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0.0 Executive Summary 
 

The following report details the full design process used by the Cal Poly Supermileage Drivetrain 

(CPSMD) Senior Project team in designing a new drivetrain system for the Cal Poly Supermileage 

Vehicle (SMV) Team. Included is the development stages of each component, the manufacturing of our 

parts, the final solution’s assembly, the testing of the project, and the results from the 2018 Shell Eco-

Marathon Competition. After collecting data from several tests, only the final drivetrain efficiency and 

final sprocket alignment remain unknown. Otherwise, the project came in under budget, within our 

weight tolerance, and met all the other design objectives. The team was successfully able to produce a 

robust and reliable drivetrain system for the 2018 Supermileage car that resulted in a 4th place finish at 

competition. The learnings in this report provide the SMV team with a repository of information on how 

to build a reliable single staged drivetrain with a large gear ratio. 
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1.0  Introduction 
 

The Cal Poly SMV Club has the goal of designing and building an extremely high efficiency prototype 

vehicle which competes against other schools from North and South America for fuel efficiency in the 

annual Shell Eco-Marathon Competition. To help improve upon the vehicle’s efficiency, this project 

aims to redesign and manufacture a new drivetrain system which will be implemented in the 2018 

chassis. The Cal Poly team has always ranked high in the competition; however, it has great potential for 

improvement. The 2017 car was able to achieve 1500.7 mpg, but was estimated to be capable of reaching 

mileage in the mid 2000’s. Thus, the motivation behind this project is to improve the projected mpg of 

the car and to more closely match this optimal value. To achieve a full breadth of knowledge in the 

subject, research into current and past drivetrain designs of Cal Poly’s Supermileage Team as well as 

other high achieving teams was performed. In addition, we conducted research into similar power 

transferring systems and each of their components. This project is to be completed by the Cal Poly 

Supermileage Drivetrain Team, comprised of Cal Poly undergraduate students Justin Miller, Heather 

Fields, and Michael Bolton.  The stakeholders for this project are the Cal Poly Supermileage Vehicle 

Club, Joseph Mello the club advisor, and John Fabijanic the project advisor. 
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2.0  Background 
 

To gain a better understanding of the project’s scope, a significant amount of research has been 

continuously performed. As the project progressed, this depository of knowledge continued to grow as 

did our understanding of the task at hand. The most up to date collection of this research is included 

within the sections that follow. The full list of resources referenced can be seen in Appendix A. 

 

2.1 Past and Current Supermileage Drivetrain Designs 
 

2.1.1 2018 Shell Eco-Marathon Rulebook Adherence 

Designing a drivetrain for the Supermileage vehicle that is to compete in the 2018 Shell Eco-Marathon 

subjects it to all of the official rules of the competition. General rules that the design must adhere to are 

as follows: 

• Any cover of the energy compartment (engine/motor/transmission/battery, etc.) should be easy 

to open for quick inspection access 

• All parts of the drivetrain, including fuel tank, hydrogen system components, etc. must be within 

the confines of the body cover. 

 

Rules pertaining specifically to the clutch and transmission include the following: 

• All vehicle propulsion must be achieved only through the friction between wheels and the road. 
• For centrifugal/automatic clutches, the starter motor speed must always be below engagement 

speed of the clutch. 

• All vehicles with internal combustion engines must be equipped with a clutch system 

 

Other components that are affected by the rules of the competition are the chain or belt which are subject 

to the following rules: 

• Mandatory installation of effective transmission or belt guards to protect against the event of the 

chain or belt breaking. 
• Must be made of metal or composite material rigid enough to withstand a break. 

 

2.1.2 Former Cal Poly Drivetrain Designs 

The various Supermileage Teams from Cal Poly have tried several different drivetrain solutions. In 2015, 

Ventus I attempted a single staged 13:1 gear reduction with a chain tensioner. The design was highly 

unreliable and prone to chain throw. Alignment between the engine sprocket and drive sprocket was 

poor. Additionally, the overall robustness and alignment of the rear assembly with the rest of the car was 

low due to its large number of components. As a result of this low reliability, Ventus I was limited to 

only a few completed runs, but achieved 988 miles per gallon. 2016 saw the introduction of Ventus II 

with a two-stage gear reduction and a single piece modular engine plate. Figure 1 below shows a 

comparison of Ventus I’s rear end to Ventus II’s.   
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Figure 1: Shown on the left is the 2015 car’s rear end made up of multiple pieces. Parts 1 through 4 each have to be individually located 

and fastened. On the right is the improve 2016/2017 modular engine plate. Here, parts 6 and 7 are immediately located by part 6, the 

bracket. everything is then fully fastened to the chassis by part 8. 

On this engine plate, the engine mount, jackshaft, ECU, and rear dropouts were all mounted. This plate, 

in combination with an alignment jig, was used to align the rear and front wheels improving accuracy 

and ease of installation. Despite the improvement of front to rear wheel alignment, Ventus II still 

struggled with sprocket alignment between the engine and the drive sprocket. The introduction of a two-

Figure 2.  Shown here is the modular engine plate with all drivetrain and ECU components installed. The entire assembly can be 

removed together in order to service the chassis or test the system independently of the rest of the car. The parts pictured include; 1) 

Engine, 2) Vortex Clutch, 3) #25 Chain, 4) Electronics, 5) Jackshaft, 6) Rear Hub and Freewheel, 7) Rear Axle Dropout, 8) Fuel 

System 
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stage gear reduction compensated for this shortcoming and greatly improved reliability. Figure 2 shows 

the two-stage system and how all powertrain components were mounted to a single, removable plate. 

Ventus II completed the 2016 competition without ever throwing the chain and achieved a score of 1,215 

miles per gallon. For the 2017 competition, further refinement of Ventus II’s drivetrain was achieved 

through testing and this car was dubbed Ventus II RS. Qualitative optimal chain tension was found by 

trial and error while the last reliability issues in the overall powertrain, such as the fuel system, were 

resolved. In the thesis paper, Optimizing Control of Shell Eco-Marathon Prototype Vehicle to Minimize 

Fuel Consumption by Chad Bickel, the efficiency for this drivetrain set up is estimated to be about 62.1%. 

This number was derived from comparing the theoretical acceleration of the vehicle based on the engine's 

torque output and measured acceleration values recorded by RaceCapture [1]. Ventus II RS was able to 

achieve 1,500 miles per gallon.                                                                                                                                             

2.1.3 Universitѐ Laval 

The Universitѐ Laval has now won back to back Shell Eco-Marathons in 2016 and 2017. They are 

consistently one of the top two teams at competition. Much of Laval’s efficiency comes from their 

custom built engine, but it is in mating this engine to a high quality drivetrain that allows them to reach 

continued success. Every year, Laval brings essentially the same car to competition, opting to make their 

improvements via testing and refinement rather than large design changes. As such, the basic design of 

their drivetrain from 2016 to 2017 was practically unchanged. The drivetrain features a single-stage 

reduction of 12:1 with a chain tensioner, a custom machined left hand drive hub, and an off the shelf 

freewheel. Laval uses the same #25 chain that Cal Poly uses but their setup features the Cheetah brand 

centrifugal clutch, which is further discussed in section 2.2. Laval’s drivetrain design uses mounting 

surfaces integrated into the chassis rather than a modular or removable design. Based on the estimated 

data for Cal Poly's efficiency and considering that Laval's drivetrain is a single stage, their efficiency is 

estimated to be about 80%. For the 2017 competition, Laval achieved 2,700 miles per gallon. 

 

2.1.4 University of Toronto 

The University of Toronto was the 2015 Shell-Eco Marathon champion and from the beginning of their 

participation in Supermileage, they have consistently been a top three ranking team. Toronto also makes 

use of a custom built engine that utilizes a right hand drive output shaft. Their drivetrain consists of a 

single-stage, 14:1 reduction without the use of a chain tensioner. The use of a # 35 chain allows for a 

thicker sprocket with less tendency to deflect under comparable loads. The right hand drive engine allows 

for a larger variety of higher quality bike parts such as hubs and freewheels; despite this, for the last two 

years Toronto has attempted to make use of a custom made clutched hub with little success. The hub has 

difficulty engaging when the car transitions from coasting to being engine driven. Toronto’s only 

successful competition runs in 2016 and 2017 were accomplished with a traditional right hand drive hub 

and freewheel. The University of Toronto's drivetrain efficiency can be estimated in the same way as 

Laval's but at 78% since they use a thicker chain and sprocket with greater inertia. With a young team 

new to competition, the University of Toronto achieved 1,431 miles per gallon in 2017, but in the past 

has reached over 2,000 mpg. 
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2.2 Clutch 
The first element of an internal combustion powered drivetrain is the clutch. The clutch allows for the 

engagement or disengagement of two rotating bodies. Besides being required in the Shell Eco-Marathon 

Rulebook, it is important to incorporate a clutch at the engine’s output shaft to allow the engine to remain 

unloaded during start-up and to allow the engine speed to reach a certain number of revolutions per 

minute (RPM) before engagement. This is because an engine’s output torque is a function of RPM and 

for lower RPM’s, the torque is too small to overcome the drivetrain resistance. Such a scenario would 

result in stalling the engine. To compensate for this, there is a certain amount of slippage that occurs 

until the engine speed reaches an optimum point where the clutch fully engages. Then the engine begins 

to provide substantial drive torque which powers the drivetrain. Slippage is a required feature of a clutch 

but also inherently introduces losses. Thus, it is important to take great consideration in controlling just 

how much slippage occurs and finding an optimum engagement speed. Between 2014 and 2015, much 

work was done to find a high performance clutch that could engage at what data suggested was the 

optimal engagement speed. The result of these efforts was the incorporation of a go-kart racing, 

centrifugal clutch by Vortex shown in Figure 3. 

 

 
Figure 3: Vortex centrifugal clutch used by the Cal Poly Supermileage Vehicle. 

 

Data taken in Optimizing Control of Shell Eco-Marathon Prototype Vehicle to Minimize Fuel 

Consumption, suggests that the Vortex Clutch satisfies our optimum engagement speed. Figure 4 shows 

a plot taken from the thesis supporting this claim. 
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Figure 4: Plots of engine speed versus time. Actual engine speed is represented by the blue line and simulated ideal engine speed is 

represented by the red line. 

The linear shape of the plot from 105 seconds to nearly 110 seconds represents a fully engaged clutch. 

Both the simulated engine speed and the actual engine speed start this full engagement just above 3000 

RPM. With the gear reduction used, the minimum vehicle speed that is reached during competition is 

17.92 mph and corresponds to a clutch housing speed of 3329 RPM. Since the Vortex clutch’s torque is 

equal to the engine torque at 3021 RPM, there is no slippage while the vehicle is being driven [1]. Teams 

such as Toronto and Laval use a go-kart racing clutch, known as the Cheetah. It is of the same design 

and architecture as the Vortex, but produced by a different company. The Cheetah clutch is less 

expensive than the Vortex; however, with the Supermileage Team’s sponsorship by SMC Clutches, the 

cost difference is mitigated. 

 

2.3 Power Transmission Methods  
“Power transmission is the movement of energy from its place of generation to a location where it is 

applied to perform useful work” [2]. Conventional powertrains come in 3 standard forms; chain drive, 

belt drive, and gear drive. Each form performs the same task, power transmission, in different 

ways.  Each form also comes with its advantages and disadvantages that must be considered before 

deciding which to use. For our purposes. the chain and belt drive systems such as those shown in Figure 

5 are in consideration, neglecting gear drive due to the large length of space needed to transmit power 

across in the vehicle. A gearbox system to fit our needs would end up being heavy and would require a 

large number of components. 
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Figure 5: Two power transmission methods in consideration. Belt drive system (Right), Chain drive system (Left). 

 

The most commonly used method of power transmission in low-power energy transmission similar to 

ours is the rolling chain system. Most often, the power is conveyed by a roller chain, known as the drive 

chain or transmission chain, passing over a sprocket gear, with the teeth of the gear meshing with the 

holes in the links of the chain. Chain drive systems usually have an efficiency of roughly 98.5% if aligned 

correctly.  The only significant downfall with using a chain drive is the need to use lubricant during 

operation, which is not always the case with other forms of power transmission 

In cases where a chain drive system is not implemented, a belt drive usually takes its place. A belt drive 

consists of similar components to that of a chain drive, except the rolling chain is replaced with a toothed 

belt, often called a timing belt.  The belt sprockets, though shaped to allow the belt to correctly fit, are in 

general the same as the chain sprockets. As with the chain drive system, the belt drive has an efficiency 

of approximately 98%. Unlike the rolling chain system, no lubrication is needed. 

In regard to the advantages of one versus the other, focus was directed at the efficiencies of the two. 

Through testing done by Friction Facts, a chain driven system is slightly more efficient than an equivalent 

belt driven system. Their tests indicated that “a conventional chain drive consumes 2.92 watts on average, 

while the belt eats up 3.93 watts. Although the difference is just 1 watt, this works out as a substantial 

34.6 percent” [3].  

One particularly efficient belt drive system is Goodyear' Eagle Pd Synchronous Belts and Pulleysas 

shown in Figure 6. The Eagle belt system features a unique herringbone pattern for the pulley/belt 

interface. This allows the pulleys to be thinner and the system to be self-tracking removing the need for 

guide flanges on the pulleys. When compared to traditional V-belts, these Eagles offer a consistent 5% 

increase in efficiency [4].  

 

Figure 6 Goodyear Eagle Belt synchronous belt with herringbone pattern 
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2.4 Sprocket 
The 2018 SMV car may employ a chain drive system and consequently sprockets. Merriam Webster 

defines a sprocket as a “toothed wheel whose teeth engage the links of a chain” [5]. For all intents and 

purposes, there are six types of chain sprockets: plate, hub on one side, hub on both sides, detachable 

hub-plate, and shear pin and slip clutch sprockets.  The sprockets for the 2017 SMV drivetrain included 

a large, rear plate sprocket, an intermediate reduction sprocket, and a smaller, hub on one side sprocket 

as shown in Figure 7 below. 

