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ABSTRACT 

Development of a Myoelectric Detection Circuit Platform for Computer Interface 

Applications 

Nickolas Andrew Butler 

 

Personal computers and portable electronics continue to rapidly advance and 

integrate into our lives as tools that facilitate efficient communication and interaction 

with the outside world. Now with a multitude of different devices available, personal 

computers are accessible to a wider audience than ever before. To continue to expand and 

reach new users, novel user interface technologies have been developed, such as touch 

input and gyroscopic motion, in which enhanced control fidelity can be achieved. For 

users with limited-to-no use of their hands, or for those who seek additional means to 

intuitively use and command a computer, novel sensory systems can be employed that 

interpret the natural electric signals produced by the human body as command inputs. 

One of these novel sensor systems is the myoelectric detection circuit, which can measure 

electromyographic (EMG) signals produced by contracting muscles through specialized 

electrodes, and convert the signals into a usable form through an analog circuit. With the 

goal of making a general-purpose myoelectric detection circuit platform for computer 

interface applications, several electrical circuit designs were iterated using OrCAD 

software, manufactured using PCB fabrication techniques, and tested with electrical 

measurement equipment and in a computer simulation. The analog circuit design 

culminated in a 1.35” x 0.8” manufactured analog myoelectric detection circuit unit that 

successfully converts a measured EMG input signal from surface skin electrodes to a 



v 

 

clean and usable 0-5 V DC output that seamlessly interfaces with an Arduino Leonardo 

microcontroller for further signal processing and logic operations. Multiple input 

channels were combined with a microcontroller to create an EMG interface device that 

was used to interface with a PC, where simulated mouse cursor movement was controlled 

through the voluntary EMG signals provided by a user. Functional testing of the interface 

device was performed, which showed a long battery life of 44.6 hours, and effectiveness 

in using a PC to type with an on-screen keyboard. 
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Chapter 1 

INTRODUCTION 

 

1.1.1 General Introduction to Electrophysiology and Biopotentials 
 
 

 In the broad field of electrophysiology, the detection, measurement, and analysis 

of bioelectric potentials, or biopotentials, are the fundamental topic of focus. These 

electrical signals are generated from excitable cells found in muscular, nervous, and 

glandular tissue, and possess membrane voltage-gated ion channels that control the flow 

of K+, Na+, and Cl- ions into and out of the cell [1]. Due to differences in concentration of 

these charged ions inside and outside of the cell, a difference in voltage resides across the 

membrane. This difference in voltage is known as the resting membrane potential, which 

typically resides within a range of -50 mV to -100 mV for mammalian peripheral muscle 

excitable cells [1]. When an electrical potential stimulus is applied to the excitable cell, 

from either an external source, or from another nearby excitable cell, the voltage-gated 

ion channels will open and allow for the flow of ions into and out of the cell. This flow of 

ions depolarizes the intracellular membrane potential and creates what’s known as an 

action potential as seen in figure 1. 
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Figure 1: Intracellular membrane voltage as a function of time for an action 

potential 

 

During depolarization, the intracellular membrane potential generally approaches a 

maximum value of +60 mV, which is known as the Nernst Potential. As the action 

potential is generated, it also travels along the length of the cell, which can be considered 

a conducting electrical impulse. For cells such as neurons, which possess axons up to 

several feet in length, the action potential may travel a significant distance as it conducts 

[2]. Therefore, to produce meaningful actions at the termination source, action potentials 

can travel at speeds up to 270 miles per hour [3]. To help maintain electrical continuity, 

and improve conduction velocity, neurons are encased in a specialized fatty membrane 

known as a myelin sheath [3]. Immediately after action potential production, the excitable 

cell may not generate additional action potentials for a duration known as the refractory 

period, which is controlled by membrane channel proteins with gating time constants [1]. 

The ultimate destination of the conducting impulse is either to the brain through a sensory 

neuron, or to skeletal or cardiac muscle through a motor neuron [2]. When both sensory 
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and motor neurons cluster together, they form nerves, which then travel to large skeletal 

muscle groups throughout the body. 

1.1.2 Electromyography 

 

One of the terminal sites for motor neurons is a skeletal muscle fiber, which 

connects via a structure known as a neuromuscular junction [2]. When an action potential 

travels down the neuron to the neuromuscular junction, an electrochemical cascade 

follows that eventually results in additional voltage-gated ion channels on the muscle 

fiber opening, and initiates an action potential within the muscle fiber itself. As the action 

potential propagates along the muscle fiber, it initiates a process known as excitation-

contraction coupling, which as the sliding filament theory states, creates a muscle fiber 

contraction [2].  

In the case of muscle fiber contraction, the motor neuron and muscle fibers 

operate as a single unit. This combination of a single motor neuron and all individual 

muscle fibers it innervates form a structure known as a motor unit [2]. For a muscle such 

as the biceps brachii, a motor unit typically composes 150 individual muscle fibers. The 

functional motor unit, beginning at the ventral horn of the spinal cord, traveling through 

the neuronal axon, and ending at a muscle fiber, can be seen in figure 2 below.   
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Figure 2: Functional Motor Unit 

 

When a single motor unit is stimulated for contraction, the action potential that 

propagates through the muscle fibers has an amplitude of 20-2000 µV, and a discharge 

frequency of 6-30 Hz [1]. For peripheral skeletal muscle, the voltage potential from the 

motor units can be measured through a process known as electromyography or EMG [1]. 

To stimulate the muscle to produce a larger contractile force, more individual motor units 

are activated simultaneously in a process known as motor unit recruitment [2]. This 

subsequent increase in force production through motor unit recruitment in turn produces a 

proportional increase in voltage potential at the muscle. 

1.1.3 Muscle Force Production and EMG Signal Intensity Relationship 

 

 In a study conducted by Liping Qi et al titled, “Spectral properties of 

electromyographic and mechanomyographic signals during isometric ramp and step 

contractions in biceps brachii”, the relationship between muscle force production and 

EMG signal intensity was measured in an effort to characterize motor unit recruitment. 

An experiment was conducted involving twenty healthy subjects, in which the biceps 
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brachii of the non-dominant arm was the primary muscle of investigation. Using a 

mechanical support fixture, the subject’s arm was oriented in the extended supinated 

position, while maintaining an elbow angle of 150°. A force transducer (Omega 

Engineering) was connected perpendicular to the length of the arm at the wrist to measure 

force production resulting from bicep flexion. To measure the EMG signal generated at 

the bicep, 12 mm stainless steel surface electrodes were placed midline of the biceps 

brachii and interfaced with a custom-built amplifier circuit connected to a laptop running 

Agilent VEE Pro for data collection. The testing setup can be seen in figure 3 below [4]. 

 

 

Figure 3: Force production vs. EMG signal intensity test setup [4] 

 

 To first calibrate the measurement equipment, subjects performed a maximum voluntary 

contraction of the biceps, which was standardized as the 100% contraction level relative 

to baseline. The first test performed involved using a visual feedback system to show 

force production, while performing a biceps flex in 20% incrementing contraction levels 

for 10 seconds at each increment while EMG signal intensity and force production were 
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measured. Increments were continued until 80% of the maximum contraction level was 

reached. The second test was known as the ramp test, in which subjects were instructed to 

gradually increase biceps brachii contraction level until 90% of the maximum contraction 

level was achieved. After collecting data from the entire sample group, the resulting 

relationship between muscle force production and EMG signal intensity for both tests 

was evaluated. The resulting plot of EMG signal intensity relative to force production can 

be seen in figure 4 below [4].   

 

 

Figure 4: EMG Signal Intensity vs. Force Production [4] 

 

Evaluating the resulting relationship between the measured EMG signal intensity and the 

produced force from contraction of the biceps brachii, it was observed that a relatively 

linear relationship existed for both the step and ramp testing conditions. Overall, the 

results obtained in the study conducted by Liping Qi et al suggest that when specifically 

measuring EMG signal amplitude, an accurate estimate of muscle contraction effort can 

be predicted. By capturing an EMG signal at its source, a processed form of this signal 

could serve as input to a wide variety of voluntary control systems. In addition to use as a 
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binary input, the amplitude of the signal could also be measured and compared to a 

known threshold to generate a dynamic output signal. 

1.1.4 Types of Electrodes for EMG Signal Capture 

 

 Classically, the method of capturing the EMG signal of a conducting muscle of 

moderate volume is through the use of a conducting electrode. The two primary EMG 

capture methods are surface EMG (type A), which uses surface electrodes, and 

intramuscular EMG, in which needle electrodes are inserted directly into the muscle 

fibers (type B). These two methods can be seen in figure 5 below.  

 

 

Figure 5: Surface and Intramuscular EMG Capture Techniques 

 

Characteristic differences between these two techniques influence the type setting in 

which they can be used. For surface EMG, typically mechanical clamping electrodes or 

disposable adhesive electrodes are used (figure 6).  
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Figure 6: Types of Surface Electrodes [Danlee Medical Products, 2011] 

 

Disposable adhesive electrodes are composed of some kind of conducting metal, such as 

Ag/Ag Chloride, and a conducting adhesive hydrogel. While surface electrodes are non-

invasive and easy to use, they are sensitive to electrical signals over a large area and can 

only be used with superficial muscles. This large detection area can create difficulties 

when attempting to isolate EMG signals from individual muscles, as signals from other 

nearby contracting muscles can be picked up as well. For intramuscular EMG, individual 

or deeper muscles can be better distinguished through the use of needle electrodes. While 

this technique has much greater detection precision and much lower impedance than 

surface EMG, the technique is fairly invasive and can be uncomfortable for the user [2]. 

In regard to EMG readings from arm muscles, a clear signal is defined as: that which 

conveys information about the individually contracting muscle motor units. Clear and 

differentiable signals can be read via indwelling needle electrodes; however, they are not 

ideal for long-term signal capture, due to their potential for infection. In a study 

conducted by Jin Lee et al., contractile motor unit signal optimization was performed by 

analyzing several different surface electrode configurations using an advanced volume 

conductor model in combination with an intracellular action potential equation to 
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simulate individually contracting motor units under the skin. Seven different spatial 

filters (electrode configurations) were evaluated using this model, with the criteria that 

the best signal was that which presented the most differentiable motor unit action 

potential signal relative to two individual motor units. It was found that the bi-transverse 

double differential electrode configuration (figure 7) was able to capture the most 

distinguishable individual motor unit signals [5]. This study described how a differential 

electrode configuration is important for isolating a usable signal from contracting 

muscles. 

