

Microcontroller Differential GPS to Subtract Signal Delay Due to Ambient Free

Electrons in the Ionosphere

Diana Swanson
Senior Project, Physics Department. California Polytechnic State University

Winter and Spring 2019
Advisor: Dr. Tom Bensky

Purpose

The goal of this project is to create a Global Positioning System (GPS) receiver that is more

precise than one GPS receiver on its own. The technique is to take the difference between a GPS

receiver’s measured position and its actual position, then use radio frequency (RF) communication to

send that differential value to another microcontroller GPS receiver. This differential value will be added

to the measured second location to get a more accurate position for the second GPS receiver, thus creating

a differential GPS.

Introduction

Global Positioning System receivers are becoming increasingly common in daily life as

smartphones and navigating using a GPS is becoming more widespread. The error in reported location by

a GPS receiver is often on the order of meters. The time delay influencing the signal between the satellites

and the receiver is most due to the ionosphere, the region of free electrons in our atmosphere about 50 km

– 10,000 km above the earth. GPS systems use triangulation and a series of signals to determine the

location of each receiver. Ground stations can determine the location of the receiver by tracking the orbits

of GPS satellites using radio frequency signals, the GPS receiver receives synchronized orbital and time

data sent out from at least four satellites. Based on the time the receiver senses the signal, the distance

away from the satellites of the receiver can be calculated due to finite speed of information and the known

sent and received times, and use triangulation using at least four satellites to determine the receiver

location in latitude, longitude, height and time, see Figure 1.

Figure 1: Simple GPS signal map

One of the main reasons for GPS location error is due to differing propagation delay times in the

signal between the satellites and the receiver on the ground due to the ionosphere. The ionosphere is a

region of ionized plasma with a varying density of ambient free electrons, (described by the total electron

content, TEC). The larger the TEC, the larger the delay of the GPS signal through the ionosphere. The

ionosphere TEC is known to vary heavily based on the sun’s location, because the UV radiation coming

from the sun is what ionizes the atmospheric gas molecules. When the earth is at perihelion the TEC is

largest versus the smallest at aphelion (The Ionosphere Effect, 2018).

GPS operate at two common frequencies for satellites to send the signal to the ground. That

frequency band is reserved for the GPS systems and transmissions are not allowed to use it. It is even

possible for nearby electronics that are operating at a frequency that is a harmonic of the GPS frequency

to interfere with the signal. For now the cause of the noise in the data is not of concern, the goal is to

subtract it from the measured location of the second GPS receiver, thus creating a differential GPS.

Methods

The differential GPS works using two microcontroller GPS units. The first GPS receiver unit,

called GPSA for convenience, is placed at a known location. By placing it at a known location the

measured location from the GPSA unit can be subtracted from the true location to find the difference in

the reported location and the actual. The difference of the measured from the actual location for GPSA is

sent to the microcontroller hooked up with GPSB, the second GPS receiver unit, using radio frequencies

with a transmitter and a receiver. The particular RF frequency used to transmit the data between the two

microcontrollers was 434 MHz using a transmitter and receiver pair from SparkFun (GeckoStudios). The

microcontroller for GPSB receives the value of the difference between GPSA measured location and GPSA

actual location and adds it to the GPSB measured location to output the true location of GPSB. The

assumption of this method is that the two GPS recievers are close enough to each other that they

experience the same, or similar, signal delay and therefore the difference found between GPSA and its

actual location is the same difference GPSB is experiencing.

 The known location of GPSA was found by taking the average of the measured location of the

GPS unit in a constant location where it will stay over a period of one day. Assuming the interference

creating the noise is random, this average of the data as the true location was sufficient for this purpose,

the average latitude was 35.2901 degrees North, and longitude was -120.6281 degrees West for the

location of GPSA in San Luis Obispo, CA.

.