 
Figure 7: The 2017 SMV drivetrain showing the sprockets in the double stage reduction. The parts pictured include; 1) Vortex 

clutch, 2) #25 Chain 3) Jackshaft System with intermediate sprockets, 4) Freewheel, Hub, and Adapter, 5) Rear sprocket 

 

Sprockets can also be classified into two different classes, commercial and precision. Commercial 

sprockets are used with slow to moderate speed drives while precision sprockets are required when 

extreme, high speeds are combined with high loads or when the drive involves fixed centers, critical 

timing or close clearance with outside interference [6]. The new drive train design for the 2018 SMV 

would use commercial sprockets as the car will not be experiencing high speeds and loads. 

 

 

2.4.1 Reduction and Stages 

In a chain drive system, one sprocket uses the chain to indirectly drive another sprocket. This setup 

allows for sprocket reduction, using two different sized sprockets, to transfer power and increase or 

decrease the revolutions per minute derived from the motor. The equation used to determine the needed 

sprocket reduction is shown in Equation 1 below 

 

Sprocket Reduction = RPMinput :RPMoutput  (1) 
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This sprocket reduction equation drives the sprocket reduction ratio through Equation 2 below 

  

Sprocket Reduction Ratio = Co : Ci (2) 

 

Where 

 

Co = output sprocket circumference 

Ci = input sprocket circumference 

 

The reduction correlates to RPM such that every time the input sprocket makes one full revolution,  the 

output sprocket rotates the fraction determined by the ratio , 
𝐶𝑖

𝐶𝑜
 , thereby reducing the number of  

revolutions per minute by the inverse of the ratio, 
𝐶𝑜

𝐶𝑖
  [6]. 

 

For our drivetrain design, we have the option of a single stage or a double stage reduction. Using a single 

stage reduction, the system would be left hand drive based on the current engine’s left hand drive (LHD) 

output shaft. With a double reduction it could be right hand drive. A single reduction will inherently be 

more efficient since the losses of a chain drive system are not compounded as they are in a two stage 

system.  

 

In Chad Bickel’s thesis, Optimizing Control of Shell Eco-Marathon Prototype Vehicle to Minimize Fuel 

Consumption, it was determined that a final drive ratio of between 14:1 and 16:1 would be optimal to 

maximize fuel efficiency [1]. Bickel’s results are shown in Table 1 below.  

Table 1. Tabulated estimations for fuel economy with respect to final drive ratio.

 

2.4.2 Sprocket Material 

Common materials used for sprockets are carbon steel, with or without hardened teeth, stainless steel, 

and other special materials such as alloys and titanium. Although it is seldom necessary to use special, 

high strength materials, a benefit of using certain materials is weight savings, which is useful for our 

purposes. The 2017 SMV utilizes titanium sprockets that are lighter than the common sprocket materials 

such as carbon steel and stainless steel. With no standing issues using titanium as the sprocket material, 

it is a feasible option for the new design. A carbon composite sprocket has been attempted by SMV in 

the past and is worth a second look. 
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If a material other than titanium is to be used, hard anodized aluminum would be a viable option. Hard 

anodizing is a process that creates a hard wearing, corrosion resistant coating on various aluminum and 

can create a durability that approaches that of hard faced or case hardened steel [7].  

 

2.5 Lubrication  
A lubricant is “a substance (such as grease) capable of reducing friction, heat, and wear when introduced 

as a film between solid surfaces” [8]. Choosing the correct lubricant can be the difference between an 

efficient and reliable system and one that is not. Our potential use of a chain drive system and its 

requirement for lubrication makes determining the proper lubricants and lubricant method necessary. In 

the past, this has been overlooked by the drivetrain implementation teams. 

 

In testing done by Friction Facts, chain lubrication has had significant effects on efficiency. Assuming 

our chain system is similar to that of a bicycle’s, which is what the referred to testing was done on, we 

can use the data collected in these tests. Figure 8 below outlines the data collected through the tests and 

the overall efficiencies of each lubricant tested is shown, the left being the most efficient with the least 

power expelled and the right being the worst using the most power during transmission. It is interesting 

to note that many of the more-efficient lubricants are dry and heavy, the most efficient being Paraffin 

Wax [8].  

 
Figure 8. Efficiency test done by Friction Facts. Each lube was tested for frictional losses on Friction Facts equipment, which is accurate 

to ±0.02 Watts. 

2.6 Hub & Freewheel  
The hub and freewheel are the components which directly connect to the rear wheel.  The hub is the 

center portion of the wheel and is connected to the rim with spokes. Bicycle hubs are typically offered 

as right hand drive but more and more hub manufacturers are offering left hand drive options. A 

freewheel’s purpose is to lock the rotation of the hub and the drivetrain together under power but then 

allow the hub to continue spinning independently when the drivetrain is not moving. This can be 

accomplished in many ways, but is most often done so using a one way bearing with pawls. 
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2.6.1 Pawl Design 

Conventionally, the freewheel uses a ratcheting system, shown in the Figure 9 below. The ratcheting 

pieces used to allow the free rotation are called pawls. In past designs, Cal Poly’s SMV Club has used a 

conventional bicycle freewheel which used pawls such as these. The issue with this design is the inherent 

friction due to the clicking pawls. Pawls can be removed to reduce this friction force, though removing 

too many can cause issues with power transfer under load. If the conventional pawled design is to be 

used again, the minimum number of pawls required to transmit the power outputted by our shaft would 

be necessary to find in order to optimize free coasting efficiency. However, there are other truly 

frictionless free coasting systems which will be considered as well.  

 
Figure 9. Pawled freewheel design 

 

2.6.2 Freecoaster Clutched Design 

The Freecoaster clutched freewheel is a replacement for the conventional, pawled design mentioned 

above. As the name suggests, this is a truly frictionless coasting device (excluding the bearings) which 

uses a conical clutch, illustrated below in Figure 10. This design would theoretically be more robust than 

the pawled freewheel due to its “single piece” design. The design would also increase free coasting 

efficiency, which is not necessarily within our scope of objectives but would be an added performance 

gain that would be beneficial to the car as a whole. Though this design seems to be an automatic answer 

to higher efficiency, proper analysis and testing into the clutch engagement and strength must be done 

in order to qualify it for use in our system. 
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Figure 10: Odyssey Clutch Freecoaster Hub part diagram. 

 

2.6.3 Availability of LHD Components 

Due to our engine’s left hand drive output shaft, it is necessary to find LHD components in order to keep 

to a single staged design. The current hub and freewheel had to be custom manufactured as LHD 

versions. However, more freewheel and hub designs, as well as the clutch freecoaster hub, are becoming 

available in LHD. Depending on which is chosen, more research into adapters to allow larger rear 

sprockets and LHD will be necessary. Considerations for custom manufacturing versus off-the-shelf 

components will also have to be made. 

 

2.7 Alignment and Tolerances 
Engineering tolerances are a key factor in ensuring proper alignment in our system. To fully understand 

the tolerances required for our drivetrain, an in-depth study of proper chain installment and alignment is 

necessary. Diamond Chain Company has a set of installment instructions which gives the tolerances 

needed for a traditional chain based off of chain pitch and center to center distance. The two equations 

used are:  

 

Planar Alignment [
in

ft
] =  

0.00133 ∗ 𝐶[𝑖𝑛]

𝑃[𝑖𝑛]
 

(3) 

 

Center Perpendicular Distance [in] = 0.045 ∗ 𝑃[𝑖𝑛] 
 

(4) 

 

 

With these tolerances found for our case, we will need to determine the best way to analyze these 

tolerances on our actual application and determine how we will hold our system to them. Systems such 

as PROFI Laser Alignment Tool may be applicable, but may not directly work for our application. A 

modified version of this system seems to be the direction we are headed. 
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2.8 Locating Pins 
A method of aligning a work piece on a fixture or aligning two pieces of a fixture is to use locating pins. 

The combination of a round and diamond pin can be used for precise locating of two holes without 

binding. Carrlane pins are a brand of precision locating pins that use one round locating pin and one 

diamond locating pin wherein the diamond pin is relieved to locate in only one axis [9]. An example of 

these pins can be seen in Figure 19. 

 

2.9 CMM Capabilities 
CMM, or Coordinate Measuring Machine, is a useful machine which uses a touch probe and encoded 

gantry system to measure points on physical items with high accuracy. These point measurements can 

then be used to measure the relation between features and planes to ensure tolerance accuracy after 

manufacturing [10]. Multiple companies make CMM’s, including Renishaw. The machine we have 

access to on campus has a measuring accuracy of roughly 2 microns. This is extremely accurate and 

more than acceptable for our use in both reverse engineering our engine mount and confirming the overall 

alignment of our finished system. 

 

2.10 Flatness in Sheet Metal 
Depending on the manufacturing process used, sheet metal is inherently not flat. Typical sheet metal is 

either hot or cold rolled. In the rolling process, “the thickness of the strip must be greater in the center to 

keep the material tracking properly in the rolling equipment” [11]. This crown causes inconsistent 

stresses and grain structure throughout the material making the sheet not flat. Companies such as 

Contrarian Metal Resources use methods such as correction stretching to reform the material into a more 

evenly stressed flat piece. It is almost impossible to create sheet metal with zero internal, residual 

stresses, but by making them uniform throughout helps keep the product flat. Sheet metal flatness can be 

measured by the amount of variance across its plane with unit of length or with flatness specific “I-units.” 

I-units are defined by contrarian as follows: “Flatness in I-units = (πH/2L)2 x 105. Where H = Height of 

the deviation and L = Length between deviations. This formula assumes a sinusoidal wave shape” [11]. 

Flat raw material is not good if machining or post processing imparts stresses that cause the part to warp. 

Material removal processes such as machining and laser cutting cause the surface of the material to 

become stressed, creating stress imbalances in the part and causing it to become warped. Ensuring low 

cutting forces helps reduce the concentration of these stresses and the possibility of warped parts. Such 

processes as waterjet cutting or wire electrical discharge machining (EDM) can accomplish low stress 

cutting. 

 

2.11 Waterjet Cutting Carbon Fiber 
 Machining carbon fiber presents different challenges than machining traditional materials, such as 

metals, does. A viable way to machine carbon fiber includes waterjet cutting. The advantages of using a 

waterjet to cut carbon fiber include the avoidance of tool clogging and wear, the elimination of needing 

to change tooling or special tooling, and the avoidance of melting and hazardous fumes that could be 
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involved with other cutting methods. However, with tight tolerances, it would be beneficial to waterjet 

the part oversized and machine final dimensions [12].   

 

2.12 Drivetrain Efficiency Measurements 
The efficiency number of 62.1% taken from Bickel's thesis paper was derived using many assumptions. 

It compares what the acceleration of the car would be if 100% of the torque output from the engine went 

into the wheel. It was then compared to the measured acceleration of the car by RaceCapture and the 

percent difference was called "drivetrain efficiency." While a good starting point, this method of 

estimation is flawed. For one, it neglects to account for the wind speed pushing back against the car and 

docks this against the drivetrain. In order to get a more accurate measurement of the drivetrain efficiency, 

it would be best to actually measure the torque output at the wheel and compare this to the torque output 

at the crankshaft of the motor. A chassis dynamometer (dyno) that measures torque output at the wheel 

is currently in development for the Supermileage Team. This dyno has a rotational inertia equivalent to 

the inertia of the Supermileage vehicle and, based on the acceleration of the dyno's flywheels, torque can 

be calculated. Comparing this torque to that of the engine’s torque at the crankshaft will give a proper 

measurement of drivetrain efficiency and gives this measurement all along the power curve (ie. it is a 

transient dyno). In the case that this chassis dyno does not get completed in time for CPSMD's use, a 

modified bicycle trainer can be used to measure steady state torque at the wheel. 
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3.0  Objectives 
 

The goal of this project is to design and manufacture a more efficient drivetrain for the 2018 Cal Poly 

Supermileage Vehicle which will compete in the 2018 Shell Eco Marathon Competition. This adheres 

the team to the important requirements of the Cal Poly SMV club. Quality function deployment, QFD, 

was used to translate the requirements of the club to effective, measurable engineering requirements or 

targets tabulated below in Table 2. The accompanying house of quality used during the QFD process can 

be seen in Appendix B.  

 

3.1 Quality Function Deployment 
 

Table 2: Customer Requirements and Targets 

Spec 

# 
Parameter Description Requirement or Target Tolerances Risk Compliance 

1 Cost $1500 + $500 L A 

2 Weight 4.2 kg + 1 kg L T 

3 Efficiency 80% Min M A, T 

4 Hub/Sprocket Play 0.8° Max H A, I, T 

5 Size 66cm x 38cm x 27cm Max M A, I 

6 
Total Removal & 

Installment Time 
30 minutes Max M I, T 

7 Manufacturing Time 50 hrs +50 hrs M A 

8 
Sprocket/Chain 

Alignment 

1° - angle tolerance 

.02” – Center 

perpendicular distance 

Max H A, I, T 

 

Table Key: 

Risk - Potential difficulty involved in completing each engineering specification target 

• Low (L) 

• Medium (M) 

• High (H) 

 

Compliance - verification method for each engineering specification target 

• Analysis (A) 

• Test (T) 
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• Inspection (I) 

 

3.2 Budget and Cost 
The Cal Poly Supermileage Vehicle Club has allocated a budget of $1,000- $1,500 for the project. The 

goal is to effectively utilize the provided funds through thorough cost analysis of every part of the 

drivetrain and their associated manufacturing.  

 

3.3 Efficiency 
The efficiency of the design will be quantified in percent power transferred, which is defined as the 

percent difference between the engine power output at the crank and the power output at the wheel. The 

goal of the new drivetrain is to exceed the wheel horsepower of the 2017 SMV drivetrain. 

 

3.4 Hub/Sprocket Play 
The rigidity of the Sprocket Hub assembly is very crucial to the design, weighted as the most important 

design parameter in the QFD. The rigidity of the drivetrain components directly correlates to the 

efficiency achieved.  Less play also ensures that the alignment of the components always stays within 

tolerance and is also a key feature of reliability.  

 

3.5 Weight  
Weight is not considered as highly important as some of the other requirements; however, the goal is to 

have the new design weigh less than the 2017 design with a considerable weight savings percentage.  

