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Abstract 

 The Microgrid is a small-scale electrical system that is designed to give Cal Poly students 

hands-on experience on power generation, system protection, distribution, and automation that 

would otherwise be very difficult to experiment in a large-scale model.  

 To closely replicate the modern electrical grid, a renewable energy source shall be added 

to the Microgrid in conjunction with the existing synchronous generators. Electrical engineering 

student, Virginia Yan initiated this effort, namely Grid-Tied Solar System project [1], by 

designing and constructing a set of solar panels and microinverter for future connection to the 

Microgrid. The scope of Virginia’s project was, however, limited to designing and constructing 

the panels and microinverter.  

 This Microgrid Renewable Energy Integration project aims to integrate the designed solar 

panels and microinverter to the Microgrid by testing the microinverter when running on islanded 

mode that replicates the Microgrid and eventually running with the Microgrid. The project 

develops test methods and solutions to enhance integration capability from the test results. In 

addition, this project implements basic power protection elements such as over-current and 

under-voltage. Protection schemes and monitoring are configured using Schweitzer Engineering 

Laboratories (SEL) relays, such as SEL-751 Feeder Protection Relay and SEL-735 Power 

Quality Meter. The success of the Microgrid Renewable Energy Integration project guarantees a 

smooth synchronization and secured operation of the microinverter to the Microgrid.  
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Chapter 1. Background  

1.1 Traditional Grid 

 The traditional grid typically contains generation units which are typically far away from 

the load, and a transformer to step up the voltage for transmission. The electricity is then stepped 

down via a transformer for distribution via a distribution network (Figure 1). The U.S. electric 

grid consists of three interties (Figure 2) with 300 electric utilities and over 300,000 miles of 

transmission and distribution lines. In the traditional grid, power flows unidirectionally from 

power plants to the load, typically referred to as non-distributed generation [2]. 

 
Figure 1. Electric Grid Infrastructure 

 

 

Figure 2. The United States Power Grid 
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1.2 Smart Grid 

 The smart grid shares similar distribution system infrastructure with the traditional grid. 

However, the smart grid better represents the modern-day grid which replaces the traditional grid 

by moving generating units closer to the load with sophisticated levels of automation and 

communication (Figure 3). In a smart grid system, renewable resources such as solar turn the 

power flow to a bidirectional flow. All grid-tied electrical equipment and protection relays 

communicate with each other to increase efficiency and reliability [2].  

 

Figure 3. Smart Grid Elements 
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1.3 The Microgrid 

 The microgrid shares many characteristics with the smart grid such as automation, 

communication, and smart protection systems. The key differences between a microgrid and a 

smart grid are the small-scale and self-sustainability of the microgrid. The microgrid can be 

islanded (isolated from the utility grid) and self-sustain for a designed period. In a microgrid 

system, the loads are much closer to the generating units [3].  

 The Cal Poly Microgrid (referred to as “the Microgrid” throughout this report) was 

developed based on the idea of a self-sustainable smart grid. The Microgrid consists of two 

synchronous generators as the main generating units, one-to-one transformers, modelled 

transmission lines, static loads, induction motors, and capacitor banks (Figure 4).  
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Figure 4. Microgrid System Diagram (Future Grid-Tied Solar System circled in red) 
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1.4 Grid-Tied Solar System [1] 

 The Grid-Tied Solar System is referred throughout this report as a completed hardware 

system designed by electrical engineering student Virginia Yan. The system consists of four 

solar panels, a three-phase microinverter, DC disconnect switch, and an AC circuit breaker. Two 

panels are connected in series and mounted on a movable cart with solar tracking capability. The 

photovoltaic panels absorb the solar energy and generate direct current (DC) electricity. The DC 

electricity is converted to AC electricity using a microinverter. For the Microgrid application, 

this AC electricity is a three-phase Y-connected 120/208V system. The DC disconnect switch 

isolates the solar panels from the other parts of the circuit when power outages or natural 

disturbances occur. The AC disconnect switch (circuit breaker) disconnects the solar panels and 

microinverter from the rest of the circuit when a fault is detected. The AC circuit breaker can be 

operated manually or by SEL relays (Figure 5). 

 

Figure 5. Level 1 Grid-Tied Solar System Design Functionality (By Virginia Yan) 
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Figure 6. Overall Grid-Tied Solar System (By Virginia Yan) 

 

1.5 Variable Three-Phase Load 

 Various tests described in this report use a variable three-phase load. This variable three-

phase load consists of a three-phase variac (Figure 8) in series with a Y-connected three-phase 

load. The main difference between a variac and a transformer is the absence of the secondary 

coil in which the variac’s secondary voltage is varied by varying the tapping point along the coil. 

As a result, the arbitrary number of turns on the secondary is always less than the number of 

turns on the primary. The variable three-phase load works based on the principles of an ideal 

transformer (Figure 7). It is convenient to describe the variac using an ideal transformer model.  

𝑁1

𝑁2
=

𝑉1

𝑉2
=

𝐼2

𝐼1
→ 

𝑅1

𝑅2
=

𝑉1

𝐼1

𝑉2

𝐼2

=
𝑉1

𝑉2
×

𝐼2

𝐼1
=

𝑁1

𝑁2
×

𝑁1

𝑁2
= (

𝑁1

𝑁2
)2 

Therefore, the secondary resistance as seen on the primary side 𝑅1 = 𝑅2(
𝑁1

𝑁2
)2 
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Figure 7. Transformer Principle 

 

 

Figure 8. Single-Phase Variac 
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Table 1. Varying Resistance by the Variac Positions 

Variac Position 𝑽𝟏 (𝐕) 𝑰𝟏 (𝐦𝐀) P (W) 𝑹𝟏 (𝛀) 𝑹𝟐 (𝛀) 

1 206.60 84.6 28 1304 216 

2 206.60 113.2 38.8 1009 216 

3 206.60 158.3 55.2 734 216 

4 206.60 211.7 34.6 257 216 

5 206.60 278.9 98.3 421 216 

6 206.60 350.7 124.5 337 216 

7 206.60 429 152.4 276 216 

8 206.60 513.6 183 231 216 

9 206.60 581 207 204 216 

Example calculation assuming ideal variac: 𝑅1 =
𝑃

3(𝐼1×10−3)2 =
28

3(84.6×10−3)2 = 1304 (Ω) 

 From Table 1, as the variac position increases, 𝑁2 will also increase from 0 to 1, thus, 

(
𝑁1

𝑁2
) will decrease to 1. Therefore, when the variac position reaches “9”, the ratio (

𝑁1

𝑁2
) also 

approaches 1 causing the magnitude of the secondary resistance to approach the primary 

resistance.  

 

1.6 acSELerator QuickSet SEL-5030 Software 

 The acSELerator QuickSet SEL-5030 Software is a tool for technicians and engineers to 

conveniently and quickly program, configure, and manage power system protection, metering, 

and monitoring SEL device. The software is used extensively for this project to program the 

SEL-751 Feeder Protection Relay and monitor the SEL-735 Power Quality Meter using the 

Human Machine Interface (HMI) feature [7]. 
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Chapter 2. Project Description 

 The Microgrid Renewable Energy Integration project’s first objective is to integrate the 

solar panels and microinverter to the Microgrid. A successful integration requires that the 

microinverter does disconnect itself or cause the synchronous generators to trip when isolated 

from the utility grid. This project develops a series of tests to evaluate the microinverter’s 

capability to work with the Microgrid in an isolated environment. The test results are analyzed to 

develop a solution to fix potential problems.  

 The second objective of this project is to install protective relays to protect the Microgrid 

and the microinverter from grid disturbances and faults. The AC current and voltage signals are 

monitored by both the SEL-751 Feeder Protection Relay and SEL-735 Power Quality Meter. The 

SEL-735 provides high-accuracy revenue metering, displays real-time current and voltage 

signals, and captures power quality disturbances. The SEL-751 sends trip signals to open the AC 

circuit breaker if a fault or grid disturbance such as overcurrent, overvoltage, or under-frequency 

conditions are detected. The circuit breaker is used a relay-controlled circuit breaker and a switch 

to isolate the inverter from the grid.  
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2.1 Islanded Mode Test 

 The Islanded Mode Test replicates a small portion of the microgrid that represents the 

self-sustainability characteristic. The test is designed to observe the behavior of the microinverter 

and the reaction of the synchronous generator during the isolation process from the utility grid. 

  The setup consists of a synchronous generator and a coupled DC motor to form a 

generator, a three-phase load, a Yokogawa WT130 three-phase power meter, an APsystem 

microinverter, and two solar panels (Figure 9). Detailed Islanded Mode Test Program is attached 

at Appendix A.  

 
Figure 9. Islanded Mode Test Wiring Diagram 
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 Figure 10 and Figure 11 show the actual setup of the Islanded Mode Test. The test takes 

place in the power lab room 20-102 and the solar panels are installed at the hallway between 

building 20A and room 20-102.  

 

Figure 10. Islanded Mode Testbench Setup 

 

 
Figure 11. Solar Panel Setup of the Islanded Mode Test 
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Test Data 

 The microinverter outputted approximately 141W after synchronizing with the utility grid 

(Figure 12) and the generator outputted 0.09A current per phase (32.4W). The three-phase load 

drew about 0.57A current per phase (205.2 W) (Figure 13).  The utility grid supplied 

approximately 31.8W.  

 

Figure 12. Microinverter’s Output Power Display on the ECU 

 

 
Figure 13. Generator and Load Phase Currents 
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Test Result 

 The microinverter disconnected after isolation.  

