 kg		
	Φ=	0.75		
	α =	2		
	f'c =	3000 psi		
	Acv = D*W =	3100 in^2		
	$\Phi Vc = \Phi \alpha(f'c^{.5})Acv =$	254691 lbs		
		115526 kg	> 34880 kg G	00D
	Check for Longitudinal	Flexural Reinforceme	<u>nt (Bottom)</u>	
	x = 6.9	m	- V	_
	l = 3x = 20.7		Im	
	fbearing = 6607	kg/m^2		7
	Ptriangle = 137059	ka	As LONG	
	$x_{arm} = 0.09$	+		T
	$Mu = P^*x = 11720$			
			Fi ming	
	Try (6) #5 bars		fbearing	}/r
	# of bars =	12		
	bar diameter =	0.625 in		
	bar area =	0.31 in^2		
	cover =	3.00 in		
	As =	3.72 in^2		
	Fy =	60 ksi		
	T = AsFy =	223.2 k		
	a = T / 0.85*f'c*b =	1.11 in		
	c = a / β =	1.31 in		
	d =	35.19 in		
	εt = 0.003(d-c/c) =	0.0777 >>> 0.005	51	RAIN PASSES
	Φ =	0.9		

Journeyman Inter Rubagabaga Villa				Julia De Har Jenna William
References	Ca	lculations		
ACI 318-14	WALL LI	NE C EAST/WEST	FOUNDATION DESIGN	
	h 			
	ΦMn = ΦAsFy(d-a/2) =	6957.2 k-in 80154 kg-m	> 11720 kg-m	GOOD
	Imperial Equivalent: (6	5) #5 BARS		
	SI Equivalent:			
	USE (6) 16mm BARS L	ONGITUDINAL (B	3)	
	Check for Transverse Fle	xural Reinforcem	nent (Bottom)	
	wu = 10985 kj		Based on max soil	pressureat end of ftg.
	l = W / t = 0.875 m	ו		Xtx
	Mu = 4205 kg	g-m		TAT
	Try #5 bars @ 12" o/c			
	# of bars =	1	ASTRANSVERSE	
	bar diameter =	- 0.625 in	V.	k
	bar area =	0.31 in^2	0	WNALL
	cover =	3.00 in		141.60
	As =	0.31 in^2		
	Fy =	60 ksi		
	T = AsFy =	18.6 k		
	a = T / 0.85*f'c*b =	0.61 in		
	c = a / β =	0.72 in		
	d =	35.44 in		
	εt = 0.003(d-c/c) =	0.1457 >>> 0.0	005	STRAIN PASSES
	Φ =	0.9		э.
	ΦMn = ΦAsFy(d-a/2) =	588.2 k-in 6777 kg-m	> 4205 kg-m	GOOD
	Imperial Equivalent:			
	SI Equivalent:			
	USE 16mm BARS @ 0.3n	O/C TRANSVER	SE (B)	

teferencesCalculationsVCI 318-14WALL LINE C EAST/WEST FOUNDATION DESIGNCheck for Longitudinal Flexural Reinforcement (Top)wu = 732 kg/m^2 I = 7 mWu =732 kg/m^2 I = 7 mBased on ftg. rotating around toeTry (6) #5 barsMu = 8972 kg-mBased on ftg. rotating around toeTry (6) #5 barsMu = 0.625 in bar area = 0.31 in^2 cover = 3.00 inAs LODNGAs =1.86 in^2 FY = 60 ksi T = ASFY = 111.6 kSTRAIN PASSES $a = T / 0.85 * ftc*b = 0.56 inc = a / \beta = 0.65 ind = 35.47 inSTRAIN PASSES\phi Mn = \phi AsFy(d-a/2) = 3534.4 k-in40720 kg-m > 14831 kg-mGOODImperial Equivalent:(6) #5 BARSSI Equivalent:USE (6) I6mm BARS LONGITUDINAL (T)$	Rubagabaga Villa	ge EVC and ATF			Jenna Williar
Check for Longitudinal Flexural Reinforcement (Top) $wu =$ 732 kg/m^2 $l =$ 7 m $Mu =$ 8972 kg-m $Based on ftg. rotating around toeTry (6) #5 bars# of bars =6bar diameter =0.625 inbar area =0.31 in^2cover =3.00 inAs =1.86 in^2Fy =60 ksiT = AsFy =111.6 ka = T / 0.85*fc^*b =0.56 inc = a / \beta =0.65 ind =35.47 inet = 0.003(d-c/c) =0.1597 >>> 0.005\Phi =0.9\Phi Mn = \Phi AsFy(d-a/2) =3534.4 k-in40720 kg-mMn = \Phi asFy(d-a/2) =3534.4 k-in40720 kg-mImperial Equivalent:(6) #5 BARSSI Equivalent:$	References		Calculations		
wu = 732 kg/m^2 I = 7 m Mu = 8972 kg-m Based on ftg. rotating around toe Try (6) #5 bars # of bars = 6 bar diameter = 0.625 in bar area = 0.31 in^2 cover = 3.00 in As = 1.86 in^2 Fy = 60 ksi T = AsFy = 111.6 k a = T / 0.85*fc*b = 0.56 in c = a / \beta = 0.65 in d = 35.47 in et = 0.003(d-c/c) = 0.1597 >>> 0.005 STRAIN PASSES $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 3534.4 k-in 40720 kg-m > 14831 kg-m GOOD$ Imperial Equivalent: (6) #5 BARS SI Equivalent:	CI 318-14	WA	LL LINE C EAST/WEST FO	UNDATION DESIGN	
$ = 7 m$ $Mu = 8972 kg-m$ $Based on ftg. rotating around toe$ $Try (6) #5 bars$ $\# of bars = 6$ $bar diameter = 0.625 in$ $bar area = 0.31 in^{2}$ $cover = 3.00 in$ $As = 1.86 in^{2}$ $Fy = 60 ksi$ $T = AsFy = 111.6 k$ $a = T / 0.85*fc*b = 0.56 in$ $c = a / \beta = 0.65 in$ $d = 35.47 in$ $Et = 0.003(d-c/c) = 0.1597 >>> 0.005$ $TRAIN PASSES$ $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 3534.4 k-in$ $40720 kg-m > 14831 kg-m$ $GOOD$ $Imperial Equivalent: (6) #5 BARS$		Check for Longitudi	inal Flexural Reinforcem	ent (Top)	
Mu =8972 kg-mBased on ftg. rotating around toe $Try (6) \#5 bars# of bars =6bar diameter =0.625 inbar area =0.31 in^2cover =3.00 inAs =1.86 in^2Fy =60 ksiT = AsFy =111.6 ka = T / 0.85 *f1c*b =0.56 inc =a / \beta =c =0.9\phi =0.9\phi =0.9\phi =0.9\phi =0.9\phi =0.9\phi =0.9\phi =14831 kg-m\phi =51 Equivalent:\phi =0.9 ±$		wu = 7	′32 kg/m^2		
Try (6) #5 bars# of bars =6bar diameter =0.625 inbar area =0.31 in^2cover =3.00 inAs =1.86 in^2Fy =60 ksiT = AsFy =111.6 ka = T / 0.85*flc*b =0.56 inc = a / β =0.65 ind =35.47 inet = 0.003(d-c/c) =0.1597 >>> 0.005 Φ =0.9 Φ Mn = Φ AsFy(d-a/2) =3534.4 k-in40720 kg-m> 14831 kg-mGOODImperial Equivalent:(6) #5 BARSSI Equivalent:		=	7 m		
# of bars = 6 bar diameter = 0.625 in bar area = 0.31 in^2 cover = 3.00 in As = 1.86 in^2 Fy = 60 ksi T = AsFy = 111.6 k $a = T / 0.85^{*}fc^{*}b = 0.56$ in $c = a / \beta = 0.65$ in d = 35.47 in et = 0.003(d-c/c) = 0.1597 >>> 0.005 $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 3534.4$ k-in 40720 kg-m > 14831 kg-m GOOD Imperial Equivalent: (6) #5 BARS SI Equivalent:		Mu = 89	072 kg-m	Based on ftg. rota	ting around toe
# of bars = 6 bar diameter = 0.625 in bar area = 0.31 in^2 cover = 3.00 in As = 1.86 in^2 Fy = 60 ksi T = AsFy = 111.6 k a = T / 0.85 * f'c*b = 0.56 in $c = a / \beta = 0.65 in$ d = 35.47 in et = 0.003(d-c/c) = 0.1597 >>> 0.005 $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 3534.4 k-in$ 40720 kg-m > 14831 kg-m GOOD Imperial Equivalent: (6) #5 BARS <u>SI Equivalent:</u>		Trv (6) #5 bars		N	Tim
$b = 0.033 = 0.000 \text{ m}$ $b = 0.625 \text{ in}$ $b = 0.625 \text{ in}$ $b = 0.625 \text{ in}$ $b = 0.31 \text{ in}^{2} \text{ cover } = 0.31 \text{ in}^{2} \text{ m}$ $As = 0.31 \text{ in}^{2} \text{ m}$ $As = 0.31 \text{ in}^{2} \text{ m}$ $As = 0.31 \text{ in}^{2} \text{ m}$ $Fy = 0.0 \text{ ksi}$ $T = \text{ AsFy} = 111.6 \text{ k}$ $a = T / 0.85^{\circ} \text{ff} c^{\circ} b = 0.56 \text{ in}$ $c = a / \beta = 0.65 \text{ in}$ $d = 35.47 \text{ in}$ $et = 0.003(d - c/c) = 0.1597 \text{ solution}$ $f = 0.9$ $\Phi \text{ m} = \Phi \text{ AsFy}(d - a/2) = 3534.4 \text{ k-in}$ $40720 \text{ kg-m} > 14831 \text{ kg-m}$ $GOOD$ $Imperial Equivalent: (6) #5 BARS$ $SI Equivalent:$					V
bar diameter = 0.625 in bar area = 0.31 in^2 cover = 3.00 in As = 1.86 in^2 Fy = 60 ksi T = AsFy = 111.6 k $a = T / 0.85*f^{c*b} = 0.56 in$ $c = a / \beta = 0.65 in$ d = 35.47 in $\epsilon t = 0.003(d-c/c) = 0.1597 >>> 0.005$ STRAIN PASSES $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 3534.4 k-in$ 40720 kg-m > 14831 kg-m GOOD Imperial Equivalent: (6) #5 BARS SI Equivalent:		# of bars =	6	1	As LONG
bar area = 0.31 in^2 cover = 3.00 in As = 1.86 in^2 Fy = 60 ksi T = AsFy = 111.6 k $a = T / 0.85*f^{c}*b = 0.56 in$ $c = a / \beta = 0.65 in$ d = 35.47 in $\epsilon t = 0.003(d-c/c) = 0.1597 >>> 0.005$ STRAIN PASSES $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 3534.4 k-in$ 40720 kg-m > 14831 kg-m GOOD Imperial Equivalent: (6) #5 BARS SI Equivalent:					
cover = 3.00 in As = 1.86 in^2 Fy = 60 ksi T = AsFy = 111.6 k $a = T / 0.85*f^{c}*b = 0.56 in$ $c = a / \beta = 0.65 in$ d = 35.47 in et = 0.003(d-c/c) = 0.1597 >>> 0.005 $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 3534.4 k-in$ 40720 kg-m > 14831 kg-m GOOD Imperial Equivalent: (6) #5 BARS <u>SI Equivalent:</u>					
As = 1.86 in^2 Fy = 60 ksi T = AsFy = 111.6 k a = T / 0.85*f'c*b = 0.56 in c = a / β = 0.65 in d = 35.47 in $\epsilon t = 0.003(d-c/c) = 0.1597 >>> 0.005$ STRAIN PASSES Φ = 0.9 $\Phi Mn = \Phi AsFy(d-a/2) = 3534.4 k-in$ 40720 kg-m > 14831 kg-m GOOD Imperial Equivalent: (6) #5 BARS SI Equivalent:				비르비르미르	2 11511
As = 1.86 in^2 Fy = 60 ksi T = AsFy = 111.6 k a = T / 0.85*f'c*b = 0.56 in c = a / β = 0.65 in d = 35.47 in Et = 0.003(d-c/c) = 0.1597 >>> 0.005 ϕ = 0.9 ϕ Mn = ϕ AsFy(d-a/2) = 3534.4 k-in 40720 kg-m > 14831 kg-m GOOD Imperial Equivalent: (6) #5 BARS SI Equivalent:		cover =	5.00 m		
$AS = 1.36 \text{ III}^{-2}$ Fy = 60 ksi T = AsFy = 111.6 k $a = T / 0.85*f^{1}c^{*}b = 0.56 \text{ in}$ $c = a / \beta = 0.65 \text{ in}$ $d = 35.47 \text{ in}$ $\epsilon t = 0.003(d \cdot c/c) = 0.1597 >>> 0.005$ $\Phi = 0.9$ $\Phi \text{Mn} = \Phi \text{AsFy}(d \cdot a/2) = 3534.4 \text{ k-in}$ $40720 \text{ kg-m} > 14831 \text{ kg-m}$ <i>GOOD</i> Imperial Equivalent: (6) #5 BARS <u>SI Equivalent:</u>		A -	1.00	X	WALL
$T = AsFy = 111.6 k$ $a = T / 0.85*f^{t}c^{*}b = 0.56 in$ $c = a / \beta = 0.65 in$ $d = 35.47 in$ $\epsilon t = 0.003(d-c/c) = 0.1597 >>> 0.005 STRAIN PASSES$ $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 3534.4 k-in$ $40720 kg-m > 14831 kg-m GOOD$ Imperial Equivalent: (6) #5 BARS <u>SI Equivalent:</u>				-	
a = T / 0.85*f'c*b = 0.56 in c = a / β = 0.65 in d = 35.47 in $\epsilon t = 0.003(d-c/c) = 0.1597 >>> 0.005$ STRAIN PASSES $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 3534.4 k-in 40720 kg-m > 14831 kg-m GOOD$ Imperial Equivalent: (6) #5 BARS <u>SI Equivalent:</u>					
$c = a / \beta = 0.65 \text{ in} \\ d = 35.47 \text{ in} \\ \epsilon t = 0.003(d-c/c) = 0.1597 >>> 0.005 \\ \Phi = 0.9 \\ \Phi Mn = \Phi AsFy(d-a/2) = 3534.4 \text{ k-in} \\ 40720 \text{ kg-m} > 14831 \text{ kg-m} GOOD \\ \text{Imperial Equivalent:} (6) #5 BARS \\ SI Equivalent: \\ \end{bmatrix}$		T = As⊦y =	111.6 K		
d = 35.47 in $\epsilon t = 0.003(d-c/c) =$ $0.1597 >>> 0.005$ STRAIN PASSES $\Phi =$ 0.9 $\Phi Mn = \Phi AsFy(d-a/2) =$ 3534.4 k-in 40720 kg-m > 14831 kg-m GOOD Imperial Equivalent: (6) #5 BARS		a = T / 0.85*f'c*b =	0.56 in		
$\epsilon t = 0.003(d-c/c) =$ $0.1597 >>> 0.005$ STRAIN PASSES $\Phi =$ 0.9 $\Phi Mn = \Phi AsFy(d-a/2) =$ 3534.4 k-in 40720 kg-m > 14831 kg-m GOOD Imperial Equivalent: (6) #5 BARS SI Equivalent: $Equivalent$		c = a / β =	0.65 in		
Φ = 0.9 ΦMn = ΦAsFy(d-a/2) = 3534.4 k-in 40720 kg-m > 14831 kg-m GOOD Imperial Equivalent: (6) #5 BARS <u>SI Equivalent:</u>		d =	35.47 in		
ΦMn = ΦAsFy(d-a/2) = 3534.4 k-in 40720 kg-m > 14831 kg-m GOOD Imperial Equivalent: (6) #5 BARS <u>SI Equivalent:</u>		εt = 0.003(d-c/c) =	0.1597 >>> 0.00	5	STRAIN PASSES
40720 kg-m > 14831 kg-m GOOD Imperial Equivalent: (6) #5 BARS <u>SI Equivalent:</u>					
40720 kg-m > 14831 kg-m GOOD Imperial Equivalent: (6) #5 BARS <u>SI Equivalent:</u>		ΦMn = ΦAsFv(d-a/2	2) = 3534.4 k-in		
SI Equivalent:				> 14831 kg-m	GOOD
		Imperial Equivalent	:: (6) #5 BARS		
		SI Equivalent:			
			ARS LONGITUDINAL (T)	7	

ReferencesCalculationsACI 318-14WALL LINE C EAST/WEST FOUNDATION DESIGNCheck for Transverse Flexural Reinforcement (Top)wu =732 kg/m^2I =0.875 mMu =280 kg-mBased on ftg. rotating around toeTry #5 bars @ 12" o/c# of bars =1bar diameter =0.625 inbar diameter =0.31 in^2cover =3.00 inAs =0.31 in^2Fy =60 ksiT = AsFy =18.6 ka = T / 0.85*f1c*b =0.61 inc = a / b =0.72 ind =35.44 inet = 0.003(d-c/c) =0.1457 >>> 0.005ØMn = ØAsFy(d-a/2) =588.2 k-in6777 kg-m> 280 kg-mGOODImperial Equivalent:#5 BARS @ 12" 0/CSI Equivalent:	lourneyman Inter Rubagabaga Villa				Julia De Ha Jenna William
ACI 318-14 WALL LINE C EAST/WEST FOUNDATION DESIGN Check for Transverse Flexural Reinforcement (Top) wu = 732 kg/m^2 I = 0.875 m Mu = 280 kg-m Based on ftg. rotating around toe Try #5 bars @ 12" o/c # of bars = 1 bar diameter = 0.625 in bar area = 0.31 in^2 cover = 3.00 in As = 0.31 in^2 Fy = 60 ksi T = AsFy = 18.6 k a = T / 0.85*ftc*b = 0.61 in c = a / β = 0.72 in d = 35.44 in et = 0.003(d-c/c) = 0.1457 >>> 0.005 Φ = 0.9 Φ Mn = Φ AsFy(d-a/2) = 588.2 k-in 6777 kg-m > 280 kg-m GOOD Imperial Equivalent: #5 BARS @ 12" O/C SI Equivalent:		×	Calculations		
Check for Transverse Flexural Reinforcement (Top) wu = 732 kg/m^2 I = 0.875 m Mu = 280 kg-m Based on ftg. rotating around toe Try #5 bars @ 12" o/c # of bars = 1 bar diameter = 0.625 in bar area = 0.31 in^2 cover = 3.00 in As = 0.31 in^2 Fy = 60 ksi T = AsFy = 18.6 k a = T / 0.85*flc*b = 0.61 in c = a / β = 0.72 in d = 35.44 in et = 0.003(d-c/c) = 0.1457 >>> 0.005 Ø = 0.9 ØMn = ØAsFy(d-a/2) = '588.2 k-in 6777 kg-m > 280 kg-m GOOD Imperial Equivalent: #5 BARS @ 12" O/C SI Equivalent:	(crerences	P	Culculations		
wu = 732 kg/m ² I = 0.875 m Mu = 280 kg-m Based on ftg. rotating around toe Try #5 bars @ 12" o/c # of bars = 1 bar diameter = 0.625 in bar area = 0.31 in ² 2 cover = 3.00 in As = 0.31 in ² 2 Fy = 60 ksi T = AsFy = 18.6 k a = T / 0.85*f'c*b = 0.61 in c = a / β = 0.72 in d = 35.44 in et = 0.003(d-c/c) = 0.1457 >>> 0.005 ϕ = 0.9 ϕ Mn = ϕ AsFy(d-a/2) = '588.2 k-in 6777 kg-m > 280 kg-m GOOD Imperial Equivalent: #5 BARS @ 12" 0/C SI Equivalent:	ACI 318-14	W	ALL LINE C EAST/WES	FOUNDATION DESIG	N
I = 0.875 m $Mu = 280 kg-m$ $Based on ftg. rotating around toe$ $Try #5 bars @ 12" o/c$ $# of bars = 1$ $bar diameter = 0.625 in$ $H = 0.61 in$ $H = 0.625 in$ $H = 0.72 in$ $H = 0.003(d-c/c) = 0.1457 so 0.005 so$ $H = 0.99 in$ $H = 0.99 in$ $H = 0.6000 in$ $H = 0.600 in$		Check for Transve	erse Flexural Reinforce	<u>ment (Top)</u>	
$Mu = 280 \text{ kg-m} Based on ftg. rotating around toe$ $Try \#5 bars @ 12" \text{ o/c}$ $\# \text{ of bars = 1} \\ bar \text{ diameter = 0.625 in} \\ bar area = 0.31 \text{ in}^{2} \\ cover = 3.00 \text{ in} \\ Fy = 60 \text{ ksi} \\ T = \text{ AsFy = 18.6 k} \\ a = T / 0.85*f'c*b = 0.61 \text{ in} \\ c = a / \beta = 0.72 \text{ in} \\ d = 35.44 \text{ in} \\ \text{et = 0.003(d-c/c) = 0.1457 >>> 0.005} \\ \phi = 0.9 \\ \phiMn = \phi \text{ AsFy}(d-a/2) = 588.2 \text{ k-in} \\ 6777 \text{ kg-m} > 280 \text{ kg-m} \\ GOOD \\ Imperial Equivalent: #5 BARS @ 12" 0/C \\ SI Equivalent: \\ \hline \end{tabular}$		wu =	732 kg/m^2		
Try #5 bars @ 12" o/c $# of bars = 1$ $bar diameter = 0.625 in$ $h = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =$		l = 0	.875 m		
		Mu =	280 kg-m	Based on ftg. ro	tating around toe
bar diameter = 0.625 in $y = y = y = 0.625$ in $y = y = 0.625$ in $y = y = 0.625$ in $y = 0.625$ in $y = 0.625$ in $y = 0.61$ in $y = 0.61$ in $z = a / \beta = 0.72$ in $d = 0.72$ in $d = 0.003(d-c/c) = 0.1457 >>> 0.005$ STRAIN PASSES $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 588.2 k-in 6777 kg-m > 280 kg-m$ GOOD Imperial Equivalent: #5 BARS @ 12" O/C SI Equivalent:		Try #5 bars @ 12'	' o/c	Th	AS TRANSVERSE
As = 0.31 in^2 Fy = 60 ksi T = AsFy = 18.6 k a = T / 0.85*f'c*b = 0.61 in $c = a / \beta = 0.72 in$ d = 35.44 in $\epsilon t = 0.003(d-c/c) = 0.1457 >>> 0.005$ $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 588.2 k-in$ 6777 kg-m > 280 kg-m GOOD Imperial Equivalent: #5 BARS @ 12" O/C <u>SI Equivalent:</u>		# of bars =	1		5
As = 0.31 in^2 Fy = 60 ksi T = AsFy = 18.6 k a = T / 0.85*f'c*b = 0.61 in $c = a / \beta = 0.72 in$ d = 35.44 in et = 0.003(d-c/c) = 0.1457 >>> 0.005 $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 588.2 k-in$ 6777 kg-m > 280 kg-m <i>GOOD</i> Imperial Equivalent: #5 BARS @ 12" O/C <u>SI Equivalent:</u>		bar diameter =	0.625 in	1=11=11:	SIEII
As = 0.31 in^2 Fy = 60 ksi T = AsFy = 18.6 k a = T / 0.85*f'c*b = 0.61 in $c = a / \beta = 0.72 in$ d = 35.44 in et = 0.003(d-c/c) = 0.1457 >>> 0.005 $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 588.2 k-in$ 6777 kg-m > 280 kg-m Imperial Equivalent: #5 BARS @ 12" O/C <u>SI Equivalent:</u>		bar area =	0.31 in^2		X
As = 0.31 in^2 Fy = 60 ksi T = AsFy = 18.6 k a = T / 0.85*f'c*b = 0.61 in $c = a / \beta = 0.72 in$ d = 35.44 in $\epsilon t = 0.003(d-c/c) = 0.1457 >>> 0.005$ $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 588.2 k-in$ 6777 kg-m > 280 kg-m GOOD Imperial Equivalent: #5 BARS @ 12" O/C <u>SI Equivalent:</u>		cover =	3.00 in	Xv	WALL
$Fy =$ 60 ksi $T = AsFy =$ 18.6 k $a = T / 0.85^* f'c^* b =$ 0.61 in $c = a / \beta =$ 0.72 in $d =$ 35.44 in $\varepsilon t = 0.003(d-c/c) =$ 0.1457 >>> 0.005 $\Phi =$ 0.9 $\Phi Mn = \Phi AsFy(d-a/2) =$ 588.2 k-in $6777 \text{ kg-m} > 280 \text{ kg-m}$ GOOD Imperial Equivalent: #5 BARS @ 12" O/C SI Equivalent: 51 Equivalent:		As =	0.31 in^2		
T = AsFy = 18.6 k a = T / 0.85*f'c*b = 0.61 in $c = a / \beta = 0.72 in$ d = 35.44 in $\epsilon t = 0.003(d-c/c) = 0.1457 >>> 0.005$ $\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 588.2 k-in$ 6777 kg-m > 280 kg-m Imperial Equivalent: #5 BARS @ 12" O/C <u>SI Equivalent:</u>					
$c = a / \beta = 0.72 in d = 35.44 in st = 0.003(d-c/c) = 0.1457 >>> 0.005 STRAIN PASSES \Phi = 0.9 Mn = \Phi AsFy(d-a/2) = 588.2 k-in 6777 kg-m > 280 kg-m GOOD Imperial Equivalent: #5 BARS @ 12" O/C SI Equivalent:$					
$c = a / \beta = 0.72 in d = 35.44 in st = 0.003(d-c/c) = 0.1457 >>> 0.005 STRAIN PASSES \Phi = 0.9 Mn = \Phi AsFy(d-a/2) = 588.2 k-in 6777 kg-m > 280 kg-m GOOD Imperial Equivalent: #5 BARS @ 12" O/C SI Equivalent:$		a = T / 0.85*f'c*b	= 0.61 in		
$d =$ 35.44 in $\epsilon t = 0.003(d-c/c) =$ 0.1457 >>> 0.005 STRAIN PASSES $\Phi =$ 0.9 $\Phi Mn = \Phi AsFy(d-a/2) =$ 588.2 k-in 6777 kg-m > 280 kg-m GOOD Imperial Equivalent: #5 BARS @ 12" O/C SI Equivalent:		$c = a / \beta =$	0.72 in		
$\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 588.2 k-in$ 6777 kg-m > 280 kg-m <i>GOOD</i> Imperial Equivalent: #5 BARS @ 12" O/C <u>SI Equivalent:</u>		d =	35.44 in		
$\Phi = 0.9$ $\Phi Mn = \Phi AsFy(d-a/2) = 588.2 k-in$ 6777 kg-m > 280 kg-m <i>GOOD</i> Imperial Equivalent: #5 BARS @ 12" O/C <u>SI Equivalent:</u>		εt = 0.003(d-c/c) :	= 0.1457 >>> (.005	STRAIN PASSES
6777 kg-m > 280 kg-m GOOD Imperial Equivalent: #5 BARS @ 12" O/C <u>SI Equivalent:</u>					
Imperial Equivalent: #5 BARS @ 12" O/C SI Equivalent:		ФМn = ФAsFy(d-a	/2) =		
SI Equivalent:			6777 kg-m	> 280 kg-m	GOOD
		Imperial Equivale	nt: #5 BARS @ 12" ()/C	
		SI Equivalent:			
USE 16mm BARS @ 0.3m O/C TRANSVERSE (T)			ARS @ 0.3m O/C TRA	NSVERSE (T)	

Journeyman Int			Julia De Hart
Rubagabaga Vili	age EVC and ATF		Jenna Williams
References	Calculati	ons	
	WALL LINE E EA	ST/WEST FOUNDATION DESIGN	
	Loads:		
	P _{DL} = 9250 kg		
	PLL = 781 kg		
	VE = 32334 kg	Based on Wall 4 results	
	Sds = 0.608		
ASCE 7-16	Mot = 0.75*0.70*VE*H _{wall} =	67901 kg-m	
12.13.4			
	Allowable Soil Bearing Pressure	:	
IBC	fiBC =	7324 kg/m^2	
TA 1806.2	fallow = 1.33*FIBC =	9740 kg/m^2	
	Try Footing Size:		
	Length =	10 m	
	Width =	2 m	
	Depth =	1 m	
	Wall length =	8 m	
	Pfooting = 480	56 kg	
		50 kg	
	ΣP = 5730	06 kg	
	USE 10m LONG x 2m WIDE x 1	m DEEP FTG.	