 

Figure 7: Bi Transverse Double Differential Electrodes [5] 

 

1.1.5 Impedance Characteristics of Skin 

 

 For EMG detection using surface electrodes, it is important to understand the 

inherent electrical characteristics of skin. In a study conducted by S.J. Dorgan and R.B. 

Reilly titled, “A model for human skin impedance during surface functional 

neuromuscular stimulation,” an updated mathematical model of the dynamic electrical 
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characteristics of human skin was created through an experiment involving 

neuromuscular stimulation. After completing the experiment, it was found that skin has 

linear and non-linear impedance characteristics due to the variability of epithelial 

composition. A recreation of the equivalent circuit model can be seen below: 

Rs

Rp

   Cp

 

Figure 8: Equivalent Non-Linear Circuit Model for Skin 

 

Referencing the equivalent model above, Rs represents the linear impedance component 

due to dermis and subcutaneous layers, while Cp and Rp represent the non-linear RC 

component due to the epidermis. The variability for Rp was found to be influenced 

primarily by the relative thickness of the epidermal layer [6]. 

 Regarding the actual impedance variability of skin, a study conducted by J. Rosell 

et al measured skin impedance while varying signal frequency from 1 Hz to 1 MHz. 

Measurements were taken on the leg, forehead, and thorax of ten subjects, where no skin 

preparation was conducted (no abrasion to lower skin impedance) other than the 

application of a conducting gel. Results showed that for low frequency signals, skin 

impedance varied from 10 kΩ to 1MΩ, and for high frequency signals, impedance was 

found to be in the hundreds of ohms. Based on the high input impedance of skin at lower 

frequencies, it was concluded that the design of biopotential amplifiers incorporate very 

high input impedances to reduce the amount of noise picked up from a differential 

measurement source [7]. 
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1.2.1 Biopotential Amplifiers and the Myoelectric Circuit 

 

 When detecting EMG signals either through the surface or intramuscular method, 

some form of analog signal processing is required to make the signal readable by 

measurement equipment. Typically, this processing is done through an electronic circuit 

known as a biopotential amplifier, or in the case specifically for EMG signals, a 

myoelectric circuit. For EMG signals measured at the muscle, amplitude typically range 

from 0 to 10 mV AC (peak-to-peak) or 0 to 1.5 mV (rms), however when measuring with 

surface electrodes, the large skin impedance can lower the signal to 0 to 2 mV AC [8]. In 

order to convert this signal to a range that is more easily interfaced with measurement 

systems, amplification of the signal is generally performed by an analog amplifier, such 

as an inverting or non-inverting amplifier circuit. Another important circuit is the 

differential amplifier, which rejects the common mode signal attributed to noise. 

Regarding the frequency spectrum of EMG signals, they encompass a usable 

spectrum of 0-500 Hz, with the majority of usable signal falling within the 50-150 Hz 

range [9]. When measuring EMG within this active spectrum however, a number of 

sources of interference effectively degrade the overall quality of the signal. 

Electromagnetic radiation sources such as radio transmissions, power outlets, electrical 

wires, and fluorescent lights operate with a primary frequency of 60 Hz at amplitudes up 

to three times the inherent EMG signal [9]. When measuring with surface electrodes, the 

wires and metal contacts effectively act as antennas, picking up these sources of 

interference. In addition to interference from outside sources, another source of 

interference, known as motion artifacts, are destructive signals generated by motion at the 

electrode/skin interface, and through flexing of the electrode cable. Interference signals 
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from this source reside within the 0 to 20 Hz range. To significantly reduce the impact of 

these sources of electrical interference and improve the overall quality of the EMG 

signal, several different electrical circuits can be implemented. The first circuit 

commonly utilized is the differential amplifier, which uses a two-source electrode design, 

in combination with a ground reference, and allows for a significant amount of the noise 

to be eliminated through a process known as common mode signal rejection. 

Another circuit commonly used to remove the unwanted noise from sources 

operating at higher frequencies is the active filter circuit. Active filter circuits include: 

active low pass, active high pass, and when combined, active band pass filters. The 

primary benefit from using active filters is that they not only allow for discrimination of 

the allowed frequency, but can implement a signal gain as well. For applications with 

small potential EMG signals, this is an advantageous characteristic. High pass and low 

pass filters function by only allowing a specific bandwidth to pass through the circuit, 

while all other frequencies are filtered out. The desired passing bandwidth can be 

specifically set by adjusting the resistive and capacitive values for the circuit. With the 

previously mentioned EMG active frequency of 0-500 Hz, and 0-20 Hz interference due 

to motion artifacts, it would be permissible to design a band pass filter with a passing 

bandwidth of 20-500 Hz. To remove the common interference produced from lights, 

power outlets, and other electronics that operate at 60 Hz, another filtering technique 

known as band reject filtering can be used. This technique incorporates what is known as 

a notch filter to remove specific frequencies with a very narrow bandwidth. 

To operate as a controller interface, it is also important to convert the inherent AC 

EMG signal to a DC signal. This operation can be performed through the use of an active 
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rectifier circuit. More information on the analog circuit components that perform these 

amplification, filtering, and rectifying operations can be found later in section 1.3.1.  

When these circuit elements are combined into a single circuit, they form the 

principle basis for the myoelectric circuit. A block diagram for the general form of EMG 

systems can be seen in figure 9 below.  

Differential Amplifier

Operational Amplifier Active Filter
Measurement

Electrodes

Reference

Electrode

Rectifier
Amplified, Filtered, DC 

Output

 

Figure 9: General Form of the Myoelectric Recording System 

 

1.2.2 Applications of the Myoelectric Circuit 

 

 The fundamental purpose of the myoelectric system is to capture EMG signals, 

and transform them into a form that can be interfaced with other electronic devices. This 

inherent ability to act as a user interface facilitates numerous practical applications in 

areas such as prosthetics, robotics, computer interaction, and assist devices. For disabled 

individuals, the myoelectric interface method presents a means to increase mobility and 

dexterity. Specifically, with prosthetics, a patient who has undergone an amputation of an 

arm or a hand can regain a high degree of manual dexterity through the control of robotic 

systems via captured EMG signals produced from residual voluntary muscle groups in 

the arm. By capturing the signals from these residual muscle groups, specifically the ones 

that formerly performed the now lost action, such as closing one’s hand, a highly intuitive 

user control system can be developed. As seen with the several current myoelectric 

prosthetic hands in the market, such as the DEKA Research “Luke” arm, Touch Bionics’ 
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“iLimb”, and the “DARPA Hand”, the use of this control system has proven to be highly 

effective. Figure 10 below shows the DARPA hand in use. 

 

 

Figure 10: The DARPA Hand Using Myoelectric Interface [Mike McGregor, 2009] 

 

1.2.3 Signal Processing and Machine Learning 

 

For applications in which complex coordinated motion is desired, such as power 

grasp, wrist flexion/extension, lateral pinch, cylindrical grasp, etc., multiple input 

channels are required to interpret these complex signals. Each of these input channels 

would typically be isolated to an individual muscle, and in the case of most practical 

EMG detection methods, measured through the use of two surface electrodes. To reliably 

interpret complex motions measured from several inputs, a microprocessor is commonly 

utilized in conjunction with an analog amplifying circuit to create an EMG signal 

recognition system. An optimized EMG recognition system should only accept and 

process target patterns that reflect the intended motion, and reject those that do not [10]. 

In a study conducted by Yi-Hung Liu et al titled, “Towards a high-stability EMG 
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recognition system for prosthesis control A one-class classification based non-target 

EMG pattern filtering scheme”, the authors highlighted that the variable accuracy and 

stability of these EMG recognition systems is a critical issue that often leads to 

unintended motion for myoelectric prosthesis users. They identified that other 

myoelectric detection systems relied on an EMG recognition method known as a “multi-

class classifier”, which would classify and label inputs performed during a calibration 

training phase. This training phase would classify the input pattern into pre-defined 

“motions”, such as those listed above. However, there would often be unaccounted 

motions that the user intended to perform, such as those with variation in signal 

amplitude or combination. In a study conducted by Thilina Lalitharatne et al, the effects 

of muscle fatigue due to prolonged prosthetic were found to significantly diminish EMG-

based signal amplitude [11]. In these situations, the resulting motion of the prosthetic 

device would either be unintended, or diminished. To allow for a wide variety of motions 

to be detected, with flexibility and adaptability in mind, the authors presented an 

advanced machine-learning non-target pattern filtering technique (NTPF). This pattern 

filtering technique was based on a method known as “one-class classification” or 

“novelty detection”, where a limited data-set of EMG target patterns recorded during a 

training phase could be utilized to identify patterns that existed outside of an exact 

“class”. This method used a machine-learning mathematical technique called “support 

vector data description” (SVDD), in which the data-set recorded during training would be 

used to generate a mathematical hypersphere with a minimum volume. The boundary of 

this hypersphere would be utilized to identify target data. After deriving expressions for 

the center point and radius of the hypersphere, an expression for the volume of the 
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hypersphere, and probability that an input would reside in a certain space was 

established. By treating the volume expression as in constrained optimization problem, 

eventually a decision function for the SVDD was established: 

 

Figure 11: SVDD decision function [10] 

 

Where c is a constant that relates the radius and total volume occupied by the 

hypersphere, αi is a component of the data point vector that describes location relative to 

the hypersphere boundary, K is the kernel function that describes the dot product data 

point vector array, and x is the target EMG pattern. In cases where DSVDD(x) ≤ 0, the 

target EMG pattern was accepted as x. When the condition wasn’t true, the pattern was 

identified as “non-target” and therefore rejected. 