 

3.6 Size 
The size of the drivetrain will be constrained by the size of the 2018 chassis (66cm x 38cm x 27cm) and 

the ability to integrate a modular engine plate. The dimensions of the drivetrain will be based off of the 

existing, removable engine plate and the preliminary designs of the 2018 chassis, as it will be designed 

in parallel. 

 

3.7 Manufacturability 
The goal of manufacturability will be to use as many off-the-shelf components as possible; however, the 

manufacturing of some custom parts will likely be necessary to integrate these components. As a team, 

CPSMD has experience in 3-D printing, manual machining, CNC machining, welding, and carbon fiber 

layups. The Cal Poly Supermileage Team also has working relationships with several manufacturing 

companies, such as Next Intent or WaterJet Central. In the past, these sponsors have been more than 

happy to lend their time and skills. CPSMD's objective is to keep manufacturability in the forefront of 

our mind as we design components and develop a drivetrain solution. 
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4.0  Design Development 
 

The current drivetrain system is shown in Figure 7 in section 2.4. The system is chain driven with a #25 

chain and achieves a 14:1, two-stage gear reduction. To redesign the system, each component involves 

an individual process of decision-making. Some components require extensive testing, others use 

weighted decision matrices, and some use a combination of both. Outlined below are the design concepts 

for each component and their accompanying decision processes thus far. A collection of sketches from 

brainstorming and ideation can be found in Appendix C. 

 

4.1 Drive system 

4.1.1 Chain vs. Belt 

As discussed in section 2.3 there are two viable options for power transmission, the chain drive and the 

belt drive. While both options provide similar efficiency at steady state, each has their own advantages 

and disadvantages. The efficiency of a chain drive system is heavily dependent on the accuracy of 

sprocket alignment. Since the Eagle belts are self-tracking, they would be much easier to install in the 

car. A comparison of various other characteristics for belts versus chains was done in a decision matrix 

that can be found in Appendix D. The result of this matrix gave the edge to a chain drive system. 

Perhaps a more compelling reason to use one transmission method over the other comes with comparing 

their transient energy consumption, that is how much energy it takes to angularly accelerate the sprocket 

or pulley from zero velocity. Due to the larger mass and larger rotational inertia of pulleys, they would 

be expected to have a larger rotational kinetic energy than sprockets. In adhering to the Law of 

Conservation of Energy, one can reason that any energy spent accelerating the sprocket or pulley is not 

contributing to the propulsion of the vehicle. A rough calculation done in Appendix E showed that a 

pulley could have 428% greater rotational kinetic energy than would a sprocket of the exact same 

diameter and material properties. This estimation was conservative. An assumption that an Eagle pulley 

would have the same diameter as a sprocket to achieve the same 15:1 gear reduction made the pulley 

undersized. Since the smallest pitch belt offered by Goodyear is 8mm (0.315 inches) and our #25 chain 

has a pitch of 0.25 inches, the pulley will likely have a larger diameter and an even greater moment of 

inertia. Since the fuel conversion efficiency and brake specific fuel consumption (BSFC) of an internal 

combustion engine is only optimal near peak torque, taking a 428% hit on energy consumption during 

the transient time between startup and peak torque would be highly undesirable. In fairness, this is short 

period of time; however, in the application of Supermileage where the engine is stopped and started at 

least 10 times in a single competition run the energy consumption adds up. Therefore, the decision has 

been made to use a chain drive system where much engineering effort will go into the alignment of the 

sprockets. A transient dyno, like the chassis dyno introduced in section 2.12, would be the best way to 

empirically confirm or refute such a conclusion. 

The current design uses a # 25 chain; however, a #35 chain is also in consideration for our redesign. With 

a different pitch size, a different tolerance is allowable. Through our calculations in Appendix F, we 

show that each would come with it its own benefits and drawbacks in terms of allowable tolerance. The 

#25 chain would give us a 50% larger shaft/angular tolerance, while the #35 chain would give us a 50% 

larger sprocket/perpendicular distance tolerance. Currently, our issue is angular alignment. Additionally, 

our driving sprocket has the ability to be adjusted along the drive shaft ±0.5 inches. With these 
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considerations, we elected to use the #25 chain to give more allowance in the angular misalignment 

rather than the perpendicular misalignment.  

4.1.2 Two-Stage vs. Single-Stage 

The current vehicle design utilizes a 14:1, two-stage reduction and our goal is to move to a 15:1, single-

stage reduction. This new reduction ratio was the result of refinements done within the thesis Optimizing 

Control of Shell Eco-Marathon Prototype Vehicle to Minimize Fuel Consumption as outlined in section 

2.4.1. The debate between a two-stage system and a single-stage system is mainly influenced by two 

factors: efficiency and reliability. A single-stage system will undoubtedly be more efficient, but a two-

stage system allows more room for alignment error. A weighted decision matrix was used to evaluate 

other relevant characteristics for each system and can be found in Appendix D. This decision matrix gave 

the edge to a single-stage system. The result of the decision matrix, in conjunction with the ultimate goal 

of the Supermileage Vehicle Team being efficiency, led to the decision of using a single-staged, 15:1 

drivetrain engineered to the greatest accuracy possible. 

4.1.2 Clutch Sprocket 

The Vortex clutch system is only available off the shelf with #35 drive sprockets of various sizes. The 

current System uses a 15-tooth pinion sprocket that was custom made by SMC for use with a #25 chain. 

The requirement of a custom-made sprocket has not been an issue in the past due to SMC's sponsorship 

and eagerness to help students, but the requirement of a customization must be considered. To run a 

single-stage, 15:1 gear ratio that fits into the car, a smaller pinion sprocket must be used. Based on 

limitations of low tooth count pinion sprockets, CPSMD settled on a 13-tooth pinion sprocket and 195 

tooth rear sprocket. To run our desired #25 chain with a 13 tooth driving sprocket, we will have to 

specially request another custom-made sprocket from SMC. If we are unable to custom order this part, 

we may have to resort to a #35 chain. 

4.2 Rear Sprocket  

4.2.1 Current design and redesign 

With such tight tolerance goals, sprocket stiffness was called into question as an area for improvement. 

Supermileage sprockets have ranged in size and material over the years. When a single-stage system was 

initially attempted in 2016, a 14-inch diameter, steel sprocket was used for a gear ratio of 14:1. Due to 

reliability issues, the team moved to a two-stage system with a 7-inch titanium sprocket. It was thought 

that chain misalignment was causing the sprocket to deflect, so by reducing its size and increasing its 

strength the tip displacement could be reduced. It is the intent for the 2018 drivetrain to go back to a 

single stage design but now use a gear ratio of 15:1. Considering these deflection issues, various sprocket 

concepts featuring thick bodies with thin tooth rings and carbon fiber composites were brainstormed. 

 

4.2.2. Sprocket testing 

For CPSMD to effectively employ a single-staged design with an even larger diameter sprocket, the 

theory of sprocket deflection had to be validated. The required testing involved a calculation of the 

deflection seen by the sprocket tip as applied by a misaligned chain. Appendix E details these calculations 

and the whole testing procedure. The results showed that under the most extreme of loading, there was 

no noticeable deflection in the steel sprocket.  

Having removed deflection as an area for improvement in sprocket design, it was then theorized that 

sprocket flatness might become a limiting factor as alignment becomes more precise. Research suggests 
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that typical sheet metal has a geometrical tolerance for flatness around 0.015 inches. In I-units of flatness, 

as defined by Contrarian Metal Resources in section 2.10, sheet metal may range from 17-27 I-units [11]. 

Placing the sprocket on a flat table, a dial indicator was run along its outer edge. This revealed a variation 

in height of 0.0155 inches along the sprocket face agreeing with industry standards. Since the target for 

CPSMD is to have a perpendicular sprocket misalignment within 0.02 inches, this lack of flatness in 

sheet metal proves to be a significant area that requires improvement.  

 
Figure 11 Rear sprocket concept design made of titanium with 195 teeth 

 

 

4.2.3 Sprocket Design 

Sprocket flatness has been found to be a difficult challenge to confront. Three promising concepts have 

been developed to combat this challenge. One solution is to use incredibly flat sheet metal. Contrarian 

Metal Resources has the capability to provide sheet steel and sheet titanium with an advertised 5 I-units 

of flatness. Considering that waterjet cutting the 14-inch steel sprocket did not decrease its flatness 

beyond industry standards, it is assumed that after a waterjet process, Contrarian's sheet metal would 

retain its flatness. However, this would have to be confirmed with supporting measurements before 

committing to the use of such a sprocket. If need be, wire EDM could provide a low stress process of 

machining to retain flatness. A limiting factor of this choice is the cost of such flat sheet metal. A line of 

contact between CPSMD and Contrarian has been established but the price of these sheets has not been 

determined. If Contrarian's price is outside of CPSMD's budget, we will have to explore other options. 

It should be noted that Contrarian does have a history of supporting students and may be willing to 

engage in sponsorship. 

Should Contrarian be outside of our price range, another option is to use a steel sprocket which can be 

ground flat. The sheet steel would first be waterjet cut to shape and then ground down to an acceptable 

flatness. The capability to grind steel flat is incredibly high and Cal Poly's Formula SAE teams have a 

working relationship with such a company that possesses this capability. 

The last manufacturing option being considered is a post annealing process. A sprocket would first have 

to be cut to shape and then it would be placed into an oven while between two heavy flat surfaces. The 

oven would heat the sprocket up to its annealing temperature and the flat faces it is sandwiched between 
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would force the sprocket flat. After removing it from the oven, the sprocket would be slow cooled at 

room temperature while still between the flat surfaces. 

CPSMD's plan moving forward will be to continue our contact with Contrarian in the hopes that we may 

be able to acquire some of their highly flat sheet metal. In the meantime, research into annealing 

temperatures, heavy flat surfaces, and ovens large enough to house a 15.5-inch sprocket will be done. 

Details and contact information about steel grinding companies will also be obtained from the Formula 

Team so that preparations may be made should all else fail. 

 

4.3 Freewheel and Rear Hub  

4.3.1 Current design 

The drivetrain for the last two years made use of a custom-made left hand drive hub by Phil Wood and 

a freewheel by White Industries. To mate the freewheel to the rear sprocket, an adapter had to be CNC 

machined out of aluminum. While the hub alone does not offer many areas for improvement, the hub-

freewheel assembly certainly does. The freewheel relies on the use of pawls to lock the rotation of the 

hub and drivetrain under power then unlocks in the fashion discussed in section 2.6.1. It has long been 

the goal of the Supermileage Team to somehow move away from pawled freewheels in order to improve 

the rolling resistance of the car. A particularly unattractive facet of this freewheel is the amount of play 

that is present between the outer and inner race of its housing. Modifications of the freewheel have the 

potential to dictate hub designs and sprocket integration. 

4.3.2 Freewheel Testing 

To determine if the freewheel play was large enough to be a concern, the same test used to determine 

sprocket deflection was used and is presented in Appendix D. This test showed that the freewheel alone 

was responsible for all sprocket movement and allows for 0.26° of total angular movement or 0.13° of 

movement from the center. With a sprocket of 15.5 inches in diameter, this play translates to a total tip 

movement of 0.0352 inches or 0.0176 inches of movement from center. Again considering our sprocket 

misalignment goals, this is a critical area for improvement. 

 

4.3.3 Odyssey-clutch hub 

The most promising method found to reduce play in the hub-freewheel assembly is to remove the 

freewheel all together. This can be done using a new style of hub called a freecoaster. The concept of a 

freeecoaster, as described in section 2.6.2, is to have a clutch mechanism that will disengage the hub 

from the entire drivetrain when coasting. This would allow all wheels of the car to coast on nothing but 

bearings solving both the issue of efficiency leaching pawls and the issue of play from the freewheel. 

One such freecoasting hub is the Odyssey Freecoaster V2 pictured below in Figure 12. At the time of 

this document, the hub has been purchased and is being shipped to CPSMD. Once the hub arrives, several 

important steps can take place to determine if the hub will be a suitable replacement for the Phil Wood 

and White Industries set up. The freecoaster must be tested in a similar way that the freewheel was to 

quantify improvements. Additionally, a new design for an adapter to integrate the rear sprocket to the 

Odyssey hub will need to be made. It is expected that this adapter will follow a similar solution to the 

current adapter, but exact dimensions and any alternative approaches cannot be determined until the hub 

arrives. 
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Figure 12 Odyssey conical clutched hub cut away 

 

4.4 Chain tensioner  
The current design does not use a chain tensioner due to the two-stage jackshaft design. Moving towards 

a single-stage system with larger reduction, proper chain performance and minimization of the risk for 

chain throwing is very important. A chain tensioner can accomplish these goals by effectively reducing 

vibration in the chain with the introduction of another node. In doing so, you reduce the possibility of 

the chain missing the next tooth. However, a chain tensioner adds another source of friction and another 

rotating mass to the drivetrain. The chain tensioner used for the design would be an off-the-shelf part 

that is readily compatible with the #25 chain in the system. 

In order to decide whether a chain tensioner is worth adding or not, testing will be necessary. One way 

to measure chain tension is to treat the rear axle as a cantilever beam with one fixed end and one free 

end with a force gauge attached. Then the chain can be loaded with a set tension and the free end can be 

reattached to perform a number of runs and measure the chain tension after the runs to see how much the 

chain elongated or loosened. This process can then be repeated with the chain tensioner and the results 

can be compared to help quantify how much of a difference a tensioner makes. Figure 13 below 

delineates the important components of the testing set up. 
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Figure 13 Chain drive system showing important test components 

 

 

Another way to analyze the impact of an added chain tensioner is to analyze its effect on the vibration 

of the chain. The natural frequency of the tight end, shown in Figure 14 below, of the chain is expressed 

by equation 5 below where F is the tension, m is the mass per unit length, L, and k is the mode number. 

