
DYNAMIC SHIFTING OF VIRTUAL NETWORK TOPOLOGIES FOR

NETWORK ATTACK PREVENTION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Lenoy Avidan

May 2019

c© 2019

Lenoy Avidan

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Dynamic Shifting of Virtual Network

Topologies for Network Attack Prevention

AUTHOR: Lenoy Avidan

DATE SUBMITTED: May 2019

COMMITTEE CHAIR: Bruce DeBruhl, Ph.D.

Associate Professor of Computer Science

COMMITTEE MEMBER: John Bellardo, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Aaron Keen, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Dynamic Shifting of Virtual Network Topologies for Network Attack Prevention

Lenoy Avidan

Computer networks were not designed with security in mind, making

research into the subject of network security vital. Virtual Networks are similar to

computer networks, except the components of a Virtual Network are in software

rather than hardware. With the constant threat of attacks on networks, security is

always a big concern, and Virtual Networks are no different. Virtual Networks have

many potential attack vectors similar to physical networks, making research into

Virtual Network security of great importance. Virtual Networks, since they are

composed of virtualized network components, have the ability to dynamically

change topologies. In this paper, we explore Virtual Networks and their ability to

quickly shift their network topology. We investigate the potential use of this

flexibility to protect network resources and defend against malicious activities.

To show the ability of reactively shifting a Virtual Network’s topology to

secure a network, we create a set of four experiments, each with a different dynamic

topology shift, or “dynamic defense”. These four groups of experiments are called

the Server Protection, Isolated Subnet, Distributed Port Group, and Standard Port

Group experiments. The Server Protection experiments involve detecting an attack

against a server and shifting the server behind a protected subnet. The other three

sets of experiments, called Attacker Prevention experiments, involve detecting a

malicious node in the internal network and initiating a dynamic defense to move the

attacker behind a protected subnet. Each Attacker Prevention experiment utilizes a

different dynamic defense to prevent the malicious node from attacking the rest of

the Virtual Network. For each experiment, we run 6 different network attacks to

validate the effectiveness of the dynamic defenses. The network attacks utilized for

each experiment are ICMP Flooding, TCP Syn Flooding, Smurf attack, ARP

iv

Spoofing, DNS Spoofing, and NMAP Scanning. Our validation shows that our

dynamic defenses, outside of the standard port group, are very effective in stopping

each attack, consistently lowering the attacks’ success rate significantly. The

Standard Port Group was the one dynamic defense that is ineffective, though there

are also a couple of experiments that could benefit from being run with more

attackers and with different situations to fully understand the effectiveness of the

defenses. We believe that, as Virtual Networks become more common and utilized

outside of data centers, the ability to dynamically shift topology can be used for

network security purposes.

v

ACKNOWLEDGMENTS

Thanks to:

• Tissa, for guiding me through this project and for giving me all the help and

resources I needed to complete my thesis. I could not have accomplished this

without your guidance.

• Dr. DeBruhl, for advising me on my project and pushing me in the right

direction when I came to you for help. You were always helpful and enthusiastic

in your assistance.

• Dr. Bellardo, for all you taught me on the thesis process and all your help with

all aspects of my masters degree.

• Dr. Keen for being on my committee and for finding interest in my thesis.

• My loving family, Aba, Ema, Shawn, Ashley, and Milli, for being so supportive

and giving me encouragement to complete my work.

• Jess, for always being there for me and getting me through the ups and downs

of my thesis.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 Introduction . 1

2 Background . 5

2.1 Network Attacks . 5

2.1.1 Denial of Service (DOS) and Distributed Denial of Service (DDOS) 6

2.1.1.1 Types . 7

2.1.1.2 Detection and Countermeasures 10

2.1.1.3 Tools . 12

2.1.2 Man in the Middle (MITM) 13

2.1.2.1 Types . 14

2.1.2.2 Countermeasures . 18

2.1.2.3 Tools . 21

2.2 Virtual Networks . 22

2.2.1 Virtualization . 22

2.2.2 Network Virtualization . 25

2.2.3 Nested Virtualization . 27

2.2.4 Virtual Network Security . 29

2.2.4.1 Virtualization Security 29

2.2.4.2 Network Virtualization Security 30

2.3 Virtual Network Architectures . 36

2.3.1 Enterprise Architectures . 37

2.3.1.1 VMware Architecture 38

vii

2.3.1.2 Juniper Contrail Architecture 47

2.3.1.3 OpenStack Architecture 50

2.3.1.4 Apache CloudStack Architecture 57

2.3.1.5 Oracle VirtualBox “Architecture” 60

2.3.2 Architecture Comparisons . 60

3 System Design . 63

3.1 Virtual Network Setup . 64

3.2 Security Design . 69

3.3 Attack Design . 71

3.3.1 TCP Syn Flooding . 72

3.3.2 ICMP Flooding . 72

3.3.3 Smurf Attack . 72

3.3.4 ARP Spoofing . 73

3.3.5 DNS Spoofing . 73

3.3.6 NMAP Scanning . 74

3.4 Detection . 75

4 Dynamic Defense Design in Virtual Networks 79

4.1 Dynamic Defenses . 79

4.1.1 Server Protection . 80

4.1.2 Attacker Prevention . 85

4.1.2.1 Isolated Subnet . 85

4.1.2.2 Distributed Port Group 88

4.1.2.3 Standard Port Group 93

4.2 Measurement . 95

4.2.1 DOS/DDOS Attacks . 96

4.2.2 MITM/Scan Attacks . 98

viii

4.2.2.1 ARP Spoofing . 98

4.2.2.2 DNS Spoofing . 99

4.2.2.3 NMAP Scanning . 101

5 Results . 102

5.1 Server Protection . 103

5.2 Attacker Prevention . 106

5.2.1 Isolated Subnet . 107

5.2.2 Distributed Port Group . 112

5.2.3 Standard Port Group . 119

5.3 Analysis . 119

6 Related Works . 123

7 Conclusion . 130

BIBLIOGRAPHY . 133

ix

LIST OF TABLES

Table Page

1 Architecture Comparison Overview 61

x

LIST OF FIGURES

Figure Page

1 Example of a Simple Distributed Denial of Service System 6

2 After Virtualization . 23

3 Hosted Virtualization . 24

4 Hypervisor Virtualization . 24

5 Simple Virtual Network . 26

6 Hardware-Assisted Nested Virtualization Diagram from Nestcloud . 28

7 VMware vSphere Standard Switch Architecture 39

8 VMware vSphere Distributed Switch Architecture 41

9 VMware vSphere Distributed Switch Architecture Data Flow Example 43

10 VMware vSphere Distributed Switch Architecture Packet Flow Ex-
ample . 44

11 Juniper Contrail Architecture . 48

12 OpenStack Virtual Network Basic Layout for a Classic Open vSwitch
Architecture . 52

13 OpenStack Virtual Network’s Network Node Design 53

14 OpenStack Virtual Network’s Compute Node Design 54

15 OpenStack’s Virtual Network Architecture and Components 55

16 OpenStack’s High Availability using Distributed Virtual Router Ar-
chitecture . 55

17 Apache CloudStack’s Virtual Network Architecture and Components 58

18 Apache CloudStack’s Virtual Network Small-Scale Deployment . . . 59

19 Topology of Host Virtual Network 64

20 VCenter GUI and Clusters Layout 66

21 Distributed vSwitch Topology . 68

xi

22 The Distributed Firewall GUI and Example Rules 71

23 The Spoof Guard GUI and Example Policy 71

24 Snort Rules for Attack Detection 77

25 Snort Rules for ARP Spoofing Detection 77

26 Virtual Network Overview with Nested Hosts and VMs 78

27 Topology for Server Protection Experiments 81

28 Firewall Rules for Protection from ICMP Dos, TCP Dos, Smurf and
NMAP Scan Attacks . 82

29 Firewall Rule for ARP Spoofing Prevention 82

30 Spoof Guard Protection for DNS Spoof and ARP Spoof Attacks . . 83

31 Topologies for Isolated Subnet Experiments 87

32 Topologies for Distributed Port Group Experiments 90

33 Firewall Rules for Prevention of ICMP Dos, TCP Dos, and NMAP
Scan Attacks . 91

34 Topologies for Standard Port Group Experiments 94

35 Client’s Bash Scripts . 97

36 Example of ARP Table Output for Victim Server 99

37 Example Nslookup Output . 100

38 Example NMAP Output from Attacker 101

39 Results for Server Protection DOS Experiments 103

40 Percent Change for Server Protection DOS Experiments 105

41 Results for Server Protection MITM/Scan Experiments 105

42 Results for Isolated Subnet DOS Experiments for Topology 1 . . . 108

43 Results for Isolated Subnet DOS Experiments for Topology 2 . . . 110

44 Percent Change for Isolated Subnet DOS Experiments 111

45 Results for Isolated Subnet MITM/Scan Experiments 112

xii

46 Results for Distributed Port Group DOS Experiments for Topology 1 113

47 Results for Distributed Port Group DOS Experiments for Topology 2 115

48 Percent Change for Average Download Time for Distributed Port
Group DOS Experiments . 116

49 Results for Distributed Port Group MITM/Scan Experiments . . . 117

50 Results for the Standard Port Group Experiments 120

xiii

Chapter 1

INTRODUCTION

Networks are an integral part of our society today. We rely on them to

exchange data around the world in the blink of an eye. However, networks were not

originally designed with much security in mind. Many network protocols relied on

people having good intentions and following the rules. We now know that this is not

realistic, as there are many malicious users throughout the world’s largest network,

the Internet. Security is a huge challenge in networks because there are many

protocols that were designed with no security. With the vast resources many

malicious hackers have and the many possible points of entry, it is nearly impossible

to stop all possible attacks. Even with the difficulty of preventing every threat,

proper security for a network can make it very hard on an attacker. While

traditional networks were thought out and built many years ago, Virtual Networks

are a newer concept. Virtual Networks are similar to Virtual Machines (VMs), in

that they are built purely in software, but still rely on hardware. Virtual Networks

perform the functionality of hardware routers and switches inside VMs, allowing for

multiple virtual routers or switches on the same physical host [45]. Because there

can be multiple virtual routers/switches on a physical machine, Virtual Networks

can physically overlap while being logically separate. Virtual Networks also allow

for a logical overlapping of physically separate networks. Virtual Networks also have

the ability to change network topology on the fly, allowing for greater flexibility

than physical networks.

In some ways Virtual Networks improve security and in other ways they open

up the possibility of new threats. Being in a sandboxed VM is one advantage that

potentially comes with a virtualized network [5]. This lowers the possibility of a

virus breaking out of a VM and spreading to other network nodes, since the VM’s

memory is isolated from the rest of the machine, as we explain in the background

1

section. At the same time, the communication between the Virtual Network

manager and the nodes opens up a new attack space. However, despite the new

security advantages and disadvantages that come with Virtual Networks, the

majority of their vulnerabilities are similar to those of physical networks [62]. There

are countless numbers of possible network attacks, and that is no different for

Virtual Networks. So while Virtual Networks do open up new opportunities for

attacks, the majority of vulnerabilities for traditional networks still apply [5].

To the best of the author’s knowledge, the ability for Virtual Networks to

change their topology is currently not used with security in mind. It is more utilized

for its flexibility in changing to a topology that fits the networks needs at a given

moment and for a break in case of emergency when a node or link fails. However,

with proper identification of which topologies are more vulnerable and which are

more secure against certain network attacks, a Virtual Network’s topology could be

changed to defend against these attacks. One could argue that this is unnecessary,

as patches could be used to protect against attacks. However, an attack might

exploit a vulnerability without a patch or is not leveraging any vulnerabilities, such

as denial of service. Changing topology could prevent or slow down the target while

certain components are being patched.

A system which would allow for the transformation of a network from one

topology to another could greatly improve the security of that network. Virtual

networks allow for this transformation, unlocking the ability to always be in the

best topology to defend against an impending attack or an attack that is already

underway. Traditional networks make it very hard to reconfigure the network

topology, since it would entail physically changing and moving connections. The

routers and switches would also have to relearn the topology through their MAC

and IP tables.

2

There have been numerous studies, experiments, and evaluations on the

different security aspects of traditional networks and even Software-Defined

Networks. However, there has not been as much research into the security aspects of

Virtual Networks. Virtual networks allow for many things that traditional networks

don’t, such as creating multiple overlapping (but logically separate) networks and

dynamic topology changes. My contribution to the field of Virtual Networks will be

a set of experiments that measures the impact of using dynamic security defenses in

Virtual Networks to defend against network attacks. To do this, we design a set of

dynamic defenses and network attacks. Dynamic defenses involve shifting the

topology of the network by moving a VM to a different subnet or physical machine.

There are four types of dynamic defenses: Server Protection, Isolated Subnet,

Distributed Port Group, and Standard Port Group. These defenses use virtual

network security functions such as a distributed firewall, spoof guard, or an

isolated/protected subnet (black hole). To test the effectiveness of these topology

shifts, we use 6 network attacks: TCP Syn DOS, ICMP DOS, Smurf attack, ARP

Poisoning/Spoofing, DNS Poisoning/Spoofing, and NMAP Scanning. We test the

success of the attacks before and after the dynamic defenses have been initiated to

determine the effectiveness of each. Our experiments show that the success rate of

each attack drops dramatically once the dynamic defenses take place and either the

victim is more heavily protected or the attacker is more isolated. With that

knowledge, ideally future security mechanisms for Virtual Networks can utilize

dynamic topology shifts in response to and to prevent network attacks. While the

defenses may not seem necessary, they could allow protection while waiting for an

admin to take action

The rest of this paper is structured as follows. Chapter 2 gives background

on network attacks, Virtual Networks, and Virtual Network Architectures. Chapter

3 discuss our system design, describing how our Virtual Network environment is

3

created and set up. Chapter 4 discuss our experimental design, giving details on

how we test the validity of our system. Chapter 5 looks at the results of the

experiments and analyzes them. Chapter 6 is related works. Chapter 7 concludes

the paper with a brief recap of our system and results.

4

Chapter 2

BACKGROUND

To fully understand the set of experiments run, some background into

network security and network virtualization is needed. In this chapter, we go over

the concepts used throughout this paper and explain how they work. In our

experiments, we run network attacks to test our dynamic defenses. To understand

these attacks, we give background in section 2.1 on network attacks, specifically

denial of service and man in the middle attacks. We also utilize virtualization of

network and security components, and nested virtualization, which we explain in

section 2.2. Finally, in section 2.3, we describe the different Virtual Network

Architectures that exist and how they work. This helps explain the system we use

for our experimentation and why we selected it. We begin with a background of

network attacks.

2.1 Network Attacks

There are many different ways to attack a network. Many of the existing

network protocols were designed without much security in mind, making for many

network vulnerabilities. The vast scale of devices communicating with each other

and the vast number of subnets make it impossible to secure every area of a network.

Limited resources generally force admins, especially in large companies, to choose

how to most effectively disperse their resources. Even with the right tools to secure

a network, it is up to the network admins to use them properly. Any improper use,

whether it be accidental or due to lack of knowledge, opens the door for attackers to

take advantage of some vulnerability. Even with everything in the network set up

perfectly, there is the possibility of some existing vulnerability in a device or even of

a zero-day attack. On top of that, network admins must balance security with

usability and ease of use. It would be most secure for a network to allow no

5

Figure 1: Example of a Simple Distributed Denial of Service System

communication outside of its internal network, but this is infeasible as devices need

to communicate with the outside world. In this section, we provide background on

different network attacks related to the ones used in our experiments. We divide

this section into two parts: Denial of Service/Distributed Denial of Service and Man

in the Middle attacks. For each category, we provide some background on the

different attacks, discuss how to detect them and what countermeasures exist, and

list the tools that can be used to carry them out. We start by looking at Denial of

Service and Distributed Denial of Service attacks, or DOS/DDOS attacks.

2.1.1 Denial of Service (DOS) and Distributed Denial of Service (DDOS)

Denial of Service is an attempt to make network resources, services, or hosts

unavailable to its intended users, such as temporarily or indefinitely suspending

services to users [23]. DOS attacks generally target servers or machines servicing

multiple users, but could be used to target and prevent an individual user from

accessing some resource. DOS attacks are one of the most common types of attacks

due to the large number of different ways to carry them out [23]. They also are

generally very effective, especially against systems that aren’t properly secured.

A variation of Denial of Service is Distributed Denial of Service. DDOS is

similar to DOS, but utilizes multiple hosts. Both DOS and DDOS have the same

6

end goal, but DDOS uses multiple hosts to accomplish denial of service rather than

launching the attack from one host [10]. Figure 1 shows an example of a DDOS

attack. DDOS attacks involve a master and multiple zombies. The master is the

controller that communicates with the zombies and gives them commands, such as

when and who to attack [12]. Zombies are infected hosts who communicate with the

master and carry out attacks [12]. These zombies are infected with malware that

searches for other vulnerable hosts to infect and waits to be given commands by its

master. DDOS attacks have the potential for much greater disruption due to its

distributed nature [10]. Having many more hosts carrying out attacks means more

power and more ability to use up a resource to the point of denial of service. It also

makes it much harder to find the original source of the attacks because the workload

is divided between potentially many hosts, and the source of the attacks is

abstracted by its zombies [10]. Detection of these attacks is becoming harder as

these DDOS systems are increasingly reliant on shorter bursts, with more packets

per second spread across different sources [10].

In this section we look at the types and subtypes of DOS and DDOS attacks,

how to detect them, possible countermeasures, and what tools can be used. We

start by describing the different DOS/DDOS attack types.

2.1.1.1 Types

There are many different types of DOS and DDOS attacks, and even the

different subtypes of DOS attacks can be divided up into more attack subtypes.

Because of this we won’t list every single existing attack or go into too much detail

on each attack, but rather give a general overview of each attack and its subtypes.

1. Flooding:

Flooding is one of the most common ways to perform a DOS/DDOS attack. A

flooding attack is when an attacker sends the target so much data that it either

7

slows down or stops the target’s services completely [43]. This can come either

through saturating the target’s links, using up some resource on the host, such as

memory, or through overtaxing the target by giving it more data than it can

process [43]. There are many types of flooding attacks, all taking advantage of

different, common network protocols.

(a) UDP Flooding:

This is a simple flooding attack that involves sending many, very large UDP

packets, either to use up some processing resource or to use up the victim

links’ bandwidth [43]. As with most flooding attacks, the source can be

abstracted by spoofing the source IP address or by distributing the work

among infected hosts [43]. This is one of the less resource intensive flooding

attacks to run for an attacker.

(b) Ping/ICMP Flooding:

Ping flooding is similar to UDP flooding, except with ping (ICMP)

packets [43]. Like UDP flooding, the goal is to use up the bandwidth of the

victim’s links.

(c) TCP Syn:

Rather than use up links’ bandwidth, this attack uses up a victim’s TCP

resources [43]. The attacker floods the victim server with TCP Syn requests

to create new connections. This could lead to outcomes such as preventing

new TCP connections or dropping current, valid TCP connections [43].

Either outcome would result in partial or full Denial of Service for many

users to whatever service the victim is providing.

(d) Reflection Attack:

A Reflection attack, or Reflective flooding, is a way to perform a DDOS

attack without having to infect other hosts. Reflective attacks involve

8

sending network protocol packets that require a response from other hosts.

The attacker spoofs the source address of these packets as the victim’s IP

address and then sends many packets to many different hosts [43]. These

hosts then receive the packets and all send reply packets to the victim, since

its IP address is given as the source. This leads to a flood of packets

directed at the victim host, potentially causing a Denial of Service [43]. The

source of this type of attack is better abstracted than other types of flooding

attacks due to its distributed nature and the spoofed source IP address.

There are many different types of Reflective Flooding attacks. The most

common protocols used in Reflection attacks are NTP, DNS, CharGen,

SSDP and RIPv1 [19]. However, one of the most famous examples of a

Reflection Attack is the Smurf attack.

i. Smurf Attack:

A Smurf Attack is when an attacker performs a Reflective attack with

ICMP echo requests [43]. It was given the name Smurf in reference to

the cartoon ‘The Smurfs’ [43]. Smurfs are small, blue people who

individually are small and weak, but collectively could overwhelm a

stronger opponent. The attacker sends many ICMP echo packets with

the source IP address spoofed as the victim’s IP address, causing the

victim to receive large amounts of ICMP responses [43]. This

potentially saturates the victim’s links and causes a Denial of Service.

2. Application/Layer 7 Attack:

This form of DOS involves any use of application layer protocols such as DNS or

HTTP to cause a Denial of Service [23]. This attack may use flooding techniques

or could exhaust a host’s resources such as sockets, memory, etc. [23].

Application attacks are more dangerous than certain flooding attacks as they are

9

more difficult to detect. This is because requests coming from an attacker are

almost indistinguishable from requests coming from authenticated users [23]. The

attack is more likely to pass through firewalls undetected, because defense

mechanisms based on TCP/IP authentication won’t catch application level

attacks, since they use valid TCP/IP headers [23].

(a) DNS Amplification Attack:

A DNS Amplification Attack is an attack that uses DNS queries to perform

a Reflective Flooding attack, similar to the Smurf Attack [51]. The attacker

sends many DNS queries with the source IP address spoofed with the

victim’s IP address. This causes DNS servers to send many DNS responses

to the victim host, potentially causing a Denial of Service [51].

3. Denial of Sleep Attack:

A Denial of Sleep attack involves draining a host’s energy to cause a Denial of

Service [31]. When the victim host’s receiver is in inactive mode (conserving

energy) the attacker starts bombarding the host with packets to drain its

energy [31]. The attacker only sends packets when the victim’s receiver is in

inactive mode. This attack requires detailed knowledge of the victim host’s MAC

layer protocol [31].

2.1.1.2 Detection and Countermeasures

There are many different ways to detect and react to DOS/DDOS attacks.

Here we list the different detection methods and countermeasures. We give basic

explanations of how each method works without explaining the math behind it, as

this would become too complex. We start with the detection methods.