 For the purpose of their study, the SVDD data analysis method was limited to a 

single EMG input pair. Therefore, they utilized two different hyperspheres to evaluate the 

data. The overall structure of the non-target pattern filtering technique and EMG 

recognition system can be seen in figure 12 below: 
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Figure 12: EMG Recognition System with NTPF [10] 

 

 To evaluate this filtering technique relative to traditional multi-class classifier 

techniques, Yi-Hung Liu et al constructed a myoelectric detection circuit that utilized 

EMG surface electrodes for signal capture. Real time signal processing was carried out 

using a 60 Hz notch filter and a 30-400 Hz band-pass filter. The data was fed to an AD 

converter that sampled at 2.5 KHz, and transferred the data to a PC. Next, four 

components from each EMG input’s raw data were selected, and compiled into a vector 

data array. The two vector data arrays were then combined, and fed into the NTPF 

routine, and evaluated using the SVDD decision function. If the pattern was found to be 

targeted, it would then be processed by a traditional decision tree known as the EMG 

pattern classifier (EMG-PC), which would then generate the appropriate prosthetic 

motion. For the purposes of this study, a five-fingered table-top mechanical hand was 

utilized to establish credibility of the EMG recognition system. A user would hook up 

two electrode pairs to their arm, perform an intended hand motion, and if measured and 
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identified correctly, the mechanical hand would replicate the motion. The set-up can be 

seen in figure 13 below: 

 

Figure 13: EMG processing module with mechanical hand [10] 

 

 Eight kinds of hand motions were identified, each of which was recorded for the 

training routine 10 times. Following training, the user was assigned a randomized motion 

routine. Over the course of the test routine, each motion was performed a total of 10 

times. After performing the test using the NTPF recognition scheme, the test was 

repeated using a traditional multi-class classifier technique, which instructed processed 

signals to be passed directly to the EMG pattern classifier. Results showed a significant 

difference in the successful classification rates between the two methods. The NTPF 

recognition scheme was found to be successful 87% of the time, while the traditional 

multi-class classifier technique proved to be successful only 51% of the time. 

 In summary, this study conducted by Yi-Hung Liu et al proved that with 

significant machine learning and processing, relatively high interpretation accuracy rates 
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could be achieved. However, the sampling rate used in this study produced extremely 

large data sets that took significant time to process. The authors state that while the 

technique was effective in improving EMG signal interpretation reliability, the 

processing duration required to produce an output was sufficiently long, such that the 

scheme would not currently be practical for prosthetic control. Reducing the time to 

process the data was to be their main focus for future work [10]. 

 As outlined with this study, it will be necessary for an EMG detection system to 

incorporate user calibration data in addition to standard analog signal processing to 

produce usable outputs. Since the motions evaluated in the study by Yi-Hung Liu et al 

were somewhat complex and measured through only two electrode pairs, perhaps using 

several inputs could be reliably interpreted through simpler motions combined with 

additional electrode inputs.     

1.3.1 Analog Circuit Components 

 

 

The following section provides additional background of several circuit elements 

commonly found in EMG detection circuits. 

1.3.2 The Differential Amplifier  

 

 

The differential amplifier, also known as a difference amplifier, is arguably one of 

the most important analog elements of the myoelectric detection circuit. This element 

actively rejects noise from surrounding lights, computers, power lines, and other 

electromagnetic sources, which are picked up by the body and electrical leads [9]. It does 

so through the use of two input electrodes, used in conjunction with a ground reference. 

The circuit is designed in such a way that the component of the signal that is different 
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between the two inputs is amplified and passed through, while the component that is the 

common is rejected. In the case of EMG detection, the differential signal is from the 

contracting muscle, while the common signal is from noise. Off-the-shelf amplifiers often 

come with a rating known as a “common mode rejection ratio”, or “CMRR”, with the 

rating given in dB. CMRR is defined in the equation below: 

𝐶𝑀𝑅𝑅 = 10𝑙𝑜𝑔10 (|
𝐴𝑑

𝐴𝑐
|)

2

 

In this equation, Ad is the gain of the differential component of the amplifier, while Ac is 

the gain of the common mode component. As Ac goes to zero, the CMRR goes to infinity 

[1]. For myoelectric signal detection, it is typically recommended to use operational 

amplifiers that have a CMRR of 90 dB or greater [9]. A diagram of a differential 

amplifier, with the connection methods can be seen in the image below: 

 

Figure 14: A configured differential amplifier interface [12] 

 

As the diagram shows, the detecting electrodes connected to the positive and negative 

terminals of the differential amplifier are also connected to the target muscle. A third 
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electrically unrelated terminal is connected as the reference, or ground. In the diagram, m 

is the muscle signal, while n is the noise. The signal passed into the rest of the circuit is 

given by: 

(𝑚1 + 𝑛) − (𝑚2 + 𝑛) = 𝑚1 − 𝑚2 

A simulated version of a differential amplifier coupled to two voltage following buffer 

amplifier circuits can be seen in the picture below. 

 

Figure 15: A Simulated Differential Amplifier Circuit 

 

When used in EMG detection cases, adding a voltage following buffer amplifier can be 

helpful in reducing the transfer of high input impedance to the rest of the circuit. Without 

this addition, the high input impedance of an electrode would attenuate the active 

differential gain, Ad, of the proceeding differential amplifier.   
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1.3.3 Active Band-Pass Filter  

 

 

Another circuit useful in further eliminating noise from EMG signals is the band-

pass filter. This filter combines both a low-pass, and a high-pass filtering circuit to create 

a circuit block that attenuates all outgoing signals except those that fall within a pre-set 

frequency spectrum. The high pass filter only attenuates components of the signal that 

fall in the low frequency range of 20 Hz and below. When built with an operational 

amplifier, the circuit can not only filter, but actively amplify the signal when coupled 

with an operational amplifier. To set the active gain and low pass threshold of this circuit, 

resistor and capacitor values may be selected, and evaluated according to the function 

describing the output voltage with respect to frequency shown below, 

𝑉𝑜(𝑗𝜔) = −𝑉𝑖(𝑗𝜔)
𝑅𝑓−𝐻𝑃

𝑅𝑖−𝐻𝑃

𝑗𝜔𝑅𝑓−𝐻𝑃𝐶𝑓−𝐻𝑃

1 + 𝑗𝜔𝑅𝑓−𝐻𝑃𝐶𝑓−𝐻𝑃
 

where the ratio of resistors Rf-HP and Ri-HP set the active circuit gain. With some 

manipulation, Cf-HP can be isolated and solved for to determine capacitor value necessary 

to set a high pass cut-off frequency limit specified by ω. 

To attenuate high frequency noise, the low pass filter can be utilized. As with the 

high pass circuit, incorporating an operational amplifier can add additional gain, which is 

necessary due to the low incident amplitude of most EMG signals. The output voltage as 

a function of the circuit frequency ω can be seen in the equation below, 

𝑉𝑜(𝑗𝜔) = −𝑉𝑖(𝑗𝜔)
𝑅𝑓−𝐿𝑃

𝑅𝑖−𝐿𝑃

1

1 + 𝑗𝜔𝑅𝑓−𝐿𝑃𝐶𝑓−𝐿𝑃
 

where the ratio of resistors Rf-LP and Ri-LP set the active circuit gain. As with the high pass 

filter, Cf-LP may be found to configure the desired low-pass cutoff frequency. A diagram 

of a band-pass filter can be seen in figure 16 below.  
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Figure 16: Band Pass Filter Circuit 

 

1.3.4 Active Full Wave Rectifier 

 

 

Due to the sinusoidal AC nature of EMG signals, an active full wave rectifier can 

be used in an EMG circuit to generate an analog DC signal that can easily be measured 

and interpreted by a microprocessor. A diagram of an active full wave rectifier can be 

seen in figure 17 below. 

 

Figure 17: Active Full Wave Rectifier Circuit 
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This circuit functions by first acting as a voltage divider when VIN is positive. This is due 

to the diode creating an open circuit, where current is only allowed to travel through 

resistors 2RRec, RRec, and 3RRec. The function for a positive waveform input signal is given 

by the following expression: 

𝑉𝑜 = 𝑉𝑖

1𝑅𝑅𝑒𝑐 + 2𝑅𝑅𝑒𝑐

1𝑅𝑅𝑒𝑐 + 2𝑅𝑅𝑒𝑐 + 3𝑅𝑅𝑒𝑐
=

1

2
𝑉𝑖 

Next, when VIN becomes negative, the op-amp becomes active, the diode closes, and the 

circuit acts as an inverting amplifier, therefore making VOUT positive. The equation for a 

negative waveform input is shown below. 

𝑉𝑜 = −𝑉𝑖

1𝑅𝑅𝑒𝑐

2𝑅𝑅𝑒𝑐
= −

1

2
𝑉𝑖 

1.4.1 Introduction to the Arduino Microcontroller and Programming Environment 

 

To create a functional output from a measured EMG signal, a method of 

analyzing and processing that signal into a meaningful output is required. This can be 

achieved through the use of a microcontroller electronics board, which is a small 

computer that can perform a host of tasks, such as processing input and output signals, 

performing logic operations and mathematical calculations, and read and write data. 

These desired tasks are coded into the microcontroller through software that is written 

into the onboard memory. For the purposes of EMG signal analysis, a microcontroller 

electronics board can easily interface with multiple discrete analog circuits 

simultaneously to process the measured signal for a desired means. 

One such microcontroller electronics board platform that has gained significant 

popularity amongst hobbyists and inventors is the Arduino Electronics Platform. This 
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platform is open-source, in that the coding and hardware platforms, and numerous coding 

guides and examples are provided for free use on the internet. No matter the Arduino 

electronics board selected, the hardware and software are easy to understand and use. 

An Arduino program is called a “sketch”, and is comprised of code that closely 

follows C and C++ programming languages. This allows anyone with a basic familiarity 

of these languages to easily create sketches of their own [13]. 

For projects that interface with a PC, the Arduino Leonardo electronics board is 

desirable, as it has built-in USB communication features. These features allow the 

microcontroller to easily connect with a PC and act as a virtual keyboard, mouse, or 

serial/COM device. The central processing unit for this board is an ATmega32u4 

microchip, which allows for communication with 20 digital input/output pins, 12 of 

which can act as analog inputs. This board runs at 16 MHz, has a discrete micro USB 

connection, power input, reset button, and several LED lights [14]. The layout of this 

board can be seen in figure 18 below.  