Figure 2: Arduino A with RF Transmitter Figure 3: Arduino B with RF Reciever

Figure 4: GPSA at known location and GPSB setup 15 cm apart

Diagram 1: Arduino A, GPS and RF transmitter Diagram 2: Arduino B, GPS and RF receiver

Technical Details of the Code and Hardware setup

Diving into the code, a package of three scripts was created to work simultaneously to interact

with the Arduino microcontrollers, GPS units, RF transmitter and receiver link, and plotting and

analyzing the data. The first script was in Arduino language, and was uploaded to Arduino A that had the

GPSA unit and RF transmitter connected to its ports. This script was used to collect the GPSA location and

time data, subtract that from the hard-coded known location of GPSA and send that to Arduino B

connected up with GPSB and the RF receiver. This script was labelled transmitter_code. Three

Arduino libraries available from the open source Arduino devices community were used. The first library

was TinyGPS++ (M. H.,2019), and was used to collect the GPS data from GPSA. The TinyGPS++ library

has some built in functions to read the output of the GPS units and save them as useful variables such as

latitude, longitude, date and time. The GPS units output the raw data in a NMEA sentence that is very

common for GPS units, and this library is able to read that. Using the TinyGPS++ library, this was edited

by changing the pins the Arduino receives the GPS data from and the way it prints out the data to the

serial monitor which will be explained later. Most of the data is outputted to the serial monitor so the

SoftwareSerial library was used to allow this. The other important function of the transmitter_code

script was to transmit the data from GPSA to Arduino B. To do this the RH_ASK library from RadioHead

(M.M, 2019) was used. This library was modified to create a struct of the data to send to Arduino B so

multiple variables of data could be sent. This allowed the location, time, date and difference of GPSA

location from it’s actual location to be sent to the B Arduino. After assigning the GPSA data to the

variables in the structure, the data was converted to bits and sent using the RF transmitter using a

driver.send function.

 Arduino B was the unit that was hooked up with the RF receiver and GPSB. The code was again

in Arduino language and called receiver_code_3_formatlab, and was very similar to the

transmitter code. It used the TinyGPS++ library and collected the GPSB location in the same way GPSA

data was collected in the transmitter_code. The data was outputted to the serial monitor in a CSV format

so that data the data could be analyzed and plotted in a Matlab. The receiver code also defined the same

variables in a structure named myData, exactly mirroring the transmitter code so the labels of the data in

both scripts are the same. The library RH_ASK was used to receive the data by using the library built

function RH_ASK_MAX_MESSAGE_LEN, to allow the memory to know the length of the data it was

receiving was, and then to read in that data. The final goal of this project was to find the actual location of

GPSB. The code has the GPSB reported location and was receiving the differential latitude and longitude

values that GPSA was experiencing. The differential values were added to the respective latitude and

longitude values of GPSB reported location values to produce the final_latitude, and final_longitude

values of GPSB.

 The experimental setup consisted of Arduino A plugged into one serial port of a MacBook Air,

with the GPS hooked into the 3.3 V power supply in the Arduino, ground, and port 4, and the RF

transmitter hooked up to the power, ground, and port 12 for the data signal, see Figure 2. When data was

printed to the serial monitor using the transmitter_code, the data was being written to the serial

monitor it was hooked up to. Arduino B was plugged into a different serial port, and the GPS was hooked

up to power, ground and data pin 4, and the RF receiver was hooked up to power, ground and pin 12 for

data transmission, see Figure 3.

 With the hardware plugged in and connections made, and the respective Arduino codes uploaded

to the devices, the data then needed to be read and analyzed. The data was analyzed using a script in

Matlab which opened the serial ports on the computer for which the Arduinos were plugged into and read

in the data that was being printed there by the uploaded code on the Arduinos. This is why the format of

the data that was printed to the serial monitor was so important. The Matlab script named

real_arduino_serial_output.m used a loop to read in the CSV data from the serial monitor so

the user can specify how many data points to read in, and in the Arduino codes, the user can decide the

delay time between readings.

Once the data is read into Matlab and defined as the variable data, the serial port was closed to

maintain efficiency. This sacrificed completely real time data, but sped up the process significantly rather

than keeping the serial port open continuously. The data variable is a vector that was then spliced based

on the commas that were written between the values sent to the serial port by the Arduino code. Once the

data was spliced it was stored as latitude, longitude, date, and time variables that could then be

manipulated and plotted in Matlab, (see plots in the results section). The script was split into three

sections, one to read the serial port from Arduino A and plot the position of GPSA without the differential

being subtracted off, one to read in the serial port from Arduino B and plot the position of GPSB after the

differential was subtracted, and one to calculate the distance between the GPS units after the differential

values were subtracted from GPSB location.

