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Purpose 

The goal of this project is to create a Global Positioning System (GPS) receiver that is more 

precise than one GPS receiver on its own. The technique is to take the difference between a GPS 

receiver’s measured position and its actual position, then use radio frequency (RF) communication to 

send that differential value to another microcontroller GPS receiver.  This differential value will be added 

to the measured second location to get a more accurate position for the second GPS receiver, thus creating 

a differential GPS.  

 

 

Introduction 

Global Positioning System receivers are becoming increasingly common in daily life as 

smartphones and navigating using a GPS is becoming more widespread. The error in reported location by 

a GPS receiver is often on the order of meters. The time delay influencing the signal between the satellites 

and the receiver is most due to the ionosphere, the region of free electrons in our atmosphere about 50 km 

– 10,000 km above the earth. GPS systems use triangulation and a series of signals to determine the 

location of each receiver. Ground stations can determine the location of the receiver by tracking the orbits 

of GPS satellites using radio frequency signals, the GPS receiver receives synchronized orbital and time 

data sent out from at least four satellites. Based on the time the receiver senses the signal, the distance 

away from the satellites of the receiver can be calculated due to finite speed of information and the known 

sent and received times, and use triangulation using at least four satellites to determine the receiver 

location in latitude, longitude, height and time, see Figure 1.  



 
Figure 1: Simple GPS signal map 

  

One of the main reasons for GPS location error is due to differing propagation delay times in the 

signal between the satellites and the receiver on the ground due to the ionosphere. The ionosphere is a 

region of ionized plasma with a varying density of ambient free electrons, (described by the total electron 

content, TEC). The larger the TEC, the larger the delay of the GPS signal through the ionosphere. The 

ionosphere TEC is known to vary heavily based on the sun’s location, because the UV radiation coming 

from the sun is what ionizes the atmospheric gas molecules. When the earth is at perihelion the TEC is 

largest versus the smallest at aphelion (The Ionosphere Effect, 2018).  

GPS operate at two common frequencies for satellites to send the signal to the ground. That 

frequency band is reserved for the GPS systems and transmissions are not allowed to use it. It is even 

possible for nearby electronics that are operating at a frequency that is a harmonic of the GPS frequency 

to interfere with the signal. For now the cause of the noise in the data is not of concern, the goal is to 

subtract it from the measured location of the second GPS receiver, thus creating a differential GPS.  

 

Methods 

The differential GPS works using two microcontroller GPS units. The first GPS receiver unit, 

called GPSA for convenience, is placed at a known location. By placing it at a known location the 

measured location from the GPSA unit can be subtracted from the true location to find the difference in 

the reported location and the actual. The difference of the measured from the actual location for GPSA is 

sent to the microcontroller hooked up with GPSB, the second GPS receiver unit, using radio frequencies 

with a transmitter and a receiver. The particular RF frequency used to transmit the data between the two 

microcontrollers was 434 MHz using a transmitter and receiver pair from SparkFun (GeckoStudios). The 



microcontroller for GPSB receives the value of the difference between GPSA measured location and GPSA 

actual location and adds it to the GPSB measured location to output the true location of GPSB. The 

assumption of this method is that the two GPS recievers are close enough to each other that they 

experience the same, or similar, signal delay and therefore the difference found between GPSA and its 

actual location is the same difference GPSB is experiencing.  

 The known location of GPSA was found by taking the average of the measured location of the 

GPS unit in a constant location where it will stay over a period of one day. Assuming the interference 

creating the noise is random, this average of the data as the true location was sufficient for this purpose, 

the average latitude was 35.2901 degrees North, and longitude was -120.6281 degrees West for the 

location of GPSA in San Luis Obispo, CA. 

.                               

Figure 2: Arduino A with RF Transmitter              Figure 3: Arduino B with RF Reciever 

 
Figure 4: GPSA at known location and GPSB setup 15 cm apart  

 



 

 

 

 

 

 

 

 

 

 

 

Diagram 1: Arduino A, GPS and RF transmitter                    Diagram 2: Arduino B, GPS and RF receiver 

 

Technical Details of the Code and Hardware setup 

Diving into the code, a package of three scripts was created to work simultaneously to interact 

with the Arduino microcontrollers, GPS units, RF transmitter and receiver link, and plotting and 

analyzing the data. The first script was in Arduino language, and was uploaded to Arduino A that had the 

