
A SURVEY OF VIRTUAL NETWORK ARCHITECTURES

A Project Report

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Science

by

Lenoy Avidan

December 2018



Chapter 1

Introduction

With the storage needs of the world increasing, especially with the growth of

cloud computing, data centers are being utilized more than ever. The increasing

need of storage has led to more use of virtualization to help intra and inter data

center communications. The virtualization of physical networks is used to help

achieve this goal, but with the creation of Virtual Networks, systems must be

designed to create, manage, and secure them. A Virtual Network Architecture

is the system design for creating and maintaining virtual network components

and the resulting networks they create. Different companies design different Vir-

tual Network Architectures, with each having potentially different use cases. In

designing a Virtual Network Architecture, there are many questions about how

different aspects of the system work. Questions such as how do network nodes

communicate with the management system, how are the data and control planes

implemented, etc. Most companies creating Virtual Network Architectures have

multiple architectures that they create based on different factors. One factor in

creating different architectures is the use of different virtual components, creating

architectures that operate the same except for their selection of virtual compo-

1



nents. For example, VMware has different architectures based on the types of

virtual switches and routing mechanisms utilized [17]. Another potential fac-

tor in differing architectures is the potential needs and uses of the customer.

For example, OpenStack has many different architectures, ranging from classic

implementations to high availability implementations, based on the customer’s

virtual network needs [10]. In this report, we summarize and compare the main

architectures of each company, as covering every single architecture is repetitive.

These architectures are used for creating and managing Virtual Networks, some

with different use cases, but most with the purpose of creating and managing

virtualized networks in large data centers. The rest of the report is organized as

follows. In Chapter 2, we talk about the background of Virtual Networks and

explain what Virtual Networks are and how they work. In Chapter 3, we discuss

the Virtual Network Architectures, and how they are built and used. In Chap-

ter 4, we compare the architectures based on their strengths and weaknesses in

different categories. Finally, in Chapter 5, we conclude the paper with a brief

overview of what was discussed.

2



Chapter 2

Background: Virtual Networks

Physical networks have the problem of lack of flexibility, both in the difficulty

of adding new services such as firewalls and IDSs to existing networks, and in

moving those services around the network. The idea of Virtual Networks were

suggested as a solution to this lack of flexibility [2]. Virtual Networks are the

decoupling of network hardware and software, so that network services run purely

in software on top of the physical network [3]. When it was first suggested, the

idea was Virtual Networks could potentially allow for the ability to seamlessly

add new services, hosts, routers, etc while also being able to move them around

at will. Today, we see that this is true. The decoupling of network hardware

and software allows applications and virtual machines to be connected to each

other by a Virtual Network as if it were a physical one [20]. Virtual Networks

are also sometimes referred to as Network Function Virtualization (NFV), which

is the virtualization of network components [8]. Virtual Networking is not to be

confused with Software-Defined Networking (SDN), which is the decoupling of

the data and control planes of a network [8]. In this chapter we give background

on how Virtual Networks work and how they are used. In section 2.1, we begin

3



with a brief discussion on virtualization. Then in section 2.2, we discuss how

virtualization is applied to networks.

2.1 Virtualization

Virtualization is the simulation of hardware function in software to allow for

the creation of a virtual computer system or virtual machines [20]. This allows

for the hardware resources to be divided up among virtual machines so that

multiple computers or servers can be running on top of one physical machine.

This creates a benefit of flexibility and efficiency [20]. In this section we first

describe conceptually what virtualization is and then we go into basic details on

how virtualization is achieved.

Virtualization has many properties. Virtualization allows for different oper-

ating systems to run on the same machine, even if they are not compatible with

each other. This is called partitioning and also includes the ability to divide the

physical machine’s resources among the VMs [20]. Virtualization also provides

isolation, where despite being on the same hardware, a VM’s memory can’t be

accessed by anyone other than the VM itself. Isolation also means “preserving

the performance of a VM with advanced resource control tools” [20]. Virtual-

ization also utilizes encapsulation, where the entire VM is saved as files and can

be moved and cloned very easily, similar to moving files [20]. Lastly, virtualiza-

tion brings hardware independence, where any OS can be used on any type of

hardware, allowing for great flexibility [20].

So how does this division of resources actually work? To allow for VMs to

share resources on a system, a special OS is needed to communicate with the

host machine to get access to the hardware resources and divide them among the

4



Figure 2.1: After Virtualization [16]

VMs. This OS is typically called a hypervisor. On top of the hypervisor are the

VMs’ operating systems, which communicate with the hypervisor to gain access

to resources [16]. When a VM’s OS requests a resource from the hypervisor,

the hypervisor communicates with the host system to get access to the resource.

Figure 2.1 shows an example host with virtualized machines on top of it. There

are two main approaches to where the hypervisor is placed, hosted and hyper-

visor [16]. They are both very similar, with the key difference being that in the

hosted approach the physical machine’s OS remains, while in the hypervisor (also

called bare metal) approach, the host OS is replaced with a hypervisor [16]. The

hypervisor approach is more efficient since the abstraction layer (the hypervi-

sor) has direct access to hardware resources, but the hosted approach allows the

most hardware configurations [16]. Figure 2.2 shows a hosted virtualization and

figure 2.3 shows a hypervisor virtualization. Because a hosted approach leaves

the original OS, the machine can have both VMs and other applications running

simultaneously. Due to abstraction, VMs see their resources as physical, not

knowing that they are communicating with a hypervisor to get them [16]. This

allows for VMs to function like normal machines.

5



Figure 2.2: Hosted Virtualization [16]

Figure 2.3: Hypervisor Virtualization [16]

6



2.2 Network Virtualization

Network Virtualization works similar to machine virtualization, utilizing hy-

pervisors to abstract hardware and implementing hardware components as soft-

ware. Think of Virtual Networks as similar to a physical network except in

software, just like how a VM is similar to a computer but in software. In this

section we describe how Virtual Networks work and how they are used.