Results

The initial plots showed a lot of structure in the GPSA signal. When the GPS receiver was at a

constant location the measured location varied on the order of tens to thousands of meters. All of the data

was taken in North America, mostly in San Luis Obispo, California and the units of the latitude and

longitude measurements are in degrees north and west respectively. As seen in the initial plots of GPSA

data the measured location of the GPS unit varies a lot. Figures 7 and 9 (and Appendix A) were all taken

while the GPS was in one location in a time frame of less than 10 minutes. The pattern, or lack thereof, of

the measured location is intriguing. Some of the plots seem to indicate very complex dynamics in the

ionosphere that are creating signal delays in the GPS signal and therefore location measurement errors.

Other plots seem to show the GPS location changing based on a step function or changing a lot in one

dimension but staying much more constant in the other. While the goal of this project is to subtract out

this variation, not caring what it is, this data is very interesting, and physical descriptions of the dynamics

and variables at play should be studied further.

 The plots of GPSA location varied a lot, but the goal is to pinpoint the location of GPSB. The

results were mixed in this regard. The final location of GPSB often still varied, but sometimes the range of

the known location was smaller than the variation from GPSA on the order of tens of meters. To

understand if the final location of GPSB was correct, the distance between the two GPS receivers location

was calculated and converted into meters. When GPSA was at its known location on a desk, the location

of GPSB relative to GPSA on the desk was measured. As seen in Figures 8 and 10, the distance in meters

between the devices was measured to be on an order of tens of meters in the latitude direction and

hundreds of meters in the longitude direction. This was when the receivers were about 15 centimeters

apart on the desk stationary during each trial. This means the differential GPS was not working as

expected and the precision was still on the order of meters, not centimeters as hoped for.

Figure 5: GPSB location on 20190531, 10000 data points Figure 6: GPSB final location on 20190531, 10000 data points

Figure 7: GPSA location on 20190531, 10000 data points Figure 8: Difference between GPSes on 20190531, 10000 data points

 One reason for the error in these measurements and lack of precision is due to the delay time in

sending the signal using the RF link. The differential GPS needs to subtract the differential value in real

time from the location of GPSB, but there was a delay of about 1s for the differential values to be sent to

the GPSB Arduino so the differential value from the second before was being subtracted off the GPSB

location. The one second delay was expected to be negligible, but that may not be the case. Further

research and trial with the data is needed to see if changing the method of subtracting off the differential

value is necessary.

-120.65255 -120.6525 -120.65245 -120.6524 -120.65235 -120.6523 -120.65225 -120.6522
Longitude

35.2898

35.28985

35.2899

35.28995

35.29

35.29005

35.2901

35.29015
La
tit
ud
e

Latitude Logitude Plot GPS B

-120.6285 -120.6284 -120.6283 -120.6282 -120.6281 -120.628 -120.6279
Longitude

35.2899

35.28995

35.29

35.29005

35.2901

35.29015

35.2902

35.29025

35.2903

La
tit
ud
e

Latitude Logitude Plot GPS B Final

-120.6525 -120.6524 -120.6523 -120.6522 -120.6521
Longitude

35.28975

35.2898

35.28985

35.2899

35.28995

35.29

35.29005

35.2901

La
tit
ud
e

Latitude Logitude Plot GPS A

2150 2160 2170 2180 2190 2200 2210 2220 2230 2240
Longitude (m)

-20

-10

0

10

20

30

40

50

60

La
tit

ud
e

(m
)

Latitude Logitude distance between GPS A and GPSB

Figure 9: GPSA location on 20190531, 10000 data points Figure 10: GPSB location on 20190531, 10000 data points

Figure 11: GPSB final location on 20190531, 10000 data points Figure 12: Difference between GPSes on 20190531

Another reason for the error was well illustrated through the data run of 100,000 points of

continuous data without moving either GPS receiver. To collect 10,000 data points takes about 15

minutes, to get 100,000 data points the GPS units were left in the same location for almost a full day. The

plots showed the variation in the measured location of GPSA to be a very different pattern than the

variation in the measured location of GPSB. This is an intriguing result as the GPS receiver units that are

roughly 15 cm apart on a desk are receiving signals from satellites that are sending signals though the

same columns of the ionosphere assuming they are contacting the same satellites. Another interesting part

of this data collection run was that the distance between the GPSA and GPSB measured data was much

more precise as see in Figure 17 than the calculated distance between GPSA and the final location of