GPSA unit and RF transmitter connected to its ports. This script was used to collect the GPSA location and 

time data, subtract that from the hard-coded known location of GPSA and send that to Arduino B 

connected up with GPSB and the RF receiver. This script was labelled transmitter_code. Three 

Arduino libraries available from the open source Arduino devices community were used. The first library 

was TinyGPS++ (M. H.,2019), and was used to collect the GPS data from GPSA. The TinyGPS++ library 

has some built in functions to read the output of the GPS units and save them as useful variables such as 

latitude, longitude, date and time. The GPS units output the raw data in a NMEA sentence that is very 

common for GPS units, and this library is able to read that. Using the TinyGPS++ library, this was edited 

by changing the pins the Arduino receives the GPS data from and the way it prints out the data to the 

serial monitor which will be explained later. Most of the data is outputted to the serial monitor so the 

SoftwareSerial library was used to allow this. The other important function of the transmitter_code 

script was to transmit the data from GPSA to Arduino B. To do this the RH_ASK library from RadioHead 

(M.M, 2019) was used. This library was modified to create a struct of the data to send to Arduino B so 

multiple variables of data could be sent. This allowed the location, time, date and difference of GPSA 

location from it’s actual location to be sent to the B Arduino. After assigning the GPSA data to the 

variables in the structure, the data was converted to bits and sent using the RF transmitter using a 

driver.send function.  



 Arduino B was the unit that was hooked up with the RF receiver and GPSB. The code was again 

in Arduino language and called receiver_code_3_formatlab, and was very similar to the 

transmitter code. It used the TinyGPS++ library and collected the GPSB location in the same way GPSA 

data was collected in the transmitter_code. The data was outputted to the serial monitor in a CSV format 

so that data the data could be analyzed and plotted in a Matlab. The receiver code also defined the same 

variables in a structure named myData, exactly mirroring the transmitter code so the labels of the data in 

both scripts are the same. The library RH_ASK was used to receive the data by using the library built 

function RH_ASK_MAX_MESSAGE_LEN, to allow the memory to know the length of the data it was 

receiving was, and then to read in that data. The final goal of this project was to find the actual location of 

GPSB. The code has the GPSB reported location and was receiving the differential latitude and longitude 

values that GPSA was experiencing. The differential values were added to the respective latitude and 

longitude values of GPSB reported location values to produce the final_latitude, and final_longitude 

values of GPSB.  

 The experimental setup consisted of Arduino A plugged into one serial port of a MacBook Air, 

with the GPS hooked into the 3.3 V power supply in the Arduino, ground, and port 4, and the RF 

transmitter hooked up to the power, ground, and port 12 for the data signal, see Figure 2. When data was 

printed to the serial monitor using the transmitter_code, the data was being written to the serial 

monitor it was hooked up to. Arduino B was plugged into a different serial port, and the GPS was hooked 

up to power, ground and data pin 4, and the RF receiver was hooked up to power, ground and pin 12 for 

data transmission, see Figure 3.  

 With the hardware plugged in and connections made, and the respective Arduino codes uploaded 

to the devices, the data then needed to be read and analyzed. The data was analyzed using a script in 

Matlab which opened the serial ports on the computer for which the Arduinos were plugged into and read 

in the data that was being printed there by the uploaded code on the Arduinos. This is why the format of 

the data that was printed to the serial monitor was so important. The Matlab script named 

real_arduino_serial_output.m used a loop to read in the CSV data from the serial monitor so 

the user can specify how many data points to read in, and in the Arduino codes, the user can decide the 

delay time between readings.  

Once the data is read into Matlab and defined as the variable data, the serial port was closed to 

maintain efficiency. This sacrificed completely real time data, but sped up the process significantly rather 

than keeping the serial port open continuously. The data variable is a vector that was then spliced based 

on the commas that were written between the values sent to the serial port by the Arduino code. Once the 

data was spliced it was stored as latitude, longitude, date, and time variables that could then be 

manipulated and plotted in Matlab, (see plots in the results section). The script was split into three 



sections, one to read the serial port from Arduino A and plot the position of GPSA without the differential 

being subtracted off, one to read in the serial port from Arduino B and plot the position of GPSB after the 

differential was subtracted, and one to calculate the distance between the GPS units after the differential 

values were subtracted from GPSB location.  