1. Detection Methods

10

(a) Anomaly-Based Detection:

Anomaly-Based detection involves monitoring the behavior of live

traffic [23]. Traffic data is compared to a baseline of how normal,

non-malicious traffic is expected to behave. To do this, a model is built with

training and testing data of what is considered normal and what is

considered malicious. A large majority of current DOS detection is done this

way and many IDS systems use this type of detection [23]. Some examples

include Fast Entropy Detection, Fuzzy Estimator and Multivariate

Correlation Analysis (MCA). This technique is beneficial because after it is

trained it doesn’t require large amounts of memory. However, it does have

the potential for inaccuracies, especially if the process of training the model

is done incorrectly. It also requires a large amount of time to train the

model initially [23].

(b) Data Mining Detection

Data Mining Detection is a signature-based form of DOS Detection [23]. A

number of attack signatures are stored in a database and traffic signatures

are compared to those in the database [23]. This requires no time spent on

training a model and thus can be used for immediate detection. However,

depending on the number of signatures in the database, it could use a large

amount of memory. It also could take a large amount of time to match the

signature in the database, depending on the number of signatures stored

and the method for searching [23].

2. Countermeasures

(a) Access Control Lists (ACLs):

An Access Control List is a list of rules that say what network behavior is

allowed and not allowed [43]. ACLs can accept, drop, or deny traffic based

11

on a pre-determined list of patterns [43]. For example, one pattern could say

that any host from the subnet 192.168.144.0/24 cannot send HTTP traffic.

ACLs allows for potentially malicious data to be dropped, preventing an

attack from occuring. An example of an ACL is the command line tool

“iptables”.

(b) Rate Limiting:

Rate Limiting is a countermeasure that uses a threshold to determine when

to start dropping packets [43]. If some pre-determined data rate threshold is

reached by a host, group of hosts, or subnet, their packets are dropped.

Rate limiting, in combination with ACLs, are used by firewalls to prevent a

wide range of attacks, not just DOS/DDOS attacks [43].

(c) Amplification Honeypot:

An Amplification Honeypot is a honeypot specifically designed to prevent

reflection and amplification DOS attacks [19]. To prevent these attacks, the

honeypot emulates protocols that are generally abused by those DOS

attacks, making it an appealing target to attackers [19]. Attackers are then

likely to target the honeypot because they detect it as vulnerable, exposing

themselves as malicious and wasting their resources on a trap.

2.1.1.3 Tools

There are a few tools that can be used to carry out DOS attacks. DOS tools

generally aren’t overly complex, as many of the types of Denial of Service attacks

perform similar actions and don’t require large amounts of code. We list here a few

of these tools and give a brief summary of each.

1. Hping3:

12

Hping3 is a tool in the Kali Linux OS [43]. It allows for the user to send different

types of flooding attacks such as TCP Syn flooding, UDP flooding, etc. It also

allows for further modification through setting sending intervals, spoofing of

source IP address, and many other options [43]. Hping3 is simple and quick, but

lacks the power needed for Distributed DOS attacks.

2. Hyenae packet generator:

Hyenae is a tool that allows for various DOS and Man in the Middle attacks [43].

Hyenae is more sophisticated than Hping3, allowing for more complex forging of

packets, running attacks through multiple zombie hosts (DDOS), and triggering

remote attacks from one master host [43].

3. Netflow/IPtraf:

Netflow and IPtraf are Cisco tools used to detect traffic flows [43]. They can be

used for the detection of DOS based attacks or for gathering information to be

used in launching DOS attacks.

4. Netstat:

Netstat is a tool that is used to list all the network connections of a machine [43].

It can be used to see the ingoing and outgoing connection, their types, and more

detailed information [43]. Netstat can be used to gather information to

determine whether a DOS/DDOS attack is being launched or to gather

information to be used in launching a DOS attack.

2.1.2 Man in the Middle (MITM)

A Man in the Middle (MITM) attack is an attack where a “malicious third

party secretly takes control of the communication channel between two or more

endpoints” [11]. The goal for the attack is to be able to either eavesdrop or

13

manipulate information being shared between two parties. This could have many

end goals, such as stealing login info or even denial of service. There is also the

possibility of intercepting encryption keys if they are sent insecurely [11]. The keys

could then be used to make a connection seem secure for both parties, even though

the attacker would have access to all the data being exchanged. Once an attacker

has access to a channel of communication, they can perform many different attacks,

such as intercepting, dropping, modifying, or replacing packets being sent between

two parties [11]. In this section, we describe the different types of MITM attacks,

discuss possible countermeasures, and list the tools that can be used for it. We start

with describing different types of MITM attacks.

2.1.2.1 Types

There are many different Man in the Middle attack types and subtypes. We

don’t have space to list them all here, so we don’t describe every type. For each, we

give a brief description of the attack and list the attack subtypes. We start with

spoofing and poisoning attacks.

1. Spoofing and Poisoning:

A Spoofing Man in the Middle attack is when an attacker intercepts

communication through the use of spoofing [11]. This spoofing allows the

attacker to control any data transferred through the intercepted communication,

without the other parties having any knowledge. Spoofing can come in a few

different forms, such as an attacker pretending to be a device between the

victims or pretending to be the another party and spoofing the victim

directly [11]. There are many different forms of spoofing, each accomplishing a

similar goal in different ways.

(a) ARP Spoofing/Poisoning:

14

ARP Spoofing is when an attacker modifies a victim’s local ARP cache [11].

The attacker associates their MAC address with some other device’s IP

address, causing messages sent from the victim to the spoofed device to be

sent to the attacker instead [11]. Generally, the device who’s IP address is

associated with the attacker’s MAC is a subnet gateway, allowing the

attacker to gain all information the victim is sending outside their subnet.

To make this a true Man in the Middle attack, the attacker must also

compromise the spoofed device’s ARP cache to allow for all data flowing to

and from the victim to be intercepted [11]. This attack can also be utilized

to cause Denial of Service.

(b) DNS Spoofing/Poisoning:

DNS Spoofing is when an attacker tries to send a victim a malicious DNS

packet containing the wrong IP address for a queried url [39]. The goal is to

give the victim an IP address controlled by the attacker in reply to a DNS

query. This causes the victim to connect to the attacker’s IP address when

visiting the queried url. The attack is then completed by forwarding the

victim’s data to the real website, allowing for the attacker to intercept all

traffic going between the two [11]. There are two ways for the attacker to

accomplish this attack, DNS cache poisoning and DNS hijacking.

i. DNS Cache Poisoning:

There are two types of DNS cache poisoning. The first is when an

attacker inserts a malicious DNS server into a network, causing the

victim to send DNS queries to the malicious DNS server [11]. The

malicious DNS server can then reply with whatever IP address that

attacker wants associated with different urls. This attack is possible

because DNS doesn’t use any authentication to confirm that a DNS

server can be trusted. The second is accomplished through sending a

15

fake DNS reply before the real DNS server can respond to the victim’s

query [39]. This is possible because DNS packets are transmitted in

plaintext, allowing an attacker to sniff and read any DNS query. This

attack is riskier, because it relies on sniffing the query and sending a

fake DNS response before the real DNS server does, which is not

guaranteed to happen.

ii. DNS Hijacking:

This attack involves sniffing or intercepting DNS packets being sent

between the authoritative and recursive DNS servers [11]. The attacker

can do this through either of the two DNS cache poisoning attack types

to try to feed the authoritative server incorrect DNS information.

(c) DHCP Spoofing:

DHCP Spoofing is an attack where the DHCP protocol is used to achieve a

man in the middle through sending false DHCP information. Like DNS,

DHCP doesn’t have any authentication to create trust in a DHCP server.

Also like DNS, messages are transmitted in plaintext, allowing an attacker

to sniff and read any DHCP query [11]. There are two ways to accomplish a

DHCP Spoofing attack. The first is to try to respond to a DHCP request

faster than the real DHCP server [39]. The second is to set up a fake DHCP

server to send fake information to the victims. These both allow the

attacker to send incorrect information on the gateway address, the DNS

server, or even the victim’s own IP address [39]. Any of this information

would then allow the attacker to intercept the victim’s data and perform a

MITM attack.

(d) IP Spoofing:

IP spoofing is when an attacker intercepts communication between two

parties [11]. This can then be used to view all data sent through this

16

communication. There are a few ways to intercept communications: blind

and non-blind spoofing, ICMP spoofing, and TCP hijacking.

i. Blind/Non-Blind Spoofing:

Both blind and non-blind spoofing can be used for data mining to

intercept communication, but can also be used for DDOS attacks [11].

In blind spoofing, the attacker has to send requests to the victim’s

network and can then analyze the transmission sequence [11]. In

non-blind spoofing, the attacker is in the same subnet as the victim,

allowing the attacker to sniff data such as sequence and

acknowledgement numbers [11].

ii. ICMP Spoofing:

Since ICMP has no authentication mechanism, the ICMP redirect

packet can be used to route a victim’s messages through a malicious

router [39]. The malicious router can then eavesdrop, modify, or drop

any packets.

iii. TCP Hijacking:

For TCP hijacking, the attacker either guesses or uses knowledge of a

server’s psuedo-number generator to predict a sequence number of an

existing TCP connection [11]. If one of the sequence numbers is guessed

correctly, the attacker takes control of the connection from the victim.

2. SSL/TLS MITM

SSL/TLS allows authentication of users and servers to prevent malicious

machines from spoofing [11]. It encrypts data to prevent any sniffing of

information or modification of packets. It also ensures data integrity so that even

if an attacker is able to modify data, it will be obvious that a change was made

and the packet will be dropped. All of that allows SSL/TLS to secure

17

communication between two parties [11]. To intercept communication secured by

SSL/TLS, more complex attacks are necessary.

(a) Forge Certificate:

This attack involves using a forged certificate to create a man in the middle

between two parties using an SSL/TLS connection [11]. If the attacker

forges a certificate, they create an invalid cert and intercept the initial

exchange between the client and the server. The attacker then sends the

invalid certificate to the client and hopes the user ignores the cert

warning [11]. If the user accepts, the attacker can create a second connection

with the server and intercept data between the client and the server.

(b) Hijack Certificate

This attack involves using a hijacked certificate to create a Man in the

Middle between two parties using an SSL/TLS connection [11]. In this

attack, an attacker somehow obtains a valid certificate to a server or a

private key through malicious means [11]. The attacker could then create a

connection with the client with no cert warnings, since the certificate is

valid. The attacker could then create a second connection between itself and

server, acting as a man in the middle between the client and server.

2.1.2.2 Countermeasures

Detection and prevention of Man in the Middle attacks are much more

specific to each type of attack than DOS/DDOS detection and prevention. There

are many more specific solutions rather than general ones, so we don’t list all the

possible methods but rather list a few brief examples for each attack. In this section,

we list the different detection methods and countermeasures for each MITM attack.

18

We give a brief description of each countermeasure without going into too much

detail. We start with measures for detection and countermeasures for ARP spoofing.

1. ARP Spoofing/Poisoning:

There are a few solutions to detect ARP spoofing. ARP-Guard and

ARP-Defender use network architectures utilizing sensors to detect the

attack [11]. ARPwatch tracks MAC-IP pairings to be able to detect if any

pairings are changed [11]. However, it only alerts admins if a suspicious change

has been made and doesn’t take any action itself. There are also cryptographic

solutions, such as S-ARP which authenticates ARP replies using public key

cryptography [11]. There is the voting based solution MR-ARP, which queries

neighboring machines to vote on new IP-MAC pairings [11]. There are hardware

solutions such as Dynamic ARP Inspection, which ensures the validity of ARP

requests and responses [11]. There is Antidote, a server-based solution, which

gives priority for an IP-MAC pairing to old IP addresses [11].

2. DNS Spoofing/Poisoning:

Cache Poisoning detection system is a system that uses machine learning to

detect DNS spoofing in real-time [11]. There is a P2P system that, similar to the

MR-ARP, uses a voting system to authenticate a DNS response [11]. There are

cryptographic solutions similar to ARP crypto defenses, such as DNSSEC which

uses cryptographic signatures to achieve data integrity and origin

authentication [11]. There is also an Artificial Neural Network solution that can

predict the reliability of DNS response packets [11].

3. DHCP Spoofing:

DHCP detection is mostly cryptographically based, such as SDSS and

SDDC [11]. There is also a hardware solution called DHCP snooping that acts as

a firewall between hosts and DHCP servers [11].

19

4. IP Spoofing:

IPSec and Ingress Filtering are the two main methods that have been used to

prevent IP spoofing [11]. Ingress filtering filters packets at the border of an

Autonomous System and can use either Access Control Lists (ACLs) or unicast

Reverse Packet Forwarding [11]. There are router based solutions such as

Distributed Packet Filtering, Source Address Validation Enforcement, and

Spoofing Prevention Method. Distributed Packet Filtering filters based on packet

flow and interface used [11]. Spoofing Prevention Method inserts a tag into

packets that validates AS/prefix pairings [11]. Hop Count Filtering, a host based

solution, validates prefix and hop count pairings [11]. There is also the

cryptographic based Accountable Internet Protocol that validates correctness of

addresses [11].

5. SSL/TLS MITM:

There are many different ways to detect this attack. Detection of forged

certificates can be used, with Cert Transparency, ICSI, and Crossbear all doing

this. Crossbear actively scans the Internet to detect forged certificates [11]. Cert

pinning can also be used, where hosts are associated with certificates or public

keys [11]. Multi-path probing uses a distributed voting approach to authenticate

certificates [11]. Also, forcing SSL/TLS connection can be done to prevent

downgrade attacks, where the attacker makes the client or server not use

SSL/TLS [11]. There are also friendly MITM defenses that are used to secure

every new connection created [11].

20

2.1.2.3 Tools

Unlike DOS/DDOS attacks, MITM tools are generally more catered to a

specific MITM attack. There are many available MITM tools for each attack. We

list a few tools and give brief descriptions of each.

1. Ettercap

Ettercap is a suite of tools that have the capability to do many different Man in

the Middle attacks. It can be used for ARP poisoning/spoofing and DNS

poisoning/spoofing [39]. It also has tools for hijacking connections, filtering

traffic, and sniffing SSH connections [39].

2. Dsniff

Dsniff, like Ettercap, is a suite of tools that can run different Man in the Middle

attacks. Like Ettercap, it can be used for ARP spoofing, DNS spoofing, and

sniffing [39].

3. Zodiac

Zodiac is a tool specifically used for DNS spoofing [39].

4. IRPAS icmp redirect and icmp redir

Both these tools are used specifically to pull off an ICMP redirect attack to

redirect a victim’s traffic through a malicious machine [39]. IRPAS can also be

used for route mangling, where an attacker presents the best route as one that

goes through a malicious machine [39].

5. Nemesis

Like IRPAS, this tool can be used for route mangling [39].

21

2.2 Virtual Networks

Physical networks have the problem of lack of flexibility, both in the

difficulty of adding new services, such as firewalls and IDSs, to existing networks

and in moving those services around the network. The idea of Virtual Networks

were suggested as a solution to this lack of flexibility [17]. Virtual Networks are the

decoupling of network hardware and software, so that network services run purely in

software on top of the physical network [20]. When it was first suggested, the idea

was Virtual Networks could potentially allow for the ability to seamlessly add new

services, hosts, routers, etc., while also being able to move them around at will.

Today, we see that this is true. The decoupling of network hardware and software

allows applications and VMs to be connected to each other by a Virtual Network as

if it were a physical one [59]. Virtual Networks are also sometimes referred to as

Network Function Virtualization (NFV), which is the virtualization of network

components [29]. Virtual Networking is not to be confused with Software-Defined

Networking (SDN), which is the decoupling of the data and control planes of a

network [29]. In this section we give background on how Virtual Networks work and

how they are used. In section 2.2.1, we begin with a brief discussion on

virtualization. Then, in section 2.2.2, we discuss how virtualization is applied to

networks and how Virtual Networks work. We then discuss nested virtualization in

section 2.2.3, as it is utilized in our system design. Finally, in section 2.2.4, we

discuss the state of security in virtual networks.

2.2.1 Virtualization

Virtualization is the simulation of hardware function in software to allow for

the creation of a virtual computer system or virtual machines [59]. This allows for

the hardware resources to be divided up among virtual machines so that multiple

22

Figure 2: After Virtualization [54]

computers or servers can be running on top of one physical machine. This creates a

benefit of flexibility and efficiency [59]. In this subsection we first describe

conceptually what virtualization is and then we go into basic details on how

virtualization is achieved.

Virtualization has many properties. Virtualization allows for different

operating systems to run on the same machine, even if they are not compatible with

each other. This is called partitioning and also includes the ability to divide the

physical machine’s resources among the VMs [59]. Virtualization also provides

isolation, where despite being on the same hardware, a VM’s memory can’t be

accessed by anyone other than the VM itself. Isolation also means “preserving the

performance of a VM with advanced resource control tools” [59]. Virtualization also

utilizes encapsulation, where the entire VM is saved as files and can be moved and

cloned very easily, similar to moving files [59]. Lastly, virtualization brings hardware

independence, where any OS can be used on any type of hardware, allowing for

great flexibility [59].

So how does this division of resources actually work? To allow for VMs to

share resources on a system, a special OS is needed to communicate with the host

machine to get access to the hardware resources and divide them among the VMs.

This OS is typically called a hypervisor. On top of the hypervisor are the VMs’

23

Figure 3: Hosted Virtualization [54]

Figure 4: Hypervisor Virtualization [54]

24

operating systems, which communicate with the hypervisor to gain access to

resources [54]. When a VM’s OS requests a resource from the hypervisor, the

hypervisor communicates with the host system to get access to the resource.

Figure 2 shows an example host with virtualized machines on top of it. There are

two main approaches to where the hypervisor is placed, hosted and hypervisor [54].

They are both very similar, with the key difference being that in the hosted

approach the physical machine’s OS remains, while in the hypervisor (also called

bare metal) approach, the host OS is replaced with a hypervisor [54]. The

hypervisor approach is more efficient, since the abstraction layer (the hypervisor)

has direct access to hardware resources, but the hosted approach allows the most

hardware configurations [54]. Figure 3 shows a hosted virtualization and figure 4

shows a hypervisor virtualization. Because a hosted approach leaves the original

OS, the machine can have both VMs and other applications running simultaneously.

Due to abstraction, VMs see their resources as physical, not knowing that they are

communicating with a hypervisor to get them [54]. This allows for VMs to function

like normal machines.

2.2.2 Network Virtualization

Network Virtualization works similar to machine virtualization, utilizing

hypervisors to abstract hardware and implementing hardware components in

software. Think of Virtual Networks as similar to a physical network but in

software, just like how a VM is similar to a computer but in software. In this

subsection we describe how Virtual Networks work and how they are used.

Virtual Networks generally are divided into two parts, the overlay and the

underlay networks. The underlay network is made up of the underlying physical

network components that communicate with each other physically, while the overlay

network is the Virtual Network with the virtualized network components and

25

Figure 5: Simple Virtual Network [45]

VMs [21]. Figure 5 shows an example, basic Virtual Network. Network components

such as routers and switches are emulated in software to provide the layer 2 and

layer 3 functionality of physical networks. For example, a virtual switch (vSwitch)

has the same packet forwarding of a physical switch, but in software [45]. Similarly,

NICs are also emulated in software as vNICs, which are used for VMs. In figure 5,

the two machines each host 2 VMs and two vSwitches, with one of each belonging

to separate networks. Similar to a VM’s ability to preserve isolation and security on

the same physical machine, Virtual networks allow for VMs to be on separate

networks despite being on the same physical host or subnet [45]. They also allow for

VMs to be on the same network despite being physically far from each other.

To allow for VMs to be logically on different networks, something must be

done to prevent VMs and physical machines from looking at packets that aren’t a

part of their network. The solution is VXLAN, which acts similarly to VPN.

VXLAN is a MAC over IP encapsulation [21]. It is used to create virtual overlays

(or tunnels as it is called in VPN) across physical networks [45], preventing

components, both physical and virtual, from viewing packets that dont belong to

their virtual network. The vSwitches connected to the VMs in the virtual network

26

act as virtual tunnel endpoints (VTEP) between NICs [45]. These VTEPs allow for

both physical and virtual components to create routes to send data between VMs.

VXLAN reduces the complexity of forwarding, allowing for routes to be created

based on the overlay network and having the physical network components simply

forward VXLAN packets to the correct VTEP [45]. With VXLAN, whole

datacenters can be virtualized [45].

So how are Virtual Networks used? Generally Virtual Networks are utilized

in data centers and service provider networks [45]. This allows them to create

networks based on certain application needs and then change the network topology

on the fly when the needs change. For now, those are the main use cases for Virtual

Networks. However, there have been other proposed applications such as in mobile

and home networks [17]. While Virtual Networks aren’t currently being used for

those applications, it is possible that in the future they will be.

2.2.3 Nested Virtualization

Creating a Virtual Network environment requires a full, underlying physical

network. But what happens if there is a lack of physical resources? For our system,

we need to create a Virtual Network environment that is contained within one

physical host. Despite the lack of physical network devices, this can be

accomplished with nested virtualization. Nested virtualization is when a hypervisor

runs one or more other hypervisors, each of which can run their own VMs [7].

Nested virtualization can have many uses, such as the ability of users to select their

own hypervisor and VM combination, or to allow hypervisors and VMs to be

migrated as a unit for load balancing or disaster recovery [7].

Hardware-assisted nested virtualization is a common way to achieve this.

Figure 6 shows an example of hardware-assisted virtualization and the three levels

of nested virtualization. In this figure, VMM is the hypervisor and L0 stands for the

27

Figure 6: Hardware-Assisted Nested Virtualization Diagram from Nest-
cloud [40]

first level and so on. In normal virtualization the hypervisor runs in host mode,

having direct access to hardware resources, while the VMs run in guest mode [64].

When a VM tries to execute a privileged instruction that accesses hardware

resources, a control transition takes place from guest mode (VM) to host mode

(hypervisor), with the hypervisor executing the VM’s command for them. Once the

command is completed, the hypervisor relinquishes control back to the VM [64]. In

hardware-assisted virtualization, there is a second layer of virtualization. This

second layer makes both the nested hypervisor and the VMs operate in guest mode

(in separate contexts), while the underlying hypervisor is in host mode [64]. The

operations work similarly to normal virtualization, with the underlying hypervisor

acting as a middle man between the nested hypervisor and the VM. When a VM

requests a privileged hardware resource, a control transition takes place from the

VM to the underlying hypervisor. The underlying hypervisor then sends the request

directly to the nested hypervisor to process. Once the nested hypervisor has

processed the request, it sends the event to the underlying hypervisor to execute.