Journeyman Inte Rubagabaga Villa				Julia De Har Jenna William
References		Calculations		
	WALL	LINE E EAST/WEST FO	UNDATION DESIGN	
	Allowable Stress Desi	ign Combinations		
ASCE 7-16 2.4.5	Load Case 8: (1.0 + 0.)	<u>14Sds)D + 0.7E</u>		
	ΣΡιc8 =	84817 kg		
	$M_R = \Sigma P * L/2 =$	424086.2 kg		
	x = (Mr - Mot) / ΣP =	4.2 m		
	l = 3x =	12.6 m		
	$f_{bearing} = 2*\Sigma P / I*w$	4549 kg/m^2	< 9740 kg/m^2	GOOD
ASCE 7-16 2.4.5	Load Case 9: (1.0 + 0.)	105Sds)D + 0.525E + 0).75L	
	ΣPLC9 =	78525 kg		
	$M_R = \Sigma P * L/2 =$	392626 kg		
	x = (Mr - Mot) / ΣP =	4.1 m		
	l = 3x =	12.4 m		
	fbearing = $2*\Sigma P / I*w$	6330 kg/m^2	< 9740 kg/m^2	GOVERNS, GOOD
ASCE 7-16 2.4.5	Load Case 10: (1.0 - 0	.14Sds)D + 0.7E		
2.4.5	ΣPLC10 =	75062 kg		
	$M_R = \Sigma P * L/2 =$	375307.7 kg		
	$x = (MR - MOT) / \Sigma P =$	4.1 m		
	l = 3x =	12.3 m		
	fbearing = $2*\Sigma P / I*w$	6109 kg/m^2	< 9740 kg/m^2	GOOD
	Strength Design Com	binations		
ASCE 7-16 2.3.6	Load Case 6: (1.2 + 0.2	2Sds)D + E + L		
	ΣΡις6 =	64871 kg		GOVERNS
ASCE 7-16	Load Case7: (0.9-0.25	ds)D + E		
2.3.6	ΣPLC7 =	51037 kg		

lourneyman Intel Rubagabaga Villa				Julia De Har Jenna William
References		Calculations		
References		Calculations		
	WALL	LINE E EAST/WEST FOU	JNDATION DESIGN	
	Check Footing Shear			
	Vu,∟c6≤	64871 kg		
	Φ =	0.75		
	-	0.75		
	α = f'c =	2 2000 mai		
	$Acv = D^*W =$	3000 psi		
	$ACV = D^{+}VV =$	3100 in^2		
	$\Phi Vc = \Phi \alpha(f'c^{.5})Acv =$	254691 lbs		
		115526 kg	> 64871 kg	GOOD
	Check for Longitudina	I Flexural Reinforceme	<u>nt (Bottom)</u>	
	x = 4.1	. m	-T	-V
	l = 3x = 12.4	m	*Im	
	fbearing = 6330) kg/m^2		1
	Ptriangle = 78525	kg	As LONG	>
	Xarm = 0.86	-	1 1	1121
	Mu = P*x = 67901			
	Try (6) #5 bars		fbearing	l. ×
	# of bars =	12		
	bar diameter =	0.625 in		
	bar area =	0.31 in^2		
	cover =	3.00 in		
	As =	3.72 in^2		
	Fy =	60 ksi		•
	T = AsFy =	223.2 k		
	a = T / 0.85*f'c*b =	1.11 in		
	c = a / β =	1.31 in		
	d =	35.19 in		
	εt = 0.003(d-c/c) =	0.0777 >>> 0.005		STRAIN PASSES
	Φ=	0.9		

lourneyman Inte Rubagabaga Villa				Julia De Har Jenna William
References	Ca	lculations		
ACI 318-14	WALL LIN	IE E EAST/WEST F	OUNDATION DESIGN	
	ΦMn = ΦAsFy(d-a/2) =	6957.2 k-in 80154 kg-m	> 67901 kg-m	GOOD
	Imperial Equivalent: (6	5) #5 BARS		
	SI Equivalent:			
	USE (6) 16mm BARS L	ONGITUDINAL (B		
	Check for Transverse Fle	xural Reinforcem	ent (Bottom)	
	wu = 10985 k	g/m^2	Based on max soil	pressureat end of ftg.
	l = W / t = 0.875 m			XXX
	Mu = 4205 kg	g-m		TAT
	Try #5 bars @ 12" o/c		-	
	# of bars =	1	ASTRANSVERSE	>
	bar diameter =	0.625 in	×	
	bar area =	0.31 in^2	<i>,</i> ,	WNALL
	cover =	3.00 in		
	As =	0.31 in^2		
	Fy =	60 ksi		
	T = AsFy =	18.6 k		
	a = T / 0.85*f'c*b =	0.61 in		
	c = a / β =	0.72 in		
	d =	35.44 in		
	εt = 0.003(d-c/c) =	0.1457 >>> 0.0	05	STRAIN PASSES
	Φ =	0.9		
	ΦMn = ΦAsFy(d-a/2) =	588.2 k-in		
		6777 kg-m	> 4205 kg-m	GOOD
	Imperial Equivalent:			
	SI Equivalent:			
	USE 16mm BARS @ 0.3n	O/C TRANSVED	E (B)	

.

Journeyman Inter	national			Julia De Hart
Rubagabaga Villag				Jenna Williams
References	C	alculations		
		2		
ACI 318-14	WALL LI	NE E EAST/WEST FO	DUNDATION DESIGN	
	Chack for Longitudinal J	Flowural Dainforcom	ant (Tan)	
	Check for Longitudinal	riexulal Reinforcen	ient (Top)	
	wu = 732	kg/m^2		
	l= 5 r	-		
	Mu = 4578	kg-m	Based on ftg. rota	ting around toe
			1	
	Try (6) #5 bars		T	Im
	# of bars =	C		As LONG
	# of bars = bar diameter =	6 0.625 in		
	bar area =	0.31 in^2	[
	cover =	3.00 in		EMEN
		5.00 11		
	As =	1.86 in^2	X	WALL
	Fy =	60 ksi		
	T = AsFy =	111.6 k		
	a = T / 0.85*f'c*b =	0.56 in		
	$c = a / \beta =$	0.65 in		
	d =	35.47 in		
	εt = 0.003(d-c/c) =	0.1597 >>> 0.00	15	STRAIN PASSES
	Φ =	0.9		
	$\Phi M = \Phi A c U (d = /2) =$	2524 4 k in		
	Φ Mn = Φ AsFy(d-a/2) =	40720 kg-m	> 4578 kg-m	GOOD
		40720 Kg-III	> 4070 Kg-III	0000
	Imperial Equivalent: (6) #5 BARS		
	SI Equivalent:			
	USE (6) 16mm BARS	LONGITUDINAL (T)		

lourneyman Inte Rubagabaga Villa				Julia De Ha Jenna Willian
		Coloulations		
References		Calculations		
ACI 318-14	WALL I	INE E EAST/WEST FO	DUNDATION DESIGN	l
	Check for Transverse I	Flexural Reinforceme	ent (Top)	
	wu = 732	kg/m^2		
	= 0.875	-		
		kg-m	Based on ftg. rot	ating around toe
	Try #5 bars @ 12" o/c		The	AS TRANSVERSE
				TISTINGE
	# of bars =	1		pri Mangi mangan
	bar diameter =	0.625 in	11=11=11=	
	bar area =	0.31 in^2	K	X
	cover =	3.00 in		WALL
	As =	0.31 := 40		
	AS = Fy =	0.31 in^2		
	T = AsFy =	60 ksi		
	I - ASry -	18.6 k		
	a = T / 0.85*f'c*b =	0.61 in		
	c = a / β =	0.72 in		
	d =	35.44 in		
	εt = 0.003(d-c/c) =	0 1457 555 0 00		
	$\Phi =$	0.1457 >>> 0.00 0.9	15	STRAIN PASSES
	Ψ-	0.9		
	ФМп = ФАsFy(d-a/2) =	588.2 k-in		
		6777 kg-m	> 280 kg-m	GOOD
	Imperial Equivalent:	#5 BARS @ 12" O/C		
	SI Equivalent:			
	USE 16mm BARS	@ 0.3m O/C TRANSV	ERSE (T)	

Journeymar	International	Julia De Hart
Rubagabaga	Village EVC and ATF	Jenna Williams
References	Calculations	
	WALL LINE 1 NORTH/SOUTH FOUNDATION DESIGN	
	Loads:	
	PDL = 9250 kg	
	PιL = 781 kg	
	VE = 11037 kg Based on Wall 5 results	
	Sds = 0.608	
ASCE 7-16	Mot = 0.75*0.70*VE*Hwall = 23178 kg-m	
12.13.4	Mot = 0.75*0.70*VE*Hwall = 23178 kg-m	
12.13.4		
	Allowable Soil Bearing Pressure:	
IBC	fibc = 7324 kg/m^2	
TA 1806.2	fallow = 1.33*FIBC = 9740 kg/m^2	
	Try Footing Size:	
	Length = 10 m	
	Width = 2 m	
	Depth = 1 m	
	Wall length = 8 m	
	Pfooting = 48056 kg Pdead = 9250 kg	
	$\Sigma P = 57306 \text{ kg}$	
	21 - 37300 kg	
	USE 10m LONG x 2m WIDE x 1m DEEP FTG.	

Journeyman Interr				Julia De Hart
Rubagabaga Village	e EVC and ATF			Jenna Williams
References		Calculations		
	WALL LI	NE 1 NORTH/SOUTH F	OUNDATION DESIGN	
	Allowable Stress Desi	an Combinations		
	Allowable Stress Desi	gir combinations		
ASCE 7-16	Load Case 8: (1.0 + 0.1	14Sds)D + 0.7E		
2.4.5				
	ΣΡιc8 =	69909 kg		
	$M_{R} = \Sigma P * L/2 =$	-		
	$x = (MR - MOT) / \Sigma P =$			
	l = 3x =	14.0 m		
	fbearing = $2*\Sigma P / I*w$	4092 kg/m^2	< 9740 kg/m^2	GOOD
ASCE 7-16	Load Case 9: (1.0 + 0.2	1055ds)D + 0 525E + 0	751	
2.4.5	<u>Loud cube 5. [1.0 + 0</u>			
2.413	ΣPLC9 =	67344 kg		
	$M_{R} = \Sigma P * L/2 =$	-		
		4.7 m		
	l = 3x =	14.0 m		
	fbearing = 2*ΣP / I*w	4822 kg/m^2	< 9740 kg/m^2	GOVERNS, GOOD
ASCE 7-16 2.4.5	<u>Load Case 10: (1.0 - 0.</u>	.14505)D + 0.7E		
2.7.3	Σ Ρ LC10 =	60154 kg		
	Mr = ΣP * L/2 =	300768.7 kg		
	x = (Mr - Mot) / ΣP =	4.6 m		
	l = 3x =	13.8 m		
	fbearing = $2*\Sigma P / I*W$	4345 kg/m^2	< 9740 kg/m^2	GOOD
	Strength Design Com	binations		
ASCE 7-16	Load Case 6: (1.2 + 0.2	2Sds)D + E + L		
2.3.6	ΣPLC6 =	43574 kg		GOVERNS
ASCE 7-16	Load Case7: (0.9-0.25	ds)D + E		
2.3.6	ΣΡις7 =			

lourneyman Inter Rubagabaga Villa			6	Julia De Har Jenna William
Nubagabaga vina				Jernia William
References		Calculations		
	WALL LI	NE 1 NORTH/SOUTH FO	DUNDATION DESIG	iN
	Check Footing Shear			
	Vu,Lc6≤	43574 kg		
		1007 1 1.0		
	Φ =	0.75		
	α =	2		
	f'c =	3000 psi		
	$Acv = D^*W =$	3100 in^2		
	ΦVc = Φα(f'c^.5)Acv =	= 254691 lbs		
		115526 kg	> 43574 kg	GOOD
	Check for Longitudina	I Flexural Reinforceme	<u>nt (Bottom)</u>	
	x = 4.7	7 m	-	-y
	= 3x = 14.0		Im	
	fbearing = 4822	2 kg/m^2		1
	D	- L-	As LONG	2
	Ptriangle = 67344 Xarm = 0.34	-	[19	
		∗ 3 kg-m	11	
			fbearing	
	Try (6) #5 bars		bearing	l ×
	# of bars =	12		
	bar diameter =	0.625 in		
	bar area =	0.31 in^2		
	cover =	3.00 in		
	As =	3.72 in^2		
	Fy =	60 ksi		
	T = AsFy =	223.2 k		
	a = T / 0.85*f'c*b =	1.11 in		
	c = a / β =	1.31 in		
	d =	35.19 in		
	εt = 0.003(d-c/c) =	0.0777 >>> 0.005		STRAIN PASSES
	$\Phi =$	0.9		

Journeyman Inter Rubagabaga Villa		Julia De Har Jenna William
References	Calculations	
ACI 318-14	WALL LINE 1 NORTH/SOUTH FOUNDAT	TION DESIGN
	ФМп = ФАsFy(d-a/2) = 6957.2 k-in 80154 kg-m > 2317	78 kg-m GOOD
	Imperial Equivalent: (6) #5 BARS	
	SI Equivalent: USE (6) 16mm BARS LONGITUDINAL (B)	
	Check for Transverse Flexural Reinforcement (Botto	<u>m)</u>
	wu = 10985 kg/m^2 Based l = W / t = 0.875 m Mu = 4205 kg-m	on max soil pressureat end of ftg. ギーイ TMT
	Try #5 bars @ 12" o/c	
	# of bars = 1 As TRAN	USIERSE
	bar diameter = 0.625 in	*
	bar area = 0.31 in^2	WNAU
	cover = 3.00 in	
	As = 0.31 in^2	
	Fy = 60 ksi	
	T = AsFy = 18.6 k	
	a = T / 0.85*f'c*b = 0.61 in	
	$c = a / \beta = 0.72$ in	
	d = 35.44 in	
	εt = 0.003(d-c/c) = 0.1457 >>> 0.005	STRAIN PASSES
	Φ = 0.9	
	ФМп = ФАsFy(d-a/2) = 588.2 k-in 6777 kg-m > 4205	5 kg-m GOOD
	Imperial Equivalent:	
	SI Equivalent:	
	USE 16mm BARS @ 0.3m O/C TRANSVERSE (B)	

lourneyman Inte Rubagabaga Villa			Julia De Hai Jenna William		
References	С	alculations			
ACI 318-14	WALL LIN	E 1 NORTH/SOUTH FO	DUNDATION DESIGN		
	Check for Longitudinal	Flexural Reinforceme	nt (Top)		
	wu = 732	kg/m^2			
	= 5 (m			
	Mu = 4578	kg-m	Based on ftg. rotating around toe		
	Try (6) #5 bars		As LONG		
	# of bars =	6	ris core		
	bar diameter =	0.625 in	0		
	bar area =	0.31 in^2			
	cover =	3.00 in			
	As =	1.86 in^2	X- LWALL		
	Fy =	60 ksi			
	T = AsFy =	111.6 k			
	a = T / 0.85*f'c*b =	0.56 in			
	c = a / β =	0.65 in			
	d =	35.47 in			
	εt = 0.003(d-c/c) =	0.1597 >>> 0.005	STRAIN PASSES		
	Φ =	0.9	0.1.4.1.1.1.1.0020		
	ΦMn = ΦAsFy(d-a/2) =	3534.4 k-in			
		40720 kg-m	> 4578 kg-m GOOD		
	Imperial Equivalent: (6) #5 BARS				
	SI Equivalent:		20		
	USE (6) 16mm BARS	LONGITUDINAL (T)	1		
			-		

Journeyman	International			Julia De Hart
	Village EVC and ATF			Jenna Williams
	•			
References	Ca	alculations		
ACI 318-14	WALL LINE	<u>1 NORTH/SOUTH FO</u>	UNDATION DESIGN	
			x	
	Check for Transverse Fle	exural Reinforcement	(Top)	
		a/m^2		
	wu= 732 k l= 0.875 n	g/m^2		
	Mu = 280 k		Based on ftg. rotating	around toe
		5 11	The The	
	Try #5 bars @ 12" o/c		A	TRANSVERSE
	,		16	- THOLE
	# of bars =	1		
	bar diameter =	0.625 in		= 11
	bar area =	0.31 in^2	11=11=11=11= X WWALL	K
	cover =	3.00 in	WWALL	
		0.04 : 40		
	As =	0.31 in^2		
	Fy =	60 ksi 18.6 k		
	T = AsFy =	18.0 K		
	a = T / 0.85*f'c*b =	0.61 in		
	$c = a / \beta =$	0.72 in		
	d =	35.44 in		
	εt = 0.003(d-c/c) =	0.1457 >>> 0.005		STRAIN PASSES
	Φ =	0.9		
	ФMn = ФAsFy(d-a/2) =	588.2 k-in		
		6777 kg-m	> 280 kg-m	GOOD
	Imperial Equivalent:	₩5 BABS @ 12" ∩/ሮ		
	SI Equivalent:			
		0.3m O/C TRANSVE	RSE (T)	
	1			

Journeyman Inter			Julia De Hart
Rubagabaga Villag	ge EVC and ATF		Jenna Williams
References	Calculati		
	WALL LINE 4 NOF	TH/SOUTH FOUNDATION DESIGN	
	Loads:		
	PDL = 36998 kg PLL = 3125 kg		
	PLL = 3125 kg VE = 14414 kg	Based on Wall 6 results	
	VE = 14414 kg Sds = 0.608	bused on wan o results	
	545 - 5.000		
ASCE 7-16	Mot = 0.75*0.70*VE*Hwall =	30270 kg-m	
12.13.4			
	Allowable Soil Bearing Pressure	2:	
IBC	fibc =	7324 kg/m^2	
TA 1806.2	fallow = 1.33*FIBC =	9740 kg/m^2	
	Try Footing Size:		
	Length =	10 m	
	Width =	2 m	
	Depth =	1 m	
	Wall length =	8 m	
	Pfooting = 480	56 kg	
		98 kg	
	ΣΡ = 850	54 kg	
	USE 10m LONG x 2m WIDE x 1	IM DEEP FIG.	

Journeyman Inter				Julia De Hart
Rubagabaga Villag				Jenna Williams
References		Calculations		
	WALL LI	NE 4 NORTH/SOUTH F	OUNDATION DESIGN	
	Allowable Stress Desi	gn Combinations		
ASCE 7-16 2.4.5	Load Case 8: (1.0 + 0.2	L4Sds)D + 0.7E		
	ΣΡις8 =	102384 kg		
	$MR = \Sigma P * L/2 =$	511920.3 kg		
	$x = (MR - MOT) / \Sigma P =$	4.7 m		
	= 3x =	14.1 m		
	$f_{bearing} = 2*\Sigma P / I*w$	6027 kg/m^2	< 9740 kg/m^2	GOOD
ASCE 7-16 2.4.5	Load Case 9: (1.0 + 0.1	L05Sds)D + 0.525E + 0).75L	
	ΣPLC9 =	100395 kg		
	$M_R = \Sigma P * L/2 =$	-		
	x = (Mr - Mot) / ΣP =			
	l = 3x =	14.1 m		
	$f_{bearing} = 2^* \Sigma P / I^* W$	7123 kg/m^2	< 9740 kg/m^2	GOVERNS, GOOD
ASCE 7-16	Load Case 10: (1.0 - 0.	14Sds)D + 0.7E		
2.4.5	Σ P LC10 =	87904 kg		
	$M_{R} = \Sigma P * L/2 =$	439522.1 kg		
	$x = (MR - MOT) / \Sigma P =$			
	= 3x =	14.0 m		
	fbearing = $2*\Sigma P / I*w$	6294 kg/m^2	< 9740 kg/m^2	GOOD
	Strength Design Coml	binations		
ASCE 7-16 2.3.6	Load Case 6: (1.2 + 0.2	2Sds)D + E + L		
	ΣPLC6 =	49294 kg		GOVERNS
ASCE 7-16	Load Case7: (0.9-0.25	<u>ds)D + E</u>		
2.3.6	ΣPLC7 =	33118 kg		

Journeyman Inter				Julia De Hart
Rubagabaga Villag	e EVC and ATF			Jenna Williams
References	(Calculations		
ACI 318-14	WALL LIN	E 4 NORTH/SOUTH F	OUNDATION DESIGN	N
				-
	Check Footing Shear			
	Vu,LC6 ≤	49294 kg		
	Φ =	0.75		
	α =	2		
	f'c =	3000 psi		
	Acv = D*W =	3100 in^2		
	$\Phi Vc = \Phi \alpha(f'c^{.5})Acv =$	254691 lbs		
		115526 kg	> 49294 kg	GOOD
	Check for Longitudinal	Flexural Reinforceme	ent (Bottom)	
	x = 4.7		, T	V
	I = 3x = 14.1		1m	
	fbearing = 7123	kg/m^2		Ť
	D		As LONG	7
	Ptriangle = 100395 Xarm = 0.30	+	A	1 1 E
	$Mu = P^*x = 30270$		Ĩ	
	Wid = 1 X =	кв-111	fbearing	
	Try (6) #5 bars		Demented	l ×
	# of bars =	12		
	bar diameter =	0.625 in		
	bar area =	0.31 in^2		
	cover =	3.00 in		
	As =	3.72 in^2		
	Fy =	60 ksi		
	T = AsFy =	223.2 k		
	a = T / 0.85*f'c*b =	1.11 in		
	c = a / β =	1.31 in		
	d =	35.19 in		
	εt = 0.003(d-c/c) =	0.0777 >>> 0.005	i	STRAIN PASSES
	Φ =	0.9		

.

Journeyman Inter Rubagabaga Villa				Julia De Har Jenna William	
References	Ca	lculations			
ACI 318-14	WALL INF	4 NORTH/SOUTH	FOUNDATION DESIGN	J	
				•)	
	ΦMn = ΦAsFy(d-a/2) =	6957.2 k-in 80154 kg-m	> 30270 kg-m	GOOD	
	Imperial Equivalent: (6	5) #5 BARS			
	SI Equivalent:				
	USE (6) 16mm BARS L	ONGITUDINAL (B)			
	Check for Transverse Flexural Reinforcement (Bottom)				
	wu = 10985 k		Based on max soil	pressureat end of ftg.	
	=W/t= 0.875 m			Xtx	
	Mu = 4205 k	g-m		TM	
	Try #5 bars @ 12" o/c		_		
	# of bars =	1	ASTRANSVERSE	2	
	bar diameter =	0.625 in	Je.		
	bar area =	0.31 in^2		WNALL	
	cover =	3.00 in			
	As =	0.31 in^2			
	Fy =	60 ksi			
	T = AsFy =	18.6 k			
	a = T / 0.85*f'c*b =	0.61 in			
	c = a / β =	0.72 in			
	d =	35.44 in			
	εt = 0.003(d-c/c) =	0.1457 >>> 0.00)5	STRAIN PASSES	
	Φ =	0.9			
	ΦMn = ΦAsFy(d-a/2) =	588.2 k-in 6777 kg-m	> 4205 kg-m	GOOD	
	Imperial Equivalent:				
	SI Equivalent:				
	USE 16mm BARS @ 0.3n	n O/C TRANSVERSI	E (B)		

Journeyman Inter	national			Julia De Hart
Rubagabaga Villag	ge EVC and ATF			Jenna Williams
References	C	alculations		
ACI 318-14	WALL LINE	<u>4 NORTH/SOUTH FO</u>	JUNDATION DESIGN	
	Check for Longitudinal F	lexural Reinforceme	nt (Top)	
	wu = 732 k	g/m^2		
	l= 5 n	n		
	Mu = 4578 k	ig-m	Based on ftg. rotat	ing around toe
			1	
	Try (6) #5 bars			ju
	# of bars =	6		As LONG
	bar diameter =	0.625 in		-
	bar area =	0.31 in^2		
	cover =	3.00 in	티 드 비 드 비 .	= 11=11
				X
	As =	1.86 in^2	* L	NAU
	Fy =	60 ksi		
	T = AsFy =	111.6 k		
	a = T / 0.85*f'c*b =	0.56 in		
	c = a / β =	0.65 in		
	d =	35.47 in		
	εt = 0.003(d-c/c) =	0.1597 >>> 0.005		STRAIN PASSES
	Φ=	0.9		
	ФМп = ФАsFy(d-a/2) =	40720 kg-m	> 1578 kg.m	GOOD
		40720 kg-111	> 4319 KB-III	6000
	Imperial Equivalent: ((6) #5 BARS		
	SI Equivalent:			
	USE (6) 16mm BARS I	ONGITUDINAL (T)	٦	
			1	

-	International Village EVC and ATF			Julia De Hart Jenna Williams
unaganaga				Jernia wiiidiiis
References	Ca	alculations		
ACI 318-14	WALL LINE	4 NORTH/SOUTH FO		GN
		41101111/00011110		
	Check for Transverse Fle	exural Reinforcement	t (Top)	
	wu = 732 k	g/m^2		
	l = 0.875 m	า		
	Mu = 280 k	g-m	Based on ftg. rot	tating around toe
	Try #5 bars @ 12" o/c		The	AS TRANSVERSE
	# of bars =	1		
	bar diameter =	0.625 in	11=11=113	
	bar area =	0.31 in^2		X
	cover =	3.00 in	11=11=14= X	
			v	WALL
	As =	0.31 in^2		
	Fy =	60 ksi		
	T = AsFy =	18.6 k		
		0.61		
	a = T / 0.85*f'c*b =	0.61 in		
	c = a / β =	0.72 in		
	d =	35.44 in		
	εt = 0.003(d-c/c) =	0.1457 >>> 0.005		STRAIN PASSES
	Φ =	0.9		
	ΦMn = ΦAsFy(d-a/2) =	588.2 k-in		
		6777 kg-m	> 280 kg-m	GOOD
	Imperial Equivalent: #	5 BARS @ 12" O/C		
	SI Equivalent:			
		0.3m O/C TRANSVE	RSE (T)	

Journeyman Inter				Julia De Hart
Rubagabaga Villag	e EVC and ATF			Jenna Williams
References		Calculations		
	WALL	LINE 6 NORTH/S	OUTH FOUNDATION DESIGN	
	Looda			
	<u>Loads:</u> PDL = 369	09 ka		
		98 kg 25 kg		
		—	ased on Wall 7 results	
	Sds = 0.6		used off wall / results	
	505 - 0.0	00		
ASCE 7-16	Mot = 0.75*0.70*V	E*Hwall =	32634 kg-m	
12.13.4				
	Allowable Soil Bear	ing Pressure:		
IBC	fiвc =		7324 kg/m^2	
TA 1806.2	fallow = 1.33*FIBC =		9740 kg/m^2	
	Try Footing Size:			
	Length =	6 n	n	
	Width =	2 n		
	Depth =	1 n		
	Wall length =	4 n	n	
	Pfooting =	28834 k	g	
	Pdead =	36998 k	g	
	ΣΡ =	65832 k	g	
	USE 6m LONG x 2	m WIDE x 1m DI	EP FTG.	