 

Results 

The initial plots showed a lot of structure in the GPSA signal. When the GPS receiver was at a 

constant location the measured location varied on the order of tens to thousands of meters. All of the data 

was taken in North America, mostly in San Luis Obispo, California and the units of the latitude and 

longitude measurements are in degrees north and west respectively. As seen in the initial plots of GPSA 

data the measured location of the GPS unit varies a lot. Figures 7 and 9 (and Appendix A) were all taken 

while the GPS was in one location in a time frame of less than 10 minutes. The pattern, or lack thereof, of 

the measured location is intriguing. Some of the plots seem to indicate very complex dynamics in the 

ionosphere that are creating signal delays in the GPS signal and therefore location measurement errors. 

Other plots seem to show the GPS location changing based on a step function or changing a lot in one 

dimension but staying much more constant in the other. While the goal of this project is to subtract out 

this variation, not caring what it is, this data is very interesting, and physical descriptions of the dynamics 

and variables at play should be studied further.  

 The plots of GPSA location varied a lot, but the goal is to pinpoint the location of GPSB. The 

results were mixed in this regard. The final location of GPSB often still varied, but sometimes the range of 

the known location was smaller than the variation from GPSA on the order of tens of meters. To 

understand if the final location of GPSB was correct, the distance between the two GPS receivers location 

was calculated and converted into meters. When GPSA was at its known location on a desk, the location 

of GPSB relative to GPSA on the desk was measured.  As seen in Figures 8 and 10, the distance in meters 

between the devices was measured to be on an order of tens of meters in the latitude direction and 

hundreds of meters in the longitude direction. This was when the receivers were about 15 centimeters 

apart on the desk stationary during each trial. This means the differential GPS was not working as 

expected and the precision was still on the order of meters, not centimeters as hoped for.   

 



 
Figure 5: GPSB location on 20190531, 10000 data points                 Figure 6: GPSB final location on 20190531, 10000 data points 

 
Figure 7: GPSA location on 20190531, 10000 data points     Figure 8: Difference between GPSes on 20190531, 10000 data points 

 

 One reason for the error in these measurements and lack of precision is due to the delay time in 

sending the signal using the RF link. The differential GPS needs to subtract the differential value in real 

time from the location of GPSB, but there was a delay of about 1s for the differential values to be sent to 

the GPSB Arduino so the differential value from the second before was being subtracted off the GPSB 

location. The one second delay was expected to be negligible, but that may not be the case. Further 

research and trial with the data is needed to see if changing the method of subtracting off the differential 

value is necessary.  
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Figure 9: GPSA location on 20190531, 10000 data points    Figure 10: GPSB location on 20190531, 10000 data points  

 
Figure 11: GPSB final location on 20190531, 10000 data points       Figure 12: Difference between GPSes on 20190531 

 

Another reason for the error was well illustrated through the data run of 100,000 points of 

continuous data without moving either GPS receiver. To collect 10,000 data points takes about 15 

minutes, to get 100,000 data points the GPS units were left in the same location for almost a full day. The 

plots showed the variation in the measured location of GPSA to be a very different pattern than the 

variation in the measured location of GPSB. This is an intriguing result as the GPS receiver units that are 

roughly 15 cm apart on a desk are receiving signals from satellites that are sending signals though the 

same columns of the ionosphere assuming they are contacting the same satellites. Another interesting part 

of this data collection run was that the distance between the GPSA and GPSB measured data was much 

more precise as see in Figure 17 than the calculated distance between GPSA and the final location of 

GPSB, Figure 16. Looking at the data it seemed that adding the differential value was skewing the data too 

far, almost over correcting. The most likely cause of this error is the true location of GPSA was not known 
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well enough and was too high of a value in the longitudinal direction. This caused the final GPSB 

calculated location to be farther to the west than it actually was.  

 
Figure 13: GPSA location on 20190601, 100000 data points           Figure 14: GPSB location on 20190601, 100000 data points  

 
Figure 15: GPSB final location on 20190601, 100000 data points   Figure 16: Difference between GPSes on 20190601 

 
Figure 17: Difference between GPSA and GPSB raw data on 20190601 
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Conclusion 

The differential GPS was able to collect data using GPSA, calculate a differential value from the 

true location, transmit that value using an RF link to a second Arduino that gathered location data for 

GPSB and add the differential value back to determine it’s true location. The true location of GPSA 

receiver was found by taking data for about a day and averaged as a true location of the receiver, this 

could have been more precise by using multiple days and more data to determine the true location, or 

using multiple GPS devices to reduce any bias due to the devices used.  