 

Figure 18: The Arduino Leonardo Microcontroller [14] 
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1.5.1 Summary and Aim of Thesis 

 

 

In the field of electronic sensors and measurement systems, the myoelectric 

detection circuit, which can measure and interpret the voltage potentials generated from 

contracting muscles in the body, presents opportunities to interface with the human body 

in novel and interesting ways. For individuals with limited or no use of their hands, but 

who have a wish to use personal computers, an EMG measurement and interface device 

specifically configured, could allow them to do so. In addition to disabled individuals, 

this EMG interface device could also provide a novel means for anyone to interact with 

and use a computer, and provide more degrees of input than generally available. 

The general aim of this thesis project is to do just that; create a specifically 

designed EMG measurement device that interfaces with a personal computer, and allows 

for voluntary user control. This device would incorporate a general-purpose analog 

myoelectric detection circuit that would perform the real-time signal isolation, filtering, 

and amplification required for a clean and usable EMG signal. The physical user interface 

would utilize surface electrodes that would easily configure to target the specific muscle 

groups of interest. Signal processing and recognition techniques, as well as serial I/O 

communication with the computer, would be accomplished using an integrated Arduino 

Leonardo microcontroller. Overall, the device would be intuitive to use, self-contained, 

and provide a means to use a personal computer in ways unlike those of traditional 

methods. 
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Chapter 2 

SPECIFICATIONS 

 

2.1.1 EMG Interface Device Introduction 

 

 

The following section details the general requirements and specification of the 

EMG interface device. These specifications describe the design elements and rationale 

for this device, starting with the selected PC input interface, target user input and muscle 

groups, measurement electrode configuration, analog circuit elements, and digital signal 

processing and PC I/O. The information presented here will form the foundation from 

which the physical manufactured EMG interface device will take shape. 

2.1.2 PC Input Specifications 

 

 

When interfacing with a PC, there are several methods reading input from a user, 

such as a keyboard, mouse, or joystick, etc. The Arduino Leonardo microcontroller can 

simulate all three of these by loading the desired library file, and connecting through a 

USB interface. For the purposes of this EMG interface device, it is desirable to simulate 

hardware that maximizes the number of use cases for the user’s input. Most PCs today 

provide a wide array of accessibility options, such as an on-screen keyboard where text 

can be “typed” out using a PC mouse as shown in figure 19 below.  
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Figure 19: Example of PC On-Screen Keyboard 

 

For this reason, movement of a mouse cursor, with the ability to “left click”, was selected 

as the input method to simulate for the EMG interface device. 

For an easy-to-understand mouse movement system, it is necessary to have 

enough EMG signal channels such that all cursor degrees of freedom can be generated. 

To accomplish this, the device user’s forearm was targeted. The wrist motions shown in 

figure 20 below would generate an EMG signal at the target activator muscle (figure 21), 

and would be captured by one of four input electrode channels. 

 

Figure 20: Targeted movements for EMG signal capture [15] 
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Figure 21: EMG Channel Target Muscles [16] 

 

Table I below summarizes the cursor direction, intended wrist motion, and target 

activated muscle group for each EMG measurement channel.  

Table I: Summary of target motion for each EMG signal 

Channel Cursor Direction Intended Wrist Motion Target Activated Muscle 

1 Up Radial Flexion Extensor Carpi Radialis 

2 Down Ulnar Flexion Flexor Carpi Ulnaris 

3 Left Flexion Flexor Carpi Radialis 

4 Right Extension Extensor Carpi Ulnaris 

 

2.1.3 Measurement Electrode Configurations 
 
  

 To accurately isolate and detect EMG signal patterns corresponding to input 

directions across a user’s forearm, an array of electrodes will be required. For ease of 

installation and general user comfort, disposable adhesive-backed surface electrodes shall 

be used as part of the EMG interface device. These electrodes will be placed in adjacent 
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pairs parallel to the length of the target muscle, such that a differential signal can be 

measured between both electrodes. As presented in previous sections, this differential 

electrode configuration, when coupled with a differential amplifier circuit, allows for the 

desired part of the signal (EMG) to be amplified, while the undesired electrical noise is 

attenuated. All measured signals shall be referenced to electrical ground of the user, 

through the use of a single surface electrode connected to an EMG-inactive region of the 

body. While the use of surface electrodes will limit signal detection to superficial muscle 

groups, a calibration routine shall be employed that will identify and establish EMG 

signal activation thresholds for each target muscle.   

2.1.4 Myoelectric Circuit Analog Unit Specifications 

 

 

For this EMG interface device, each input channel shall be captured and 

processed by a discrete myoelectric circuit unit. This unit will read a 1-10 mV 50-150 Hz 

AC EMG signal across two surface electrodes placed at the target muscle, amplify the 

differential component of the signal, and reject the common-mode through the use of an 

instrumentation amplifier with a CMRR of 80 dB or greater. Next, the signal will pass 

through an active band-pass filter, where further signal processing will amplify the EMG 

signal with a passing bandwidth of 20-500 Hz, and attenuate all other components 

attributed to noise. Next, an active full wave rectifier will convert the AC signal to DC 

and provide additional circuit gain. Finally, a non-inverting op-amp will provide final 

gain tuning to ensure a 0-5V DC signal is transferred to the microprocessor. A block 

diagram of the myoelectric circuit unit can be seen in figure 22 below.  
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Figure 22: Myoelectric Circuit Unit 

 

2.1.5 Microprocessor and PC Interface 

 

 

For movement of the mouse cursor in all four directions, each of the myoelectric 

circuit units will process one EMG channel, and pass this DC signal to a discrete analog 

input of an Arduino Leonardo microcontroller. This microcontroller will interpret the 

incoming 0-5V DC analog EMG signal, and convert it to a digital Boolean value. This 

digital value will first be used to calibrate the input threshold where mouse cursor 

movement will begin. Once this value has been established, an EMG signal input greater 

than the threshold will trigger mouse cursor movement. This movement command will be 

transmitted to the PC via USB serial I/O. Figure 23 below shows a block diagram for the 

overall EMG interface device, comprising four discrete input channels.  
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Figure 23: Block Diagram for PC EMG interface Device 

 

2.1.6 Summary of EMG Interface Specifications 

 

 

 As presented in this chapter, the EMG interface device will employ an electrical 

circuit, where EMG signals will be captured at target muscle groups via discrete analog 

circuit units. These analog circuit units will connect to a surface electrode pair and 

measure AC EMG signals, which will then be filtered, amplified, and rectified to DC 

using operation amplifiers, resistors, capacitors, and diodes. Next, an Arduino Leonardo 

microcontroller will read the DC EMG signal supplied by the analog circuit unit, and 

compare the value to a calibrated threshold. When this value exceeds the threshold, the 

microcontroller will command a PC, connected via USB, to move a mouse cursor in the 

user’s desired direction.  
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Chapter 3 

DESIGN AND METHODS 

 

3.1.1 Interface Design Introduction 

 

 

Utilizing the general specifications for the EMG interface device, a circuit design 

layout was created with general parameters assigned. To confirm the function of circuit 

elements and parameters selected, testing was performed in simulated and physical 

circuits. The results of these tests ultimately influenced the part selection and 

manufacturing of the final interface device. 

Upon confirming the various design elements, several fabrication processes were 

employed to create a functioning device. Details about the device design and assembly, 

components used, and manufacturing processes employed will be presented in this 

chapter. 

3.2.1 Myoelectric Circuit Unit Simulation with PSpice 

 

A simulation of the myoelectric sub-circuits was created in OrCAD PSpice to 

evaluate signal gain through resistor selection, signal filtering, and overall circuit 

function. For this test, a LM6132 operation amplifier model was selected due to its large 

gain potential and CMRR of 100 dB. Resistor and capacitor values were selected for the 

gain and filtering frequency desired using the governing equations listed in chapter 1. 
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3.2.2 Differential Amplifier 
 
 

A differential amplifier was constructed in OrCAD Spice with a single 10 mV 

VSIN 10 Hz AC source connected to an op-amp to simulate an EMG input source. The 

second input op-amp terminal was wired to ground. The reason these were set at two 

different potentials was to simulate a differential source signal. LM6132 op-amps were 

used and connected to +9V DC and -9V DC power supplies. A target gain of 150 was set 

by connecting 150K and 1K resistors. A diagram of the simulated differential circuit can 

be seen in figure 24, and a summary of the voltage and resistor values can be found in 

table II below.  

 

 
 

Figure 24: Differential Amplifier 
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Table II: Voltage and resistor values for simulated differential amplifier 

Source Value Units 

VSIN Amplitude 0.01 V 

VSIN Frequency 10 Hz 

Op-Amp Supply ±9 V 

R111 1k Ω 

R112 1k Ω 

R211 150k Ω 

R212 150k Ω 

 

When running a transient simulation for 1 second, with a time step of 1ms, the 

following response was observed showing the input V(V9:+), and output V(R211:2) 

voltages. This response can be observed in figure 25 below.  

 

 
 

Figure 25: Transient response for Differential Amplifier 

 

When observing the transient response for the differential amplifier, a clear 

amplification of the AC portion of the input signal (red) can be seen relative to the output 
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(green). While the output signal was observed to be centered around +0.9 V due to an 

inherent characteristic of the LM6132 op-amp model, the relative input and output 

amplitudes can be compared to determine the total circuit gain. This op-amp gain, ADiff 

can was calculated as shown below. 

𝐴𝐷𝑖𝑓𝑓 =
(2.5𝑉 − .9𝑉)

0.01 𝑉
= 160 

To confirm the concept of differential amplification, in which the common signal 

shared between both inputs (known as the common-mode signal) is rejected and only the 

difference between the two (differential mode signal) is amplified, an additional VSIN 

AC input was connected to the second input terminal. This second input had the same 

parameters as the first input, and therefore formed a common-mode signal. Figure 26 

shows the modified circuit. 

 

Figure 26: Differential amplifier with common-mode source 
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Another transient response plot was generated to demonstrate the effect of the 

common-mode source. Figure 27 shows the resulting input vs. output characteristics. 

 

Figure 27: Transient response of common-mode source 

 

In evaluating the transient response, it is observed that when both inputs of the 

differential amplifier are the identical, the AC portion of the signal is not amplified. More 

specifically, the red input AC voltage V(V9:+) can be seen to have no corresponding 

amplification in the green output V(R211:2) voltage. Again, it is important to note that 

the cause of the +0.9 V shift of the output signal from 0 V is attributed to the LM6132 

op-amp used.  