GPSB, Figure 16. Looking at the data it seemed that adding the differential value was skewing the data too

far, almost over correcting. The most likely cause of this error is the true location of GPSA was not known

-120.653 -120.6528 -120.6526 -120.6524 -120.6522 -120.652 -120.6518 -120.6516
Longitude

35.2894

35.2896

35.2898

35.29

35.2902

35.2904

35.2906

35.2908
La
tit
ud
e

Latitude Logitude Plot GPS A

-120.6527 -120.6526 -120.6525 -120.6524 -120.6523 -120.6522 -120.6521 -120.652 -120.6519 -120.6518
Longitude

35.2896

35.2897

35.2898

35.2899

35.29

35.2901

35.2902

35.2903

La
tit
ud
e

Latitude Logitude Plot GPS B

-120.629 -120.6288 -120.6286 -120.6284 -120.6282 -120.628 -120.6278 -120.6276 -120.6274
Longitude

35.2892

35.2894

35.2896

35.2898

35.29

35.2902

35.2904

35.2906

La
tit
ud
e

Latitude Logitude Plot GPS B Final

2050 2100 2150 2200 2250 2300 2350
Longitude (m)

-200

-150

-100

-50

0

50

100

150

La
tit

ud
e

(m
)

Latitude Logitude distance between GPS A and GPSB

well enough and was too high of a value in the longitudinal direction. This caused the final GPSB

calculated location to be farther to the west than it actually was.

Figure 13: GPSA location on 20190601, 100000 data points Figure 14: GPSB location on 20190601, 100000 data points

Figure 15: GPSB final location on 20190601, 100000 data points Figure 16: Difference between GPSes on 20190601

Figure 17: Difference between GPSA and GPSB raw data on 20190601

-120.6535 -120.653 -120.6525 -120.652 -120.6515
Longitude

35.289

35.2892

35.2894

35.2896

35.2898

35.29

35.2902

35.2904

35.2906

35.2908

35.291

La
tit
ud
e

Latitude Logitude Plot GPS A

-120.6535 -120.653 -120.6525 -120.652 -120.6515
Longitude

35.284

35.285

35.286

35.287

35.288

35.289

35.29

35.291

La
tit
ud
e

Latitude Logitude Plot GPS B

-120.629 -120.6285 -120.628 -120.6275 -120.627 -120.6265
Longitude

35.282

35.283

35.284

35.285

35.286

35.287

35.288

35.289

35.29

35.291

La
tit
ud
e

Latitude Logitude Plot GPS B Final

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450
Longitude (m)

-1000

-800

-600

-400

-200

0

200

La
tit

ud
e

(m
)

Latitude Logitude distance between GPS A and GPSB

-100 -50 0 50 100 150
Longitude (m)

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

100

La
tit

ud
e

(m
)

Latitude Logitude distance between GPS A and GPSB

Conclusion

The differential GPS was able to collect data using GPSA, calculate a differential value from the

true location, transmit that value using an RF link to a second Arduino that gathered location data for

GPSB and add the differential value back to determine it’s true location. The true location of GPSA

receiver was found by taking data for about a day and averaged as a true location of the receiver, this

could have been more precise by using multiple days and more data to determine the true location, or

using multiple GPS devices to reduce any bias due to the devices used.

Further work is required to finish the differential GPS, and to rigorously dive into the details of

the interference the GPS receivers are experiencing, likely due to free electrons in the ionosphere. The

NMEA data sent from the GPS units include the orbits of the GPS satellites. This could be used to

determine the location of the satellites and therefore the path of the signal though the ionosphere.

Knowing the path could lead to an understanding of how the ionosphere affects the data the GPS receiver

is receiving. When the satellites are near the horizon the signal is traveling through a thicker part of the

ionosphere so can lead to more signal error (The Ionosphere Effect, 2018). Further work should also draw

conclusions about the physical processes leading to the dynamics of the signal.

This differential GPS method was not able to precisely determine the final location of the GPSB

receiver when it was stationary. Taking data over the span of multiple days will help create a precise true

location and better differential GPS.