Investigation 

 With the microinverter delivering power, the system received approximately 32W from 

the utility grid. Upon isolating the system from the utility grid (islanded mode), the synchronous 

generator made noise and instantly dropped its speed below 1780 RPM (59.3 Hz) and returned to 

1795 RPM (59.8 Hz). The microinverter sensed the decrease of frequency and disconnected 

itself from the system. It was believed that when isolation occurred the 32W load transferred to 

the synchronous generator causing it to decrease in speed and voltage, causing the 

microinverter’s internal protection to disconnect itself.  
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2.2 Modified Islanded Mode Test 

 The Modified Islanded Mode Test attempts to solve the problem with speed fluctuation 

of the synchronous generator after isolation from the grid presented in Chapter 2.1. The idea is to 

minimize the reliance on the utility grid except for grid frequency and voltage support. To 

achieve this independence the system must draw as little power from the infinite bus as possible. 

This ensures that no load will transfer to the synchronous generator and cause the speed and 

voltage to drop during the isolation process.  

 This test proposed the addition of a variable three-phase load. The load shall be tuned to 

draw 0W from the infinite bus. The 0W requirement from the infinite bus can be interpreted as 

both the microinverter and the synchronous generator provided enough power to self-sustain, and 

only needed the utility grid for initial synchronization. The setup consists of a synchronous 

generator and a coupled DC motor to form a generator, a fixed three-phase load, a variable three-

phase load, a Yokogawa WT130 three-phase power meter, microinverter, and solar panels 

(Figure 14). The test also moved the microinverter from the solar panel cart to the power lab 

room 20-102 and replaced the AC transmission line with a DC transmission line for 

convenience. The test setup is shown in Figure 15 through Figure 18.   

 It is important to be aware that the proposed load adjustment method is chosen to reduce 

the reliance on the utility grid because neither the inverter nor the solar panels has the capability 

to change the output power. Varying the output power by changing the tilt angle of the solar 

panels is possible but difficult to implement and control. In reality, the loads are controlled by 

the customer and it is therefore impractical to vary the load unnecessarily. Detailed Islanded 

Mode Test Program is attached at Appendix B. 
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Figure 14. Modified Islanded Mode Test Wiring Diagram 

 

 Figure 15 and Figure 16 detail the physical test setup on bench 3. Figure 17 shows the 

physical test setup on bench 4 with the ABC terminals wired to the Yokogawa WT130 and to the 

ABC terminals of bench 3.  

 

Figure 15. Modified Islanded Mode Test Setup (Part 1) 



 

21 

 

 

 

Figure 16. Modified Islanded Mode Test Setup (Part 2) 

 

 

Figure 17. Modified Islanded Mode Test Setup (Part 3) 
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Figure 18. Modified Islanded Mode Solar Panel Setup 

 

Test Data 

 Table 2 shows the voltage, current, and power measurement from the Yokogawa power 

meter before and after the microinverter started to deliver power.  

Table 2. Yokogawa Measurements Before and After the Microinverter’s Synchronization 

Microinverter 

Synchronization 

Grid Voltage 

(V) 

Grid Current  

(mA) 

Grid Power 

(W) 

Variac 

Position 

Before 206.8 140.2 48.7 2.5 

After 207.1 116.7 -35.5 2.5 

 The positive power reading of the Yokogawa means the grid was delivering power to the 

variable three phase load. Once the microinverter started delivering power to the system, the 

power reading became negative. The microinverter generated more power to feed the variable 
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three-phase load (48.7W) and the remaining power (35.5W) transferred to the grid. Figure 19 

shows the output power of the microinverter recorded and uploaded by the ECU to the APsystem 

EMA server at the time of this test.  

 
Figure 19. Output Power of the Microinverter using Energy Monitoring & Analysis (EMA) 

 

 The variac knob was turned to position 4 to increase the three-phase load and reduce 

power delivered to the utility grid. The resultant power flow was 5W being received from the 

utility grid. At this point the utility switch was turned off. The speed of the generator increased to 

1805 RPM (60.16 Hz) while the terminal voltage dropped to ~114V L-N. Field current injection 

into the synchronous machine increased the terminal voltage to 120V L-N and reduced the speed 

to ~1801 RPM (60.03 Hz).  

Test Result 

  The microinverter remained connected and supplied power to the load along with the 

synchronous generator. The microinverter, the generator, and the load successfully formed a 

small microgrid.  
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Conclusion 

 This test demonstrated the ability of the microinverter to work in a microgrid 

environment where the utility frequency and voltage support was not always available. The load 

adjustment solution to reduce the reliance and minimize the impact of the utility grid during the 

isolation process proved to be effective. When connected to the Microgrid, the power output of 

the generator shall be adjusted to reduce the reliance on the utility grid.  
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2.3 SEL-735 Power Quality and Revenue Meter Test 

 The SEL-735 Power Quality and Revenue Meter Test ensures the SEL-735 works 

properly before connecting to the microinverter. Successful testing will qualify the SEL-735 as a 

replacement for the traditional Yokogawa WT130 digital power meter in measuring voltage, 

current, power, and power factor of the grid-tied solar system. This test will gather voltage, 

current, and power data from the SEL-735 to compare with the data from the WT130. 

Additionally, the user interface and ease of operation of the SEL-735 will be evaluated.  

 The test consists of the WT130, SEL-735, circuit breaker, and a variable three-phase 

load. A 120/208V Y-connected three-phase source is connected in series with the WT130 and to 

the SEL-735 through a circuit breaker. The output of the SEL-735 is connected to the variable 

three-phase load (Figure 20).  

 
Figure 20.  SEL-735 Power Quality and Revenue Meter Test Wiring Diagram 

 Prior to energizing the circuit, the SEL-735 shall be connected to a computer via an SEL 

C-662 USB serial cable with the acSELerator QuickSet SEL-5030 Software preinstalled (Section 

1.2) for programming purposes. Detailed step-by-step communication setting and programming 

for the SEL-735 are attached at Appendix B. Actual test setup is shown in Figure 21. 
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Figure 21. SEL-735 Power Quality and Revenue Meter Test Setup 

 

Test Result 

 After closing the circuit breaker, the SEL-735 automatically meters the three-phase 

current, voltage, power, and energy quantities. The RMS values are displayed on the front-panel 

LED screen. Figure 23 shows the front-panel power display, other quantities can be displayed 

using up/down arrows. Additionally, acSELerator QuickSet can display synchrophasor data, 

phase/sequential components, near real-time waveforms…etc [6]. The Human Machine Interface 

(HMI) (Figure 22) offers detailed metering data and replicates the front panel buttons providing a 

convenient remote-control capability of the SEL-735.  
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Figure 22. acSELerator QuickSet HMI for the SEL-735 

 

 

Figure 23. SEL-735 Front Panel Display 
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 Figure 24 shows the RMS values of the voltage, current and power as measured by the 

Yokogawa WT130. The voltage and current magnitudes of the WT130 (119.5VL-N/207VL-L, 

422.5mA, and 153W) closely match with those measured by the SEL-735 (119VL-N, 0.42A, and 

0.15kW).  

 
Figure 24. Yokogawa WT130 Front-Panel Display 
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 Figure 25 shows the energy metering values. The SEL-735 calculates four-quadrant volt-

ampere reactive (VAR) values following IEEE VAR sign convention (Figure 26). The meter 

updates the four-quadrant VAR metering every 10/12 cycles [6]. 

 

Figure 25. acSELerator QuickSet Energy Display 

 
Figure 26. IEEE VAR Sign Convention (From SEL-735 Instruction Manual) 
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 Figure 27 shows the phasor display of the SEL-735 in acSELerator QuickSet. The meter 

calculates the zero-, positive-, and negative-sequence components’ magnitude and angle for both 

voltage and current. The meter updates the symmetrical components and analog quantities every 

half cycle [6]. 

 

Figure 27. acSELerator QuickSet Phasor Display 

 

 Figure 28 and Figure 29 present the wave view feature in the acSELerator QuickSet for 

the SEL-735. The wave view offers near real-time oscilloscope-like waveforms and harmonic 

histogram of the current and voltage. The recorder can sample at 128 or 512 samples/cycle. The 

recording duration can vary from 2 to 60 cycles [6]. 
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Figure 28. acSELerator QuickSet Current Waveform 

 

 

Figure 29. acSELerator QuickSet Voltage Waveform 
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Test Conclusion 

 The SEL-735 Power Quality and Revenue Meter Test was successful in evaluating the 

basic functionality of the SEL-735 Power Quality and Revenue Meter in metering voltage, 

current, power, and energy. This test qualified the SEL-735 to replace the traditional Yokogawa 

WT130. The back-panel connection of the SEL-735 was intuitive and simple. The SEL-735 

quickly connected to the acSELerator QuickSet software via the C-662 USB serial cable to 

greatly expand its capability in displaying synchrophasors, symmetrical components, harmonics, 

and waveforms.  

 Although this test was limited in testing only the basic function, the remaining unutilized 

features such as sags, wells, and interruption detection, event report trigger, flicker measurement, 

time-of-use metering, and line-loss compensation prove the tremendous potential of the SEL-

735. Future recommendations to maximize the SEL-735 capability is included in the Chapter 8. 

Future Work and Recommendation.  
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2.4 SEL-751 Feeder Protection Relay Test 

 The SEL-735 Feeder Protection Relay Test tests the basic protection function of the SEL-

751 which includes the 50P instantaneous phase overcurrent element and 27P undervoltage 

element. This test verifies the circuit breaker’s tripping capability when triggered by the SEL-

751’s trip signal. Successful testing will qualify the SEL-751 relay to protect the APsystem 

YC1000-3-208 microinverter whose protection has so far relied on the internal protection 

scheme of the microinverter. The test will analyze the event report generated by the SEL-751 

following each overcurrent and undervoltage event.  