 

(5) 

 

 

 

 
Figure 14 Chain drive system showing tight and slack side of the chain 
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For the tight side of the chain, there is a range of resonant frequencies given by equation 6 below 

 

 

 

(6) 

 

 

 

Where Fc is the tight span tension excluding inertial contribution. Using results from the test done with 

the force gauge, equation 5 and 6 can then be used to see which tensions, with and without a chain 

tensioner, stay within the range of resonant frequency. This can also help find the optimal tension of the 

chain for the system by ensuring it keeps the chain resonance within the allowed range. For normal 

drives, adequate slack should be adjusted to 4% of the chain span and a chain tensioner would be able to 

easily ensure this. Another reference for proper chain tensioner is shown below in Figure 16. As seen, 

proper chain tension should keep the slack side of the chain within 2% or ¼" of the sprocket centers.  

 
Figure 15 Diagrams of different chain tension scenarios 

 

The combination of tension testing, vibration calculations and resonant ranges, along with literature 

references for chain tension will help in finding the optimal chain tension. In the past, optimal chain 

tension has been found during competition and driven by the need to go tight to keep the chain from 

falling off and we would like to have a more quantifiable way of finding it and the processes outline in 

this section are a good step towards this goal. In addition, our ideas to improve alignment will help allow 

lower and correct tension to be run. 

4.5 Drivetrain Plate 
The modular drivetrain plate for the 2016-2017 car was an incredibly valuable component because it 

gave us the ability to quickly and easily remove the entire powertrain assembly from the car. This allowed 

the powertrain team to work on it separately and allowed the chassis team to easily make emergency 
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repairs. With this in mind, the decision to retain a modular mounting feature in the 2018 car was made. 

Since the current plate's lifetime has run its course and the 2018 car's engine compartment dimensions 

have changed, a new plate needs to be made. Working concurrently with the chassis team, a new 

geometry was developed for the plate that conformed to the new chassis dimensions while still allowing 

for all powertrain components to be mounted. Figure 16 below shows the old drivetrain plate compared 

to the newly designed one. 

Despite the change in plate geometry, the manufacturing process will remain the same. Stock balsa wood 

will first be waterjet cut to shape. Separately, carbon fiber face sheets will be laid up on a flat table and 

once cured, will also be waterjet cut to shape. New locating brackets that position the plate relative to 

the chassis will be CNC machined out of aluminum. The brackets will be installed into the balsa core, 

film adhesive will be applied, and the carbon face sheets put into place. This assembly will then be cured 

in Cal Poly's autoclave using negative pressure. Features for the dropouts can then be machined before 

finishing the drivetrain plate with an epoxy coating applied to the outer edges.  

 

Figure 16  (left) Current drivetrain plate, (right) Redesigned engine plate 

 

4.6 Engine Mount 

4.6.1 Current design and redesign 

The current engine mount, shown in Figure 17 below, is inadequate for multiple reasons and needs to be 

redesigned. The design currently holds the engine at a skewed angle, creating misalignment with the 

chain. Due to our large efficiency goals, any amount of misalignment between the chain and 

corresponding sprocket is quite bad and has a large impact. Our goal in the redesign of this part is to 

ensure proper alignment between the driving sprocket and the driven sprocket. For this reason, the 

redesign of the plate will be heavily dependent upon the method used to align these components, which 

will be discussed at length below in sections 4.5.2 and 4.5.3. Along with this, the current design is also 

fairly heavy with unnecessary material in places such as the floor that are not load or force bearing. This 

can be removed strategically to dramatically cut weight. Lastly, the hole placement securing the engine 

mount into the drivetrain plate will have to be rearranged due to the changing dimensions of the drivetrain 

plate. This will be an easy fix, though we will have to ensure proper loading can be achieved to reduce 

the amount of shear seen by the drilled carbon holes in the plate. These holes will be moved mainly to 

ensure they are accessible while the engine is mounted. The new design is shown in Figure 18. It will 

need to be slightly heavier at .92 lbs. versus the current 0.91 lbs. but will have a larger footprint to mount 

to the drivetrain plate, giving a sturdier base for the engine to sit on.  
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Figure 17 Current engine mount 

 
Figure 18 Redesigned drivetrain plate with accessible mounting holes and lightening ribs 

 
 

4.6.2 Locating pins  

With the need to ensure proper alignment in our chain drive system, comes the need to effectively and 

consistently place the engine mount on our drivetrain plate. Locating pins, like that shown in Figure 19 

below, are designed to accurately locate mounting components. If the alignment of the chain drive system 

can be achieved with high accuracy upon initial installation, these pins will greatly improve the location 

of the engine for every subsequent install onto the drivetrain plate. Holes for the sheath of the locating 
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pin will be drilled into the composite drivetrain plate in place where the engine mount is likely to go and 

the sheaths will be inserted. Once the mount is positioned where it is best aligned with the drivetrain, the 

engine mount will be locked down. This can be achieved through oversized fastener holes or through 

clamping. Holes for the heads will then be drilled into the metal engine mount using the sheaths as guides. 

The heads will then be pressed into the engine mount. 

To maximize the effectiveness of these locating pins, once the drivetrain is aligned upon the drivetrain 

plate the engine mount will become a permanent part of the engine block until after competition. Any 

modifications to the engine's block and crankshaft must be completed by this time. With the use of a 

chassis dyno, continued engine tuning may occur and the head, cylinder, and piston potentially could 

still be modified.  

 

Figure 19 Carrlane locating pins. Head and shank are concentric to within 0.0005”. 

 

4.6.3 CMM Alignment 

The angular and perpendicular distance offsets between the drive sprocket and the driven sprocket is 

highly important to the goals of our team. The method in consideration to ensure proper sprocket 

alignment is to use the Cal Poly IME Department’s Coordinate Measuring Machine to accurately relate 

the two sprocket faces to one another. This concept would be used in one of two ways, outlined below. 

This will determine the placement of the engine and once the proper placement is established, the locating 

pins described in section 4.6.2 above will be used to ensure the reliability and repeatability of this 

alignment. 

1. Active Alignment: The first method in question will use the CMM to align the motor while 

it is placed on the drivetrain plate. The drivetrain plate and all of its installed components will 

be placed on the CMM. The bushing of two locating bullet pins will be placed into the 

composite drivetrain plate in places where the engine mount is likely to go. Additionally, 

oversized fastening holes will be drilled into both the engine mount and the drivetrain plate 

through CNC. The CMM will then be used to create a datum plane along the rear sprocket. 

Continual sweeping of the driving sprocket will then be used to determine their alignment. A 

mallet would be used to lightly readjust the engine’s position, then the sprocket will be swept 

again. Once the mount is positioned where it is best aligned with the drivetrain, the engine 

mount will be locked down. Holes for the heads of the locating pins will then be drilled into 

the metal engine mount using the bushings as guides and the heads will be pressed into the 
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engine mount. The most limiting feature of this method is the ability to properly drill the 

holes for the pin heads into the engine mount. It is intended that by using the bushings as 

guides, the pin head holes can easily be hand drilled. Hand drilling involves low precision 

bits and introduces a path for human error. In theory, this method should allow us to obtain 

an accuracy of roughly 0.003”, which is within our specifications limit. 

2. Preemptive Alignment: This method will use the CMM to determine the location of the face 

of the driving sprocket in relation to the holes in the engine mount. We will machine the 

engine mount and bolt in the engine. This allows the use of the sprocket side mount face as 

our machined datum. The CMM will then be used to accurately locate the sprocket face to 

the same datum face in the mount. We will then update our Solidworks drawings to include 

the sprocket location in relation to the rest of the motor mount. Once this is determined, we 

will establish the location of the mounting holes to be machined in the drivetrain plate using 

the rear axle and sprocket as a datum. All components will be placed on the engine plate 

except for the engine and engine mount and the plate will be placed in the CNC. Using the 

touch probe on the CNC, we will touch off on the rear sprocket creating the datum for 

machining the mounting holes. This will eliminate all tolerance error incurred due to the 

mounting of the rear dropouts and axle pieces. This will obtain an accuracy of roughly 0.003”, 

which is easily within our allowable specification limits. The main drawback to this method 

is the fact that once it is performed, any unexpected misalignment cannot be corrected. While 

it is believed that a full understanding of the associated tolerance stack-up has been achieved, 

there is always the possibility to overlook something and this method’s permanence will not 

leave room for error. 

4.6.4 Repeatability Testing 

Once a mount is designed and manufactured, we hope to gain an understanding the amount of variance 

allowed by our design when removing and replacing the engine in the car. To do this, we hope to use the 

CMM to measure the axial and angular alignment of our two sprockets. With the whole system on the 

machine, we would repeatedly remove and replace the engine, checking the alignment each time. In 

doing so, we would acquire the amount of misalignment in our system due to the engine’s placement in 

the engine mount. If the misalignment is found to be larger, we would then need to ensure that the 

drivetrain mount is designed to be permanently installed so that the alignment of the system holds. 

4.7 Rear axle drop-outs  
The current rear axle drop-out design is shown below in Figure 20 and employs a c-slot for flexible 

for/aft rear axle location. This was needed in the current design in order to allow for proper tensioning 

of the two chain system. In our redesign, we hope to employ a single drive system with a fixed center to 

center distance dictated by our chain length and proper tension required for optimal performance. Due 

to this fixed length design, we are able to use a vertically slotted mount. This would ensure proper 

alignment in our drivetrain with repeated removal and replacement of the rear axle and wheel 

components, which is inevitable during competition. The vertical slot would also reduce installment time 

due to the self-aligning characteristics of the design. Using a fixed position design with vertical slot also 

allows us to design a stronger mount with decreased material as shown below in Figure 21. With a larger 

cross sectional area throughout the load bearing neck of the mount due to the rib, we are able to 

significantly increase the ability of the member to resist bending and failure while reducing weight. A 

visualization of the stresses in the new mount due to the static loading of the car’s weight is shown in 
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Figure 20. Currently, our new design would reduce weight by roughly 40% based on volume, though 

this will change based on final design geometry. 

 

 
Figure 20 Current rear axle drop-out design with c-slot 

 
Figure 21 Redesigned systems of the rear axle drop-outs 

 

 

4.8 Overall Redesign 

The current concept for the overall redesign of the Cal Poly Supermileage Vehicle Team's drivetrain is 

shown in Figure 22 below. Featured is a rough model of the engine, the Vortex clutch, a drivetrain plate 

conforming to the new chassis size constraints, an engine mount with no hidden fasteners, a 15.5 inch 

195 tooth rear sprocket, a #25 chain, the new dropouts, and the wheel. Due to the lack of a proper model 

for the Odyssey hub, the Phil Wood and White Industries freewheel were used as place holders. 
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Figure 22 Full assembly of the redesigned 2018 Cal Poly Supermileage Vehicle drivetrain 

 

While it is expected that iterations and redesigns will continue to occur over the course of the project, 

the design concept for several of the drivetrain components, such as the drivetrain plate, the engine 

mount, and the dropouts have been furthest developed. The design of the rear sprocket has been worked 

out but the final method of manufacturing has yet to be determined. Another area still up for debate is 

the method for aligning the front and rear sprockets onto the drivetrain plate. The final design decision 

about the chain tensioner is a case which is still pending testing data. Each of these design decisions may 

not be settled upon at this current time, but methods of approach for each are outlined or discussed in 

their respective sections above. The component that is most currently up in the air is the Odyssey hub. 

The decision to use the hub and designs of components dependent on its dimensions are on hold until 

the hub arrives in the mail. Once it arrives and is tested, final design considerations may begin. 
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5.0 Final Design 

5.1 Overall Final Design 

 

Figure 22: Cal Poly Supermileage Drivetrain Assembly final design 

 

The team worked hard from the Preliminary Design review on June 6th, 2017 up until our Critical Design 

review on October 7th, 2017 to refine our design while also performing necessary analysis. The team was 

able to come up with a final design, shown in Figure 222 that we are confident will meet all of the 

specifications outlined in section 3.  

5.2 Changes From PDR to CDR 
Moving from Preliminary Design to Critical Design, alterations were made to both our project scope as 

well as the overall design in order to better our finished product. Originally, it was not made clear by the 

Supermileage Vehicle Team that we would need to incorporate the rear brake system into our design. 

After becoming aware of this, we have now enlarged our scope to cover both the rear brake integration 

as well as the rest of our drivetrain system and its components. Though this is not a simple task, we have 

begun and will continue to work closely with the team’s brake system team to ensure proper integration 

into our system. A rough idea of our designs for the brake disk mounting solution are outlined below and 

this will be an ongoing issue carried forth from here on out. 

 

Another large change in our design moving from our Preliminary Design into our Critical Design is in 

the rear dropouts. It was proposed to us during our PDR to incorporate the chain tensioning system into 
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our rear dropouts. This required a major overhaul of the dropout design which is outline below in section 

5.5. other than this, most of the changes came from smaller tweaks and iterations of our Preliminary 

Design in order to ensure the best designs moving forwards. 

5.3 Engine Mount 

 

Figure 23: Engine Mount finished design. 

The engine mount, shown in Figure 23, is a single bracket used to fasten the Yamaha engine onto the 

drivetrain plate. It will be CNC machined out of a single piece of 6061-T6 aluminum. The design of the 

mount has not changing much from the prior design as we are using the same model of motor and 

therefore the mounting geometry has not changed. 

 

We plan to have the engine and engine mount designed to never be removed from one another in an 

effort to reduce alignment error in our system. The Yamaha engine is not designed for high accuracy 

installation and therefore is not built with adequate datamable surfaces to use for repeatable alignment 

and instillation. Therefore, by integrating the engine mount into the engine case we will in turn create 

the sufficient datamable mounting locations. 

 

With this in mind, the main difference in the new design is the relocation of the fastening holes for the 

mount to drivetrain plate interface. We have chosen to move these points out from under where the 

engine will sit as to allow them to be accessible while the engine and mount are together as a single unit.  

 

Stress analysis was done to account for the engine’s weight as well as its output torque. We focused on 

the thinnest mounting upright and used the full weight of the engine and the largest output torque as this 

would be the worst-case scenario for the engine mount. We found there to be a massive safety factor, SF 

= 14000, for yielding which is ideal as our part must survive the life of the engine. This is quite large 

and caused us to look into other materials for the engine mount; however, with consideration for bending 

deflection, fatigue, and after speaking with the Supermileage team, it was found that with the team’s 

budget and large stock of raw 6061-T6 aluminum blanks in various sizes, we would to stick with the 

aluminum.  
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5.4 Drivetrain Plate 

 

 

The Drivetrain Plate provides a platform on which all of the drivetrain components can be attached.  Its 

job is to then secure this drivetrain assembly within the chassis of the car. By having all of the drivetrain 

components mounted upon this single plate, a certain modularity to the drivetrain system arises. This 

proves to be a valuable feature because the drivetrain can be assembled and tested independent of the rest 

of the car. Additionally, in the event of any damage on either the drivetrain or chassis side, it can be 

removed and allow for easier access to whatever needs attention. The overall profile and geometry of the 

plate were determined by working in close relation with the new chassis designer so that it, and all things 

mounted on it, would fit inside of the car.  