Once the event is complete, the underlying hypervisor relinquishes control back to

the VM [64]. This process allows for nested hypervisors to behave logically like a

28

normal hypervisor on top of a physical host, when in reality the nested hypervisor is

dependent on another, underlying hypervisor. Using this technology, we are able to

use the nested hypervisors to act as physical hosts in our system.

2.2.4 Virtual Network Security

Virtualization changes the vulnerabilities of Virtual Networks as compared to

physical networks. While virtualization adds some protection, it also adds new

attack vectors, such as multiple Virtual Networks being able to share memory and

link resources [5]. It is important to realize what is gained and lost security wise in

respect to virtualization and Virtual Networks. However, overall, most of the

vulnerabilities of physical networks apply to Virtual Networks as well. In this

section, we look at security related to virtualization and Virtual Networks.

Specifically, we look at how security is changed, both positively and negatively, with

virtualization and how that affects Virtual Networks. We start with describing

virtualization security.

2.2.4.1 Virtualization Security

Virtualization allows for confidentiality and integrity of data, separating

VMs from each other despite being on the same hardware. However, there have

been cases of malware either breaking out of or in to a VM. There are two main

ways for an attacker to attack a VM: getting access to the VM from the host or

getting access to the host from the VM [62]. The first one is done through infecting

the host machine that the victim VMs are on. The attacker can then attempt to

breach VMs or create their own malicious VMs and launch them [62]. An example

of this is the W32.Crisis. This was an attack where malware infected a host machine

as a java file, which made its way onto the machine through social engineering. It

then utilized the ability to manipulate VMs through their stored files, adding itself

29

to the VM so that the next time the VM was powered on, it contained the

malware [62]. The second threat is breaking out of a VM and getting access to the

underlying host. This is more dangerous, as breaking out of a VM could allow

malware to spread rapidly. It is also of great importance to prevent, as VMs are

sometimes used to inspect malware [62]. Cloudburst was an attack where malware

in VMs was able to execute commands on the underlying host [62]. This was

accomplished by using invalid instructions, which created exceptions. These

exceptions were then hijacked and then cached on the host machine, allowing code

to be created by the malware and executed on the host [62]. There is also the

possibility of shared folders being used to get from a VM to a host [62]. The best

way to prevent these attacks is to use hardening, malware protection, access control,

and other common computer protections [62].

2.2.4.2 Network Virtualization Security

Virtual Networks secure some of the vulnerabilities of physical networks, and

at the same time add some new vulnerabilities as well. However, they are just as

vulnerable as physical networks. The majority of network attacks work for both

physical and virtual networks. In this section, we look at the threats to Virtual

Networks and some general countermeasures. We list the categories of each and

describe some of the specific attacks and countermeasures briefly. We start with

Virtual Network threats and vulnerabilities.

For Network Virtualization, there are four broad categories of threats and

vulnerabilities: disclosure, deception, disruption, and usurpation [5]. Disclosure is

“unauthorized access to protected information” [5]. Deception is convincing other

devices that false information is actually true. Disruption is causing some part of

the system or communication to fail. Usurpation is gaining unauthorized control of

some part of the network [5]. Each category has further subcategories of

30

vulnerabilities and threats for Virtual Networks. For each category, we list the

different subcategories and their examples, and give a brief description of each.

1. Disclosure

(a) Information Leakage

Information leakage is when some information from one Virtual Network is

able to be viewed by another, separate Virtual Network [5]. This occurs

because some part of the Virtual Network is leaking private information.

This attack may be done through ARP Poisoning [9]. If the attacker spoofs

an IP address in another Virtual Network, it may be able to gain

information that is supposed to be private to that network. Information

leakage could also be done by escalating privilege and getting root access to

a VM in the other Virtual Network [5].

(b) Information Interception

This is also called eavesdropping, where data being sent between two parties

is intercepted by a malicious device [5]. Again, ARP poisoning can be used

to achieve this attack. The attacker could also trick a physical switch or

router into sending data through a path that allows the attacker to sniff all

the packets being exchanged [5]. According to [14], some Virtual Network

environments may not correctly isolate data between different Virtual

Networks, allowing for sniffing of other Virtual Network information. Even if

that data is encrypted, the packets can be analyzed to derive some sensitive

information [5]. One could also use Virtual Network requests to discover the

physical topology of the network and certain routing information [5].

(c) Introspection Exploitation

31

Introspection is used to confirm the states of VMs [5]. This can be exploited

to disclose information from VMs, since introspection allows external access

to information in the Virtual Network.

2. Deception

(a) Spoofing

This involves an attacker sending data with false information to make

another device believe that the attacker is someone else [5]. Virtual Network

environments complicate spoofing prevention because of the need to keep

track of multiple, overlapping Virtual Networks and the potential for

incompatible security policies over them [5]. An attacker could also

potentially remove a node and re-add it to a Virtual Network to get around

security mechanisms [5]. The ability to migrate and duplicate nodes further

complicates the prevention of spoofing and opens up more attack vectors.

(b) Replay Attacks

This is similar to a replay attack that takes place in a physical network.

Virtual routers may replay control messages to corrupt certain data [5].

3. Disruption

(a) Physical Resource Overloading/Failure

This can lead to virtual nodes crashing, congestion in Virtual Networks, and

prevention of tasks in Virtual Networks. An attacker could coordinate so

that one area of a Virtual Network requires too many physical resources to

split among the rest of the network [5]. It is also possible for one Virtual

Network to hog resources, depriving other Virtual Networks [2]. Because of

this, enforcing of minimum/maximum resource consumption is vital [5].

32

DOS attacks on physical resources would also cause denial of service to the

parts of the Virtual Network located on the physical machine [5].

4. Usurpation

(a) Spoofing

Similar to spoofing under deception, except it can also be used to gain

escalated privileges [5].

(b) Software Vulnerabilities

As discussed in section 2.2.4.1, an attacker can find vulnerabilities in the

hypervisor and use those vulnerabilities to escape a VM and gain access to

the underlying physical machine [2]. This could give the attacker the ability

to disrupt one or more Virtual Networks as a result [5].

While there are a lot of threats to Virtual Networks, there are also ways to

protect the environment from those threats. There are 6 groups of countermeasures,

or security services: access control, authentication, data confidentiality, data

integrity, nonrepudiation, and availability [50]. Access Control is the same as an

Access Control List (ACL) or firewall, which can be used to determine under what

circumstances a node can access a resource. Authentication is used to confirm the

identity of a device [50]. Data Confidentiality makes sure information is only seen

by authorized devices [50]. Data Integrity ensures that any data in the network isn’t

unknowingly manipulated [50]. Nonrepudiation connects malicious actions with the

perpetrator(s) [5]. Availability means that devices always have access to

information that they are authorized to see [50]. For each category, we describe the

countermeasures that can be used and give a brief description of each. We don’t list

every countermeasure, as that would be too expansive, but rather only list a few

examples for each category.

1. Access Control

33

(a) Trusted Virtual Domains

[8] is a framework that creates trusted virtual domains between virtual

machines. Each virtual domain is isolated from one another, providing

security in communications. A domain only allows a VM to join a group if it

meets certain criteria.

(b) Sandbox

Sandboxes can be used to prevent malicious (or any) VMs from accessing

resources outside of their own [5]. IPsec can be used to create secure,

cryptographic communications and X.509 can be use for authentication of

VMs [5]. The combination of the 3 can be used to secure a Virtual Network

2. Authentication

(a) Certificate based Authentication

Virtual Networks can use certificates to authenticate nodes joining the

network [5]. As stated before, X.509 can be used for authentication,

requiring new nodes to request a certificate from the CA. The certificate

given to the new node has its IP address in the certificate to prevent

spoofing and reuse [5].

(b) Key based Authentication

Keys can also be used to authenticate nodes in Virtual Networks. Similar to

physical networks, two devices can exchange keys to verify each other and

then use those keys to create encrypted communication [5].

3. Data Confidentiality

(a) Tunneling and Cryptography

As we discussed in section 2.2.2, tunneling protocols such as VPN or

VXLAN can be used to create isolated communication between nodes in a

34

Virtual Network. They also utilize encryption to protect the data portion of

a packet from being snooped.

(b) Firewalls and Subnets

Firewalls can be used to prevent communication between Virtual Networks

or filter those communications [5]. Each individual Virtual Network can also

be bound to a subnet to provide some further security. Firewalls have large

use in physical networks and are useful and flexible in Virtual Networks. We

discuss the use of distributed virtual firewalls in our system design in

section 3.2.

(c) Path Splitting

Path splitting is where multiple paths are used to send information between

two nodes in a network [5]. This can be used to partially evade malicious

eavesdropping. If encryption is used, this can be helpful in preventing an

attacker from deriving meaningful information by analyzing flows.

(d) Limit Introspection

This would limit what the hypervisor could see in each VM [5]. This would

potentially protect against exploitations.

4. Data Integrity

(a) Encryption

Encryption can be used, as with pretty much every other category, to keep

data integrity [5]. Like with physical networks, cryptography is vital to

securing communications in Virtual Networks.

(b) Timestamps

Putting encrypted timestamps with packets prevents replay attacks from

taking place [5]. This is also commonly utilized in physical networks.

35

5. Nonrepudiation

This is used to tie attacks to the malicious nodes that did them [5]. There is not

much currently in this area for Virtual Networks.

6. Availability

(a) Physical Resource Isolation

Isolating physical resources would prevent attacks where resources are

maliciously used up [2]. If malicious nodes can be prevented from

exhausting resources and the system divides the resources fairly, then

availability in the Virtual Network will be preserved.

(b) Virtual Network Resilience

Virtual Networks also have to be able to work around physical machine or

link failures [5]. Backups can be created for certain VMs to ensure

availability. Virtual Networks can also work around link failures, quickly

sending data through other paths, since the topology is flexible [5].

2.3 Virtual Network Architectures

With the storage needs of the world increasing, especially with the growth of

cloud computing, data centers are being utilized more than ever. The increasing

need of storage has led to more use of virtualization to help intra and inter data

center communications. The virtualization of physical networks is used to help

achieve this goal, but with the creation of Virtual Networks, systems must be

designed to create, manage, and secure them. A Virtual Network Architecture is the

system design for creating and maintaining virtual network components and the

resulting networks they create. Different companies design different Virtual Network

Architectures, with each having potentially different use cases. In designing a

Virtual Network Architecture, there are many questions about how different aspects

36

of the system work. Questions such as how do network nodes communicate with the

management system, how are the data and control planes implemented, etc. Most

companies creating Virtual Network Architectures have multiple architectures that

they create based on different factors. One factor in creating different architectures

is the use of different virtual components, creating architectures that operate the

same except for their selection of virtual components. For example, VMware has

different architectures based on the types of virtual switches and routing

mechanisms utilized [55]. Another potential factor in differing architectures is the

potential needs and uses of the customer. For example, OpenStack has many

different architectures, ranging from classic implementations to high availability

implementations, based on the customer’s virtual network needs [34]. In this

section, we summarize and compare the main architectures of each company, as

covering every single architecture is repetitive. These architectures are used for

creating and managing Virtual Networks, some with different use cases, but most

with the purpose of creating and managing virtualized networks in large data

centers. The rest of the section is organized as follows. In subsection 2.3.1, we

discuss the Virtual Network Architectures, and how they are built and used. Then

in subsection 2.3.2, we compare the architectures based on their strengths and

weaknesses in different categories.

2.3.1 Enterprise Architectures

A Virtual Network Architecture dictates how a virtualized network is

managed, created, and functions. In this subsection, we look at different

architectures, how they work, how they are used, and their trade-offs. The

architectures include VMware vSphere architectures [57], including one that utilizes

Palo Alto Networks components [60], Juniper Networks’ Contrail Architecture [22],

OpenStack’s Neutron Architectures [34], Apache’s CloudStack Architecture [3], and

37

the VirtualBox “Architecture” which isn’t a true Virtual Network Architecture [30].

We start first with the VMware Architectures.

2.3.1.1 VMware Architecture

VMware has two slightly different main architectures, with a third

architecture being based off the second architecture. Their difference is the use of

standard switches versus distributed switches, with the rest of the architecture

being based on this difference. Because of this we will describe both the standard

and distributed switch architectures (and the Palo Alto Networks variant of the

distributed switch architecture).

Standard Switch Architecture The vSphere Standard Switch Architecture allows

for the creation of an internal virtual network within each ESXi host. A standard

virtual switch is placed on top of each host and connects VMs to each other and the

external network outside of the host machine. In this section we describe the

different components of the architecture and how they work. Then we look at some

use cases and trade-offs.

The standard virtual switch (vSwitch) is more similar to a physical switch

than the distributed vSwitch, as it maintains both the data and management

planes [57]. Figure 7 shows an example of the Standard Switch Architecture and

how the components are connected. This architecture differs from the distributed

architecture as each standard vSwitch operates on a single host, independently of

one another. Because of this, each standard vSwitch implements both the data and

management planes of the network [57]. Standard vSwitches are configured and

maintained individually and are hosted on an ESXi host [57]. A vSwitch’s port

groups connect to a VM’s virtual NIC, providing connectivity to the other VMs on

the host [57]. These port groups can be assigned to any VMs on the same host as

38

Figure 7: VMware vSphere Standard Switch Architecture [57]

the vSwitch, allowing for groups of VM’s to be managed together through a port

group’s specifications. All VMs connected to the same port group on a standard

vSwitch are in the same “network” or subnet, even if they aren’t on the same

host [55]. Figure 7 shows an example of different port groups, such as “Test

Environment” and “Production”, connecting to the vNICs of the VMs. The port

group labeled “Management Traffic” is connected to a component called the

VMKernel, with it’s own Virtual NIC called the vmknic. The VMKernel component

is “an adapter that is used to provide network connectivity to hosts and to

accommodate system traffic for features of the network such as fault tolerance and

IP storage” [57].

While vSwitches provide connectivity between VMs, they also can connect a

host and its VMs to the external network. They do this through a set of ports,

called uplink ports, which connect the ESXi host to some physical network

device [57]. The physical switch’s NICs are assigned to the uplink ports of the

standard vSwitch. An example of this is shown in Figure 7. A vSwitch provides

external network connectivity to the VMs on the host by connecting their port

39

groups to the uplink port groups [57]. Figure 9 shows an example. However, if an

uplink port is not connected to a physical NIC, all VMs in the port group connected

to that uplink can only communicate with each other and not the external

network [57]. Each uplink port group on the standard vSwitch has the capability to

connect to one or more physical NICs. This is called NIC teaming and allows for

load balancing and a failsafe if a physical NIC goes down [57].

The vSphere Standard Switch Architecture is mainly used when a less

complex Virtual Network is needed, such as having ESXi hosts and VMs that need

to connect to each other in a way similar to a physical network. Other than basic

cases, there isn’t much reason to use the Standard Switch Architecture over the

distributed version. The Standard Switch Architecture is not as flexible as the

vSphere Distributed Switch Architecture and has less features as well. This is

because each standard vSwitch can only manage one host and must maintain that

host’s data and management planes for the internal network. Managing a VM as it

moves across hosts is not possible with a standard vSwitch and once a VM is moved

to a new host, any management or network preferences have to be recreated [57].

Distributed Switch Architecture The vSphere Distributed Switch Architecture is

more robust than the Standard Switch Architecture. The Distributed Switch

Architecture centralizes the management plane of the vSwitch so that the vSwitch

can be logically connected to multiple ESXi hosts, allowing for a more flexible

Virtual Network to be created [57]. In this section we describe the components that

differ from the Standard Switch Architecture and how they work. As with the

Standard Switch Architecture, we then look at the potential use cases and trade-offs.

The Distributed Switch Architecture has more functionality than the

standard switch version due to the distributed nature of the vSwitches. Figure 8

shows an example of the Distributed Switch Architecture. There are many

40

Figure 8: VMware vSphere Distributed Switch Architecture [57]

differences between the standard and distributed vSwitches. Because the distributed

vSwitch is divided among potentially multiple hosts, it allows for the separation of

the data and management plane, unlike in the Standard Switch Architecture [57].

The data plane acts much like the data plane of a physical network and is

responsible for package switching, filtering, tagging packets, etc. In the Distributed

Switch Architecture, the data plane is still controlled at the host level, same as the

Standard Switch Architecture. The data plane component of a host in the

Distributed Switch Architecture is called the “host proxy switch” and is the part of

each host that receives the network configurations from the management plane [57].

The management plane is responsible for configuring the data plane, i.e. the virtual

switches and the hosts where the data plane resides [57]. However, in the

Distributed Switch Architecture, the management plane is now controlled by a new

component called vCenter, a virtual server. The configurations for a distributed

vSwitch are made in vCenter and then are stored locally in all the hosts that are

“connected” to the distributed vSwitch [57]. “By putting the management plane in

41

a vCenter server, functionality of the network can be controlled at the highest

level” [57]. This is especially useful in data centers, where the configuration of all

the switches throughout the network can be controlled in one location [57].

The distributed vSwitch has a few differences in the data plane compared to

the standard vSwitch. Like the Standard Switch Architecture, the Distributed

Switch Architecture contains uplink ports on the hosts that connect to the NICs of

the physical switch. The difference between the uplink ports for each vSwitch is that

with the separation of the management and data planes, network configurations can

now be made for each uplink port group [57]. These configurations then propagate

down to all the host proxy switches that contain the uplink port group being

configured. Another difference in the data plane level is the addition of the

distributed port group. The distributed port group is similar to the port group used

in the standard vSwitches to connect the vSwitch to the VMs on the host [57]. As

with the standard vSwitches, the distributed port groups are identified with labels

such as “Production Network”. The difference between a standard port group and a

distributed port group is the latter can be connected to VMs on multiple hosts and

configured from vCenter to have different network settings. This allows certain

VMs, even if they are on different hosts, to share network settings by being

connected to the same distributed port group [57]. Different policies such as load

balancing, security, etc. for a group of VMs can be sent to the host proxy switch

and applied differently depending on the distributed port groups [57].

We have discussed the different distributed vSwitch components, but not yet

how they interact. Figure 9 shows a very helpful example of how the components of

an example distributed switch system are connected. The VMs and VMKernels on

each host are each connected to a port in their respective distributed port group. In

this example there is only one port group for the VMs and one for the VMKernels,

but there can be multiple port groups for each. Also, each VM, no matter which

42

Figure 9: VMware vSphere Distributed Switch Architecture Data Flow Exam-
ple [57]

physical host it is on, can belong to any of the distributed port groups. Each

distributed port group is connected to one or more uplink port groups to allow for

external network connectivity. In figure 9, the “VM Network” group is connected to

two uplink port groups. The distributed vSwitch allocates an uplink port for each

physical NIC on the host. These uplink ports are then connected to their respective

physical NIC. In the figure, each uplink port group has two ports, one to connect to

Host1’s physical NICs and one to connect to Host2’s physical NICs. If Host1 had

another physical NIC, a 4th uplink port for Host1 would be created.

Data flow in the Distributed Switch Architecture is designed to allow for

redundancy to ensure that VM’s can communicate, even when a component is

failing. This is made possible by the ability to connect distributed port groups to

multiple uplink port groups, allowing for the use of multiple physical NICs to

transmit a VM’s packet. Figure 10 shows how a packet travels from a host out to

the external network. In the figure, the details of Host2 are omitted. For example, if

VM1 wants to send a packet out of the physical host, the packet would first go to

Port 0 in the port group “VM Network”. The packet then goes through either

43

Figure 10: VMware vSphere Distributed Switch Architecture Packet Flow Ex-
ample [57]

uplink port 5 or 6, because both ports are connected to “VM Network”. If the

packet goes through uplink port 5, it then goes through the “vmnic0” physical NIC

of Host1; otherwise it goes through “vmnic1”. Through either of those Host1

physical NICs, the packet then goes to the physical switch, which can then forward

the packet to its next hop on the way to its destination. [57]

The vSphere Distributed Switch Architecture has more potential use cases

than the Standard Switch version, such as in data centers and cloud computing that

require more robust and available virtual networks [55]. The use of distributed

vSwitches and a central management server allow for more flexibility and more

available services. The ability to control the data plane of each host from a central

component allows for much more flexibility over a Standard Switch Architecture,

which requires configuring each host’s vSwitch individually. The ability to have

VMs on different hosts be a part of the same logical subnet is very beneficial,

because it allows for the creation of any Virtual Network Topology, which wouldn’t

be possible on a physical network. The distributed vSwitch allows for VMs to

maintain consistent network configurations even as they are moved across the

44

network to different hosts [57]. One downside to the architecture is that once a host

is connected to a distributed vSwitch, it must always be connected to some

distributed vSwitch. Another downside is the need to send the configurations of

each host over the network, which creates some overhead and has the potential for

failure. However, the overhead is small and done in increments [57]. Despite this,

the Distributed Switch Architecture allows for more flexibility and more features

than the Standard Switch Architecture. Compared to other architectures, both

VMware Architectures contain more options for use of virtual network, virtual

security, and distributed components. The virtual network and virtual security

components are created and managed by VMware’s NSX. NSX is the system for

creating and managing the distributed vSwitch, complex virtual networking

components, and virtual security components such as virtual firewalls [58]. NSX

allows for more complex network function virtualization. VMware is at an

advantage because they specialize in virtualization, making it easier to integrate

more robust virtual components. However, VMware’s architectures are limited to

managing the virtual components of a network and don’t allow for management of

physical network components. This means that other Architectures must be used

with VMware to manage a full Virtual Network system.

Palo Alto Networks + VMware Architecture The Palo Alto Networks (PAN)

VM-Series Architecture builds on top of the VMware vSphere Distributed Switch

Architecture to add more security features [60]. The PAN VM Series Architecture is

different from the other VMware architectures because of the integration of Palo

Alto Networks security components. The additions are few enough that the

architecture is similar to the Distributed Switch Architecture talked about above,

but the security components added are important enough that it deserves its own

45

section. We first discuss the PAN components and then discuss use cases and

trade-offs.