Further work is required to finish the differential GPS, and to rigorously dive into the details of 

the interference the GPS receivers are experiencing, likely due to free electrons in the ionosphere. The 

NMEA data sent from the GPS units include the orbits of the GPS satellites. This could be used to 

determine the location of the satellites and therefore the path of the signal though the ionosphere. 

Knowing the path could lead to an understanding of how the ionosphere affects the data the GPS receiver 

is receiving. When the satellites are near the horizon the signal is traveling through a thicker part of the 

ionosphere so can lead to more signal error (The Ionosphere Effect, 2018). Further work should also draw 

conclusions about the physical processes leading to the dynamics of the signal.  

This differential GPS method was not able to precisely determine the final location of the GPSB 

receiver when it was stationary. Taking data over the span of multiple days will help create a precise true 

location and better differential GPS.  

 

Appendix A: Interesting plots 

 
Figure 18: 20190426, 1000 data points in SLO, CA GPSA.    Figure 19: 20190426, 10000 data points in SLO, CA GPSA 

 



 
Figure 20: 20190302, 1000 data points in Boulder City, NV GPSA.        Figure 21: 20190514, 1000 data points in SLO, CA GPSA 

 
Figure 22: 20190302, 1249 data points Boulder City, NV GPSA.  Figure 23: 20190302, 1000 data points Boulder City, NV GPSA 

 

 

 

Appendix B: Code 
Transmitter_code: 

// ask_transmitter.pde 
#include <RH_ASK.h> 
#include <TinyGPS++.h> 
#include <SoftwareSerial.h> 
#ifdef RH_HAVE_HARDWARE_SPI 
#include<RH_ASK.h> 
#include <SPI.h> // Not actually used but needed to compile 
#endif 
 
RH_ASK driver; 
static const int RXPin = 4, TXPin = 3; 
static const uint32_t GPSBaud = 9600; 
 
// The TinyGPS++ object 
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TinyGPSPlus gps; 
// The serial connection to the GPS device 
SoftwareSerial ss(RXPin, TXPin); 
 
//define data structure with variables to be sent   
struct dataStruct{ 
  float la_diff ; 
  float lo_diff ; 
  float la ; 
  float lo ; 
  float hr  ; 
  float minn ;  
  float sec ; 
  float monthh ;  
  float dayy ; 
  float yearr ; 
  unsigned long counter; 
}myData; 
 
byte tx_buf[sizeof(myData)] = {0}; 
 
void setup() 
{ 
  Serial.begin(9600); 
  if (!driver.init()) 
     Serial.println("init failed"); 
 
    Serial.begin(9600);   // Debugging only 
    ss.begin(GPSBaud); 
   // Serial.println(F("Location | Latitude | Longitude | Lat_diff | 
Long_diff | Date | Time |"));  
} 
 
void loop() 
{ 
    // This sketch displays information every time a new sentence is 
correctly encoded. 
  while (ss.available() > 0) 
    if (gps.encode(ss.read())) 
      displayInfo(); 
 
  if (millis() > 5000 && gps.charsProcessed() < 10) 
  { 
    Serial.println(F("No GPS detected: check wiring.")); 
    while(true); 
  } 
} 
 
void displayInfo() 
{ 
  if (gps.location.isValid()) 
  {  
    ///hard coded location of GPS_A 
    float latitude_avg = 35.2901 ; //35.2899 ; 
    float longitude_avg = -120.6281; //-119.5207 ; 
     
    Serial.print(gps.location.lat(),6); 
    Serial.print(F(",")); 



    Serial.print(gps.location.lng(), 6); 
    Serial.print(F(",")); 
    Serial.print(latitude_avg-gps.location.lat(),6); 
    Serial.print(F(",")); 
    Serial.print(longitude_avg-gps.location.lng(),6); 
    Serial.print(F(",")); 
    myData.la=gps.location.lat(); 
    myData.lo=gps.location.lng(); 
    myData.la_diff=(latitude_avg-gps.location.lat()); 
    myData.lo_diff=(longitude_avg-gps.location.lng()); 
  } 
  else 
  { 
    Serial.print(F("INVALID")); 
    Serial.print(F(",")); 
    Serial.print(F("INVALID")); 
    Serial.print(F(",")); 
    Serial.print(F("INVALID")); 
    Serial.print(F(",")); 
    Serial.print(F("INVALID")); 
    Serial.print(F(",")); 
  } 
 