Virtual Networks generally are divided into two parts, the overlay and the un-

derlay networks. The underlay network is made up of the physical network com-

ponents that communicate with each other physically, while the overlay network

is the Virtual Network with the virtualized network components and VMs [4].

Figure 2.4 shows an example, basic Virtual Network. Network components such

as routers and switches are emulated in software to provide the layer 2 and layer

3 functionality of physical networks. For example, a virtual switch (vSwitch) has

the same packet forwarding of a physical switch but in software [15]. Similarly,

NICs are also emulated in software as vNICs, which are used for VMs. In fig-

ure 2.4, the two machines each host 2 VMs and two vSwitches, with one of each

belonging to separate networks. Similar to a VM’s ability to preserve isolation

and security on the same physical machine, Virtual networks allow for VMs to

be on separate networks despite being on the same physical host or subnet [15].

They also allow for VMs to be on the same network despite being physically far

from each other.

To allow for VMs to be logically on different networks, something must be

done to prevent VMs and physical machines from looking at packets that aren’t

a part of their network. The solution is VXLAN, which acts similarly to VPN.

VXLAN is a MAC over IP encapsulation [4]. It is used to create virtual over-

7



Figure 2.4: Simple Virtual Network [15]

lays (or tunnels as it is called in VPN) across physical networks [15], preventing

components, both physical and virtual, from viewing packets that dont belong to

their virtual network. The vSwitches connected to the VMs in the virtual network

act as virtual tunnel endpoints (VTEP) between NICs [15]. These VTEPs allow

for both physical and virtual components to create routes to send data between

VMs. VXLAN reduces the complexity of forwarding, allowing for routes to be

created based on the overlay network and having the physical network compo-

nents simply forward VXLAN packets to the correct VTEP [15]. With VXLAN,

whole datacenters can be virtualized [15].

So how are Virtual Networks used? Generally Virtual Networks are utilized

in data centers and service provider networks [15]. This allows them to create

networks based on certain application needs and then change the network topol-

ogy on the fly when the needs change. For now, those are the main use cases for

Virtual Networks. However, there have been other proposed applications such as

in mobile and home networks [2]. While Virtual Networks aren’t currently being

used for those applications, it is possible that in the future they will be.

8



Chapter 3

Virtual Network Architectures

A Virtual Network Architecture dictates how a virtualized network is man-

aged, created, and functions. In this chapter, we look at different architectures,

how they work, how they are used, and their trade-offs. The architectures in-

clude VMware vSphere architectures [18], including one that utilizes Palo Alto

Networks components [21], Juniper Networks’ Contrail Architecture [5], Open-

Stack’s Neutron Architectures [10], Apache’s CloudStack Architecture [1], and the

VirtualBox “Architecture” which isn’t a true Virtual Network Architecture [9].

We start first with the VMware Architectures.

3.1 VMware Architectures

VMware is a virtualization company that specializes in making virtual tech-

nology. Naturally, part of their work involves Virtual Networks and creating an

environment to house them. VMware has two main Virtual Network Architec-

tures, and a third PAN VM Series Virtual Network Architecture that utilizes

added Palo Alto Network security components. All three architectures have sim-

9



ilar use cases and can all be utilized to create large virtual data centers and

multi-cloud networking systems [17]. The biggest difference between the first

two architectures is the use of standard virtual switches versus distributed vir-

tual switches. Virtual Switches are similar to physical switches but instead exist

purely in software on top of another physical device and are used for VMs. This

allows for multiple virtual switches to exist on the same physical hardware. A

standard virtual switch behaves similarly to a physical switch but with less func-

tionality and is limited to one host [18]. A distributed virtual switch acts as a

switch but can be used by hosts across a data center to centrally manage certain

features such as creating components, managing the network, etc [18]. Other

differences between the two main VMware architectures are dependent on the

virtual switch being utilized. Because of this we describe both the standard and

distributed switch architectures and the PAN VM-Series Architecture.

3.1.1 Standard Switch Architecture

The vSphere Standard Switch Architecture allows for the creation of an inter-

nal virtual network within each ESXi host. A standard virtual switch is placed

on top of each host and connects VMs to each other and the external network

outside of the host machine. In this section we describe the different components

of the architecture and how they work. Then we look at some use cases and

trade-offs.

The standard virtual switch (vSwitch) is more similar to a physical switch

than the distributed vSwitch, as it maintains both the data and management

planes [18]. Figure 3.1 shows an example of the Standard Switch Architecture and

how the components are connected. This architecture differs from the distributed

10



architecture as each standard vSwitch operates on a single host, independently of

one another. Because of this, each standard vSwitch implements both the data

and management planes of the network [18]. Standard vSwitches are configured

and maintained individually and are hosted on an ESXi host [18]. A vSwitch’s

port groups connect to a VM’s virtual NIC, providing connectivity to the other

VMs on the host [18]. These port groups can be assigned to any VMs on the

same host as the vSwitch, allowing for groups of VM’s to be managed together

through a port group’s specifications. All VMs connected to the same port group

on a standard vSwitch are in the same “network” or subnet, even if they aren’t

on the same host [17]. Figure 3.1 shows an example of different port groups, such

as “Test Environment” and “Production”, connecting to the vNICs of the VMs.

The port group labeled “Management Traffic” is connected to a component called

the VMKernel, with it’s own Virtual NIC called the vmknic. The VMKernel

component is “an adapter that is used to provide network connectivity to hosts

and to accommodate system traffic for features of the network such as fault

tolerance and IP storage” [18].

While vSwitches provide connectivity between VMs, they also can connect

a host and its VMs to the external network. They do this through a set of

ports, called uplink ports, which connect the ESXi host to some physical network

device [18]. The physical switch’s NICs are assigned to the uplink ports of the

standard vSwitch. An example of this is shown in Figure 3.1. A vSwitch provides

external network connectivity to the VMs on the host by connecting their port

groups to the uplink port groups [18]. Figure 3.3 shows an example. However,

if an uplink port is not connected to a physical NIC, all VMs in the port group

connected to that uplink can only communicate with each other and not the

external network [18]. Each uplink port group on the standard vSwitch has the

11



Figure 3.1: VMware vSphere Standard Switch Architecture [18]

capability to connect to one or more physical NICs. This is called NIC teaming

and allows for load balancing and a failsafe if a physical NIC goes down [18].

