

Accelerated Wear -
Final Design Review

Report

Sponsor: Rob Brewster

By: Daniel Alanis (dalanis@calpoly.edu)

 Tristan Frisella (tfrisell@calpoly.edu)

 Kian Ashoubi (kashoubi@calpoly.edu)

i

Table of Contents
1.0 Executive Summary
2.0 Introduction and Background
3.0 Customer Requirements and Design Specifications

3.1 IFU
3.2 Product Design Specifications
3.3 House of Quality

4.0 Stage Gate Process
4.1 Concept Review
4.2 Design Freeze
4.3 Design Review

5.0 Description of Final Prototype Design
5.1 Overview
5.2 Design Justification
5.3 Analysis
5.4 Cost Breakdown
5.5 Safety Considerations

6.0 Prototype Development
6.1 Model Analyses
6.2 Evolution of Prototypes
6.3 Manufacturing Process
6.4 Divergence Between Final Design and Final Functional Prototype

7.0 IQ/OQ/PQ
7.1 DOE
7.2 Verification and Validation

8.0 Conclusions and Recommendations
8.1 Recommendations
8.2 Conclusions

9.0 Acknowledgments
10.0 Appendices

10.1 Appendix A: References
10.2 Appendix B: Project Plan (PERT Chart)
10.3 Appendix C: CAD Drawings
10.4 Appendix D: FMEA, Hazard & Risk Assessment
10.5 Appendix E: Pugh Chart
10.6 Appendix F: Vendor Information
10.7 Appendix G: Sensirion Digital Humidity Sensor SHT85 (RH/T) Datasheet
10.8 Appendix H: Adafruit Data Logging Shield Datasheet
10.9 Appendix I: K33 ICB 10% CO2 Sensor Datasheet

ii

10.10 Appendix J: Adafruit TCA9548A 1-to-8 I2C Multiplexer Breakout
Datasheet
10.11 Appendix K: Graphic KS0108 LCD Datasheet
10.12 Appendix L: Budget
10.13 Appendix M: DHR
10.14 Appendix N: Arduino Code

1

1.0 Executive Summary

Carbon dioxide accounts for a large amount of global greenhouse gases released into the
environment. Because plastic degradation emits carbon dioxide, there has been interest to
investigate how much carbon dioxide various plastics generate as they degrade. We have been
tasked to create a dehumidifier and carbon dioxide sensor assembly for an accelerated wear
testing apparatus that degrades plastic. Several products and literature currently exist that share
similarity with our assembly but have not been manufactured to achieve the same combination of
measurements we are expecting of our accelerated wear testing device. The following report
shall introduce these products and literatures, highlight customer requirements, detail the design
process, and discuss project management for our accelerated wear testing apparatus.

It has been shown with 95% confidence that our sensors output accurate results for CO2, relative
humidity, and temperature for the range of values that are expected to be encountered during the
course of accelerated age testing of plastics inside a bioreactor. Additionally, it has been
confirmed that the dehumidifying chamber can be used to dry a gas sample to a level that is
appropriate for the sensors being used within this device.

Next steps for this device include, interfacing with a bioreactor, automation of sampling, a
continuous method of drying the desiccant within the dehumidification chamber, along with
machined parts to replace rapid prototyped components.

2

2.0 Introduction and Background

Introduction

According to the U.S. Environmental Protection Agency, carbon dioxide (CO2) accounted for 65
percent of global greenhouse gases released into the environment in 2017 (1). Because carbon
dioxide accounts for the largest percentage of greenhouse gasses emitted into the atmosphere,
there have been multiple attempts to reduce CO2 pollution such as the Clean Air Act of 1970 and
incentivizing electric vehicle purchases.

Although there have been several measures to reduce CO2 pollution, plastic waste remains a
contributor of CO2 emissions. Currently there are several patents such as patent numbers
US9267875B2 and US4874952A that provide methods to degrade polymers at an accelerated
rate, yet they do not quantify what by-products (such as CO2) are emitted to the environment.
Thus, there is still room for improvement in reducing CO2 pollution and there has been interest
to quantify the amount of CO2 released by plastic waste.

We have been tasked by Rob Brewster and California Polytechnic State University, San Luis
Obispo to investigate and create an accelerated wear testing apparatus which accelerates the
degradation of plastic waste and measures the amount of CO2 produced. This shall be
accomplished by manufacturing a dehumidifier and obtaining a CO2 transducer. The following
work will discuss the background, objectives, and management with regards to our project.

Background

Table I: Existing designs

Design Description

CO2 sensor from CO2Meter.com Detects CO2 levels at an optimal sample rate of
500 mL/min for various ranges of CO2 values

SmartBee - CO2 / LTH - Combined CO2 & LTH
Sensor (SB100102)

Designed for constant monitoring of light,
temperature, humidity, and carbon dioxide
levels

Titan Controls 702852 Saturn 6 Digital
Environmental Controller with C

Provides the control of your temperature,
humidity, and carbon dioxide PPM; levels
with digital accuracy

QA Supplies 900101 cat oxygen (21%) and
carbon dioxide (20%) analyzer

CAT portable gas analyzers are used to
measure Oxygen and Carbon Dioxide levels
inside a product shipping container

3

Table II: Related Patents

Patent Number Description of Patent/Invention

US4874952A
Granted 10/17/1989

Involves the accelerated photo-aging of
materials containing polymers with a goal of
better understanding photodegradation and
determining the correlations between the life
spans of said materials under accelerated
photo-aging and climatic aging.
Uses oxygen to quantify photodegradation.

US4957012A
Granted 09/18/1990

Describes a method to predict the aging of
polymers by heating a polymer in the
outdoors to a high enough temperature where
a change of property is induced.
Uses solar radiation to quantify degradation.

US9267875B2
Granted 02/23/2016

Provides an accelerated life testing method for
a test piece within a test chamber. This
involves the establishment and alteration of
multiple atmospheres within the chamber.

CN103351616A
Granted 10/16/2013

Aims to solve the technical problem of
providing a plastic anti-aging PA-PPS alloy
with good anti-aging properties.

US20050004285A1
Granted 01/06/2005

Invention is a dimensionally-stable propylene
polymer foam with improved thermal aging
Uses stabilizing additives to quantify thermal
degradation.

The apparatus we are creating has a high freedom to operate due to the lack of direct restrictions
from any of the observed patents. Our product is not to be marketed as it is to be used for
university research. Our apparatus will not infringe on any patents listed above.

4

Table III: Relevant Literature

Literature Title Journal Summary

Development of an automatic
laboratory-scale respirometric
system to measure polymer
biodegradability

Polymer Testing 25, 2006
Kijchavengkul, Thitisilp

A respirometric system was
built and tested to determine
polymer degradation under
simulated environmental
conditions. Percentage of CO2
produced was converted to
percentage of mineralization.
The system ran for 63 days
and the PLA and PET plastics
produced 64.2% and 2.7%
mineralization.