3.2.3 Band Pass Filter 

 

For the purpose of additional filtering, a band-pass filter was simulated using the 

LM6132 op-amp model. The selection of the filtering bandwidth was set to 20-500 Hz, as 

EMG signal frequencies have been observed to fall within this range. For this circuit, all 

other electronic interference, which typically occurs in the range of 1 kHz and greater, 

should be filtered out. Again, a 10 mV AC source was selected. The LM6132 op-amps 
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were connected to +9V DC and -9V DC power supplies, and a target gain of 100 was set 

by selecting resistor pairs with factor of 10 increases at both the high-pass and low-pass 

portions of the circuit. CHP, and CLP were selected by rearranging the governing equations 

listed in chapter 1, and solving for their values based on the desired cutoff frequencies. 

The resulting band-pass filtering circuit can be observed in figure 28 and the values of 

resistors and capacitors selected can be found in table III below. 

 

 

Figure 28: Band-Pass Filter Circuit 

 
 

Table III: Voltage, resistor, and capacitor values for simulated band-pass filter 

Source Value Units 

VAC 0.01 V 

CHP 10 x 10-6 F 

R1HP 800 Ω 

RfHP 8k Ω 

R1LP 300 Ω 

RfLP 3k Ω 

CLP 0.1 x 10-6 F 
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To observe the resulting frequency spectrum from this circuit design, an AC sweep was 

simulated with a frequency range of 1 to 10 kHz, where frequency was plotted on a 

logarithmic scale. The resulting plot can be seen in observed in figure 29 below. 

 

 
 

 

Figure 29: Frequency spectrum for band-pass filter in Voltage vs. Log(Frequency) 

 

The resulting waveform of voltage vs. log(frequency) for the input (red) versus the output 

(green) was found to follow a normal distribution. The output was observed to show an 

amplified signal primarily within the 20-500 Hz range, with all other frequencies being 

attenuated. When plotted on a linear scale, the operating band-width can better be 

observed (figure 30). 
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Figure 30: Frequency spectrum for band-pass filter in voltage vs. Frequency 

 

3.2.4 Active Full Wave Rectifier 

 

 

To transform the negative portion of the AC input signal to positive, an active full 

wave rectifier was simulated using an LF411 op-amp model. Resistor values were 

selected according to the governing equations listed in the introduction, such that the gain 

of the rectified output signal (1/2) would be consistent, and independent of the sign 

(positive or negative) of the input signal. A 5V AC source VPULSE was created to 

generate the input waveform, and, and the output was measured across the 3Rr resistor. 

The active full wave rectifier circuit can be observed in figure 31 below, and the values 

of resistors selected can be found in table IV below. 



41 

 

 

Figure 31: Active Full Wave Rectifier Circuit 

 

Table IV: Voltage and resistor values for simulated full wave rectifier 

Source Value Units 

VPULSE 5 V 

2Rr 2k Ω 

Rr 1k Ω 

3Rr 3k Ω 

 

When running a transient simulation for 100 ms, with a time step of 5 ms, the following 

response was observed showing the input V(2Rr:1), and output V(3Rr:2) voltages. This 

response can be observed in figure 32 below.  
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Figure 32: Transient response rectified signal 

 

Evaluating this transient response, the output signal V(3Rr:2) shown in blue was 

observed to follow a DC trending at 2.5 V, when an AC input waveform V(2Rr:1) of 5 V, 

shown in green was applied. This confirms intended circuit gain of 0.5 when the input 

signal is positive, and -0.5 when the input signal is negative. 

3.3.1 Myoelectric Circuit Unit Fabrication  

 

 The following section details the iterative design, prototyping, and manufacturing 

process of the myoelectric circuit unit.   

3.3.2 Breadboard and Protoboard Circuits 

 

After simulating the differential amplifier, band pass filter, and full wave rectifier 

circuit elements in PSPICE and confirming the desired output signal characteristics were 
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achieved, a physical circuit was constructed according to the circuit layout shown in 

figure 33 below.  

 

Figure 33: Myoelectric Circuit Unit Diagram 

 

Referencing the layout above, a physical circuit was constructed first on a solderless 

breadboard, then on a masked and soldered prototyping board. Resistor values were 

selected to provide a total maximum circuit signal amplification, AMCU, of 5000. This 

selection was made assuming a 1.0 mV input EMG signal, and a desired output of 0-5 V 

to operate within the measurement range of the Arduino Leonardo Microcontroller. A 

calculation of the total circuit gain can be seen below. 
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𝐴𝑀𝐶𝑈 =
𝑉𝑜

𝑉𝑖
=

𝑅𝐹−𝐷𝑖𝑓𝑓

𝑅1−𝐷𝑖𝑓𝑓
∙

𝑅𝐹−𝐻𝑃

𝑅1−𝐻𝑃
∙

𝑅𝐹−𝐿𝑃

𝑅1−𝐿𝑃
∙

1𝑅𝑅𝑒𝑐 + 2𝑅𝑅𝑒𝑐

1𝑅𝑅𝑒𝑐 + 2𝑅𝑅𝑒𝑐 + 3𝑅𝑅𝑒𝑐
∙

𝑅𝐹−𝑇𝑢𝑛𝑒

𝑅1−𝑇𝑢𝑛𝑒

=
10𝑘Ω

1𝑘Ω
∙

8𝑘Ω

800Ω
∙

3𝑘Ω

300Ω
∙

1𝑘Ω + 2𝑘Ω

1𝑘Ω + 2𝑘Ω + 3𝑘Ω
∙

10𝑘Ω

1𝑘Ω
= 5000 

 

To provide effective signal filtering passband of 20-500 Hz, capacitor values were 

selected according to the PSPICE simulations performed. The constructed and soldered 

prototyping board circuit can be observed in figure 34 below. 

 

Figure 34: Myoelectric Circuit Unit Prototype 
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To provide the analog signal gain for this circuit, general purpose Texas 

Instruments LF411 operational amplifiers were used throughout this circuit. These 

amplifiers proved to be ideal for this circuit due to their high input impedance (1012 Ω), 

low input offset voltage, low supply current (2 mA), and large gain bandwidth [17]. The 

LF411 op-amp and pin layout can be seen in figure 35 below.  

 

Figure 35: TI LF411 Operational Amplifier [17] 

 

Each op-amp was supplied power to both the positive and negative rails through the use 

of two 9V batteries. To help eliminate power fluctuations, 10 µF capacitors were 

connected to each power rail supply. 

The signal gain present in each circuit block was adjustable through the use of 0-

10kΩ potentiometers, and signal output could be toggled on and off with a dual-pole 

switch. Input signals were picked up via surface electrodes placed at the target muscle, 

and a reference electrode was connected to circuit ground. 

To confirm circuit construction, two input electrodes were placed on the biceps 

brachii, with one reference electrode placed on the triceps brachii. Next the output of the 
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circuit was connected to an analog multimeter, which was set to DC voltage measure 

mode. Upon voluntary contraction of the biceps muscle, a peak output signal was 

observed in the 1-5 V DC range, as shown in figure 36 below.  

 

Figure 36: EMG test of Breadboard Prototype Circuit 

 

3.3.3 PCB Circuit Design 

 

 

After building the breadboard prototype circuit and confirming the circuit 

functions as intended, a second version of the myoelectric circuit unit was created with 

the goal of reducing circuit complexity, reducing power draw, reducing size, and 

improving the circuit assembly and construction. To achieve these goals, a printed circuit 

board (PCB) was designed using software Express SCH and Express PCB from the 

online company Express PCB. Once the circuit layout was constructed in the Express 

SCH software, it was then linked to the Express PCB software, where physical wiring 

connections to each circuit element (resistors, capacitors, op-amps, etc.) were made. After 

finishing the wiring diagram on a 1.5” x 2.5”, double sided PCB, the linked SCH 
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schematic was used to verify all connections. Finally, the completed PCB layout was 

purchased and ordered through the software. The completed schematic built in the 

Express SCH interface, and finished PCB can be seen in figures 37 and 38 respectively.  

 

Figure 37: Myoelectric Circuit Unit Constructed in Express SCH software 
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Figure 38: Myoelectric Circuit Unit PCB Layout 

  

To reduce the complexity of the PCB layout, the Texas Instruments LM324A 

quadruple operational amplifier was used. Two quad op-amps provide enough input and 

output terminals to construct the eight operational amplifiers present in the circuit. 

Similar to the LF411, this amplifier has a low supply current of 0.8 mA, good CMRR of 

80 dB, and a large gain bandwidth of 100 V/mV [18]. This amplifier can also act in 

single and dual power modes (for DC and AC respectively), where the VCC and GND pins 

can also function as V+ and V- inputs.  A diagram of the LM324A quad operational 

amplifier can be seen in figure 39 below. 
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Figure 39: TI LM324AN Quad Op-Amp [18] 

 

3.3.4 PCB Circuit Assembly 

 

 

 After receiving the final dual layer PCB, components were installed according to 

their respective values and indicated positions. Once fully seated, components were 

soldered to the PCB, with each connection verified with a multimeter. This verification 

was performed on all three of the PCB circuits that were received. 

 For individual gain tuning of each circuit element, 0-10k Ω potentiometers were 

used, and for power supply spike smoothing, two 10 µF capacitors were connected in 

parallel with the positive and negative supply voltages. For all of the supply, input, and 

output terminals, quick connect male terminals were installed. Table V lists the 

components installed at each terminal of the myoelectric circuit unit. For the complete 

bill of materials, including component source, refer to section A of the appendix. The 

fully assembled myoelectric circuit unit can be seen in figure 40 below. 
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Figure 40: Fully Assembled Myoelectric Circuit Unit PCB 
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Table V: List of components for Myoelectric Circuit Unit 

Name(s) Type Units 

R1-LP 330 Ω 

R1-HP 820 Ω 

RDA1, RDA2, Rec, ROA1 1 kΩ 

2Rec 2 kΩ 

3Rec 3 kΩ 

RDAY1, RDAY2, Rf-HP, Rf-LP, ROA2 0-10 Potentiometer kΩ 

C-LP 0.1 µF 

C-HP, CS11-, CS12+ 10 µF 

C-Rec 470 µF 

DRec N1 Zener Diode N/A 

U1, U2 TI LM324AN quad op-amp N/A 

+9V, -9V, Gnd, J1, J2 Molex 2-Pin Male Connector N/A 

 

3.3.5 Solderless Breadboard Circuit 

 

 

Once all components were installed and soldered on the three myoelectric circuit 

unit PCBs, a fourth myoelectric circuit unit was constructed using a small solderless 

breadboard. This circuit was built using the same components as the PCB version, with 

additional wiring to bridge component connections. As with the PCB circuits, continuity 

was verified for all wiring connections, and capacitor and diode polarity were confirmed 

using a multimeter.  
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3.4.1 EMG Interface Device Assembly 

 

 

 This section details the design and assembly of additional circuit components, 

EMG measurement wiring, and the EMG interface device enclosure.  