Appendix A: Interesting plots

Figure 18: 20190426, 1000 data points in SLO, CA GPSA. Figure 19: 20190426, 10000 data points in SLO, CA GPSA

Figure 20: 20190302, 1000 data points in Boulder City, NV GPSA. Figure 21: 20190514, 1000 data points in SLO, CA GPSA

Figure 22: 20190302, 1249 data points Boulder City, NV GPSA. Figure 23: 20190302, 1000 data points Boulder City, NV GPSA

Appendix B: Code
Transmitter_code:

// ask_transmitter.pde
#include <RH_ASK.h>
#include <TinyGPS++.h>
#include <SoftwareSerial.h>
#ifdef RH_HAVE_HARDWARE_SPI
#include<RH_ASK.h>
#include <SPI.h> // Not actually used but needed to compile
#endif

RH_ASK driver;
static const int RXPin = 4, TXPin = 3;
static const uint32_t GPSBaud = 9600;

// The TinyGPS++ object

114.482085 114.48209 114.482095 114.4821 114.482105 114.48211 114.482115 114.48212
longitude, W deg

36.02354

36.023545

36.02355

36.023555

36.02356

36.023565

la
tit

ud
e,

 N
 d

eg
lat vs lon gps signal

-120.6526 -120.6525 -120.6524 -120.6523 -120.6522 -120.6521 -120.652 -120.6519 -120.6518 -120.6517
Longitude

35.2892

35.2893

35.2894

35.2895

35.2896

35.2897

35.2898

35.2899

35.29

35.2901

35.2902

La
tit
ud
e

Latitude Logitude Plot

TinyGPSPlus gps;
// The serial connection to the GPS device
SoftwareSerial ss(RXPin, TXPin);

//define data structure with variables to be sent
struct dataStruct{
 float la_diff ;
 float lo_diff ;
 float la ;
 float lo ;
 float hr ;
 float minn ;
 float sec ;
 float monthh ;
 float dayy ;
 float yearr ;
 unsigned long counter;
}myData;

byte tx_buf[sizeof(myData)] = {0};

void setup()
{
 Serial.begin(9600);
 if (!driver.init())
 Serial.println("init failed");

 Serial.begin(9600); // Debugging only
 ss.begin(GPSBaud);
 // Serial.println(F("Location | Latitude | Longitude | Lat_diff |
Long_diff | Date | Time |"));
}

void loop()
{
 // This sketch displays information every time a new sentence is
correctly encoded.
 while (ss.available() > 0)
 if (gps.encode(ss.read()))
 displayInfo();

 if (millis() > 5000 && gps.charsProcessed() < 10)
 {
 Serial.println(F("No GPS detected: check wiring."));
 while(true);
 }
}

void displayInfo()
{
 if (gps.location.isValid())
 {
 ///hard coded location of GPS_A
 float latitude_avg = 35.2901 ; //35.2899 ;
 float longitude_avg = -120.6281; //-119.5207 ;

 Serial.print(gps.location.lat(),6);
 Serial.print(F(","));

 Serial.print(gps.location.lng(), 6);
 Serial.print(F(","));
 Serial.print(latitude_avg-gps.location.lat(),6);
 Serial.print(F(","));
 Serial.print(longitude_avg-gps.location.lng(),6);
 Serial.print(F(","));
 myData.la=gps.location.lat();
 myData.lo=gps.location.lng();
 myData.la_diff=(latitude_avg-gps.location.lat());
 myData.lo_diff=(longitude_avg-gps.location.lng());
 }
 else
 {
 Serial.print(F("INVALID"));
 Serial.print(F(","));
 Serial.print(F("INVALID"));
 Serial.print(F(","));
 Serial.print(F("INVALID"));
 Serial.print(F(","));
 Serial.print(F("INVALID"));
 Serial.print(F(","));
 }

 // Date/Time:
 if (gps.date.isValid())
 {
 Serial.print(gps.date.month());
 Serial.print(F("/"));
 Serial.print(gps.date.day());
 Serial.print(F("/"));
 Serial.print(gps.date.year());
 Serial.print(F(","));

 myData.yearr=gps.date.year();
 myData.dayy=gps.date.day();
 myData.monthh=gps.date.month();
 }
 else
 {
 Serial.print(F("INVALID"));
 }

 if (gps.time.isValid())
 {
 if (gps.time.hour() < 10) Serial.print(F("0"));
 Serial.print(gps.time.hour());
 Serial.print(F(":"));
 if (gps.time.minute() < 10) Serial.print(F("0"));
 Serial.print(gps.time.minute());
 Serial.print(F(":"));
 if (gps.time.second() < 10) Serial.print(F("0"));
 Serial.print(gps.time.second());
 Serial.print(F("."));
 if (gps.time.centisecond() < 10) Serial.print(F("0"));
 Serial.print(gps.time.centisecond());

 myData.hr=gps.time.hour();
 myData.minn=gps.time.minute();

 myData.sec=gps.time.second();
 }
 else
 {
 Serial.print(F(","));
 Serial.print(F("INVALID"));
 }