VMware has its own virtual network security called NSX, but this

architecture allows for the additional use of 3 Palo Alto Networks components:

VM-Series Firewall, Dynamic Address Groups and Panorama Centralized

Management. “The VM-Series Firewall is a state of the art firewall that has the

functionality of a hardware firewall but is distributed and virtualized” [60]. The

firewall allows for the testing of unknown malware in a sandbox environment and

many other IDS type features which are absent in the previous VMware

architectures [60]. Dynamic Address Groups allow for the tagging of VMs. Because

VMs can be moved from one physical host to another, this allows for security

policies to be applied to VMs even as they travel across the network [60]. The

Panorama Centralized Management is a central management system for the

VM-Series Firewalls that allows for configuring devices, deploying security policies,

and performing analysis across all the virtual firewalls in the network [60].

These three additional Palo Alto Networks components added on to

VMware’s Distributed Switch Architecture creates a new, combined architecture.

Some of the things that could be improved about the Distributed Switch

Architecture are certain security aspects, such as the lack of visibility into intra VM

traffic and slowness [60]. This architecture greatly increases security for any Virtual

Networks created. The potential downside is the system will be made slower due to

another centrally managed component and the added overhead of all the security

utilized. However, the system isn’t slowed enough to harm the network and is

outweighed by the benefits of having the extra security added. The use cases for

this architecture are the same as the Distributed Switch Architecture, since the

network components of the architecture operate in the same way. The difference is

46

simply the added security, which is beneficial in data centers, cloud computing, and

really any use case.

2.3.1.2 Juniper Contrail Architecture

Juniper Networks is a company that specializes in network solutions, both

physical and software-defined. A software-defined network is a network which

separates the control and data plane. A central controller makes the forwarding

decisions and propagates those decisions to the switches, which become simple

forwarding devices [25]. Juniper’s Virtual Network Architecture is called Contrail.

“Juniper Network’s Contrail is an open-source software-defined networking (SDN)

solution that automates and orchestrates the creation of highly scalable virtual

networks” [22]. Potential use cases are as a cloud networking platform and for

network function virtualization [22]. Contrail allows for the creation of overlay

virtual networks to allow for a separated distribution of physical and virtual

resources [22]. An overlay network is when the physical network is used to provide

connectivity, while the virtual networking components lay on top of the physical

servers routing the data [22]. In this section, we describe Contrail’s components and

how they work, followed by use cases and trade-offs.

Figure 11 shows the details of the Juniper Contrail architecture and how the

components are connected. While there are many components in the system, the

two main Juniper created components of the architecture are the SDN Controller

and its subnodes, and the vRouters. Contrail’s software-defined network controller

is used for management, analytics, and control mechanisms of the system [22]. It is

logically central, but is physically separate, meaning that the controller is hosted on

multiple physical servers, but is viewed by the rest of the network as one controller

when communicating with it. VRouters are similar to the VMware vSwitch that we

described earlier, except the vRouter also provides routing services [22]. The

47

Figure 11: Juniper Contrail Architecture [22]

vRouter acts as a forwarding plane that lies in the hypervisor of a virtualized

server [22].

Contrail’s SDN Controller is divided into three main services: Configuration

Nodes, Control Nodes, and Analytics Nodes [22]. The configuration nodes are in

charge of the management plane and communicate using REST APIs. They

translate a high level data model into a low level model that can properly interact

with network elements [22]. The control nodes implement the logically centralized

portion of the control plane and are in charge of applying the changes made by the

configuration nodes. They propagate the low level model created by the

configuration nodes to and from network elements and peer systems [22]. This

communication is done using XMPP to control the vRouters and a combination of

BGP and NETCONF protocols to control the physical routers [22]. The analytics

nodes are in charge of collecting statistics for troubleshooting and network usage

stats. They capture real time data and turn it into a presentable form [22]. Contrail

48

utilizes what is called an overlay virtual network, as described earlier. The vRouters

create tunnels between each other, so when a VM on one physical host sends a

packet to another, it can be routed without interacting with another overlapping

virtual network and without having its data being viewed by any unauthorized

routers/hosts on the way to its destination [22]. VMware’s Virtual Network

Architecture with NSX allows for similar functionality.

Other than the two Juniper components, there is also an orchestration

system for the virtual networking, which can utilize two other Virtual Network

Architectures discussed later, called OpenStack and CloudStack [22]. The

orchestration system is in charge of communicating with the virtualized network

functions such as virtual firewalls and virtual routing components. OpenStack and

CloudStack are Virtual Network Architectures like Contrail, but can be utilized to

simply manage a Virtual Network’s components, which is why they are used in

Contrail’s Architecture. Contrail also utilizes 3 main interfaces. The first is the

Northbound REST API that is used to talk to apps and the orchestration

system [22]. The second is the Southbound interfaces used to communicate with the

vRouters and the physical network elements [22]. Lastly, the East-West interface is

utilized for peer to peer communication, such as vRouters communicating with one

another [22].

Juniper’s Architecture utilizes many different forms of communication. The

overlay network’s messaging format is based on MPLS L3VPNs (for layer 3 overlay

networks) and MPLS EVPNs (for layer 2 overlays) [22]. Contrail’s virtual overlay

network data plane can utilize either MPLS GRE/UDP or VXLAN to create tunnels

of communication between vRouters [22]. The control plane utilizes BGP for

communication [22]. The protocol for communication between the SDN Controller

and the vRouters is very similar to and based off XMPP, and is semantically very

49

similar to the BGP protocol [22]. We wont go into detail on how these protocols

work, as knowing how they work isn’t important to understanding the architecture.

Use cases for Contrail include as a Private Cloud for companies, as an

Infrastructure as a Service, as a Virtual Private Cloud for Service Providers and for

managing Network Function Virtualization for Service Provider Networks [22].

Contrail, like other Virtual Network Architectures, is utilized in data centers,

allowing for the creation of multi-tenant virtualized data centers [22]. Contrail

allows each tenant to share physical resources while being assigned their own virtual

resources, such as their own virtual networks, virtual storage, and VMs [22]. For

Network Function Virtualization, Contrail allows for management and orchestration

of virtualized functions such as firewalls, IDSs, caching, etc. Contrail’s strengths are

that it allows for multiple options in choice of Virtual Network Orchestrator and

type of virtual network components. It also utilizes overlay networks and tunneling,

allowing for logical separation of networks while keeping data protected. However, it

doesn’t have as much flexibility as the VMware Distributed Switch Architecture,

because its vRouters have similar shortcomings to the VMware Standard vSwitch,

such as only being able to connect to VMs on one host. Contrail also lacks in

security compared to the vSphere Architectures. While VMware has both NSX and

PAN distributed security features that can be managed from a central location,

Contrail’s only allows for the use of external security components. While other

security features such as IDS’s and Firewalls can be useful in the architecture, they

cant be distributed or centrally managed to more easily secure large parts of the

Virtual Networks created.

2.3.1.3 OpenStack Architecture

OpenStack is a company that created a Cloud Management System that can

control “large pools of compute, storage, and networking resources throughout a

50

data center” [38]. The most important part of that system is virtual network

management and virtual components, which allow for the creation of virtual and

overlay networks. OpenStack Neutron has different architectures based on the needs

of the user, such as classic, high availability, and provider (overlay) networks [34].

Architectures also vary based on different components added or substituted, such as

architectures with and without a linux bridge. The primary use case for Neutron is

in data centers, where it is used to create and manage Virtual Networks similar to

the other architectures we have described [38]. In this section, we look at the Classic

Architecture with Open vSwitch, as it is the ”classic” architecture type for Neutron

and shows the base case for OpenStack Virtual Networking. We then briefly discuss

the High Availability with Distributed Virtual Routing Architecture and the

Provider Network Architecture to show the full capabilities of Neutron. We then

look at use cases and trade-offs.

OpenStack’s Neutron Virtual Network Architecture is used for controlling

the networking components of a Virtual Network. “It contributes the networking

portion of self-service virtual data center infrastructure by providing a method for

regular (non-privileged) users to manage virtual networks within a project” [34]. An

overview of the basic network layout can be seen in figure 12. The infrastructure is

made up of 3 main parts: a controller node, a network node, and one or more

compute nodes [34]. The controller node has one network interface and manages the

network. The network node has four network interfaces and acts as a router or a

gateway to the network. The compute nodes contain three network interfaces and

hosts the VMs. There isn’t much to say about the controller node, other than it is

used to manage the whole network, but there is more to the network and compute

nodes.

Figure 13 shows the overall architecture and components for the network

node. The network node is the most complex of the three nodes and is used as a

51

Figure 12: OpenStack Virtual Network Basic Layout for a Classic Open vSwitch
Architecture [34]

sort of gateway router for the network, connecting subnets together and connecting

the network to the Internet [34]. It contains four main components: an Open

vSwitch agent, a DHCP agent, an L3 agent, and a Metadata agent [34]. The Open

vSwitch agent is in charge of managing all the virtual switches. It manages the

virtual switch’s connectivity and their interactions with other components through

its virtual ports. The Virtual switches interact with other components such as

namespaces, Linux bridges, and underlying interfaces [34]. The DHCP agent is in

charge of managing the qhdcp namespaces, which provide DHCP service to VMs of

the system using an internal network [34]. The L3 agent manages the qrouter

namespaces, providing routing between internal and external networks [34]. It also

provides routing between internal networks, allowing these networks to

communicate among each other. It also routes metadata between instances of the

network and the Metadata agent. The Metadata agent handles all the metadata

operations for all VMs of the network [34].

Figure 14 shows the overall architecture and components for the compute

node(s). The compute node is a host, similar to the VMware ESXi host, that can

host multiple VMs [34]. Multiple compute nodes can be connected as a subnet or

52

Figure 13: OpenStack Virtual Network’s Network Node Design [34]

even one compute node can be considered a subnet itself. The compute node

contains a virtual switch for its hosted VMs to connect to and has two components.

The first component is another Open vSwitch agent that performs the same tasks as

described in the network node [34]. The compute node agent manages Open

vSwitches on the compute node, while the Open vSwitch agent in the network node

manages all the switches in the network. The other component is the linux bridge,

which handles security groups and their applications to the different VMs [34]. Due

to limitations with Open vSwitch and iptables, the networking service uses a linux

bridge to manage security groups for VMs [34].

Figure 15 shows an example of how the compute, controller, and network

nodes are all connected. In the figure, the network node is acting as the gateway

router, routing between compute nodes and from compute nodes to the external

network. The compute nodes act as subnets, with each having a switch to route

between instances. The figure also shows 2 overlapping networks that don’t know

about the other: the Tunnel network and the VLAN network. This is a good

53

Figure 14: OpenStack Virtual Network’s Compute Node Design [34]

example of how virtual networks can be separate, even though they are on the same

physical machine.

A High Availability with Distributed Virtual Routing Architecture adds to

the Classic Architecture by adding distributed virtual routers [35]. Figure 16 shows

the overall architecture with the added distributed virtual router. The distributed

virtual router is added to every compute node, and compute nodes now have an

interface connecting them directly to the external network. This is done to allow for

direct connection to the external network and other compute nodes, bypassing the

network node [37]. The distributed virtual router also allows for address translation

for the Virtual Network on the compute node [37]. This is normally done by the

network node, but is now also done by the distributed router. The point of the

distributed router is to allow for quicker connection to other nodes and the external

network. The distributed router is also important because it makes Virtual

Networks more scalable by taking a lot of the load off of the network node and

distributing it [37].

54

Figure 15: OpenStack’s Virtual Network Architecture and Components [34]

Figure 16: OpenStack’s High Availability using Distributed Virtual Router
Architecture [35]

55

A Provider Network Architecture is similar to the Classic Switch

Architecture, but with the virtual components being connected to an underlying

physical network rather than directly to the Internet. The main difference is that

the Provider Network has the compute and control nodes connected to physical

network components such as routers, switches, etc. [36]. The controller and compute

nodes have interfaces that directly connect to ports on a physical network

component to allow for data to move through the overlay network [36]. Another

difference is that the network node and controller node are now combined so that

the controller node is now also partly responsible for network management [36]. The

Provider Network Architecture allows for the use of overlay networks and

communication inside and outside a Virtual Network, while the Classic Architecture

is more utilized for intra-data center communication between nodes, though

communication with external networks is still common [36].

The OpenStack Neutron Architectures allow for many different ways to

create and manage Virtual Networks and their components. This is shown in the

Juniper Contrail Architecture that we discussed, where OpenStack’s Architecture

can be used to control all the virtualized network components in the system. Like

other Virtual Network Architectures, the Openstack Neutron Architecture is mainly

used in creating virtual data center networks [36]. Neutron is useful because it has

many architecture types depending on the type of Virtual Network system that is

needed for a solution. The downside is that once one is selected, it is harder to

switch to a different architecture and one can’t reap the benefits of the different

architectures at once. Neutron also has an architecture that utilizes distributed

routers, which allows for more efficient intra-data center communication [37]. It also

makes the system scalable and efficient due to distributing some of the work done

by the network node, such as address translation [37]. Another downside is that

similar to Juniper’s Contrail Architecture, there aren’t as many security features as

56

VMware’s Architectures outside of using normal network IDSs and virtual firewalls.

This is seen with OpenStack’s vSwitches having limitations that force the network

node to use a Linux Bridge to manage the security of VM groups.

2.3.1.4 Apache CloudStack Architecture

The Apache Software Foundation is a company that focuses on developing

open-source software. One of their projects is Apache CloudStack. “Apache

CloudStack is an open source cloud computing software, which is used to build

private, public and hybrid Infrastructure as a Service (IaaS) clouds by pooling

computing resources” [27]. Like other architectures, the Apache CloudStack

Architecture is used in virtualizing datacenter communication. Apache CloudStack,

like OpenStack, has many architectures based on need and is used as an option for

managing network components in the Juniper Contrail Architecture. However,

CloudStack differs from OpenStack in that the different architectures it employs are

based on the size of the desired network and whether certain components, such as

storage, should be separated from the rest of the network. In this section, we first

describe the CloudStack Architecture and its components, followed by use cases and

trade-offs.

The Apache CloudStack Architecture allows for the virtualization and

management of data center networks. Figure 17 shows an overview of the general

CloudStack Architecture. CloudStack “supports a large set of hypervisors, scalable

architectures, multi node installation and load balancing, making it a high

availability system” [27]. However, the CloudStack Architecture has fewer

components and less functionality than the other Architectures we have covered,

with the basic architecture consisting mainly of a management server, storage, and

computing nodes. The management server is what manages the cloud resources

such as provisioning storage, hosts, and IP addresses [27]. Admins can use the

57

Figure 17: Apache CloudStack’s Virtual Network Architecture and Compo-
nents [27]

management server through either a user interface or through its API. Storage has

the option of being located on a server within the same part of the network as the

other components or being separated into its own storage subnet [27]. The

computing nodes are the machines hosting the VMs and other virtual network

components [27].

CloudStack has a range of architectures from a very simple, small network to

more complex, more divided networks. The CloudStack Architecture has both basic

networking, similar to an AWS type network, and more advanced networking for

more complex network topologies [27]. Figure 18 shows the Small-Scale Deployment

Architecture, the most basic CloudStack Architecture [3]. The architecture has one

subnet with a gateway router/firewall, a layer 2 switch, a management server, an

NFS storage server, and the compute nodes holding the virtual resources [3]. It also

contains a VMware vCenter server if VMware virtual network components are being

used [3]. CloudStack has other architectures with more flexible setups, such as

architectures that divide certain components between different subnets.

The CloudStack Architecture allows for various Virtual Network setups

ranging from smaller to larger networks. CloudStack is mainly used in data centers

58

Figure 18: Apache CloudStack’s Virtual Network Small-Scale Deployment [3]

and cloud computing to create and manage Virtual Networks, making intra data

center communication easier. A big benefit of the CloudStack Architecture is its

flexibility in component use. It allows the use of many different VM types, virtual

component types, and even the use of VMware’s vCenter to manage Virtual

Network resources (if the Virtual Network components are VMware’s). The

CloudStack Architecture also allows for more functional network setups, which allow

the architecture to handle bigger networks and/or the separation of storage nodes,

which helps lower the load of the management network. However, despite the

increased functionality of some of the Architectures, it still lacks in flexibility of its

implementations. The different architectures of CloudStack are based more on

division of storage than in creating more architectures of varying uses, unlike

OpenStack which allows for plenty of architecture options. The CloudStack

Architecture also lacks in use and management of virtualized security functions from

a central location. It doesn’t have any dedicated management for security and

instead relies on the use of outside virtual security components and management.

59

This makes it more difficult to manage network-wide security and protect any

Virtual Networks created.

2.3.1.5 Oracle VirtualBox “Architecture”

Of all the Virtual Network Architectures, Oracle’s VirtualBox is the easiest

to describe. This is because it doesn’t really have a Virtual Network Architecture,

hence the quotations surrounding architecture in the heading. To create a Virtual

Network in VirtualBox, it is necessary to use regular VMs as virtual routers, rather

than using virtual switches that better emulate a physical switch. It also requires

personally creating a management network through VirtualBox’s network setting

and by enabling port forwarding [30]. Other steps to get the network properly

configured are needed as well. So while a Virtual Network can be created in

VirtualBox, it is more of a workaround than a true Virtual Network.

2.3.2 Architecture Comparisons

In this section we look at the overarching view of all the architectures and

shortly describe how they compare to each other in certain aspects. Each

architecture has similar use cases, mainly in data centers and cloud computing, and

each has its own trade-offs. No architecture is necessarily better overall than any

other, but rather each is better in different areas such as flexibility or management.

Table 1 shows an overview.

For flexibility of implementation, the VMware vSphere Distributed Switch

Architecture, the PAN VM-Series Architecture, and the OpenStack Architectures

allow for diverse choice in architectures based on different virtual network

components. However, OpenStack’s architectures vary and once one is picked, the

whole system is set. VMware and the PAN architectures, however, allow for

flexibility in choice of virtual switch, virtual security components, etc while also

60

Architecture Implementation
Flexibility

Management Security and
Management

Virtual
Component
Flexibility

VMware vSphere +
PAN

Good, multiple
options for
vSwitch/security

Good management of
virtual network, lacks
physical network
management

Good, has many
distributed/centrally
managed security
features

None, must use
VMware virtual
components

Juniper Contrail Some, has only one
architecture, must use
vRouter

Manages both virtual
and physical, Others
manage virtual better

Relies on outside
virtual security
components

Very, allows different
hypervisors and
virtual components

OpenStack Good, has multiple
architecture and
virtual component
options

Same as VMware,
virtual management
slightly worse

Relies on outside
virtual security
components

None, must use
OpenStack virtual
components

CloudStack Some, has different
architectures based
on network division

Same as Juniper Relies on outside
virtual security
components

Very, can use different
hypervisors and
VMware vCenter

Table 1: Architecture Comparison Overview

allowing for them to be implemented at any point in time. CloudStack allows for

the use of VMware network virtualization, so through that capability it also allows

for some flexibility of architecture. The Contrail Architecture has some flexibility,

but not as much as the other architectures, being limited by its lack of options for

virtual switch (vRouter must be used) and virtual security components.

For management of a network, each architecture has its strengths and

weaknesses. Juniper Contrail and CloudStack allow for management of both virtual

and physical resources, while VMware and OpenStack don’t. However, VMware and

OpenStack allow for better management of virtual components and both allow for

the distribution and central management of switches and subnets. This allows for

the management of a VM’s network configurations even as it moves around the

physical network. For integration of security and easy management of it, VMware

has the clear edge with its Distributed Switch Architecture, along with NSX and the

PAN architecture. The vast options for virtual security through NSX and PAN puts

the VMware and PAN architectures above the rest. The other architectures all rely

on outside security components and don’t provide centrally managed Virtual

Network security.

61

CloudStack and Contrail allow for the most flexibility in type of hypervisors

and virtual components used, with CloudStack being a little more flexible in this

regard due to the Contrail Architecture needing to use its own virtual router.

CloudStack is also flexible in that it allows for the use of VMware’s vCenter to

manage the VMware virtual components. Juniper also allows for the choice between

CloudStack and OpenStack for managing virtual resources. VMware/PAN and

OpenStack are not flexible in this category as they require use of their own virtual

components.

62

Chapter 3

SYSTEM DESIGN

To test the idea that dynamic topology changes can be used to secure a

Virtual Network, we must set up a system to show the potential effects. An

important part of that system is creating a Virtual Network environment for

testing. To do this we use VMware’s virtual technology, which we explain in detail

in section 2.3.1.1. VMware allows for a vast amount of options for virtualized

network and security components, making the creation of a viable environment

easier. It is flexible and, since we won’t need to manage physical devices, it makes

the most sense for creating our Virtual Network environment. Besides setting up a

virtual environment, it is also necessary to simulate situations in which our dynamic

defenses could be used as protection. We accomplish this through the use of Kali

Linux and its many attack tools, which we use to run network attacks. We also set

up a detection system, using the open source Snort IDS, to alert when an attack is

happening. The alert is used to initiate our dynamic defenses. Finally, we

implement virtual security components that are used in the dynamic defenses for

securing the Virtual Network, which leverages VMware’s NSX. In this chapter, we

detail how our system is built by describing our Virtual Network environment, the

security components utilized for our dynamic defenses and how they are set up, how

we run the network attacks, and how we detect those attacks. In section 3.1, we

describe how we created all the hypervisors, VMs, and other virtual components in

our environment and how they are set up. In section 3.2, we discuss the creation

and setup of NSX and our virtual security components, which we utilize for our

dynamic defenses. In section 3.3, we discuss our network attacks and how they are

run using Kali Linux. Finally, in section 3.4, we look at the setup of the Snort IDS,

which is used to detect the network attacks in our experiments.

63

Figure 19: Topology of Host Virtual Network

3.1 Virtual Network Setup

In this section, we describe the setup of the Virtual Network environment

from start to finish. We detail the creation of VMs, hypervisors, networks, and

other components in our virtual environment.