Journeyman Inte	rnational			Julia De Hart
Rubagabaga Villa	ge EVC and ATF			Jenna Williams
References		Calculations		
References		Calculations		
	WALL LI	NE 6 NORTH/SOUTH F	OUNDATION DESIGN	
	Allowable Stress Des	gn Combinations		
ASCE 7-16	Load Case 8: (1.0 + 0.)			
2.4.5	<u>LUdu Case 8. (1.0 + 0.</u>	14303/D + 0.7E		
2.4.5	ΣPLC8 =	82313 kg		
	$M_R = \Sigma P * L/2 =$	-		
	$x = (MR - MOT) / \Sigma P =$	÷		
	l = 3x =	7.8 m		
	$f_{bearing} = 2 * \Sigma P / I^* W$	8429 kg/m^2	< 9740 kg/m^2	GOOD
ASCE 7-16	Load Case 9: (1.0 + 0.)	105Sds)D + 0.525F + 0	.751	
2.4.5	1000 0000 51 110 . 01.			
	ΣPLC9 =	80537 kg		
	Mr = ΣΡ * L/2 =	•		
	$x = (MR - MOT) / \Sigma P =$	•		
	l = 3x =	7.8 m		
	fbearing = 2*ΣP / I*w	10346 kg/m^2	< 9740 kg/m^2	GOVERNS, GOOD
ASCE 7-16 2.4.5	Load Case 10: (1.0 - 0.	14Sds)D + 0.7E		
2.4.5	ΣΡις10 =	71106 kg		
	$M_{R} = \Sigma P * L/2 =$	213318.7 kg		
	x = (Mr - Mot) / ΣP =	2.5 m		
	l = 3x =	7.6 m		
	$f_{bearing} = 2*\Sigma P / I*w$	9328 kg/m^2	< 9740 kg/m^2	GOOD
	Strength Design Com	binations		
ASCE 7-16	Load Case 6: (1.2 + 0.2	2Sds)D + E + L		
2.3.6	ΣPLC6 =	37718 kg		GOVERNS
ASCE 7-16	Load Case7: (0.9-0.2S	ds)D + E		
2.3.6	ΣΡις7 =	26762 kg		

Journeyman Inter Rubagabaga Villar				Julia De Har Jenna William
References		Calculations		
ACI 318-14	V	ALL LINE 6 NORTH/SOU	JTH FOUNDATION DESIG	N
	_			
	Check Footing	Shear		
	Vu,∟c6 ≤	37718 kg		
	Φ =	0.75		
	α =	2		
	f'c =	3000 psi		
	Acv = D*W =	3100 in^2	-	
	$\Phi Vc = \Phi \alpha (f'c^{*})$	5)Acv = 254691 lbs		
		115526 kg	> 37718 kg	GOOD
	Check for Long	itudinal Flexural Reinfo	rcement (Bottom)	
	x =	2.6 m	-	V
	l = 3x =	7.8 m	, Im	e '
	fbearing =	10346 kg/m^2		T.
	Ptriangle =	80537 kg	As LONG	7
	Xarm =	0.41 m	1 4	r 1 I
	Mu = P*x =	32634 kg-m		
	Try (6) #5 bars		fbearing	l ×
	# of bars =	12		
	bar diameter =	0.625 in		
	bar area =	0.31 in^2		
	cover =	3.00 in		
	As =	3.72 in^2		
	Fy =	60 ksi		
	T = AsFy =	223.2 k		
	a = T / 0.85*f'c	*b = 1.11 in		
	c = a / β =	1.31 in		
	d =	35.19 in		
	εt = 0.003(d-c/	c) = 0.0777 >>>	0.005	STRAIN PASSES
	Φ=	0.9		

Journeyman Inter Rubagabaga Villag	
Kubagabaga vinag	
References	Calculations
ACI 318-14	WALL LINE 6 NORTH/SOUTH FOUNDATION DESIGN
	ΦMn = ΦAsFy(d-a/2) = 6957.2 k-in 80154 kg-m > 32634 kg-m GOOD
	Imperial Equivalent: (6) #5 BARS
	SI Equivalent: USE (6) 16mm BARS LONGITUDINAL (B)
	Check for Transverse Flexural Reinforcement (Bottom)
	wu = 10985 kg/m^2 Based on max soil pressureat end of ftg. I = W / t = 0.875 m Image: Compared to the second
	Try #5 bars @ 12" o/c
	# of bars = 1 As TRANSVERS
	bar diameter = 0.625 in *
	bar area = 0.31 in^2 WNALL
	cover = 3.00 in
	As = 0.31 in^2
	Fy = 60 ksi
	T = AsFy = 18.6 k
	a = T / 0.85*f'c*b = 0.61 in
	$c = a / \beta = 0.72$ in
	d = 35.44 in
	εt = 0.003(d-c/c) = 0.1457 >>> 0.005 STRAIN PASSES
	Φ = 0.9
	ΦMn = ΦAsFy(d-a/2) = 588.2 k-in 6777 kg-m > 4205 kg-m GOOD
	Imperial Equivalent: #5 BARS @12" O/C
	SI Equivalent:
	USE 16mm BARS @ 0.3m O/C TRANSVERSE (B)

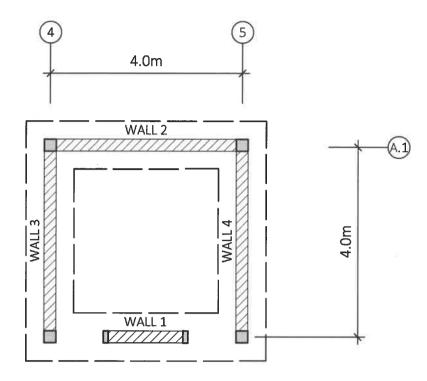
ational			Julia De Hart		
EVC and ATF			Jenna Williams		
с	alculations				
WALL LINE 6 NORTH/SOUTH FOUNDATION DESIGN					
Check for Longitudinal I	lexural Reinforceme	<u>nt (Top)</u>			
wu = 732 k	œ/m^2				
		Based on ftg. rotat	ing around toe		
		1			
Try (6) #5 bars		T	Im		
			As LONG		
	6		TIS CONG		
bar diameter =	0.625 in		0		
bar area =	0.31 in^2		il a ment 11 1		
cover =	3.00 in				
		K- In			
			νμνν		
T = AsFy =	111.6 k				
a = T / 0.85*f'c*b =	0.56 in				
c = a / β =	0.65 in				
d =	35.47 in				
εt = 0.003(d-c/c) =	0.1597 >>> 0.005		STRAIN PASSES		
Φ=	0.9				
ΦMn = ΦAsFv(d-a/2) =	3534 4 k-in				
		> 1648 kg-m	GOOD		
Imperial Equivalent: (6) #5 BARS				
SI Equivalent:					
	LONGITUDINAL (T)	1			
		-			
	WALL LINECheck for Longitudinal Iwu =732 kI =3 rMu =1648 kTry (6) #5 bars# of bars =bar diameter =bar area =cover =As =Fy =T = AsFy =a = T / 0.85*f'c*b =c = a / β =d =ɛt = 0.003(d-c/c) = Φ = Φ Mn = Φ AsFy(d-a/2) =Imperial Equivalent:SI Equivalent:	CalculationsWALL LINE 6 NORTH/SOUTH FCCheck for Longitudinal Flexural Reinforcemewu =732 kg/m^2I =3 mMu =1648 kg-mTry (6) #5 bars# of bars =6bar diameter =0.625 inbar area =0.31 in^2cover =3.00 inAs =1.86 in^2Fy =60 ksiT = AsFy =111.6 ka = T / 0.85*f'c*b =0.56 inc = a / β =0.1597 >>> 0.005 ϕ =0.9 ϕ Mn = ϕ AsFy(d-a/2) =3534.4 k-in40720 kg-mImperial Equivalent:(6) #5 BARS	CalculationsWALL LINE 6 NORTH/SOUTH FOUNDATION DESIGNCheck for Longitudinal Flexural Reinforcement (Top)wu =732 kg/m^2I =3 mMu =1648 kg-mBased on ftg. rotationTry (6) #5 bars# of bars =6bar diameter =0.625 inbar area =0.31 in^2cover =3.00 inAs =1.86 in^2Fy =60 ksiT = AsFy =111.6 ka = T / 0.85*ffc*b =0.56 inc = a / β =0.65 ind =35.47 inet = 0.003(d-c/c) =0.1597 >>> 0.005 ϕ =0.9 ϕ Mn = ϕ AsFy(d-a/2) =3534.4 k-in40720 kg-m> 1648 kg-mImperial Equivalent:(6) #5 BARSSI Equivalent:SI Equivalent:		

Journeyman						Julia De Hart	
Rubagabaga	Village EVC	and ATF				Jenna Williams	
References		Calculations					
ACI 318-14		WALL LINE 6 NORTH/SOUTH FOUNDATION DESIGN					
	<u>(</u>	Check for Transv	verse Flexural	Reinforcemei	nt (Top)		
	v	wu =					
		=	0.875 m				
	Ν	Mu =	280 kg-m		Based on ftg. I	rotating around toe	
	٦	Fry #5 bars @ 12	2" o/c		Th	AS TRANSVERSE	
	#	f of bars =		1		0	
	b	oar diameter =	0.6	525 in	1=1=1	5(15)11	
	b	oar area =	0	.31 in^2	P	×	
	С	cover =	3	.00 in	X	VWALL	
	۵	\ s =	0	.31 in^2			
		-γ =	0	60 ksi			
		T = AsFy =	1	8.6 k			
		, ioi y	-				
	а	n = T / 0.85*f'c*	b = 0	.61 in			
	с	:=a/β=	0	.72 in			
	d	1 =	35	.44 in			
	F	t = 0.003(d-c/c)	= 0.14	157 >>> 0.005	5	STRAIN PASSES	
		Þ =		0.9	,	JINANY FAJJEJ	
		-					
-	4	ÞMn = ΦAsFy(d-	a/2) = 58	8.2 k-in			
			67	'77 kg-m	> 280 kg-m	GOOD	
	h	mperial Equival	ent: #5 BAR	5 @ 12" O/C			
	s	il Equivalent:					
	г		BARS @ 0.3m	O/C TRANSV	ERSE (T)		
	L .	001 101111	DANG @ 0.5m				

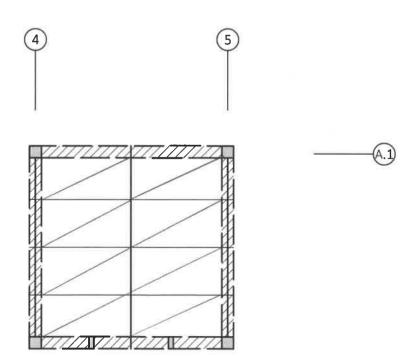
Journeyman Inte	ernational		Julia De Hart				
Rubagabaga Vill	age EVC and ATF		Jenna Williams				
References	Calculati	ons					
	WALL LINE 7 NOR						
	Loads:						
	Pol = 55497 kg						
	PLL = 4687 kg						
	VE = 33331 kg	Based on Wall 8 and Wall 9 results					
	Sds = 0.608						
ASCE 7-16	Mot = 0.75*0.70*VE*Hwali =	69996 kg-m					
12.13.4							
	Allowable Soil Bearing Pressure	2.					
IBC	fibc =	7324 kg/m^2					
TA 1806.2	fallow = 1.33*FIBC =	9740 kg/m^2					
	Try Footing Size						
	Try Footing Size:						
	Length =	14 m					
	Width =	2 m					
	Depth =	1 m					
	Wall length =	12 m					
	Pfooting = 672	78 kg					
		97 kg					
	ΣP = 1227	76 kg					
	USE 14m LONG x 2m WIDE x 1	Im DEEP FTG.					

national ge EVC and ATF			Julia De Ha Jenna Willian			
	Calculations					
VVALL LI	WALL LINE / NORTH/SOUTH FOUNDATION DESIGN					
Allowable Stress Desi	gn Combinations					
Load Case 8: (1.0 + 0.1	4Sds)D + 0.7E					
	+					
	-					
1 - 57 -	19.7 11					
fbearing = $2*\Sigma P / I*w$	6245 kg/m^2	< 9740 kg/m^2	GOOD			
Load Case 9: (1.0 + 0.1	.05Sds)D + 0.525E + 0	. <u>75L</u>				
ΣDi co σ	151620 ka					
	-					
1 - 57 -	19.0 11					
fbearing = $2*\Sigma P / I*w$	7730 kg/m^2	< 9740 kg/m^2	GOVERNS, GOOD			
Load Case 10: (1.0 - 0.	<u> 14Sds)D + 0.7E</u>					
ΣΡις10 =	135657 kg					
	-					
	-					
	2010 111					
$f_{bearing} = 2*\Sigma P / I*w$	6974 kg/m^2	< 9740 kg/m^2	GOOD			
Strength Design Comb	binations					
Load Case 6: (1.2 + 0.2	Sds)D + E + L					
Σ Ρ LC6 =	82476 kg		GOVERNS			
Load Case7: (0.9-0.2Sc	ls)D + E					
ΣΡις7 =						
	WALL LIIAllowable Stress DesiLoad Case 8: $(1.0 + 0.1)$ $\Sigma P_{LC8} =$ $M_R = \Sigma P * L/2 =$ $x = (M_R - MOT) / \Sigma P =$ $I = 3x =$ fbearing = $2*\Sigma P / I*w$ Load Case 9: $(1.0 + 0.1)$ $\Sigma P_{LC9} =$ $M_R = \Sigma P * L/2 =$ $x = (M_R - MOT) / \Sigma P =$ $I = 3x =$ fbearing = $2*\Sigma P / I*w$ Load Case 10: $(1.0 - 0.)$ $\Sigma P_{LC10} =$ $M_R = \Sigma P * L/2 =$ $x = (M_R - MOT) / \Sigma P =$ $I = 3x =$ fbearing = $2*\Sigma P / I*w$ Strength Design CombLoad Case 6: $(1.2 + 0.2)$ $\Sigma P_{LC6} =$	CalculationsWALL LINE 7 NORTH/SOUTH FAllowable Stress Design CombinationsLoad Case 8: $(1.0 + 0.14Sds)D + 0.7E$ $\Sigma PLC8 =$ 156558 kg $MR = \Sigma P * L/2 =$ 1095909 kg $x = (MR - Mot) / \Sigma P =$ 6.6 m $l = 3x =$ 19.7 mfbearing = 2* $\Sigma P / l^*w$ 6245 kg/m^2Load Case 9: $(1.0 + 0.105Sds)D + 0.525E + 0$ $\Sigma PLC9 =$ 151628 kg $MR = \Sigma P * L/2 =$ 1061396 kg $x = (MR - Mot) / \Sigma P =$ 6.5 m $l = 3x =$ 19.6 mfbearing = 2* $\Sigma P / l^*w$ 7730 kg/m^2Load Case 10: $(1.0 - 0.14Sds)D + 0.7E$ $\Sigma PLC10 =$ 135657 kg $MR = \Sigma P * L/2 =$ 949599.4 kg $x = (MR - Mot) / \Sigma P =$ 6.5 m $l = 3x =$ 19.5 mfbearing = 2* $\Sigma P / l^*w$ 6974 kg/m^2Strength Design CombinationsLoad Case 6: $(1.2 + 0.2Sds)D + E + L$	Calculations WALL LINE 7 NORTH/SOUTH FOUNDATION DESIGN Allowable Stress Design Combinations Load Case 8: $(1.0 + 0.145ds)D + 0.7E$ $\Sigma PLCs =$ 156558 kg $MR = \Sigma P + L/2 =$ 1095909 kg $x = (MR - Mor)/\Sigma P =$ 6.6 m $1 = 3x =$ 19.7 m fbearing = $2^*\Sigma P / I^*w$ 6245 kg/m^2 < 9740 kg/m^2			

Journeyman Inte Rubagabaga Villa			Julia De Ha Jenna Willian
References		Calculations	
ACI 318-14	WALL LI	NE 7 NORTH/SOUTH F	OUNDATION DESIGN
	Chaok Footing Chaon		
	Check Footing Shear		
	Vu,LC6 ≤	82476 kg	
	Φ=	0.75	
	α =	2	
	f'c =	3000 psi	
	Acv = D*W =	3100 in^2	
	$\Phi Vc = \Phi \alpha(f'c^{1}.5)Acv =$	254691 lbs	
		115526 kg	> 82476 kg GOOD
	Check for Longitudina	l Flexural Reinforceme	nt (Bottom)
	x = 6.5	m	
	l = 3x = 19.6	m	Im
	fbearing = 7730	kg/m^2	
	Ptriangle = 151628	kø	As LONG
	Xarm = 0.46	-	1 1 1 1 1
	Mu = P*x = 69996		
	Try (6) #5 bars		f bearing &
	# of bars =	12	
	bar diameter =	0.625 in	
	bar area =	0.31 in^2	
	cover =	3.00 in	
	As =	3.72 in^2	
	Fy =	60 ksi	
	T = AsFy =	223.2 k	
	a = T / 0.85*f'c*b =	1.11 in	
	c = a / β =	1.31 in	
	d =	35.19 in	
	εt = 0.003(d-c/c) =	0.0777 >>> 0.005	STRAIN PASSES
	Φ =	0.9	


Journeyman Ir				Julia De Hart
Kubagabaga V	illage EVC and ATF			Jenna Williams
References	с	alculations		
ACI 318-14	WALL LIN	<u>E 7 NORTH/SOUTH</u>	FOUNDATION DESIGN	
	ΦMn = ΦAsFy(d-a/2) =	6957.2 k-in 80154 kg-m	> 69996 kg-m	GOOD
	Imperial Equivalent: ((6) #5 BARS		
	SI Equivalent:			
	USE (6) 16mm BARS	LONGITUDINAL (B)		
	Check for Transverse Flo	exural Reinforceme	ent (Bottom)	
	wu = 10985 k	(g/m^2	Based on max soil p	pressure at end of ftg.
	I = W / t = 0.875 r	n		Xty
	Mu = 4205 k	ːɡ-m		TXT
	Try #5 bars @ 12" o/c			
	# of bars =	1	ASTRANSVERSE	
	bar diameter =	0.625 in	le te	
	bar area =	0.31 in^2	X	WNALL
	cover =	3.00 in		NNEC
	As =	0.31 in^2		
	Fy =	60 ksi		
	T = AsFy =	18.6 k		
	a = T / 0.85*f'c*b =	0.61 in		
	$c = a / \beta =$	0.72 in		
	d =	35.44 in		
	εt = 0.003(d-c/c) =	0.1457 >>> 0.00		
	$\Phi =$	0.1437 >>> 0.00	5	STRAIN PASSES
	ΦMn = ΦAsFy(d-a/2) =	588.2 k-in		
		6777 kg-m	> 4205 kg-m	GOOD
	Imperial Equivalent: #	5 BARS @12" O/C		
	SI Equivalent:			
	USE 16mm BARS @ 0.3	m O/C TRANSVERS	E (B)	

Journeyman	International			Julia De Hart			
Rubagabaga	Village EVC and ATF			Jenna Williams			
References	c	alculations					
ACI 210 14		WALL LINE 7 NORTH/SOUTH FOUNDATION DESIGN					
ACI 318-14	<u>WALL LINE</u>	- / NORTH/SOUTH F	OUNDATION DESIGI	<u>N</u>			
	Check for Longitudinal F	lexural Reinforceme	ent (Top)				
		cg/m^2					
	l= 7 n						
	Mu = 8972 k	kg-m	Based on ftg. rota	ting around toe			
	Try (6) #5 bars		1	Im			
	# of bars =	6		As LONG			
	bar diameter =	0.625 in					
	bar area =	0.31 in^2	L				
	cover =	3.00 in					
	As =	1.86 in^2	X L	WALL			
	Fy =	60 ksi					
	T = AsFy =	111.6 k					
	a = T / 0.85*f'c*b =	0.56 in					
	$c = a / \beta =$	0.65 in					
	d =	35.47 in					
	εt = 0.003(d-c/c) =	0.1597 >>> 0.005		STRAIN PASSES			
	Φ =	0.9					
	ФМn = ФAsFy(d-a/2) =	3534.4 k-in					
		40720 kg-m	> 8972 kg-m	GOOD			
	Imperial Equivalent: ((6) #5 BARS					
	SI Equivalent:						
	USE (6) 16mm BARS I	ONGITUDINAL (T)	٦				
			1				


ourneyman Inte ubagabaga Villa				Julia De H Jenna Willia		
eferences		Calculations				
CI 318-14	WALL LINE 7 NORTH/SOUTH FOUNDATION DESIGN					
	Check for Transverse F	<u>t (Top)</u>				
	wu = 732	kg/m^2				
	l = 0.875					
		kg-m	Based on ftg. rot	ating around toe		
	Try #5 bars @ 12" o/c		Th	-AS TRANSVERSE		
	# of bars =	1	- F			
	bar diameter =	0.625 in	11=11=11=	11=11		
	bar area =	0.31 in^2		X		
	cover =	3.00 in	11=11=11= X W	1.101		
			Y	Whee		
	As =	0.31 in^2				
	Fy =	60 ksi				
	T = AsFy =	18.6 k				
	a = T / 0.85*f'c*b =	0.61 in				
	c = a / β =	0.72 in				
	d =	35.44 in				
	εt = 0.003(d-c/c) =	0.1457 >>> 0.005		STRAIN PASSES		
	Φ=	0.9				
	ΦMn = ΦAsFy(d-a/2) =	588.2 k-in				
		6777 kg-m	> 280 kg-m	GOOD		
	Imperial Equivalent: #5 BARS @ 12" O/C					
	SI Equivalent:					
		0.3m O/C TRANSVE	RSE (T)			

	n International			Julia De Ha				
unggangg	a Village EVC and ATF			Jenna William				
References		Calculations						
	RESTROOM LOAD TAKE OFF							
	DEAD LOAD		WEIGHT (PSF)	WEIGHT(kg/m^2)				
	METAL DECKING		0.50	2.44				
	BAMBOO WEAVE CEILING		0.50	2.44				
	MISC.		2.00	9.76				
			2.00	5.70				
		TOTAL TO PURLINS:	3.00	14.65				
	PURLINS		2.08	10.16				
		TOTAL TO TRUSSES:	5.08	24.01				
		TOTAL TO TRUSSES.	5.08	24.81				
	WOOD TRUSSES		11.18	54.60				
	τοται	TO COLUMNS AND WALLS:	16.26	79.41				
	CONCRETE COLUMNS		3.85	18.77				
	MASONRY WALLS		246.16	1201.50				
		TOTAL TO FOUNDATION:	266.26	1300.00				
			WEIGHT (PSF)	WEIGHT(kg/m^2				
	ROOF		20.00	97.65				
	TOTAL AREA	96 m^2						

B

RESTROOM FOUNDATION KEY PLAN

	n International a Village EVC and ATF	Julia De Hart Jenna Williams				
References	Calculations	Jenna Winami				
	RESTROOM DECKING DESIGN					
	DECKING TO MATCH DECKING IN EVC AND ATF					
	Loads to decking in Restroom are equal to the loads to decking in ATF					
	USE EVC AND ATF DECKING DESIGN					
	RESTROOM PURLIN DESIGN					
	PURLINS TO MATCH PURLINS IN EVC AND ATF					
	Loads to purlins in Restroom are equal to the loads to purlins in ATF					
	USE EVC AND ATF PURLIN DESIGN					
	RESTROOM TRUSS DESIGN					
	TRUSS TO MATCH TRUSS B FROM ATF					
	Loads to truss in Restroom are equal to the loads to truss in ATF					
	USE ATF TRUSS B DESIGN					

Journeyman International Rubagabaga Village EVC and ATF Julia De Hart Jenna Williams

References	Calculations							
	SLAB ON GRADE DESIGN - RESTROOM							
	Slab on grade to be constructed by typical slab on grade construction and minimum reinforcing: Imperial Equivalent: 5" thick slab with #3 @18" o/c each way SI Equivalent: USE 125mm THICK SLAB w/ 10mm REINFORCING BARS @ 0.4m EACH WAY							
	.e.,							

Journeymar	n International						Julia De Hart	
	a Village EVC and ATF						Jenna Williams	
References		Calculations						
ASCE 7-16		SEISMIC LOAD CALCULATIONS - RESTROOMS						
	SDS =	0.608						
	R =	1						
		TROOME						
	SEISMIC WEIGHT - RES ITEM	psf	kg/m^2	rib Area (m	1	kα	1	
	Ceiling	3.0	14.6	16	,	kg 234.4		
	Purlins	2.1	10.2	16		162.5		
	Truss B	11.2	54.6	4	4	873.4		
	Walls (10")	125	610.3	16	2	19529.7		
					TOTAL	20800	kg	
							_	
	W =	20800	kg	45.86	kips			
							8	
	BASE SHEAR	_						
		CsW						
		Cs =	0.608					
	V =	12646	ka	1 27.00	kino			
	V -	12646	кв	27.88	kips			

	n International a Village EVC and ATF	Julia De Hart
		Jenna Williams
References	Calculations	
	RESTROOM DIAPHRAGM DESIGN	
	DIAPHRAGM TO MATCH DIAPHRAGM IN EVC AND ATF	
	Lateral loads to EVC and ATF are larger than lateral loads to the Restroom	
	USE EVC AND ATF DIAPHRAGM DESIGN conservative	