Degradation process
investigation of thermoplastic
polyurethane elastomer in
supercritical methanol

Polymer Degradation and
Stability 98, 2013
Liu, Lu

Depolymerization of
polyurethane was investigated
in sub and supercritical
methanol. The degradation
started with breaking the
urethane group and the
polymer was separated into a
soft and hard segment. The
main products produced in the
supercritical region were
dimethyl adipate and 4,40-
methylene diphenyl
carbamate.

Effect of test parameters on
degradation on polyurethane
elastomer for accelerated life
testing

Polymer testing 40, 2014
Kim, Hansol

Degradation characteristics of
polyurethane sliding against
stainless steel was
investigated. Testing lasted
234 hours and rate of height
decrease ranged from 0.15-
0.9 micrometers/kilometers.

5

Table III Cont’d

High frequency circular
translation pin-on-disk
method for accelerated wear
testing of ultrahigh molecular
weight polyethylene as a
bearing material in total hip
arthroplasty

Journal of Biomechanics 48,
2015
Saikko, Vesa

Polyethylene was put under
accelerated wear through a
three-station, dual motion
high frequency circular
translation pin-on-disk was
designed with a frequency of
25.3 Hz. In a 10-day test, the
wear rate was 1.8 milligrams
per day.

Plastic Degradation and Its
Environmental Implications
with Special reference to
Poly(ethylene terephthalate)

Polymers 5, 2013
Webb, Hayden

Plastic has been increasing in
global consumption and its
resistance to degradation is of
increasing concern to the
environment, specifically
polyurethane. Plastic goes
through 4 stages of
degradation and can take 50
or more years for it to fully
degrade.

Our team shall be abiding by the following standards and regulations to create the dehumidifier
and CO2 sensor:

● ISO 14855 - This ISO standard describes ultimate aerobic biodegradability of plastic
materials under controlled composting conditions, and the method utilized is analysis of
evolved carbon dioxide.

● ASTM D5338 - This ASTM describes a standard testing method for aerobic
biodegradation of plastics under controlled conditions and temperatures.

● ASTM D5988 - This ASTM describes a standard testing method for aerobic
biodegradation of plastics specifically in soil.

6

3.0 Customer Requirements and Design Specifications

3.1 IFU

The Accelerated Wear Testing Reactor is intended for use with plastic material where measuring
generation of CO2 is desired. This testing reactor offers a selective technique of measuring CO2
levels produced which is useful for evaluating long term environmental impact and
sustainability.
It is intended for use in a standard industrial environment with ambient temperature where a
cleanroom is not necessary.

3.2 Product Design Specifications

Customer Requirement Engineering metric Specification Reasoning

Must accurately
measure CO2

concentration

PPM of CO2 Accurate to ±1000
ppm

This gives an accuracy of ±0.1%

Must accurately
measure CO2
concentration

Resolution (CO2) 100 ppm This allows for detection changes of
0.01% CO2

Must give data on
sample humidity

Absolute humidity Accurate within 5% Relative humidity is a function of
temperature, absolute humidity is
temperature independent. This
specification is more lax than other
specifications because the humidity data
is not necessary for any of the standards
set for this product.

Sample gas must be
compatible with
sensors

Relative Humidity Dehumidifies to
<80% RH

Some CO2 sensors have limits to the
humidity they can function in. This
specification is above the requirements
of our sensors but has been included in
case later iterations of the design use
more sensitive sensors.

Sample gas must be
compatible with
sensors

Sample Flow Rate >0.2 L/min The minimum flow rate required to
produce accurate results with the
sensors.

Sample gas must be
compatible with
sensors

Volume of Sample Air Sample 90% of
reactor chamber
volume

The internal volume of the
sensing/dehumidifying chamber should
be less than the sample chamber volume.

7

3.3 House of Quality

Figure 1: From left to right, respectively: The Presto Accelerated Aging Oven and the Shel Lab Oven

HOQ Findings

The house of quality’s importance factor showcases the desire for this project’s accelerated wear
testing apparatus to useful results and repeatability while following ASTM guidelines. While the
ovens are slightly different than the apparatus being built in this project, they still made for a
decent comparison. This project’s apparatus was found to be stronger in customer requirements
such as test environment, consistent sampling rate, and following ASTM guidelines. The house
of quality also ranked the importance of several engineering characteristics and found that the
three most important for this project were sampling rate, accuracy, and sampling time.

8

4.0 Stage Gate Process

4.1 Concept Review

Concept Design 1

Figure 2: This concept design depicts the dehumidifying and testing apparatus for the
accelerated wear testing device. Humid air from the reaction chamber enters the Nafion tubing
which has been encased in PVC tubing, the drying tube has been filled with silica gel beads
which will draw the moisture from the humid air before reaching the measuring devices.

Concept Design 2

Figure 3: Our second concept design simplifies our apparatus and appears the least attractive. It
depicts the Nafion tubing dryer leading into the carbon dioxide sensor, which is attached to the
microcontroller and display for data analysis. Exhaust (air) is provided an exit on the right of the
sensor.

9

Figure 4: Our third concept design depicts the dehumidifying and testing apparatus for the
accelerated wear device with dry air being blown on the surface of the apparatus. Humidified air
shall enter the Nafion tubing and the dry air on the outside shall draw moisture outside the
Nafion membrane before it reaches the measuring devices.

Front Runner Concept: Concept Design 1

The first concept design was selected as our front runner concept for our project because we
deemed it our most likely to succeed. Our Pugh chart shows that this concept bested the Shel Lab
Forced Air Oven in five categories, while losing to it in zero categories. Our second concept did
not provide better humidity, and our third concept was inferior in output temperature due to the
use of a blow dryer. Temperature at the end was one of our least important criteria, so we are
content with matching the output temperature of the Shel Lab Forced Air Oven. We deemed the
blow dryer design inferior and not as optimal as our design in concept one due to the
inconvenience and labor that blow dryers provide.

4.2 Design Freeze

In the design freeze, preliminary prototype manufacturing and testing plans were explained. The
preliminary design for the prototype of this project’s apparatus was showcased using
dimensioned CAD drawings along with material selections and cost estimations.

Figure 5: Preliminary prototype design

Figure 5 displays the preliminary prototype design, which includes a 1.5 inch by 10-foot PVC
pipe and 1.5-inch PVC caps surrounding the 0.065 inch by 24 inch coiled Nafion tubing. Nafion,
a sulfonated tetrafluoroethylene-based fluoropolymer-copolymer, was selected as a
dehumidifying material for air samples to run to prior to analysis. Silica gel desiccant was
selected to be filled into the tubing for further adsorption of water vapor from humid samples.
The dehumidification chamber remained connected to the other components of the apparatus as
shown in figure 2 in the concept design.
Initial manufacturing and testing methods were modified significantly for the final design. The
initial manufacturing process included cutting and sanding the 10-foot PVC into 21 inches, but

10

alterations were made in the design and manufacturing in the design review. Testing plans for
carbon dioxide sensors testing initially included a gas chromatography machine, but alternative
testing methods were used for the final design.