3.4.2 Power Bridge Circuit 

 

 

 To provide power to each of the myoelectric circuit units, a bridge circuit was 

created on a solderless breadboard. This circuit relays power from both the Arduino 

Leonardo’s 5V USB supply terminal (connects to (+) positive input), and a 9V battery 

(connects to (-) negative input) to all eight of the myoelectric circuit unit LM324AN op-

amps. Also, the positive power source could be switched to run from a 2nd 9V battery 

instead of Arduino power if desired. In addition to power management, this circuit also 

supplied the input terminal for the electrode ground, and branched the connection to each 

of the four myoelectric circuit units. The layout of this circuit is shown in section 3.4.5 

below.  

3.4.3 EMG Measurement Wiring 

 

 

 Four dual-connector wires were constructed for each of the myoelectric circuit 

units. Each wire bundle was approximately 3’ in length, and had two button connectors 

that easily snap onto standard EMG/ECG surface electrodes. Polystyrene heat heat-shrink 

was placed over the wires for easier handling, and protection. Finally, metal connector 

crimps were attached to the end of each exposed wire, and a dual slot female connection 

terminal was installed. A fully assembled EMG measurement wire can be seen in figure 

41 below. 
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Figure 41: EMG Measurement Wire Bundle 

 

3.4.4 Device Enclosure and Mounting 

 

 

 Once all four of the myoelectric circuit units were constructed, they were 

arranged in a transparent plastic enclosure, measuring 11” x 6.5” x 2”. For permanent 

mounting, 1/16” holes were drilled in pairs at the four corners of each PCB, and 40-gauge 

wire was routed through the holes in the PCB and the enclosure, and finally twisted to 

secure. Both solderless breadboard circuits were mounted to the enclosure through an 

adhesive backing. 

 Next, the Arduino Leonardo microcontroller and 9V battery power sockets were 

arranged in the enclosure. Both of these components were installed and mounted by 

drilling two 1/8” diameter holes in the enclosure, and fastened with two plastic 4-40 

socked head cap screws and #4 hex nuts.  
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 For each of the myoelectric circuit units, breakout wiring was soldered to the final 

amplifier terminal, ROA2. Dial potentiometers operating at 0-10 kΩ were attached to this 

breakout wiring, to provide an easy-to-use interface for final amplifier gain tuning. 

Appropriately sized holes were drilled in the front wall of the enclosure, and the 

potentiometers were installed through the holes and fastened. 

 To allow for all wiring to pass through the enclosure, holes were also drilled for 

the microcontroller USB cable, four EMG inputs, and grounding electrode. Finally, 

access holes were drilled for two mounted power switches.  

3.4.5 EMG Interface Device Summary 

 

 

 The EMG interface device, comprised of four Myoelectric Circuit Units, an 

Arduino Leonardo microcontroller, battery terminals, a power bridge circuit, and EMG 

electrode wiring, was connected and assembled inside of a transparent enclosure. A 

detailed diagram of the device can be seen in figure 42 below, with additional pictures 

available in section B of the appendix. 
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Figure 42: The EMG Interface Device 

 

3.5.1 Arduino Leonardo Software 

 

 

 To achieve the desired software specifications presented in chapter 2, a sketch 

was created in the Arduino software interface. This sketch allowed for an analog signal to 

be read and converted to a digital Boolean value. As multiple EMG values were read in, a 

calibration routine allowed for the device user to specify the threshold at which mouse 

cursor movement would begin. Next, when a measured EMG signal value exceeded the 

activation threshold, the software would command the connected PC to move the mouse 

cursor in the specified direction via a serial USB connection. Also, mouse cursor speed 

could be controlled by the intensity of the generated EMG signal, and a mouse “left 

click” was simulated when multiple inputs were activated simultaneously. 
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3.5.2 Software Review 

 

 

 The software sketch that was installed on the Arduino Leonardo microcontroller 

as part of the EMG interface device, was comprised of 116 lines of code written in the 

Arduino programming language. Debugging was carried out both through the Arduino 

interface serial monitor, where inputs could be sent and values displayed, and through 

physical testing of the EMG interface device, where generated signals would move a PC 

mouse cursor. 

 The first step in the sketch was to initialize the mouse cursor movement library, 

where the appropriate hardware driver would be installed on the microcontroller. Next, 

many different variables were declared, such as analog pin numbers for the four EMG 

inputs, activation thresholds from which cursor movement would begin, and various logic 

flags, cursor movement variables, and EMG scaling factors. After all declarations had 

been made, the setup code for the program would commence, where the serial USB 

connection would be established, and the mouse movement routine would be activated. 

Next came the main loop of the program, where first the EMG threshold 

calibration routine would start. This routine would alternate between providing written 

instruction via the serial monitor, reading the incident EMG signal, and calculating the 

activation threshold at which mouse cursor movement would begin. First the user would 

be instructed to flex their muscle corresponding to one cursor movement direction and 

hold for several seconds. Next, a looping routine would collect many readings from an 

analog input corresponding to the direction specified, and sum the readings into one 

integer variable. This variable would then be divided by the number of readings to 

calculate the average value. This value would then be multiplied by a scaling factor, and 



57 

 

used to define the EMG activation threshold for mouse cursor movement. After 

calibrating the activation threshold for one input direction, the routine would then 

proceed to instruct, measure, and calculate the threshold for the other three inputs. 

Once all calibration steps were complete, the program would then transition to the 

mouse cursor movement routine. This routine relied on a series of logic conditions where 

the current measured analog EMG input would be compared to the previously established 

activation threshold. As soon as one of the logic conditions was found to be true, the 

mouse cursor would be instructed to move in the specified direction a set number of 

pixels. Next, a software delay routine would be initiated, where the proportional value of 

the EMG reading relative to the activation threshold would decrease the delay time 

specified. The purpose of this delay routine was to give the user direct control over the 

speed of the cursor. This would be achieved through intentional flexing of the target 

muscle, which would increase motor unit recruitment and magnitude of the generated 

EMG signal. 

At the end of the program, a routine was created that allowed for a mouse “left 

click” button to be controlled. This was carried out through a dual-conditional logic 

statement, which evaluated two of the four measured EMG inputs. When the device user 

intentionally flexed two of the measured inputs forcefully, which could be achieved by 

forming a fist, the program would register this event and command the mouse to “left 

click”. For the complete Arduino sketch code, with comments included, refer to section C 

of the appendix. 

In summary, a software program was written in the Arduino language that was 

loaded onto the Arduino Leonardo microcontroller. Contained in this program was the 
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necessary library files to establish a USB connection with a PC and simulate mouse 

hardware drivers. Once this connection had been made, the program allowed for the user 

to calibrate the EMG interface device to their specific measurement thresholds. After 

establishing these thresholds, the program would monitor four discrete analog inputs, 

where EMG signals captured by the myoelectric circuit units would be read in. As soon 

as these inputs read above the calibration settings, the program would command the 

mouse cursor to move in the user’s desired direction.  

3.6.1 Test Methods 

 

  

 The following section details the methods applied to conduct two tests related to 

the EMG interface device. The first test conducted involved measurement of the current 

draw, in an effort to estimate the available device use time. Finally, the performance and 

efficacy of the device was evaluated through a human model test, which involved typing 

on an on-screen PC keyboard by moving a cursor with the device.  

3.6.2 Device Current Draw Test 

 

 

 For each of the iterations of the myoelectric circuit units (solderless breadboard, 

soldered protoboard, and PCB), a current draw test was conducted to evaluate device 

battery consumption. Two digital multimeters were used, and set to current measuring 

mode in milliamps. Current was measured by connecting a multimeter in series for both 

the positive and negative power supplies. Data was recorded when the circuit was in the 

“on” state, but idle, as well as the maximum EMG signal amplification state. Total 

current was determined by adding the measurements from both connection multimeters.  
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 Once the test had been completed on each iteration of the myoelectric circuit unit, 

the test was repeated for the entire EMG interface device. This time, current was 

measured for the negative 9 V battery power supply, and the positive 5 V supply from the 

Arduino microcontroller. The data collected for both of these tests is presented in the 

results section of the next chapter.  

3.6.3 Device Efficacy in Human Model Test 

 

 

 To evaluate performance of the EMG interface device, a test was created in which 

the device user would perform a series of instructions while being timed. The purpose of 

this test was to quantify the efficacy of the device, where the accuracy and speed could be 

measured and compared to a control. 

 To perform the test, the device user was instructed to type out the full alphabet 

using an on-screen keyboard, by moving the mouse cursor to select the letter, and “left 

clicking” on the key to type. While this test was performed, the user’s time to completion 

was measured. Also, if the user mistakenly missed or clicked on an un-desired letter, they 

were asked to move on to the next letter. This was done to evaluate the device accuracy 

and general ease of use. 

 First, to establish a control, the user was asked to type out the full alphabet three 

times using a standard PC mouse. Next, the user was instructed to perform the same test 

three times using the EMG interface device with electrodes only connected to the 

forearm, and ground reference. The muscles in the forearm that were target were the 

flexor carpi ulnaris and radialis, as well as the extensor carpi ulnaris and radialis longus. 

An example of the electrode placement used for this test can be seen in figure 43 below.  
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Figure 43: Electrode placement on forearm 

 

Finally, the test was repeated with two pairs of electrodes placed over the flexor 

carpi radialis and extensor carpi ulnaris muscles on the forearm (for cursor move left and 

right), and two pairs connected to the user’s biceps brachii and triceps brachii muscles 

(for cursor move up and down). Different from the previous test, cursor movement up 

and down would be controlled by elbow flexion and extension, instead of wrist deviation. 