-	in Internati a Village E	VC and ATF						Julia De Ha Jenna Willia
eferences			Calculat	tions				
		СС	NFINED MAS	ONRY V	VALL DESIGI	N - RESTRC	MOM	
Confined		7						
Masonry	Performar	nce Objective:	Life Sat	féty				
Design Guide		-						
Guide	Lateral Wa	all Density						
		Required Wall De	ensity = 1.0%	for follo	owing condi	tions:		
		Low Seismic Haz			A = 0.06g ≤			
		n = 1		1 s'	tory building	3		
		Solid Clay Bricks		har	ndmade, Mo	ortar Type	III cons	ervatively
		Soil Type C		Sof	t clay soil			
		N/S Direction						
		Assume 2 wythe	s of 120mm b	orick				
		Floor area	A	Ap =	16.00 m^			
		Wall area		- w	2.00 m^	2		
		Wall density	d = Aw / A	vb =	12.50 %	> 1	L.O %	GOOD
		E/W Direction						
		Assume 2 wythe	s of 120mm b	orick				
		Floor area	A	Ap =	16.00 m^	2		
		Wall area		w =	1.00 m^			
		Wall density	d = Aw / A	vb =	6.25 %	> 1	l.0 %	GOOD
	<u>Gravity Wa</u>	all Density						
		Strength Reducti	on Factor		Fr =	0.6		
		Gravity Load Fac	tor		Fc =	1.4		
		Safety Factor		Fs = F	=c / Fr =	2.33		
		Compressive Stre	ength, σR					
		Eccentricty/Slend	derness Facto	r	Fe =	0.7		for interior walls
		Masonry Comp S	trength		f'm =	15 kg	/cm^2	
			σR	= Fe (f'r	n + 4) =	13.3 kg	/cm^2	

ourneyman Inte					Julia De Ha			
tubagabaga Villa	ge EVC and ATF				Jenna Willian			
leferences		Ca	alculations					
		CONFINE						
Confined		CONFINEL	VIASUNKY WALL	DESIGN - RESTROOI	<u>VI</u>			
Masonry	Wall Density I	ndex Σd >	$Fc (n*w) / \sigma R$					
Design	wun Density in	IUCX, ZU E						
Guide	Weight	w =	83.22 kg/m^2					
	Stories	n =	1					
	For both direc	tions:						
		/) / σR =	0.876 %					
			18.75 %	> 0.876 %	GOOD			
	For one direct	ion:						
	Fc (n*w	/) / σR =	0.438 %					
	Σd = ΣA	w/Ap =	6.25 %	> 0.438 %	GOOD			
	<u>Wall Distance/Thickness Ratio, $B/t \le \sigma R/(Fs^*D^*w)$</u>							
	Distance	B =	4 m					
	Thickness	t =	0.250 m					
		B/t =	16.0					
		D =	1.0					
	σR/(Fs*	*D*w) =	684.93	> 16.7	GOOD			
Concl	usion							
		ined maso	nry walls are suffic	cient				
					•			

	n International a Village EVC and ATF	Julia De Hart Jenna Williams
References		Jenna Willans
References	Calculations	
Confined	CONFINED MASONRY WALL DESIGN - RESTROOM	
Masonry Design	TIE-COLUMN DESIGN	
Guide	<u>Spacing</u> Maximum spacing of tie-columns shall not exceed 6m Smax = 4 m < 6m	GOOD
	Minimum Dimensions Minimum depth x width of a tie-column 150mm x t t = 250 mm	
	Tie-Columns shall be 250mm x 250mm > 150mm x 250mm	GOOD
	<u>Reinforcing</u> <u>Longitudinal</u> Minimum 4 deformed reinforcing bars of minimum 10-mm diamete	er
	Reinforcing shall be (4) 13-mm diameter bars	GOOD
	Tie Sizing and Spacing Minimum 6-mm diameter bars with 135° hooked ends	
	Tie spacing cannot exceed 200mm with minimum 20mm cover	
	Ties shall be 10-mm diameter transverse stirrups, spaced at 200m, with 50mm cover	GOOD

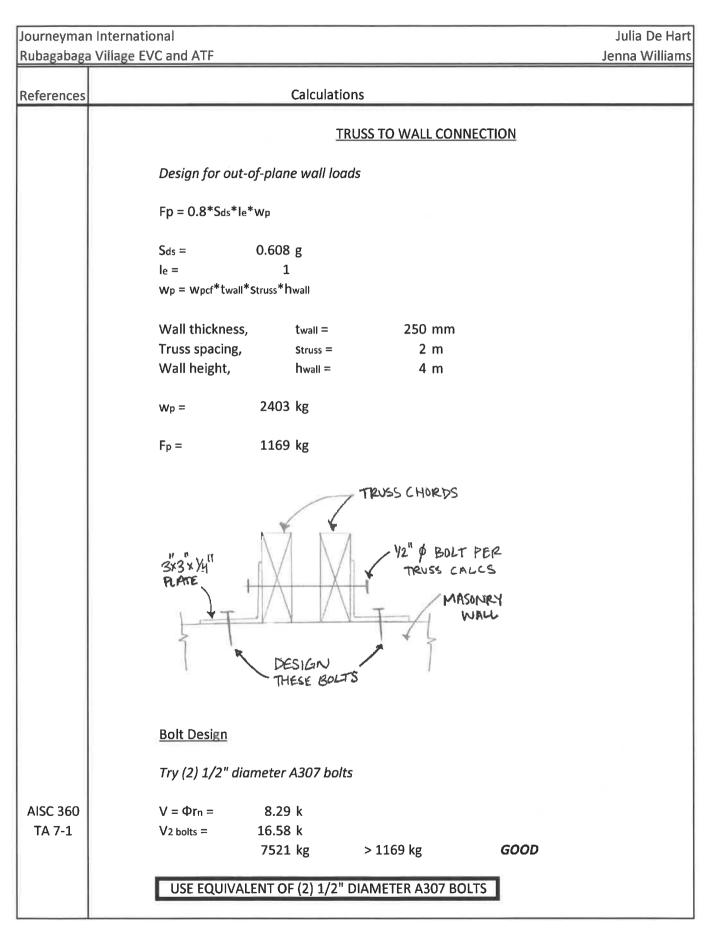
	n International	Julia De Hart
Rubagabag	a Village EVC and ATF	Jenna Williams
References	Calculations	
Confined Masonry Design Guide	CONFINED MASONRY WALL DESIGN - RESTROOM TIE-BEAM DESIGN Spacing	
	Tie-beams shall be provided at the top of each wall, and above and below each window opening	GOOD
	Minimum Dimensions Minimum depth x width of a tie-beam 150mm x t t = 250 mm Tie-Beams shall be 250mm x 250mm > 150mm x 250mm	GOOD
	Reinforcing Longitudinal Minimum 4 deformed reinforcing bars of minimum 10-mm diamet	
	To ensure the effectiveness of tie-beams in resisting earthquake lo longitudinal bars should have a 90° hooked anchorage at intersecti	
	Reinforcing shall be (4) 13-mm diameter bar, with 90° hooked anchorage at intersections	GOOD
	<u>Tie Sizing and Spacing</u> Minimum 6-mm diameter bars with 135° hooked ends	
	Tie spacing cannot exceed 200mm with minimum 20mm cover Ties shall be 10-mm diameter transverse stirrups,	
	spaced at 200m, with 50mm cover	GOOD

.

Journeymar	Internatio	nal						Julia De H	art
Rubagabaga	Village EV	C and ATF						Jenna Willia	ms
References				Calculation	S				
				SEISIVIIC LO	JAD DISTRI	BUTION - RE	STROOM		
	WALL	DIRECTION	L (m)	H/L	Rc	origin dist.	d(m)	Rd Rd^	2
	1	Х	2	2.00	0.263	0	-9.38	-2.47 23.1	
	2	Х	4	1.00	1.429	4	-5.38	-7.69 41.3	
	3	Y	4	1.00	1.429	0	-9.38	-13.40 125.7	73
	4	Y	4	1.00	1.429	4	-5.38	-7.69 41.3	6
								Σ 231.5	59
		Xcm =		m		Xcr =	2.00		
		Ycm =	2	m		Ycr =	3.38	m	
		EAST/WE	ST (V)						
		LAST/ VVL	<u>.51 (A)</u>						
	ex = 0	.05*16m =	0.20	m		DIRECT	TORSION	WALL	
		-Xcr) + ex =	0.20			SHEAR	SHEAR	FORCE	
		Vbase =	12646	kg	V1 =	983	-27	956 kg	
		Mtor =	2529	kg-m	V2 =	29977	-84	29893 kg	
-									
		Largest East/	West Ford	e:	29893	kg			
		NORTH/SO	<u>UTH (Y)</u>						
	ev = 0	.05*20m =	0.20	m		DIRECT	TORSION	WALL	
	-		-1.18			SHEAR	SHEAR	FORCE	
		Vbase =			V3 =				
		Mtor =	-14900	-	V4 =		495	30472 kg	
		Largest Nort	h/South Fo	orce:	30472	kg			

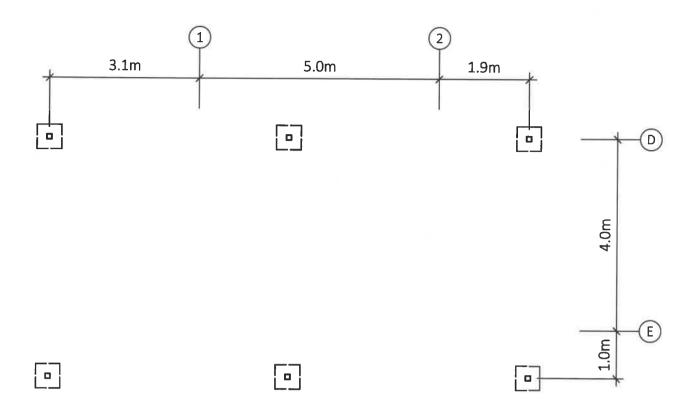
Journeyman Inte		Julia De Ha
Rubagabaga Villa	ge EVC and ATF	Jenna Willian
References	Calcu	lations
	RESTROC	OM WALL FOUNDATION DESIGN
	Loads:	
	PDL = 9250 kg	
	PLL = 781 kg	
	Ve = 30472 kg	Based on Largest Wall Force, Wall 4
	Sds = 0.608	
ASCE 7-16 12.13.4	Mot = 0.75*0.70*VE*Hwall =	63990 kg-m
	Allowable Soil Bearing Pres	sure:
IBC	fibc =	7324 kg/m^2
TA 1806.2	fallow = 1.33*FIBC =	9740 kg/m^2
	Try Footing Size:	
	Length =	6 m
	Width =	1 m
	Depth = .	1 m
	Wall length =	4 m
	Pfooting =	14417 kg
	Pdead =	9250 kg
	ΣP =	23666 kg
	USE 6m LONG x 2m WIDE	x 1m DEEP ETG
		A III DEEL TTO.

Journeyman Inte Rubagabaga Villa				Julia De Har Jenna William
	<u></u>			
References		Calculations		
	RES	TROOM WALLS FOUN	DATION DESIGN	
	Allowable Stress Des	ign Combinations		
ASCE 7-16	Load Case 8: (1.0 + 0.)	$145d_{5}D + 0.7E$		
2.4.5	2000 0000 0.1110 - 01.	14505/0 . 0.72		
	ΣPLC8 =	47011 kg		
	Mr = ΣP * L/2 =	141032.7 kg		
	$x = (MR - MOT) / \Sigma P =$	1.6 m		
	= 3x =	4.9 m		
	fbearing = $2*\Sigma P / I*w$	9627 kg/m^2	< 9740 kg/m^2	GOOD
ASCE 7-16	Load Case 9: (1.0 + 0.1	105Sds)D + 0.525E + 0) 751	
2.4.5				
	ΣPLC9 =	41761 kg		
	$M_{R} = \Sigma P * L/2 =$	-		
	x = (Mr - Mot) / ΣP =	1.5 m		
	l = 3x =	4.4 m		
	fbearing = $2*\Sigma P / *w$	18969 kg/m^2	< 9740 kg/m^2	GOVERNS, GOOD
ASCE 7-16	Load Case 10: (1.0 - 0.	14Sds)D + 0.7E		
2.4.5				
	ΣΡις10 =	42982 kg		
	$M_R = \Sigma P * L/2 =$	128945.9 kg		
	x = (Mr - Mot) / ΣP =	1.5 m		
	l = 3x =	4.5 m		
	fbearing = $2*\Sigma P / I*w$	18961 kg/m^2	< 9740 kg/m^2	GOOD
	Strength Design Coml	binations		
ASCE 7-16 2.3.6	Load Case 6: (1.2 + 0.2	2Sds)D + E + L		
2.5.0	ΣPLC6 =	40779 kg		GOVERNS
ASCE 7-16	Load Case7: (0.9-0.250	ds)D + F		
2.3.6				
	Σ Ρ ιc7 =	36083 kg		
		5		

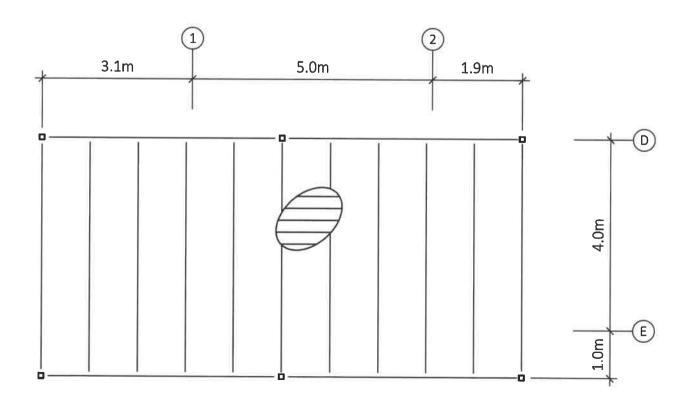

Journeyman Inter Rubagabaga Villa					Julia De Har Jenna William
References		Ca	lculations		
ACI 318-14		RESTR	OOM WALLS FOUI	NDATION DESIGN	
	Check Footing	<u>Shear</u>			
	Vu,LC6 ≤		40770 ka		
	VU,106 S		40779 kg		
	Φ =		0.75		
	α =		2		
	f'c =		3000 psi		
	Acv = D*W =		1550 in^2		
	$\Phi Vc = \Phi \alpha(f'c^{-1})$	5)Acv =	127345 lbs		
			57763 kg	> 40779 kg	GOOD
	Check for Long	<u>itudinal Fl</u>	exural Reinforcem	nent (Bottom)	
	x =	1.5 m		-	
	l = 3x =	4.4 m		Im	4
	fbearing =	18969 kg	g/m^2		1
	Ptriangle =	41761 kg		As LONG	7
	Xarm =	1.53 m		1	1 t t 1
	Mu = P*x =	63990 kg		Ţ	
	Try (6) #5 bars			fbearing	l.
	# of bars =		12		
	bar diameter =	:	0.625 in		
	bar area =		0.31 in^2		
	cover =		3.00 in		
	As =		3.72 in^2		
	Fy =		60 ksi		
	T = AsFy =		223.2 k		
	a = T / 0.85*f'c	*b =	2.22 in		
	c = a / β =		2.62 in		
	d =		34.63 in		
	εt = 0.003(d-c/	c) =	0.0367 >>> 0.00)5	STRAIN PASSES
	Φ=		0.9		

.

Journeyman Inter Rubagabaga Villag	
References	Calculations
ACI 318-14	RESTROOM WALLS FOUNDATION DESIGN
	ФМп = ФAsFy(d-a/2) = 6733.9 k-in 77581 kg-m > 63990 kg-m GOOD
	Imperial Equivalent: (4) #5 BARS
	SI Equivalent: USE (4) 16mm BARS LONGITUDINAL (B)
	Check for Transverse Flexural Reinforcement (Bottom)
	wu =10985 kg/m^2Based on max soil pressure at end of ftg. $l = W / t =$ 0.375 mMu =772 kg-m
	Try #5 bars @ 12" o/c
	# of bars = 1 As TRANSVERSE
	bar diameter = 0.625 in
	bar area = 0.31 in^2
	cover = 3.00 in
	As = 0.31 in^2
	Fy = 60 ksi
	T = AsFy = 18.6 k
	a = T / 0.85*f'c*b = 0.61 in
	$c = a / \beta = 0.72$ in
	d = 35.44 in
	εt = 0.003(d-c/c) = 0.1457 >>> 0.005 STRAIN PASSES
	Φ = 0.9
	ФМп = ФAsFy(d-a/2) = 588.2 k-in 6777 kg-m > 772 kg-m GOOD
	Imperial Equivalent: #5 BARS @ 12" O/C
	SI Equivalent:
	USE 16mm BARS @ 0.3m O/C TRANSVERSE (B)


ourneyman Inte ubagabaga Villa				Julia De Ha Jenna Willian
eferences	C	alculations		
CI 318-14	REST			
	Check for Longitudinal I	Elexural Reinforcem	ent (Top)	
	wu = 732 k	‹g/m^2		
	l= 3 r			
	Mu = 3296		Based on ftg. rota	iting around toe
			-1	
	Try (6) #5 bars		V	m
	# of bars =	6		As LONG
	bar diameter =	0.625 in		
	bar area =	0.31 in^2		
		3.00 in	三川三川三川	= 11=11
	cover =	5.00 III		X
	As =	1.86 in^2	XL	WALL
	As = Fy =	60 ksi		
	T = AsFy =	111.6 k		
	T – ASFY –	111.0 K		
	a = T / 0.85*f'c*b =	1.11 in		
	c = a / β =	1.31 in		
	d =	35.19 in		
	εt = 0.003(d-c/c) =	0.0777 >>> 0.00	5	STRAIN PASSES
	Φ=	0.9		
	ΦMn = ΦAsFy(d-a/2) =	3478.6 k-in		
		40077 kg-m	> 3296 kg-m	GOOD
	Imperial Equivalent: (4) #5 BARS		
	Cl Caulualante			
	SI Equivalent: USE (4) 16mm BARS		-	
	USE (4) IOIIIIII BARS	LONGITUDINAL (T)		

Journeyman Inter				Julia De Hart		
Rubagabaga Villa	ge EVC and ATF			Jenna Williams		
References		Calculations				
ACI 219 14	RESTROOM WALLS FOUNDATION DESIGN					
ACI 318-14		RESTROOM WALLS FOR	UNDATION DESIGN			
	Check for Transver	se Flexural Reinforcen	nent (Top)			
	wu =	732 kg/m^2				
	l = 0.1	375 m				
	Mu =	51 kg-m	Based on ftg. ro	tating around toe		
	Try #5 bars @ 12"	o/c	T	AS TRANSVERSE		
	# of bars =	1	E	9		
	bar diameter =	0.625 in	11=11=1U= X	511511		
	bar area =	0.31 in^2		X		
	cover =	3.00 in	X	J		
		0.00	v	WAC		
	As =	0.31 in^2				
	Fy =	60 ksi				
	T = AsFy =	18.6 k				
	a = T / 0.85*f'c*b =	= 0.61 in				
	$c = a / \beta =$	0.72 in				
	d =	35.44 in				
	u -	55.44 11				
	εt = 0.003(d-c/c) =	0.1457 >>> 0.0	005	STRAIN PASSES		
	Φ=	0.9				
	ФMn = ФАsFy(d-а/	/2) = 588.2 k-in				
		6777 kg-m	> 51 kg-m	GOOD		
	Imperial Equivalen	it: #5 BARS @ 12" O,	/c			
	SI Equivalent:					
		ARS @ 0.3m O/C TRAN	SVERSE (T)			
	000 101111 0/					


	n International Village EVC and AT	F		Julia De Ha Jenna Willian
References		Calcula	tions	
		STEEL CANOPY LO	DAD TAKE OFF	
	DEAD LOAD		WEIGHT (PSF)	WEIGHT(kg/m^2)
	METAL DECKING MISC.		0.50 1.00	2.44 4.88
		TOTAL TO HSS BEAMS:	1.50	7.32
	HSS BEAMS		1.65	8.05
		TOTAL TO HSS GIRDERS:	3.15	15.37
	HSS GIRDERS		3.52	17.21
		TOTAL TO COLUMNS:	6.67	32.58
	HSS COLUMNS		0.98	4.77
		TOTAL TO FOUNDATION:	7.65	37.35
	LIVE LOAD ROOF		WEIGHT (PSF) 20.00	WEIGHT(kg/m^2) 97.65
	TOTAL AREA	16 m^2		

2

STEEL CANOPY FOUNDATION KEY PLAN

Journeyman International

Rubagabaga Village EVC and ATF

Julia De Hart Jenna Williams

References		Calculations				
	L : Dead	psf trib (ft)				
	Live					
	Load Com	binations				
		1.4D = 6.9 lb/ft				
		1.2D+1.6L = <u>110.9 lb/ft</u> governs				
AISC 360	Bending Mu =	3.7 k-ft				
F2-1	φMn =					
		$\phi = 0.9$				
		Fy = 50 ksi				
		Zxreq = 0.082891 in^3				
	φMn-Mu 🛛	= 0				
		HSS2x2x1/8" adequate (Zx = .584 in^3)				
	Shear Che	eck				
	Vu =	0.91 kips				
G4-1	φVn =	0.6FyAwCv2				
		kv = 5.34				
		E = 29000 ksi				
		Cv2 = 1.0 since h/tw < 1.1v(kvE/Fy) 1503.5				
		h/tw 16 √(kvE/Fy) =				
		h = 2.0 in				
		tw = 0.125 in				
	1.7	Aw = 0.5 in^2				
	φVn =	15 kips φVn > Vu OKAY				
	Deflection	Check				
T3-23	Δ =	5wl^4/384El				
		l = 0.486 in^4				
	Δ =	0.01 in				
IBC T1604.3	∆allow=	L/180 = 0.09 in				
		∆allow > ∆ OKAY				
		use HSS 2x2x1/8" beams for steel canopy				

Journeyman International Julia De Hart Rubagabaga Village EVC and ATF Jenna Williams References Calculations **STEEL CANOPY FRAMING - HSS GIRDER DESIGN** L = 5 m psf trib (ft) Dead 3.15 8.20 D = 25.8 lb/ft L = 164.0 lb/ft Live 20.00 8.20 Load Combinations 1.4D = 36.2 lb/ft 1.2D+1.6L = 293.5 lb/ft *governs* AISC 360 Bending F2-1 Mu = 9.9 k-ft φMn = фFyZx φ= 0.9 Fy = 50 ksi Zxreq = 0.21936 in^3 φMn-Mu = 0 HSS2x2x1/8" adequate (Zx = .584 in^3) Shear Check Vu = 2.41 kips G4-1 φVn = 0.6FyAwCv2 kv = 5.34 29000 ksi E = Cv2 = 1.0 since h/tw < 1.1V(kvE/Fy)h/tw 16 √(kvE/Fy) = 61.2 h = 2.0 in tw = 0.125 in 0.5 in^2 Aw = φVn = 15 kips ϕ Vn > Vu **OKAY** Deflection Check T3-23 Δ = 5wl^4/384El I = 0.486 in^4 Δ = 0.02 in IBC T1604.3 |∆allow= L/180 = 0.09 in Δ allow > Δ OKAY use HSS 2x2x1/8" girders for steel canopy

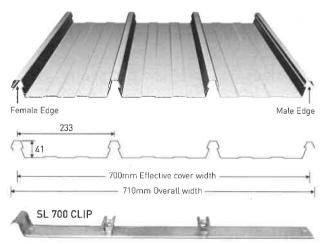
Journeyman International Julia De Hart Rubagabaga Village EVC and ATF Jenna Williams References Calculations **STEEL CANOPY FRAMING - HSS COLUMN DESIGN** L = 3 m trib (ft^2) psf D = 273.7 lb L = 820.2 lb Dead 6.67 41.01 Live 20.00 41.01 Load Combinations 1.4D = 383.1 lb 1.2D+1.6L = 1640.7 lb governs AISC 360 Compression E3-1 Pu = 1.6 kips φPn = φFcrAg φ= 0.9 check HSS2x2x1/8" lu = 9.84 ft T4-4 φPn = 7.63 kips $\phi Pn > Pu \quad OKAY$ use HSS2x2x1/8" columns for steel canopy

	International	Julia De Hart
Rubagabaga	Village EVC and ATF	Jenna Williams
References	Calculations	
	STEEL CANOPY PAD FOOTING DESIGN	
	psf trib (ft^2) Dead 7.65 41.01 D = 313.7 lb	
	Live 20.00 41.01 L = 820.2 lb	
	Load Combinations	
	1.4D = 439.2 lb	
	1.2D+1.6L = <u>1688.8 lb</u> governs	
	Pu = 1688.8 lb	
	fbearing = 1500 psf	
	Areq = 0.89 ft^2	
	breq = 0.94 ft 0.29 m	
	use 0.3x0.3x0.5m footing	

SAFLOK 700 concealed fix roofing

PRODUCT DESCRIPTION & FEATURES

Concealed-fixing, also referred to as secret fix, is designed for very low pitched roofs. Because clips under the sheet hold it down, the sheet is not punctured with fasteners, and remains completely watertight even at a very low slope. The securing clips are pre-fixed into the purlins and the sheet is mechanically snapped onto the clip. As a concealed fix sheet can also expand and contract over the clips as the temperature changes, this system is ideal for long spans on industrial, commercial and retail buildings.


SAFLOK 700 is a concealed fix sheet profile with an effective cover width of 700mm. It is an angular interlocking standing seam trapezoidal rib profile, and is usually roll formed on mobile mills on the building site.

CLIPPING SYSTEM

The SAFLOK 700 clip incorporates a dual action component to positively hold down the male-female joint on every third rib, and an anchor to clasp the two inner ribs. Every rib is therefore secured, making it fully interlocking. It is essential that the male rib is directly engaged to the underside of the clip.

Clips for Aluminium Material:

- An Aluminium clip is a necessity when using Aluminium Material.
- When using Aluminium material on galvanized steel purlins it is recommended to make use of an isolation tape to prevent the bridging of the two dissimilar materials. The recommended tape is a "Denso LDP 300" or similar. Should the two metals have direct contact it will ultimately result in the manifestation of galvanic corrosion. The service life of the Aluminium will be compromised.

MATERIAL OPTIONS

Aluminium - Zinc	Gauge (mm)
AZ150 G550 Unpainted	0.50 0.55
AZ150 G550 Painted	0.50 0.55
Aluminium	Gauge (mm)
Aluminium Mill Finish	0.70 0.80
Aluminium G4 Colortech	0.70 0.80

Other gauges are available on special request.

SAMPLE SPECIFICATION

Safintra 0,50mm thick SAFLOK 700 Colorplus® AZ150 interlocking roof sheeting fixed to steel internal purlins at 2000mm, and ridge/eaves purlins at 1700mm centres using SAFLOK 700 clips which must be screw fixed to steel purlins with class 3 wafer head self-tapping screws, all in accordance with manufacturer's recommendations.

The sheeting will be a double interlocking concealed fix "SAFLOK 700" profile as manufactured by Safintra Roofng, roll formed in continuous lengths from certified G550 steel or aluminium 3004 H14.