To create our Virtual Network environment, we use VMware’s vSphere and

vCenter technologies, which are used for the creation of Virtual Networks. As

described in section 2.3.1.1, vSphere is used to create Virtual Network components

on top of an individual host and vCenter is used to centrally manage all the Virtual

Network components for all the hosts. To store our system, we use a physical DELL

machine with 12 CPUs, hyperthreading capabilities, approximately 1 TB hard disk,

and 100 GBs of memory. The machine has a VMware ESXi hypervisor installed on

it to allow for the creation and management of VMs. Figure 19 shows the topology

of the Virtual Network environment on top of the physical host. The physical host

64

also has 4 NICs and is connected to a physical switch, which is connected to the

gateway of the subnet. Only one NIC is utilized for our system for network

connectivity, with a second NIC being used as a backup in case of failure. The host

uses an internal DHCP server in a separate subnet, and an external cal poly DNS

server called “larry” and the google DNS servers. The host also contains a standard

virtual switch to allow external network connectivity for all the VMs. All created

VMs are connected to the “VM Network” standard port group, while the VMKernel

is connected to its own “Management Network” standard port group.

On top of the physical host we install a vCenter Manager, which is used to

manage our Virtual Network environment. It is given an initial 40 GB hard disk

and 10 GBs of memory, all of which is thin provisioned. Thin provisioning is when

only the amount of memory needed at the time of creation is allocated for a

VM [53]. More storage can then be added afterwards as needed. So for our system,

even though the VM is given a 40 GB hard disk, only the part of the 40 GBs that is

currently needed is allocated. All VMs created in our system use thin provisioning,

since it allows for more flexibility in memory usage. Once the vCenter Manager is

created, the web GUI can be accessed and used to create other VMs on top of the

physical host. The vCenter management GUI can be accessed through a web

browser by entering the IP address of the vCenter Manager. The vCenter Manager

is the main tool we use to create and manipulate our Virtual Network environment.

On the vCenter Manager, we create 3 different “clusters” of machines.

Figure 20 shows the vCenter layout with the 3 clusters. Clusters are used to

abstract multiple machines as one entity, combining their resources into one

cluster [56]. This is generally done for datacenters. However, since our environment

wont be dealing with datacenter-like activity, we will use them to organize our VMs

rather then to group resources. We create 3 clusters: a “mgmt-cluster” which holds

the physical host and all the vms created on it, a “compute-cluster” which we use as

65

Figure 20: VCenter GUI and Clusters Layout

the internal network for our experiments, and an “external-cluster” which is used to

hold other VMs that are not a part of the “internal network”.

In a real Virtual Network, VMs and Virtual Networking components are

created on top of many hosts and physical network components. However, this is

very time intensive and requires a lot of physical resources that we do not have.

Instead, we use nested virtualization to emulate a Virtual Network environment on

a single physical machine. In section 2.2.3 we explain how nested virtualization

works. With VMware nested virtualization, there is an outer guest VM and an

inner guest VM. The outer guest, or the guest hypervisor, is an ESXi hypervisor

VM which runs on the physical host, on top of the main ESXi hypervisor [32]. The

inner guest is the nested VM that runs on top of another VM (the hypervisor

VM) [32]. The nested hypervisors can be managed in the exact same way as a

physical host’s hypervisor, through vSphere’s web GUI. This web GUI is accessed

by entering the IP address of the ESXi hypervisor in a web browser. A nested ESXi

66

hypervisor VM can be added to a vCenter cluster as a host and acts as a physical

host when interacted with through vCenter. After it is added as a host, VMs can be

added to and run on the nested hypervisor.

To use nested virtualization to emulate a real Virtual Network system, we

must first create the nested ESXi hypervisor VMs that will act as physical hosts.

Each hypervisor VM is created on top of the real physical host and put in the

standard port group “VM Network” to provide external network connectivity. In

the vCenter view, the hypervisor VMs are placed in the “mgmt-cluster” with the

main ESXi host (the physical machine) and the vCenter Manager. They can then

be added to other clusters as “physical” hosts, which is what allows for nested

virtualization. Once the hypervisors are added as hosts to the clusters, VMs can be

created and “stored” on them. 5 ESXi hypervisor VMs are created in the

“mgmt-cluster”, with 4 being added to the “compute-cluster” as hosts and 1 being

added to the “external-cluster” as a host. Each host created from the hypervisor

VMs is given a 40 GB, thin provisioned hard disk, 8 GBs of memory, and 2 CPUs.

Of the 4 hosts added to the “compute-cluster”, 2 utilize a standard vSwitch

and standard port groups. The host on the “external-cluster” also utilizes a

standard vSwitch. The other two hosts on the “compute-cluster” are connected to a

distributed vSwitch called “DSwitch1”. Figure 21 shows an example of the

distributed switch’s network topology. The distributed vSwitch allows for all VMs

that are on a host connected to the distributed vSwitch to be in the same

distributed port group. It also has the ability to utilize a distributed firewall, which

we describe in section 3.2.

After creating the hypervisor VMs and adding them as hosts to the clusters,

the VMs that act as the clients, servers, etc. are created on top of the emulated

hosts. To allow for nested virtualization, the underlying physical host must have

hardware-assisted virtualization enabled. However, if the physical host doesn’t have

67

Figure 21: Distributed vSwitch Topology

68

this capability, nested virtualization can still be done by using 32 bit VMs instead of

64 bit ones. We choose the later option to simplify things. There are 4 types of

VMs in our system: a client, an attacker, a server, and an IDS. We discuss the IDS

in detail in section 3.4. We describe the other 3 here. For the server, a 32 bit,

headless, mini Ubuntu VM is created. It has a 2 GB hard drive, 512 MBs of

memory, and 1 CPU. Not much is stored on the server for the experiments, so using

a headless, mini Ubuntu instance works well. For the client, not much memory or

processing power is needed. Because of this, we initially looked at very lightweight

VMs and decided to use the 32 bit Damn Small Linux OS, requiring only a 128 MB

hard disk. However, we soon realized that a VM of that size was too small to be

compatible with the VMware Virtual Network environment, as extra space is

necessary to install certain tools needed to run commands remotely. Instead, we

settled on using another 32 bit, headless, mini Ubuntu VM. The client is given the

same specifications as the server. For the attacker, it is desirable to have a VM

containing many built in network attack tools, making the process of compiling

those tools much easier. Kali Linux is an OS that is specifically used because of its

vast quantities of attack tool frameworks. A 32 bit, mini Kali Linux VM is used to

create the attacker. The mini installation allows for customization of tools, requiring

much less memory usage than a full Kali Linux VM. The attacker is given an 8 GB

hard disk, 1 GB of memory, and 1 CPU. The “hping3” and “dsniff” packages are

installed to get the network attack tools that are used in our experiments.

3.2 Security Design

Once the vCenter environment is set up, security components need to be

added to be able to defend against the network attacks for our experiments. For

some of the dynamic defenses, we utilize VMware’s virtual, distributed security

components. To use them, we install VMware’s NSX. In this section, we discuss the

69

creation and setup of NSX security and networking, and the security components

that will be used as a part of the dynamic defenses.

NSX allows for the use of advanced networking and security components,

such as virtual gateways, logical switches, logical routers, etc. It also allows for the

use of a distributed firewall and it is used to create the distributed vSwitch

connected to the two hosts in the “compute-cluster”. An NSX Manager VM is

created on top of the physical host, where it is connected to the “VM Network”

standard port group. In the vCenter view, it is placed in the “mgmt-cluster”, where

it has a full network view. To make hosts compatible and connectable with NSX

components, the clusters containing the emulated hosts are selected to install the

necessary NSX tools.

Two security components we heavily utilize in our system: the distributed

firewall and spoof guard. The distributed firewall works like a normal firewall,

except it is purely in software and is distributed similar to the distributed vSwitch.

Any host or VM that is connected to a distributed vSwitch or that is in a cluster

that has downloaded the NSX tools is covered by the firewall. Figure 22 shows the

layout of the distributed firewall and example rules. The distributed firewall allows

for very fined grained control of rule creation. For source and destination of packets,

anything from a distributed port group to a whole datacenter can be selected. For

our experiments, only distributed port groups or clusters (or “any”) are selected for

source and destination. There is also the ability to create a new definition of service

type, by specifying the packet type and the parameters needed to trigger the

firewall rule. Generally, we select the packet type of the attack being run. Finally,

an action is selected: allow, drop, or block. For our firewall rules, block is always

selected to activate enforcement of the rule.

The other component we utilize is spoof guard. Figure 23 shows an example

of a spoof guard policy. Spoof guard is used to prevent VMs from spoofing MAC or

70

Figure 22: The Distributed Firewall GUI and Example Rules

Figure 23: The Spoof Guard GUI and Example Policy

IP address information. To enforce spoofing protection, a new spoof guard policy is

created. The port groups, or other components that should have spoofing

protection, are specified in the policy. All the VMs in the connected port groups

have their initial addresses registered. The spoof guard then checks all the packets

coming from those port groups and if an address doesn’t match the registered

address, the packet is dropped. This prevents the VMs being monitored by the

spoof guard from spoofing MAC or IP addresses.

3.3 Attack Design

For the validation of our dynamic virtual network, it is necessary to run real

network attacks to test the feasibility of our security methods. To vary the testing,

we use a few different categories of attacks to create a diverse set of experiments. In

total, 6 different attacks are utilized: TCP Syn Flooding, ICMP Flooding, Smurf

Attack, ARP Spoofing, DNS Spoofing, and NMAP Scanning. In this section we go

71

over how each attack is run in our system. We provide detailed explanations of each

attack in section 2.1.

3.3.1 TCP Syn Flooding

TCP Syn Flooding is an attack where many TCP Syn requests are sent to

use up a server’s TCP resources, preventing or slowing other clients from creating

new TCP connections [43]. We run the attack using the Kali Linux tool “hping3”,

which is used for running dos and ddos attacks. The command to run the attack is

“hping3 -S –flood [victim-ip]”, where the -S flag specifies that the attack should

utilize TCP Syn packets and the –flood flag specifies the attack should send as

many packets as fast as possible.

3.3.2 ICMP Flooding

ICMP Flooding is an attack where many ICMP packets are sent to a

machine to try to use up bandwidth on that machine’s links, preventing other data

from traversing those links [31]. We also run this attack with hping3, using similar

flags as the TCP Syn Flooding attack. The command to run the ICMP flood is

“hping3 –icmp –flood [victim-ip]”, where the –icmp flag is used to specify that the

flooding attack should utilize ICMP packets.

3.3.3 Smurf Attack

A Smurf attack is when many ICMP requests (Ping requests) are sent to

many different machines with the source address spoofed as the victim server’s IP

address [43]. The machines that receive the pings then send many ping responses to

the victim server, with the goal being to cause a denial of service. We also run this

attack with hping3, using similar flags as the ICMP Flooding command. The

command to run the Smurf attack is “hping3 –icmp –flood -a [victim-ip]

72

[broadcast-ip]”, where the first two flags are the same as the ICMP Flood command.

The -a flag is used to specify the victim’s IP address, which is used as the source

address of the ping requests. The IP address at the end of the command specifies

the broadcast address of a subnet, so that the request can be sent to all the

machines in that subnet.

3.3.4 ARP Spoofing

ARP Spoofing is an attack where a malicious device modifies the victim’s

local ARP cache table so that another machine’s IP address is associated with the

wrong MAC address [11]. Generally the MAC address to be inserted belongs to the

attacker, allowing for the attacker to intercept data going from the victim to that IP

address. We run the attack using the Kali Linux tool “arpspoof”, which is designed

specifically for ARP poisoning/spoofing. The command to run the attack is

“arpspoof -i eth0 -r -t [victim-ip] [gateway-ip]”. The -i flag specifies the interface to

run on, which in our case is “eth0”. The -r flag specifies that the attack should

poison the ARP cache tables of both of the IP addresses specified, allowing for the

attacker to intercept all data going between the two devices. The -t flag specifies the

victim to poison and the last IP address is the IP we want associated with our MAC

address in the victim’s ARP table. We ended up taking out the -r flag for the

purposes of our experiments, since poisoning the gateway’s ARP table would have

taken too long. We ended up using the command “arpspoof -i eth0 -t [victim-ip]

[gateway-ip]” to poison the victim server’s ARP table with the gateway’s IP address

and the attacker’s MAC address.

3.3.5 DNS Spoofing

DNS Spoofing is an attack where an attacker impersonates a DNS server,

either by setting up a rogue DNS server or by intercepting DNS requests and trying

73

to reply before the real DNS server can [11]. For our experiment we use the latter

method, intercepting DNS requests from the victim and responding with a forged

DNS response. We also use ARP poisoning to make sure the request is never sent to

the real DNS server, causing the victim to always receive the forged DNS response.

For the ARP poisoning, we use the same command as we just described in

section 3.3.4. Since the DNS server we use is outside of our physical host’s subnet,

all DNS request packets are sent to the gateway to forward to the DNS server. ARP

spoofing causes the victim to send all data destined for the gateway to the attacker,

meaning the real DNS server will never receive the DNS requests from the victim.

We run the DNS Spoof attack with the Kali Linux tool “dnsspoof”. The

dnsspoof tool takes a file specified by the user, saying which websites to spoof and

which IP address to spoof it with. Once it is run, it starts sniffing for DNS request

packets that are querying for any website that is contained in the file. If one is

found, dnsspoof generates a DNS response packet for that website with the spoofed

IP address specified in the file. The command to run the DNS Spoof attack is

“dnsspoof -f [filename]”, where the -f flag specifies the filename. The format of the

file is “[ip-address] [url]...”, where each line contains an IP address/url pairing. For

our experiments, the spoofed IP address is always set to the IP address of the

attacker.

3.3.6 NMAP Scanning

NMAP is a tool that uses raw IP packets to gain information about other

machines, such as whether they are up or not, ports, operating system, etc [33]. It is

generally utilized to gain information about a subnet or network. We use the

NMAP tool to run a basic scan of a single victim, getting information on whether

the machine is up, which ports are open, and the machine’s MAC address. The

command to run the nmap scan is “nmap [victim-ip]”. We run the command on one

74

victim host to simplify the attack and make the scanning faster for the purposes of

the experiments.

3.4 Detection

To make our experiments more realistic, there needs to be a way to detect

the network attacks being run. Once they are detected, the dynamic responses can

be used to try to protect the virtual environment from the attacks. To detect these

attacks, we use an Intrusion Detection System (IDS), which can catch attacks based

on packet signatures. For each attack, a rule is created in the IDS to catch it. We

create a headless, mini Ubuntu VM similar to the server and client. It is given 8 GB

for a hard disk and 1 GB of memory. Snort is then installed on the VM. In this

section, we describe the creation of the IDS, the setup done, and the rules created

for each attack. We begin with the IDS creation.

For our IDS we use Snort, an open source intrusion prevention system that

does real-time analysis of packets and logs information [49]. Though Snort has the

capability for attack prevention, it is used in our system purely for detection. Setup

of Snort is simple and can be easily replicated. Because Snort is so widely available,

it can be downloaded with an “apt-get install snort” command. Everything is set to

the defaults, with the only edits being in the configuration and rules files. The

“snort.conf” file is used for configuration of the Snort detection engine, while the

“local.rules” file contains detection rules similar to a firewall. In the configuration

file, all the automatically included rules are removed, leaving only the path to our

rules file. We set the configuration file to log all alerts in plaintext. Then, in the

rules file, the rules for detecting attacks are placed. Once everything is set up, Snort

is started by running the “service” command. If any changes are made to any files

affecting Snort, they only take effect once the IDS is restarted using the “service”

command.

75

To detect the attacks for our experiments, we need to create detection rules

so that Snort can send an alert that an attack has been detected. Figure 24 shows

our Snort rules in “local.rules”. Each rule creates a set of criteria that a packet or

flow must meet for it to be considered an attack. If that criteria is met, an alert is

logged to the file “alert” and the packet is stored in libcap format in a file

“tcpdump.[random number]”, where “[random number]” is replaced with some

randomly generated number. For the experiments, only one rule is ever used at a

time to lower overhead. The first 3 rules correspond to the TCP DOS, ICMP DOS,

and Smurf attacks. All 3 rules are very similar with only slight differences. The 3

rules specify that if any one source sends more than 1000 packets per second of the

specified packet type, either tcp or icmp, then it is considered a DOS attack and an

alert is created. The 4th rule is to detect NMAP scan attacks. It uses a set

classification, built into Snort, for what a scan attack is and the “{}” is replaced

with the attacker’s IP address. This is done to avoid detecting numerous other

machines in the system that must scan the network. Due to the way the system is

set up, it is not possible to put a range of IP addresses, because it most likely would

include a VM that needs to scan the Virtual Network environment. In a realistic

system, the “{}” could be replaced with a range of IP addresses of machines that

shouldn’t need to scan the network. The 5th rule is used to detect DNS Spoof

attacks and was taken from an existing rule set. The rule checks to see if any packet

with an IP address outside of the internal subnet and using port number 53, the

DNS port, is sent to an address in the internal subnet. If the packet matches that

criteria, the body of the packet is checked for the contents given in the rule. The

contents help differentiate between a real DNS packet and a fake one. If the packet’s

contents match the rule, an alert is sent out.

Since ARP packets are at layer 2 of the OSI model, while the rest of the rules

check packets at layer 3, the ARP rules require being checked earlier in Snort’s

76

Figure 24: Snort Rules for Attack Detection

Figure 25: Snort Rules for ARP Spoofing Detection

system. To check ARP packets, a preprocessor rule is used to check the packet

before it is sent to Snort’s rules engine [4]. The preprocessor rules are created in the

configuration file, under the preprocessor section. Figure 25 shows the ARP

preprocessor rules. The ARP rules set IP-MAC pairings that the preprocessor

should check on. If an IP or MAC that is listed in the pairings is found with a

different IP-MAC pairing, Snort sends an alert that there is a mismatch. The

“-unicast” rule detects if there are any unsolicited ARP replies being sent, and if

any are detected an alert is sent out. Currently the preprocessor alerts don’t give

any information on IP or MAC when ARP Spoofing is detected, since it is not yet

officially supported. We assume that the in the future, Snort’s ARP Spoofing

detection will list the attacker’s IP address in the alert, since the spoofed ARP

packet has the malicious node’s IP address anyways.

For the experiments, the created logs are retrieved to confirm that the attack

is detected. For all the attacks other than the DNS Spoof and Smurf attacks, only

the alert file is needed to confirm the attack and get the attacker’s IP address. For

77

Figure 26: Virtual Network Overview with Nested Hosts and VMs

DNS Spoof detection, the alert file is used to confirm the attack occurred and the

“tcpdump.[random number]” file is used to get the spoofed IP address contained in

the malicious DNS reply packet. To convert the ‘tcpdump.[random number]” file to

plaintext, the command “tcpdump -r [filepath]” is used and the output is redirected

to a file. The spoofed IP address of the url is then retrieved from the output and

used to get the attacker’s IP address. For the Smurf attack, since the IP address is

spoofed, we assume that the attacker’s IP address is determined through other

methods. Note that the attacker’s IP address is only needed for the experiments

where the attacker is moved rather than the server.

78

Chapter 4

DYNAMIC DEFENSE DESIGN IN VIRTUAL NETWORKS

Now that we have described our system setup, we move on to the design of

the dynamic defenses. To test the validity of our theory that Virtual Network

flexibility can be used for network security purposes, we create a set of experiments.

These experiments set up different scenarios and utilize different dynamic defenses.

In this chapter we look at the dynamic defenses, how they are set up, and how the

experiments are run. We divide this chapter into two sections: Dynamic Defenses

and Measurements. In section 4.1, we describe the four dynamic defenses, as well as

list the topologies used and the steps taken in running each experiment. In

section 4.2, we describe how we quantify the success of a dynamic defense against

each of the 6 network attacks used in our experiments.

4.1 Dynamic Defenses

Our defenses are divided into two groups of general defenses, Server

Protection and Attacker Prevention, each of which utilize different virtual security

components and scenarios. The Server Protection defense detects an attack

targeting a server and moves that server to a protected location. Attacker

Prevention defenses detect a malicious node and shift the attacker and topology to

protect network. Each group of defenses has a set of experiments that are run for

every attack (excluding one group of experiments that only runs the MITM attacks)

and are run independently of each other. In this section, for each defense and the

corresponding experiments, we describe the dynamic defense, the topologies used,

the attacks used, and list the individual steps for each experiment. We also explain

the real world scenario that each experiment is trying to replicate. We start with

the Server Protection experiments.

79

4.1.1 Server Protection

Server Protection is a defense where an attack is detected against a server

and the topology is shifted to protect that server. In this situation there is an

insecure subnet and a secure subnet. Perhaps it is too resource intensive to put

protections on the whole network, so only a subset of the network has heavier attack

protections. The insecure subnet is a standard port group on a standard switch,

while the secure subnet is a distributed port group with protections in the form of

rules on the distributed firewall and spoof guard policies. The setup is such that the

attacker is in an external/separate network or isn’t yet identified and thus can’t be

touched. Once an attack is detected, the server is moved to the secure subnet to

protect against the attacker and any future attacks. We test this defense with a set

of experiments that vary based on the attack and the defense, which is based on the

attack type, used. In this section, we first describe the topology used, followed by

the defenses for each attack, and finally the steps for running the experiment.

For the experiments for the Server Protection defense, only one topology is

used, containing one client, attacker, IDS, and server. Figure 27 shows the topology.

The attacker is placed on standard host 5 in the external cluster, which represents

the “external network” or “separate network”. The server and the IDS are placed

on standard host 1 in the compute cluster or the “internal network”, with the IDS

being connected to a different standard port group than the server. For the DOS

attacks, a client is placed on standard host 2 in the compute cluster. Each VM is

connected to an independent standard port group. The secure subnet, which the

server is moved to in the experiment, is a distributed port group called

“ProtectedPG” on distributed host 3 and is connected to a distributed vSwitch.

How the secure subnet is protected varies based on the attack. For the

distributed port group there are two possible types of protection, distributed

80

Figure 27: Topology for Server Protection Experiments

firewall rules and spoof guard. We go through each attack and describe which

protections are used and how they are set up.