The vSphere Standard Switch Architecture is mainly used when a less complex

Virtual Network is needed, such as having ESXi hosts and VMs that need to

connect to each other in a way similar to a physical network. Other than basic

cases, there isn’t much reason to use the Standard Switch Architecture over the

distributed version. The Standard Switch Architecture is not as flexible as the

vSphere Distributed Switch Architecture and has less features as well. This is

because each standard vSwitch can only manage one host and must maintain

that host’s data and management planes for the internal network. Managing a

VM as it moves across hosts is not possible with a standard vSwitch and once a

VM is moved to a new host, any management or network preferences have to be

recreated [18].

12



3.1.2 Distributed Switch Architecture

The vSphere Distributed Switch Architecture is more robust than the Stan-

dard Switch Architecture. The Distributed Switch Architecture centralizes the

management plane of the vSwitch so that the vSwitch can be logically connected

to multiple ESXi hosts, allowing for a more flexible Virtual Network to be cre-

ated [18]. In this section we describe the components that differ from the Stan-

dard Switch Architecture and how they work. As with the Standard Switch

Architecture, we then look at the potential use cases and trade-offs.

The Distributed Switch Architecture has more functionality than the standard

switch version due to the distributed nature of the vSwitches. Figure 3.2 shows an

example of the Distributed Switch Architecture. There are many differences be-

tween the standard and distributed vSwitches. Because the distributed vSwitch is

divided among potentially multiple hosts, it allows for the separation of the data

and management plane, unlike in the Standard Switch Architecture [18]. The

data plane acts much like the data plane of a physical network and is responsible

for package switching, filtering, tagging packets, etc. In the Distributed Switch

Architecture, the data plane is still controlled at the host level, same as the Stan-

dard Switch Architecture. The data plane component of a host in the Distributed

Switch Architecture is called the “host proxy switch” and is the part of each host

that receives the network configurations from the management plane [18]. The

management plane is responsible for configuring the data plane, i.e. the virtual

switches and the hosts where the data plane resides [18]. However, in the Dis-

tributed Switch Architecture, the management plane is now controlled by a new

component called vCenter, a virtual server. The configurations for a distributed

vSwitch are made in vCenter and then are stored locally in all the hosts that are

13



Figure 3.2: VMware vSphere Distributed Switch Architecture [18]

“connected” to the distributed vSwitch [18]. “By putting the management plane

in a vCenter server, functionality of the network can be controlled at the highest

level” [18]. This is especially useful in data centers, where the configuration of

all the switches throughout the network can be controlled in one location [18].

The distributed vSwitch has a few differences in the data plane compared to

the standard vSwitch. Like the Standard Switch Architecture, the Distributed

Switch Architecture contains uplink ports on the hosts that connect to the NICs

of the physical switch. The difference between the uplink ports for each vSwitch

is that with the separation of the management and data planes, network config-

urations can now be made for each uplink port group [18]. These configurations

then propagate down to all the host proxy switches that contain the uplink port

group being configured. Another difference in the data plane level is the addition

of the distributed port group. The distributed port group is similar to the port

group used in the standard vSwitches to connect the vSwitch to the VMs on

14



the host [18]. As with the standard vSwitches, the distributed port groups are

identified with labels such as “Production Network”. The difference between a

standard port group and a distributed port group is the latter can be connected

to VMs on multiple hosts and configured from vCenter to have different network

settings. This allows certain VMs, even if they are on different hosts, to share

network settings by being connected to the same distributed port group [18].

Different policies such as load balancing, security, etc. for a group of VMs can be

sent to the host proxy switch and applied differently depending on the distributed

port groups [18].

We have discussed the different distributed vSwitch components, but not

yet how they interact. Figure 3.3 shows a very helpful example of how the

components of an example distributed switch system are connected. The VMs

and VMKernels on each host are each connected to a port in their respective

distributed port group. In this example there is only one port group for the

VMs and one for the VMKernels, but there can be multiple port groups for each.

Also each VM, no matter which physical host it is on, can belong to any of the

distributed port groups. Each distributed port group is connected to one or more

uplink port groups to allow for external network connectivity. In figure 3.3, the

“VM Network” group is connected to two uplink port groups. The distributed

vSwitch allocates an uplink port for each physical NIC on the host. These uplink

ports are then connected to their respective physical NIC. In the figure, each

uplink port group has two ports, one to connect to Host1’s physical NICs and

one to connect to Host2’s physical NICs. If Host1 had another physical NIC, a

4th port for Host1 would be created.

Data flow in the Distributed Switch Architecture is designed to allow for

redundancy, to ensure that VM’s can communicate even when a component is

15



Figure 3.3: VMware vSphere Distributed Switch Architecture Data
Flow Example [18]

failing. This is made possible by the ability to connect distributed port groups

to multiple uplink port groups, allowing for the use of multiple physical NICs

to transmit a VM’s packet. Figure 3.4 shows how a packet travels from a host

out to the external network. In the figure, the details of Host2 are omitted. For

example, if VM1 wants to send a packet out of the network, the packet would first

go to Port 0 in the port group “VM Network”. The packet then goes through

either uplink port 5 or 6, because both ports are connected to “VM Network”.

If the packet goes through uplink port 5, it then goes through the “vmnic0”

physical NIC of Host1; otherwise it goes through “vmnic1”. Through either of

those Host1 physical NICs, the packet then goes to the physical switch, which

can then forward the packet to its next hop on the way to its destination. [18]

The vSphere Distributed Switch Architecture has more potential use cases

than the Standard Switch version, such as in data centers and cloud comput-

ing that require more robust and available virtual networks [17]. The use of

distributed vSwitches and a central management server allow for more flexibil-

16



Figure 3.4: VMware vSphere Distributed Switch Architecture Packet
Flow Example [18]

ity and more available services. The ability to control the data plane of each

host from a central component allows for much more flexibility over a Standard

Switch Architecture, which requires configuring each host vSwitch individually.