 The test consists of the Yokogawa WT130, SEL-751, a circuit breaker, a three-phase 

variac, and a variable three-phase load. A 120/208V Y-connected three-phase source is 

connected in series with the variac and to the WT130. The output of the WT130 is wired to the 

SEL-751 through a circuit breaker and to a variable three-phase load as seen in Figure 30. 

 

Figure 30.  SEL-751 Feeder Protection Relay Test Wiring Diagram 
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 Prior to energizing the circuit, the SEL-751 shall be connected to a computer via an SEL 

C-662 USB serial cable with the acSELerator QuickSet SEL-5030 Software preinstalled for 

programming purposes. Detailed step-by-step communication setting and programming for the 

SEL-751 are attached at Appendix C. Actual test setup is shown in Figure 31 and Figure 32. 

 
Figure 31. SEL-751 Feeder Protection Relay Bench 3 Test Setup (Part 1) 

 
Figure 32. SEL-751 Feeder Protection Relay Test Bench 4 Setup (Part 2) 
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 Figure 33 shows the distribution panel setup at the back of room 102 which provides the 

AC and DC power supply to the test. The distribution panel also consists of terminals associated 

with each test bench allowing convenient bench-to-bench connection.  

 

Figure 33. SEL-751 Feeder Protection Relay Test Distribution Panel Setup 

 

 Table 3 and Table 4 show the initial configuration and pick-up value settings for the 

SEL-751 Feeder Protection Relay Test. The CT and PT ratios are set to 1 since the voltage and 

current reported in this test have a small magnitude. The three-phase source and load are both Y-

connected, thus, the transformer connection type is set to WYE. The overcurrent pick-up value is 

arbitrarily set to 0.5A which is corresponding to the variac position 8 (Table. 1). The 

undervoltage pick-up value is arbitrarily set to 113V. No delays have been added at this point. 
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Table 3. Modified Configuration Settings 

Setting Prompt Setting Name Selected Range/Selections 

Phase A, B, C CT Ratio CTR 1 1 – 5000 

Neutral (IN) CT Ratio CTRN 1 1 – 5000 

PT Ratio PT 1 1 – 10000 

Synch. Voltage (VS) PT Ratio PTRS 1 1 – 10000 

Transformer Connection DELTA_Y WYE WYE, DELTA 

Line Voltage, Nominal Line-to-Line (volts) VNOM 208.00 20 – 480, OFF 

 

Table 4. Initial Pick-Up Value Settings 

Setting Prompt Setting Name Selected Range/Selections 

Maximum Phase Overcurrent Trip Pickup 50P1P 0.5 0.25 – 100.00, OFF (A) 

Maximum Phase Overcurrent Trip Delay 50P1D 0 0.00 – 400.00 (Sec) 

Undervoltage Trip 1 Pickup  27P1P 113.00 2.00 – 300.00 (V) 

Undervoltage Trip 1 Delay 27P1D 0 0.00 – 120.00 (Sec) 

Phase-Phase Undervoltage Trip 1 Pickup 27PP1P 197.00 2.00 – 520.00 (V) 

Phase-Phase Undervoltage Trip 1 Delay 27PP1D 0 0.00 – 120.00 (Sec) 
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 The trip logic setting is rather intuitive in which the trip logic equation is asserted to 

logical 1 once the listed element, such as 50P1P or 27P1, is asserted to logical 1. Following a 

fault, the trip signal remains asserted until all the following conditions are true [5]: 

• Minimum trip duration time (TDURD) passes (Ex: 27P1D, 50P1D) 

• The TR logic equation de-asserts to logical 1 

• One of the following occurs: 

o Unlatch Trip logic equation ULTRIP asserts to logical 1 

o Target Reset equation RSTTRGT asserts to logical 1 

o Target Reset Relay TRGTR asserts (Front-panel TARGET RESET is pressed) 

 The unlatch trip logic plays a significant role in maintaining the trip asserted until the 

fault is eliminated. Therefore, the 50P1P and 27P1 elements are both included in the trip and 

unlatch trip logic equations as shown. Additionally, the 50P1P and 27P1 are included in the 

event report trigger equation for further fault analysis.  

• Trip logic: TR = ORED50T OR ORED51T OR ORED81T OR REMTRIP OR OC OR 

SV04T OR 50P1P OR 27P1 

• Unlatch trip logic: ULTRIP = NOT (51P1P OR 51G1P OR 51N1P OR 52A OR 50P1P 

OR 27P1) 

• Event Report Trigger: ER = R_TRIG 51P1P OR R_TRIG 51G1P OR R_TRIG 50P1P 

OR R_TRIG 50G1P OR R_TRIG 51N1P OR R_TRIG CF OR R_TRIG 27P1 

 Finally, the output OUT101 (A03 and A04) of slot A is used to connect to the trip 

terminal of the circuit. The trip logic TR is added onto the OUT101 SELogic control equation 

which drives OUT101. 

• OUT101 = HALARM OR SALARM OR AFALARM OR TR 
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Test Result 

 After closing the circuit breaker, the element 50P1P instantaneous overcurrent pick-up 

asserted, thus, causing the SEL-751 Relay to trip the circuit. The 50P1P’s pick-up triggered an 

event report (Figure 34) which was analyzed in SEL synchroWAVe software. The current spike 

circled in white in Figure 34 lasted approximately 30ms (1.8 cycles). Although the magnitude of 

the transient current was high, the duration of the transient was very short and caused no harm to 

the system. However, this transient current spike caused an unwanted trip which must be 

eliminated. 

 

Figure 34. Overcurrent Event Report (Current Spike at Top Graph) 
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Investigation 

 The source of this transient current was suspected to come from the damping of the 

unintentionally created R-L circuit by combining the variac and the three-phase load. While the 

three-phase load is purely resistive, the variac was made of the copper winding wrapped around a 

steel core which was inherently inductive [11]. To further verify the cause of the spike, the 

investigation eliminated both variacs and repeated the test three times with a fixed voltage 

(120/208V) and fixed three-phase load (216 Ω). 

 After removing the variacs, the circuit behaved normally and the SEL-735 no longer 

tripped shortly after the circuit breaker closed. It was concluded that the combination of the 

variacs and the resistive load created an R-L circuit whose damping caused the transient spike.  

 

Solution 

 To avoid the unwanted trip from the transient current, a time delay was added to the 

50P1P element for the purpose of this test, although in practice, the 51P1P time-over current 

element would be preferred for its inherent time delay. The modification included changing the 

phase overcurrent trip delay 50P1D from 0 to 0.25 second to bypass the transient current 

duration. This delay required the 50P1T to replace the 50P1P in the TR equation (Figure 35) to 

take effect [5].  

 
Figure 35. Graphical Logic of the Maximum Phase Overcurrent [5] 

→  Trip logic: TR = ORED50T OR ORED51T OR ORED81T OR REMTRIP OR OC OR 

SV04T OR 50P1PT OR 27P1 
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Figure 36. Undervoltage Event Report (After adding time-delay to 50P1P) 

 

 Although the time delay has been added to the 50P1P element, the SEL-751 still tripped 

the circuit right after closing the circuit breaker. Further analysis in the event report showed the 

phase-to-phase undervoltage element asserted and caused the 27P1, thus, the TR equation to 

assert (Figure 36). It was observed that when the transient current occurred, the voltage dipped 

below the pick-up value of the 27PP1 undervoltage element (197V L-L) . To bypass this 

transient current, a 0.25 second time delay was also added to the 27PP1 using phase- and phase-

to-phase undervoltage delay 27P1D and 27PP1D, respectively to bypass the duration of the 

spike. To reflect this time delay addition, the 27P1T replaced the 27P1 logic in the TR equation.  

→  Trip logic: TR = ORED50T OR ORED51T OR ORED81T OR REMTRIP OR OC OR 

SV04T OR 50P1PT OR 27P1T 
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 After the time delay was introduced to the 50P1, 27P1, and 27PP1, the SEL-751 

accurately bypassed the current spike period upon the circuit breaker closure. As the variac of the 

three-phase variable load approached position 8, the load drew approximately 0.514A (Table 1) 

per phase which was above the threshold of the overcurrent pick-up value (0.5A). Consequently, 

the element 50P1P asserted and 50P1T became asserted to logical 1 after the added delay in 

50P1D expired (Figure 37). The trip equation TR asserted, thus, the SEL-751 tripped the circuit.  

 

Figure 37. Overcurrent Trip Event Report 

 Similarly, as the input voltage variac’s knob was turned down to lower the voltage below 

the pick-up value of 113V L-N, the undervoltage element 27P1P expectedly picked up. The 

27P1T became asserted to logical 1 after the added delay in 27P1D expired (Figure 38) causing 

the trip equation TR to assert, thus, the SEL-751 tripped the circuit. 
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Figure 38.  Undervoltage Trip Event Report 

 

Conclusion 

 The SEL-751 Feeder Protection Relay Test was successful in testing the basic protection 

function of the SEL-751. The test verified that the 50P1 instantaneous phase overcurrent element 

and 27P1 undervoltage element asserted to logical 1 when the current exceeded the threshold, or 

the voltage dipped below the threshold. Since both protection elements were included in the trip 

equation TR, the SEL-751 sent a trip signal upon any 50P1 or 27P1’s assertion. This test also 

verified that the circuit breaker successfully executed the trip signal from the SEL-751 and 

isolated the circuit. During this test, the transient current spike, as a result of an R-L circuit’s 

damping, caused unwanted trips by the SEL-751. The solution was to add a short time-delay to 

bypass the current spike’s duration. The test used SEL synchroWAVe to analyze the event 
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reports generated by the SEL-751. The event reports captured the magnitude of the voltage and 

current that caused the trip and displayed a timing diagram of the element that asserted. The 

wiring of the SEL-751 was simple and straightforward. All the pick-up values and logic 

equations could be programmed via acSELerator QuickSet.  