The profile shall be roll formed with 4 ribs and centres not exceeding 233mm and a cover width not exceeding 700mm. The male rib is to include spurs to ensure a double interlocking action with adjacent sheets. The minimum sheet depth will be 41mm. Two stiffening ribs are incorporated in each pan.

We do not recommend using Saflok on a roof pitch exceeding 5 degrees due to the possibility of oil canning.

SAFLOK 700

concealed fix roofing

PURLIN SPACINGS

Note: It is important to reduce purlin spacings by 20% when spring curving a roof

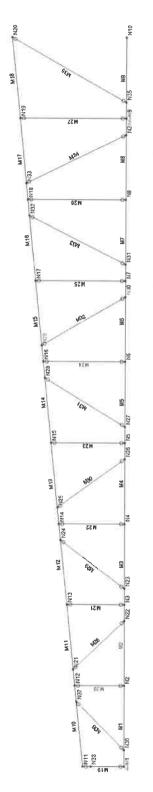
Span tables are for SAFLOK 700 with light foot traffic only. Span tables are based on 1.5kPa downward pressure, 1.6kPa upward pressure and 0.75kPa for the side cladding, inward or outward. The span tables are maximum recommended spans based on buildings up to 10m high in Region B, Terrain Category 3. For further clarity on terrain categories, and wind speeds, please refer to the Safintra Design and Installation Manual (specifically pages 5,6 and 10,11)

GAUGE	0.5mm	0.55mm	0.8mm
MATERIAL	ALUMINIUM- ZINC	ALUMINIUM- ZINC	ALUMINIUM
ROOFS	mm	mm	mm
Single Span	1 400	1 700	1 400
End Span	1 700	2 100	1 500
Internal/Double Span	2 000	2 300	2 000
Cantilever (Unstiffened)	150	260	180
Cantilever [Stiffened]	350	400	380
SIDE CLADDING			
Single Span	2 100	2 300	1 600
End Span	2 400	2 600	2 200
Internal Span	2 600	2 700	2 400
Cantilever	300	400	300
Approximate Mass/m²	5 2kg	6.2kg	2.9kg

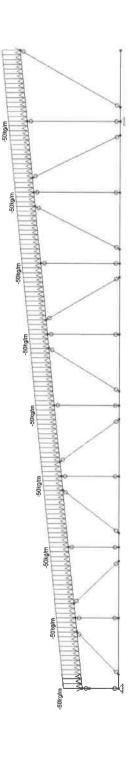
Saflok 700 clips are calculated at 330g per clip - require approximately 1.5 clips per m².

	WIND SPEED TABLE	
Wind Zone	Purlin spacing for sheeting	
Low [32 m/s] 115km/h	As per the profile span tables	
Medium (37 m/s) 133km/h	As per the profile span tables - 5%	
High (44 m/s) 158km/h	As per the profile span tables - 25%, all roof perimeters secured	
Severe (50 m/s) 179km/h	As per the profile span tables - 25%. Consult your local Safintra branch	

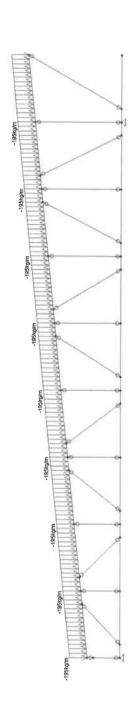
LENGTHS & ROOF PITCH


SAFLOK 700 can be ordered in any practical length as per customer requirements. On site rolling is recommended for lengths in excess of 13 metres. The minimum roof pitch when using SAFLOK 700 is 2° on steel and 3° on wood.

DRAINAGE TABLE


DRAINAGE TABLE	ROOF SLOPE				
RAINFALL INTENSITY MM/HOUR	2°	3°		Bo	10°
250	75	90 1		- 1	
300	65	75	95	ŀ	
400	50	55	70	80	90
500	40	45	55	65	70
Maximum roof run for	roof slopes and rainfall intensities	s shown.			10

Published March 2013



LIVE LOAD

ATF: TRUSS A ANALYSIS

Apr 23, 2019 11:55 AM Checked By:___

Joint Coordinates and Temperatures

	Label	X [m]	Y [m]	Temp [F]
1	N1	0	4	0
2	N2	1	4	0
3	N3	2	4	0
4	N4	3	4	0
5	N5	4	4	Ő
6	N6	5	4	Ő
7	N7	6	4	Ő
8	N8	7	4	Ő
9	N9	8	4	Ő
10	N10	9	4	0
11	N11	0	.1	0
12	N12	1	.2	0
13	N13	2	.3	0
14	N14	2	.4	0
15	N15	4	.5	
16	N16	5	.5	0
17	N17	6	.6 .7	0
18	N18	7	.8	0
19	N19	8	.0	
20	N20	9	1	0
21	N21	1.2	.22	0
22	N22	1.2		0
23	N23	1.8	4	Ō
24	N24	2.8	4	0
25	N25	2.0	.38	0
26	N26	3.2	.42	0
27	N27	3.8	4	0
28	N28	4.2	4	0
29	N29	4.8 5.2	.58	0
30	N30	5.2	.62	0
31	NO1	5.8	4	0
32	N31 N32	6.2	4	0 0
33		6.8	.78	0
34	N33	7.2	.82	0
	N34	7.8	4	0
35	N35	8.2	4	0
36	N36	.2	4	0
37	N37	.8	.18	0
38	N38	0	0	0

Member Distributed Loads (BLC 1 : Dead)

	Member Labe!	Direction	Start Magnitude/kg/	End Magnitude[kg/m,	Start Location m %1	End Location[m,%]
1	M10	Y	-50	-50	0	
2	M11	Y	-50	-50	0	0
3	M12	Y	-50	-50	0	0
4	M13	Y	-50	-50	0	0
5	M14	Y	-50	-50	0	0
6	M15	Y	-50	-50	0	0
7	M16	Y	-50	-50	0	0
8	M17	Y	-50	-50	0	0
9	M18	Y	-50	-50	0	0

Member Distributed Loads (BLC 2 : Live)

1	Member Label	Direction	Start Magnitude[kg/	End Magnitude[kg/m	. Start Location[m.%]	End Location[m.%]
	M10	Y	-195	-195	0	0
RISA-	2D Version 17.0.1	[U:\SENIOF	R PROJECT\truss de	esign\RISA\truss_slo	ped_analysis.r2d]	Page 1

Apr 23, 2019 11:55 AM Checked By:__

Member Distributed Loads (BLC 2 : Live) (Continued)

	Member Label	Direction	Start Magnitude[kg/	End Magnitude[kg/m	Start Location[m %]	End Location[m,%]
2	M11	Y	-195	-195	0	0
3	M12	Y	-195	-195	0	0
4	M13	Y	-195	-195	0	Ô
5	M14	Y	-195	-195	0	Ő
6	M15	Y	-195	-195	0	Õ
7	M16	Y	-195	-195	0	Ő
8	M17	Y	-195	-195	0	Ő
9	M18	Y	-195	-195	0	0

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Joint	Point	Distributed
1	Dead	DĽ	1	1			9
2	Live	LL	1	1		N	9

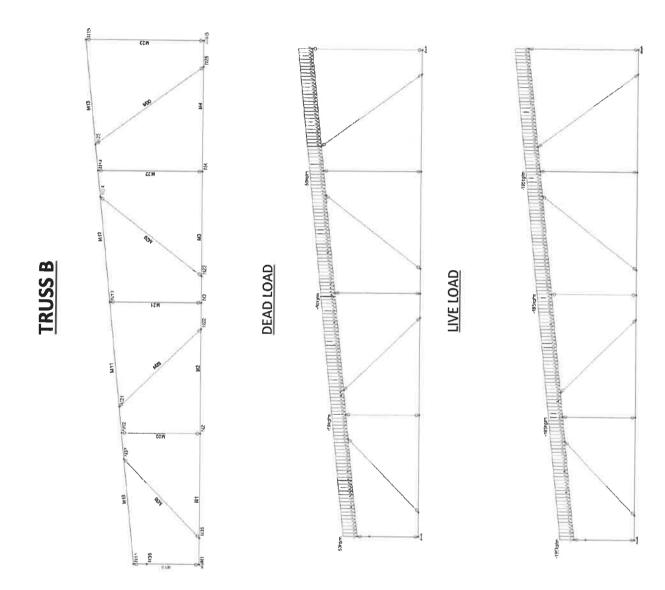
Load Combinations

	Descripti	Solve	PDelta	SRSS	BLC	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa	В	Fa	в	Fa	в.,	Fa
1	D+L	Yes			DL		LL	1																

Maximum Member Section Forces

	LC	Member Label		Axial[kg]	Loc[m]	Shear[kg]	Loc[m]	Moment[ka-m]	Loc[m]
1	1	M1	max	1317.728	.198	985.762	.198	35.545	1
2			min	-4.426	.208	-292.266	.208	-195.024	.198
3	1	M2	max	2.727	.792	571.977	1	50.828	.792
4	1.		min	-563.997	.802	-20.808	0	-63.343	1
5	1	M3	max	-561.165	.198	85.798	.198	29.864	1
6			min	-733.917	.208	-139.353	.208	-80.249	.198
7	1	M4	max	-579.26	1	129.286	.792	29.864	0
8	E.J. H	Navi Branksvi	min	-729.391	0	-66.097	.802	-72.237	.802
9	1	M5	max	-248.217	1	26.243	1	42.077	.208
10	N article		min	-577.551	0	-507.881	0	-59.229	0
11	1	M6	max	254.018	1	239.16	.792	22.492	Ő
12		Sector and second	min	-246.318	0	-598.85	.802	-166.398	.802
13	1	M7	max	843.51	1	175.843	1	145.19	.208
14			min	256.107	0	-973.282	0	-47.95	0
15	1	M8	max	1523.819	1	255.899	.792	25.002	1
16	<		min	845.789	0	-1107.169	.802	-194.225	.792
17	1	M9	max	72.501	.198	131.458	.198	25.002	0
18			min	-3.007	.208	-3.007	.208	-1.19	.208
19	1	M10	max	1423.052	.806	870.479	.806	139.185	.806
20	21.14		min	-23.009	.796	-270.005	.796	-29.202	1.005
21	1	M11	max	1898.375	.209	557,701	0	45.881	1.005
22			min	1389.656	.199	-323,406	1.005	-135.375	.199
23	1	M12	max	2114.457	.806	180.078	.806	45.881	0
24			min	1916.237	.796	-27.631	.796	-39.418	1.005
25	1	M13	max	2086.117	0	35.955	.209	37.966	1.005
26	100	12 14 18 18 18 18	min	1943.857	1.005	-173.997	.199	-39.418	0
27	1	M14	max	1989.932	0	288.274	0	37.966	0
28			min	1597.697	1.005	-444.702	1.005	-115.307	.796
29	1	M15	max	1579.077	0	187.012	.209	102.455	.199
30			min	1152.988	1.005	-697.794	.199	-31.583	0
31	1	M16	max	1192.815	0	373.031	0	29.634	0
32	200		min	483.322	1.005	-945.62	1.005	-191.073	.796

RISA-2D Version 17.0.1


[U:\SENIOR PROJECT\truss design\RISA\truss_sloped_analysis.r2d]

A NEMETSCHEK COMPANY

Apr 23, 2019 11:55 AM Checked By:___

Maximum Member Section Forces (Continued)

	LC	Member Label		Axial[kg]	Loc[m]	Shear[kg]	Loc[m]	Moment[kg-m]	Loc[m]
33	1	M17	max	478.376	0	359.746	.209	199.859	.199
34			min	-71.546	1.005	-1065.793	.199	-11.068	1.005
35	1	M18	max	-74.937	0	109.778	0	0	1.005
36			min	-95.259	1.005	-131.804	1.005	-36.133	.461
37	1	M19	max	-79.05	.5	.949	0	0	0
38			min	-80.949	0	949	.5	119	.25
39	1	M20	max	-266.172	.6	1.139	0	0	0
40			min	-268.451	0	-1.139	.6	171	.3
41	1	M21	max	489.589	.7	1.329	0	0	0
42			min	486.931	0	-1.329	.7	233	.35
43	1	M22	max	-259.586	.8	1.519	0	0	.55
44			min	-262.625	0	-1.519	.8	304	.4
45	1	M23	max	445.954	.9	1.709	0	0	.4
46	1-2012		min	442.536	0	-1.709	.9	385	.45
47	1	M24	max	-206.112	1	1.899	0	0	.45
48			min	-209.91	0	-1.899	1	475	.5
49	1	M25	max	379.362	1.1	2.089	0	0	.5
50			min	375.184	0	-2.089	1.1	574	.55
51	1	M26	max	-72.492	1.2	2.279	0	574	
52			min	-77.05	0	-2.279	1.2	684	0.6
53	1	M27	max	-58.762	1.3	2.469	0	004	.0
54			min	-63.699	0	-2.469	1.3	802	.65
55	1	M28	max	-817.311	0	2.317	.863	.5	
56			min	-817.387	.863	-2.317	0	0	.431
57	1	M29	max	289.085	.984	.342	0	0	0
58			min	283.844	0	342	.984	084	.492
59	1	M30	max	244.958	Ő	2.697	1.016	.685	
60			min	244.123	1.016	-2.697	0	0	.508
61	1	M31	max	-616.268	1.149	.722	0	0	0
62			min	-622.269	0	722	1.149	207	
63	1	M32	max	975.693	0	3.076	1.143	.91	.575
64	0.045		min	974.098	1.183	-3.076	0		.592
65	1	M33	max	-1278.684	1.324	1.101	0	0	0
66			min	-1285.445	0	-1.101	1.324	365	0
67	1	M34	max	1523.091	0	3.456	1.324	1.175	.662
68			min	1520.736	1.36	-3.456	0		.68
69	1	M35	max	162.62	1.612	1.139	0	0	0
70		11100	min	154.265	0	-1.139	1.612	0	0
71	1	M36	max	1843.408	.835	.038		459	.806
72	12111	11100	min	1838.926	0	038	.835	.008	.417 0

Apr 23, 2019 11:56 AM Checked By:___

Joint Coordinates and Temperatures

	Label	X [m]	Y [m]	Temp [F]
1	N1	0	4	0
2	N2	1	4	0
3	N3	2	4	0
4	N4	3	4	Ö
5	N5	4	4	Ő
6	N11	Ö	.1	0
7	N12	1	.2	0
8	N13	2	.3	0
9	N14	3	.4	0
10	N15	4	.5	0
11	N21	1.2	.22	0
12	N22	1.8	4	Ő
13	N23	2.2	4	0
14	N24	2.8	.38	0
15	N25	3.2	.42	0
16	N26	3.8	4	0
17	N36	.2	4	0
18	N37	.8	.18	0
19	N38	0	0	0

Member Distributed Loads (BLC 1 : Dead)

	Member Label	Direction	Start Magnitude/kg/	End Magnitude[kg/m,	Start Location m %]	End Location[m,%]
1	M10	Y	-50	-50	0	
2	M11	Y	-50	-50	0	0
3	M12	Y	-50	-50	0	0
4	M13	Y	-50	-50	0	0

Member Distributed Loads (BLC 2 : Live)

1	Member Label M10	Direction Y	Start Magnitude[kg/ -195	End Magnitude[kg/m -195	Start Location[m,%]	End Location[m,%]
2	M11	Ý	-195	-195	0	0
3	M12	Y	-195	-195	0	0
4	M13	Y	-195	-195	0	Ő

Basic Load Cases

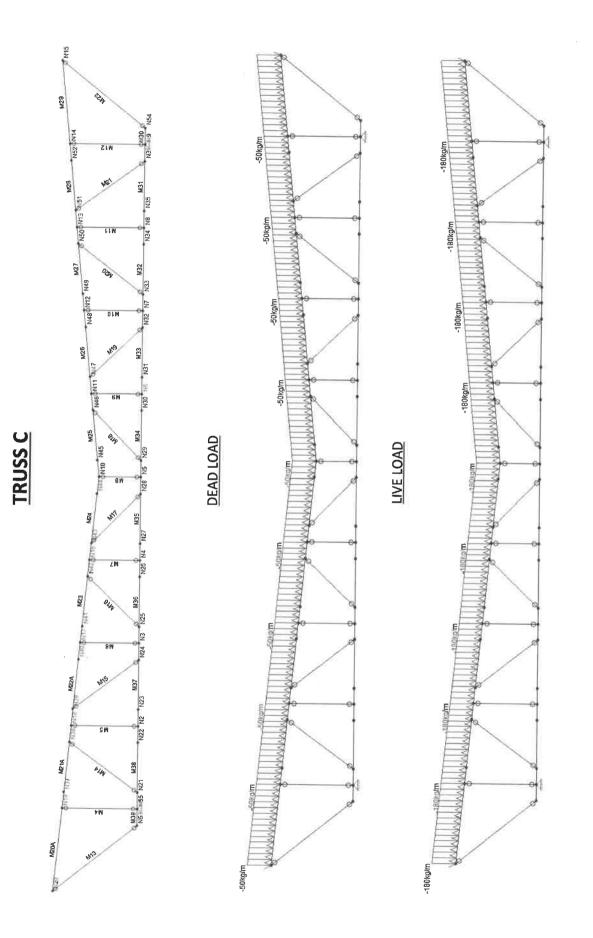
	BLC Description	Category	X Gravity	Y Gravity	Joint	Point	Distributed
1	Dead	DL	1	1	00111	1 Onit	4
2	Live	LL	1	1			4

Load Combinations

	Descripti	Solve	PDelta	SRSS	BLC	Fa	В	Fa	. в	Fa	. В	Fa	В	Fa	B	Fa	В	Fa	в	Fa	в	Fa	в	Fa
1	D+L	Yes			DL	1	LL	1																· u

Maximum Member Section Forces

_	LC	Member Label		Axial[kg]	Loc[m]	Shear[kg]	Loc[m]	Moment[kg-m]	Loc[m]
1	1	M1	max	443.696	.198	418.846	.198	24.112	1
2		1 3 5 2 5 1 5 5	min	-130.593	.208	-136.246	.208	-82.822	.198
3	1	M2	max	-123.44	.792	121.341	1	24.112	0
4	100.00		min	-173.331	.802	62.617	0	-51.389	1


RISA-2D Version 17.0.1 [U:\SENIOR PROJECT\truss design\RISA\truss_sloped_half_analysis.r2d] Page 1

IRISA	Company Designer Job Number	1000
A NEMETSCHEK COMPANY	Model Name	:

Apr 23, 2019 11:56 AM Checked By:__

Maximum Member Section Forces (Continued)

	LC	Member Label		Axial[kg]	Locimi	Shear[kg]	Locim	Manager	
5	1	M3	max	51.608	1	-8.422		Moment[kg-m]	Loc[m
6			min	-171.25	0	-296.437	0	15.775	1
7	1	M4	max	498.08	1	136.552	.792	-51.389	0
8			min	53.127	0	-461.754		15.775	0
9	1	M10	max	619.157	.806	347.479	.802	-91.314	.802
10			min	-10.816	.796	-148.072	.806	42.247	.806
11	1	M11	max	640.577	.209	106.936	.796	-22.113	1.005
12			min	592.985	.199		0	37.387	1.005
13	1	M12	max	667.646	0	-191.333	1.005	-38.759	.209
14			min	405.161	1.005	226.884 -272.36	0	37.387	0
15	1	M13	max	392.848	0		1.005	-67.043	.796
16			min	-2.678	1.005	181.648	.209	69.009	.199
17	1	M19	max	43.491	.5	-458.563	.199	-17.445	0
18			min	41.592	0	.949	0	0	0
19	1	M20	max	-193.577	.6	949	.5	119	.25
20	1.2.1		min	-195.856	0.0	1.139	0	0	0
21	1	M21	max	420.437	.7	-1.139	.6	171	.3
22	3		min	417.778	0	1.329	0	0	0
23	1	M22	max	-138.928		-1.329	.7	233	.35
24		I VI I day day	min	-141.966	.8	1.519	0	0	0
25	1	M23	max	9.823	0	-1.519	.8	304	.4
26		MEO	min	6.405	.9	1.709	0	0	0
27	1	M28	max		0	-1.709	.9	385	.45
28		IN 20	min	-74.117	0	2.317	.863	.5	.431
29	1	M29	max	-74.193	.863	-2.317	0	0	0
30		IVIZO	min	-353.6	.984	.342	0	0	0
31	1	M30		-358.841	0	342	.984	084	.492
32	1910	IVIOU	max	744.224	0	2.697	1.016	.685	.508
33	1	M36	min	743.389	1.016	-2.697	0	0	0
34		MOO	max	803.245	.835	.038	.835	.008	.417
			min	798.764	0	038	0	0	0

EVC: TRUSS C ANALYSIS

109 of 113

Apr 23, 2019 9:55 AM Checked By:__

Joint Coordinates and Temperatures

1	Label N1	X [m]	Y [m]	Temp [F]
2	N2	-0.	0	0
3	N3	2	0	0
4	N4	3	0	0
5	N5	4		0
6	N6	5	0	0
7	N7	6		0
8	N8	7	0	0
9	N9		0	0
10	N10	8	0	0
11	N11	4	.5	0
12	N12	5	.6 .7	0
13	N12 N13	6	./	
14	N13	7	.8	0
15	N14	8	.9	0
16	N15	9	1	0
17	N16	3	.6	0
17 18	N17	2	.7	0
10	N18	1	.8	0
<u>19</u>	N19	0	.9	0
20	N20	-1	1	0
21	<u>N21</u>	.2	0	0
22	N22	.8	0	0
23	N23	1.2	0	0
24	N24	1.8	0	0
25	N25	2.2	0	0
26	N26	2.8	0	0
27	N27	3.2	0	0
28	N28	3.8	0	0
29	N29	4.2	0	0
30	N30	4.8	0	0
31	N31	5.2	0	0
32	N32	5.8	0	0
33	N33	6.2	0	Ő
34	N34	6.8	0	0
35	N35	7.2	0	0
36	N36	7.8	0	0
37	N37	.2	.88	Ő
38	N38	.8	.82	Ő
39	N39	1.2	.78	Ő
40	N40	1.8	.72	Õ
41	N41	2.2	.68	Ő
42	N42	2.8	.62	0
43	N43	3.2	.58	0
44	N44	3.8	.52	0
45	N45	4.2	.52	0
46	N46	4.8	.58	0
47	N47	5.2	.62	0
48	N48	5.8	.68	0
49	N49	6.2	.72	0
50	N50	6.8	.78	0
51	N51	7.2	.82	0
52	N52	7.8	.88	0
53	N53	2		0
54	N54	8.2	00	0
55	N55	0.2	0	0
	1100	U	0	0

[U:\SENIOR PROJECT\truss design\RISA\truss_butterfly_analysis.r2d]

Apr 23, 2019 9:55 AM Checked By:__

Member Distributed Loads (BLC 1 : Dead)

	Member Label	Direction	Start Magnitudetka/	End Manufacture 1		
1	M4	Y		End Magnitude[kg/m	. Start Location[m,%]	End Location[m,%]
2	M40	V	-50	0	0	0
3	M41	v		-50	0	0
4	M42	V	-50	-50	0	0
5	M23	V	-50	-50	0	0
6	M24	V V	-50	-50	0	0
7	M24 M26	T N	-50	-50	0	0
8	M25	Y Y	-50	-50	0	0
9		Y	-50	-50	0	0
10	M27	Y	-50	-50	Õ	0
11	M28	Y	-50	-50	0	0
11	M29	Y	-50	-50	0	0

Member Distributed Loads (BLC 2 : Live)

	Member Label	Direction	Start Magnitudotka/	End Manual March		
1	M40	V	100	End Magnitude[kg/m,	. Start Location[m,%]	End Location [m %]
2	M41	V	-180	-180	0	0
2		T T	-180	-180	0	0
3	M42	Y	-180	-180	0	0
4	M23	Y	-180	-180	0	0
_5	M24	Y	-180		0	0
6	M25	V		-180		0
7	M26	V V	-180	-180	0	0
8		<u>T</u>		-180	0	Ő
	M27	Y	-180	-180	0	0
9	M28	Y	-180		0	0
10	M29	Y	-180	-180	0	0
			-100	-180	0	0

Basic Load Cases

	BLC Description	Category	X Gravity	NO.			
1	Dead	DL	A Glavity	Y Gravity	Joint	Point	Distributed
2	Live	11		-1			11
				-1			10

Load Combinations

1	Descripti D+L	Solve Yes	PDelta	SRSS	BLC Fa B	Fa B Fa
---	------------------	--------------	--------	------	--	---------

Maximum Member Section Forces

_	LC	Member Label		Axial[kg]	Loc[m]	Shear[kg]	1.10		
1	1	M4	max	-39.86	0	2.686	Loc[m]	Moment[kg-m]	Loc[m
2			min	-45.231	.9	-2.686	0	0	0
3	1	M5	max	-98.764	0	2.387	.9	604	.45
4			min	-103.539	.8		0	0	0
5	1	M6	max	337.634	0	-2.387	.8	477	.4
6			min	333.456	.7	2.089	0	0	0
7	1	M7	max	-398.985	0	-2.089	.7	366	.35
8			min	-402.566		1.79	0	0	0
9	1	M8	max		.6	-1.79	.6	269	.3
10		INIO		1232.372	0	1.492	0	0	0
11	1	M9	min	1229.388	.5	-1.492	.5	187	.25
12		1113	max	-398.785	0	1.79	0	0	0
13	1	M10	min	-402.366	.6	-1.79	.6	269	.3
14	Same	IVITU	max	336.818	0	2.089	0	0	.0
15	1	MAA	min	332.64	.7	-2.089	.7	366	.35
10		M11	max	-101.052	0	2.387	0	0	.55

RISA-2D Version 17.0.1

=

[U:\SENIOR PROJECT\truss design\RISA\truss_butterfly_analysis.r2d]

Page 2

	Company Designer Job Number Model Name	** ** ** **
--	---	-------------

Apr 23, 2019 9:55 AM Checked By:___

Maximum Member Section Forces (Continued)