The electrode placement used in this test can be observed in figure 44 below. 
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Figure 44: Electrode placement on forearm and upper arm 

 

 To provide more comfort when performing mouse “left click”, a foam stress ball 

was held in the user’s hand and squeezed to activate the forearm muscles simultaneously. 

Two device users were tested for all three tests. The results of these tests can be seen in 

chapter 4. 
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Chapter 4 

RESULTS 

 

 In this chapter, data collected for two tests is presented; EMG interface device 

power draw, and device efficacy in human model test.  

4.1.1 EMG Interface Device Current Draw Results 

 

 

 The results of the myoelectric circuit unit current draw test can be observed in 

figure 45 below. Data was collected for the three iterations of the circuit; the solderless 

breadboard prototype, the soldered protoboard, and the final through-pin (DIP) masked 

PCB circuit. Current was measured in milliamps (mA) for each circuit, both in an idle 

state and maximum EMG signal amplification resulting from muscle flexion.  

  

 

Figure 45: Results from myoelectric circuit unit current draw test 
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For the entire EMG interface device (EID), total current draw was measured for both the 

idle and max EMG flex states. The results of this test can be seen in figure 46 below. 

 

 

Figure 46: Results from EMG Interface Device current draw test 

 

4.1.2 Device Efficacy in Human Model Test Results 

 

 

 The results of the device efficacy human model test can be found in table VI 

below. Data was collected from two device users, one male of average build and one 

female of slender build, both age 32. This table specifies the device user, test type 

performed, test number, individual test time, average test time, individual test accuracy, 

average test accuracy, and generated keystrokes. Accuracy was determined by evaluating 

the entered keystrokes relative to the standard 26 letter alphabet. An incorrect letter entry 

or duplicate entry was counted as 1/26 wrong. Average accuracy was calculated from the 

results of the 3 tests.  
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Table VII: Device Efficacy Results 

User 
Test 

Type 
Test 

Time 

(min) 

Average 

(min) 
Accuracy 

Average 

(%) 
Keystrokes 

Male 

32 y/o 

PC Mouse 

(Control) 

1 0:27 

0:24 

26/26 

100% 

Abcdefghijklmnopqrstuvwxyz 

2 0:22 26/26 Abcdefghijklmnopqrstuvwxyz 

3 0:22 26/26 Abcdefghijklmnopqrstuvwxyz 

EID:  

Forearm 

1 2:41 

2:11 

26/26 

99% 

Abcdefghijklmnopqrstuvwxyz 

2 2:00 26/26 Abcdefghijklmnopqrstuvwxyz 

3 1:54 25/26 Abcdefghijklmnopqrdstuvwxyz 

EID: 

Forearm + 

Upper arm 

1 1:45 

1:36 

24/26 

91% 

Abcdefghijklmnopqrstuvrqwxyz 

2 1:33 23/26 Abcdefghihjklmniopqrstuvewxyz 

3 1:31 24/26 Abcdefghuijklmnopqrstuvwcxyz 

Female 

32 y/o 

PC Mouse 

(Control) 

1 0:26 

0:22 

26/26 

100% 

Abcdefghijklmnopqrstuvwxyz 

2 0:21 26/26 Abcdefghijklmnopqrstuvwxyz 

3 0:19 26/26 Abcdefghijklmnopqrstuvwxyz 

EID: 

Forearm 

1 3:11 

2:42 

25/26 

87% 

Abcdefghijklmniopqrstuvwxyz 

2 2:09 24/26 Abcdefghijklmnopqerstyuvwxyz 

3 2:47 22/26 Qabcdefghijklmnopqrewstucvwxyz 

EID: 

Forearm + 

Upper 

Arm 

1 2:55 

2:19 

19/26 

82% 

Abcdefghuijjklmnoopqqerastyuvwxyz 

2 2:14 22/26 Avbbcdefghijklmbnopqrqstuvwxyz 

3 1:48 23/26 Aabcdefghijklmnopqrzstuvqwxyz 
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Chapter 5 

DISCUSSION AND CONCLUSIONS 

 

5.1.1 Discussion of Current Draw Test Results 

 

 

 Evaluating the results from the current draw test for the myoelectric circuit unit, it 

can be observed that a clear power efficiently improvement was gained through each 

subsequent design iteration. From the initial breadboard prototype, to the final DIP PCB, 

an 88.3% power efficiency improvement was gained for the idle state, and an 82.3% 

improvement for max amplification. This substantial current draw improvement is likely 

attributed to shorter wiring/trace paths, fewer components, and primarily, the change 

from individual LF411 op-amps, to the LM324A quad op-amp. 

 For the EMG interface device current draw test, results showed a maximum 

current draw for the idle state of 11.8 mA, and 15.1 mA for max amplification. This 

measurement reflected the total current draw from both the positive Arduino supply, and 

the negative supply from a 9V battery. Since the Arduino supply is powered by PC USB, 

the limiting factor for device use time would be the 9V battery supply. Assuming a 50% 

duty cycle between the idle and max current draw states, 50% of the power drawn from 

the negative supply, and a 600 mA-hours life for an Energizer 9V battery, the following 

calculation was made to determine the device use time [19]. 

𝐷𝑒𝑣𝑖𝑐𝑒 𝑈𝑠𝑒 𝑇𝑖𝑚𝑒 =  
600 𝑚𝐴𝐻𝑜𝑢𝑟𝑠

(
11.8 𝑚𝐴 + 15.1 𝑚𝐴

4 )
= 44.6 𝐻𝑜𝑢𝑟𝑠 
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5.1.2 Discussion of Device Efficacy Human Model Test Results 

 

 

 Upon reviewing the results from the device efficacy human model test, it was 

observed that the device efficacy relative to the standard PC mouse control was less in 

both metrics. For the fastest time to complete electrode configuration, “forearm + upper 

arm”, the average time relative to the mouse control was found to be significantly slower, 

with over a minute slower for the male user, and nearly two minutes slower for the 

female user. The accuracy of alphabet entry was also found to be less relative to the 

mouse control, but the “forearm” tests for the male subject were found to be close to 

mouse control, with an entry accuracy of 99%. 

 Comparing the EMG interface device tests performed, it was observed that the 

“forearm + upper arm” electrode configuration completed the test significantly faster in 

all tests performed, with the male user finishing 35 seconds faster, and the female user 

finishing 23 seconds faster on average. For entry accuracy however, the “forearm” test 

was observed to be most accurate across all tests performed, with the male user gaining 

8% greater entry accuracy, and the female user gaining 5% accuracy on average. 

 For all tests with the EMG interface device, with one exception, the time to 

complete the test continued to drop with each subsequent test performed, with the female 

user seeing over a minute decrease in time for the “forearm + upper arm” configuration. 

This progressive time drop suggests that the user was learning to use the device more 

efficiently, and better identify the specific wrist and arm motions that produced the 

desired result. With more practice, perhaps even better completion time could be 

achieved.  
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 After running each test, comments and feedback was gathered from the user. The 

most prominent feedback that was given was that the “forearm + upper arm” electrode 

configuration was significantly more comfortable and easier to control, relative to the 

“forearm” configuration. It was stated that that “cursor up” and “cursor down” commands 

were very difficult to distinguish, and would often move “cursor left” and “cursor right” 

as well. Also, these two cursor directions were activated by radial and ulnar deviations 

(wrist side to side), which have a very short range of motion, and were found to cause 

discomfort in some cases. This feedback was not surprising, as the superficial muscles in 

the forearm reside very close to each other, and present a challenge for surface electrodes 

to easily distinguish. For some of the “forearm” test cases, electrode placement had to be 

redone and the software re-calibrated several times to even achieve usable cursor control. 

This was contrasted by the “forearm + upper arm” tests, where electrodes were easily 

placed evenly on large independent muscle groups, and cursor control was achieved 

about primary flexion and extension fulcrums (wrist and elbow). These results 

corroborate the study conducted by Jin Lee et al, which highlighted the importance and 

effect of selective electrode placement for EMG signal capture [5].  Other feedback 

provided was that the EMG measurement wires frequently got in the way of cursor move 

motions, and that ability to move the cursor diagonally, and not purely in X and Y 

coordinates was highly desired. 

 When asked whether the user was aware of the ability to control cursor velocity, 

both users agreed that they could, but that this feature was more discernable and useful in 

the “forearm + upper arm” tests. It was stated that the smoother cursor movement of this 

test allowed the cursor velocity increase to be intentionally activated and held, relative to 
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the “forearm” test, where the cursor frequently moved in undesired directions. This 

feedback highlights the study conducted by Liping Qi et al, where the force generated by 

the user’s movement directly correlates to EMG signal amplitude and, in this case, is 

harnessed for dynamic cursor velocity control [4]. 

 As presented with these results, the EMG interface device efficacy test 

highlighted how meaningful mouse cursor control and PC interaction could be achieved 

through voluntary EMG signal activation. While these tests were carried out by non-

disabled individuals, the results of this test suggest that the device could be of use to 

those who cannot use a standard PC mouse, and remaining voluntary muscle groups are 

targeted. For non-disabled individuals, this device did not show any improved 

effectiveness over a standard PC mouse. With the ability to place electrodes on any 

superficial muscle group in the body however, novel uses may exist, where additional 

input degrees are desired.  

5.1.3 Challenges Faced 

 

 

 Over the course of this thesis project, several significant challenges were faced. 

The first real challenge arose when the myoelectric circuit unit was first being developed. 

An early iteration of this circuit, which was designed as part of an electromechanical 

prosthetic hand project for the Cal Poly QL+ lab, did not employ a differential amplifier 

circuit, or a properly tuned band-pass filter. This led to significant challenges in isolating 

a clean and effective EMG signal at the target muscle, due to significant electrical 

interference from lights, devices, and other sources. The electromechanical prosthetic 

hand that was connected to this circuit, would jitter significantly, and could not perform 

desired tasks effectively. Eventually an analog tiered comparator circuit was designed, 
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that would allow the input signal to fluctuate between four thresholds. Once this 

threshold has been exceeded, a more stable discrete DC signal would be output. Only 

after discovering the real necessity of a high input impedance differential amplifier in 

EMG measurement applications, as described in the study by J. Rosell et al, and by 

learning to properly manipulate the parameters of the band-pass filter, a cleaner and more 

usable EMG signal was isolated [7]. 