The ability to have VMs on different hosts be a part of the same logical sub-

net is very beneficial, because it allows for the creation of any Virtual Network

Topology, which wouldn’t be possible on a physical network. The distributed

vSwitch allows for VMs to maintain consistent network configurations even as

they are moved across the network to different hosts [18]. One downside to the

architecture is that once a host is connected to a distributed vSwitch, it must

always be connected to some distributed vSwitch. Another downside is the need

to send the configurations of each host over the network, which creates some

overhead and has the potential for failure. However, the overhead is small and

done in increments [18]. Despite this, the Distributed Switch Architecture allows

for more flexibility and more features than the Standard Switch Architecture.

Compared to other Virtual Network Architectures, both VMware Architectures

17



contain more options for use of virtual network, virtual security and distributed

components. Those virtual network and virtual security components are created

and managed by VMware’s NSX. NSX is the system for creating and manag-

ing the distributed vSwitch, more complex virtual networking components and

virtual security components such as virtual firewalls [19]. NSX allows for more

complex network function virtualization. VMware is at an advantage because

they specialize in virtualization, making it easier to integrate more robust virtual

components. However, VMware’s architectures are limited to managing virtual

components of a network and don’t allow for management of physical network

components. This means that other Architectures must be used as well to manage

a full virtual network system.

3.1.3 Palo Alto Networks + VMware Architecture

The Palo Alto Networks (PAN) VM-Series Architecture builds on top of

the VMware vSphere Distributed Switch Architecture to add more security fea-

tures [21]. The PAN VM Series Architecture is different from the other VMware

architectures because of the integration of Palo Alto Networks security compo-

nents. The additions are few enough that the architecture is similar to the Dis-

tributed Switch Architecture talked about above, but the security components

added are important enough that it deserves its own section. We first discuss the

PAN components and then discuss use cases and trade-offs.

VMware has its own virtual network security called NSX, but this architec-

ture allows for the additional use of 3 Palo Alto Networks components: VM-

Series Firewall, Dynamic Address Groups and Panorama Centralized Manage-

ment. “The VM-Series Firewall is a state of the art firewall that has the func-

18



tionality of a hardware firewall but is distributed and virtualized” [21]. The

firewall allows for the testing of unknown malware in a sandbox environment and

many other IDS type features which are absent in the previous VMware archi-

tectures [21]. Dynamic Address Groups allow for the tagging of VMs. Because

VMs can be moved from one physical host to another, this allows for security

policies to be applied to VMs even as they travel across the network [21]. The

Panorama Centralized Management is a central management system for the VM-

Series Firewalls that allows for configuring devices, deploying security policies,

and performing analysis across all the virtual firewalls in the network [21].

These three additional Palo Alto Networks components added on to VMware’s

Distributed Switch Architecture creates a new, combined architecture. Some of

the things that could be improved about the Distributed Switch Architecture

are certain security aspects, such as the lack of visibility into intra VM traffic

and slowness [21]. This architecture greatly increases security for any Virtual

Networks created. The potential downside is the system will be made slower

due to another centrally managed component and the added overhead of all the

security utilized. However, the system isn’t slowed enough to harm the network

and is outweighed by the benefits of having the extra security added. The use

cases for this architecture are the same as the Distributed Switch Architecture

since network part of the architecture operates in the same way. The difference is

simply the added security, which is beneficial in data centers, cloud computing,

and really any use case.

19



3.2 Juniper’s Contrail Architecture

Juniper Networks is a company that specializes in network solutions, both

physical and software-defined. A software-defined network is a network which

separates the control and data plane. A central controller makes the forwarding

decisions and propagates those decisions to the switches, which become simple

forwarding devices [6]. Juniper’s Virtual Network Architecture is called Con-

trail. “Juniper Network’s Contrail is an open-source software-defined networking

(SDN) solution that automates and orchestrates the creation of highly scalable

virtual networks” [5]. Potential use cases are as a cloud networking platform and

for network function virtualization [5]. Contrail allows for the creation of overlay

virtual networks to allow for a separated distribution of physical and virtual re-

sources [5]. An overlay network is when the physical network is used to provide

connectivity, while the virtual networking components lay on top of the physical

servers routing the data [5]. In this section we describe Contrail’s components

and how they work, followed by use cases and trade-offs.

Figure 3.5 shows the details of the Juniper Contrail architecture and how

the components are connected. While there are many components in the sys-

tem, the two main Juniper created components of the architecture are the SDN

Controller and its subnodes, and the vRouters. Contrail’s software-defined net-

work controller is used for management, analytics and control mechanisms of the

system [5]. It is logically central but is physically separate, meaning that the

controller is hosted on multiple physical servers, but is viewed by the rest of the

network as one controller when communicating with it. VRouters are similar to

the VMware vSwitch that we described earlier, except the vRouter also provides

routing [5]. The vRouters act as a forwarding plane that lies in the hypervisor of

20



Figure 3.5: Juniper Contrail Architecture [5]

a virtualized server [5].

Contrail’s SDN Controller is divided into three main services: Configuration

Nodes, Control Nodes, and Analytics Nodes [5]. The configuration nodes are

in charge of the management plane and communicate using REST APIs. They

translate a high level data model into a low level model that can properly interact

with network elements [5]. The control nodes implement the logically centralized

portion of the control plane and are in charge of applying the changes made

by the configuration nodes. They propagate the low level model created by the

configuration nodes to and from network elements and peer systems [5]. This

communication is done using XMPP to control the vRouters and a combination

of BGP and NETCONF protocols to control the physical routers [5]. The ana-

lytics nodes are in charge of collecting statistics for troubleshooting and network

usage stats. They capture real time data and turn it into a presentable form [5].