16	LC	Member Label	min	Axial[kg]	Loc[m]	Shear[kg]	Loc[m]	Moment[kg-m]	Locim
17	1	M12		-105.826	.8	-2.387	.8	477	.4
18	1000	IVITZ	max		0	2.686	0	0	0
19	1	M13	min	-52.214	.9	-2.686	.9	604	.45
20	1000	IVI I S	max	166.948	0	.597	0	0	0
21	1		min	156.205	1.281	597	1.281	191	.64
22	Real of	M14	max	1777.261	0	4.237	0	0	0
		1.4.4	min	1775.948	1.016	-4.237	1.016	-1.076	.508
23	1	M15	max	-1560.727	.984	.537	.984	.132	.492
24			min	-1568.963	0	537	0	0	
25	1	M16	max	1389.067	0	3.641	Ŭ	0	0
26			min	1388.947	.863	-3.641	.863	785	0
27	1	M17	max	-716.793	.835	.06	0		.431
28		and the second	min	-723.836	0	06	.835	0	0
29	1	M18	max	-777.014	.835	3.521		012	.417
30			min	-777.133	0		0	0	0
31	1	M19	max	1443.204	.863	-3.521	.835	735	.417
32			min	1435.923	and the second se	.06	.863	.013	.431
33	1	M20			0	06	0	0	0
34		IVIZO	max	-1607.324	0	4.118	0	0	0
35	1	M21	min	-1608.398	.984	-4.118	.984	-1.013	.492
36		IVIZ I	max	1827.405	1.016	.656	1.016	.167	.508
37	4	Maa	min	1818.931	0	656	0	0	0
	_1	M22	max	164.607	_ 0	5.371	0	0	Ő
38			min	163.414	1.281	-5.371	1.281	-1.72	.64
39	1	M40	max	-77.153	1.005	112.078	0	6.494	
40	1.1		min	-108.807	0	-125.002	1.005	-26.622	1.005
41	1	M41	max	866.223	1.005	1168.433	.806		.471
42	0.010		min	-69.98	0	-357.43	.796	216.762	.806
43	1	_ M42	max	1986.555	1.005	1018.723		-10.977	1.005
44			min	878.901	0	260.000	0	2.404	1.005
45	1	M23	max	2851.757	1.005	-360.229	1.005	-209.535	.209
16		INEO	min			868.622	.806	99.52	.796
17	1	M24		1955.453	0	-215.908	.796	-68.589	1.005
18	12200	IVIZ-T	max	3493.118	1.005	421.31	0	-12	1.005
19	1	M25	min	2893.596	0	-264.618	1.005	-147.869	.209
50		IVIZƏ	max	3495.361	0	272.054	0	-12	0
51	4	1100	min	2871.997	1.005	-451.135	1.005	-153.29	.796
	1	M26	max	2833.741	0	224.732	.209	106.002	.199
2			min	1926.926	1.005	-898.917	.199	-68.098	0
3	1	M27	max	1962.104	0	366.58	0	2.353	0
4			min	846.539	1.005	-1045.846	1.005	-214.142	
5	1	M28	max	838.384	0	366.753	.209		.796
6			min	-99.671	1.005	-1198.618	.199	223.505	.199
7	1	M29	max	-102.194	0	125.596		-10.207	0
8			min	-118.114	1.005		0	6.301	0
9	1	M30	max	98.635		-113.058	1.005	-26.91	.534
0			min	97.062	0	133.466	.2	0	0
1	1	M31			.2	131.892	0	-26.536	.2
2			max	2125.538	0	279.327	1	211.616	.208
3	1	M32	min	1038.04	1	-1202.924	0	-26.536	0
4	-	IVIJZ	max	1035.653	0	184.504	.792	65.036	1
	1	Maa	min	44.519	1	-1086.907	.802	-150.653	.792
5	1	M33	max	42.43	0	296.384	1	213.029	.198
5			min	-969.115	1	-748.531	0	-20.004	
7	1	M34	max	-970.905	0	-96.174	.792	185.983	1
3			min	-1539.97	1	-633.685	.802		_1
3	1	M35		-1027.693	.208	601.801		-20.004	0
)	5.5			-1543.019	.198		.198	185.983	0
	1	M36	max	-78.651	.802	103.739	.208	-19.679	1
2			min	-1041.94		719.567	1	207.522	.802
_	-		11011	-1041.94	.792	-289.019	0	-19.679	0

RISA-2D Version 17.0.1

[U:\SENIOR PROJECT\truss design\RISA\truss_butterfly_analysis.r2d]

Page 3

ANEMETSCHEK COMPANY	Company Designer Job Number Model Name	
---------------------	---	--

Apr 23, 2019 9:55 AM Checked By:___

Maximum Member Section For	ces (Continued)
----------------------------	-----------------

	LC	Member Label		Axial[kg]	Loc[m]	Shoorfleet			
73	1	M37	max	867.231	.208	Shear[kg] 1058.758	Loc[m]	Moment[kg-m]	Loc[m]
74	HOLE I						.198	65.262	0
75	4	Maa	min	-83.854	.198	-178.557	.208	-144.847	.208
		M38	max	1898.376	.802	1173.579	1	206.196	
76			min	852.387	.792	-271.094			.792
77	1	M39	max	106.331	.152		U	-26.156	1
78		11100			0	-129.991	.2	0	2
10			min	104.757	.2	-131.565	0	-26,156	0

Table 6 shows the spectral values at T=0 s (PGA), 0.2 s and 1 s for both RP=475 and 2475 yr., as well as the values provided by GSHAP. It is highlighted that the PGA values for RP=475 yr. derived in this study are generally larger than those provided by GHSAP with differences larger than three times in Mombasa, Dar Es Salaam, Dodoma and Lilongwe. It also shows the highest hazard is in Bujumbura and Djibouti, again substantially higher than the equivalent GSHAP values.

Table 6: PSHA results in terms of spectral acceleration at T=0 s (PGA), 0.2 s and 1 s for RP=475 and 2475 yr. The PGA values provided by GSHAP are also show for comparison.

		SA(ζ=5% -]	•	SA(Z	=5% - RP=2475 (g)	yr.)
Country	City	PGA	PCA		SA (T=0.2s)	SA (T=1s)
Ethiopia	Addis Ababa	0.13	0.11	0.29	0.71	0.17
South Sudan	Juba	0.18	0.13	0.36	0.89	0.20
Uganda	Kampala	0.09	0.09	0.18	0.45	0.13
Rwanda	Kigali	0.15	0.06	0.31	0.76	0.19
Burundi	Bujumbura	0.27	0.13	0.48	1.24	0.27
Kenya	Nairobi	0.09	0.06	0.21	0.54	0.14
Kenya	Mombasa	0.09	0.01	0.20	0.51	0.09
Tanzania	Dar Es Salaam	0.09	0.03	0.20	0.50	0.09
Tanzania	Dodoma	0.12	0.03	0.23	0.56	0.12
Tanzania	Arusha	0.12	0.16	0.23	0.56	0.11
Malawi	Lilongwe	0.20	0.05	0.37	0.94	0.15
Malawi	Blantyre	0.12	0.09	0.25	0.62	0.10
Djibouti	Djibouti	0.26	0.17	0.47	1.21	0.24

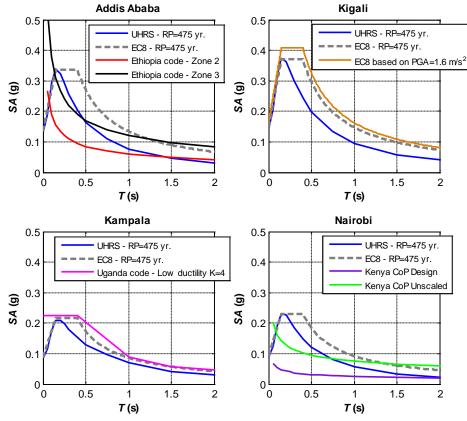


Figure 5: Uniform hazard spectra at Addis Ababa, Kigala, Kampala and Nairobi (blue curves) compared with the elastic acceleration spectra derived from EN 1998 based on the PGA for RP=475 yr. and country seismic code criteria.

APPENDIX B: DRAWINGS

GENERAL

1. APPLICABLE CODE: 2015 INTERNATIONAL BUILDING CODE (IBC)

DESIGN WIND SPEED (CBC SECTION 1609): 110MPH, EXPOSURE B DESIGN BASED ON SIMILAR UNITED STATES CONDITIONS DESIGN SEISMIC CRITERIA (SEISMIC DESIGN CONSIDERATIONS FOR EAST AFRICA):

SEISMIC IMPORTANCE FACTOR, IE: 1.0 SHORT PERIOD MCE ACCELERATION, SS: 0.76q LONG PERIOD MCE ACCELERATION, S1: RESPONSE MODIFICATION COEFFICIENT, R: 1.0 SITE CLASS: SITE COEFFICIENTS, FA & FV: 1.2

0.19g E (SOFT CLAY)

2. GOVERNING CODE AUTHORITY: COUNTRY OF RWANDA

3. THESE GENERAL NOTES SUPERSEDE THE REQUIREMENTS OF THE PROJECT SPECIFICATIONS. IN CASE OF CONFLICT BETWEEN THE PLANS AND SPECIFICATIONS, CONTACT THE OWNER'S REPRESENTATIVE.

4. CONTRACT DOCUMENTS INDICATE INFORMATION SUFFICIENT TO CONVEY DESIGN INTENT. REVIEW CONTRACT DOCUMENTS AND VERIFY FIELD AND EXISTING CONDITIONS. PROMPTLY NOTIFY STRUCTURAL ENGINEER PRIOR TO PROCEEDING WITH WORK IF DESIGN INTENT REQUIRES FURTHER CLARIFICATION.

5. REFERENCE TO CODES, RULES, REGULATIONS, STANDARDS, MANUFACTURER'S INSTRUCTIONS OR REQUIREMENTS OF REGULATORY AGENCIES IS TO THE LATEST PRINTED EDITION OF EACH IN EFFECT AT THE DATE OF SUBMISSION OF BID UNLESS THE DOCUMENT DATE IS SHOWN.

6. TYPICAL DETAILS AND GENERAL NOTES APPLY TO ALL PARTS OF THE WORK EXCEPT WHERE SPECIFICALLY DETAILED OR UNLESS NOTED OTHERWISE (U.N.O.)

7. THE STRUCTURAL DRAWINGS ILLUSTRATE THE NEW STRUCTURAL MEMBERS. REFER TO ARCHITECTURAL, MECHANICAL AND ELECTRICAL DRAWINGS FOR NON-STRUCTURAL ITEMS WHICH REQUIRE SPECIAL PROVISIONS DURING THE CONSTRUCTION OF THE STRUCTURAL MEMBERS.

8. REFER TO ARCHITECTURAL DRAWINGS FOR FLOOR DEPRESSIONS, EDGE OF SLAB, OPENINGS, SLOPES, DRAINS, CURBS, PADS, EMBEDDED ITEMS, NON-BEARING PARTITIONS, ETC. REFER TO MECHANICAL AND ELECTRICAL DRAWINGS FOR SLEEVES, OPENINGS, AND HANGERS FOR PIPES, DUCTS AND EQUIPMENT.

9. THE CONTRACTOR SHALL VERIFY AND BE RESPONSIBLE FOR COORDINATING THE WORK OF ALL TRADES AND SHALL VERIFY ALL DIMENSIONS AND CONDITIONS WHICH IMPACT THE WORK. FIELD VERIFY SIZES, ELEVATIONS, HOLE LOCATIONS, ETC. PRIOR TO FABRICATION.

10. DRAWING DIMENSIONS ARE TO FACE OF FINISH, JOINT CENTERLINE OR COLUMN GRID CENTERLINE UNLESS NOTED OTHERWISE. DO NOT SCALE THE DRAWINGS.

11. CONTRACTOR SHALL CAREFULLY REVIEW THE DRAWINGS TO IDENTIFY THE SCOPE OF WORK REQUIRED. VISIT THE SITE TO RELATE THE SCOPE OF WORK TO EXISTING CONDITIONS AND DETERMINE THE EXTENT TO WHICH THOSE CONDITIONS AND PHYSICAL SURROUNDINGS WILL IMPACT THE WORK.

12. EXISTING CONDITIONS AS SHOWN ON THESE PLANS ARE FOR REFERENCE ONLY. CONTRACTOR IS REQUIRED TO FIELD VERIFY ALL EXISTING CONDITIONS PRIOR TO CONSTRUCTION. CONTRACTOR SHALL REPORT CONDITIONS THAT CONFLICT WITH THE CONTRACT DOCUMENTS TO THE OWNER'S REPRESENTATIVE. DO NOT DEVIATE FROM THE CONTRACT DOCUMENTS WITHOUT WRITTEN DIRECTION FROM THE OWNER'S REPRESENTATIVE.

13. THE CONTRACTOR SHALL RESOLVE ANY CONFLICTS ON THE DRAWINGS OR IN THE SPECIFICATIONS WITH THE OWNER'S REPRESENTATIVE BEFORE PROCEEDING WITH THE WORK.

14. ANY DEVIATION, MODIFICATION & SUBSTITUTION FROM THE APPROVED SET OF STRUCTURAL DRAWINGS SHALL BE SUBMITTED TO THE OWNER'S REPRESENTATIVE FOR REVIEW/APPROVAL PRIOR TO ITS USE OR INCLUSION ON THE SHOP DRAWINGS & PRIOR TO PROCEEDING WITH THE WORK.

15. THE CONTRACTOR SHALL PROVIDE ALL NECESSARY SHORES, BRACES AND GUYS REQUIRED TO SUPPORT ALL LOADS TO WHICH THE BUILDING STRUCTURE AND COMPONENTS, SOILS, OTHER STRUCTURES AND UTILITIES MAY BE SUBJECTED DURING CONSTRUCTION. SHORING SYSTEMS SHALL BE DESIGNED AND STAMPED BY A CIVIL ENGINEER LICENSED IN THE STATE OF CALIFORNIA. VISITS TO THE SITE BY THE OWNER'S REPRESENTATIVE WILL NOT INCLUDE OBSERVATION OF THE ABOVE NOTED ITEMS.

16. THE CONTRACTOR SHALL PROVIDE MEANS, METHOD, TECHNIQUES, SEQUENCE AND PROCEDURE OF CONSTRUCTION AS REQUIRED. SITE VISITS PERFORMED BY THE OWNER'S REPRESENTATIVE DO NOT INCLUDE INSPECTIONS OF MEANS AND METHODS OF CONSTRUCTION PERFORMED BY CONTRACTOR.

17. THE CONTRACTOR SHALL PROTECT ALL WORK, MATERIALS AND EQUIPMENT FROM DAMAGE AND SHALL PROVIDE PROPER STORAGE FACILITIES FOR MATERIALS AND EQUIPMENT DURING CONSTRUCTION.

GENERAL (CONT.)

18. STRUCTURAL OBSERVATIONS PERFORMED BY ENGINEER DURING CONSTRUCTION ARE NOT THE CONTINUOUS AND SPECIAL INSPECTION SERVICES AND DO NOT WAIVE THE RESPONSIBILITY FOR THE INSPECTIONS REQUIRED OF THE BUILDING INSPECTOR OR THE DEPUTY INSPECTOR. OBSERVATIONS ALSO DO NOT GUARANTEE CONTRACTOR'S PERFORMANCE AND SHALL NOT BE CONSIDERED AS SUPERVISION OF CONSTRUCTION.

19. CONTRACTORS SHALL REVIEW SHOP DRAWINGS FOR COMPLETENESS AND COMPLIANCE WITH CONTRACT DOCUMENTS. CONTRACTOR SHALL STAMP SHOP DRAWINGS PRIOR TO SUBMISSION TO OWNER'S REPRESENTATIVE.

20. REVIEW OF THE SHOP DRAWINGS SHALL NOT BE CONSTRUED AS AN AUTHORIZATION TO DEVIATE FROM CONTRACT DOCUMENTS.

21. SHOP DRAWINGS WILL NOT BE PROCESSED DUE TO INCOMPLETENESS, LACK OF CO-ORDINATION WITH RELEVANT PORTION OF CONTRACT DOCUMENTS, LACK OF CALCULATIONS IF REQUIRED AND WHERE DEVIATIONS, MODIFICATIONS AND SUBSTITUTIONS ARE INDICATED WITHOUT PRIOR WRITTEN APPROVAL FROM OWNER'S REPRESENTATIVE.

CONCRETE

1. CONCRETE IS REINFORCED AND CAST-IN-PLACE UNLESS OTHERWISE NOTED. WHERE REINFORCING IS NOT SPECIFICALLY SHOWN OR WHERE DETAILS ARE NOT GIVEN, PROVIDE REINFORCING SIMILAR TO THAT SHOWN FOR SIMILAR CONDITIONS, SUBJECT TO REVIEW BY THE OWNER'S REPRESENTATIVE.

2. ALL STRUCTURAL CONCRETE SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH AT 28 DAYS AS FOLLOWS:

SLAB ALL O'

3. ALL STRUCTURAL CONCRETE MIXES SHALL BE TYPE II CEMENT AND SHALL BE DESIGNED BY AN APPROVED LABORATORY.

4. NO MORE THAN ONE GRADE OF CONCRETE SHALL BE ON THE JOB SITE AT ANY ONE TIME.

OTHERWISE.

6. KEY AND DOWEL POUR JOINTS AS SHOWN ON THE PLANS. ANY DEVIATION FROM POUR JOINTS SHOWN ON THE PLANS MUST BE APPROVED BY THE OWNER'S REPRESENTATIVE.

7. DEFECTIVE CONCRETE (VOIDS, ROCK POCKETS, HONEYCOMBS, CRACKING, ETC.) SHALL BE REMOVED AND REPLACED AS DIRECTED BY THE OWNER'S REPRESENTATIVE.

REINFORCEMENT

NOTED:

REINFORCING STEEL ASTM A706, 60 KSI

2. REINFORCING BARS SHALL HAVE THE FOLLOWING MINIMUM COVERAGE. PLACE BARS AS NEAR TO THE CONCRETE SURFACE AS THESE MINIMUMS PERMIT WHEREVER POSSIBLE UNLESS NOTED OTHERWISE:

SLAB O CONCRE EXPOSE

3. HORIZONTAL WALL SPLICES SHALL BE STAGGERED. VERTICAL BARS SHALL NOT BE SPLICED EXCEPT AT HORIZONTAL SUPPORT, SUCH AS FLOOR OR ROOF, UNLESS DETAILED OTHERWISE. ALL BARS ENDING AT THE FACE OF A WALL, COLUMN, OR BEAM SHALL EXTEND TO WITHIN 2" OF THE FAR FACE AND HAVE A 90 DEGREE HOOK UNLESS OTHERWISE SHOWN.

4. BARS SHALL BE FIRMLY SUPPORTED AND ACCURATELY PLACED USING TIE AND SUPPORT BARS IN ADDITION TO REINFORCEMENT SHOWN WHERE NECESSARY FOR FIRM AND ACCURATE PLACING. ALL DOWELS SHALL BE ACCURATELY SET IN PLACE BEFORE PLACING CONCRETE.

5. DRAWINGS SHOW TYPICAL REINFORCING CONDITIONS. CONTRACTOR SHALL PREPARE DETAILED PLACEMENT DRAWINGS OF ALL CONDITIONS SHOWING QUANTITY, SPACING, SIZE, CLEARANCES, LAPS, INTERSECTIONS AND COVERAGE REQUIRED BY STRUCTURAL DETAILS, APPLICABLE CODE AND TRADE STANDARDS. CONTRACTOR SHALL NOTIFY REINFORCING INSPECTOR OF ANY ADJUSTMENTS FROM TYPICAL CONDITIONS THAT ARE PROPOSED IN PLACEMENT DRAWINGS TO FACILITATE FIELD PLACEMENT OF REINFORCING STEEL AND CONCRETE.

6. NO WELDING OF REINFORCEMENT (INCLUDING TACK WELDING) SHALL BE DONE UNLESS SHOWN ON THE DRAWINGS. WHERE SHOWN ON THE DRAWINGS, WELDING OF REINFORCING STEEL SHALL BE PERFORMED BY WELDERS SPECIFICALLY CERTIFIED FOR REINFORCING STEEL. USE E90XX ELECTRODES.

ON GRADE	4,000	PSI	(2.75MPa)
OTHER CONCRETE	4,000	PSI	(2.75MPa)

5. THOROUGHLY CLEAN AND ROUGHEN ALL HARDENED CONCRETE AND MASONRY SURFACES TO RECEIVE NEW CONCRETE. INTERFACE SHALL BE ROUGHENED TO A FULL AMPLITUDE OF 1/4" (6mm) UNLESS NOTED

1. REINFORCING TO CONFORM TO THE FOLLOWING, UNLESS OTHERWISE

MIN. CONCRETE COVER:

ON GRADE	CENTER OF SLAB
ETE POURED AGAINST EARTH	3" (76mm)
ED TO WEATHER	1" (25mm)

FOUNDATIONS

1. THE DESIGN OF THE FOUNDATION SYSTEM IS BASED UPON THE CRITERIA AND RECOMMENDATIONS CONTAINED IN THE GEOTECHNICAL INVESTIGATION REPORT ENTITLED "ARCE 452 SOILS REPORT" BY QUICKSAND TECHNOLOGIES, DATED 1/7/19.

2. FOUNDATION DESIGN VALUES:

BEARING CAPACITY: LATERAL BEARING PRESSURE: COEFFICIENT OF FRICTION: SOIL PROFILE TYPE:

3. REMOVE LOOSE SOIL AND STANDING WATER FROM FOUNDATION EXCAVATIONS PRIOR TO PLACING CONCRETE. THE GEOTECHNICAL ENGINEER SHALL INSPECT AND APPROVE ALL EXCAVATIONS, SOIL COMPACTION WORK PRIOR TO PLACEMENT OF ANY REBAR OR CONCRETE, SHORING INSTALLATIONS, BACKFILL MATERIALS AND BACK FILLING PROCEDURES.

4. NOTIFY THE OWNER'S REPRESENTATIVE IF ANY BURIED STRUCTURES NOT INDICATED, SUCH AS CESSPOOLS, CISTERNS, FOUNDATIONS, ETC., ARE FOUND.

5. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR EXCAVATION PROCEDURES INCLUDING LAGGING, SHORING, UNDERPINNING AND PROTECTION OF EXISTING CONSTRUCTION.

6. FOOTINGS SHALL BE A MINIMUM OF 24" (0.6m) BELOW ADJACENT GRADE OR FINISH FLOOR, WHICHEVER IS LOWER.

7. PLACE BACKFILL BEHIND RETAINING WALLS AFTER CONCRETE OR MASONRY HAS ATTAINED FULL DESIGN STRENGTH. BRACE BUILDING AND PIT WALLS BELOW GRADE FROM LATERAL LOADS UNTIL ATTACHED FLOORS AND SLABS ON GRADE ARE COMPLETE AND HAVE ATTAINED FULL DESIGN STRENGTH.

FORMWORK

1. BEFORE STARTING CONSTRUCTION, THE CONTRACTOR SHALL DEVELOP A PROCEDURE AND SCHEDULE FOR REMOVAL OF CONCRETE FORMS AND SHORES. CONCRETE FORMS AND SHORES SHALL BE REMOVED IN SUCH A MANNER AS TO NOT IMPAIR THE SAFETY AND SERVICEABILITY OF THE STRUCTURE. IN ADDITION TO THE ABOVE REQUIREMENTS, REMOVAL OF FORMS SHALL BE NO SOONER THAN THE FOLLOWING:

LOCATION

BOTTOM FORMS AND SHORES FOR MILDLY REINFORCED SLABS, BEAMS, AND GIRDE

SIDE FORMS FOR BEAMS AND GIRDERS COLUMNS AND WALLS

FOOTINGS, PILE CAPS, AND GRADE BEA

2. PROVIDE CURING WHERE FORMS ARE REMOVED IN LESS THAN 7 DAYS, INCLUDING BUT NOT LIMITED TO WALLS, COLUMNS, AND UNDERSIDE OF ELEVATED SLABS.