 Although this test was limited in testing only the basic protection function, the remaining 

unutilized features such as directional overcurrent, arc-flash detection, fault location, high-

impedance fault detection, auto-reclosing, and over- and underfrequency applications show the 

tremendous potential of the SEL-751 to protect the microinverter as well as the Microgrid from 

disturbance. Future recommendations to maximize the SEL-751 capability is included in Chapter 

8. Future Work and Recommendation. 
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2.5 Renewable Energy Integration Test 

 The Renewable Energy Integration Test is the final test to evaluate the overall operation 

of the Grid-Tied Solar System when connected to the Microgrid. The test observes the 

performance of the microinverter as well as the generators and adjusts necessary parameters such 

as generator output power and terminal voltage to ensure successful islanding process between 

the Microgrid and the utility grid.  

 The test consists of two solar panels, two circuit breakers, the APsystem three-phase grid-

tied microinverter, the SEL-751 Feeder Protection Relay, SEL-735 Power Quality & Revenue 

Meter, and the existing Microgrid (Figure 39). The solar panels are installed at the hallway 

between room 20-101 and building 20A and connected to the microinverter inside the power lab 

room 20-102. The inverter output terminals are wired to the input of the SEL-735 via a circuit 

breaker. The output of the SEL-735 is connected directly to the input of the SEL-751. Lastly, the 

output of the SEL-751 and trip signal cable are connected to the circuit breaker before 

interconnecting to the Microgrid. All voltage sensing wires from the SEL-735 and SEL-751 are 

connected at the incoming terminals of the circuit breakers (Figure 40). 

 Before the isolation process takes place, the power generation of the generator shall be 

adjusted to receive 50W to 100W from the utility grid using the DC motor current knob. Too 

much or too little power imported from the utility could cause voltage and frequency collapse 

when isolating the Microgrid from the utility grid. No power shall be delivered to the utility grid 

at any given time. The Yokogawa Power Meter on test bench 6 is configured to display the 

power delivered/received from the utility grid. The SEL-751’s phase undervoltage element pick-

up 27P1P is set at 90V while the line undervoltage element pick-up 27PP1P is set at 156V with 

0.25s delay. Lastly, the overcurrent element pick-up 50P1P is set at 2A with 0.25 seconds delay. 
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These two protection elements are set based on the specification of the microinverter and the 

rated power of the solar panels for the purpose of this test. The Renewable Energy Integration 

Test Procedure is attached at Appendix D. 

 

 

Figure 39. Renewable Energy Integration Test Wiring Diagram 

 

 Figure 40 shows the actual setup of the Renewable Energy Integration Test. The blue box 

indicates the existing Microgrid while the red boxes indicate the generators. The renewable 

energy branch is located on the black cart at the bottom of the figure. The solar panels and DC 

transmission line were not included.  
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Figure 40. Renewable Energy Integration Test Setup 

 

Test Data 

 Before isolation, the total power output of the generators and microinverter was 343.3W 

as observed on the power meter (Figure 41). The microinverter outputted approximately 176.4W 

(Figure 42) and the generators generated about 166.9W. The terminal voltages of both generators 

were adjusted to 120V L-N while the speed remained fixed at 1800RPM (60Hz) since the system 

was still synchronized to the utility grid. At this point, two static loads (~130W each) and the 

induction motor (~70W) were turned on. The modelled line resistance and transformer also 

consumed approximately 75W. The Microgrid, as a result, received an extra 69W from the utility 

grid. 
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Figure 41. Total Power Generation of the Microgrid 

 

 

Figure 42. The acSELerator Quickset Phasors Display 

 Figure 43 shows the output power of the APsystem microinverter at the time of this test. 

The Energy Communication Unit (ECU) gathered the microinverter’s output data and uploaded 
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it to the APsystem Energy Monitoring & Analysis (EMA) server for online performance 

monitoring. 

 

Figure 43. Output Power of the Microinverter using EMA 

 

 After the utility switch was turned off, the Microgrid became isolated from the utility 

grid. The generators and microinverter remained online. The terminal voltage of the generator 

immediately dropped to 113V L-N and the speed increased to 1805 RPM (~60.16 Hz). Field 

current was injected to bring the terminal voltage back to 120V L-N and the speed eventually 

decreased to 1801 RPM (60.03 Hz). The output power of the generators and microinverter 

remained unchanged. On the load side, the voltage across the static load and induction motor 

dropped to 104V L-N. The islanded Microgrid’s frequency and voltage was sensitive to the 

output power of the solar panels. At one point, the “Senior Project Sign”, which was taped on the 

bottom edge of the right solar panel, was flipped by the wind which then covered a few 

photovoltaic cells. The power production of the solar panels immediately decreased which 

caused the speed of the generators to drop to 1795 RPM (59.83 Hz) and the terminal voltage of 

the generator to drop to 118V L-N. Manual adjustment of the DC motor current to increase the 
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output power of the generators was able to bring the speed to 1800 RPM (60 Hz) and the 

terminal voltage to ~120V L-N.  

Test Result 

 The microinverter was able to remain connected and supplied power to the microgrid 

despite the momentary frequency change and voltage dip from the isolation process. The 

generators also remained online and provided frequency support for the microinverter.  

Test Conclusion 

 The Renewable Energy Integration Test was successful in evaluating the performance of 

the microinverter and adjusted the appropriate voltage and power of the generators for the 

microinverter to remain connected after isolation from the utility grid. The success of this test 

qualified the solar panels, the APsystem three-phase grid-tied microinverter, the SEL-751 Feeder 

Protection Relay and SEL-735 Power Quality & Revenue Meter to permanently connect and 

become a part of the Microgrid representing the renewable energy generation. Future work to 

automatically adjust the voltage and frequency to combat the power generation fluctuation of the 

solar panel is necessary. Additionally, in-depth pick-up value selection for the protection element 

as well as protection scheme to maximize the ability to detect and eliminate grid disturbances are 

included in Chapter 8. Future Work and Recommendation. 
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Chapter 3. Market Research 

 There are only two generating units, synchronous generators, that ensure the self-

sustainability factor of the Microgrid. However, the current grid has changed dramatically from 

distributed to non-distributed power generation due to the growing presence of roof-top solar at 

residential level, and solar farm at commercial level. From the California Energy Commission, 

the total of renewable energy generation of the State in 2017 was 29% while solar accounts for 

11% (Figure 44) [4]. As these figures continue to grow, there is an urgent need to include 

renewable energy as an additional source to the Microgrid to more accurately represent the 

modern electric grid. The Grid-Tied Solar System, by Virginia Yan, provided the hardware 

capability and readiness to build a modern electric grid [1]. Four solar panels working together 

could provide up to approximately 480W DC and approximately 400W AC power. The 

uniqueness of the Grid-Tied Solar System is in its small scale three-phase DC-to-AC inverter 

APsystem YC1000-3-208 rated at 900W. The microinverter is also equipped with enhanced 

wireless monitoring. The solar panel cart has capability to maximize efficiency using the single-

axis tracker.  
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Figure 44.  California Energy Portfolio [4] 

 There is no small-scale three-phase microgrid available on the market. The Cal Poly 

Microgrid is unconventional for its purpose to give the students the ability to experiment. The 

Grid-Tied Solar System is also the first of its kind designed to inject as little as 900W to a three-

phase microgrid.  
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Chapter 4. Customer Archetype  

 The customers will be Cal Poly students especially those who concentrate in power 

system as well as those who want to explore what power systems have to offer. The Microgrid 

Renewable Energy Integration once completed will provide hands-on experience on renewable 

energy generation and grid-tie connection that are similar to real world solar projects. 

 The growing renewable energy industry leads to a highly competitive market of DC-to-

AC inverters. There are currently four major solar microinverter manufactures (Table 5), SMA 

Solar Technology, EN, Solar Edge, and APsystems.   

Table 5. Major Inverter Manufacturer in the U.S. Market 

 

 

SMA Solar Technology AG is a German solar energy 

equipment supplier founded in 1981 and 

headquartered in Niestetal, Northern Hesse, 

Germany. SMA is a producer and manufacturer of 

solar inverters for photovoltaics systems with grid-

tied, off-grid power supply, and backup operations. 

 

 

 

Enphase Energy is an energy technology company 

headquartered in Fremont, California. Enphase 

designs and manufactures software-driven home 

energy solutions that span solar generation, home 

energy storage and web-based monitoring and 

control.  

 

 

 

APsystems was founded in Silicon Valley in 2009 

and is now based in Seattle, WA. APsystems offers 

advanced, powerful solar microinverter technology 

for residential and commercial systems. 

The APsystems microinverter solution combines 

highly efficient power inversion with a user-friendly 
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monitoring interface and energy communication unit 

to track and bring you reliable, intelligent energy. 

 

 

 

SolarEdge Technologies Inc. is a provider of power 

optimizers, solar inverters and monitoring solutions 

for photovoltaic arrays based in Herzliya, Israel. 

Solar Edge products aim to increase energy output 

through module-level Maximum Power Point 

Tracking.  