 //  Date/Time:  
  if (gps.date.isValid()) 
  { 
    Serial.print(gps.date.month()); 
    Serial.print(F("/")); 
    Serial.print(gps.date.day()); 
    Serial.print(F("/")); 
    Serial.print(gps.date.year()); 
    Serial.print(F(",")); 
 
    myData.yearr=gps.date.year(); 
    myData.dayy=gps.date.day(); 
    myData.monthh=gps.date.month(); 
  } 
  else 
  { 
    Serial.print(F("INVALID")); 
  } 
 
  if (gps.time.isValid()) 
  { 
    if (gps.time.hour() < 10) Serial.print(F("0")); 
    Serial.print(gps.time.hour()); 
    Serial.print(F(":")); 
    if (gps.time.minute() < 10) Serial.print(F("0")); 
    Serial.print(gps.time.minute()); 
    Serial.print(F(":")); 
    if (gps.time.second() < 10) Serial.print(F("0")); 
    Serial.print(gps.time.second()); 
    Serial.print(F(".")); 
    if (gps.time.centisecond() < 10) Serial.print(F("0")); 
    Serial.print(gps.time.centisecond()); 
 
    myData.hr=gps.time.hour(); 
    myData.minn=gps.time.minute(); 



    myData.sec=gps.time.second(); 
  } 
  else 
  { 
    Serial.print(F(",")); 
    Serial.print(F("INVALID")); 
  } 
 
  Serial.println(); 
///convert to bits and send data 
  memcpy(tx_buf, &myData,sizeof(myData)); 
  byte zize=sizeof(myData); 
  driver.send((uint8_t *)tx_buf, zize); 
    //delay(10); 
} 
 
Receiver Code: 
// ask_receiver.pde 
 
#include <RH_ASK.h> 
#include <TinyGPS++.h> 
#include <SoftwareSerial.h> 
#ifdef RH_HAVE_HARDWARE_SPI 
#include <SPI.h> // Not actually used but needed to compile 
#endif 
 
RH_ASK driver; 
 
static const int RXPin = 4, TXPin = 3; 
static const uint32_t GPSBaud = 9600; 
 
// The TinyGPS++ object 
TinyGPSPlus gps; 
 
// The serial connection to the GPS device 
SoftwareSerial ss(RXPin, TXPin); 
 
struct dataStruct{ 
  float la_diff ; 
  float lo_diff ; 
  float la ; 
  float lo ; 
  float hr  ; 
  float minn ;  
  float sec ; 
  float monthh ;  
  float dayy ; 
  float yearr ; 
  unsigned long counter; 
}myData; 
 
void setup() 
{ 
  Serial.begin(9600); 
      if (!driver.init()) 
      Serial.println("init failed"); 
    Serial.begin(9600);    // Debugging only 
    ss.begin(GPSBaud); 



} 
 
void loop() 
{ 
////rf code 
  uint8_t buf[RH_ASK_MAX_MESSAGE_LEN]; 
  uint8_t buflen = sizeof(buf); 
   
  //memset (buf,0,sizeof(buf)); 
  memcpy(&myData, buf, sizeof(myData)); 
 
  if (driver.recv(buf, &buflen)) // Non-blocking 
   { 
    int i; 
// Message with a good checksum received, dump it. 
  memcpy(&myData, buf, sizeof(myData)); 
   } 
    while (ss.available() > 0) 
    if (gps.encode(ss.read())) 
      {displayInfo(); 
    } 
  if (millis() > 5000 && gps.charsProcessed() < 10) 
  { 
    Serial.println(F("No GPS detected: check wiring.")); 
    while(true) 
    } 
} 
void displayInfo() 
{ 
  //// gps data  
  if ( double(gps.time.second()) == (myData.sec+double(1)) ) 
  { 
  if (gps.location.isValid()) 
  {   // Serial.println(F("Location | Latitude | Longitude | Date | Time | 
Final_lat | Final_lon | GPSA lat | GPSA lon"));  
    Serial.print(gps.location.lat(), 6); 
    Serial.print(F(",")); 
    Serial.print(gps.location.lng(), 6); 
    Serial.print(F(",")); 
  } 
  else 
  { 
    Serial.print(F("INVALID_B")); 
    Serial.print(F(",")); 
    Serial.print(F("INVALID_B")); 
    Serial.print(F(",")); 
  } 
 
  if (gps.date.isValid()) 
  { 
    Serial.print(gps.date.month()); 
    Serial.print(F("/")); 
    Serial.print(gps.date.day()); 
    Serial.print(F("/")); 
    Serial.print(gps.date.year()); 
    Serial.print(F(",")); 
  } 
  else 