STRUCTURAL OBSERVATION

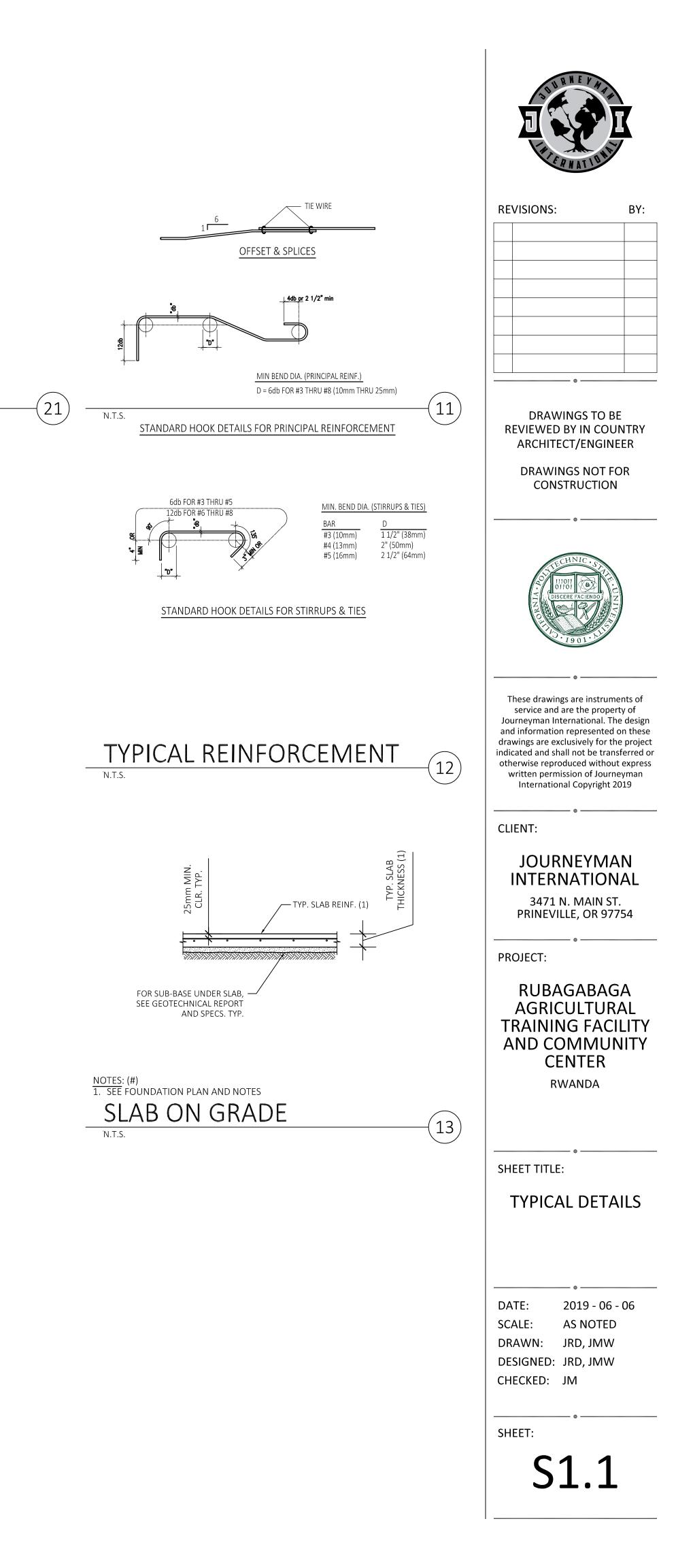
1. CONTINUOUS SPECIAL INSPECTION IS REQUIRED PER IBC. CONTINUOUS SPECIAL INSPECTION IS REQUIRED FOR THE FOLLOWING WORK AS DESCRIBED IN IBC:

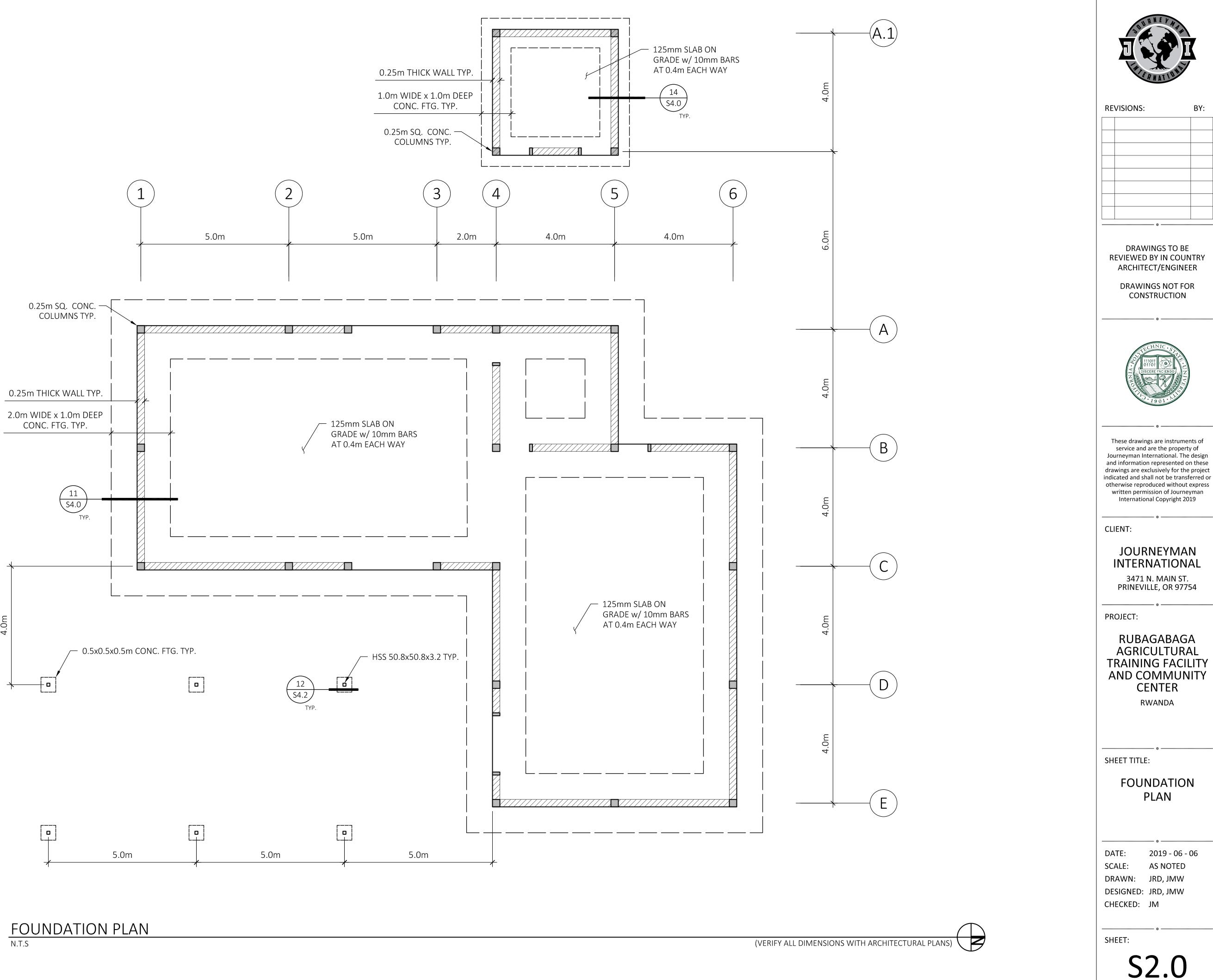
1.1 ALL CONCRETE WORK

1.2 BOLTS INSTALLED IN CONCRETE

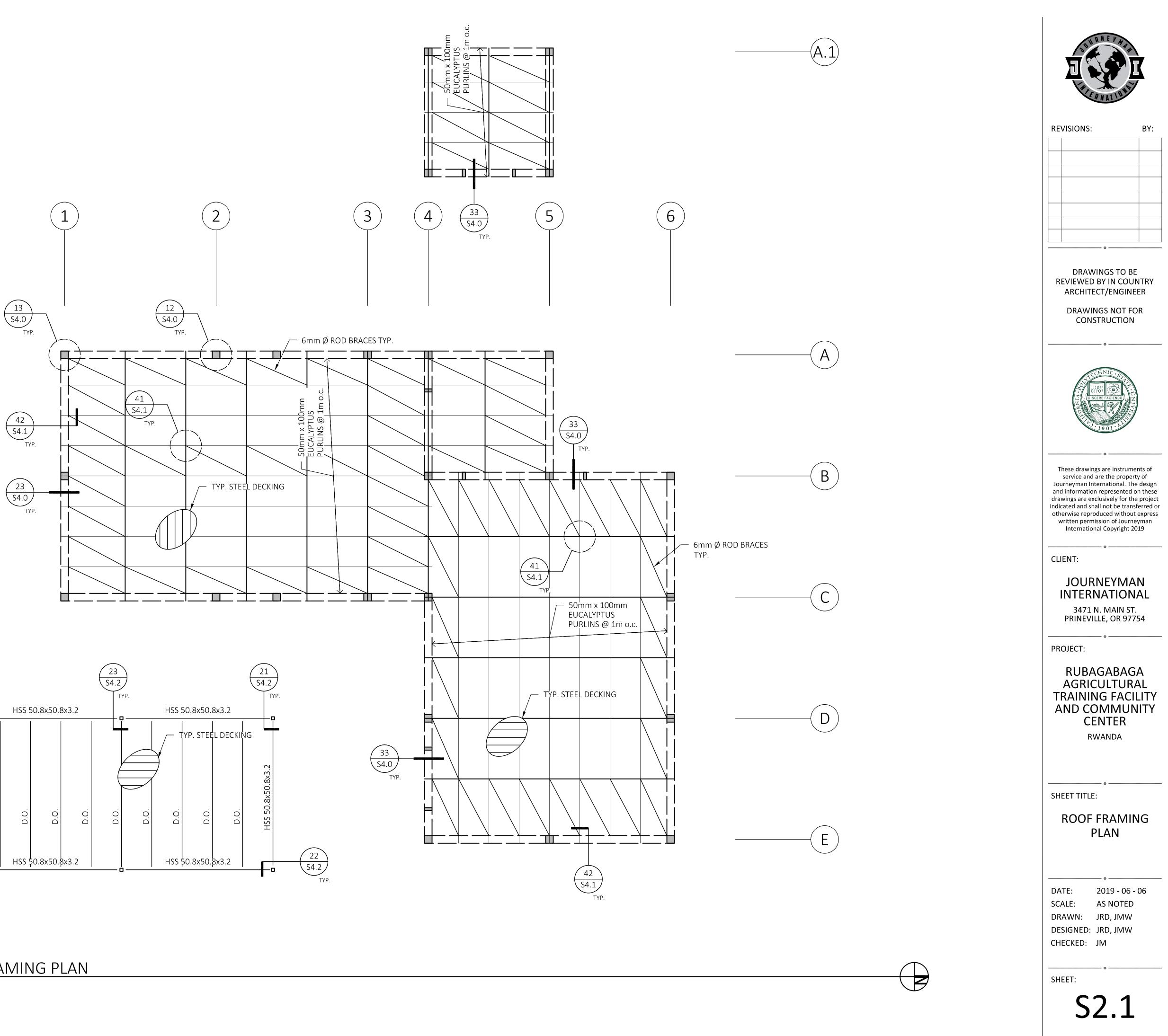
1.3 REINFORCING STEEL 1.4 JUST PRIOR TO PLACING CONCRETE FOUNDATIONS TO ENSURE

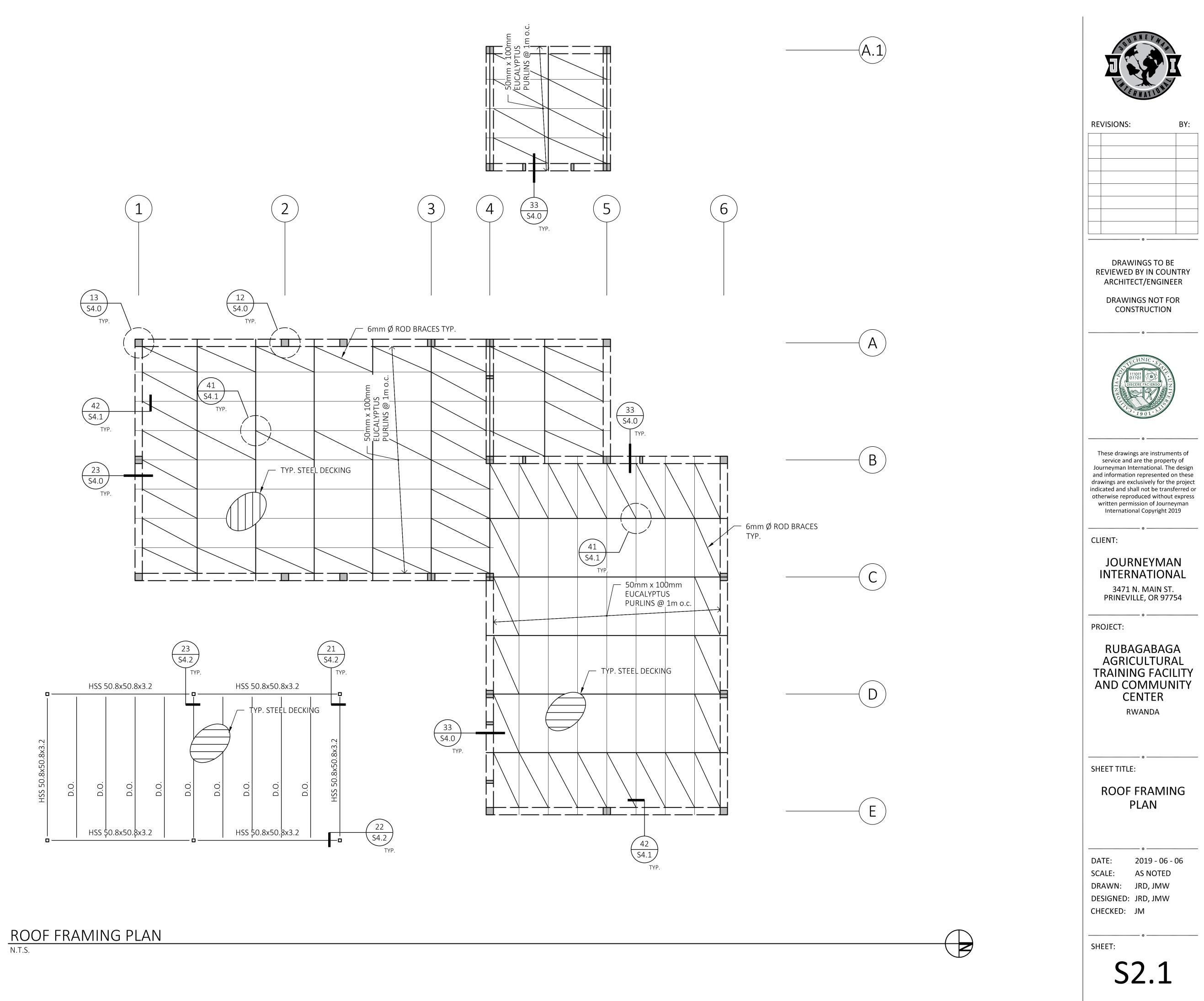
SUBGRADE IS SUITABLE, FREE FROM LOOSE SOIL, AND FOUNDATIONS ARE OF PROPER DIMENSIONS

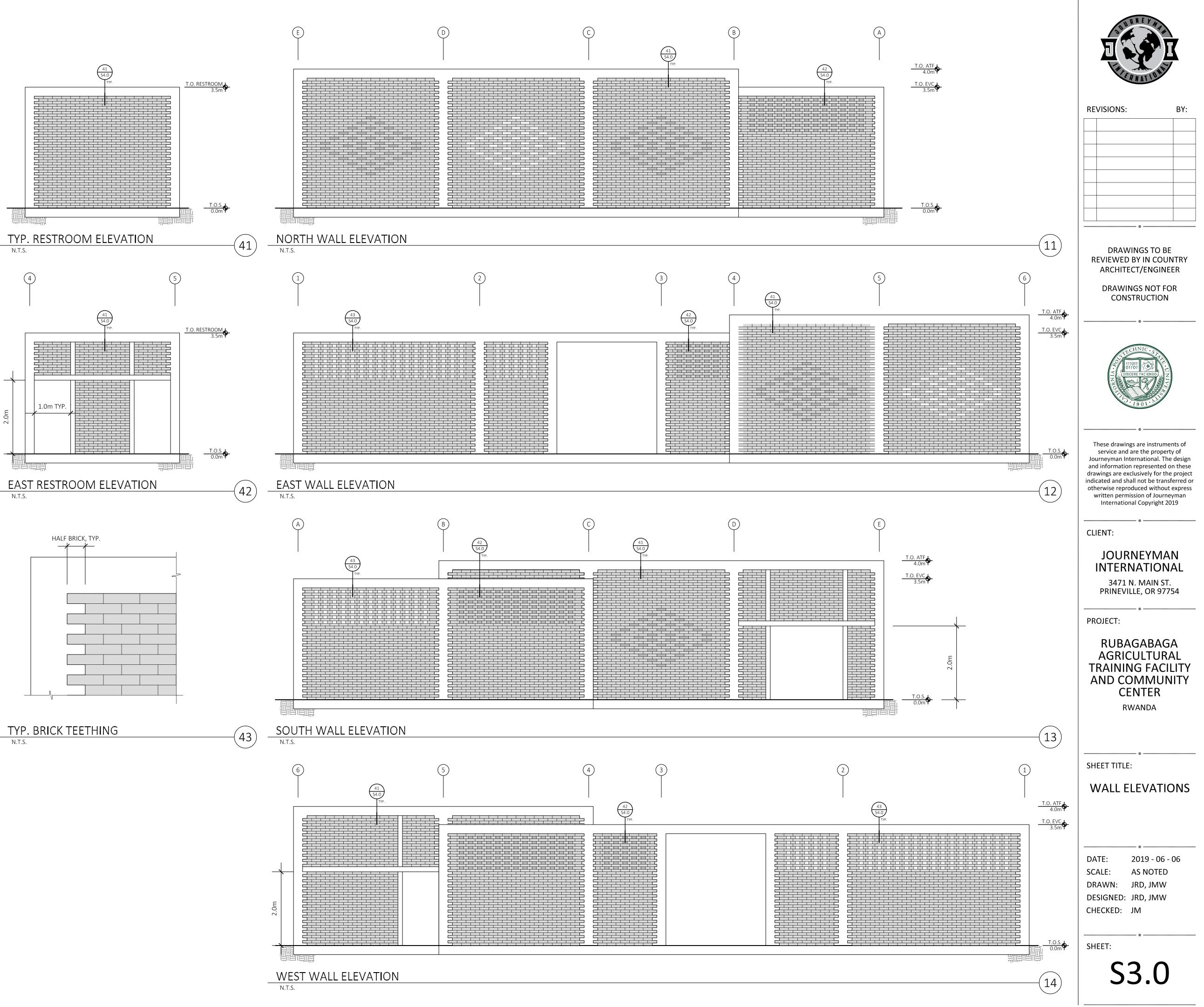

1,500 PSF 300 PSF/FT 0.3 Sd

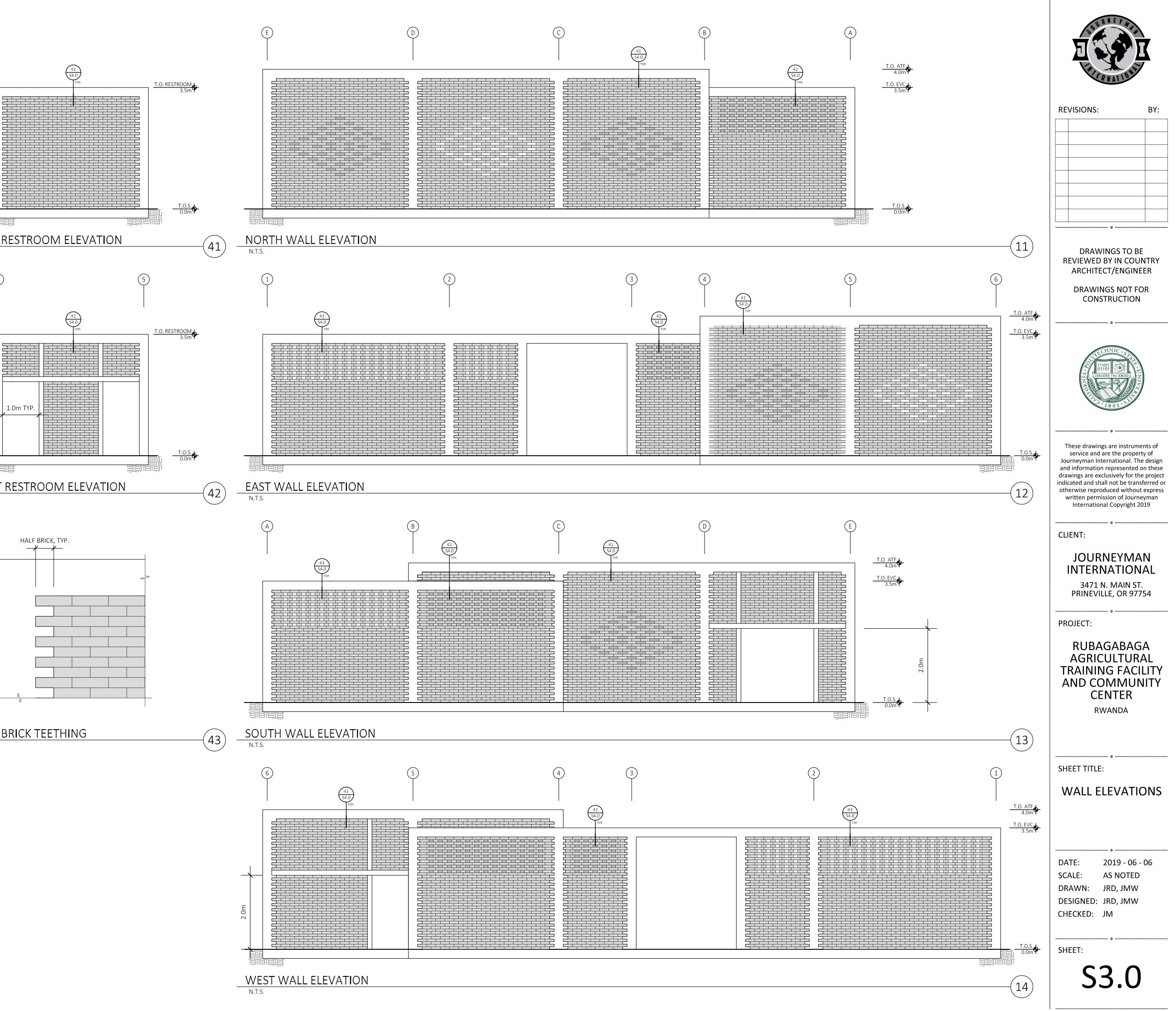

	REMOVE FORMS NO SOONER THAN
Z ERS	72 HOURS & f'c=3,500 PSI MIN. (2.5 MPa)
	72 HOURS
	72 HOURS
AMS	48 HOURS

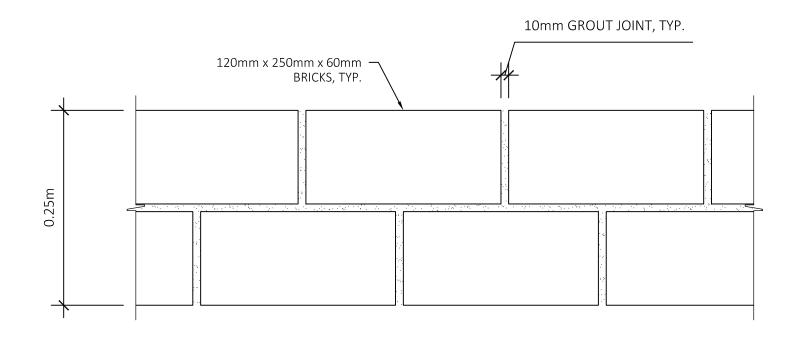
DI R WEY MAA DI VRWEY MAA DI VR
REVISIONS: BY:
•
DRAWINGS TO BE REVIEWED BY IN COUNTRY ARCHITECT/ENGINEER DRAWINGS NOT FOR CONSTRUCTION
LISCERE FACIENDO LISCERE FACIENDO LISCERE FACIENDO LISCERE FACIENDO LISCERE FACIENDO LISCERE FACIENDO
• These drawings are instruments of service and are the property of Journeyman International. The design and information represented on these drawings are exclusively for the project indicated and shall not be transferred or otherwise reproduced without express written permission of Journeyman International Copyright 2019
CLIENT:
JOURNEYMAN INTERNATIONAL 3471 N. MAIN ST. PRINEVILLE, OR 97754
PROJECT:
RUBAGABAGA AGRICULTURAL TRAINING FACILITY AND COMMUNITY CENTER RWANDA
SHEET TITLE:
GENERAL NOTES
DATE: 2019 - 06 - 06 SCALE: AS NOTED DRAWN: JRD, JMW DESIGNED: JRD, JMW CHECKED: JM
SHEET:

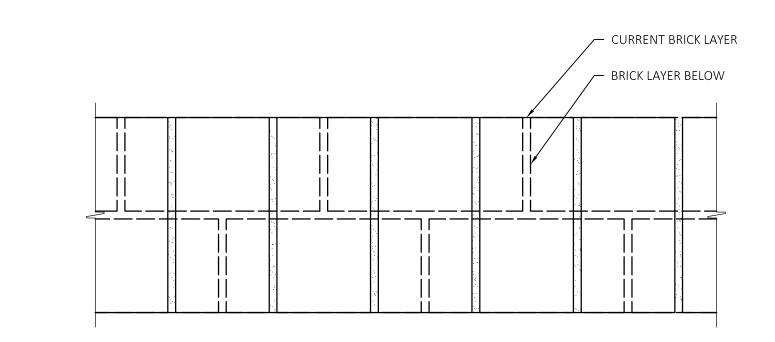

TENSION LAP SPLICE LENGTH (CLASS B)				
	4000 PSI (2.75 MPa)			
BAR SIZE	ТОР	OTHER		
#3 (10mm)	28" (72cm)	20 (50cm)		
#4 (13mm)	34" (86cm)	25 (64cm)		
#5 (16mm)	42" (1m)	31 (80cm)		

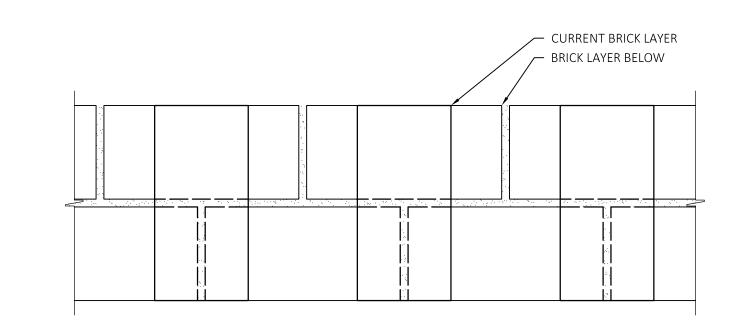

NOTES: (#) 1. ALL SPLICES SHALL BE TENSION LAP SPLICES U.N.O. 2. LENGTHS SHOWN ARE FOR GRADE 60 UNCOATED BARS TENSION LAP SPLICES 'N.T.S.