4.3 Design Review

The final design for this project included changes to the manufacturing and testing plan. For the
manufacturing plan, a clear polycarbonate pipe was eventually decided upon for the
dehumidifying chamber to ensure that users can identify when the color changing desiccant
needs to be dried or replaced. As shown in figure 6, the dimensions of the polycarbonate pipe
changed dramatically to 1.5 inch by 6 inches for the final design. This was due to the decision to
coil the Nafion tubing around a 6.05 inch-long, 1.25-inch-wide 3D-printed support fitted and
placed inside the pipe.

Figure 6: From left to right: final dehumidification chamber and 3D-printed support piece attached to one
of the two 3D-printed caps

The final design included relative humidity sensors on either side of the dehumidification
chamber but otherwise aligned with figure 2 of the concept review. For the final testing plan,
carbon dioxide sensor testing was conducted with a CA-10 carbon dioxide analyzer from sable
systems. Updates were made accordingly to the testing plan as well as the cost breakdown.
Further details of the entire apparatus design can be found in section 5.0 of this report.

11

5.0 Description of Final Prototype Design

5.1 Overview

Figure 7: Air flow piping and instrumentation diagram for the dehumidification chamber and sensors

Figure 8: Physical components and sensors utilized for dehumidification and data acquisition

12

The overall diagram above demonstrates that we will obtain a flow regulated air sample, measure
the initial temperature and humidity, pass the sample past a hydrophobic filter and through the
dehumidification chamber, and record the new temperature and humidity values along with
gathering two CO2 values, and the sample is finally released into atmosphere. The sample data
was recorded on an SD card for future reference.

5.2 Design Justification

The original design utilized a dehumidification chamber that was the same length as the Nafion
tubing (24 in.). This design was updated for the final prototype where a shorter tube (6 in.) was
used and the Nafion tubing coiled inside. This gave a 75% reduction in the length of the
dehumidification chamber while giving the same effective dehumidification.
Multiples of each sensor were used in order to protect against error. Both sensors should output
the same value, so if the results from one sensor does not match the other it will be evident that
at least one of the sensors is inaccurate and steps can be taken to calibrate or replace a sensor.

5.3 Analysis

Our final design is in compliance with our product design specifications as shown in section 3.2. For
instance, the CO2 sensors acquired from CO2meter have been effective of being accurate within 1000
PPM of CO2 when compared to a validated gas sample. The CO2 sensors also have a resolution of 10
PPM, which is much greater than the 100 PPM that our customer requested. As for the relative humidity
and temperature sensors, they have demonstrated their effectiveness as they are within 5% accuracy of
absolute humidity when compared to a validated humidity sample. The dehumidification chamber has
been shown to reduce the humidity of our air sample below 80% relative humidity during testing. Lastly,
q sample flow rate greater than 0.2 L/min was achieved with a pump that outputs a flow rate at 1 L/min,
thus we were assured that we were obtaining accurate CO2 readings. Volume sample of air criteria listed
on section 3.2 has been excluded from the final design as it was not within the scope of the project.

13

5.4 Cost Breakdown

Item Description
Manufacturer/

Distributor
Product
Number Purpose Unit Quantity Cost/Unit

Total
Cost

Nafion Tubing CO2Meter TUB-0003 Dehumidify EA 1 $149.00 $149.00

Filters and Water
Trap Kit CO2Meter CM-0103 Dehumidify EA 1 $49.00 $49.00

Silica Gel Amazon B016VHQ2B6 Dehumidify 1 Qt. 1 $15.99 $15.99

10% CO2 meter CO2Meter SE-0025 Sensing EA 2 $249.00 $498

Temperature and
Humidity Sensor Sensiron SHT85 Sensing EA 4 $29.22 $116.88

Arduino Mega 2560
+3.2" TFT Display SainSmart 101-52-C17

Data
Logging EA 1 $39.99 $39.99

SDMemory Card (8 GB
SDHC) Adafruit 1294

Data
Logging EA 1 $9.95 $9.95

Data Logging Shield Adafruit 1141
Data

Logging EA 1 $13.95 $13.95

TCA9548A I2C
Multiplexer Adafruit 2717

Data
Logging EA 1 $6.95 $6.95

1.5"x6" clear
polycarbonate Rob Brewster

ZAM2966-
B0070Z70WE Housing EA 1 $0.00 $0.00

Air Pump Rob Brewster HG10800 Testing EA 1 $0.00 $0.00

 Total $899.71

5.5 Safety Considerations

The dehumidifying and sensing apparatus is a low risk part but may radiate some heat due to the
hot gasses passing through it. The apparatus will be housed in an insulated container which will
serve the dual purpose of protecting the apparatus from ambient conditions and protecting the
user from the radiated heat. As with any electronics there is a risk of electrocution; no
component in this device requires more than 12 V so this risk is low. Electrical components
have the potential to overheat if improperly connected.

14

6.0 Prototype Development

6.1 Model Analyses

For our first design, we are interested in drying the desiccant that is responsible for
dehumidifying the gas sample in preparation for measuring the CO2 output for degrading
plastics. This apparatus will interface with a 12-chamber bioreactor that will create a hot and
humid environment in accordance with ASTM 5338 standards. The high humidity produced in
the reaction chambers has the potential to damage many high accuracy CO2 meters and as such it
is often required to dry the gas sample prior to performing this analysis. The gas sample will be
pushed through a dehumidifying chamber that will then be placed in line with various sensors in
order to collect data about the degradation of plastics placed into the bioreactor (CO2 level,
relative humidity, temperature).

See SolidWorks models in the following section.

6.2 Evolution of Prototypes

Prototype 1 design: Nafion tubing sitting inside the dehumidifying chamber. The block
represents the CO2 and temperature sensors.

15

Prototype 2 design: Nafion tubing coiled around the dehumidifying chamber. This allows us to
shorten the tube length yet have the same effective amount of Nafion tubing in the
dehumidifying chamber.

6.3 Manufacturing Process

3D Printing
1) Upload the .STL file of the component for printing to the 3D printer
2) Ensure the component is appropriately oriented
3) Use the proper settings for your material and printer. All components are PLA, and components

that require additional machining were made solid, the others were hollow.

4) Print the component
5) Remove excess material and sand components until they have a firm connection
6) Drill through the pilot holes. 3/16” 6-32 screws were used holes were drilled with a 1/8” drill bit

and the holes were left untapped.

16

Dehumidifying Chamber
1) Gather Nafion tubing, polycarbonate piping, the 3d printed end caps with the support, silica gel

desiccant, and Tygon tubing.

2) Screw the end pieces of the Nafion tubing together so that they lock around the end cap with the

support

3) Coil the Nafion tubing around the support structure

17

4) Insert the support into the polycarbonate pipe

5) Fill the tube with the desiccant

6) Screw the end pieces of the Nafion tubing into the other end cap and connect the end cap

7) Cut two 3” lengths of Tygon tubing and attach them to the outputs at each end of the chamber

18

Data Logging Shield
1) Connect the data logging shield to the Arduino Mega as shown below

Screen

1) Connect screen to location 1 on breadboard as shown below

19

2) Connect 5V to red rail and ground to blue rail at location 25 on the breadboard as shown below

\
3) Connect potentiometer to location 40 on the breadboard as shown below and connect location 44

on the breadboard to the ground rail

Note: Refer to figure 9 for visual aid.