21



Contrail utilizes what is called an overlay virtual network, as described earlier.

The vRouters create tunnels between each other, so when a VM on one physical

host sends a packet to another, it can be routed without interacting with another

overlapping virtual network and without having its data being viewed by any

unauthorized routers/hosts on the way to its destination [5]. VMware’s Virtual

Network Architecture with NSX allows for similar functionality.

Other than the two Juniper components, there is also an orchestration system

for the virtual networking, which can utilize two other Virtual Network Archi-

tectures discussed later, called OpenStack and CloudStack [5]. The orchestration

system is in charge of communicating with the virtualized network functions such

as virtual firewalls and virtual routing components. OpenStack and CloudStack

are Virtual Network Architectures like Contrail, but can be utilized to simply

manage a Virtual Network’s components, which is why they are used in Con-

trail’s Architecture. Contrail also utilizes 3 main interfaces. The first is the

Northbound REST API that is used to talk to apps and the orchestration sys-

tem [5]. The second is the Southbound interfaces used to communicate with the

vRouters and the physical network elements [5]. Lastly, the East-West interface

is utilized for peer to peer communication, such as vRouters communicating with

one another [5].

Juniper’s Architecture utilizes many different forms of communication. The

overlay network’s messaging format is based on MPLS L3VPNs (for layer 3 over-

lay networks) and MPLS EVPNs (for layer 2 overlays) [5]. Contrail’s virtual

overlay network data plane can utilize either MPLS GRE/UDP or VXLAN to

create tunnels of communication between vRouters [5]. The control plane utilizes

BGP for communication [5]. The protocol for communication between the SDN

Controller and the vRouters is very similar to and based off XMPP, and is seman-

22



tically very similar to the BGP protocol [5]. We wont go into detail on how these

protocols work, as knowing how they work isn’t important to understanding the

architecture.

Use cases for Contrail include as a Private Cloud for companies, as an In-

frastructure as a Service, and Virtual Private Cloud for Service Providers and

for managing Network Function Virtualization for Service Provider Networks [5].

Contrail, like other Virtual Network Architectures, is utilized in data centers,

allowing for the creation of multi-tenant virtualized data centers [5]. Contrail

allows each tenant to share physical resources while being assigned their own vir-

tual resources, such as their own virtual networks, virtual storage and VMs [5].

For Network Function Virtualization, Contrail allows for management and or-

chestration of virtualized functions such as firewalls, IDSs, caching, etc. Con-

trail is beneficial as it allows for multiple options in choice of Virtual Network

Orchestrator and type of virtual network components. It also utilizes overlay

networks and tunneling, allowing for logical separation of networks while keep-

ing data protected. However, it doesn’t have as much flexibility as the VMware

Distributed Switch Architecture because its vRouters have similar shortcomings

to the VMware Standard vSwitch, such as only being able to connect to VMs on

one host. Contrail also lacks in security compared to the vSphere Architectures.

While VMware has both NSX and PAN distributed security features that can be

managed from a central location, Contrail’s only allows for the use of external

security components. While other security features such as IDS’s and Firewalls

can be useful in the architecture, they cant be distributed or centrally managed

to more easily secure large parts of the Virtual Networks created.

23



3.3 OpenStack’s Neutron Architecture

OpenStack is a company that created a Cloud Management System that con-

trols “large pools of compute, storage, and networking resources throughout a

data center” [14]. The most important part of that system is virtual network

management and virtual components, which allow for the creation of virtual

and overlay networks. OpenStack Neutron has different architectures based on

the needs of the user, such as classic, high availability and provider (overlay)

networks [10]. Architectures also vary based on different components added or

substituted, such as architectures with and without a linux bridge. The primary

use case for Neutron is in data centers, where it is used to create and manage

Virtual Networks similar to the other architectures we have described [14]. In this

section, we look at the Classic Architecture with Open vSwitch, as it is the ”clas-

sic” architecture type for Neutron and shows the base case for OpenStack Virtual

Networking. We then briefly discuss the High Availability with Distributed Vir-

tual Routing Architecture and the Provider Network Architecture to show the

full capabilities of Neutron. We then look at use cases and trade-offs.

OpenStack’s Neutron Virtual Network Architecture is used for controlling the

networking components of a Virtual Network. “It contributes the networking por-

tion of self-service virtual data center infrastructure by providing a method for

regular (non-privileged) users to manage virtual networks within a project” [10].

An overview of the basic network layout can be seen in figure 3.6. The infras-

tructure is made up of 3 main parts: a controller node, a network node, and one

or more compute nodes [10]. The controller node has one network interface and

manages the network. The network node has four network interfaces and acts as

a router or a gateway to the network. The compute nodes contain three network

24



Figure 3.6: OpenStack Virtual Network Basic Layout for a Classic
Open vSwitch Architecture [10]

interfaces and hosts the VMs. There isn’t much to say about the controller node

other than it is used to manage the whole network, but there is more to the

network and compute nodes.

Figure 3.7 shows the overall architecture and components for the network

node. The network node is the most complex of the three nodes and is used

as a sort of gateway router for the network, connecting subnets together and

connecting the network to the Internet [10]. It contains four main components: an

Open vSwitch agent, a DHCP agent, an L3 agent, and a Metadata agent [10]. The

Open vSwitch agent is in charge of managing all the virtual switches. It manages

the virtual switch’s connectivity and their interactions with other components

through its virtual ports. The Virtual switches interact with other components

such as namespaces, Linux bridges, and underlying interfaces [10]. The DHCP

agent is in charge of managing the qhdcp namespaces, which provide DHCP

service to VMs of the system using an internal network [10]. The L3 agent

manages the qrouter namespaces, providing routing between internal and external

networks [10]. They also provide routing between internal networks, allowing

25



Figure 3.7: OpenStack Virtual Network’s Network Node Design [10]

these networks to communicate among each other. They also route metadata

between instances of the network and the Metadata agent. The Metadata agent

handles all the metadata operations for all VMs of the network [10].