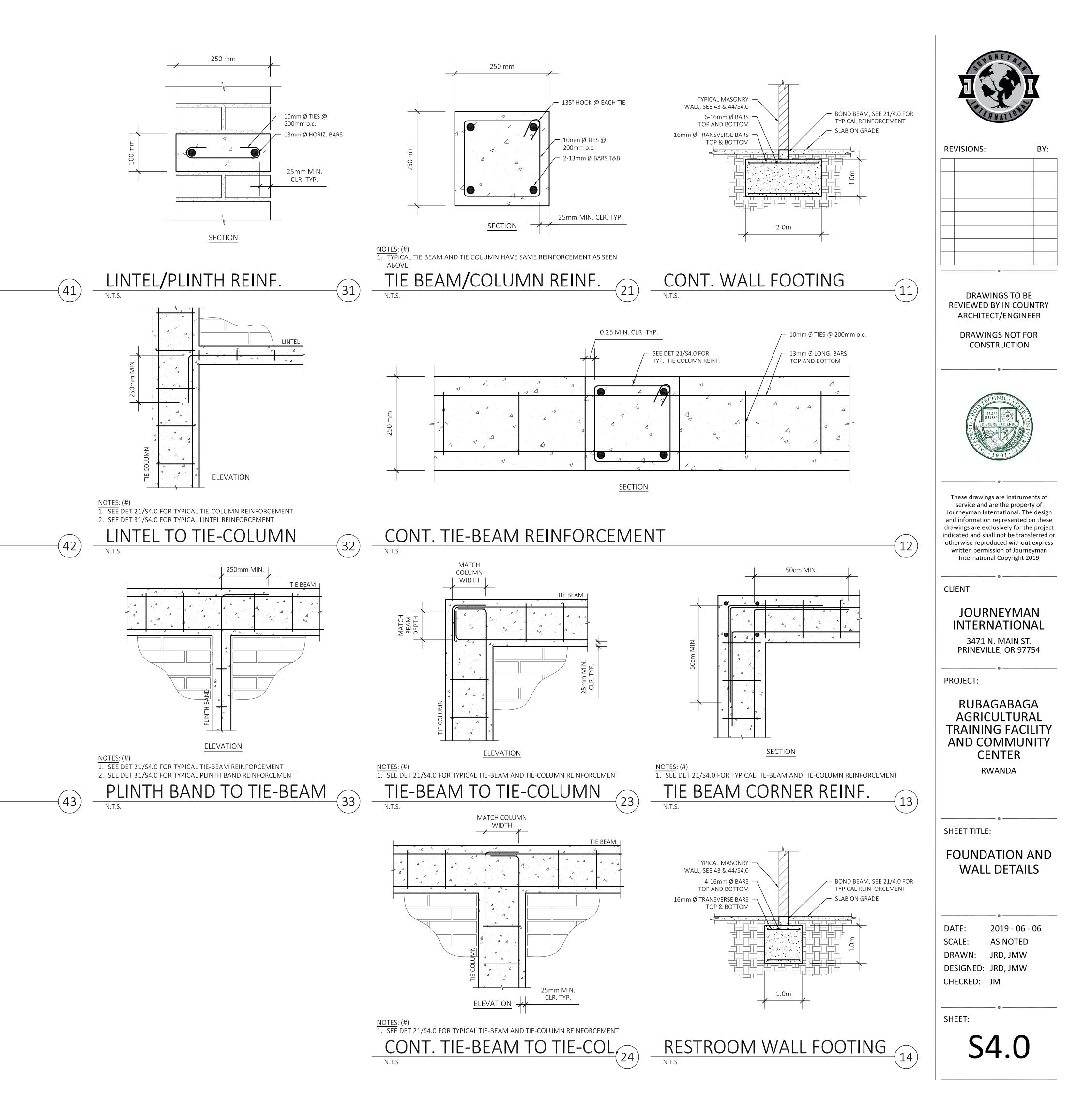


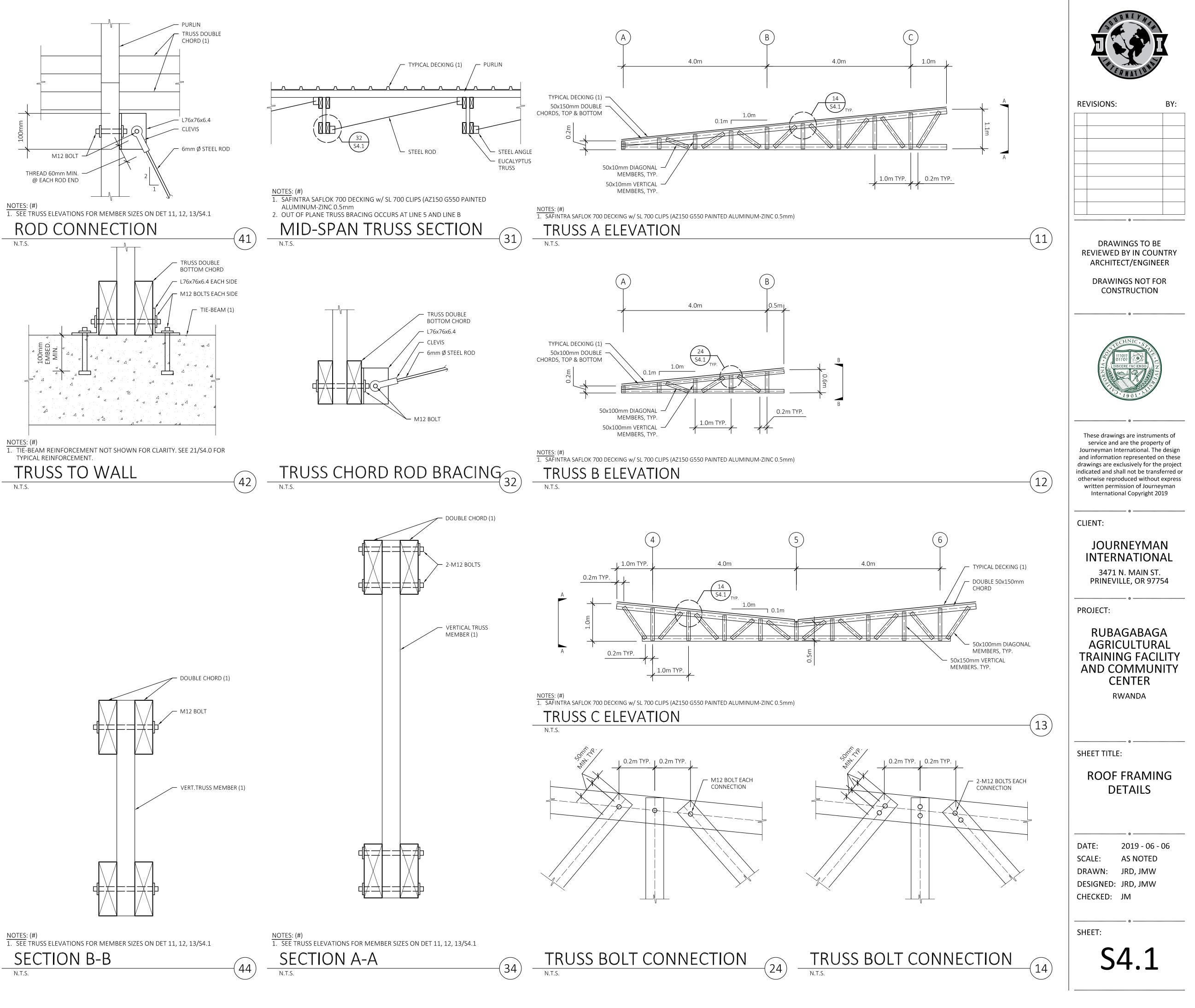


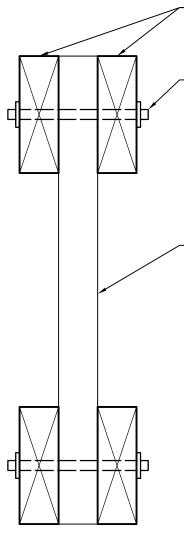

BY:



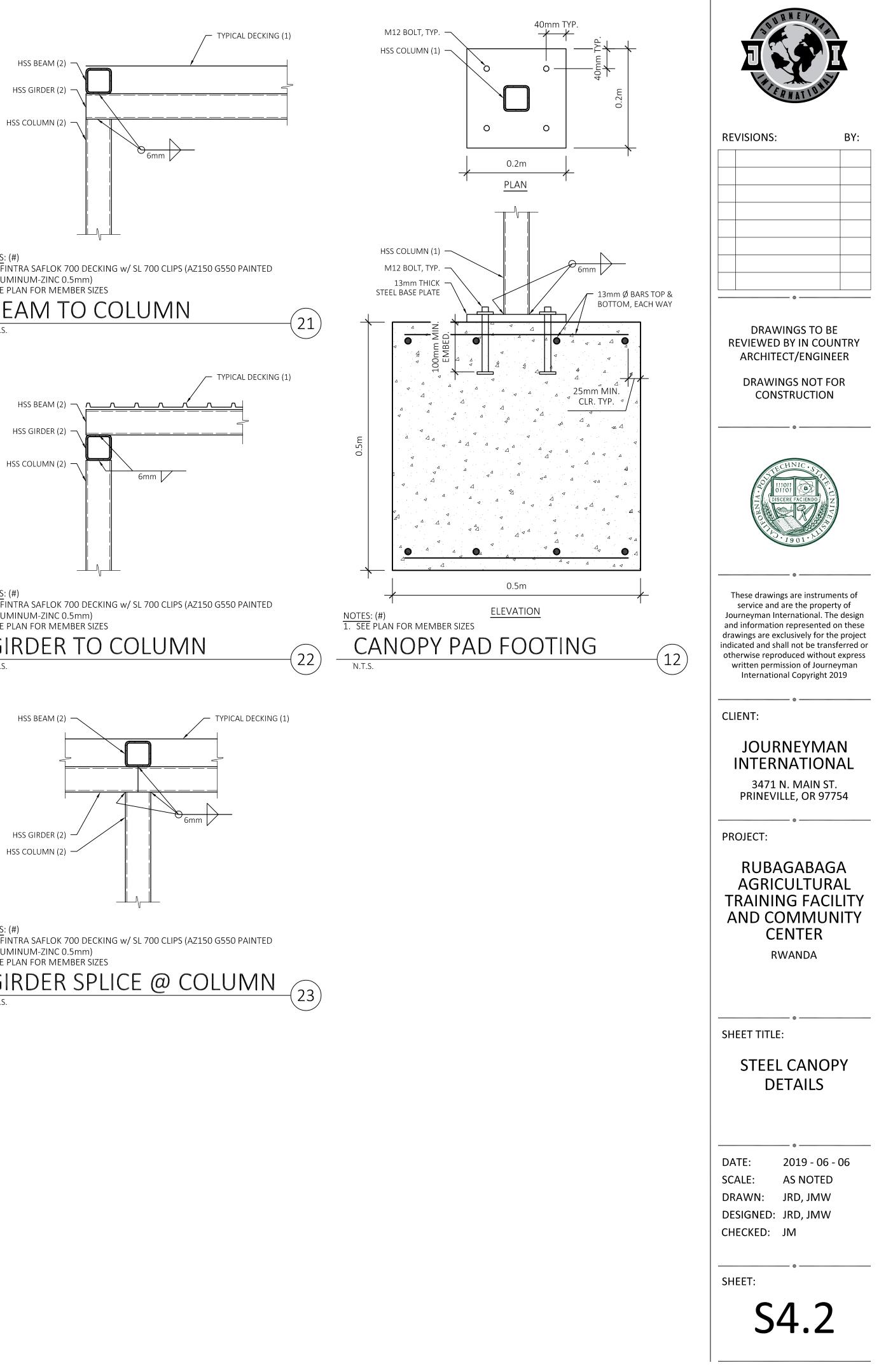



TYPICAL WALL SECTION

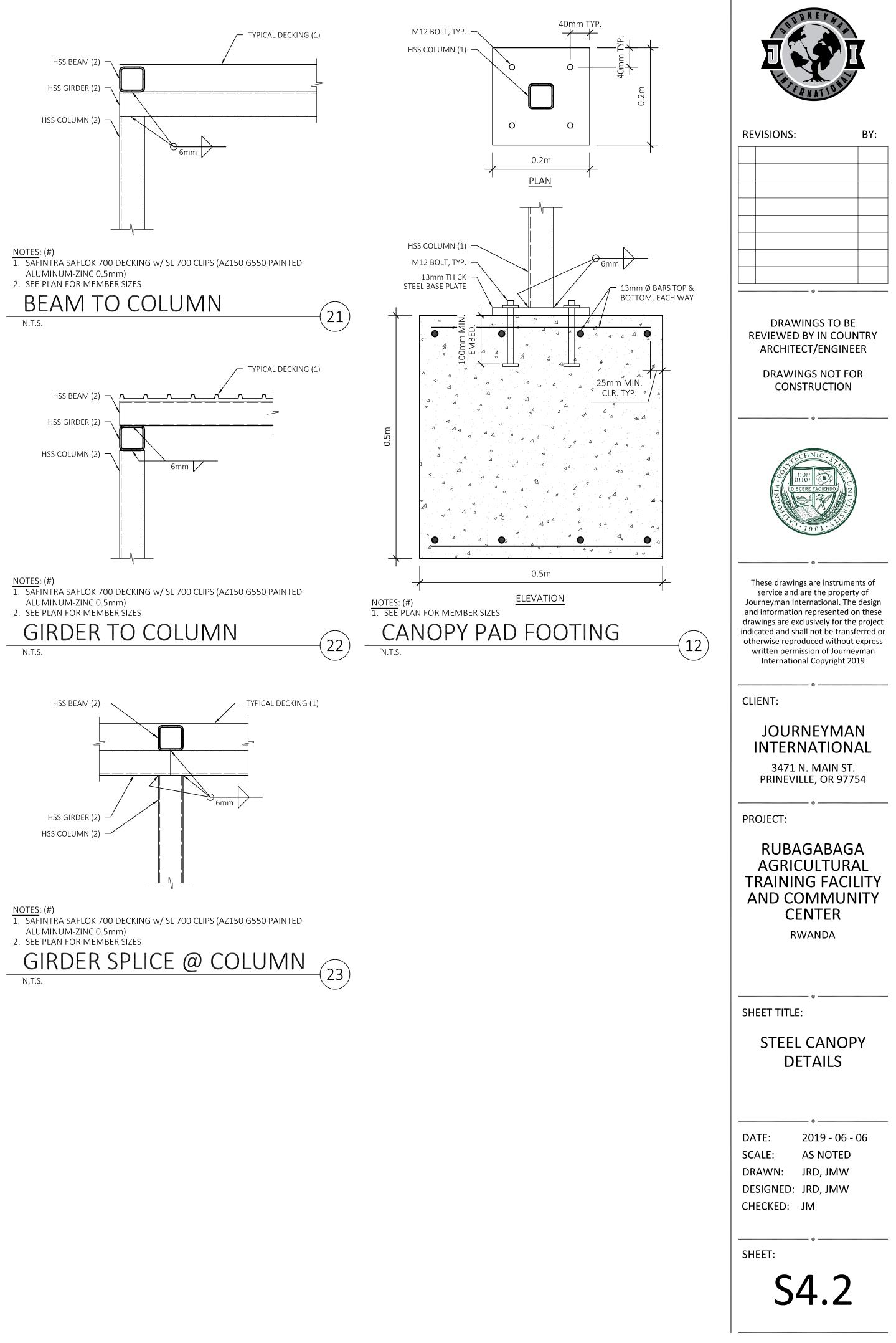


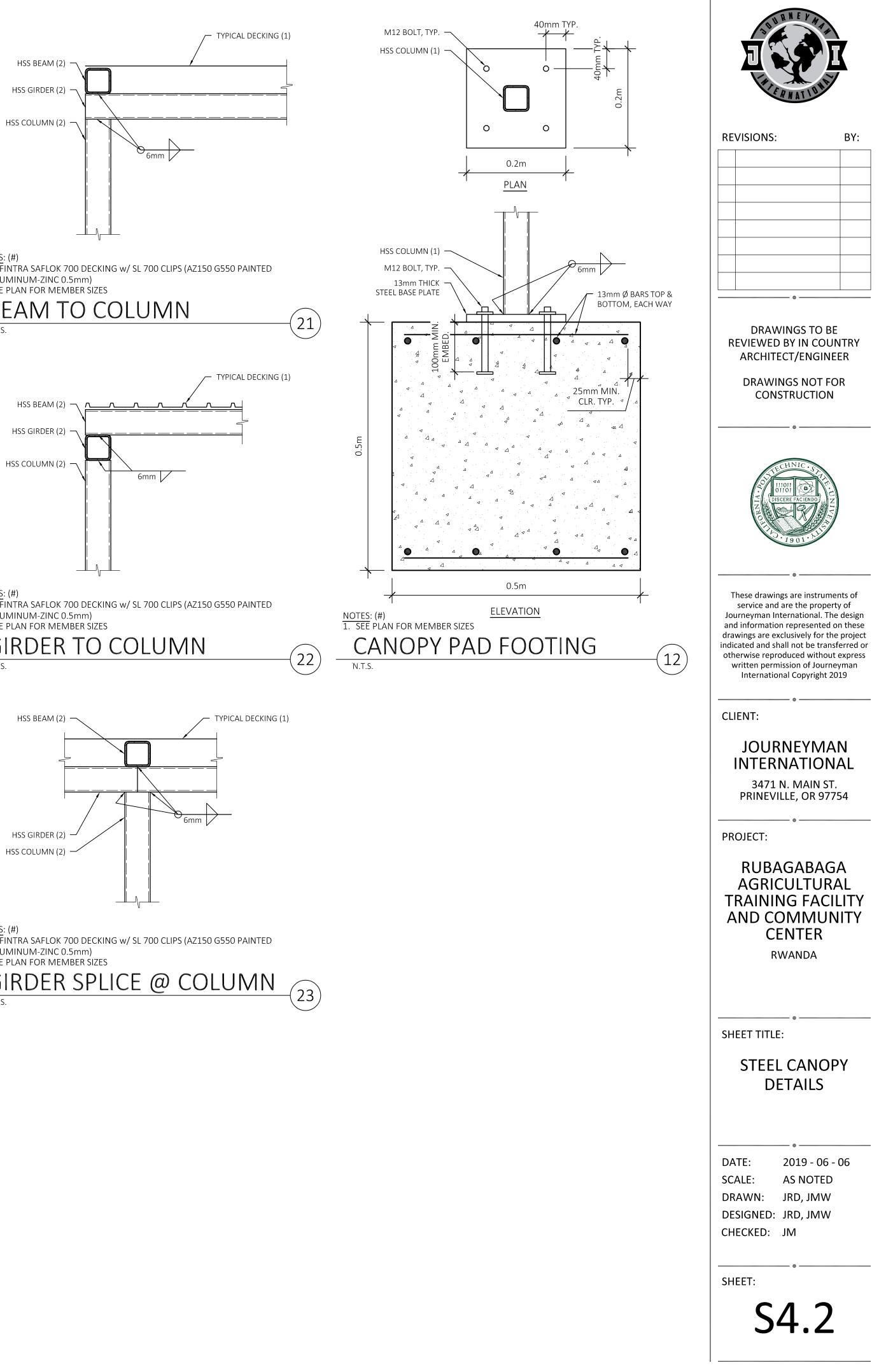

NOTES: (#) 1. SEE 41/S4.0 FOR TYPICAL BRICK SIZE WALL SECTION w/ FLEMISH BOND N.T.S.

WALL SECTION w/ FLEMISH BOND MISSING BRICKS



N.T.S.





ALUMINUM-ZINC 0.5mm)

BEAM TO COLUMN N.T.S.

N.T.S.

APPENDIX C: PRESENTATION

RUBAGABAGA VILLAGE: COMMUNITY CENTER AND AGRICULTURAL TRAINING FACILITY

Presented by: Julia De Hart and Jenna Williams For Senior Projects Day: Thursday, June 6th 2019

OUTLINE

- Project Partners
- Project Description
- Structural Design
- ➤ Challenges
- ➤ Travel Experience
- ➤ Takeaways

PROJECT PARTNERS - Journeyman International

- Non-profit company founded in 2009
- Design and construction of international humanitarian projects
- "Build What Matters Most"

CAL POLY JI TEAM

Mackenzie Dias Architecture

Jenna Williams Architectural Engineering

Julia De Hart Architectural Engineering Jake Stom Construction Management

PROJECT PARTNERS - East African Power

- EmPOWERing Villages through Renewable Energy Development
- The 5 E's
 - Energy
 - Environment
 - Education
 - Entrepreneurship
 - Enjoyment

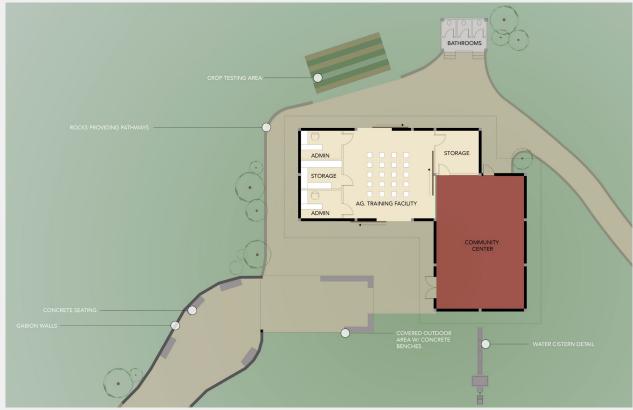
PROJECT PARTNERS - East African Power

PROJECT DESCRIPTION - LOCATION

PROJECT DESCRIPTION - LOCATION

PROJECT DESCRIPTION - EVC and ATF

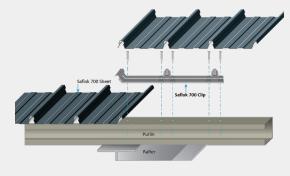
• Empowering Villages Center (EVC)


"To provide space for assembly, social programs, skills trainings, and recreation"

• Agricultural Training Facility (ATF)

"To allow local farmers to adopt innovative strategies that can make their land more profitable - even to a commercial level"

PROJECT DESCRIPTION - EVC and ATF


PROJECT DESCRIPTION - THE DELIVERABLES

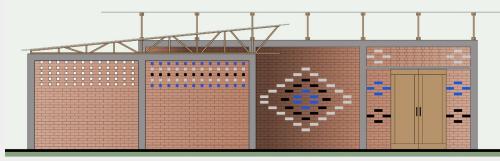
- Architectural Design and Drawings
- Structural Calculations and Drawings
- Construction Costs and Quantity Take-Offs

STRUCTURAL DESIGN – THE CODES

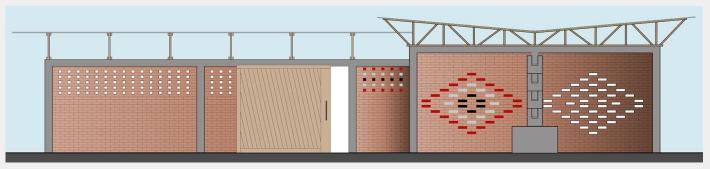
STRUCTURAL DESIGN - MATERIALS

Steel Decking

Milled Eucalyptus

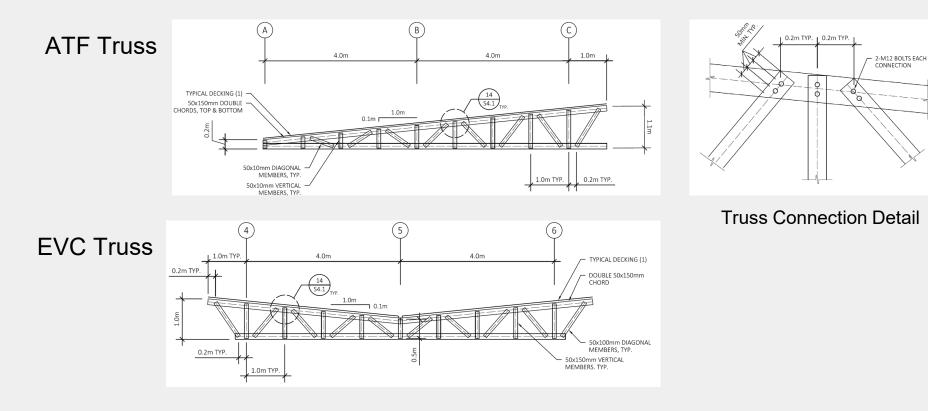


Handmade Clay Bricks

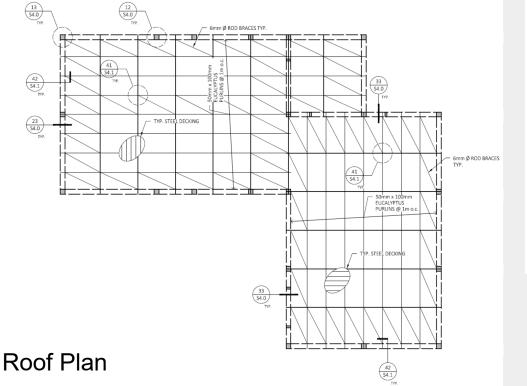


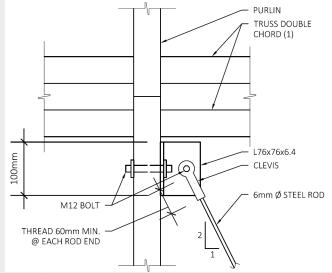
STRUCTURAL DESIGN - COMPONENTS

- Steel Decking
- Eucalyptus Purlins with Steel Rod Bracing
- Eucalyptus Trusses
- Confined Masonry Walls
- Concrete Slab/Foundations

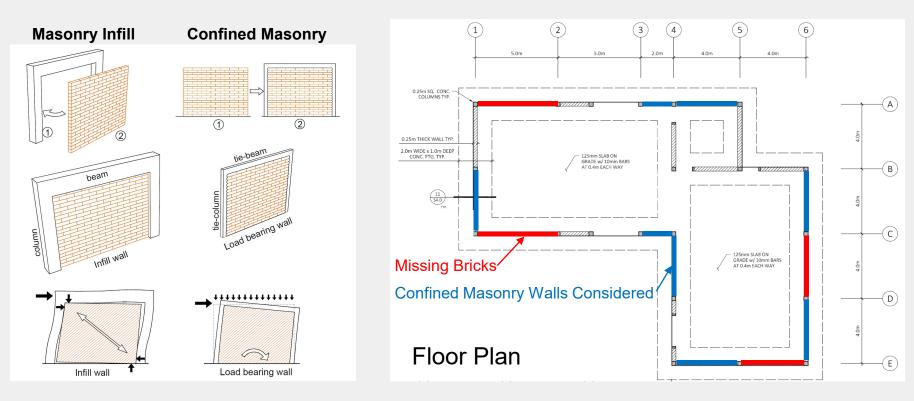


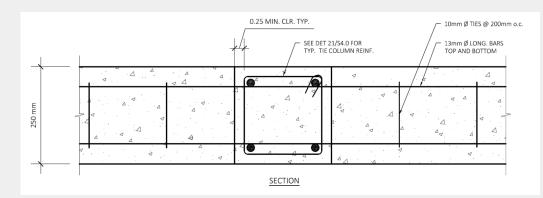
North Elevation

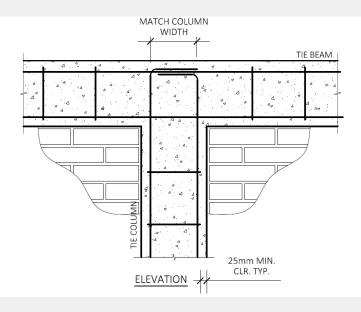



South Elevation

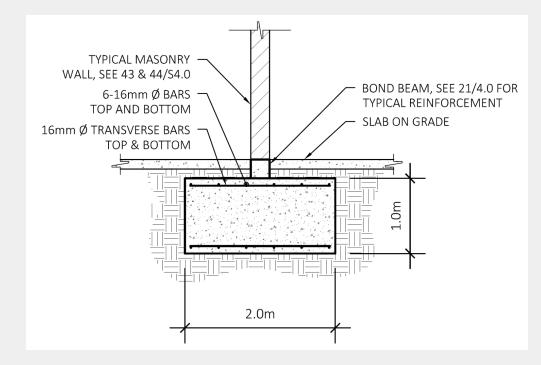
STRUCTURAL DESIGN – TRUSSES


STRUCTURAL DESIGN – DIAPHRAGM BRACING



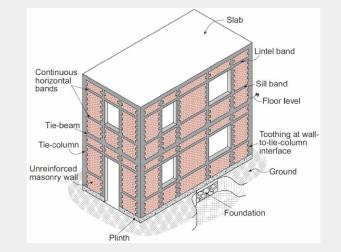

Rod to Purlin Detail

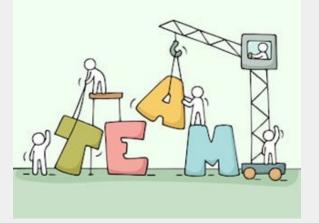
STRUCTURAL DESIGN – CONFINED MASONRY



STRUCTURAL DESIGN – TIE BEAMS / COLUMNS




STRUCTURAL DESIGN – FOUNDATIONS



CHALLENGES

Material Availability

Confined Masonry Design Interdisciplinary Teamwork

TRAVEL EXPERIENCE

TAKEAWAYS

Acknowledgements

Journeyman International: Daniel Weins and Carly Althoff

East African Power: Daniel Klinck and Brad Sanders

California Polytechnic State University: Dr. James Mwangi

292

QUESTIONS?

APPENDIX D: WORKS CITED

[1] "Brief History of Rwanda". Embassy of the Republic of Rwanda. 2019. Web.

[2] Lubkowski, Zygmunt. "Seismic Design Considerations for East Africa". Turkish Earthquake Foundation, 2014. PDF.

[3] Meli, Roberto. Seismic Design Guide for Low-Rise Confined Masonry Buildings. EERI & IAEE, 2011. PDF.

[4] IBC 2015: International Building Code, International Code Council, 2015.

[5] ASCE/SEI 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, 2017.

[6] ACI 318-14: Building Code Requirements for Structural Concrete, American Concrete Institute, 2014.

[7] NDS 2015: National Design Specification, American Wood Council, 2014.

[8] *AISC 360: Specification for Structural Steel Buildings*, American Institute of Steel Construction, 2016.