 

 APsystems is particularly a growing company emphasizing in microinverters for 

residential and commercial businesses. APsystems provide small-scale single-phase and three-

phase microinverter in 120V/208V and 240V/480V voltage class that are suitable to connect to 

the Microgrid (120V/208V Y-Connection) [9]. On the other hand, there are currently two major 

US companies providing services in the field of microgrid products and power system protection, 

Schweitzer Engineering Laboratories (SEL) and General Electric (GE). Both companies offer 

educational services throughout the United States. There are also European companies that hold 

a fair market share in the power industry worldwide, Siemens, Schneider Electric, and ABB.  
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Table 6. Major Protection Relay Manufacturer and Microgrid Product in the U.S. Market 

 

 

 

 

 

Schweitzer Engineering Laboratories, Inc. (SEL) is a 

US based company headquartered in Pullman, WA. 

SEL designs, manufactures, supports products and 

services ranging from generator and transmission 

protection to distribution automation and control 

systems. Founded in 1982 by Edmund O. Schweitzer 

III, SEL shipped the world's first digital protective relay. 

 

 

General Electric Company (GE) is a US based company 

headquartered in Boston, MA. The company operates in 

the various industries including appliances, water/power, 

oil/gas, energy management, aviation, medical device, 

life sciences, pharmaceutical, software development and 

engineering. GE was one of the earliest companies to 

manufacture and sell electromechanical relays used in 

power system. 
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Chapter 5. Market Description 

  

Figure 45. Business Model 
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Figure 46. Market Data 
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Chapter 6. Engineering Requirements and Specifications 

Table 7. Engineering Requirements and Specifications 

 Engineering Requirement Market Requirement Reasoning 

1 Parallel power generation Sustainability The microinverter must deliver 

power to the load together with 

the synchronous generator to 

sustain the Microgrid. 

2 Islanded mode operation Independence  The synchronous generator and 

microinverter operating off-grid 

reduce the reliance on the utility 

grid. 

3 Power quality and metering Energy monitoring The SEL-735 meters and tracks 

energy production from the solar 

panel and microinverter to fully 

inform the Microgrid operator. 

4 Protection against faults  Secure and reliable  The SEL-751 feeder protection 

relays detect disturbance and 

isolate the system from 

disturbance using a circuit 

breaker.  

5 Communication to other 

SEL devices 

Expandability Unused digital and analog 

input/output ports allow future 

communication with other SEL 

units for automation and back-up 

protection. 

6 Ability to recreate test 

setups 

Experiment Step-by-step procedures allow 

tests to be recreated 

experimentally and 

troubleshooted. 
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Chapter 7. Schedule and Milestones 

The Deliverable Deadlines table keeps the work flow defined and organized.  

Table 8. Deliverable Deadlines 

Deadline Deliverable 

10/05/18 Test Method Proposal 

12/05/18 Islanded Mode Test 

01/11/19 Modified Islanded Mode Testing 

02/12/19 SEL-735 Power Quality and Revenue Meter 

02/21/19 SEL-751 Feeder Protection Relay Test 

03/16/19 Renewable Energy Integration Test  

03/22/19 Project Report Due 

 

 These Gantt charts include the tentative schedule and coordination with senior project 

advisor to keep track of the testing process and increase work efficiency.  

 

 
Figure 47. Project Schedule for Fall 2018 
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Figure 48. Project Schedule for Winter/Spring 2019 
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Chapter 8. Recommendation and Future Work 

 The solar panels are weather dependent and cannot always be reliable. During cloudy 

days the solar panels of Grid-Tied Solar Systems only produce 10% to 20% of its rated output 

power. This energy is not enough to power the Microgrid whose static load is approximately 

400W. Since Cal Poly, San Luis Obispo is located in the Northern Hemisphere, the Sun’s 

declination angle to South is at its maximum during the months of November, December, 

January [10]. During this time, the hallway between Building 20A and Building 20 where the 

solar carts are installed is only unshaded for three to four hours which limits availability of the 

solar panels. During the Spring quarter (April, May, and June), the power lab room 20-102 is 

occupied by many EE 295 Energy Conversion Laboratory sections which reduces the time frame 

to setup and run the solar panels. It is, therefore, necessary to use a solar array simulator. The 

solar array simulator’s output voltage and current follow the typical I-V curves of solar panels. 

The modern solar array simulators also include a software to easily change the I-V curves and 

irradiance profiles (sunny day, cloudy day, slow ramp, and fast ramp) to replicate actual weather 

condition. The most important benefit of a solar array simulator is the ability to operate at any 

time.   

 The SEL-751 Feeder Protection Relay is capable of providing many smart protection 

schemes to better protect the inverter as well as the Microgrid from disturbance. Fault current 

calculation, contingency analysis and zone of protection shall be carefully considered when 

setting protection elements. The recommended protection schemes include: 

• Instantaneous and time overcurrent  

• Under- and overvoltage 

• Under- and overfrequency 
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• Directional  

• High impedance fault 

• Reclosing 

As wildfires caused by electrical faults of the power line become more and more frequent due to 

increasingly severe weather condition, it is recommended to include a protection scheme to 

prevent or mitigate fire ignition. Although the Microgrid is an indoor experiment, this effort to 

modernize Microgrid will give the students an opportunity to solve real world problems. 

 The SEL-735 Power Quality & Revenue Meter can optimally operate with the 

acSELerator Quickset software for real time metering purposes. It is recommended to designate a 

monitor to display the acSELerator Quickset features of the SEL-735. In addition, the SEL-735 

can be programmed to detect declining power output from the microinverter and signal 

corrective action to stabilize the Microgrid. The corrective action could include starting up an 

additional generating unit (if available) to compensate from the power loss. 

 The DC motor’s input power and synchronous generator’s field current are manually 

controlled using the potentiometers. The inability to automatically adjust voltage and frequency 

in response to various load conditions can destabilize the Microgrid and potentially lead to 

voltage and frequency collapse. It is recommended to install a control system to automatically 

adjust the DC motor’s speed and field current of the synchronous generator. The existing SEL-

700G automation and metering features can provide real time voltage, frequency, and load 

condition data with a controller that can adjust the DC input current and synchronous motor field 

current.   
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Appendix A – Islanded Mode Test Program 

Islanded Mode Test Program 

By Virginia Yan, Do Vo 

Updated Time: 12/04/18 

 

Safety Message: STOP WORK immediately, PRESS the emergency power-off button, and 

REPORT to the EE department faculties of the system’s suspicious behaviors that include, but 

are not limited to, loud and inconsistent noise and shaking from the generator, DC motor, 

smoke, arcing, corona, and equipment damage. The emergency power-off button is located at the 

window corner of power lab room 20-102. 

 

Note: This Microinverter Isolation Mode Test Procedure is meant for the testing of YC1000-3-

208 microinverter when isolated from the infinite bus. APsystems microinverters are designed to 

only operate when they can sense power coming from the grid. Even if they are plugged into the 

PV array, they will not turn themselves on until they can read power from the grid. When DC 

power is first applied to the unit, it flashes red once, and then green three times. 

 

Preparation procedure:  

□ Step 1: Setup PV portable cart Troy at a spot where the solar panels are directly and fully 

exposed to the sunlight.                        

□ Step 2: Verify open-circuit voltage at the PVs (approx. 40V for two panels) with DC 

disconnect switch CLOSED. 

□ Step 3: Lay the AC transmission line along the pavement from the PVs to the microgrid lab  

□ Step 4: Connect the solar tracker controller to a 12-V battery; make sure it is in automatic 

mode by pressing the “Set” button on the remote.  

□ Step 5: Connect positive and negative terminals of the circuit breaker to port GH on bench 3. 

□ Step 6: Plug the ABC cables from the microinverter to the circuit breaker. Short the trip 

terminal and verify that the circuit breaker is OPEN. 
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□ Step 7: Connect the ABC cables from the circuit breaker to the Yokogawa WT130 Power 

Meter as shown in Figure 49A.  

 

 

Figure 49A. Islanded Mode Test Wiring Diagram 
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Test Procedure: 

□ Step 8: TURN on ABC, DEF, and GHI switch on the distribution panel. 

□ Step 9: Press the “START” button on the DC starter to run the DC motor. 

□ Step 10: Switch from Induction Start to Sync Run on the synchronous generator. 

□ Step 11: Adjust the DC motor speed to 1800 rpm and the generator’s output voltage to 208V 

using the rheostat.  

□ Step 12:  Close the synchronizing switch on bench 3 to synchronize the generator using One-

Dark-Two-Bright method. 

□ Step 13: Verify the line voltages on the grid side of the circuit breaker (205V to 210V).   

□ Step 14: Connect the DC transmission line’s MC4 to channel 4 of the microinverter.  

□ Step 15: Verify one red blink followed by three short green blinks on the microinverter’s 

LED.  

□ Step 16: CLOSE circuit breaker. 

□ Step 17: Verify the line voltages on the inverter side of the circuit breaker (205V to 210V).   

□ Step 18: Wait for 5 minutes of the microinverter internal safety delay. 

□ Step 19: Verify flashing fast green lights (2-sec gap). 

(indicates that microinverter is producing power with no ECU)  

□ Step 20: Record voltage, current, and power measurements from the Yokogawa. 

□ Step 21: TURN-OFF the switch at the ABC terminals to isolate from the infinite bus. 

□ Step 22: Record the generator speed, terminal voltage, and the inverter output current. 
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Housekeeping: 

□ Step 23: OPEN circuit breaker.  

□ Step 24: OPEN DC disconnect switch. 

□ Step 25: Disconnect MC4 connectors from the microinverter. 

□ Step 26: Disconnect the AC cable from microinverter to circuit breaker. 

□ Step 27: Turn off power in Microgrid Lab and disconnect all components. 

□ Step 28: Fold Troy and locate it to the PES room. 