4) Connect screen pin 1 VSS to ground rail
5) Connect screen pin 2 VDD to 5V rail
6) Connect screen pin 3 VO to 1S on the potentiometer (location 42 on breadboard)
7) Connect screen pin 4 RS to Arduino Mega pin 36
8) Connect screen pin 5 RW to Arduino Mega pin 35
9) Connect screen pin 6 E to Arduino Mega pin 37
10) Connect screen pin 7 DB0 to Arduino Mega pin 22
11) Connect screen pin 8 DB1 to Arduino Mega pin 23
12) Connect screen pin 9 DB2 to Arduino Mega pin 24
13) Connect screen pin 10 DB3 to Arduino Mega pin 25

20

14) Connect screen pin 11 DB4 to Arduino Mega pin 26
15) Connect screen pin 12 DB5 to Arduino Mega pin 27
16) Connect screen pin 13 DB6 to Arduino Mega pin 28
17) Connect screen pin 14 DB7 to Arduino Mega pin 29
18) Connect screen pin 15 CS0 to Arduino Mega pin 33
19) Connect screen pin 16 CS1 to Arduino Mega pin 34
20) Connect screen pin 17 /RST to 5V rail
21) Connect screen pin 18 VEE to 1E on the potentiometer (location 40 on breadboard)
22) Connect screen pin 19 A to one end of the 220-ohm resistor as shown below

23) Connect open end of 220-ohm resistor to 5V rail as shown below

24) Connect screen pin 20 K to ground rai
25) Turn the knob on the potentiometer to adjust contrast

21

Figure 9: Wiring diagram for LCD assembly

Temperature and Humidity Sensor

1) Connect SDA1 and SCL1 from the data logging shield to locations 45 and 46 respectively as
shown below

22

2) Connect a 10k resistor from the 5V rail to locations 45 and 46 as shown below

3) Using the adapter provided, connect the temperature and humidity sensor as shown below

23

4) Connect the wires in the following order from left to right: Connect the black wire to SCL1
(location 46 on breadboard), the white wire to the 5V rail, the blue wire to the ground rail, and the
brown wire to SDA1 (location 45 on breadboard) as shown below

5) Repeat steps 3-4 once more for the second sensor

CO2 Sensor

1) Connect the pin shown below to the ground rail as shown below

24

2) Connect the right pin shown below to pin 13 on the data logging shield

25

3) Connect the farthest right pin shown below to pin 12 on the data logging shield

26

4) Connect the battery to the battery adapter as shown below

5) Connect the red wire to the left pin as shown below

6) Connect the black wire to the right pin as shown below

7) Repeat step 1 for the second CO2 sensor
8) Repeat step 2 but connect the right pin to pin 11 on the data logging shield as shown below

27

9) Repeat step 3 but connect the farthest right pin to pin 10 on the data logging shield as shown

below

10) Repeat steps 4-6 for the second sensor

28

Uploading software to Arduino
1) Open the Arduino IDE software
2) Connect the Arduino Mega via USB to the computer
3) On the ‘Tools’ tab on the upper left-hand corner, select “Arduino/Genuino Mega or Mega 2560”

under ‘board’ and select the appropriate ‘port’ for the Arduino Mega as shown below

Note: Each computer sets a unique ‘port’ for the Arduino Mega. Ensure only 1 Arduino Mega is
connected via USB to the computer as there will only be one option to choose from.

4) Implement the code as shown in Appendix N into the IDE and select the ‘upload’ button as

shown below

29

6.4 Divergence Between Final Design and Final Functional Prototype

When comparing the Concept Design 1 as shown in section 4.1 to our final functional prototype, we see
there are several deviations within the functional prototype. Our conceptual design displays a flow meter
attached in series with all the other sensors, but this idea was excluded from the final design as flow will
be controlled by an external source. Our functional prototype has a temperature and humidity sensor on
both the inlet and outlet, unlike the conceptual design. The purpose of having two temperature and
humidity sensors is to verify that our dehumidification chamber is not malfunctioning. The final
divergence between the two is that our functional prototype has two CO2 sensors in series in the outlet
unlike the conceptual design. The design choice of incorporating two CO2 sensors was as a failsafe; if
both sensors are reporting drastically different CO2 readings, this will be an indicator to the user that a
sensor is malfunctioning.

7.0 IQ/OQ/PQ

7.1 DOE

7.2 Verification and Validation

Test plan - CO2

1. Obtain samples of gas at known concentrations of 0% and 0.5% CO2 along with samples
of unknown concentrations at or below 10% CO2.

2. Power on the Sable Systems CA-10 carbon dioxide analyzer and allow it to warm
up/perform any necessary calibration before testing as shown below.

30

3. Attach the unvalidated CO2 meter in line with the validated meter and start recording the

data from the unvalidated sensor as shown below.

4. Push the gas samples through both sensors until a steady value is achieved, continue

sampling for 30 seconds.

31

5. Save the recorded data and allow the sensor to return to baseline before pushing the next
sample gas and repeat the above steps.

A graphical display of this data can be seen in Figure 10.

Figure 10: Graph of CO2 Data, limits have been set to specification range

Test plan - RH/T
1. Generate samples of gasses at varying humidities: ambient, low-humidity (from a

dehumidifier), and high-humidity (from a gas bubbler).
2. Power on the ThermoPro handheld digital RH/T sensor and allow it to warm up/perform

any necessary calibration before testing.
3. Attach the unvalidated RH/T sensor in line with the validated sensor and begin recording

the data from the unvalidated sensor as shown below.

32

4. Push the gas samples through both sensors until a steady value is achieved, continue
sampling for 30 seconds as shown below.

5. Save the recorded data and allow the sensor to return to baseline before pushing the next

sample gas and repeat the above steps.

A graphical display of the absolute humidity data can be seen in Figure 11.

Figure 11: Absolute Humidity Data, limits have been set to specification range

Test plan - Dehumidifier
1. Obtain samples of gasses at ambient and high-humidity
2. Obtain/warm up/calibrate 2 validated relative humidity sensors
3. Attach the sensors to both sides of the dehumidifying chamber
4. Push the gas samples until a steady value is achieved, continue sampling for 10 seconds.
5. Record the difference in humidity between both samples as well as the humidity at the

outflow of the dehumidifying chamber.