 Serial.println();
///convert to bits and send data
 memcpy(tx_buf, &myData,sizeof(myData));
 byte zize=sizeof(myData);
 driver.send((uint8_t *)tx_buf, zize);
 //delay(10);
}

Receiver Code:
// ask_receiver.pde

#include <RH_ASK.h>
#include <TinyGPS++.h>
#include <SoftwareSerial.h>
#ifdef RH_HAVE_HARDWARE_SPI
#include <SPI.h> // Not actually used but needed to compile
#endif

RH_ASK driver;

static const int RXPin = 4, TXPin = 3;
static const uint32_t GPSBaud = 9600;

// The TinyGPS++ object
TinyGPSPlus gps;

// The serial connection to the GPS device
SoftwareSerial ss(RXPin, TXPin);

struct dataStruct{
 float la_diff ;
 float lo_diff ;
 float la ;
 float lo ;
 float hr ;
 float minn ;
 float sec ;
 float monthh ;
 float dayy ;
 float yearr ;
 unsigned long counter;
}myData;

void setup()
{
 Serial.begin(9600);
 if (!driver.init())
 Serial.println("init failed");
 Serial.begin(9600); // Debugging only
 ss.begin(GPSBaud);

}

void loop()
{
////rf code
 uint8_t buf[RH_ASK_MAX_MESSAGE_LEN];
 uint8_t buflen = sizeof(buf);

 //memset (buf,0,sizeof(buf));
 memcpy(&myData, buf, sizeof(myData));

 if (driver.recv(buf, &buflen)) // Non-blocking
 {
 int i;
// Message with a good checksum received, dump it.
 memcpy(&myData, buf, sizeof(myData));
 }
 while (ss.available() > 0)
 if (gps.encode(ss.read()))
 {displayInfo();
 }
 if (millis() > 5000 && gps.charsProcessed() < 10)
 {
 Serial.println(F("No GPS detected: check wiring."));
 while(true)
 }
}
void displayInfo()
{
 //// gps data
 if (double(gps.time.second()) == (myData.sec+double(1)))
 {
 if (gps.location.isValid())
 { // Serial.println(F("Location | Latitude | Longitude | Date | Time |
Final_lat | Final_lon | GPSA lat | GPSA lon"));
 Serial.print(gps.location.lat(), 6);
 Serial.print(F(","));
 Serial.print(gps.location.lng(), 6);
 Serial.print(F(","));
 }
 else
 {
 Serial.print(F("INVALID_B"));
 Serial.print(F(","));
 Serial.print(F("INVALID_B"));
 Serial.print(F(","));
 }

 if (gps.date.isValid())
 {
 Serial.print(gps.date.month());
 Serial.print(F("/"));
 Serial.print(gps.date.day());
 Serial.print(F("/"));
 Serial.print(gps.date.year());
 Serial.print(F(","));
 }
 else

 {
 Serial.print(F("INVALID_B"));
 Serial.print(F(","));
 }

 if (gps.time.isValid())
 {
 if (gps.time.hour() < 10) Serial.print(F("0"));
 Serial.print(gps.time.hour());
 Serial.print(F(":"));
 if (gps.time.minute() < 10) Serial.print(F("0"));
 Serial.print(gps.time.minute());
 Serial.print(F(":"));
 if (gps.time.second() < 10) Serial.print(F("0"));
 Serial.print(gps.time.second());
 Serial.print(F("."));
 if (gps.time.centisecond() < 10) Serial.print(F("0"));
 Serial.print(gps.time.centisecond());
 Serial.print(F(","));
 }
 else
 {