1. TCP DOS attack

To protect against the TCP DOS attack, the distributed port group

“ProtectedPG” and the distributed firewall are used. To add protection to

“ProtectedPG”, we create a firewall rule saying that any TCP packet going from

the external cluster to the port group is dropped. Figure 28 shows the firewall

rule. There is the possibility that there are clients in the external network who

need to connect to the server. In this case, firewall rules can be created to allow

verified users/clients to connect to the server using a whitelist. Once the server is

moved to the secure subnet, the attack should be prevented, allowing clients to

create connections with the server uninterrupted.

81

Figure 28: Firewall Rules for Protection from ICMP Dos, TCP Dos, Smurf and
NMAP Scan Attacks

Figure 29: Firewall Rule for ARP Spoofing Prevention

2. ICMP DOS and Smurf attack

Protecting against both the ICMP DOS and Smurf attacks is very similar to the

TCP DOS attack, but with slightly different firewall rules. The distributed port

group “ProtectedPG” is protected by a firewall rule saying that any ICMP

packet going from the external network to the port group is dropped. A rule is

also created saying ICMP packets can not be sent from the network subnet to

the distributed port group to protect against the Smurf attack. Figure 28 shows

both rules in the distributed firewall. Unlike with TCP, it isn’t a big concern if

an external network can not send ICMP packets to an internal network.

However, if it is needed for some reason a whitelist can be used. Once the server

is moved to the secure subnet, the attack should be protected against, allowing

clients to create connections with the server uninterrupted.

3. ARP Spoof attack

To protect against the ARP spoof attack, a new protection must be used for the

distributed port group “ProtectedPG”. Using a firewall rule targeting the

82

Figure 30: Spoof Guard Protection for DNS Spoof and ARP Spoof Attacks

external network specifically wont always help protect against spoofing, because

a firewall rule relies on the information in the packet being correct. Spoofing

would be able to get around most rules because the packet being sent has

incorrect information. To protect against this, it is necessary to use the

distributed firewall’s spoof guard. A policy can be created with spoof guard to

protect the “ProtectedPG” port group from receiving packets with spoofed IP

addresses, MAC addresses, etc. Figure 30 shows the spoof guard being applied to

the distributed port groups and the VMs in those port groups. We also create a

firewall rule preventing ARP packets from be sent from the external-cluster to

the server, which is shown in figure 29. Once the server is moved to the secure

subnet, it should be protected from ARP poisoning, preventing the server’s data

from being intercepted by the attacker.

4. DNS Spoof attack

Protecting against the DNS spoof attack is the same as protecting against ARP

spoofing. Spoof guard is used to protect the “ProtectedPG” distributed port

group because a firewall rule would be ineffective against a DNS Spoofing attack.

With spoof guard protecting the secure subnet, the DNS Spoof attack should

fail, protecting the server from illegitimate url information.

5. NMAP Scan attack

83

To protect against the NMAP scan attack, firewall rules are used to protect the

distributed port group “ProtectedPG”. Because the basic NMAP scan uses

ICMP and TCP packets to gain information, firewall rules are created to drop

any ICMP and TCP packets going from the external network to the distributed

port group. Figure 28 shows the firewall rule. Like the DOS attack protections, if

certain clients in the external networks need to use those protocols, a whitelist

can be used. With the protections on the secure subnet, the server should be

protected from scanning once it is moved.

We now list the steps of the experiment:

1. Set up the topology as described above

2. Select one of the attacks listed for this experiment

3. Set IDS rule for detecting the attack

4. Set firewall rule for protecting against attack to “block” that type of traffic

5. Using the measurement procedure for the selected attack, as described in

section 4.2, run the pre move and attack (if is DOS attack) measurements

6. Check if attack is detected before running post move measurements

7. If attack is detected, move server to distributed host 3 and connect the server to

the protected distributed port group “ProtectedPG”

8. Finish measurement procedure by recording post move measurements

9. Clean up by moving server back to original host and standard port group

10. Write measurements to file, save average for each measurement type

11. Sleep for five seconds

84

12. Repeat steps 1-11 20 times

13. Get average for all 20 runs for each measurement type and write it to file

14. Repeat for all attacks

4.1.2 Attacker Prevention

Attacker Prevention is a defense where a malicious node is detected and then

dynamically contained. For each example of attacker prevention, a secure subnet is

created and the attacker is moved to it to prevent any further attacks. The setup of

each experiment is such that the attacker is in the internal network and can be

moved around. Once an attack is detected, the attacker is moved to the secure

subnet to stop the attack. There are 3 different types of experiment groups under

Attacker Prevention, each named by the dynamic defense used: Isolated Subnet,

Distributed Port Group, and Standard Port Group. For each one, we describe the

topology used, followed by the attacks run and the corresponding defenses, and then

the steps for running each experiment. We start with the Isolated Subnet

experiments.

4.1.2.1 Isolated Subnet

Isolated Subnet is a defense where a malicious node is detected and moved to

a port group that is isolated from the rest of the network, similar to a black hole.

This isolated subnet is a standard port group that is given a unique VLAN so that

it cannot communicate outside of its port group. Because the attacker is the only

VM in the standard port group, it can’t communicate with any other device. Note

that the assigned VLAN must be a unique value not contained in any other port

group using VLAN trunking. The defense is unrelated to attack type, since being

cut off from communication should stop any attack. In the rest of this section, we

85

describe the topologies used, list the attacks and the defense, and describe the steps

for the experiment for this defense.

For this defense, two topologies are used, each containing one client,

attacker, IDS, and server. Figure 31 shows the two Isolated Subnet topologies. In

the first topology, all the VMs are contained in the compute cluster, or the “internal

network”. The attacker and client are placed on standard host 2 in the compute

cluster, while the server and IDS are placed on standard host 1, also in the compute

cluster. Each VM is on an independent standard port group, even if they are on the

same host. The isolated subnet which the attacker is moved to is a standard port

group that is dynamically created on the same host and standard vSwitch as the

attacker. The newly created standard port group is given a random VLAN to

isolate it from the rest of the world. The second topology is almost identical to the

first, except the client is moved from the compute cluster to standard host 5 on the

external cluster or “external network”. The second topology is only used for the

experiments using DOS attacks, as only those experiments require the use of a

client. The isolated subnet is the same for both topologies.

The following attacks are used in this experiment and all are defended by the

isolated subnet in the same way:

1. TCP DOS attack

2. ICMP DOS attack

3. Smurf attack

4. ARP Spoof attack

5. DNS Spoof attack

6. NMAP Scan attack

We now list the steps of the experiment:

86

Figure 31: Topologies for Isolated Subnet Experiments

87

1. Set up the first topology as described above

2. Select one of the attacks listed for this experiment

3. Set IDS rule for detecting the attack

4. Using the measurement procedure for the selected attack, as described in

section 4.2, run the pre move and attack (if is DOS attack) measurements

5. Check if attack is detected before running post move measurements

6. If attack is detected, create isolated subnet

7. If isolated subnet is created, connect attacker to it

8. Finish measurement procedure by recording post move measurements

9. Clean up by moving attacker back to original standard port group

10. Write measurements to file, save average for each measurement type

11. Sleep for five seconds

12. Repeat steps 1-11 20 times

13. Get average for all 20 runs for each measurement type and write it to file

14. Repeat for the second topology if selected attack is of type DOS

15. Repeat for all attacks

4.1.2.2 Distributed Port Group

Distributed Port Group is a defense where a malicious node is detected and

moved to a distributed port group with protections on it. The distributed port

group utilizes the distributed firewall and spoof guard for this attack prevention.

The defense is almost identical to the Protected Server defense. The key difference

88

is that the firewall rules and spoof guard target the port group of the attacker

rather than the server. In the rest of this section, we describe the topologies used,

the attacks and the defenses used against them, and then describe the steps for the

experiment.

For this defense, two topologies are used, each containing one client, attacker,

IDS, and server. Figure 32 shows the two Distributed Port Group topologies. In the

first topology, all the VMs are contained in the compute cluster, or the “internal

network”. The attacker is placed on distributed host 4 and is connected to a

distributed port group, which is connected to the distributed vSwitch. The server is

placed on distributed host 3 and is connected to a different distributed port group,

which is also connected to the distributed vSwitch. The attacker and the server are

on different distributed port groups and neither is connected to the protected

distributed port group. Similar to previous experiments, the IDS is on standard

host 1 and the client is on standard host 2, both connected to different standard

port groups in the compute cluster. The protected subnet which the attacker is

moved to is a distributed port group called “DPG2” and is on the same distributed

vSwitch as the attacker and server. The second topology is almost identical to the

first, except the client is moved from the compute cluster to standard host 5 on the

external cluster or “external network”. The second topology is only used for the

experiments using DOS attacks, as only those experiments require the use of a

client. The protected distributed port group is the same for both topologies.

How the distributed port group is guarded depends on the attack, similar to

the Server Protection experiments. For the distributed port group, two types of

protection are used, the distributed firewall rules and spoof guard. We go through

each attack and describe which protections are used and how they are set up.

1. TCP DOS attack

89

Figure 32: Topologies for Distributed Port Group Experiments

90

Figure 33: Firewall Rules for Prevention of ICMP Dos, TCP Dos, and NMAP
Scan Attacks

To prevent the TCP DOS attack from happening, a protected distributed port

group “DPG2” is created. To protect “DPG2”, a firewall rule is created saying

that any TCP packet originating from the the distributed port group is dropped.

Figure 33 shows the firewall rule. Once the attacker is moved to the distributed

port group, the attack should be prevented, allowing clients to create connections

with the server uninterrupted.

2. ICMP DOS and Smurf attack

Preventing both the ICMP DOS and Smurf attacks is very similar to the TCP

DOS attack, but with slightly different firewall rules. The distributed port group

“DPG2” is protected by a firewall rule saying that any ICMP packet originating

from the distributed port group is dropped. A rule is also created saying ICMP

packets can not be sent from the distributed port group to the broadcast IP

address of the network to protect against the Smurf attack. Figure 33 shows both

rules. Once the attacker is moved to the distributed port group, the attack

should be protected against, allowing clients to create connections with the

server uninterrupted.

3. ARP Spoof attack

To prevent the ARP spoof attack, a new protection must be used for the

protected distributed port group “DPG2”. As discussed earlier, spoofing can get

around the distributed firewall rules. Figure 30 shows the spoof guard policy used

91

on the distributed port group. Spoof guard is used to prevent any VM connected

to the distributed port group from spoofing its IP or MAC address. Once the

attacker is moved to the distributed port group, it should be protected from ARP

poisoning, preventing the server’s data from being intercepted by the attacker.

4. DNS Spoof attack

Protecting against the DNS spoof attack is the same as protecting against ARP

spoofing. Spoof guard is used to prevent any VM connected to the distributed

port group “DPG2” from spoofing addresses. With spoof guard on the

distributed port group, the DNS spoof attack should fail, protecting the server

from illegitimate url information.

5. NMAP Scan attack

To prevent the NMAP scan attack, firewall rules are used to prevent scanning

behavior. Because scanning uses ICMP and TCP packets to gain information,

firewall rules are created to block ICMP and TCP packets coming from the

distributed port group. Figure 33 shows the rule. With the protections on the

distributed port group, the attacker should be prevented from scanning once it is

moved.

We now list the steps of the experiment:

1. Set up the first topology as described above

2. Select one of the attacks listed for this experiment

3. Set IDS rule for detecting the attack

4. Set firewall rule for protecting against attack to “block” that type of traffic

5. Using the measurement procedure for the selected attack, as described in

section 4.2, run the pre move and attack (if is DOS attack) measurements

92

6. Check if attack is detected before running post move measurements

7. If attack is detected, move attacker to protected distributed port group

8. Finish measurement procedure by recording post move measurements

9. Clean up by moving attacker back to original distributed port group

10. Write measurements to file, save average for each measurement type

11. Sleep for five seconds

12. Repeat steps 1-11 20 times

13. Get average for all 20 runs for each measurement type and write it to file

14. Repeat for the second topology if selected attack is of type DOS

15. Repeat for all attacks

4.1.2.3 Standard Port Group

Standard Port Group is the defense with the smallest attack coverage. It is a

defense where a malicious node is detected and moved to a standard port group

with spoof protections on it. The port group is created with promiscuous mode and

MAC spoofing set to reject, theoretically preventing spoofing attacks. Since the

defense is spoof based, only the MITM attacks are used for this experiment. We test

this defense with a set of experiments that are the same for all the attacks. In the

rest of this section, we describe the topologies used, list the attacks and the defense,

and describe the steps for the experiment.

For this experiment only one topology is used, containing an attacker, IDS,

and server. Figure 34 shows the Standard Port Group topology. No client is needed,

since all the attacks are MITM attacks. In the topology, all the VMs are contained

in the compute cluster, or the “internal network”. The attacker is placed on

93

Figure 34: Topologies for Standard Port Group Experiments

standard host 2 in the compute cluster, while the server and IDS are placed on

standard host 1, also in the compute cluster. Each VM is on an independent

standard port group, even if they are on the same host. The protected subnet which

the attacker is moved to is a standard port group that is dynamically created on the

same host and standard vSwitch as the attacker. The standard port group is

created with promiscuous mode and MAC spoofing set to reject rather than accept.

The following attacks are used in this experiment:

1. ARP Spoof attack

2. DNS Spoof attack

We now list the steps of the experiment:

1. Set up the topology as described above

94

2. Select one of the attacks listed for this experiment

3. Set IDS rule for detecting the attack

4. Using the measurement procedure for the selected attack, as described in

section 4.2, run the pre move measurements

5. Check if attack is detected before running post move measurements

6. If attack is detected, create standard port group with promiscuous mode and

MAC spoofing set to reject

7. If standard port group is created, connect attacker to it

8. Finish measurement procedure by recording post move measurements

9. Clean up by moving attacker back to original standard port group

10. Write measurements to file, save average for each measurement type

11. Sleep for five seconds

12. Repeat steps 1-11 20 times

13. Get average for all 20 runs for each measurement type and write it to file

14. Repeat for all attacks

4.2 Measurement

To be able to compare the effects of the dynamic security measures, it is

necessary to have a way to numerically determine how successful an attack is. What

determines success varies by attack and thus the way we measure success must be

determined for each attack type. The Denial of Service attacks are all similar

enough that they can be measured in the same manner. However, the rest of the

95

attacks are different enough that they each need to be run differently and therefore

measured differently. In this section, we look at how each attack is set up, run, and

quantified in our experiments. Note that what we describe for measuring each

attack (even when saying that it is repeated) is only considered one run of an

experiment. Each run is repeated multiple times for each experiment as we explain

in section 4.1. We first look at quantification of success for the DOS/DDOS attacks.

4.2.1 DOS/DDOS Attacks

In this section, we first discuss the setup for the DOS attack experiments and

how a measurement is derived from running the attacks. Then, we explain the

repetition used to create the dataset, which is considered one run of an experiment.

Our DOS attacks are all run in a similar manner and have the same goal.

Because of this, we are able to use the same set up and measurement for all three

attacks. Section 3.3 shows how the three DOS attacks are run using Kali Linux

tools. To measure the effects of the DOS attacks, we utilize a client, a server

(victim), and an attacker. Since the goal of the DOS attacks are to slow down or

deny access to the server’s resources, we can determine success by measuring the

time taken to get a resource from the server. To measure attack success, we

determine the time in seconds it takes for the client to download an approximately

32 MB file (filled with random characters) from the server. If for some reason the

download can not be completed, the time taken is set to 100 seconds. On average a

normal download of the file for a client takes about 0.5 seconds, so 100 seconds is

relatively large. This will raise the average download time significantly to show that

the download was stopped, but not move it to an unnecessarily large value.

To run and time the download, we use two bash scripts placed on the client.

Putting the commands in bash scripts allows the download to be triggered remotely

through the command line. Figure 35 shows the two bash scripts. The first script is

96

Figure 35: Client’s Bash Scripts

used to download the file using wget and check whether the download was

successful. It takes three variables: the IP address of the server, the name of the file

to download from the server, and the name of the file to store the download’s

success. The second script is used to time the download, using the time tool, and

takes the same three variables as the first script. Only the second script needs to be

run, since it calls the first script. Both scripts reside on the client and the second

script is run to cause the client to download a file from the server and time it. The

success and time taken are output to a file on the client. The information is then

remotely retrieved from the client.

To create the dataset for one run, we first measure the time taken for the

client to download the file from the server without any attack running. This is

called the “baseline” or “pre move” measurement and is repeated 10 times. Then,

the DOS attack is run targeting the victim server and again we measure the time

for the client to download the server’s file. This is called the “attack” measurement

and again is repeated 10 times. Finally, the dynamic defense takes place and the

DOS attack is run again while the client downloads the file from the server. The

measurement, called the “post move” measurement, is then repeated 10 times. The

pre move, attack, and post move measurements are each retrieved from the client

and averaged to get 3 different, average download times. The pre move averages

serve as a baseline for how fast a normal transmission of data is between the client

and the server. This is then used to compare to the attack and post move averages

97

to see how effective the dynamic defense is. We further explain how this comparison

is used to determine effectiveness in section 5.

4.2.2 MITM/Scan Attacks

The measurement of the MITM and Scan attacks vary by attack, unlike the

DOS attacks which all are measured in the same manner. Despite the differences in

how each attack is run and quantified, the range of values for the MITM/Scan

attacks is always between 0 and 1. A 1 signifies a completely successful attack and a

0 signifies a failure. A decimal value between 0 and 1 means an attack is partially

successful. All the MITM and Scan attack experiments require only an attacker and

a server, with no client necessary. In the rest of this section, we look at how we

quantify the success rate of the ARP spoof, DNS spoof, and NMAP Scan attacks.

We first describe the setup and how each attack success is measured, followed by

how the measurements are repeated to constitute one run. We start with describing

the ARP Spoofing quantification.

4.2.2.1 ARP Spoofing

Measurement of ARP spoofing requires only the use of a server and an

attacker, as stated above, with no client needed. Section 3.3.4 explains how the

attack is run. The goal of the attack is to successfully poison the server’s ARP

cache table. This is done so that data sent from the server to the subnet’s gateway

is instead sent to the attacker. Originally, we planned to try to poison the ARP

table of the gateway as well. However, poisoning the gateway of the subnet was not

possible due to time constraints on our experiments. Initially, the measurement

would be derived from ARP poisoning the server and using tcpdump to confirm

that the data was being sent to the attacker instead of the gateway. However, we

98

Figure 36: Example of ARP Table Output for Victim Server

realized that since we have access to the server as well, it would be easier to simply

check the ARP table for the forged MAC address.

To measure the attack, we look to see if the gateway’s IP address is in the

ARP table containing the attacker’s MAC address. Figure 36 shows example output

of a server’s ARP table. The command “arp” is run on the victim server and the

output is redirected to a file. The ARP table contents are then retrieved from the

file to check for success. If the MAC address in the gateway’s entry is the attacker’s

MAC, then the attack succeeded and is given a value of 1. Otherwise, it failed and

it is given a value of 0. To create the dataset, we first run the attack before the

dynamic defense is initiated and measure the outcome. This is called the “baseline”

or “pre move” measurement, which is then repeated 10 times. Once the dynamic

defense is initiated, the attack is run and measured again. This is called the “post

move” measurement and is also repeated 10 times. The pre move and post move

measurements are then averaged and are considered one run of an experiment.

4.2.2.2 DNS Spoofing

DNS spoofing requires similar measurement to ARP spoofing, but is run

differently. The goal of the attack is to make a machine think that a url is

associated with the attacker’s IP address. Section 3.3.5 explains how this attack is

run. At first we attempted to run the DNS spoof without using ARP poisoning.

This proved difficult, because if the DNS request is still sent to a real DNS server

the attacker must respond to the request before the real server. With cached urls

this rarely happens. Even when we tried finding obscure urls, requesting them too

99

Figure 37: Example Nslookup Output

many times would get them cached locally, making it very uncommon for our attack

to beat the real DNS server. We ended up settling on running the ARP spoof attack

before running the DNS spoof attack. This prevents the DNS request from reaching

a real DNS server. We also decided to completely randomize the urls sent by the

victim server, making the process of selecting urls automated. This automation is

necessary to be able to repeat the attack many times, preventing the need to

manually select many different urls. We randomize each url by using a random

number generator and converting each number to a lowercase, english alphabet,

ASCII character. This is then repeated 5-15 times to create a domain name, with

“.com” being added to the end of the string to create the full url.

To measure the attack, we have the server run the command “nslookup

[random-url]” and redirect the output to a file. Figure 37 shows an example

nslookup output. The file’s contents are then remotely retrieved to examine the

result. If the returned IP address matches that of the attacker’s, then the attack

succeeded and is given a value of 1. Otherwise, if the IP address doesn’t match, it is

given a value of 0. Same as with ARP spoofing, the measurements are called “pre

move” and “post move” and are repeated 10 time and averaged. This is considered

one run of an experiment. The pre and post move averages can then be used to

measure the effectiveness of the security measure used to protect against the attack.

100

Figure 38: Example NMAP Output from Attacker

4.2.2.3 NMAP Scanning

While NMAP Scanning is not a MITM attack, it is still measured in a

similar manner. Section 3.3.6 shows how the attack is run. The goal of the attack is

to gain information about a machine(s) and to learn more about a network or

subnet. Figure 38 shows example output of running nmap on the attacker. This

output is redirected to a file and later retrieved from the attacker to check for

success. For simplicity, we decided we would only run the basic NMAP command on

one victim server. Scanning is a little more complex to measure, since it is possible

to get a range of information. Because of this we couldn’t rely on only using values

of 0 and 1. We discovered that with some defenses the scan can still detect the

server as up, but can’t detect the port information. Since the only open port on our

server is ssh, we use that to determine whether the scan is fully successful. If the

scan is able to determine the state of the victim and its port information, a value of

1 is given. If the scan detects a host is up but doesn’t have the ssh port (meaning it

had no port information), a value of 0.5 is given. If the scan timed out or said the

host is down, a value of 0 is given. Same as with the MITM attacks, the

measurements are called “pre move” and “post move” and are repeated 10 time and

averaged. This is considered one run of an experiment. They can then be compared

to determine the validity of the dynamic security measure used.