 

As indicated by the arrows in Figure 24, the plate is fastened to the car in four locations: at the two CNC 

machined brackets and at the two ends of the legs. The two CNC machined brackets serve as support and 

locating features while the legs serve as additional points of support and provide pathways for the road 

forces to be directly transferred from the wheel to the chassis. A force analysis, found in Appendix K, 

was conducted on the torsional loads that may be induced upon the plate while cornering. The maximum 

cornering load resulted in a torsional stress of 58 psi, well below the effective strength of the carbon balsa 

composite. Once all the components are located relative to each other onto the plate, only the plate needs 

to then be located inside of the car relative to the front wheels and the car center line. This chassis 

alignment is accomplished by working with the Supermileage team member responsible for car 

integration. The plan is for this team member to manufacture a jig which will mate to the rear dropouts 

and suspend the front of the plate, thus fixing the plate in a position where the car side of the aluminum 

brackets can be bonded into the car. 

 

The plate itself is made out of a carbon fiber and Divinycell foam composite with localized Garolite 

pieces. The Gaorlite’s purpose is to give added compressive strength at the locations where components 

will be bolted onto the plate. The carbon fiber face sheets have already been laminated by Tencate in 

their facilities and will be cut to shape using a water jet. The foam core is to be waterjet to shape and, as 

mentioned above, the brackets are CNC machined out of aluminum. Once the brackets are made, they 

Figure 24: Drivetrain plate illustrating support locations. 
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will have to be treated with Alumiprep to ensure a successful bond. All of these are then bonded together 

using a film adhesive and cured under vacuum. The final holes and locating features for the drivetrain 

components are CNC drilled and reinforced with “top hat” style bushings. 

 

5.5 Dropouts 

 

Figure 25: Rear dropout assembly. Consists of 4 pieces: dropout mount, dropout slide, adjustment screw, locking nut. 

5.5.1 Overview 

As seen in Figure 25, the rear dropout assembly consists of 4 separate parts, creating a single dropout 

unit. There will be separate, unique assemblies for the left and right of the vehicle. The main purpose of 

the dropout assembly is to secure the rear axle assembly onto the drivetrain plate. Our main concern is 

keeping alignment accurate during repeated removal and installation of rear axle components.  

 

5.5.2 Dropout Housing 

 

Figure 26: Rear dropout housing. 

The dropout housing, shown in Figure 26 above, is the nonmoving component of the overall dropout 

assembly. The housing will be the main structural component of the dropout as well as locate the 

assembly on the drivetrain plate. For this reason, it is imperative that the housing is made accurately. To 
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do this, we will CNC machine the housing to a ±0.001” tolerance. The lower threaded pegs will be used 

to both locate the housing on the drivetrain plate as well as secure it to the plate using ¼ - 20 bolts. The 

main reason for using ¼ - 20 bolts is that the Supermileage team tries their best to centralize the fasteners 

used to ensure easy maintenance during competition. Most fasteners on the vehicle are ¼ - 20, and 

therefore we did our best to use the same standard wherever possible.  

 

When using FEA modeling to look into the localized stresses in the dropout mount due to the vehicles 

weight and cornering forces, we found the stress concentration to be in the right edge of the part. We 

then did hand calculations to look more in depth into the stresses in this section and found a SF = 3000 

for yielding. In this way, we determined the design to be more than acceptable for holding its application 

loads. With a SF this large, we did look into making the part out of several other materials; however, 

again due to the availability of the aluminum, its ease of manufacturability, and the very low impact to 

weight that changing the material would have, we decided to stick with the 6061-T6 aluminum. 

 

 

 

 

5.5.3 Dropout Slide 

 

Figure 27: (Left) Driveside dropout slide. (Right) Brakeside dropout slide.  

The dropout slide, shown in Figure 27, will be used to secure the rear axle to the dropout housing, and 

in turn securing the axle in the vehicle. As the name suggests, the dropout slide will slide within the 

dropout housing, allowing for a horizontal, fore/aft, movement of the axle of 75mm. This adjustment 

length was specifically chosen to allow for a change in chain length of ± 1 chain link length. This allows 

for an great amount of tension tuning during the installation of the rear axle.  

 

The dropouts slides will be CNC machined out of 7075-T6 series aluminum instead of 6061. The reason 

behind this decision was due to its higher shear and yield strength. The main reason this is important is 

that the slide incorporates a threaded boss that the brass locking nut will thread upon to secure the 

position of the slide within the dropout mount. The intent of using a brass nut is so that it would yield 

under over torqueing instead of the aluminum threaded boss. This feature is important since the brass 
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nut is an OTS component with the aluminum slide is custom made. We looked into the max torque spec 

allowed before stripping the slide’s boss and (using a safety factor of two) found this to be 130 ftlb for 

6061 and 210 ftlb for 7075 compared to the 150 ftlb yield torque for the brass nut, the calculations of 

which can be found in Appendix K. This confirms that 7075 will be the choice for our dropout slides and 

should be more than acceptable for securing the slide in the housing as well as protect the slide from 

possible over-torqueing of the locking nut. 

 

The threaded adjustment stud will be bought off the shelf from McMaster-Carr in a ¼ - 20 size and be 

threaded into the dropout slide. This will greatly reduce the manufacturing difficulty of the part and allow 

us to machine the dropout slide ourselves as opposed having to outsource the job. This will shorten 

manufacturing time and reduce costs dramatically. 

 

5.5.4 Adjustment Nut 

 

The adjustment nut will be used to adjust the position of the slide horizontally in the dropout housing in 

order to tension the chain. The nut will be CNC lathed in house out of 6061-T6 Aluminum. The 

manufacturing of the part will be quite easy. Because of this, we intend to make several replacement 

parts incase anything is to happen during installation or testing of the vehicle. Remaking the parts at a 

later date would prove to be slightly more difficult than doing it now and therefore having extra on hand 

will prove to be beneficial in the long run. 

 

The adjustment nut will only see load during adjustment of the rear dropout as once the axle location is 

determined to be correct, a locking nut will be used to secure the slide and the housing together removing 

any loads seen by the screw. The tensioning loads are very small as we run a very loose chain and 

therefore the aluminum ¼ - 20 threading should be more than adequate. 

 

5.5.5 Locking Nut 

 

As discussed previously, the dropout slide and dropout housing will be secured together using the 7/8 - 

14 locking nut. The main reason for using a separate locking nut to lock the slide in the housing as 

opposed to using the axle's through-bolt is to allow for the removal of the rear wheel while ensuring the 

mounting location, and therefore the chain tension, doesn’t change. This is essential for our design as to 

meet the Supermileage desired specifications of quick removal of rear wheel and high accuracy of chain 

alignment, the mounting location of the rear axle must be self-retained. 

 

The locking nut will be bought off the shelf from McMaster-Carr and is chosen in a standard size to 

allow for quick and easy replacement in the event the part is misplaced or damaged. As stated before, it 

is usually advised to design the nut of a bolted joint to be made of softer material than the bolt or stud. 

To do this, we would need to use a material with a yield stress smaller than that of the 7075 aluminum 

used for the dropout slide. We determined that a brass 7/8th nut would be a feasible option as its shear 
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strength is 34100psi which is less than the 7075’s 48000psi allowing it to yield before our dropout slide. 

After doing similar torque out calculations as was done on the dropout slides, a torque of 150 ftlb with a 

SF of 2 was found. This should still work well for our application and still have a good chance at 

withstanding possible over torqueing by inexperienced users during competition. 

 

5.6 Sprocket/Hub Assembly 

5.6.1 Overview 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Sprocket/Hub assembly accomplishes the 14:1 gear reduction and transmits the torque from the 

engine to the rear wheel. Shown in Figure 28, it features a hub, sprocket, sprocket fastener (hidden), disc 

brake and adapter (not shown), and the necessary hardware to secure the sprocket to the hub. The main 

design goal of the Sprocket/Hub assembly is to provide a stiff and rigid assembly which can be located 

upon. 

 

 

 

 

Figure 28. Sprocket/Hub assembly 
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5.6.2 Sprocket 

 

The design of the rear sprocket shown in Figure 29 has 210 teeth to give the desired 14:1 reduction with 

the smaller, driving sprocket of 15 teeth. With sprocket deflection being a very crucial requirement for 

our overall design, the stiffness and flatness of the rear sprocket design is very crucial. In order, to ensure 

flatness, the sprocket will be made from steel that has been stretcher leveled. Stretcher leveling is a 

process of stretching sheet metal beyond its point of yield in order to eliminate any internal stresses in it 

and therefore prevent any spring back from cutting. Stretcher leveling can achieve 0-5 I-units of flatness, 

which is a superior way of measuring flatness than the standard “variation from flat” that accounts for 

the amplitude and frequency of shape deviations in the material. Although stretcher leveling will help 

eliminate any warping due to cutting, the sprocket will also be cut using the low-stress cutting process 

of water jet cutting that can be done in house at Cal Poly. Carbon steel was chosen for the material due 

to its superior specific strength and ration of strength to density, along with the fact that the lighter, 

titanium was outside of our budget.  

 

The geometries of the sprocket were decided based on a combination of stress analysis, testing, Finite 

Element Analysis (FEA), and weight savings considerations. The calculations done to decide the widths 

of the spokes can be seen in Appendix K in which the spokes were conservatively modeled as cantilever 

beams loaded by the force seen normal to the sprocket face giving spoke widths of 0.81”.  Performing 

FEA on the sprockets modeled in SolidWorks that mimicked the aforementioned sprocket deflection 

testing of section 4.2.2 with weights and dial gauges resulted in a rim thickness of 0.51”.  Using the 

maximum, worst-case scenario of sprocket alignment from the requirements, a deflection of 0.147 inches 

was calculated.  The FEA showed that the sprocket would only deflect 0.0043in and this is validated by 

the previous sprocket deflection testing. FEA results can be seen in Appendix L. In addition to the FEA 

Figure 29: Rear Sprocket 
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analysis, stress calculations were done on the teeth of the sprocket and safety factors for wear and 

bending were calculated to be 10.5 and 7.1 respectively, these calculations can be seen in Appendix K. 

                                      

 

5.6.3 Hub 

 

Figure 30. Odyssey Freecoaster Clutch Hub 

Featured above in Figure 30 is the Odyssey Freecoaster Hub that is to be used for the new drivetrain. 

The hub’s job is to fasten to the rear wheel and allow power transfer from the drivetrain to the wheel. As 

described in Section 4.3.3, the Freecoaster has the unique feature of an internal conical clutch rather than 

a typical freewheel with pawls. As outlined in Appendix E, it was determined that the most significant 

source of sprocket movement arose from the play between the inner and outer race of the freewheel. 

Therefore, the driving decision behind using this new hub was the superior rigidity of the clutch design 

over a freewheel. Upon initial inspection, this clutched hub appears to have no noticeable amount of play 

between the driving cog and the axle. By performing a test identical to the one described in Appendix E, 

a quantitative improvement will be determined for sprocket play reduction. A complementary benefit of 

using the clutch mechanism is the capability for the drivetrain to be completely decoupled from the hub 

under coasting conditions. This means that for the significant amount of time where the Supermileage 

car’s engine is not running, and the car is relying on nothing but its own momentum, it will be riding on 

nothing but bearings. 

 

The use of this new hub did introduce new engineering challenges, namely the fastening of the large 210 

tooth sprocket to the hub’s cog and the mounting of a brake disc onto the hub’s outer shell. However, 

with consideration given to the expected improvement in sprocket-hub rigidity and the added benefit of 

coasting without energy drawing pawls, it was decided that the hub’s benefits outweighed the challenges 

it introduced. 
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5.6.4 Sprocket Fastener 

 

Figure 31. Sprocket Fastener. The bottom left shows the fastener by itself, while the 

picture in the bottom right shows a profile view of the assembly 

The first design challenge which the Odyssey hub introduced is fastening the 210-tooth Rear Sprocket 

to the 9-tooth driver. Because the 9-tooth driver and the internal clutch mechanism are one solid piece, 

it is impractical to disassemble the whole hub to put on a single piece adapting ring that would secure 

the Rear Sprocket. Therefore, a three-piece ring was designed that could be installed and removed 

without the need to dismantle the hub. As shown in the lower left picture of Figure 31, there are two 

bosses for each of the three pieces to achieve a symmetric fastening profile between the Rear Sprocket 

and the 9-tooth driver. The bosses have an outer diameter of 8 mm which snugly match the pitch of the 

9-tooth driver and feature an M5 internal thread. By threading through the same bosses that fit between 

the teeth of the driver, the line of action for the resulting force squeezes the Rear Sprocket and the 

Sprocket Fastener onto the flat faces of the 9-tooth driver. The bottom right picture of Figure 31 shows 

how this is achieved from a profile view. The three pieces of the Sprocket Fastener are joined together 

at the through-holes shown by using OTS binding barrels.  

 

The plan is to first use rapid prototyping of the Sprocket Fastener to ensure a proper fit between the 

bosses and the 9-tooth driver. The three pieces will be 3-D printed and test fit onto the hub, then after 

any necessary iterations are made, they will be CNC machined out of 6061 aluminum. The machining 

process will require 2 operations and the use of a simple soft jaw. Consideration for shear forces in the 

bosses due to the torque of the engine showed that there is 993.3 psi of shear stress. The largest concern 

for this design is the possibility of stripping the aluminum threads within the bosses by unintentionally 

over torqueing the M5 bolts. To combat this, helicoil threads can be use in lieu of machined threads. 
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5.6.5 Brake Disc Mount 

The other design challenge introduced by the Odyssey hub was the incorporation of a brake disc. At the 

time of this document an exact solution has yet to be finalized, but several possibilities have been ideated. 