 Serial.print(F("INVALID_B"));
 Serial.print(F(","));
 }
 //delay(200);
 ///////////////////subtract off difference from raw gps data
 float final_lat = (((myData.la_diff)+gps.location.lat()));
 float final_lon = (((myData.lo_diff)+gps.location.lng()));
 //Serial.print("final Location B :");
 Serial.print(final_lat,6);
 Serial.print(",");
 Serial.print(final_lon,6);

//////////////////GPSA

 Serial.print(",");
 Serial.print(myData.la,6);
 Serial.print(",");
 Serial.println(myData.lo,6);
}
}

Matlab code:

%%
%read data from serial port
sB = serial('/dev/tty.usbmodem14101', 'BaudRate', 9600)%, 'Terminator', 'CR')

fopen(sB);
iB=1;
dataB = cell(0);
v=100000;
while(iB<=v) % Read # lines
 dataB{iB}=fgets(sB);
 iB=iB+1; % Increment the counter

end

fclose(sB); % Disconnect the serial port object from the device
delete(sB); % Delete the serial object

%split the string into matrix
for k=1:length(dataB)
 C_b(k,:)=strsplit(dataB{k},',');
end

%%%%%%%%get rid of INVALID
k1=1;
for j=1:length(C_b)
 w=C_b{j,1};
 if w ~= 'INVALID_B'
 C_B(k1,:)=C_b(j,:);
 k1=k1+1;
 end

end
exist C_B ;
if ans==1

%conversion from deg to centimeters at 40deg lat
deg_lat=110941; %m
deg_long=91288; %m
[m_B,n_B]=size(C_B);

for i=1:m_B

 final_la_B(i)=str2num(C_B{i,5});
 final_lo_B(i)=str2num(C_B{i,6});
 la_a(i)=str2num(C_B{i,7});
 lo_a(i)=str2num(C_B{i,8});
 y_dist_between=(final_la_B-la_a)*deg_lat;
 x_dist_between=(final_lo_B-lo_a)*deg_long;
 la_B(i)=str2num(C_B{i,1});
 lo_B(i)=str2num(C_B{i,2});

end
figure(1)
plot(final_lo_B,final_la_B,'r.', 'markersize', 14)
title("Latitude Logitude Plot GPS B Final");
xlabel('Longitude');
ylabel("Latitude");

figure(2)
plot(lo_B, la_B,'r.', 'markersize', 14)
title("Latitude Logitude Plot GPS B");
xlabel('Longitude');
ylabel("Latitude");

figure(3)
plot(lo_a, la_a, 'b.', 'markersize', 14)
title("Latitude Logitude Plot GPS A");
xlabel('Longitude');
ylabel("Latitude");

figure(4)
plot(x_dist_between,y_dist_between, 'k.', 'markersize', 14)
title("Latitude Logitude distance between GPS_A and GPS_B");
xlabel('Longitude (m)');
ylabel("Latitude (m)");

else
 r1='invaild GPS data try again'
end

References

1. Abdullah, M. (2003). Accurate ionospheric error correction for differential GPS. Twelfth
International Conference on Antennas and Propagation (ICAP 2003).

 doi:10.1049/cp:20030034

2. GeckoStudios. (n.d.). RF Link Transmitter - 434MHz. Retrieved from
https://www.sparkfun.com/products/10534

3. Kintner, P. M., Ledvina, B. M., & Paula, E. R. (2007). GPS and ionospheric scintillations. Space

Weather,5(9). doi:10.1029/2006sw000260

4. M. H. (2019). TinyGPS. Retrieved from http://arduiniana.org/libraries/tinygpsplus/

5. M. M. (2019). RadioHead Packet Radio library for embedded microprocessors. Retrieved from
https://www.airspayce.com/mikem/arduino/RadioHead/index.html

6. Sarah Nik Zulkifli, Siti & Abdullah, Mardina & Ismail, Mahamod. (2012). Simulation of

 ionospheric error on GPS signals due to changes in the direction of mobile station
 positions in differential GPS. Annals of Geophysics. 54. 10.4401/ag-4973.

7. S. D. (2015, April 05). Send temperature using RadioHead. Retrieved from
https://forum.arduino.cc/index.php?topic=313587.0

8. Time and Navigation. (n.d.). Retrieved from

https://timeandnavigation.si.edu/multimediasset/how-does-gps-work proper citation to be made

9. The Ionospheric Effect. (2018). Retrieved from https://www.e-
education.psu.edu/geog862/node/1715