101

Chapter 5

RESULTS

After running the experiments, we compiled the average for each dynamic

defense for the pre move, attack (if a DOS attack was used), and post move

measurements of success. For each result, we look at how much the success rate

shifts based on the dynamic defense mechanism. For the experiments with a DOS

attack, the difference between the attack measurement and the post move

measurement is the most revealing, though the difference between all 3

measurements reveals something about the success of the defense. The difference

between the attack measurement and the post move measurement shows how

effective the defense mechanism was in directly stopping the attack. The pre move

measurement is used as a baseline to compare against both the attack and the post

move measurements. The pre move success rate informs how much the post move

rate is above the norm, further identifying the effectiveness of the dynamic defense.

Without the pre move measurement, there would be no way of knowing if the

defense slowed down the attack only slightly or completely prevented it. For the

MITM/Scan experiments, since there are only the pre move and post move

measurements, the only comparison that is needed is the pre move success rate vs

the post move success rate. The pre move success rate acts as both the baseline and

the attack measurement, removing the need for both a pre move and an attack

measurement. Comparing the pre move to the post move success rate shows how

effective the dynamic defense was in defending the attack. In this chapter, we look

at the results of the four defenses, as described in the previous chapter, and analyze

them. The results for each defenses are divided up into two categories, DOS

experiments and MITM/Scan experiments, which are analyzed separately. We start

with the results and analysis of the Server Protection defense, followed by the three

Attacker Prevention defenses.

102

Figure 39: Results for Server Protection DOS Experiments

5.1 Server Protection

The Server Protection defense involves shifting a server to a location behind

a firewall, protecting it from either a malicious node that is yet to be detected or an

external attacker. In this section, we look at the results of the Server Protection

defense and analyze them. We divide the analysis into two categories: DOS and

MITM/Scan experiments. We begin with the DOS experiments.

Figure 39 shows the results of the defense for the DOS attacks. The graph

shows the average number of seconds it took for a client to download an

approximately 32 MB file from a server for the pre move, attack, and post move

measurements of each DOS experiment. The three DOS experiments are the ICMP

DOS, TCP DOS, and Smurf experiments. For all three experiments, the baseline

103

(pre move) measurement stays around 0.5 seconds. For the ICMP DOS experiment,

the average download time increases staggeringly to 3.7 seconds once the ICMP

DOS attack is launched, but before the dynamic defense is initiated. This

constitutes a 628% increase in download time. Once the server is moved behind the

firewall, the average download time plummets to 0.35 seconds, even faster than

baseline time. While we are not sure why the average download time is faster than

the baseline, though we think it has something to do with the baseline measurement

being slower than expected, this shows that the dynamic shift of the server

unequivocally protected it from the ICMP DOS attack. The TCP DOS attack

shows a similar result, though the avg download time for the attack measurement is

1.26 seconds instead of 3.70 seconds. The Smurf attack experiment, however, shows

slightly different results. While the average download time increases from 0.55

seconds to 1.35 seconds, a 143% increase, the dynamic defense only lowers the

average download time to 0.88 seconds. The post move measurement is a 37%

increase over the baseline (pre move) measurement. So while the firewall does

somewhat protect the server from the Smurf attack, it does not do so fully. This is

most likely due to the fact that a Smurf attack utilizes spoofing, something that the

distributed firewall can not protect against. Even utilizing the distributed firewall’s

spoof guard wouldn’t be effective, since it isn’t aware of the attacker or its

addresses. Despite the ineffectiveness of the firewall, it is still able to at least slow

down the Smurf attack, lowering the download time by 53%.

Figure 41 shows the results of the defense for the MITM/Scan attacks. The

graph shows the average success rate for each attack, as described in section 4.2.

The three MITM/Scan experiments are the DNS Spoof, ARP Spoof, and NMAP

Scan experiments. For all three experiments, the success rate pre move is almost 1

(100%). For the NMAP Scan attack, the success rate drops all the way to 0 once

the dynamic defense of the distributed firewall and spoof guard is initiated. This

104

Figure 40: Percent Change for Server Protection DOS Experiments

Figure 41: Results for Server Protection MITM/Scan Experiments

105

shows the effectiveness of the firewall in protecting against scanning. For the ARP

and DNS Spoof attacks, the success rate also significantly drops post move. For the

ARP attack, the pre move measurement is 0.995, while the DNS attack has a pre

move measurement of 0.990. The post move measurements of ARP and DNS Spoof

are 0 and 0.07 respectively. The distributed firewall is able to fully prevent the ARP

Spoof from occurring, while the DNS Spoof is able to still have some success.

Because the DNS Spoof attack is reliant on ARP Spoofing, its chances of success are

greatly reduced due to the ARP Spoof attack being neutralized. Without the ARP

Spoofing to reroute the DNS query to the attacker, the attacker has to get lucky and

beat out the real DNS server to succeed. As seen from the results, this is not likely.

So while the dynamic defense doesn’t prevent the DNS Spoof completely, it does

lower the average success rate from 0.99 all the way to 0.07. This dynamic defense

relies on preventing any new ARP packets from being sent to the server from our

external cluster, which is potentially unrealistic since no new devices would be able

to reach the server. The spoof guard is ineffective in this scenario since it doesn’t

know any information about the malicious node. Without the dropping of ARP

packets, most likely the dynamic defense wouldn’t be very effective.

Overall, the Server Protection dynamic defense is very effective against the

DOS attacks and NMAP Scanning, but isn’t able to effectively prevent spoofing

attacks without dropping ARP packets, due to not knowing the identity of the

attacker.

5.2 Attacker Prevention

Attacker Prevention is broken up into three defenses: Isolated Subnet,

Distributed Port Group, and Standard Port Group. These defenses all use a shifting

Virtual Network topology to protect against a malicious node in the internal

network. Unlike in the Server Protection DOS defense, two topologies are used for

106

the Attacker Prevention DOS experiments. In this section, we look at the results of

each defense and analyze them, starting with the Isolated Subnet defense.

5.2.1 Isolated Subnet

The Isolated Subnet defense involve detecting a malicious node and

dynamically creating an isolated standard port group to move it to. In this section,

we analyze the results of this defense and its corresponding experiments. We divide

the analysis into two categories: DOS and MITM/Scan experiments. We begin with

the DOS experiments.

Figure 42 shows the results of the DOS Isolated Subnet defense for the first

topology (using an internal client). The results are similar to the Server Protection

DOS experiments, although there are a few differences. The average pre move

download time for all three experiments is again almost exactly 0.5 seconds. For the

DOS TCP, Smurf attack, and DOS ICMP experiments, the average attack

measurement is around the same: 1.19, 1.19, and 1.45 seconds respectively. The

increases in download time are 138%, 149%, and 192% for each experiment,

constituting a large increase in download time for each. The post move average

download times are all slightly below the baseline measurement. Unlike the in the

previous experiments, the isolated subnet was able to prevent the Smurf attack

completely. This is because in this experiment the malicious node is completely

isolated from the rest of the Virtual Network. All three of the experiments show

that the dynamic defense is very effective at stopping the DOS TCP, DOS ICMP,

and Smurf attacks.

Figure 43 shows the results of the DOS Isolated Subnet defense with the

second network topology. For the second topology, where the client is now in the

external network, the results are very similar to the DOS experiments with the first

topology. The main differences are that the ICMP Flooding attack is more

107

Figure 42: Results for Isolated Subnet DOS Experiments for Topology 1

108

disruptive and the Smurf attack is less disruptive before the dynamic defense is

initiated. The TCP Flood stays at about the same effectiveness. The average

download time pre move is again around 0.5 seconds. The attack measurements are

3 seconds (a 512% increase), 0.76 seconds (a 58% increase), and 1.06 seconds (a

116% increase). As with the first topology, the post move download time is lower

than the baseline for all three experiments, with the DOS ICMP post move

measurement being much lower at an average of 0.38 seconds. Again, any decrease

from pre move to post move is most likely due to circumstances unrelated to the

dynamic defense. However, the decrease does prove that the dynamic defense is

effectively stopping all three DOS attacks. This is expected, as any device that is

isolated is expected to be unable to execute any malicious activity. The information

shows that by using a dynamic topology shift to isolate the attacker, the DOS

attacks are prevented.

Figure 45 shows the results of the MITM/Scan Isolated Subnet defense. The

results for the ARP Spoof, DNS Spoof, and NMAP Scan experiments all show a

significant drop from almost a 100% success rate to a 0% success rate. The pre

move average measurements are 1.0, 0.99, and 0.995 respectively. However, once the

dynamic defense is employed, the post move success rate for all three attacks is 0.

This is expected as isolating a node from the rest of the network would prevent any

external interaction, making any malicious activity impossible. The change in

success rate from 1 to 0 shows how effective the dynamic defense is in preventing

these attacks. The ability of the Virtual Network environment to dynamically create

an isolated subnet and shift the topology to isolate the attacker allows for the

prevention of the MITM and Scan attacks in this malicious node scenario.

Overall, the isolated subnet is very effective in preventing all the attacks run

in our experiments. For all 9 experiments, the isolated subnet dynamic defense fully

neutralizes the malicious node.

109

Figure 43: Results for Isolated Subnet DOS Experiments for Topology 2

110

Figure 44: Percent Change for Isolated Subnet DOS Experiments

111

Figure 45: Results for Isolated Subnet MITM/Scan Experiments

5.2.2 Distributed Port Group

The Distributed Port Group defense involve detecting a malicious node and

shifting the network topology to put the attacker behind a distributed firewall and

spoof guard. In this section, we analyze the results of this defense and its

corresponding experiments. We divide the analysis into two categories: DOS and

MITM/Scan experiments. We begin with the DOS experiments.

Figure 46 shows the results for the DOS defense with the first topology. For

the first topology, where the client is in the internal network, the results show

similarities to the previous experiments. The baseline (pre move) average download

time is still close to 0.5 for all three experiments. Because the topology of these

experiments involves the attacker and the server initially connected to distributed

port groups, the attacks aren’t as effective as in previous experiments. They still do

112

Figure 46: Results for Distributed Port Group DOS Experiments for Topology
1

113

slow down the client, especially the TCP Syn Flooding attack. On average, the

Smurf attack measurement is 0.93 seconds (a 99% increase), the DOS TCP attack

measurement is 1.49 seconds (a 211% increase), and the DOS ICMP attack

measurement is 0.67 seconds (a 38% increase). Once the attack is detected and the

dynamic defense is initiated, the download times of all three experiments drops,

although to varying degrees.

Similar to the Server Protection experiments, the post move average

download time drops for the Smurf experiment, but not all the way back down to

the baseline level. This is confusing, as the spoof guard should be effective in

preventing the attacker from spoofing once it is moved to the protected distributed

port group. As we see later in the topology 2 DOS experiments, the Smurf attack is

fully neutralized, making it likely that something is off with the topology 1

experiment that created extra overhead. For the other two attacks, the distributed

firewall is fully effective, dropping the download time back to around the baseline.

For the TCP DOS experiment, the average download time plummets from 1.49

seconds to 0.44 seconds, slightly below the baseline time. The ICMP DOS

experiment also sees a drop in average download time from 0.67 seconds to 0.52,

slightly above the baseline time but still a decline in average time. These two

experiments show that the distributed firewall is fully effective in stopping the

malicious node from initiating a denial of service on the server. Even for the Smurf

attack, which has a slowed post move download time compared to the baseline, the

download time still decreases by 55% from the attack to the post move

measurement. This is a significant enough decrease to effectively prevent the Smurf

attack, despite being slightly slower than before the attack.

Figure 47 shows the results of the second topology for the DOS defense,

where the client is moved from the “internal” to the “external” network. In this set

of experiments, the effect of the attacks are more muted, although they still hamper

114

Figure 47: Results for Distributed Port Group DOS Experiments for Topology
2

115

Figure 48: Percent Change for Average Download Time for Distributed Port
Group DOS Experiments

116

Figure 49: Results for Distributed Port Group MITM/Scan Experiments

the client’s ability to communicate with the server somewhat. All three baseline

measurements are again around 0.5 seconds. The average attack measurement is

0.66 seconds (a 40% increase) for the Smurf experiment, 0.8 seconds (a 75%

increase) for the TCP DOS experiment, and 0.68 seconds (a 43% increase) for the

ICMP DOS experiment. Once the dynamic defense is utilized, the average download

time for the client for all three experiments drops below the baseline level. Despite

the attacks not being as effective as previous experiments, it is clear that the shift of

the Virtual Network topology to put the attacker behind the distributed firewall

and spoof guard is able to stop the denial of service. In the future, it is necessary to

replicate these DOS experiments with more attackers to be able to test the

distributed firewall dynamic defense against fully effective attacks.

117

Figure 49 shows the results of the MITM/Scan defense. The pre move

success rates for the ARP Spoof, DNS Spoof, and NMAP Scan experiments are

again all near 1 (100%). However, once the malicious node is moved behind the

distributed firewall and spoof guard, the success rates of all three drop significantly,

albeit to varying degrees. For the NMAP Scan experiment, the post move success

rate is 0.5. This means that the NMAP Scan is consistently able to verify that the

server is up, but fails to determine the open ports on the server. While the attack is

able to derive some information, the most important information of open ports,

which is used to determine vulnerability in a machine, is blocked by the distributed

firewall. So while the malicious node’s scan doesn’t fail completely, the dynamic

defense hinders its ability to find vulnerabilities. For ARP Spoof, the success rate

plummets after the attacker is shifted behind the spoof guard. The average success

rate goes from 0.995 to 0.11. Most likely this should have dropped down to 0, but

for some reason the first ARP attack out of ten for each run of this experiment was

successful post move. This is possibly due to the spoof guard needing more time

than expected to start detecting spoofing attacks, or perhaps something with the

way the spoof guard works prevents it from detecting the first time a node tries to

spoof a packet. Either way, the attack success rate still drops substantially, showing

the dynamic defense’s effectiveness. For the DNS Spoof, the spoof guard is able to

completely stop the attack. The average success rate from pre move to post move

goes from 1 all the way down to 0. Even if the spoof guard isn’t able to stop the

ARP Spoof part of the DNS Spoof attack, the spoof guard detects the DNS

Spoofing and immediately drops the spoofed packets. The MITM/Scan experiments

show that the dynamic defense can still prevent a large number of attacks, even if it

is not 100% effective.

118

Overall, this dynamic defense is effective in stopping every attack almost

completely. It is not able to fully prevent the NMAP Scan and Smurf attacks,

though it substantially lowers the success rate of each.

5.2.3 Standard Port Group

For the Standard Port Group defense, a malicious node is detected and

moved to a dynamically created standard port group with spoofing protections. In

this section, we analyze the results of this defense and its corresponding

experiments. Since the protections involve spoofing, there is only a MITM section of

these experiments. We start by analyzing the ARP Spoof and DNS Spoof

experiment results.

Figure 50 shows the results of the defense and the two experiments run. As

can be seen from the results, the dynamic defense had no effect on the attacks.

Both the ARP Spoof and DNS Spoof had an average success rate of 1 for the pre

move and post move measurements. While not likely, it is possible that the

standard port group was ineffective due to the use of nested virtualization. If these

experiments are run on a full Virtual Network environment, it would show whether

the standard port group dynamic defense is truly unsuccessful or whether the failure

is the result of the use of nested virtualization.

Overall, this dynamic defense is completely powerless in stopping the ARP

Spoof and DNS Spoof attacks.

5.3 Analysis

In this section, we summarize the analyses of all the different defenses and

their experiments, and describe the trends of the dynamic defenses. Again, the

analysis is divided between the DOS and the MITM/Scan experiments. We begin

119

Figure 50: Results for the Standard Port Group Experiments

with a summary of the DOS experiments and the effects of the dynamic defenses on

the DOS attacks, followed by the MITM/Scan experiments.

Overall, the dynamic defenses, outside of the standard port group, are able

to effectively protect the server and neutralize the attacker. For the DOS attack

defenses, the post move download times are almost all below the baseline (pre

move) level. The exception to that is the Server Protection defense and one of the

Smurf attack experiments for the Distributed Port Group defense. In those cases,

the distributed firewall is not able to fully negate the effects of the denial of service,

most likely due to the spoofing used in the attack. However, the dynamic defense is

still able to slow down the attack and cut the average download time by around

50% in both cases. Outside of those two DOS experiments, the rest of the

experiments show that the use of a shifting topology is able to successfully protect

the server and completely stop the attacker. For some of the experiments, the DOS

120

attacks aren’t as effective as they are in other experiments, but the results still show

an obvious positive effect by the dynamic defenses. Those experiments could be

re-run with more malicious nodes to fully prove the effectiveness of the dynamic

defenses, but there is no reason to believe the dynamic defenses wouldn’t still be

able to fully prevent the denial of service.

For the MITM/Scan attacks, the dynamic defenses are fully effective too,

outside of the standard port group. All the pre move average success rates for every

experiment are around 1, meaning a 100% success rate. Once the dynamic defenses

are initiated, most of the post move average success rates become 0. One of the

ARP Spoof experiments shows a potential flaw with one dynamic defense, with the

attack succeeding on the first attempt after the move, but failing all attempts after

that. Despite this potential flaw, the dynamic defense still drops the success rate of

the attack from 1.0 down to 0.11, a very effective defense. One of of the DNS Spoof

experiments falls to around 0.07, because the spoofing of the DNS Packet is able to

get around the distributed firewall. However, since the DNS Spoof attack relies on

ARP Spoofing, which is prevented by the distributed firewall, the DNS spoof attack

has to beat out the real DNS server in replying to the DNS request packet. This is

not highly successful, which is why we see the DNS Spoof experiment’s post move

success rate fall all the way to 0.07. Besides the failure of the standard port group,

the dynamic defenses lower the success rate of each attack significantly. Only one

experiment, the distributed port group NMAP Scan experiment, has a post move

success rate much higher than 0.1, and even that success rate is a 0.5 only because

it determines that the host is up. However, the scan is not able to discover the port

information of the server, the most important part of the scan. For all three MITM

and Scan attacks, the dynamic defenses are fully effective in either completely

neutralizing the attack or in causing the malicious node to have a very low rate of

121

success. In each case, outside the standard port group, the success rate is always

significantly lowered once the dynamic defense is initiated.

For all experiments, the dynamic defenses, other than the standard port

group, are very effective in stopping all six attacks. This shows that by dynamically

shifting the topology, a Virtual Network can be protected from network attacks.

This could be effectively utilized in the future to help secure Virtual Networks, if

the use cases of Virtual Networks expands outside of data centers. There are some

weaknesses to this system, but overall, Virtual Networks would benefit from fully

using their flexibility to protect resources within the network.

122

Chapter 6

RELATED WORKS

Utilizing the flexibility of a network to shift topology for security purposes is

not a unique idea. Dynamic topology shifting and testing through attack

simulations has been done with different SDN and virtual environments. There are

a few papers that look at utilizing SDN resources or creating SDN add ons to

increase security dynamically. Gillani et al. [15] look at securing the weakness of

SDNs where control and data packets share critical links, opening up an attack

vector for DDOS attacks. They create a system called ReCON that uses existing

SDN resources to dynamically defend against DDOS attacks of the control plane. It

does this by lowering the amount of sharing of links for data and control packets,

and by dynamically using underutilized resources to increase the capacity of control

agents. Both these serve to make DDOS attacks on the control messages more

difficult. ReCON quantifies the resilience of the control network by measuring link

isolation and criticality. The system then uses the metric to decide where to place

network links for the control and data planes. To test their system, the authors run

two types of DDOS attacks: Link Sharing-based DDOS and Control Capacity-based

DDOS. Their results show a decrease in DDOS effectiveness by about 40% and a

doubled OpenFlow agent capacity. While this system does dynamically defend

against network attacks, they only protect against DDOS attacks and not any other

type of network attack. Their system is also built for SDNs rather than Virtual

Networks, and they simulate their experiments rather than running them in a true

network environment.

Yoon et al. [63] investigate the ability of Software-Defined Networks to

replace hardware security functions. To do this they implement four types of

network security functions in a SDN environment: in-line mode security, passive

mode security, network anomaly detection, and advanced security. These functions

123

are implemented as applications in a Floodlight SDN controller and tested in a real

SDN environment to discover the feasibility of SDN-based security. For in-line mode

security, firewall and IPS applications are implemented. Passive mode security is

implemented as an IDS application. For network anomaly detection, network

scanning and DDOS detector applications are created. The advanced security

functions implement stateful firewall and network reflector applications. Each

implementation has different positives and negatives in regard to the fit in a SDN

environment. Through experimentation the authors concluded that the passive

mode and network anomaly detection functions were the most feasible in SDN

environments, while the in-line mode functions could be implemented for networks

that require security on only a small number of flows. For the advanced security

functions, they were only effective when the modifications made to packets were

processed in hardware rather than software. While the authors use dynamic security

components, they use Software-Defined networks to achieve security, but not Virtual

Networks. Their system also doesn’t test the security of the functions, but rather

the overhead they incur and the feasibility of their implementation.

Achleitner et al. [1] look at defending against advanced network scanning by

developing the Reconnaissance Deception System (RDS). RDS is based on

Software-Defined Networks and deceives scanners by simulating incorrect network

topologies. The attacker is assumed to be a malicious node operating from within

the network, allowing for the RDS to manipulate its view of the network. RDS

works by first detecting the threat and discovering the malicious node. RDS then

uses fake network features to simulate a network view which can only be viewed by

the attacker. The RDS system adds the capability to forge packets and generate

these fake networks into the SDN controllers. For their experiments, their results

show much longer times for scanning a network while creating very little overhead.

RDS adds time to malicious scanning at up to a factor of 115, while only creating a

124

network overhead of 0.2 milliseconds. This system also utilizes dynamic shifting of

network topologies, but does this with a Software-Defined Network rather than a

real Virtual Network. It also doesn’t explore other defenses and attack types other

than scanning. It also requires new SDN controllers and system setup rather than

using portable software or existing technology.