 

 
Figure 50A. Microinverter Internal Protection 
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Appendix B – Modified Islanded Mode Test Program 

Modified Islanded Mode Test Program 

By Virginia Yan, Do Vo 

Updated Time: 01/10/19 

 

Safety Message: STOP WORK immediately, PRESS the emergency power-off button, and  

REPORT to the EE department faculties of the system’s suspicious behaviors that include, but 

are not limited to, loud and inconsistent noise and shaking from the generator, DC motor, 

smoke, arcing, corona, and equipment damage. The emergency power-off button is located at the 

window corner of power lab room 20-102. 

 

Note: This Modified Microinverter Isolation Mode Test Procedure is meant for the testing of 

YC1000-3-208 microinverter when isolated from the infinite bus with a variable three-phase 

load added. APsystems microinverters are designed to only operate when they can sense power 

coming from the grid. Even if they are plugged into the PV array, they will not turn themselves 

on until they can read power from the grid. When DC power is first applied to the unit, it flashes 

red once, and then green three times. 

 

Preparation procedure:  

□ Step 1: Setup PV portable cart Troy at a spot where the solar panels are directly and fully 

exposed to the sunlight                        

□ Step 2: Verify open-circuit voltage at the PVs (approx. 40V for two panels) with DC 

disconnect switch CLOSED.                                                             

□ Step 3: Lay the DC transmission line along the pavement from the PVs to the microgrid lab  

□ Step 4: Connect the solar tracker controller to a 12-V battery; make sure it is in automatic 

mode by pressing the “Set” button on the remote.  

□ Step 5: Connect positive and negative terminals of the circuit breaker to port GH on bench 3. 

□ Step 6: Plug the ABC cables from the microinverter to the circuit breaker. Short the trip 

terminal and verify that the circuit breaker is OPEN. 
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□ Step 7: Connect the ABC cables from the circuit breaker to the Yokogawa WT130 Power 

Meter as shown.  

□ Step 8: Wire the three-phase load to the variac and connect the input of the variac to the ABC 

terminals of bench 3 as shown in Figure 51B. 

 
Figure 51B. Modified Islanded Mode Test Wiring Diagram 
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Test Procedure: 

□ Step 9: Turn on the ABC, DEF, and GHI switches on the distribution panel. 

□ Step 10: Press “START” button on the DC starter to run the DC motor. 

□ Step 12: Switch from Induction Start to Sync Run on the synchronous generator. 

□ Step 13: Adjust the DC motor speed to 1800 rpm and the generator’s output voltage to 208V 

using the rheostat; Verify the measurements with a multimeter.  

□ Step 14: CLOSE the synchronizing switch on bench 3 to synchronize the generator using 

One-Dark-Two-Bright method. 

□ Step 15: Verify approximately 0W reading from Yokogawa power meter display. 

□ Step 16: Verify the line voltages on the inverter side of the circuit breaker (205V to 210V).  

□ Step 17: Connect the DC transmission line’s MC4 to channel 4 of the microinverter. 

□ Step 18: Verify one red blink followed by three short green blinks on the microinverter’s 

LED.  

□ Step 19: CLOSE circuit breaker. 

□ Step 20: Wait for 5 minutes of the microinverter internal safety delay. 

□ Step 21: Check line voltages on the secondary side (from PV). 

□ Step 22: Verify flashing fast green lights (2-sec gap). 

(Indicating that microinverter is producing power with no ECU)  

□ Step 23: Turn the variac’s knob clockwise until the Yokogawa displays approximately 0W.  

□ Step 24: Record voltage, current, and power measurements from the Yokogawa. 

□ Step 25: TURN OFF the switch at the ABC terminals to isolate from the infinite bus. 

□ Step 26: Record the generator speed, terminal voltage, and the inverter output current. 

 

 

 



 

71 

 

Housekeeping: 

□ Step 27: OPEN circuit breaker.  

□ Step 28: OPEN DC disconnect switch. 

□ Step 29: Disconnect MC4 connectors from the microinverter. 

□ Step 30: Disconnect the AC cable from microinverter to circuit breaker. 

□ Step 31: Turn off power in Microgrid Lab and disconnect all components. 

□ Step 32: Fold Troy and locate it to the PES room. 

 

 

 
Figure 52B. Microinverter Internal Protection 
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Appendix C – SEL-735 Communication Setting and Programming 

 

SEL-735 Communication Setting and Programming  

By Do Vo 

Updated Time: 02/11/19 

 

Safety Message: STOP WORK immediately, PRESS the emergency power-off button, and 

REPORT to the EE department faculties of the system’s suspicious behaviors that include, but 

are not limited to, loud and inconsistent noise and shaking from the generator, DC motor, 

smoke, arcing, corona, and equipment damage. The emergency power-off button is located at the 

window corner of power lab room 20-102. 

 

Note: All pictorial illustrations in the procedures are used as examples to aid the students. 

Actual display might vary based on the SEL device model and firmware version. 

 

Initiation procedure:  

□ Step 1: Plug the power cord of the SEL-735 to a 120V wall outlet. 

□ Step 2: On the front panel:  

a. Press the ENT button to enter the main menu 

b. Press the DOWN ARROW button (4 times) →  Press the ENT button to select Set/Show 

c. Press the DOWN ARROW button once → Press the ENT button to select Port Settings 

d. Press the ENT button to select Front Port  

(If a back-panel port is used, select the corresponding Port 1, Port 2, or Port 3) 

e. Press the DOWN ARROW to scroll down and record the following parameters: 

Data speed: _______ Data Bits: _______      Stop Bits: _______     Parity: _______ 

□ Step 3: Connect the SEL C-662 USB serial cable from Port F at the front panel of the SEL-735 

to a USB port on a computer.  

□ Step 4: Open acSELerator QuickSet software.  

□ Step 5: On the menu bar, select Communication → Parameters (or press Ctrl + R) 
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□ Step 6: Under Active Connection Type, select Serial and choose the SEL C-662 USB COM 

port under Device. 

□ Step 7: Select the corresponding parameters as recorded in step 2 and click Apply. 

□ Step 8: Verify connection status shown as “Connected” at the bottom left corner. 

 

□ Step 9: Select the Terminal Icon  (or press Ctrl + T) to open a terminal window.  

 

□ Step 10: Type “= ID” and record the following series.  

FID =____________________________________________________ 

PARTNO =_______________________________________________ 

 

 
Figure 53C. Example Terminal of the SEL-735 

 

□ Step 11: On the menu bar, select File → New (or press Ctrl + N). 
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Figure 54C. Example Settings Database for the SEL-735 

□ Step 12: Select SEL-735 and the corresponding version. Click OK. 

(The first three numbers following the -Z in FID series is the Device Setting Version Number) 

□ Step 13: Under the Device Part Number window, complete the following parameters to match 

the recorded PARTNO in Step 10. Click OK   

• Power Quality and Recording 

• Meter Form 

• Slot A, Power Supply 

• Slot B, Main Board Communications 

• Slot C, SELect Boards 

• Slot D. SELect Boards 

• Communication Protocol 

 

 

Figure 55C. Example Device Part Number Selection 
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Programming procedure:  

□ Step 14: On the left column, select General → Identifier and Scaling 

□ Step 15: Set the following settings 

• CTR = 1  

• PTR = 1  

• VOLT_SCA = KILO  

• POWR_SCA = KILO 

• ENRG_SCA = KILO  

• PRI_SCA = Y

 

 

Figure 56C. Example Device Part Number Selection 

□ Step 16: On the menu bar, select File → Database Manager → New to create a new database 

to store future settings.  

□ Step 17: Select File → Save (or press Ctrl + S) to save the setting at the newly created 

database. 

□ Step 18: Select the Send Active Setting  to export the setting to the SEL-735  
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Appendix D – SEL-751 Communication Setting and Programming 

 

SEL-751 Communication Setting and Programming  

By Do Vo 

Updated Time: 02/20/19 

 

Safety Message: STOP WORK immediately, PRESS the emergency power-off button, and 

REPORT to the EE department faculties of the system’s suspicious behaviors that include, but 

are not limited to, loud and inconsistent noise and shaking from the generator, DC motor, 

smoke, arcing, corona, and equipment damage. The emergency power-off button is located at the 

window corner of power lab room 20-102. 

 

Note: All pictorial illustrations in the procedures are used as examples to aid the students. 

Actual display might vary based on the SEL device model and firmware version. 

 

Initiation procedure:  

□ Step 1: Plug the power cord of the SEL-751 to a 120V wall outlet. 

□ Step 2: On the front panel:  

a. Press the ENT button to enter the main menu. 

b. Press the DOWN ARROW button (4 times) →  Press the ENT button to select Set/Show 

c. Press the DOWN ARROW button twice → Press the ENT button to select Port Settings. 

d. Press the ENT button to select Port F. 

(If a back-panel port is used, select the corresponding Port 1 to 4) 

e. Press the DOWN ARROW button twice → Press the ENT button to select Comm 

Settings. 

f. Press the DOWN ARROW to scroll down and record the following parameters: 

Data speed: _______ Data Bits: _______      Stop Bits: _______     Parity: _______ 

□ Step 3: Connect the SEL C-662 USB serial cable from Port F at the front panel of the SEL-735 

to a USB port on a computer.  

□ Step 4: Open acSELerator QuickSet software.  
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□ Step 5: On the menu bar, select Communication → Parameters (or press Ctrl + R) 

□ Step 6: Under Active Connection Type, select Serial and choose the SEL C-662 USB COM 

port under Device. 

□ Step 7: Select the corresponding parameters as recorded in step 2 and click Apply. 

□ Step 8: Verify connection status shown as “Connected” at the bottom left corner. 

 

□ Step 9: Select the Terminal Icon  (or press Ctrl + T) to open a terminal window.  
 

□ Step 10: Type “= ID” and record the following series.  