  { 
    Serial.print(F("INVALID_B")); 
    Serial.print(F(",")); 
  } 
 
  if (gps.time.isValid()) 
  { 
    if (gps.time.hour() < 10) Serial.print(F("0")); 
    Serial.print(gps.time.hour()); 
    Serial.print(F(":")); 
    if (gps.time.minute() < 10) Serial.print(F("0")); 
    Serial.print(gps.time.minute()); 
    Serial.print(F(":")); 
    if (gps.time.second() < 10) Serial.print(F("0")); 
   Serial.print(gps.time.second()); 
    Serial.print(F(".")); 
   if (gps.time.centisecond() < 10) Serial.print(F("0")); 
    Serial.print(gps.time.centisecond()); 
    Serial.print(F(",")); 
  } 
  else 
  { 
     
    Serial.print(F("INVALID_B")); 
    Serial.print(F(",")); 
  } 
  //delay(200); 
  ///////////////////subtract off difference from raw gps data 
  float final_lat = (((myData.la_diff)+gps.location.lat())); 
  float final_lon = (((myData.lo_diff)+gps.location.lng())); 
  //Serial.print("final Location B :"); 
  Serial.print(final_lat,6); 
  Serial.print(","); 
  Serial.print(final_lon,6); 
   
//////////////////GPSA 
 
    Serial.print(","); 
    Serial.print(myData.la,6); 
    Serial.print(","); 
   Serial.println(myData.lo,6); 
} 
}    
 

Matlab code: 

%% 
%read data from serial port  
sB = serial('/dev/tty.usbmodem14101', 'BaudRate', 9600)%, 'Terminator', 'CR') 
  
fopen(sB); 
iB=1; 
dataB = cell(0); 
v=100000; 
while(iB<=v) % Read # lines 
    dataB{iB}=fgets(sB); 
   iB=iB+1; % Increment the counter 
   



end 
  
fclose(sB); % Disconnect the serial port object from the device 
delete(sB); % Delete the serial object 
  
%split the string into matrix 
for k=1:length(dataB) 
        C_b(k,:)=strsplit(dataB{k},','); 
end 
  
%%%%%%%%get rid of INVALID 
k1=1; 
for j=1:length(C_b) 
    w=C_b{j,1}; 
    if  w ~=  'INVALID_B'  
       C_B(k1,:)=C_b(j,:); 
       k1=k1+1; 
    end 
     
end 
exist C_B  ; 
if ans==1 
  
  
%conversion from deg to centimeters at 40deg lat  
deg_lat=110941; %m 
deg_long=91288; %m 
[m_B,n_B]=size(C_B); 
  
for i=1:m_B 
  
     final_la_B(i)=str2num(C_B{i,5}); 
     final_lo_B(i)=str2num(C_B{i,6}); 
     la_a(i)=str2num(C_B{i,7}); 
     lo_a(i)=str2num(C_B{i,8}); 
     y_dist_between=(final_la_B-la_a)*deg_lat; 
     x_dist_between=(final_lo_B-lo_a)*deg_long; 
     la_B(i)=str2num(C_B{i,1}); 
     lo_B(i)=str2num(C_B{i,2}); 
     
end 
figure(1) 
plot(final_lo_B,final_la_B,'r.', 'markersize', 14) 
title("Latitude Logitude Plot GPS B Final"); 
xlabel('Longitude'); 
ylabel("Latitude"); 
  
figure(2) 
plot(lo_B, la_B,'r.', 'markersize', 14) 
title("Latitude Logitude Plot GPS B"); 
xlabel('Longitude'); 
ylabel("Latitude"); 
  
figure(3) 
plot(lo_a, la_a, 'b.', 'markersize', 14) 
title("Latitude Logitude Plot GPS A"); 
xlabel('Longitude'); 
ylabel("Latitude"); 



  
figure(4) 
plot(x_dist_between,y_dist_between, 'k.', 'markersize', 14) 
title("Latitude Logitude distance between GPS_A and GPS_B"); 
xlabel('Longitude (m)'); 
ylabel("Latitude (m)"); 
  
else 
    r1='invaild GPS data try again' 
end 
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