Shin et al. [47] look at two potential security weaknesses in SDN

environments and creates solutions for each. One of the weaknesses is that changes

in flow and network statistics can only be detected by controller applications

through polling, which could prevent applications looking for malicious behavior to

respond properly. To solve this they create a technique called “actuating trigger”

that allows the data plane to report network and payload information to the control

plane. It could then trigger a predefined set of flow rules to cause an immediate

reaction to any malicious behavior that is detected. Their experimentation shows

that the actuating trigger adds very little overhead but allows for quicker threat

detection and reaction. While they do look at dynamic reaction to malicious

behavior, it is in an SDN and not a Virtual Network environment. It also involves

adding to the SDN architecture rather than using existing features for attack

mitigation.

Cox et al. [13] create Net Flow Guard (NFG), an SDN app which can detect

rogue DHCP servers and disable them. It does so automatically and is modular.

Their implementation includes an OpenFlow switch connected to a controller with

NFG on it. The switch then forwards DHCP packets to the controller for analysis to

determine the validity of the server. They utilize Mininet to evaluate their

application and found NFG to be effective in discovering malicious DHCP activity.

While they do protect against DHCP attacks, their system doesn’t protects against

other network attacks and doesn’t make any changes to the network topology in

125

response. Their experiments are simulated rather than run in a real network and

their system is for SDNs, not Virtual Networks.

Kreutx et al. [26] look at attack vectors that exploit certain weaknesses in

SDNs. For each threat they describe how the attacks can be prevented by making

changes to SDN’s architecture. They then take all the solutions presented and use

them to create a general outline of a more secure SDN architecture. The idea

behind this is that SDNs should be inherently secure and not have to depend on

external software to secure the environment. This system looks at Software-Defined

Network security and recreating the architecture to have built-in security. However,

they don’t look at Virtual Networks and they also change the existing system rather

than use any dynamic shifting in the network. They also doesn’t test the suggested

architecture with any experimentation.

Each of these works utilizes dynamic SDN shifts, either through flows or

other means. However, none of them look at Virtual Network environments and

most of them don’t protect against a varied set of network attacks, usually only

protecting against one attack type.

There are also works that involve the use of dynamic virtual security

components in SDNs or virtual environments. These works look at ways to use

those virtual components to dynamically secure the network. Park et al. [41] use

Network Function Virtualization to create a new SDN framework that allows for

dynamic provisioning of virtualized, lightweight IDS network functions. SDN

controllers are used to deploy and control the IDSs throughout the network while

looking at the high-level network view. Rather than create big IDSs, the system

creates small intrusion detection network functions and chains them together,

deciding on the fly which ones to create and where to put them. The system

architecture relies on four different components: a traffic classifier, a network

functions pool, a service chaining module, and a virtual machine manager. The

126

SDN controllers monitor the path of flows, and based on that determine which

switches to put certain IDS network functions on. The service pool has two different

types of IDS network functions: packet header inspection and deep packet

inspection. The packet header and deep packet inspection are selected based on

protocols and ports, allowing for only the necessary IDS functions to be used in

each location. The virtual machine manager then creates the service chain using the

network functions selected. This service chain is dynamically created and allocated

based on situation. Their testing shows that their system uses less than 7 MB of

RAM, much smaller than general IDSs. Their system also takes less than a

millesecond on average to spawn a single network function. While this system also

uses dynamic virtual network security, it is used in an SDN environment with

physical networking components rather than in a Virtual Network environment.

Hongda et al. [28] create a new Network Intrusion Detection System (NIDS)

called vNIDS, which is used to efficiently create and provision virtual NIDSs. The

goal is to make NIDSs more flexible than how they are currently used as middle

boxes, where they can’t be moved or created easily. They also must make sure the

virtualized NIDSs don’t miss attacks and that they are provisioned properly and

don’t overuse resources. The two main goals are to create effective intrusion

detection and non-monolithic NIDS provisioning. The first goal is accomplished by

dividing detection states into local and global, lowering the amount of data that

must be shared between virtualized NIDSs. The second goal is accomplished by

dividing IDSs into “microservices”: header-based detection, protocol parse, and

payload-based detection. Each microservice can be created separately and placed

anywhere in the network in any numbers, as well as chained together. Their

evaluation compares the vNIDS architecture to the Bro NIDS. Their system shows a

similar ability to detect attacks with increased flexibility. The vNIDS architecture

does, however, have increased overhead compared the Bro NIDS, which the authors

127

attribute to the inefficiency of their implementation for the experiments and say can

be mitigated. This system utilizes virtualized security, but it is more about

provisioning pre attack rather than using flexibility to react to an attack that is

occurring.

Shin et al. [46] look at the use of virtualized network security functions in

securing a network. There is a problem of having to deploy countless security

middle-boxes in different locations throughout physical networks and the difficulty

of moving them if the security function is needed elsewhere. They create a system

called NetSecVisor, which can be used by admins to determine which security

functions to put where. The system utilizes pre-set security middle-boxes and SDN

technology to accomplish this. NetSecVisor provides security by rerouting flows

based on events, such as a VM being migrated from one host to another. If that VM

is being protected by a security middle-box on the first host, the system dynamically

reroutes the flows to still pass through that middle-box. Their evaluations show

that their system adds very little overhead, while being able to reroute traffic to the

IDSs and firewall. While this system provides dynamic isolation and protection of

VMs, it still relies on physical middle-boxes rather than virtual network security

components. It also isn’t used in a true Virtual Network environment, instead using

an OpenFlow SDN network that doesn’t utilize any Virtual Network technology.

Beham et al. [6] look at the use of honeypots and IDSs in nested

virtualization as compared to their use in regular virtualization. They look at the

nested hypervisors of KVM on top of KVM for an IDS and a honeypot and

compared the time for analysis versus those security components on top of just a

single KVM hypervisor. Their results show a large increase in execution time for

nested virtualization to produce similar results in detecting and analyzing malicious

network behavior. These experiments look at comparing efficiency of nested

128

virtualization to regular virtualization, rather than looking at securing Virtual

Networks.

All these papers either utilize virtualization in a physical SDN network or

don’t use dynamic topology shifts in reaction to attacks, but rather use pre-planned

security. While there are a lot of works looking at SDN and Virtual Network

security, none really looks at using a Virtual Network’s flexibility to shift the

network topology in reaction to a network attack.

129

Chapter 7

CONCLUSION

With the idea of Virtual Networks and the potential for their expanded use in

the future, we explore the use of dynamic changes to a Virtual Network’s topology

to protect resources and defend against malicious activities. We utilize VMware

vSphere and vCenter to set up our environment and utilize nested virtualization to

emulate the use of multiple, underlying, physical network components. We theorize

that the flexibility of a Virtual Network to dynamically change its topology can be

used for network security purposes. To test our theory, we create a set of dynamic

defenses and experiments to determine the validity of these defenses. There are 4

different groups of defenses: Server Protection, Isolated Subnet, Distributed Port

Group, and Standard Port Group. The Server Protection defenses involves detecting

an attack against a server and shifting the server behind a protected subnet. The

other three defenses involve detecting a malicious node and shifting the Virtual

Network topology so that the attacker is behind some protection. The Isolated

Subnet defense dynamically creates an isolated subnet and move the attacker to it.

The Distributed Port Group defense puts the attacker behind a distributed firewall

and spoof guard. The Standard Port Group defense dynamically creates a standard

port group with spoofing protections and moves the attacker to it.

For each defense we run 6 to 9 different experiments based on attack type,

with the attacks being used to test the validity of each dynamic defense. The

network attacks used are ICMP Flooding, TCP Syn Flooding, Smurf attack, ARP

Spoofing, DNS Spoofing, and NMAP Scanning. The DOS defense experiments are

run by having a client download a file from a server, with the attacker trying to slow

down or prevent the download. The MITM/Scan defense experiments are each run

with the attacker trying to compromise the client based on the attack. Our

validation shows that most of the dynamic defenses are very effective in stopping

130

each attack. The Standard Port Group defense is the one dynamic defense that is

completely ineffective. The ability to stop spoofing attacks from an unknown

location is also a problem, as the Smurf attack is not able to be completely stopped

in some of the experiments due to its spoofing. It is, however, still slowed to a point

that the client-server connection is not much slower than before the attack is run.

The Server Protection defense shows positive results for both the MITM and

DOS attacks. The download speed of the client falls from above 1 second when

being attacked, to below the baseline level of 0.5 seconds for two of the DOS

attacks. The third DOS attack falls to a 0.9 second average, which is still a 53%

drop. The MITM/Scan attacks all fall from a success rate of around 1 to 0, or 0.07

for the DNS Spoof attack. The Isolated Subnet defense is very effective against all

attacks, dropping the download times below the 0.5 second baseline level for all the

DOS attacks and dropping the MITM/Scan attack success rates from 1 to 0. The

Distributed Port Group defense shows similar results to the Server Protection

defense. For the DOS attacks, 5 out of 6 download times fall below the baseline

average, while the one outlier still falls by 55% from the attack measurement to the

post dynamic defense measurement. The MITM/Scan attacks all have lowered

success rates, falling from 1 to 0, 0.11, and 0.5. Despite NMAP Scan having a

success rate of 0.5, it isn’t able to collect information to determine vulnerability due

to the dynamic defense. Finally, the Standard Port Group defense shows it is unable

to protect against spoofing attacks, with the success rates of the attacks staying at 1.

Overall, our experiments show that the ability to dynamically shift

topologies and quickly spin up new security components in a Virtual Network is

very effective at protecting resources and preventing attacks. Currently, the

flexibility of Virtual Networks is used more as a failsafe rather than for security

purposes. We would recommend that in the future, as the technology of Virtual

Networks is more widely adapted and potentially used more in spaces outside of

131

data centers, that the ability to switch the topology at a moments notice would be

used for security purposes. In the future, we plan to expand on the experiments and

the system built. We will create larger, more complex and more realistic topologies

for experimentation, rather than the one client, one server, one attacker topologies

that we used. Using more clients, more attackers, and more attack power would

help the testing of the security responses. These expanded experiments would be a

step in the right direction for better Virtual Network security.

132

BIBLIOGRAPHY

[1] S. Achleitner, T. L. Porta, P. Mcdaniel, S. Sugrim, S. V. Krishnamurthy, and

R. Chadha. Cyber deception. Proceedings of the 2016 International

Workshop on Managing Insider Security Threats - MIST 16, page 57?68,

Oct 2016.

[2] A. Aljuhani and T. Alharbi. Virtualized network functions security attacks and

vulnerabilities. 2017 IEEE 7th Annual Computing and Communication

Workshop and Conference (CCWC), Jan 2017.

[3] Apache. Choosing a deployment architecture.

[4] J. Babbin, S. Biles, and A. Orebaugh. Snort cookbook.

[5] L. R. Bays, R. R. Oliveira, M. P. Barcellos, L. P. Gaspary, and E. R.

Mauro Madeira. Virtual network security: threats, countermeasures, and

challenges. Journal of Internet Services and Applications, 6(1):1, Jan 2015.

[6] M. Beham, M. Vlad, and H. P. Reiser. Intrusion detection and honeypots in

nested virtualization environments. In 2013 43rd Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN),

pages 1–6, June 2013.

[7] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gordon,

A. Liguori, O. Wasserman, and B.-A. Yassour. The turtles project: Design

and implementation of nested virtualization. In Proceedings of the 9th

USENIX Conference on Operating Systems Design and Implementation,

OSDI’10, pages 423–436, Berkeley, CA, USA, 2010. USENIX Association.

[8] S. Cabuk, C. I. Dalton, H. Ramasamy, and M. Schunter. Towards automated

provisioning of secure virtualized networks. Proceedings of the 14th ACM

133

conference on Computer and communications security - CCS 07, page

235?245, 2007.

[9] E. Cavalcanti, L. Assis, M. Gaudencio, W. Cirne, and F. Brasileiro.

Sandboxing for a free-to-join grid with support for secure site-wide storage

area. First International Workshop on Virtualization Technology in

Distributed Computing (VTDC 2006), 2006.

[10] D. P. Center. Ddos attacks.

[11] M. Conti, N. Dragoni, and V. Lesyk. A survey of man in the middle attacks.

IEEE Communications Surveys Tutorials, 18(3):2027–2051, 2016.

[12] E. Cooke, F. Jahanian, and D. McPherson. The zombie roundup:

Understanding, detecting, and disrupting botnets.

[13] J. H. Cox, Jr., R. J. Clark, and H. L. Owen, III. Leveraging sdn to improve the

security of dhcp. In Proceedings of the 2016 ACM International Workshop

on Security in Software Defined Networks & Network Function

Virtualization, SDN-NFV Security ’16, pages 35–38, New York, NY, USA,

2016. ACM.

[14] Q. Cui, W. Shi, and Y. Wang. Design and implementation of a network

supporting environment for virtual experimental platforms. 2009 WRI

International Conference on Communications and Mobile Computing, 2009.

[15] F. Gillani, E. Al-Shaer, and Q. Duan. In-design resilient sdn control plane and

elastic forwarding against aggressive ddos attacks. In Proceedings of the 5th

ACM Workshop on Moving Target Defense, MTD ’18, pages 80–89, New

York, NY, USA, 2018. ACM.

134

[16] A. Gueye, V. Marbukh, and J. C. Walrand. Towards a metric for

communication network vulnerability to attacks: A game theoretic

approach. In V. Krishnamurthy, Q. Zhao, M. Huang, and Y. Wen, editors,

Game Theory for Networks, pages 259–274, Berlin, Heidelberg, 2012.

Springer Berlin Heidelberg.

[17] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtualization:

Challenges and opportunities for innovations. IEEE Communications

Magazine, 53(2):90–97, Feb 2015.

[18] H. Hu, H. Zhang, Y. Liu, and Y. Wang. Quantitative method for network

security situation based on attack prediction. Security and Communication

Networks, page 19, 2017.

[19] M. Jonker. Millions of Targets Under Attack a Macroscopic Characterization of

the DoS Ecosystem, Jan. 2017.

[20] K. Joshi and T. Benson. Network function virtualization. IEEE Internet

Computing, 20(6):7–9, Nov.-Dec. 2016.

[21] Juniper. Understanding network virtualization with vmware nsx, Nov 2014.

[22] Juniper. Contrail architecture, Sep 2015.

[23] A. Keshri, S. Singh, M. Agarwal, and S. K. Nandiy. DoS attacks prevention

using IDS and data mining. In 2016 International Conference on

Accessibility to Digital World (ICADW), pages 87–92, Dec. 2016.

[24] I. Kotenko and M. Stepashkin. Analyzing vulnerabilities and measuring

security level at design and exploitation stages of computer network life

cycle. In V. Gorodetsky, I. Kotenko, and V. Skormin, editors, Computer

135

Network Security, pages 311–324, Berlin, Heidelberg, 2005. Springer Berlin

Heidelberg.

[25] D. Kreutz, F. M. Ramos, and P. Verissimo. Towards secure and dependable

software-defined networks. In Proceedings of the Second ACM SIGCOMM

Workshop on Hot Topics in Software Defined Networking, HotSDN ’13,

pages 55–60, New York, NY, USA, 2013. ACM.

[26] D. Kreutz, F. M. Ramos, and P. Verissimo. Towards secure and dependable

software-defined networks. In Proceedings of the Second ACM SIGCOMM

Workshop on Hot Topics in Software Defined Networking, HotSDN ’13,

pages 55–60, New York, NY, USA, 2013. ACM.

[27] R. Kumar, K. Jain, H. Maharwal, N. Jain, and A. Dadhich. Apache cloudstack:

Open source infrastructure as a service cloud computing platform.

International Journal of Advancement in Engineering Technology,

Management and Applied Science, 1(2):111?116, Jul 2014.

[28] H. Li, H. Hu, G. Gu, G.-J. Ahn, and F. Zhang. vnids: Towards elastic security

with safe and efficient virtualization of network intrusion detection systems.

In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’18, pages 17–34, New York, NY, USA,

2018. ACM.

[29] Y. Li and M. Chen. Software-defined network function virtualization: A survey.

IEEE Access, 3:2542–2553, 2015.

[30] B. Linkletter. How to emulate a network using virtualbox, Oct 2017.

[31] K. N. Mallikarjunan, K. Muthupriya, and S. M. Shalinie. A survey of

distributed denial of service attack. In 2016 10th International Conference

on Intelligent Systems and Control (ISCO), pages 1–6, Jan. 2016.

136

[32] J. Mattson. Running nested vms, Mar 2016.

[33] NMAP. Nmap.

[34] OpenStack. Scenario: Classic with open vswitch, Nov 2016.

[35] OpenStack. Scenario: High availability using distributed virtual routing (dvr),

Nov 2016.

[36] OpenStack. Scenario: Provider networks with open vswitch, Nov 2016.

[37] OpenStack. Neutron ovs dvr - distributed virtual router, Oct 2018.

[38] OpenStack. Openstack docs: Rocky, Aug 2018.

[39] A. Ornaghi and M. Valleri. Man in the middle attacks, May 2003.

[40] Z. Pan, Q. He, W. Jiang, Y. Chen, and Y. Dong. Nestcloud: Towards practical

nested virtualization. In 2011 International Conference on Cloud and

Service Computing, pages 321–329, Dec 2011.

[41] Y. Park, P. Chandaliya, A. Muralidharan, N. Kumar, and H. Hu. Dynamic

defense provision via network functions virtualization. Proceedings of the

ACM International Workshop on Security in Software Defined Networks

and Network Function Virtualization - SDN-NFVSec 17, page 43?46, Mar

2017.

[42] S. M. Poremba. Types of ddos attacks, May 2017.

[43] S. S. Rao. Denial of Service attacks and mitigation techniques: Real time

implementation with detailed analysis, 2011.

[44] C. Sarraute, F. Miranda, and J. I. Orlicki. Simulation of Computer Network

Attacks. ArXiv e-prints, June 2010.

137

[45] SDNCentral. What is a virtual network?

[46] S. Shin, H. Wang, and G. Gu. A first step toward network security

virtualization: From concept to prototype. IEEE Transactions on

Information Forensics and Security, 10(10):2236–2249, Oct 2015.

[47] S. Shin, V. Yegneswaran, P. Porras, and G. Gu. Avant-guard: Scalable and

vigilant switch flow management in software-defined networks. In

Proceedings of the 2013 ACM SIGSAC Conference on Computer &

Communications Security, CCS ’13, pages 413–424, New York, NY, USA,

2013. ACM.

[48] A. Singhal and X. Ou. Security Risk Analysis of Enterprise Networks Using

Probabilistic Attack Graphs, pages 53–73. Springer International

Publishing, Cham, 2017.

[49] Snort. Snort - network intrusion detection and prevention system.

[50] W. Stallings. Cryptography and network security: principles and practice.

Pearson Education, 2017.

[51] U. S. C. E. R. Team. Dns amplification attacks, Oct 2016.

[52] Y. Vardi and C. H. Zhang. Measures of network vulnerability. IEEE Signal

Processing Letters, 14(5):313–316, May 2007.

[53] VMware. Thin provisioning.

[54] VMware. Virtualization overview white paper.

[55] VMware. Vmware infrastructure architecture overview.

[56] VMware. Vmware vsphere 4 - esx and vcenter server.

138

[57] VMware. vsphere networking.

[58] VMware. Nsx administration guide, Nov 2017.

[59] VMware. Virtualization technology and virtual machine software: What is

virtualization?, Nov 2018.

[60] Vmware and P. A. Networks. Next generation security with vmware nsx and

palo alto networks vm-series, 2014.

[61] L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel. k-zero day safety: A

network security metric for measuring the risk of unknown vulnerabilities.

IEEE Transactions on Dependable and Secure Computing, 11(1):30–44, Jan

2014.

[62] C. Wueest. Threats to virtual environments. Technical report, Symantec, Aug.

2014.

[63] C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang. Enabling security

functions with sdn: A feasibility study. Computer Networks, 85:19?35, May

2015.

[64] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor: Retrofitting protection

of virtual machines in multi-tenant cloud with nested virtualization. In

Proceedings of the Twenty-Third ACM Symposium on Operating Systems

Principles, SOSP ’11, pages 203–216, New York, NY, USA, 2011. ACM.

139

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 Network Attacks
	2.1.1 Denial of Service (DOS) and Distributed Denial of Service (DDOS)
	2.1.1.1 Types
	2.1.1.2 Detection and Countermeasures
	2.1.1.3 Tools

	2.1.2 Man in the Middle (MITM)
	2.1.2.1 Types
	2.1.2.2 Countermeasures
	2.1.2.3 Tools

	2.2 Virtual Networks
	2.2.1 Virtualization
	2.2.2 Network Virtualization
	2.2.3 Nested Virtualization
	2.2.4 Virtual Network Security
	2.2.4.1 Virtualization Security
	2.2.4.2 Network Virtualization Security

	2.3 Virtual Network Architectures
	2.3.1 Enterprise Architectures
	2.3.1.1 VMware Architecture
	2.3.1.2 Juniper Contrail Architecture
	2.3.1.3 OpenStack Architecture
	2.3.1.4 Apache CloudStack Architecture
	2.3.1.5 Oracle VirtualBox ``Architecture"

	2.3.2 Architecture Comparisons

	3 System Design
	3.1 Virtual Network Setup
	3.2 Security Design
	3.3 Attack Design
	3.3.1 TCP Syn Flooding
	3.3.2 ICMP Flooding
	3.3.3 Smurf Attack
	3.3.4 ARP Spoofing
	3.3.5 DNS Spoofing
	3.3.6 NMAP Scanning

	3.4 Detection

	4 Dynamic Defense Design in Virtual Networks
	4.1 Dynamic Defenses
	4.1.1 Server Protection
	4.1.2 Attacker Prevention
	4.1.2.1 Isolated Subnet
	4.1.2.2 Distributed Port Group
	4.1.2.3 Standard Port Group

	4.2 Measurement
	4.2.1 DOS/DDOS Attacks
	4.2.2 MITM/Scan Attacks
	4.2.2.1 ARP Spoofing
	4.2.2.2 DNS Spoofing
	4.2.2.3 NMAP Scanning

	5 Results
	5.1 Server Protection
	5.2 Attacker Prevention
	5.2.1 Isolated Subnet
	5.2.2 Distributed Port Group
	5.2.3 Standard Port Group

	5.3 Analysis

	6 Related Works
	7 Conclusion
	BIBLIOGRAPHY