FID =____________________________________________________ 

PARTNO =_______________________________________________ 

 

 

Figure 57D. Example Terminal of the SEL-751 

 

□ Step 11: On the menu bar, select File → New (or press Ctrl + N). 

□ Step 12: Select SEL-751 and the corresponding version. Click OK. 

(The first three numbers following the -Z in FID series is the Device Setting Version Number) 
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Figure 58D.  Example Settings Database for the SEL-751 

□ Step 13: Under the Device Part Number window, complete the following parameters to match 

the recorded PARTNO in Step 10. Click OK.

• Firmware Option 

• User Interface 

• Position C 

• Position D 

• Position E 

• Position Z 

• Front Panel 

Options 

• Communications 

Ports 

• Protocols 

 

 

Figure 59D. Example Device Part Number of an SEL-751 
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Programming procedure:  

□ Step 14: On the left column, select Group 1 → Set 1 → Main 

□ Step 15: Set the following settings: 

• CTR = 1  

• CTRN = 1 

• PTR = 1.00  

• PTRS = 1.00 

• DELTA_Y = WYE 

• VNOM = 208 

□ Step 16: Select Group 1 → Set 1 → Overcurrent Element → Maximum Phase Overcurrent 

□ Step 17: Set the following elements: 

• 50P1P = 0.5 • 50P1D = 0.25

 

 
Figure 60D. Example Maximum Phase Overcurrent Setting of the SEL-751 

 

□ Step 18: Select Group 1 → Set 1 → Under/Over Voltage Elements → Undervoltage 

Elements 

• 27P1P = 113.00 

• 27P1D = 0.25 

• 27PP1P = 197.00 

• 27PP1D = 0.25 
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Figure 61D. Example Undervoltage Elements Setting of the SEL-751 

 

□ Step 19: Select Group 1 → Set 1 → Trip and Close Logic.  

 Add “OR 50P1T OR 27P1T” to the TR equation  

 Add “50P1P OR 27P1” to the ULTRIP equation with the existing parenthesis  

 

Figure 62D. Example Trip and Close Logic Setting of the SEL-751 
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Step 20: Select Group 1 → Logic 1 → Slot A. Add “OR TR” to the OUT101 logic equation. 

 

Figure 63D. Example Slot Setting of the SEL-751 

 

□ Step 21: On the menu bar, select File → Database Manager → New to create a new database 

to store future settings.  

□ Step 22: Select File → Save (or press Ctrl + S) to save the setting at the newly created 

database. 

□ Step 23: Select the Send Active Setting  to export the setting to the SEL-735  
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Appendix E – Renewable Energy Integration Test Program 

 

Renewable Energy Integration Test Program 

By Do Vo 

Updated Time: 03/14/19 

 

Safety Message: STOP WORK immediately, PRESS the emergency power-off button, and 

REPORT to the EE department faculties of the system’s suspicious behaviors that include, but 

are not limited to, loud and inconsistent noise and shaking from the generator, DC motor, 

smoke, arcing, corona, and equipment damage. The emergency power-off button is located at the 

window corner of power lab room 20-102. 

 

Note: This Renewable Energy Integration Test Procedure is meant for the testing of YC1000-3-

208 microinverter when connected to the existing Microgrid [8].  

 

Operating procedure:  

□ Step 1: Turn on GH terminal switches (125V DC power supply) on bench 5 and bench 6. 

Verify all circuit breakers’ LEDs illuminate.  

□ Step 2: Turn on ABC terminal switch (utility switch) on bench 6. Verify line voltage reading 

on bench 6’s Yokogawa (205V – 209V). 

□ Step 3: Close circuit breakers CB-1, CB-2, CB-3, and CB-4 on bench 6. Verify circuit breakers 

closed (red LEDs illuminate).  

□ Step 4: Close circuit breaker CB-8, CB-9, and CB-10 on bench 5. Verify power reading on 

bench 6’s Yokogawa (70W – 80W).  

□ Step 5: Turn on the DC starter of generator #1. 

□ Step 6: Tune the DC motor knob to draw more than 0.35A. 

□ Step 7: Press the “Start” button on the DC starter. 
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□ Step 8: Turn the DC motor knob clock-wise to increase the speed to 1801 RPM to 1814 RPM. 

□ Step 9: Turn the potentiometer simultaneously to increase terminal voltage to ~108V L-N.  

□ Step 10: Verify circuit breaker CB-11 closed and generator speed (1799 RPM – 1801 RPM) 

□ Step 11: Repeat step 5 to step 9 on generator #2. 

□ Step 12: Verify circuit breaker CB-12 closed and generator speed (1799 RPM – 1801 RPM). 

(At this point, both generators are synchronized to the utility grid) 

□ Step 13: Turn the DC motor knob of generator #1 and generator #2 to increase the total output 

power to ~200W (displayed on bench 5’s Yokogawa) with each generator outputting 

approximately ~100W. 

□ Step 14: Turn the potentiometers of generator #1 and generator #2 to increase the terminal 

voltage to 120V L-N. 

□ Step 15: Close circuit breaker CB-7. Turn on the static load #1’s switches one-by-one. 

□ Step 16: Turn the potentiometers of generator #1 and generator #2 to increase the terminal 

voltage back to 120V L-N. 

□ Step 17: Turn on circuit breaker CB-5 on bench 6 to start the induction motor. Verify circuit 

breaker CB-6 automatically closed to connect the capacitor banks. 

□ Step 18: Turn the potentiometers of generator #1 and generator #2 to increase the terminal 

voltage back to 120V L-N. 

□ Step 19: Close circuit breaker CB-13.  

□ Step 20: Measure the phase voltages at the grid-side terminals of circuit breaker CB-14. 

Proceed if the voltage is from 117V L-N to 122V L-N, otherwise, turn the potentiometer of 

either generator to adjust the voltage. 
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□ Step 21: Plug the MC4 connectors from the solar panels to channel 4 of the APsystem 

microinverter. Verify 1 red blink followed by 3 short green blinks on the microinverter’s LED. 

□ Step 22: Close circuit breaker CB-14 and start a 5-minute timer.  

□ Step 23: Verify the output power increase from bench 5’s Yokogawa once the 5-minute 

interval expired. 

□ Step 24: Connect the SEL C-662 USB serial cable from Port F at the front panel of the SEL-

735 to a USB port on a computer. 

(Refer to Appendix C – SEL-735 Communication Setting and Programming to initialize)  

□ Step 25: Open acSELerator Quickset HMI to observe the output power of the microinverter.  

□ Step 26 (optional): Decrease the generators’ terminal voltage to 120V L-N. 

□ Step 27: Turn the DC motor knob of generator #1 and generator #2 counter-clock-wise to 

decrease the output power of generator #1 and generator #2 equally until bench 6’s Yokogawa 

power reading reads 50W to 100W.  

□ Step 28: Turn off the ABC terminal switch of bench 6 to isolate the Microgrid from the utility 

grid. 

(At this point, the Microgrid becomes isolated from the utility grid) 

□ Step 29: Verify the microinverter on the acSELerator Quickset HMI remain outputting power.  

□ Step 30: Increase the terminal voltage of the generators to 120V L-N and adjust the speed to 

1800 RPM.  
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Housekeeping: 

□ Step 31: Open circuit breaker CB-14 to disconnect the microinverter.  

□ Step 32: Press the “Stop” button on each DC starter to de-energize the generator. 

□ Step 33: Open all circuit breakers.  

□ Step 34: Turn off GH terminal switches (125V DC power supply) on bench 5 and bench 6. 

□ Step 35: Retract the DC transmission line and store underneath the microinverter cart.  

□ Step 36: Verify all components of the Microgrid have been deenergized except SEL relays.  
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Appendix F – Circuit Breaker  

 The Microgrid Renewable Energy Integration’s tests use circuit breakers to isolate the 

inverter from the grid. These breakers were designed by a former Cal Poly electrical engineering 

student, Ozro Corulli. The circuit breaker can operate as a relay-controlled circuit breaker, three-

phase fault switch, recloser, and disconnector. For the purpose of this MREI project, the circuit 

breakers are used as relay-controlled circuit breakers and switches. Figure 64F and figure 65F 

show the diagram and the top view of the circuit breaker.  

 
Figure 64F. Circuit Breaker Diagram [13] 

 

 

Figure 65F. Circuit Breaker Top View [13] 
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 An input voltage of 125V DC connecting across the red terminal with “+” sign label and 

black terminal with “-” sign label (Figure 65F) is required to energize the circuit breaker. The 

green LED illuminates indicating the circuit break is energized and opened. Upon initial 125V 

DC application, the breaker defaults to the Open status. The breaker also is rated for 3A 

continuous current and 12A momentary current per phase while the control circuitry of the 

breaker can carry a maximum of 0.25A current [13].  