33

6. Repeat the above steps for the other gas samples.

Statistical analysis

1. The analysis of the CO2 data is to be performed by taking the difference of the
unvalidated sensor output and the validated sensor and performing a one tailed t-test with
an H0: μ = 1000 and Ha: μ < 1000 with an α=0.05

2. The analysis of the relative humidity data had to be performed by first converting the
RH/T data to absolute humidity using the following

equation:𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 (3) =
6.112⋅

17.67
(243.5) ⋅ ℎ⋅2.1674

(273.15)

 The difference between the data from the validated and unvalidated sensor was taken. A
one tailed t-test with H0: μ = 0.678773 (5% of the validated sensor value) and Ha: μ <
0.678773 with an α=0.05

3. Validation of the Dehumidification chamber was performed recording the input and
output humidities and confirming that the output was below the threshold value set (80%
RH)

This one sample t-test indicates that with the 95% confidence it can be said that the difference
between the sensor output and the real CO2 concentration of a sample gas is less than the set
specification of 1000 ppm over the tested range.
The CO2 sensor resolution is set by the manufacturer, the resolution of 10 ppm of the sensor
exceeds the set specification of 100 ppm.

34

The relative humidity sensors were validated by converting their relative humidity output to
absolute humidity (since relative humidity is a function of temperature, and temperature changed
significantly between sensors) and taking the difference between measured and known humidity
values and showing this difference was within 5% of the known humidity value.

No statistical analysis was performed on the dehumidification chamber, this specification was
validated by pushing samples of varying humidity and confirming that the output sample was
below 80% relative humidity.

The specifications for flow rate and chamber volume were based off of product specifications.
Components had ideal flow rates approximately at 0.2 L/min and volume was minimized by
connecting components through tubing.

35

8.0 Conclusions and Recommendations

8.1 Recommendations

For the next iteration of this device, implementation of a heat sink may be incorporated to further
reduce the risk of components of the device from overheating. This is not expected to be an
issue with this design but will be added as an additional safety feature. Additional sensors may
be utilized such as a flow rate transducer since it was observed during testing that flow rates can
affect the output of the sensors.

8.2 Conclusions

Through statistical analysis as shown in section 7.2, all of our sensors passed their threshold
criteria of accuracy as compared to validated sensors. Therefore, our dehumidification chamber
has been validated to be an effective method of measuring CO2 generation of degraded plastic in
an accelerated aged environment as well as being an effective method for measuring and
removing humidity from gas samples. This apparatus is now qualified to be implemented in
ASTM D5338, D5988, and ISO 14855. Although more work is required to create an accelerated
aged environment, our equipment is sufficient enough to take gas samples from an outside
source and measure humidity, temperature, and CO2 in parts per million.

36

9.0 Acknowledgments

Thank you to the Biomedical Engineering, Industrial Technology and Packaging, and Biological
Science Departments here at California Polytechnic State University, San Luis Obispo for giving
us the opportunity to learn industry skill sets in a classroom setting. A special thanks to Rob
Brewster for his outstanding mentorship throughout the past six months, Dr. Jason Blank for
providing us testing equipment to further our senior design, and to Drs. Michael Whitt and
Christopher Heylman for simulating a well thought out experience in bringing a medical device
to market.

37

10.0 Appendices

10.1 Appendix A: References

References
1. “Global Greenhouse Gas Emissions Data.” EPA, Environmental Protection Agency, 13

Apr. 2017, www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data.
2. Arnaud, Rene. Device for Accelerated Photo-Aging of Materials Containing Polymers.

17 Oct. 1989.
3. Cuddihy, Edward F. Predictive Aging of Polymers. 18 Sept. 1990.
4. Yap, Darren Y. K. Accelerated Life Testing Device and Method. 23 Feb. 2016.

5. 黄美蓉 . Aging-Resistant PA (Polyamide) -PPS (Polyphenylene Sulfide) Plastic Alloy.

20 Jan. 2016.
6. Delabroye, Christine. Dimensionally-Stable Propylene Polymer Foam with Improved

Thermal Aging. 6 Jan. 2005.
7. Thitislip, Lijchavengkul Development of an automatic laboratory-scale respirometric

system to measure polymer biodegradability. 24 May 2016.
8. Hansol, Kim Effect of test parameters on degradation on polyurethane elastomer for

accelerated life testing. 15 August 2014.
9. Lu, Liu Degradation process investigation of thermoplastic polyurethane elastomer in

supercritical methanol. 13 September 2013.
10. Vesa, Saikko High frequency circular translation pin-on-disk method for accelerated

wear testing of ultrahigh molecular weight polyethylene as a bearing material in total hip
arthroplasty. 24 November 2014.

11. Webb, Hayden Plastic Degradation and Its Environmental Implications with Special
reference to Poly(ethylene terephthalate). 28 December 2012.

12. “All About Nafion.” Perma Pure LLC, www.permapure.com/resources/all-about-nafion-
and-faq/.

13. “Types of Desiccants and Desiccant Media - Zeolite, Silica Gel, Activated Alumina -
Drytech.” Drytech Inc., www.drytechinc.com/types-of-desiccant/.

14. “Number of U.S. Colleges and Universities and Degrees Awarded, 2005” Infoplease,
https://www.infoplease.com/us/higher-education/number-us-colleges-and-universities-
and-degrees-awarded-2005.

15. “Frequently Asked Questions” ASTM International, https://www.astm.org/cms/drupal-
7.51/content/frequently-asked-questions

38

10.2 Appendix B: Project Plan (PERT Chart)

39

10.3 Cad Drawings

40

10.4 Appendix D: FMEA, Hazard & Risk Assessment

Many of the above failure modes were examined with the entire assembly (including the
bioreactor) in mind. For the scope of the project described in this report many of the above
failure modes are outside the scope of this design. The most significant failure mode that falls
under the scope of this design would be the accuracy of the CO2 sensor. This risk was mitigated
by having a clearly defined specification for a functioning CO2 sensor. To mitigate risks further,
the CO2 sensors were tested against each other using various measured CO2 samples to ensure
sensor accuracy. Failure warnings regarding the Nafion tubing were mitigated by implementing
color-indicating silica gel desiccant into the design. The desiccant ensures further dehumidifying
of air samples as they pass through the Nafion tubing chamber. Desiccant is easily removable
once color-changing indicates that it requires drying.

41

10.5 Appendix E: Pugh Chart

42

10.6 Appendix F: Vendor Information

CO2 Meter:
CO2Meter.com
131 Business Center Drive
Ormond Beach, FL
32174 USA
(877) 678-4259

Adafruit:
Adafruit.com

43

10.7 Appendix G: Sensirion Digital Humidity Sensor SHT85 (RH/T) Datasheet

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

10.8 Appendix H: Adafruit Data Logging Shield Datasheet

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

10.9 Appendix I: K33 ICB 10% CO2 Sensor Datasheet

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

10.10 Appendix J: Adafruit TCA9548A 1-to-8 I2C Multiplexer Breakout Datasheet

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

10.11 Appendix K: Graphic KS0108 LCD Datasheet

180

181

10.12 Appendix L: Budget

182

10.13 Appendix M: DHR

DHR
[3D Printing]

MPI Steps Deviations Completed by Signature Date

1 Tristan Frisella TF 2/7/19

2 Tristan Frisella TF 2/7/19

3 Tristan Frisella TF 2/7/19

4 Tristan Frisella TF 2/7/19

5 Tristan Frisella TF 2/8/19

6 Tristan Frisella TF 2/8/19

[Dehumidifying Chamber]