Figure 3.8 shows the overall architecture and components for the compute

node(s). The compute node is a host, similar to the VMware ESXi host, that

can host multiple VMs [10]. Multiple compute nodes can be connected as a

subnet or even one compute node can be considered a subnet itself. The compute

node contains a virtual switch for its hosted VMs to connect to and has two

components. The first component is another Open vSwitch agent that performs

the same tasks as described in the network node [10]. The compute node agent

manages Open vSwitches on the compute node, while the Open vSwitch agent in

the network node manages all the switches in the network. The other component

is the linux bridge which handles security groups and their applications to the

different VMs [10]. Due to limitations with Open vSwitch and iptables, the

26



Figure 3.8: OpenStack Virtual Network’s Compute Node Design [10]

networking service uses a linux bridge to manage security groups for VMs [10].

Figure 3.9 shows an example of how the compute, controller, and network

nodes are all connected. In the figure, the network node is acting as the gateway

router, routing between compute nodes and from compute nodes to the external

network. The compute nodes act as subnets, with each having a switch to route

between instances. It also show 2 overlapping networks that don’t know about

the other: the Tunnel network and the VLAN network. This is a good example of

how virtual networks can be separate even though they are on the same physical

machine.

A High Availability with Distributed Virtual Routing Architecture adds to

the Classic Architecture by adding distributed virtual routers [11]. Figure 3.10

shows the overall architecture with the added distributed router. The distributed

virtual router is added to every compute node and compute nodes now have an

interface connecting directly to the external network. This is done to allow for

27



Figure 3.9: OpenStack’s Virtual Network Architecture and Compo-
nents [10]

direct connection to the external network and other compute nodes, bypassing

the network node [13]. The distributed virtual router also allows for address

translation for the Virtual Network on the compute node [13]. This is normally

done by the network node, but is now also done by the distributed router. The

point of the distributed router is to allow for quicker connection to other nodes

and the external network. The distributed router is also important because it

makes Virtual Networks more scalable by taking a lot of the load off of the

network node and distributing it [13].

A Provider Network Architecture is similar to the Classic Switch Architec-

ture, but with the virtual components being connected to an underlying physical

network rather than directly to the Internet. The main difference is that the

Provider Network has the compute and control nodes connected to physical net-

work components such as routers, switches, etc. [12]. The controller and compute

28



Figure 3.10: OpenStack’s High Availability using Distributed Virtual
Router Architecture [11]

nodes have interfaces that directly connect to ports on a physical network com-

ponent to allow for data to move through the overlay network [12]. Another

difference is that the network node and controller node are now combined so that

the controller node is now also partly responsible for network management [12].

The Provider Network Architecture allows for the use of overlay networks and

communication inside and outside a Virtual Network, while the Classic Architec-

ture is more utilized for intra-data center communication between nodes, though

communication with external networks is still common [12].

The OpenStack Neutron Architectures allow for many different ways to cre-

ate and manage Virtual Networks, and their components. This is shown in the

Juniper Contrail Architecture that we discussed, where OpenStack’s Architec-

ture can be used to control all the virtualized network components in the system.

Like other Virtual Network Architectures, the Openstack Neutron Architecture

29



is mainly used in creating virtual data center networks [12]. Neutron is useful

because it has many architecture types depending on the type of Virtual Network

system that is needed for a solution. The downside is that once one is selected, it

is harder to switch to a different architecture and one can’t reap the benefits of

the different architectures at once. Neutron also has an architecture that utilizes

distributed routers, which allows for more efficient intra-data center communi-

cation [13]. It also makes the system scalable and efficient due to distributing

some of the work done by the network node, such as address translation [13].

Another downside is that similar to Juniper’s Contrail Architecture, there aren’t

as many security features as VMware’s Architectures outside of using normal net-

work IDSs and virtual firewalls. This is seen with OpenStack’s vSwitches having

limitations that force the network node to use a Linux Bridge to manage the

security of VM groups.

3.4 Apache CloudStack Architecture

The Apache Software Foundation is a company that focuses on developing

open-source software. One of their projects is Apache CloudStack. “Apache

CloudStack is an open source cloud computing software, which is used to build

private, public and hybrid Infrastructure as a Service (IaaS) clouds by pooling

computing resources” [7]. Like other architectures, the Apache CloudStack Ar-

chitecture is used in virtualizing datacenter communication. Apache CloudStack,

like OpenStack, has many architectures based on need and is used as an option for

managing network components in the Juniper Contrail Architecture. However,

CloudStack differs from OpenStack in that the different architectures it employs

are based on the size of the desired network and whether certain components

30



such as storage should be separated from the rest of the network. In this section

we first describe the CloudStack Architecture and its components, followed by

use cases and trade-offs.

The Apache CloudStack Architecture allows for the virtualization and man-

agement of data center networks. Figure 3.11 shows an overview of the general

CloudStack Architecture. CloudStack “supports a large set of hypervisors, scal-

able architectures, multi node installation and load balancing, making it a high

availability system” [7]. However, the CloudStack Architecture has fewer compo-

nents and less functionality than the other Architectures we have covered, with

the basic architecture consisting mainly of a management server, storage, and

computing nodes. The management server is what manages the cloud resources

such as provisioning storage, hosts, and ip addresses [7]. Admins can use the

management server through either a user interface or through its API. Storage

has the option of being located on a server within the same part of the network

as the other components or being separated into its own storage subnet [7]. The

computing nodes are the machines hosting the VMs and other virtual network

components [7].

CloudStack has a range of architectures from a very simple, small network to

more complex, more divided networks. The CloudStack Architecture has both

basic networking, similar to an AWS type network, and more advanced network-

ing for more complex network topologies [7]. Figure 3.12 shows the Small-Scale

Deployment Architecture, the most basic CloudStack Architecture [1]. The ar-

chitecture has one subnet with a gateway router/firewall, a layer 2 switch, a

management server, an NFS storage server, and the compute nodes holding the

virtual resources [1]. It also contains a VMware vCenter server if VMware vir-

tual network components are being used [1]. CloudStack has other architectures

31



Figure 3.11: Apache CloudStack’s Virtual Network Architecture and
Components [7]

with more flexible setups, such as architectures that divide certain components

between different subnets.