Pictured in 32 above, is a rendition of how a solution is expected to look. The essential requirements of 

a brake mount are that it can effectively transmit the braking torque to the hub, it can resist axially loading 

that arises from antisymmetric brake pad squeezing, and it must keep the brake disc concentric with the 

hub. One of the main difficulties that this hub introduces is a limited amount practical locations to mount 

the disc. The best location features an inconvenient taper that must be worked around. 

 

Ideally, the brake mount would be removable to permit easy re-lacing of the wheel and hub. In order to 

accomplish this, some sort of modification to the hub body will most certainly be required. Brainstormed 

solutions have included machining flats into the taper or turning it down completely. Flat surfaces in 

combination with pins could achieve the desired effect of axial retainment and torque transmission. 

However, these are rather difficult solutions to properly achieve when considering how to fixture the hub 

and how to locate the resulting features. Rapid prototyping has the potential to aid in this process. Two 

flats could be milled onto opposite sides of the hub and a hole drilled into each flat. Then using an Optical 

Comparator, the resulting hub geometry can be measured and replicated with a SolidWorks model. From 

here, a 3-D printed prototype of the brake mount can be made in an effort to match where those holes 

are located. After several iterations, the brake mount can be made to match the hub geometry and a final 

version machined out of aluminum. Pins join the brake mount to the hub and the brake disc is fastened 

to the mount with screws. If all else fails and this solution proves to be ineffective or impractical, a 

permeant solution can be used where the brake adapter is bonded to the hub. In such a case, the hub 

would have to be permanently laced and then the brake mount glued on with an epoxy such as Hysol. 

  

Figure 32. Rendition of how a brake disc is expected to be mounted to 

the hub. 
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5.7 Alignment Method 
As described in PDR, there were two possible methods for aligning the engine sprocket and the rear 

sprocket: a preemptive and an active method. It was decided that the better of the two options was the 

preemptive method due to its lack or iterative process and due to its reliance on CNC drilling rather than 

hand drilling. Using the CMM, a face on the engine mount (while attached to the engine) will be used as 

a datum to measure its relationship to the face of the engine sprocket. From this measurement, the 

Solidworks model relating the engine mount to the engine sprocket will be appropriately updated. With 

this model, we now know where all locating and fastening features are on the engine mount relative to 

the engine sprocket are, within the tolerance of the CNC machine used to make the mount. Matching 

these fastening and locating features on the model of the drivetrain plate allows us to position the engine 

sprocket in a precise and controlled location. In a separate procedure, the dropouts and hub assembly 

will be simply installed onto the drivetrain plate. Then the drivetrain plate, with its dropouts and hub 

assembly, will be fixtured onto a CNC mill. Using the CNC’s probe, zeroes in all three planes will 

determined by touching off on the sprocket’s face, the drivetrain plate’s surface, and a final location on 

either the edge of the plate or a dropout. The final location can be arbitrary because its zero merely 

determines the center to center distance from rear axle to the engine’s drive shaft and can be accounted 

for through appropriate chain length. Once the zero location of the rear sprocket face is determined, the 

CMM derived engine mount model is used to drill its fastening and locating holes into the drivetrain 

plate. The holes are to be reinforced with top hat bushings and the locating pins can be installed. The 

location of the engines sprocket relative to the rear sprocket can be confirmed by probing the two faces. 

We anticipate that there would be a reasonable amount of difficulty in fixturing the drivetrain plate into 

the CNC with a 16.7 inch diameter sprocket. To combat this, a smaller sized test sprocket made out of 

the same flat stock sheet metal can be made and used in its place.  

 

5.8 Manufacturing and Assembly Plan 
Manufacturing and cam work has begun for the drivetrain plate and full prototypes have been built for 

the rear dropout assemblies. The cam work for the parts that will be CNC machined is expected to be 

finished by the end of the quarter so that machining and assembly can begin without impedance next 

quarter. The individual manufacturing processes for each part has been described above in their 

individual sections. 

 

The path forward for manufacturing is determined by a critical path in the Gantt char that takes into 

account the direct relationships between the manufacturing of each part. The initial step of the plan is to 

procure all purchased parts and materials needed to manufacture the parts and build the assembly. The 

Odyssey hub has been purchased and received and all other parts have been quoted. All fasteners and 

the majority of materials will be purchased from McMaster-Carr with the exception of the balsa wood 

which will come from National Balsa or a similar balsa wood supplier. All quotes for the parts and 

materials can be seen in Appendix J.  

 

Once the materials have been received, manufacturing the drive train plate will be the number one 

priority in order to lock in place where the other components will go. Next, manufacturing of the engine 

mount will be a main focus as it is crucial for the CMM alignment process and testing. An IME faculty 
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member, Trian Georgeou, has agreed to work with Justin to manufacture the parts that will be CNC 

machined. This seriously decreases the waiting time and overall cost of our project and allows us to 

directly communicate with the manufacturer before, during, and after the manufacturing process. 

 

Once all parts have been manufactured or obtained, part assembly will begin and upon completion will 

lead into car integration. The final drivetrain design will then be assembled into the car and integrated 

into the new 2018 chassis.  

 

Regarding the responsible individuals for the manufacturing process, Heather is in charge of part and 

material procurement and maintaining a line of communication between the manufacturers, Justin is in 

charge of machining the CNC machined parts and Mike is in charge of manufacturing the drivetrain plate 

as well as communication for integration of the parts.  

 

 

5.9 Weight Analysis 
Along with high reliability and efficiency, light weight is an important specification of the project and 

defined as our design meeting and exceeding a target weight of 4.2 + 1kg. The projected weight of the 

final design is 3.85 kg, below our target weight. A breakdown of the weight of the assemblies and their 

corresponding parts can be seen in Table 3 below. 

 

Table 3: Part weight overview. 

Component Description Weight 

[kg] 

Engine Mount 

Assembly 

Includes engine mount, fasteners, and locating 

pins. 
.44 

Drive Train Plate 

Assembly 

Includes balsa core, carbon sheet, and mounting 

hardware. 
1.4 

Rear Dropouts 

Assembly 

 

Includes rear dropout housing, slide, locking nut, 

and adjustment screw. 

 

0.47 

 

Rear Hub Assembly Includes hub, hub adapter, fasteners, and rear 

sprocket 

1.5 

 

Chain Includes #25 chain 0.04 

 Total: 3.85 

 

5.10 Cost Analysis 
The budget allocated by the Cal Poly Supermileage team is $1,500 and is not foreseen to be exceeded 

by the project. Table 4 below tabulates the general cost of each component of the drivetrain assembly 

and a more detailed cost analysis can be found in the Bill of Materials in Appendix J. 
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Table 4: Part cost overview. 

Component Description 
Cost 

[$] 

Engine Mount 

Assembly 

Includes engine mount, fasteners, and locating 

pins. 
174.70 

Drive Train Plate 

Assembly 

Includes balsa core, carbon sheet, and 

mounting hardware. 
29.82 

Rear Dropouts 

Assembly 

Includes rear dropout housing, slide, locking 

nut, and adjustment screw. 

 

11.42 

Rear Hub Assembly 
Includes hub, hub adapter, fasteners, and rear 

sprocket 
545.26 

Chain Includes #25 chain 35.98 

 Total: 796.90 

  

It is shown that the cost of raw materials and manufacturing comes to a total of $796.90, way below our 

budget of $1,500. A lot of cost savings were due to being able to manufacture a majority of the parts in 

house at Cal Poly, as well as from having some stock material readily available from the SMV club. 

 

5.11 Maintenance Considerations 
The final, main components of the drivetrain were designed with high factors of safety and are not likely 

to fail or need maintenance on directly due to factors of the 2018 competition and are expected to be 

reused in future year's designs as possible. The main maintenance foreseen for the design, is in the 

fasteners in the individual part assemblies and they can easily be replaced with parts at ready.  

If any unexpected maintenance was to be needed, all CNC machined parts would be able to be replaced 

using the made-available G code and all of the parts are modeled in SolidWorks and can be 

remanufactured if needed. 

 

5.12 Safety Considerations 
The manufacturing of the final parts does not create any potential safety hazards and neither does the 

autonomous final design itself. The main, potential hazard associated with the design is if a critical part 

were to fail and jeopardize other components of the Supermileage car, possibly endangering the driver. 

In addition, if the chain were to throw, it could potentially injure someone. Although these potential 

hazards exist, the risk of them is fairly low as they are unlikely to happen. 

In addition to identifying potential hazards with the design manufacturing and final design performance, 

a hazard check list was completed and can be seen in Appendix N. The check list revealed that there are 

no potential hazards that would require outside hazard assessment. Furthermore, we will thoroughly test 

our prototypes to reveal any hazards not foreseen during design and construction. 
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5.13 Design Verification Plan 
5.13.1 Design Verification Plan and Test Descriptions 

A design verification plan was developed to ensure that the drivetrain prototype will meet all 

specifications and requirements. The plan outlines the various tests that will be performed, the 

requirement it is testing fulfillment of, the individual responsible for performing the test and analyzing 

the results of, as well as the timeline of the testing. A breakout of the test plan portion of the design 

verification plan and report of Appendix M is shown below in Figure 333. 

 

 

Figure 33: Design verification plan for testing of the drivetrain design 

 

The first requirement tested is sprocket deflection and the testing procedure was described above in 

Section 4.2.2. and elaborated on in Appendix A and will be performed by Justin. The requirement of 

weight will be verified by weighing the entire drivetrain assembly and ultimately calculating weight 

savings and will be performed by Heather. Efficiency will be tested using an inertia dynamometer that 

is predicted to be available during time of testing and will be used by Mike. Sprocket and chain alignment 

will be tested using two separate installation alignment repeatability tests lead by Justin, one for angular 

tolerance between sprockets and one for horizontal, center-to-center distance between sprockets. These 

repeatability tests will involve measuring the two different alignments with a dial indicator and length 

measuring tool before and after installation to ensure that they stay within the specified ranges with 

installment and removal of the rear axle. Finally, the requirement of total removal and installation time 

will be tested by having each member of the team install the drivetrain for time and Mike will then ensure 

that this is within our requirement of <30 minutes and subsequently determine who will be able to 

repeatedly meet this requirement during competition.  

 

5.13.2 Specification Verification Checklist (DVPR) 

After all of the tests included in the design verification plan have been performed, the results will be used 

to prove that all of the specifications have been met and will be reported in the test report section of the 

design verification and report of Appendix M. 
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6.0 Management Plan 

6.1 Assigned Team Roles 
Roles encompassing certain responsibilities have been assigned to each team member in order to 

delegate workloads efficiently. The primary, assigned roles are as follows: 

  

6.1.2 Justin Miller 

Justin will be the main line of communication with the sponsor and all third parties. He will 

facilitate meetings with the sponsor and inform them of all pertinent information as needed. He is 

also responsible for keeping all group members up to date with communications with the sponsor 

and facilitating all general communication between the team. 

Justin will also act as the manufacturing lead and be responsible for scheduling the manufacturing 

of the parts that will be manufactured in house. This will include scheduling the CNC machine in 

advance to ensure that the manufacturing of the parts will be able to start at the beginning of next 

quarter. This also means that Justin will make sure that the CAM work will be completed by the 

end of this quarter as to facilitate the start of all manufacturing. 

  

6.1.3 Mike Bolton 

Mike will be in charge of managing the team's $1,500 budget and ensuring funds are allocated 

efficiently. This means making sure that all necessary parts and materials will be able to be 

purchased within the limitations of our budget, keeping in mind manufacturing and testing costs.  

Mike will also act as club liaison to ensure cohesive communication with the club and provide 

access to the 2017 SMV as well as connections for parts and other club benefits. He will also be 

responsible for ensuring the new drivetrain system will fit into the new 2018 chassis design.  

Mike will also be in charge of manufacturing the drive train plate and ensuring integration of all 

other components onto the plate and with each other. This means ensuring that the manufacturing 

of the plate will be at the forefront of the manufacturing plan and communicating with Justin as 

manufacturing lead to schedule accordingly. 

  

6.1.4 Heather Fields 

Heather will be in charge of organizing, recording, and storing all pertinent information involved 

with the project, i.e. research, meeting minutes, documentation. The group has agreed to use 

Google Drive as storage and sharing means. She will also be in charge of taking meeting minutes 

and posting them to the drive.  

Heather will also be in charge of procuring all pertinent parts and materials. She is responsible for 

quoting and purchasing the parts and necessary materials that are needed to manufacture all of the 

parts that will be manufactured in house. She is also responsible for ensuring that the materials and 

parts will be procured before the beginning of next quarter so that all manufacturing can begin 
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immediately. This process includes updating the created bill of materials, pushing the already 

received quotes through to purchase orders and keeping track of all parts and materials during and 

upon delivery.  

  

6.2 Project scheduling 
A Gantt chart was utilized to create a schedule for the project and ensure that deadlines would be 

met, this chart can be seen in Appendix H.  During the design phase, direct responsible individuals 

(DRI) were assigned to each major component of the drivetrain assembly. Mike was assigned as 

the DRI for the drivetrain plate and hub, Justin was assigned to the engine mount and rear dropouts 

and Heather was given the rear sprocket and the chain. This made it possible to design the 

components in parallel and streamline the path to the final component designs.  Currently, the team 

is on track with the Gantt chart and has successfully completed the preliminary and critical design 

phases of each part and will move into the part procurement, manufacturing and eventual testing 

phase of the chart.  

 

On June 6th, the team presented their design to date during the preliminary design review with the 

senior project class and advisor. Following the PDR, the team incorporated suggested changes and 

researched new ideas. During this phase, the DRI’s for each part brainstormed design ideas, 

performed stress analysis for their parts, built SolidWorks models, and researched materials, 

manufacturing methods, and specific design criteria for their parts.   

 

Once designs were finalized, the team presented their final designs during the critical design 

review with the senior project class and advisor as well as the president of SMV on October 19th. 

During this review, feedback was given to implement changes as necessary before moving into 

manufacturing of the final designs.  