MPI Steps Deviations Completed by Signature Date

1 The support was broken prior
assembly, this piece was still used but
will have to be replaced

Tristan Frisella TF 2/8/19

2 Tristan Frisella TF 2/8/19

3 Tristan Frisella TF 2/8/19

4 Tristan Frisella TF 2/8/19

5 Tristan Frisella TF 2/9/19

6 Tristan Frisella TF 2/9/19

7 Tristan Frisella TF 2/9/19

[Data Logging Shield]

MPI Steps Deviations Completed by Signature Date

1 Daniel Alanis DA 2/9/19

183

184

[Screen]

MPI Steps Deviations Completed by Signature Date

1 Daniel Alanis DA 2/9/19

2 Daniel Alanis DA 2/9/19

3 Daniel Alanis DA 2/9/19

4 Daniel Alanis DA 2/9/19

5 Daniel Alanis DA 2/9/19

6 Daniel Alanis DA 2/9/19

7 Daniel Alanis DA 2/9/19

8 Daniel Alanis DA 2/9/19

9 Daniel Alanis DA 2/9/19

10 Daniel Alanis DA 2/9/19

11 Daniel Alanis DA 2/9/19

12 Daniel Alanis DA 2/9/19

13 Daniel Alanis DA 2/9/19

14 Daniel Alanis DA 2/9/19

15 Daniel Alanis DA 2/9/19

16 Daniel Alanis DA 2/9/19

17 Daniel Alanis DA 2/9/19

18 Daniel Alanis DA 2/9/19

19 Daniel Alanis DA 2/9/19

20 Daniel Alanis DA 2/9/19

21 Daniel Alanis DA 2/9/19

22 Daniel Alanis DA 2/9/19

23 Daniel Alanis DA 2/9/19

24 Daniel Alanis DA 2/9/19

25 Daniel Alanis DA 2/9/19

185

[Temperature and Humidity Sensor]

MPI Steps Deviations Completed by Signature Date

1 Daniel Alanis DA 2/9/19

2 Daniel Alanis DA 2/9/19

3 One of the sensors broke, currently
reordering new sensor

Daniel Alanis DA 2/9/19

4 Daniel Alanis DA 2/9/19

5 Daniel Alanis DA 2/9/19

[CO2 Sensor]

MPI Steps Deviations Completed by Signature Date

1 Daniel Alanis DA 2/9/19

2 Daniel Alanis DA 2/9/19

3 Daniel Alanis DA 2/9/19

4 Daniel Alanis DA 2/9/19

5 Daniel Alanis DA 2/9/19

6 Daniel Alanis DA 2/9/19

7 Daniel Alanis DA 2/9/19

8 Daniel Alanis DA 2/9/19

9 Daniel Alanis DA 2/9/19

10 Daniel Alanis DA 2/9/19

186

10.14 Appendix N: Arduino Code

///
// Accelerated Wear Dehumidification Chamber Sensors and Data Logging
// California Polytechnic State University, San Luis Obispo - Biomedical Engineering
// Senior Design - Fall 2018/Winter 2019
// Team: Daniel Alanis, Kian Ashoubi, Tristan Frisella
///
#include <openGLCD.h>
#include <Wire.h>
#include "SHTSensor.h"
#include "RTClib.h"
#include <SPI.h>
#include <SD.h>
#define TCAADDR 0x70

////////////////////////////////////// Function to use Multiplexer
void tcaselect(uint8_t i) {
 if (i > 7) return; // Because there are only 7 locations on the multiplexer, calling tcaselect(#)
above 7 will cancel the function

 Wire.beginTransmission(TCAADDR); // Begin wire transmission to multiplexer
 Wire.write(1 << i); // Shifts bits to switch which location you're connected to on the
multiplexer
 Wire.endTransmission(); // End wire transmission to multiplexer
}
////////////////////////////////////// Error function for SD Card
void error(char *str)
 {
 Serial.print("error: ");
 Serial.println(str);
 }
const int chipSelect = 10; // chipselect for the shield, therefore it's using pin 10

////////////////////////////////////// Defining I2C address for both CO2 sensors
// CO2 Meter K-series Example Interface
// Revised by Marv Kausch, 7/2016 at CO2 Meter <co2meter.com>
// Talks via I2C to K30/K22/K33/Logger sensors and displays CO2 values
// 12/31/09
// Modified by Accelerated Wear Team - Cal Poly BMED 2019

187

// We will be using the I2C hardware interface on the Arduino in
// combination with the built-in Wire library to interface.

int co2Addr = 0x66;
int co2Addrb = 0x67;

////////////////////////////////////// Initializing T/H sensors via I2C
// T/H Sensor with normal i2c address
// T/H Sensor 1
SHTSensor sht1(SHTSensor::SHT3X);

// T/H Sensor with alternative i2c address
// T/H Sensor 2
SHTSensor sht2(SHTSensor::SHT3X);

////////////////////////////////////// Initializing the RTC
// Date and time functions using a DS1307 RTC connected via I2C and Wire lib
RTC_PCF8523 rtc;

char daysOfTheWeek[7][12] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday"};

void setup() {
GLCD.ClearScreen();
// This is for the real time clock integrated to the SD card
reader

 while (!Serial) {
 delay(1); // for Leonardo/Micro/Zero
 }

 Serial.begin(9600); // opens up serial port for GUI
 if (! rtc.begin()) {
 Serial.println("Couldn't find RTC");
 while (1);
 }

 if (! rtc.initialized()) {

188

 Serial.println("RTC is NOT running!");
 // following line sets the RTC to the date & time this sketch was compiled
 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
 // This line sets the RTC with an explicit date & time, for example to set
 // January 21, 2014 at 3am you would call:
 // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
 }
 // Initialize the GLCD

 GLCD.Init();

 // Select the font for the default text area
 GLCD.SelectFont(System5x7, PIXEL_ON);

 // GLCD.print(F("hello, world!")); // keep string in flash on AVR boards with IDE 1.x
 // GLCD.Puts(F("hello, world!")); // Puts() supports F() with any version of IDE

 // print() below uses RAM on AVR boards but works
 // on any version of IDE with any processor
 // note: Same is true for Puts()

 // This is to initialize SD Card

 Serial.print("Initializing SD card...");

 // see if the card is present and can be initialized:
 if (!SD.begin(chipSelect)) { // initializes pin 11,12,13 on shield to begin data
logging
 Serial.println("Card failed, or not present");
 // don't do anything more:
 while (1);
 }
 Serial.println("card initialized.");
 Serial.begin(9600);
 Wire.begin ();
 Serial.println("Application Note AN-102: Interface Arduino to K-30 and SHT85 T/H");
 // initialize first T/H sensor
 tcaselect(0); // turns the switch to location 0 on multiplexer
 sht1.init(); // initializes the switch on location 0

189

 // initialize second T/H sensor
 tcaselect(1); // turns the switch to location 1 on multiplexer
 sht2.init(); // initializes the switch on location 1
}

///
// Function : int readCO2()
// Returns : CO2 Value upon success, 0 upon checksum failure
// Assumes : - Wire library has been imported successfully.
// - CO2 sensor address is defined in co2_addr
// First function is made for the first CO2 sensor
///
int readCO2()
{
 int co2_value = 0; // We will store the CO2 value inside this variable.