The CloudStack Architecture allows for various Virtual Network setups rang-

ing from smaller to larger networks. CloudStack is mainly used in data centers

and cloud computing to create and manage Virtual Networks, making intra data

center communication easier. A big benefit of the CloudStack Architecture is

its flexibility in component use. It allows the use of many different VM types,

virtual component types, and even the use of VMware’s vCenter to manage Vir-

tual Network resources (if the Virtual Network components are VMware’s). The

CloudStack Architecture also allows for more functional network setups, which

allow the architecture to handle bigger networks and/or the separation of storage

nodes, which helps lower the load of the management network. However, despite

the increased functionality of some of the Architectures, it still lacks in flexibility

of its implementations. The different architectures of CloudStack are based more

on division of storage than in creating more architectures of varying uses, un-

like OpenStack which allows for plenty of architecture options. The CloudStack

32



Figure 3.12: Apache CloudStack’s Virtual Network Small-Scale De-
ployment [1]

Architecture also lacks in use and management of virtualized security functions

from a central location. It doesn’t have any dedicated management for security

and instead relies on the use of outside virtual security components and manage-

ment. This makes it more difficult to manage network-wide security and protect

any Virtual Networks created.

3.5 Oracle VirtualBox “Architecture”

Of all the Virtual Network Architectures, Oracle’s VirtualBox is the easiest to

describe. This is because it doesn’t really have a Virtual Network Architecture,

hence the quotations surrounding architecture in the heading. To create a Virtual

Network in VirtualBox, it is necessary to use regular VMs as virtual routers rather

than using virtual switches that better emulate a physical switch. It also requires

33



personally creating a management network through VirtualBox’s network setting

and by enabling port forwarding [9]. Other steps to get the network properly

configured are needed as well. So while a Virtual Network can be created in

VirtualBox, it is more of a workaround than a true Virtual Network.

3.6 Comparison

In this section we look at the overarching view of all the architectures and

shortly describe how they compare to each other in certain aspects. Each ar-

chitecture has similar use cases, mainly in data centers and cloud computing,

and each has its own trade-offs. No architecture is necessarily better overall

than any other, but rather each is better in different areas such as flexibility or

management. Table 3.1 shows an overview.

For flexibility of implementation, the VMware vSphere Distributed Switch Ar-

chitecture, the PAN VM-Series Architecture, and the OpenStack Architectures

allow for diverse choice in architectures based on different virtual network compo-

nents. However, OpenStack’s architectures vary and once one is picked, the whole

system is set. VMware and the PAN architectures, however, allow for flexibility

in choice of virtual switch, virtual security components, etc while also allowing

for them to be implemented at any point in time. CloudStack allows for the use

of VMware network virtualization, so through that capability it also allows for

some flexibility of architecture. The Contrail Architecture has some flexibility

but not as much as the other architectures, being limited by its lack of options

for virtual switch (vRouter must be used) and virtual security components.

For management of a network, each architecture has its strengths and weak-

nesses. Juniper Contrail and CloudStack allow for management of both virtual

34



Architecture Implementation

Flexibility

Management Security and

Management

Virtual

Component

Flexibility

VMware vSphere +

PAN

Good, multiple

options for

vSwitch/security

Good management of

virtual network, lacks

physical network

management

Good, has many

distributed/centrally

managed security

features

None, must use

VMware virtual

components

Juniper Contrail Some, has only one

architecture, must use

vRouter

Manages both virtual

and physical, Others

manage virtual better

Relies on outside

virtual security

components

Very, allows different

hypervisors and

virtual components

OpenStack Good, has multiple

architecture and

virtual component

options

Same as VMware,

virtual management

slightly worse

Relies on outside

virtual security

components

None, must use

OpenStack virtual

components

CloudStack Some, has different

architectures based

on network division

Same as Juniper Relies on outside

virtual security

components

Very, can use different

hypervisors and

VMware vCenter

Table 3.1: Architecture Comparison Overview

and physical resources, while VMware and OpenStack don’t. However, VMware

and OpenStack allow for better management of virtual components and both

allow for the distribution and central management of switches and subnets. This

allows for the management of a VM’s network configurations even as it moves

around the physical network. For integration of security and easy management

of it, VMware has the clear edge with its Distributed Switch Architecture, along

with NSX and the PAN architecture. The vast options for virtual security through

NSX and PAN puts the VMware and PAN architectures above the rest. The other

architectures all rely on outside security components and don’t provide centrally

managed Virtual Network security.

CloudStack and Contrail allow for the most flexibility in type of hypervisors

and virtual components used, with CloudStack being a little more flexible in this

regard due to the Contrail Architecture needing to use its own virtual router.

35



CloudStack is also flexible in that it allows for the use of VMware’s vCenter to

manage the VMware virtual components. Juniper also allows for the choice be-

tween CloudStack and OpenStack for managing virtual resources. VMware/PAN

and OpenStack are not flexible in this category as they require use of their own

virtual components.

36



Chapter 4

Conclusion

In this paper we looked at different Virtual Network Architectures, how they

work, how they are used, and what their strengths and weaknesses are. There

are the VMware Virtual Network Architectures: the Standard Switch Architec-

ture, the Distributed Switch Architecture, and the PAN VM-Series Achitecture.

These architectures allow for the creation and management of flexible and very

secure Virtual Networks, but don’t allow for management of physical network de-

vices. There is the Juniper Contrail Architecture, which allows for management

of whole datacenters, both virtual and physical network components, but doesn’t

have the same robustness of Virtual Networks due to a lack of distribution. It

also doesn’t have centralized, high level virtual security management. There are

the OpenStack Architectures, which allow for various architectures according to

need and allow for both overlay and non-overlay virtual networks. However, they

lack in integration of the positives of their architectures into a single system and

also lack centralized virtual network security management. There is the Apache

CloudStack Architecture which allows for flexibility of setup and virtual compo-

nent type and for management of both physical and virtual network components.