 

From November 7th to January 8th, the team will be ordering the required materials and parts as 

well as ensuring that all CAM work is being finished by the end of the quarter as to moved forward 

with manufacturing next quarter. Once manufacturing is complete, the team will perform testing 

and verification as outlined in section 5.12. After it has been verified and reported that all 

specifications have been met or after reworking designs until all specifications are met, the team 

will update the critical design report to create the final project report. The final project report will 

document the entire senior project process and outline all changes made during the construction or 

after testing of our final design. This report will be an extension of the critical design report with 

added portions for manufacturing, testing, and final conclusions of the project.  

Moving forward after the final project report, the team will focus on creating the poster that will 

be presented at the Senior Design Expo and delivering the poster, final report, and final prototype 

to our sponsor. 
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6.3 Outstanding Project Tasks 
The team has thus far completed the critical design review and report of the final designs for the 

drivetrain assembly. The path forward is highly focused on manufacturing and following the 

manufacturing plan of section of 5.7 and Gantt Chart of Appendix H. As aforementioned, finishing 

the CAM work for all of the parts that are to be manufactured in house is a very high priority along 

with ordering all parts and materials for manufacturing the finals designed parts.  Once 

manufacturing, assembling, and test verification process has been completed, the drivetrain 

assembly will be assembled into the car and integrated into the new 2018 chassis.  

Outstanding tasks following the manufacturing, testing, and verification processes include 

finishing the final report project, creating the Senior Design Expo poster, and delivering them to 

our sponsor.  
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7.0  Product Realization & Manufacturing 
 

7.1 Overall Manufacturing Plan 
The main goal during manufacturing was to ensure that each subassembly of the drivetrain system 

was ready and available in time to meet the SMV team’s milestones. With consideration to our 

own critical path for the project, we were able to prioritize the components that needed to be 

completed first. The drivetrain plate and the dropouts were the first components to be 

manufactured so that the SMV team could bond the drivetrain-chassis interfaces into the car and 

align the front and rear wheels. The sprocket was then made and fitment with the rear hub was 

checked before the sprocket fasteners were manufactured. While the sprocket and hub were being 

assembled together with the dropouts, the engine mount was being machined. After all components 

were finished being manufactured, the engine mount was installed onto the engine and dimensions 

of the two together were taken using metrology techniques. Once these measurements had been 

taken, we were able to drill the final fastening and locating features into the drivetrain plate and 

put together the fully completed drivetrain. Engineering drawings for each of the following parts 

and the assembly can be found in Appendix I. 

  

7.2 Dropouts 
The dropouts are composed of 3 main pieces, the housing, the slide, and the adjustment screw.  

Due to the fact that all 3 pieces were designed by us and were one off parts, all three had to be 

machined by us as well.  

7.2.1 Left and Right Dropout Mounts 

The left and right dropout mounts are mirror images of each other. This made machining them 

much easier. All machining was done on a Haas VF2 CNC machine and CAM work was all done 

using HSMWorks.  

All operations were first planned out for the left dropout mount and the mount was then machined. 

Once we ensured that all operations were as we planned and that the part was within spec, we 

copied the operations onto the mirror of the geometry and reran the part to get the right dropout 

mount. 

The first operation was done to get the bottom surface and mounting posts of the dropout mount. 

A 5-flute, 3 inch carbide face mill was first used to face 0.01” of stock material from the top of the 

part to give a nice and flat surface. A size A drill and 1/4 -20 form tap were then used to create the 

threads for the post. A ¾” flat endmill was then used to machine out the post geometry as well as 

machine a small corner of the piece to use as a datum in the second operation to ensure proper 

geometric relationship overall.  

The second operation focused on the main profile and inside pockets of the part. This ended up 

taking 26 individual toolpaths and to ensure the part was machined with the proper geometric 

tolerances to fit the internal slide. For brevity, not all toolpaths will be covered but a general 

overview will be given. The part was first faced using the same 5-flute, 3 inch carbide face mill 
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from the first operation. A 1/2” flat endmill was then used to create the larger pocket and slot. A 

3/8” and ¼” flat endmill were then used to clean up the sharper corners of the pocket. A ¼” ball 

endmill was then used to machine the space in which the adjustment screw would eventually be 

placed. Lastly, the ¾” flat endmill was used to hog out the outer geometry of the part as well as 

machine the lower flat surface of the part.  

The third and final operation was the simplest. The 5-flute, 3 inch carbide face mill was used to 

remove the 0.100” stock that was used to hold the part in the second operation, revealing the 

through slot and the outer part geometry. All in all, the part took roughly 2 hours of machining 

time. A picture of the end result from each operation is shown below along with the final part. 

    

Figure 34:Dropout mount geometry after each machining operation final left and right dropout mounts. 

7.2.2 Left and Right Dropout Slides 

Again, the left and right dropout slides are mirror images of each other. This made machining them 

much easier. The only difference here was that the right dropout slide was designed with an extra 

0.5” spacer in which we were going to attempt to mount a disc brake caliper to.  This never ended 

up happening due to difficulties in attachment. However, the spacer barely changed the geometry 

of the part and therefore the toolpaths were still interchangeable between the two parts, again 

making machining them much easier. The dropout slides sitting in their mount can be seen in 

Figure 35.  

The dropout slides were machined with the same Haas VF2 mill and endmills as the dropout 

mounts, thereby making machine setup much simpler. We first machined the body of the slides 

which would be located inside the mount as well as locate the location of the rear hub. This was 

the most important step as getting this step correct ensured the location of our rear wheel and hub 

assembly would be exactly where we desired it to be. We then flipped the part over and machined 

the threaded post. This was quite simple, though we continually had issues keeping the through 

axil hole and post concentric. Luckily, this was not an issue for our part, it just meant the housing 

Figure 35. Dropout mounts and slides. 

Dropout 

mount 

Dropout 

slide 
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slots had to be large enough to allow for this machining tolerance, which we had taken care of 

during the designing phase of the project. 

Lastly, the part was put on end and the last threaded hole was placed for the ¼-20 rod to be placed. 

Again, this was a very simple process and only took a minute after machine setup. A picture of the 

end result from each operation is shown below along with the final part. 

7.2.3 Adjustment Screw 

The adjustment screw was designed to be machined in a single operation on the CNC lathe. As 

with the dropout slides, the G-Code was created using HSMWorks. The toolpath used a CNMG 

432 insert for most of the work and a grooving tool to finish off the groove in the part. Lastly, the 

part was tapped using a ¼-20 hand tap and knurled using a knurling tool to give it that final touch. 

All in all, this was a fairly simple part to accomplish and multiple backups were made incase any 

were lost or damaged at competition. The adjustment screws are shown in Figure 36 below.  

 

7.3 Drivetrain Plate 
The first items completed were the aluminum brackets that would secure the drivetrain plate into 

the car. These were CNC machined by SMV team member Pedro Mogollon and were then roughed 

up with sandpaper before being given an Alumiprep bath. The Alumiprep was used to remove the 

oxide layer on the aluminum then treat it to better bond with adhesives. This process left a gold 

finish on the brackets which can be seen in Figure 37 below. 

Figure 37. Drivetrain plate brackets after being given an 

Alumiprep bath. 

Figure 36. Adjustment screws. By turning these, the slides will move 

back and forth within their mounts. 



 61 

The Divinycell foam core and carbon face sheets from Tencate were both cut using the on-campus 

waterjet behind the Architecture Engineering Machine Shop. While the carbon sheets only needed 

to resemble the outer profile of the plate, the foam core included internal features which the 

waterjet was easily able to accommodate. The Garolite inserts were machined using the Aero 

Hangar’s manual mills and Figure 38 below shows the collection of these finished parts. 

 

 

 

 

 

 

Once all components were ready, 3M brand film adhesive was placed in between the core and 

carbon sheets, the collection was inserted into a vacuum bag, and placed into the Composites Lab 

Autoclave to cure. Unfortunately, proper attention was not given to the temperature limits of the 

Divinycell foam and the heat from the Autoclave caused it to melt. This resulted in the loss of the 

part and only the aluminum brackets were able to be recovered. Despite the setback, we were able 

to quickly remake the foam core and Garolite pieces. After discussion with the SMV team’s 

Composites Lead, it was decided that a wet-layup method would be used instead of the film 

adhesive with the intention of expediting the completion of the part. This process included cutting 

carbon fiber fabrics to shape, wetting them with epoxy, and using them to wrap the foam, Garolite, 

and brackets. This collection was then vacuumed onto a glass table and allowed to cure overnight. 

Figure 39 shows the assembly as it was being cured.  

Although the resulting product came in heavier than was desired, due to the use of epoxy rather 

than film adhesive, the glass table method was able to adequately achieve a flat mounting surface 

for the drivetrain to be assembled upon. 

Figure 39. Drivetrain Plate being cured using a glass table.  

Figure 38. Individual drivetrain plate parts being test fitted. 
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7.4 Sprocket/Hub Assembly 
Material for the sprocket stock was purchased from Douglas Steel Supply and had to be picked up 

from their warehouse in the Los Angeles County. Douglas Steel Supply was chosen for their 

stretcher leveling technique which could produce exceptionally flat sheet metal. Given the special 

quality of this sheet metal, plenty of stock was purchased so that the club will have material for 

years to come. Once acquired, the sheet steel was cut to shape using the same waterjet as before. 

A rapid prototype of the sprocket had previously been 3D printed to check fitment and to refine 

the design, but once the actual sprocket was cut its fitment was again checked and confirmed to 

match the hub’s features. As an added benefit, the sprocket was given a graphite coating to reduce 

friction with the chain. 

The sprocket fasteners received a slight redesign before being manufactured. The final design for 

these fasteners can be found in Figure 40 below. Each of the three fasteners feature a solid cylinder 

sized to precisely match the pitch of the driving cog attached to the hub. The remaining two 

cylinders are threaded through-holes which were sized to be a clearance fit in both the hub’s cog 

and in the hole pattern on the sprocket. 

This greatly reduced the complexity that would have been required in machining exact fit 

components. The sprocket is secured to the hub using M8 bolts and torque is transmitted through 

the solid cylinders. Figure 40 below shows how the sprocket fasteners fit onto the hub and how 

they secured the sprocket.  

Figure 40. Sprocket fasteners on the hub (left) and the test sprocket secured onto the hub 

(right). 

Exact fit 
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7.5 Engine Mount 
Due to time constraints, the engine mount was machined by a Cal Poly Mustang ’60 Shop 

Technician. The 7.5” x 6.5” x 2” aluminum stock was purchased from onlinemetals.com.  As we 

had originally planned on machining this ourselves, a CNC operation plan was already started as 

to which operations would be done and in which order to obtain the tolerances and geometries 

desired. Therefore, it was easy to convey our ideas to the tech and allow him to complete the job 

much quicker. Several views of the mount installed on the engine are shown below in Figure 41.  

 

7.6 Final Assembly 
After all of the parts were manufactured, it was time to assemble the parts together onto the 

drivetrain plate. We first drilled the holes for the rear dropouts by securing the them together with 

the rear hub and using a transfer punch to locate the holes. Once the rear dropouts were installed, 

we worked with the SMV team to use a jig which positioned the plate in the car and then the plate-

chassis interfaces were bonded in. The result of this is pictured in Figure 42 below.  

Figure 42. Drivetrain plate with hub/dropouts 

installed into the car. 

Engine mount 

Figure 41. Engine mount installed on the engine. 



 64 

Once the mounts were bonded into the vehicle, we could continue with mounting the engine onto 

the plate. The first step in this process was to determine the relationship between the engine mount 

and the driving sprocket on the engine’s clutch. This told us where we needed to place the locating 

pins and mounting holes relative to each other onto the drivetrain plate. This was done using a 

CMM (Coordinate Measurement Machine) which uses a wand like piece to touch the part to create 

a 3D point cloud. This process is shown in Figure 43 below.  

This was then used to create a datum on the flat surface of the mount, ultimately giving us the 

angular and perpendicular distance measurements relating to the clutch sprocket. After this, an 

Optical Comparator was used to determine the final dimensions of the fastening and locating holes 

on the engine mount relative to that created datum. The dropouts were then fastened onto the 

drivetrain plate along with a test sprocket. The whole assembly was put onto a manual mill and 

Figure 44. Sprocket being trammed in and preparing to drill the holes for 

the engine mount. Note that the probe feature here was not the one used. 

The proper probe that was used is the same test indicator found in 

Appendix E. 

Figure 43. Full picture of engine and CMM (left) and the datum created (right). 

Clutch sprocket used to 

create a reference plane 

Probe as it creates a datum 

on the engine mount 
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secured with toe clamps. In the fashion shown in Figure 44, the test sprocket was trammed in just 

like a vice would be.  

By touching off on the test sprocket and calling that reference plane “zero,” the mill’s digital read 

outs were used to drill the fastening and locating holes in accordance with measurements taken in 

the metrology lab. The result of these efforts placed the clutch sprocket in the exact same plane as 

the rear sprocket. The fully assembled drivetrain is shown here in Figure 45.  

Hidden from view are the round and diamond headed locating pins that allow the engine to be 

removed from the drivetrain plate and subsequently reinstalled while maintaining the same 

alignment every time. These pins were bonded into the drivetrain plate and are exact fits with the 

reamed holes on the engine mount. 

 
 

 

 

Figure 45. Fully assembled drivetrain. 
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8.0 Design Verification & Testing 
 

8.1 Overview 
As introduced and described in section 5.13, several tests were devised to verify our design, 

ultimately leading up to the definitive test of competition. While most of these tests were 

successfully carried out, the efficiency test and alignment test could not be completed. The SMV 

team had intended to provide our Drivetrain Team with a functioning chassis dyno in order to 

measure drivetrain efficiency; however, this dyno was not completed in time leaving us with no 

way to determine the final ratio of wheel horsepower to crank horsepower. Additionally, an 

attempt to measure final alignment between the clutch sprocket and the rear sprocket was made, 

but due to size restrictions on the CMM it could not be completed. The following sections discuss 

the tests that were able to be carried out and presents their results. 