 //////////////////////////
 /* Begin Write Sequence */
 //////////////////////////
 Wire.beginTransmission(co2Addr);
 Wire.write(0x22);
 Wire.write(0x00);
 Wire.write(0x08);
 Wire.write(0x2A);

 Wire.endTransmission();

 /////////////////////////
 /* End Write Sequence. */
 /////////////////////////
 /*
 We wait 10ms for the sensor to process our command.
 The sensors’ primary duties are to accurately
 measure CO2 values. Waiting 10ms will ensure the
 data is properly written to RAM

 */

 delay(10);

190

 /////////////////////////
 /* Begin Read Sequence */
 /////////////////////////

 /*
 Since we requested 2 bytes from the sensor we must
 read in 4 bytes. This includes the payload, checksum,
 and command status byte.

 */
 Wire.requestFrom(co2Addr, 4);

 byte i = 0;
 byte buffer[4] = {0, 0, 0, 0};

 /*
 Wire.available() is not necessary. Implementation is obscure but we leave
 it in here for portability and to future proof our code
 */
 while (Wire.available())
 {
 buffer[i] = Wire.read();
 i++;
 }

 ///////////////////////
 /* End Read Sequence */
 ///////////////////////

 /*
 Using some bitwise manipulation we will shift our buffer
 into an integer for general consumption
 */
 co2_value = 0;
 co2_value |= buffer[1] & 0xFF;
 co2_value = co2_value << 8;
 co2_value |= buffer[2] & 0xFF;

 byte sum = 0; //Checksum Byte

191

 sum = buffer[0] + buffer[1] + buffer[2]; //Byte addition utilizes overflow

 if (sum == buffer[3])
 {
 // Success!
 return co2_value;
 }
 else
 {
 // Failure!
 /*
 Checksum failure can be due to a number of factors,
 fuzzy electrons, sensor busy, etc.
 */
 return 0;
 }
}
///
// Function : int readCO2b()
// Returns : CO2 Value upon success, 0 upon checksum failure
// Assumes : - Wire library has been imported successfully.
// - CO2 sensor address is defined in co2_addr
// Second function is made for the second CO2 sensor
///
int readCO2b()
{
 int co2_valueb = 0; // We will store the CO2 value inside this variable.

 //////////////////////////
 /* Begin Write Sequence */
 //////////////////////////
 Wire.beginTransmission(co2Addrb);
 Wire.write(0x22);
 Wire.write(0x00);
 Wire.write(0x08);
 Wire.write(0x2A);

 Wire.endTransmission();

 /////////////////////////

192

 /* End Write Sequence. */
 /////////////////////////
 /*
 We wait 10ms for the sensor to process our command.
 The sensors's primary duties are to accurately
 measure CO2 values. Waiting 10ms will ensure the
 data is properly written to RAM

 */

 delay(10);

 /////////////////////////
 /* Begin Read Sequence */
 /////////////////////////

 /*
 Since we requested 2 bytes from the sensor we must
 read in 4 bytes. This includes the payload, checksum,
 and command status byte.

 */
 Wire.requestFrom(co2Addrb, 4);

 byte j = 0;
 byte buffer[4] = {0, 0, 0, 0};

 /*
 Wire.available() is not necessary. Implementation is obscure but we leave
 it in here for portability and to future proof our code
 */
 while (Wire.available())
 {
 buffer[j] = Wire.read();
 j++;
 }

 ///////////////////////
 /* End Read Sequence */
 ///////////////////////

193

 /*
 Using some bitwise manipulation we will shift our buffer
 into an integer for general consumption
 */
 co2_valueb = 0;
 co2_valueb |= buffer[1] & 0xFF;
 co2_valueb = co2_valueb << 8;
 co2_valueb |= buffer[2] & 0xFF;

 byte sum = 0; //Checksum Byte
 sum = buffer[0] + buffer[1] + buffer[2]; //Byte addition utilizes overflow

 if (sum == buffer[3])
 {
 // Success!
 return co2_valueb;
 }
 else
 {
 // Failure!
 /*
 Checksum failure can be due to a number of factors,
 fuzzy electrons, sensor busy, etc.
 */
 return 0;
 }
}

void loop() {
 // This part is to print RTC to GUI
 DateTime now = rtc.now(); // sets time for clock on shield

 // everything below is printing to GUI with decimal format.
 Serial.print(now.month(), DEC);
 Serial.print('/');
 Serial.print(now.day(), DEC);
 Serial.print('/');
 Serial.print(now.year(), DEC);

194

 Serial.print(" (");
 Serial.print(daysOfTheWeek[now.dayOfTheWeek()]); // calls current day of the week
 Serial.print(") ");
 Serial.print(now.hour(), DEC);
 Serial.print(':');
 Serial.print(now.minute(), DEC);
 Serial.print(':');
 Serial.print(now.second(), DEC);
 Serial.println();

////////////////////////////////////// Printing CO2 data to GUI
 tcaselect(2); // This is where 0x66 gets plugged into (-)
 int co2Value = readCO2();
 if (co2Value > 0)
 {
 Serial.print("CO2 Value: ");
 Serial.println(co2Value);
 }
 else
 {
 Serial.println("Checksum failed / Communication failure");
 }

 tcaselect(3); // This is where 0x67 gets plugged into (+)
 int co2Valueb = readCO2b();
 if (co2Valueb > 0)
 {
 Serial.print("CO2 Valueb: ");
 Serial.println(co2Valueb);
 }
 else
 {
 Serial.println("Checksum failed / Communication failure with b");
 }

////////////////////////////////////// Printing SHT data to GUI
 // read from first T/H sensor
 tcaselect(0);
 if (sht1.readSample()) {
 Serial.print("SHT1 :\n");

195

 Serial.print(" RH: ");
 Serial.print(sht1.getHumidity(), 2);
 Serial.print("\n");
 Serial.print(" T: ");
 Serial.print(sht1.getTemperature(), 2);
 Serial.print("\n");
 } else {
 Serial.print("Sensor 1: Error in readSample()\n");
 }

 // read from second T/H sensor
 tcaselect(1);
 if (sht2.readSample()) {
 Serial.print("SHT2:\n");
 Serial.print(" RH: ");
 Serial.print(sht2.getHumidity(), 2);
 Serial.print("\n");
 Serial.print(" T: ");
 Serial.print(sht2.getTemperature(), 2);
 Serial.print("\n");
 } else {
 Serial.print("Sensor 2: Error in readSample()\n");
 }
 delay(1000);