37



However, outside of using vCenter, it doesn’t have distributed virtual compo-

nents, and doesn’t have management and use of virtual security components.

Finally, there is VirtualBox, which doesn’t allow for any virtual network use

outside of setting up VMs to mimic virtual network components. All the archi-

tectures, outside of VirtualBox, are utilized in a variety of datacenter and cloud

computing virtual networking solutions. They all have their benefits and draw-

backs, but all the architectures can be utilized in the creation and management

of Virtual Networks.

38



Chapter 5

Glossary

1. Virtualization The simulation of hardware function in software to allow

for the creation of a virtual computer system [20]

2. Hypervisor

A hypervisor is the VM OS that communicates with the OS of the under-

lying physical machine

3. Software-Defined Netowrk

A software-defined network is a network which separates the control and

data plane. A central controller makes the forwarding decisions and prop-

agates those decisions to the switches, which become simple forwarding

devices [6].

4. Virtual Network

“A network of virtual machines running on a physical machine that are

connected logically to each other so that they can send data to and receive

data from each other” [18]. Many of the physical components of a net-

39



work are turned into purely software version such as virtual routers, virtual

switches, virtual NICs, etc.

5. Virtual Switch

Virtual Switches are similar to physical switches but instead exist purely in

software on top of another physical device. This allows for multiple virtual

switches to exist on the same physical hardware [18].

6. VMware Standard vSwitch

Acts like a physical ethernet switch (without the advanced functionality)

but is purely software and lies on top of physical device. “It detects which

virtual machines are logically connected to each of its virtual ports and uses

that information to forward traffic to the correct virtual machines” [18]. It

can also connect virtual networks to physical networks [18].

7. VMware Distributed vSwitch

It is similar to the standard vSwitch but is distributed across hosts. “It

acts as a single switch across all associated hosts in a data center to pro-

vide centralized provisioning, administration, and monitoring of virtual net-

works” [18]. Allows VM’s to have consistent settings even as they are moved

across hosts [18].

8. Juniper vRouter

VRouters are similar to the VMware vSwitch, with the vRouter providing

some extra higher layer network services. The vRouters act as a forwarding

plane that lies in the hypervisor of a virtualized server [5].

9. VMkernel

40



The VMKernel component is “an adapter that is used to provide network

connectivity to hosts and to accommodate system traffic for features of the

network such as fault tolerance and IP storage” [18].

10. Data Plane

The data plane is responsible for package switching, filtering, tagging pack-

ets, etc. The management plane is responsible for configuring the data

plane, i.e. the virtual switches and hosts that control the data plane.

11. Management Plane

The management plane is responsible for configuring the data plane, i.e.

the virtual switches and hosts that control the data plane.

12. ESXi Host

13. Virtual NIC

Virtual NICs are a purely software NIC for VMs. Virtual NICs act like a

physical NIC and are viewed as a physical NIC to the outside world [18].

Each vNIC has its own MAC address, ip addresses, and responds to ethernet

protocols as if it were a physical NIC [18].

14. Overlay Network

An overlay network is when the physical network is mainly used to pro-

vide connectivity, while the virtual network components lay on top of the

physical servers handle the routing the data [5].

41



Bibliography

[1] Apache. Choosing a deployment architecture.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtualiza-

tion: Challenges and opportunities for innovations. IEEE Communications

Magazine, 53(2):90–97, Feb 2015.

[3] K. Joshi and T. Benson. Network function virtualization. IEEE Internet

Computing, 20(6):7–9, Nov.-Dec. 2016.

[4] Juniper. Understanding network virtualization with vmware nsx, Nov 2014.

[5] Juniper. Contrail architecture, Sep 2015.

[6] D. Kreutz, F. M. Ramos, and P. Verissimo. Towards secure and depend-

able software-defined networks. In Proceedings of the Second ACM SIG-

COMM Workshop on Hot Topics in Software Defined Networking, HotSDN

’13, pages 55–60, New York, NY, USA, 2013. ACM.

[7] R. Kumar, K. Jain, H. Maharwal, N. Jain, and A. Dadhich. Apache cloud-

stack: Open source infrastructure as a service cloud computing platform.

International Journal of Advancement in Engineering Technology, Manage-

ment and Applied Science, 1(2):111?116, Jul 2014.

42



[8] Y. Li and M. Chen. Software-defined network function virtualization: A

survey. IEEE Access, 3:2542–2553, 2015.

[9] B. Linkletter. How to emulate a network using virtualbox, Oct 2017.

[10] OpenStack. Scenario: Classic with open vswitch, Nov 2016.

[11] OpenStack. Scenario: High availability using distributed virtual routing

(dvr), Nov 2016.

[12] OpenStack. Scenario: Provider networks with open vswitch, Nov 2016.

[13] OpenStack. Neutron ovs dvr - distributed virtual router, Oct 2018.

[14] OpenStack. Openstack docs: Rocky, Aug 2018.

[15] SDNCentral. What is a virtual network?

[16] VMware. Virtualization overview white paper.

[17] VMware. Vmware infrastructure architecture overview.

[18] VMware. vsphere networking.

[19] VMware. Nsx administration guide, Nov 2017.

[20] VMware. Virtualization technology and virtual machine software: What is

virtualization?, Nov 2018.

[21] Vmware and P. A. Networks. Next generation security with vmware nsx and

palo alto networks vm-series, 2014.

43


	Introduction
	Background: Virtual Networks
	Virtualization
	Network Virtualization

	Virtual Network Architectures
	VMware Architectures
	Standard Switch Architecture
	Distributed Switch Architecture
	Palo Alto Networks + VMware Architecture

	Juniper's Contrail Architecture
	OpenStack's Neutron Architecture
	Apache CloudStack Architecture
	Oracle VirtualBox ``Architecture"
	Comparison

	Conclusion
	Glossary
	Bibliography