 

8.2 Sprocket Flatness 
While not specifically mentioned in the design verification plan from section 5.13, a measurement 

of sprocket flatness was done to verify our hypothesis that waterjet cutting would not distort the 

sprocket’s flatness. The sprocket was placed of a granite micro-flat table and a dial indicator was 

run around the outer edge to measure the amount of deviation. The test showed about 0.005” of 

deviation. When compared to measurements of the old sprocket at 0.0155” of deviation, this is a 

68% decrease. 

 

8.3 Sprocket-Hub Deflection/Rigidity 
Using the same test as described in Appendix E, the amount of sprocket tip movement when 

attached to the odyssey hub was measured. This test showed 0.55° of play. That measurement 

places us within our design objective of 0.8° of play and is a 41% improvement over the 0.93° of 

play in the old system. Figure 46 below illustrates the test that was conducted.   

Figure 46. Sprocket-Hub play test. 
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8.4 Removal/Installation Time 
One design goal for this project was to maintain the user friendliness of the previous design. As a 

metric for this, the amount of time it takes for a trained individual to install and remove the whole 

system was measured. We found that on average, a trained SMV team member could remove the 

entire drivetrain from the car in roughly 13 minutes. Similarly, it was measured that a trained 

individual could assemble and install the whole drivetrain in about 16 minutes. These numbers 

sufficiently pass our design objective of 30 minutes total for combined removal and installation 

time. It should be noted that these times were only achievable after 3 practice sessions with the 

individual. Most of the difficulty came from trying to reach the various electrical connectors 

between the engine and the ECU as well as issues with disconnecting the brake cable. 

 

8.5 Weight Test 
Though not of the utmost importance, the team intended to deliver a drivetrain whose weight was 

on par with the old design. The new single stage drivetrain came in weighing 4.74 kg. This missed 

our nominal goal of 4.2 kg but was within our specified tolerance limit of 5.2 kg. 

 

8.5 Cost 
The new drivetrain was able to be completed under budget by $185 with a total cost of $1,315. 

This cost is broken down in Table 5 that follows.  

 

Table 5. Cost of Drivetrain 

Item Cost 

Prototyping $138.84 

Engine Mount Stock $104.61 

Drivetrain Plate Stock $108.09 

Sprocket Stock $563.93 

Engine Mount Machining $230 

Misc. Hardware $169.53 

TOTAL $1,315 

 

The main cause of an increase of actual cost versus the cost analysis conducted in section 5.10 is 

the use of rapid prototyping to aid our designs and the need to outsource the machining of the 

engine mount. 

 

8.6 System Alignment 
As mentioned above, a proper alignment measurement with the CMM was not possible due to the 

fact that the fully assembled drivetrain with the wheel installed could not fit on the IME 

Department’s CMM. However, one of the compliance methods listed in Table 1 is through 
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inspection. As can be seen in Figure 47, the new drivetrain appears to have achieved a great deal 

of alignment. Though this is a purely qualitative analysis, comparisons to the previous system and 

the performance of the new system suggest that worthwhile improvements have been made. 

 

8.7 Alignment Repeatability  
Without the use of the CMM, alignment repeatability was again unable to be directly measured. 

Despite this, after several removal and installations of the engine, chain alignment from a visual 

standpoint seemed to be unaffected. More importantly, after continuously removing and installing 

the components that make up our drivetrain no detriment to reliability was seen since chain throw 

never occurred. 

 

Figure 47. Visual inspection of chain 

alignment. 
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8.0  Conclusion 

9.1 Preliminary Design Efforts 
For nine weeks, the Cal Poly Supermileage Drivetrain team worked to gain a thorough 

understanding of the problem at hand and worked to develop the Supermileage team’s needs into 

a series of specifications. These efforts culminated in a collection of preliminary designs and a 

strong sense of direction heading forward. A single staged chain drive was chosen with a gear 

reduction that could fall anywhere between 14:1 or 16:1. A method to have a modular drivetrain 

assembly would be retained and an improved system for finding datums upon the engine would be 

developed. Through a series of tests and measurements, areas for major improvement of 

sprocket/hub stiffness and rigidity were determined and solutions were developed. A hub with a 

clutch mechanism was found and ways to improve upon sheet metal flatness for the sprocket were 

heavily researched. Early designs for the dropouts were ideated and the most promising ones 

chosen for review. Two competing methods to achieve precise and repeatable sprocket alignment 

were developed and presented for review. At the end of this preliminary stage, a chain tensioning 

method had yet to be determined and, while design challenges related to the new hub were 

anticipated, they had yet to be determined. 

 

9.2 Critical Design Efforts 
After a review of the preliminary designs developed by CPSMD, the team moved into a seven-

week-long critical design phase. Due to packaging considerations and simplicity, a 14:1 gear 

reduction was chosen. The final geometries for the drivetrain plate, sprocket, and engine mount 

were settled upon and appropriate stress analyses were completed. An overhaul of the dropout 

design was completed and the resulting design achieved superior axle location, included a brake 

caliper mount, and achieved a chain tensioning method. A source of flat stock metal for the 

sprocket was found and price quoted. The new hub arrived and design challenges identified. A 

method for fastening the rear sprocket onto the hub was designed and initial ideation for solutions 

to mounting a brake disc onto the hub were conducted. The preemptive alignment method for the 

engine and rear sprocket was chosen and the process for carrying this out further detailed. A parts 

list including necessary hardware was compiled and detailed drawings or spec sheets were created. 

With a manufacturing and verification plan laid out, the team planed to move forward and order 

the necessary stock and hardware, build prototypes, conducted testing, and began the 

manufacturing/measurement process of the engine mount. In parallel, high priority was assigned 

to efforts for developing a solution to mounting the brake disc. 

 

9.3 Final Design 
The final design for the 2018 Supermileage Drivetrain saw only small tweaks from our CDR. Most 

notably, was the decision to abandon a disc brake and the successful application of a rim brake. It 

is fair to say that the use of a rim brake was not an ideal solution but a thoroughly adequate one. 

The only other component that saw a redesign was the sprocket fastener which featured particularly 

chosen exact fit and clearance fit features that greatly simplified their manufacturing and assembly.  
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All in all, the CPSMD Team was able to deliver a functioning drivetrain to the SMV team on time 

and under budget. At competition, two full 10-mile runs were able to be completed. Three more 

attempts were made, but due to mental errors on the SMV team’s behalf and a steering system 

failure they were not completed. In each of the attempts, (successful or otherwise) the drivetrain 

performed reliably without ever throwing a chain. Through the work of the CPSMD Senior Project 

team, we were able to produce a Supermileage drivetrain system with a single staged 14:1 gear 

reduction which had unmatched reliability when compared to years past. It is believed that no 

single design decision is responsible for this success, but rather it is the culmination of precisely 

manufactured and aligned components that was able to produce this result.  

 

9.4 Lessons Learned and Areas with Potential for Improvement 
Throughout the manufacturing process, several areas with potential for improvement began to 

arise. The first lesson learned included the mishap with melting the drivetrain plate core material. 

In the past, balsa wood was used as core and curing temperature was not an issue. While switching 

to Divinycell makes acquiring the core material easier, care must be taken to not exceed its 

temperature limit. Since the film adhesive does not require to be cured at temperature (the oven 

had been used in an attempt to speed up the cure process), the original process of carbon face 

sheets and 3M film could still be accomplished. However, with the success of the wet layup, one 

might elect to use this simplified process. It should be noted that the larger amount of epoxy used 

resulted in a heavier part when compared to the film adhesive approach. Also, when choosing the 

wet layup method, attention must be given as to which side is facing the glass surface of the table. 

In our case, the bottom of the drivetrain plate was accidentally vacuumed to the glass rather than 

the top. This required a good deal of sanding and epoxy to fill in the roughness that resulted from 

the layup. 

Along these same lines, there were many lessons to be learned during the machining phase of the 

build. As these were the first parts completely designed and CNC machined by ourselves alone, 

there were many hurtles to surpass before achieving parts we deemed acceptable for our high 

standards of accuracy. Most of these lessons were learned at the beginning, with the machining of 

the dropout slides. As the slides were the first parts to be CAM’d and machined, we were able to 

get insight into fixturing techniques to give us better surface finish, as well as tool path sequences 

that would allow for the use of larger tools, ultimately reducing chatter and giving us better surface 

finishes and tighter tolerances. This process was not without its multiple broken endmills and taps 

as well as a few more scrapped pieces of stock metal than we would like to admit, though in the 

end we were able to take away machining skills only learned through trial by fire. 

While the process of waterjet cutting the sprocket was very successful in achieving its shape and 

retaining its flatness, it was found the finished sprocket is very susceptible to damage. Simply by 

allowing SMV team members to carelessly handle the sprocket, it was quickly bent. Thankfully, 

with the excess stock sheet metal, multiple replacement sprockets were made and could be quickly 

swapped out when damaged. In the future, it may beneficial to reinforce the sprocket with a carbon 

layup to improve its resilience to bending when dropped or stepped on. 
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After CDR, a great deal of effort was given towards the rear braking system. Many attempts to 

come up with a way to mount a brake disk to the hub were made, but ultimately, they all were 

abandoned. While this project was unable to devise a solution in time that would allow a disc brake 

to be added to the Odyssey hub, a rim brake was able to be successfully installed. The rim brake 

required some slight modifications and is a real hassle to work around, but it was able to 

consistently pass the braking tests at competition. There is still some possibility for a disc brake 

solution (or some other creative braking solution) to be devised; however, future iterations may 

desire to look into disc brake compatible hubs. It is the opinion of this senior project team that the 

improvements seen in sprocket-hub rigidity and freecoasting from the Odyssey hub greatly 

outweighed the hassle of using rim brakes. 

 

 

 

 
 

2018 Supermileage Car, DeLamina: 4th place; 1,292 miles per gallon 
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Appendix B: Quality Function Deployment 
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Ease of access (maintenance) 10 3 1 1 1 3 3 3 9 4 4 4

Ease of installation 10 9 1 1 1 1 1 3 9 3 3 3

Alignment/Tension repeatability 15 9 1 9 1 1 3 9 3 2 3 4

Reliability 14 9 1 1 9 9 9 5 2 5
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Appendix C: Various Component Ideation 
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Appendix D: Weighted Decision Matrix 
 

 

Design	
Criteria	

		

Cost	 Shelf	Life	 Speed	
Application	

Life	 Stretch	 Alignment	 Efficiency	 Overall	
Satisfaction	

Alternatives	 0.1	 0.1	 0.1	 0.2	 0.1	 0.3	 0.3	 	

Chain	drive	system	 50	
	
																5	

90	
	
																9	

75	
	
														7.5	
																																

50	
	
																5	

90	
	
															9	

90	
	
															27	

90	
	
																27	

	
	
													98.5	

Belt	drive	system	 50	
	
																5	

50	
	
																5	

90	
	
																9	

50	
	
																5	

75	
	
															7.5	

75	
	
													22.5	

75	
	
												22.5	

							
	
												76.5	

	

	

	

Design	
Criteria	

		

Cost	 Size	
Restrictions	

Alignment	 Components	 Efficiency	 Weight	 Overall	
Satisfaction	

Alternatives	 0.1	 0.2	 0.2	 0.1	 0.3	 0.1	 	

Single-stage	reduction	 75	
	
														7.5	

50	
	
																10	

75	
	
														15	
																																

90	
	
																9	

90	
	
														27	

90	
	
															9	

	
	
													68.5	

Two-stage	reduction	 50	

	
																5	

75	

	
															15	

75	

	
																15	

75	

	
														7.5	

75	

	
													7.5	

75	

	
													7.5	

							

	
												57.5	
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Appendix E: Sprocket and Hub Assembly Deflection Testing 
The testing procedure for sprocket and freewheel deflection was developed by reasoning that if a 

chain is not perfectly parallel to the sprocket, it is the normal component of the driving force that 

causes bending. In order to simulate this scenario, the wheel-hub-sprocket assembly was placed 

on a surface plate and a test mass was placed on the outer edge of the sprocket. Initial analysis of 

the current drivetrain was achieved through calculations to determine a reasonable range for what 

this test mass could be. Once that was done, a weight which was available in the Hangar was 

chosen and weighed to ensure it was within this range. An extreme case of 16° of chain 

misalignment was backed out using the test mass available and the force derived from the engine's 

peak torque. Figures #’s below show the test rig set up.  

 

Figure #. Testing of the freewheel play. 

Figure #. Close up of the inner and outer race of the freewheel. 
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Despite having used the jack stands and the test indicator to ensure that the wheel was level, the 

sprocket itself is not exactly balanced so it could have been resting at an angle with respect to the 

wheel’s plane. To overcome this, the test mass was first placed on one edge of the sprocket, 

measurements were made, the test mass was moved to the opposite edge of the sprocket, and the 

measurements were made again. This process effectively swept through the full amount of 

deflection in both directions from the center and accounted for any initial wobble there may have 

been. By making measurements of how much the outer race of the freewheel moved up or down 

and then making measurements of how much the outer edge of the sprocket moved up or down we 

could compare the two. Knowing the distance from the center and these heights, trigonometry 

determined an angular amount of play in the assembly. The difference between the angle of play 

at the freewheel and the angle of play at the sprocket tip tells you how much deflection each one 

is responsible for. The 14-inch steel sprocket was chosen since it would be closer in size to the 

15:1 sprocket and the steel would be more susceptible to bending than would titanium. The results 

of this test showed that the angle of play at the freewheel and the angle of play at the sprocket tip 

was exactly the same. This suggests that there is no measurable amount of deflection within the 

sprocket material under this loading condition and all play within the wheel assembly could be 

attributed to the freewheel. 

  

Figure #. Measurements of sprocket edge movement. 
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Appendix F: Chain Alignment Specification Calculations 
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Appendix G: Rotational Kinetic Energy Comparison 
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Appendix H: Gantt Chart 
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Appendix I: Component Drawings 
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Appendix J: Bill Of Materials & Part Specifications Sheets 
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Note: See Bill of Materials for specific aluminum stock needed for each part. 
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Note: See Bill of Materials for specific aluminum stock needed for each part. 



 111 

Appendix K: Force Calculations 
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Appendix L: Sprocket FEA 
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Appendix M: Design Verification Plan and Report 
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Appendix N: Hazard Checklist 

 

 