 // Data logging to the SD card

 // make a string for assembling the data to log:
 //Data logging co2(-) data
 String dataStringco2 = "";
 dataStringco2 += String(co2Value);

 char co2minus[] = "co2minusdata.csv";
 File dataFile_minus = SD.open("co2-data.csv", FILE_WRITE); //Identifies filepath and mode.
FILE_WRITE opens file for reading and writing

 if (! dataFile_minus) {
 error("couldnt create file");
 }

196

 if (dataFile_minus) {
 dataFile_minus.print(dataStringco2);
 dataFile_minus.print(",");
 dataFile_minus.print(now.month(), DEC);
 dataFile_minus.print('/');
 dataFile_minus.print(now.day(), DEC);
 dataFile_minus.print('/');
 dataFile_minus.print(now.year(), DEC);
 dataFile_minus.print(" (");
 dataFile_minus.print(daysOfTheWeek[now.dayOfTheWeek()]); // calls current day of the
week
 dataFile_minus.print(") ");
 dataFile_minus.print(now.hour(), DEC);
 dataFile_minus.print(':');
 dataFile_minus.print(now.minute(), DEC);
 dataFile_minus.print(':');
 dataFile_minus.print(now.second(), DEC);
 dataFile_minus.println();
 dataFile_minus.close();
 }

 // if the file isn't open, pop up an error:
 else {
 Serial.println("error opening co2-data.csv");
 }
 //Data logging co2(+) data
 String dataString = "";
 dataString += String(co2Valueb);

 char fileName[] = "co2data.csv";
 File dataFile = SD.open("co2data.csv", FILE_WRITE); //Identifies filepath and mode.
FILE_WRITE opens file for reading and writing

 if (! dataFile) {
 error("couldnt create co2data.csv file");
 }

 if (dataFile) {
 dataFile.print(co2Valueb);
 dataFile.print(",");

197

 dataFile.print(now.month(), DEC);
 dataFile.print('/');
 dataFile.print(now.day(), DEC);
 dataFile.print('/');
 dataFile.print(now.year(), DEC);
 dataFile.print(" (");
 dataFile.print(daysOfTheWeek[now.dayOfTheWeek()]); // calls current day of the week
 dataFile.print(") ");
 dataFile.print(now.hour(), DEC);
 dataFile.print(':');
 dataFile.print(now.minute(), DEC);
 dataFile.print(':');
 dataFile.print(now.second(), DEC);
 dataFile.println();
 dataFile.close();
 }

 // if the file isn't open, pop up an error:
 else {
 Serial.println("error opening co2data.csv");
 }

 ///// Temp and Humidity data for SHT1
 String dataStringSH1 = "";
 dataStringSH1 += String(sht1.getHumidity(), 2);

 String dataStringST1 = "";
 dataStringST1 += String(sht1.getTemperature(), 2);

 char filenameTH1[] = "THdata1.csv";
 File dataFileTH1 = SD.open("TH1data.csv", FILE_WRITE); //Identifies filepath and mode.
FILE_WRITE opens file for reading and writing

 if (! dataFileTH1) {
 error("couldnt TH1data.csv create file");
 }

 if (dataFileTH1) {
 dataFileTH1.print(dataStringSH1);
 dataFileTH1.print('%');

198

 dataFileTH1.print(",");
 dataFileTH1.print(dataStringST1);
 dataFileTH1.print('C');
 dataFileTH1.print(",");
 dataFileTH1.print(now.month(), DEC);
 dataFileTH1.print('/');
 dataFileTH1.print(now.day(), DEC);
 dataFileTH1.print('/');
 dataFileTH1.print(now.year(), DEC);
 dataFileTH1.print(" (");
 dataFileTH1.print(daysOfTheWeek[now.dayOfTheWeek()]); // calls current day of the
week
 dataFileTH1.print(") ");
 dataFileTH1.print(now.hour(), DEC);
 dataFileTH1.print(':');
 dataFileTH1.print(now.minute(), DEC);
 dataFileTH1.print(':');
 dataFileTH1.print(now.second(), DEC);
 dataFileTH1.println();
 dataFileTH1.close();
 }

 // if the file isn't open, pop up an error:
 else {
 Serial.println("error opening TH1data.csv");
 }

 ///// Temp and Humidity data for SHT2
 String dataStringSH2 = "";
 dataStringSH2 += String(sht2.getHumidity(), 2);

 String dataStringST2 = "";
 dataStringST2 += String(sht2.getTemperature(), 2);

 char filenameTH2[] = "THdata2.csv";
 File dataFileTH2 = SD.open("TH2data.csv", FILE_WRITE); //Identifies filepath and mode.
FILE_WRITE opens file for reading and writing

 if (! dataFileTH2) {
 error("couldnt create TH2data.csv file");

199

 }

 if (dataFileTH2) {
 dataFileTH2.print(dataStringSH2);
 dataFileTH2.print('%');
 dataFileTH2.print(",");
 dataFileTH2.print(dataStringST2);
 dataFileTH2.print('C');
 dataFileTH2.print(",");
 dataFileTH2.print(now.month(), DEC);
 dataFileTH2.print('/');
 dataFileTH2.print(now.day(), DEC);
 dataFileTH2.print('/');
 dataFileTH2.print(now.year(), DEC);
 dataFileTH2.print(" (");
 dataFileTH2.print(daysOfTheWeek[now.dayOfTheWeek()]); // calls current day of the
week
 dataFileTH2.print(") ");
 dataFileTH2.print(now.hour(), DEC);
 dataFileTH2.print(':');
 dataFileTH2.print(now.minute(), DEC);
 dataFileTH2.print(':');
 dataFileTH2.print(now.second(), DEC);
 dataFileTH2.println();
 dataFileTH2.close();
 }

 // if the file isn't open, pop up an error:
 else {
 Serial.println("error opening TH2data.csv");
 }
 // attempting to print RTC to LCD

 GLCD.print(now.month(), DEC);
 GLCD.print('/');
 GLCD.print(now.day(), DEC);
 GLCD.print('/');
 GLCD.print(now.year(), DEC);
 GLCD.print(',');
 GLCD.print(now.hour(), DEC);

200

 GLCD.print(':');
 GLCD.print(now.minute(), DEC);
 GLCD.print(':');
 GLCD.print(now.second(), DEC);
 //GLCD.println();

// printing the temp & humidity readings to the LCD
 GLCD.print("\nRH1:"); // the '\n' is to print to the next line on the screen
 GLCD.print(sht1.getHumidity(), 2);
 GLCD.print("%");
 GLCD.print(" ");
 GLCD.print("T1:");
 GLCD.print(sht1.getTemperature(), 2);
 GLCD.print("C");
 //second SHT sensor
 GLCD.print("\nRH2:");
 GLCD.print(sht2.getHumidity(), 2);
 GLCD.print("%");
 GLCD.print(" ");
 GLCD.print("T2:");
 GLCD.print(sht2.getTemperature(), 2);
 GLCD.print("C");
 GLCD.println();
// printing the co2 readings to the LCD
 GLCD.print("Co2(-) ppm = ");
 GLCD.print(co2Value); //print value
 GLCD.print("\nCo2(+) ppm = ");
 GLCD.print(co2Valueb); //print value
 GLCD.println();
 GLCD.println();
 GLCD.println();
 GLCD.println();
 //delay(1000); //wait 1 second
 //GLCD.ClearScreen();
}