 The green and red push buttons are used to close or open the circuit breaker manually. To 

operate the circuit as a switch, the trip terminals (colored in light blue) shall be shorted. To 

operate the breaker as a relay-controlled circuit breaker, the trip signal from the SEL relay shall 

be connected across the trip terminals of the circuit breaker. The reclose signal can also be 

connected across the adjacent reclose terminals to enable the reclosing capability. Although the 

fault simulating feature of this circuit breaker is not utilized in this project, the fault switch can 

be switched to the “fault” position to create faults. These various fault conditions, such as line-

to-ground and three-phase bolted faults, require corresponding connections at the fault terminals 

(bottom left corner of the circuit breaker). For example, a three-phase bolted fault requires all the 

black terminals at the fault connections section to be shorted together. 
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Appendix G – List of Equipment Prices   

 

Power Systems Protection and Microgrid Laboratory 

20-101 

11/9/2018 

By Electrical Engineering Faculty, Dr. Ali Shaban 

 
Table 9. List of equipment needed for the Power System Protection and Microgrid Laboratory 

Equipment Ratings Units Price/Bench 6 Benches 4 Benches 

Benches 1 0 
   

1-phase Transformer 3000 VA 

240/120V 

3 $1,500 $9,000 $6,000 

3-pahse Variac 240V 1 $600 $3,600 $2,400 

3-phase Wattmeter (Yokogawa) 
 

1 $3,500 $21,000 $14000 

Dynamometers (MAGTROL) 

with readout units 

50 lb-in 1 $15,000 $90,000 60000 

3-pase Induction motors 1/3 hp 208V 1 $1,800 $10,800 7200 

DC Motors 1/3 hp  120Vdc 1 $2,600 $15,600 10400 

DC Starter 
 

1 $2,700 $16,200 10800 

Synchr. Machines 1/3 hp 208V 1 $3,800 $22,800 15200 

Carts for the machines 
 

1 
   

SEL Racks 
 

1 
   

Chocks 8A 6 $720 $4,320 2880 

Power Resistors 5A 6 $300 $1,800 1200 

Electronic Loads/Power 

resistors 

? 1 $0 
  

SEL-311L TL Relay 1 $0 
  

SEL-587 Transformer Relay 1 $0 
  

SEL-387E Transformer Relay 1 $0 
  

SEL-710 IM Relay 1 $0 
  

SEL-700G Generator Relay 1 $0 
  

SEL-3530 RTAC 1 $0 
  

Total 
  

$32,520 $195,120 129780 

 

 This table is used as a reference to estimate the cost of the Microgrid Renewable 

Energy Integration project in Table 10.  
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Appendix H – Senior Project Analysis 

Project Title: Microgrid Renewable Energy Integration (MREI) 

Student’s Name: Do Vo 

Student’s Signature: Do Vo 

Advisor’s Name: Majid Poshtan 

Advisor’s Initial:  

 

1. Summary of Functional Requirement 

a. Primary Capabilities  

i. The MREI includes a series of tests to ensure successful integration of 

renewable energy to the Microgrid. 

ii. The Islanded Mode Test aims to test the inverter’s response when the system is 

isolated from the utility bus. The modified islanded mode test provides a 

solution to keep the inverter connected after isolation from the utility grid and 

form a small scale microgrid.  

iii. The SEL-735 Power Quality and Revenue Meter Test observes the metering 

capabilities of the SEL-735. The test gathers voltage, current, and power data 

from the SEL-735 and compares with the same measurements of the Yokogawa 

WT130. User interface and ease of operation of the SEL-735 is evaluated to 

qualify the SEL-735 as a replacement for the Yokogawa WT130. 

iv. The SEL-751 Feeder Protection Relay Test is designed to verify basic 

protection function of the SEL-751 which includes the 50P instantaneous phase 

overcurrent element and 27P undervoltage element based on arbitrarily chosen 

pick-up values. This test evaluated the circuit breaker’s tripping capability when 
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commanded by the SEL-751’s trip signals. Each trip event is analyzed to 

determine the cause of the trip and the elements that asserted.  

v. The Renewable Energy Integration Test connects the Grid-Tied Solar System to 

the existing Microgrid and applies the changes and modifications obtained from 

the previous tests. This final test qualifies the Grid-Tied Solar System to be 

permanently integrated as a part of the Microgrid. 

b. Secondary Capabilities  

i. The MREI provides detailed procedures of all test for recreation and 

improvement purposes. 

ii. The MREI includes recommendation for future work. 

2. Primary Constrain 

a. The microinverter must detect 120/208V grid voltage and 60Hz grid frequency 

before activating synchronism. This requires a synchronous generator or infinite bus 

with the appropriate voltage and frequency to connect to the inverter before it starts 

to deliver power. 

b. When connected with the synchronous generator, the microinverter attempts to push 

all the power generated by the solar panels to the grid. The generator’s load transfers 

to the microinverter and causes frequency and voltage fluctuation.  

c. When isolated from the utility grid, the generator drops its speed and voltage which 

triggers the internal protection scheme of the microinverter to disconnect itself.  

d. Heavy reliance on the weather causes delay in testing. Cloudy days are not suited for 

testing due to low and fluctuation output power of the solar panels.  
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3. Economic 

a. Human Capital: This project uses a variety of high-power equipment, such as, 

variacs, three-phase loads, SEL relays, and a Yokogawa power meter that support 

the manufacturers, engineers, and assemblers who designed and assembled the 

products. 

b. Financial Capital: The power system and renewable energy courses could use the 

project to guide the students through experimenting the microinverter’s behavior in 

the Microgrid which could save money from buying and installing a new renewable 

energy system.  

c. Natural Capital: The MREI uses microprocessor-based equipment that consist of 

semiconductors. The photovoltaic cells are made of polycrystalline silicon as raw 

materials. 

d. Cost: The MREI uses available lab equipment that belong to the Cal Poly’s 

Electrical Engineering. The only major cost comes from the inverter and solar panel 

carts of the Grid-Tied Solar System with an estimated cost of $19,914.154 including 

labor costs and part costs [1]. 

4. If manufactured on a Commercial Basis 

a. Beside the Grid-Tied Solar System which costs approximately $19,914.154, MREI’s 

tests use additional equipment such as, two three-phase variacs, one Magtrol 

dynamometer with readout unit, one Hampden synchronous machine, one 

Yokogawa power meter, one Hampden DC motor, and one DC starter.  
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b. Table 10 shows the estimated cost of the MREI project to be $45,21415.  

Table 10. MREI Equipment Cost 

 

 

 

 

 

c. The price of the listed equipment is reported by the senior project advisor to be 

higher than the market price due to customization for the power lab experiments. 

The actual price is generally one fourth the above prices. If 500 Grid-Tied Solar 

Systems are manufactured, the estimated cost per system is $4000 [1]. The estimated 

cost of the MREI is $10,325.00. 

5. Environmental 

a. The MREI uses microprocessor-based protection relay and power meter that consists 

integrated circuits. Each computer integrated circuit takes roughly 10 gallons of 

water which would be disposed as waste along with many toxic chemicals that are 

harmful to the environment. The solar panel’s manufacturing process also requires 

water and hazardous materials such as hydrochloric acid, sulfuric acid, nitric acid, 

hydrogen fluoride that can become harmful to both worker and the environment if 

not disposed properly [12]. 

6. Manufacturability 

a. The MREI’s tests can be recreated by connecting the appropriately available 

equipment at the Electrical Engineering department at Cal Poly, San Luis Obispo 

Equipment Ratings Units  Price 

Grid-Tied Solar System [1]   1 $19,914.15  

3-Phase Variac 240V 2 $1,200  

Dynamometers (Magtrol)   1 $15,000  

Hampden DC Motor 1/3 HP 120VDC 1 $2,600.00  

DC Starter   1 $2,700.00  

Synchronous Machine 1.3 HP 208V 1 $3,800.00  

Total     $45,214.15  
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detailed in Chapter 2 and following the procedures from Appendix A through 

Appendix D. 

b. The test facility must have a 120/208V three-phase source with adequate protection 

to detect and eliminate faults. An emergency power-off button is necessary to safely 

and quickly shutdown the electrical system on the test bench in case of emergency.  

7. Sustainability 

a. The MREI main source of energy comes from four photovoltaic panels mounted on 

two movable carts that allow easy access to the sunlight spot on campus. Solar 

energy harvesting from the photovoltaic panels generates electricity with zero carbon 

footprint.  

b. All equipment is readily available in the power lab room. Test setups are applicable 

to test other SEL devices. 

8. Ethical Considerations 

a. The ethical implication of MREI primarily centers safety for the students and 

faculties when working with high voltage and current. The MREI’s test connection 

diagrams are intentionally designed to go through a distribution panel to take 

advantage of the 5A and 10A fuses for protection. The inverter’s internal protection 

scheme as well as generator’s internal fuse provides an additional layer of 

protection. Most importantly, the newly added SEL-751 relay and the circuit breaker 

employs the most reliable protection to the students and faculties.  

b. The MREI offers detail connection diagrams and procedures to avoid fatal mistake 

and misunderstanding when running the inverter and generator.  
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9. Health and Safety 

a. The MREI’s tests involve high voltage and current that may present safety hazard if 

instructions are not followed correctly and the system is not grounded properly. All 

users should immediately stop working and report the system’s suspicious behaviors 

or damaged equipment to EE faculty members.  

10. Social and Political 

a. The MREI’s tests are the last step before integrating renewable energy to the 

Microgrid. The tests’ results provide a solution to the newly discovered problems, 

evaluation of the SEL equipment, and insightful recommendation. The students are 

equipped with tools to learn and improve the Microgrid as well as the Grid-Tied 

Solar System in the future.  

b. The MREI serves as an effort to bring renewable energy to the student’s experiments 

and reduces the reliance on traditional synchronous generators. The project shows 

initiative in the education sector to equip the students with knowledge in renewable 

energy and aligns with State of California’s goal to bring more renewable energy to 

the state [4].  

11. Development 

a. The MREI’s tests preparation and execution relies significantly on the SEL-735 and 

SEL-735 instruction manuals provided by Schweitzer Engineering Laboratories Inc. 

and APsystem YC1000-3-208 microinverter instruction manual provided by 

APsystem. Technical support discussion with the manufacturer such as APsystem 

was conducted to better understand the inverter. The SEL on-campus training 

provides basic knowledge in operating the SEL-751 and SEL-735.  
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b. Reading and understand senior project and master thesis reports from previous 

generation students help improve the test setups. 

 