 Another challenge faced related to the proper placement of surface electrodes 

over the target superficial muscle. As was demonstrated in the device efficacy test results, 

inconsistent electrode placement resulted in undesired cursor movement, and 

significantly more time to complete the test. This problem was ultimately somewhat 

alleviated by later targeting only large, independent muscle groups in the forearm and 

upper arm, but originally the inconsistent performance of the EMG interface device led to 

an effort to create an Arduino algorithm to improve cursor movement. After learning of 

the study conducted by Yi-Hung Liu et al, where an EMG pattern recognition system 

using four surface electrodes was developed for mechanical hand movement, a similar 

signal recognition system was attempted [10]. During the initial calibration routine, this 

software algorithm measured the signal across all four EMG inputs, saved this signal 

pattern, and attempted to establish mouse cursor movement through a four-tiered state 

machine. Unfortunately, the pattern recognition technique used was found to be 

inconsistent in establishing and recognizing EMG patterns. During this time, there also 

appeared to be a signal amplification drift what occurred for an unknown reason, which 

may have affected the recognition technique. Ultimately this recognition technique was 



70 

 

unsuccessful, and was eventually replaced with a discrete input recognition method for 

each cursor control direction. 

 When this thesis project was originally conceived, it was planned to combine and 

miniaturize the four myoelectric circuit units into a single PCB using small surface-

mount components. Also, an integrated arm-band was conceptualized, that would possess 

four sets of discrete metal EMG electrodes, and allow for easier installation and use of 

the interface device. Eventually both of these plans were set aside once the significant 

effort of this project was realized.  

5.1.4 Improvements and Future Work 

 

 

 As highlighted in the previous section, there were several planned device 

elements that would likely present significant improvements to the effectiveness and ease 

of use. For future development of this EMG interface device, significant usability 

improvements could be gained through an improved method of identifying the user’s 

desired cursor movement. This could be achieved through a surface electrode array with 

additional inputs, or as previously shown by Yi-Hung Liu et al, a pattern recognition 

technique [10]. This would likely be the first area of investigation for future 

improvements. 

 Another likely improvement to the device would be to integrate all of the analog 

circuit elements and a microprocessor into one discrete PCB. This would likely further 

lower power consumption, reduce interference from other electronic sources, and 

miniaturize the device, such that it could be either combined with a custom electrode arm 

band, or discretely worn by the user.  
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 An additional avenue for improvement would be to investigate techniques of 

further leveraging the Arduino platform. Since Arduino is open-source, there exists a 

multitude of custom circuits that are relatively inexpensive. One such custom circuit is 

the Arduino Wireless SD Shield, which allows for wireless communication with other 

electronics [20]. Perhaps an EMG measurement system could be created that removes the 

requirement to be physically tethered to the device with wires and would provide 

freedom of movement.  

5.1.4 Final Conclusions 

 

 

 For user control of a PC mouse cursor, an EMG interface device was designed 

and built. The device utilized an array of 1.5” X 2.5” myoelectric circuit units, which 

individually convert a measured EMG input signal from surface skin electrodes to a clean 

and usable 0-5 V DC output signal. This analog signal was read to an Arduino Leonardo 

microcontroller, which would process the signal to digital Boolean value, establish 

activation thresholds, and command mouse cursor movement through a USB connection 

when the threshold was exceeded. Also, a proportional comparator algorithm was created 

that utilized EMG signal amplitude to control cursor velocity. The device was housed in a 

clear plastic enclosure, and also included an independent power supply, on/off switches, 

tuning dials for each EMG input, and access ports for all electrode wiring. Testing was 

performed that showed the device had a long battery life of 44.6 hours, and provided an 

effective means to move a PC mouse cursor, and type entries on an on-screen keyboard. 
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APPENDICES 

 

A. EMG Interface Device Bill of Materials 

 

Description Value 
Total Device 

Qty. 
Source 

Resistor 330 Ω 4 https://www.digikey.com/short/j1jqqh 

Resistor 820 Ω 4 https://www.digikey.com/short/j1jqqb 

Resistor 1 kΩ 16 https://www.digikey.com/short/j1jtw3  

Resistor 2 kΩ 4 https://www.digikey.com/short/j1jqqd 

Resistor 3 kΩ 4 https://www.digikey.com/short/j1jq8t 

Trimmer Potentiometer 0-10 kΩ 16 https://www.digikey.com/short/j1jq8h 

Dial Linear Potentiometer 0-10 kΩ 4 https://www.digikey.com/short/j1jqrn 

Capacitor 0.1 µF 4 https://www.digikey.com/short/j1jqf9 

Capacitor 10 µF 12 https://www.digikey.com/short/j1jq2z 

Capacitor 470 µF 4 https://www.digikey.com/short/j1jqzn 

N1 Zener Diode N/A 4 https://www.digikey.com/short/j1jq20 

TI LM324AN quad op-amp N/A 8 https://www.digikey.com/short/j1jqmt 

Molex 2-Pin Male 

Connector 
N/A 29 https://www.digikey.com/short/j1jqmq 

Molex 2-Pin Female 

Connector 
N/A 29 https://www.digikey.com/short/j1jqm9 

Molex Female Terminal 

Crimp 
N/A 60 https://www.digikey.com/short/j1jqhm 

On/Off Toggle Switch 5 Amps 2 https://www.digikey.com/short/j1j87c 

Solderless Breadboard 3.2" X 2.0" 2 (or 1) https://www.digikey.com/short/j1jqh0 

Myoelectric Custom PCB 1.5" X 2.5" 3 (or 4) https://www.expresspcb.com/ 

Arduino Leonardo 

Microcontroller 
N/A 1 

https://store.arduino.cc/usa/arduino-

leonardo-with-headers 

Jumper Wire Assortment Kit 22 AWG 1 https://www.digikey.com/short/j1jqdh 

Shielded EMG Jumper 

Wires 
N/A 9 Pack of 3 wires: http://a.co/d/e67cexf 

Adhesive Surface Electrodes N/A 9 Pack of 100: http://a.co/d/4TW4U0s 

9V Battery Holder N/A 2 https://www.mcmaster.com/7712k62 

Plastic Project Box 
11" X 7" X 

2"  
1 https://www.mcmaster.com/4629t53 

Plastic Socket Head Screw 4-40 4 https://www.mcmaster.com/95868a256 

Plastic Hex Nut 4-40 4 https://www.mcmaster.com/90059a005 

Bendable Mounting Wire 
OD: 

0.025" 
1 https://www.mcmaster.com/8860k13 

Battery 9 Volt 1 http://a.co/d/9Ad2xDd 

    

https://www.digikey.com/short/j1jtw3
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B. EMG Interface Device Reference Images 

 

EMG Interface Device wiring layout 
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EMG Interface Device with labels 
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C. EMG Interface Device Arduino Sketch Code 

 

// EMG Interface Device Thesis Code 

// Cal Poly San Luis Obispo 

// Nickolas Butler 2018 

 

// Initialize library 

#include "Mouse.h" 

 

// Assign pin numbers for 4 EMG inputs 

int myoPinUp = 0; 

int myoPinDown = 1; 

int myoPinLeft = 2; 

int myoPinRight = 3; 

 

// Initialize EMG Activation Thresholds 

long myoLimitUp = 0; 

long myoLimitDown = 0; 

long myoLimitLeft = 0; 

long myoLimitRight = 0; 

 

// Initialize Variables 

int stateVar = 0;          // Flag designating code to run in main loop 

int printVar = 0;          // Flag designating message to display in 

main loop 

char entryVar = '0';       // Variable for entry selection 

int delayTime = 20;        // Initial delay time 

unsigned int velDelta = 0; // Calculated delay time 

int delayClick = 800;      // Mouse click debounce in milliseconds 

int pixelStep = 5;         // Number of pixels on screen cursor moves 

per activation 

float myoScale = 0.9;      // Activation Threshold Offset 

float velScale = 1.1;      // Multiplication factor for cursor velocity 

control (Larger value = faster cursor) 

 

 

// Initialization Code 

void setup()  

{ 

  Serial.begin(9600); // Start USB Serial Connection 

  delay(3000); 

   

  // Start mouse control 

  Mouse.begin(); 

} 

 

// Main Loop 

void loop()  

{  

  if (stateVar == 0)         

  { 

    // EMG Calibration Instructions 
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    // Check printVar for text to display 

    if (printVar == 0) 

    { 

      Serial.println("EMG Interface Device"); 

      Serial.println("Cal Poly San Luis Obispo"); 

      Serial.println("Nickolas Butler 2018"); 

      Serial.println("Signal Calibration Routine"); 

      Serial.println("Flex muscle in direction for Up and hold for 5 

seconds."); 

      Serial.println("When ready, enter 1 and press Enter."); 

      printVar = 1; 

    } 

    else if (printVar == 2) 

    { 

      Serial.println("Flex muscle in direction for Down and hold for 5 

seconds."); 

      Serial.println("When ready, enter 2 and press Enter."); 

      printVar = 3; 

    } 

    else if (printVar == 4) 

    { 

      Serial.println("Flex muscle in direction for Left and hold for 5 

seconds."); 

      Serial.println("When ready, enter 3 and press Enter."); 

      printVar = 5; 

    } 

    else if (printVar == 6) 

    { 

      Serial.println("Flex muscle in direction for Right and hold for 5 

seconds."); 

      Serial.println("When ready, enter 4 and press Enter."); 

      printVar = 7; 

    } 

     

    // Calibrade EMG threshold for 4 inputs 

    // Check entryVar for input to calibrate 

    if (Serial.available() > 0) 

    { 

      entryVar = Serial.read(); 

      if (entryVar == '1') 

      { 

        delay(1000); 

        // Averaging Loop 

        for (int i = 0; i <= 100; i++) 

        { 

          delay(30); 

          myoLimitUp = myoLimitUp + analogRead(myoPinUp); // Sum 100 

EMG Values 

        } 

        myoLimitUp = (myoLimitUp / 100) * myoScale; // Calculate 

average and adjust threshold 

        Serial.println("UP threshold set to:"); 

        Serial.println(myoLimitUp); 

        printVar = 2; // Set flag to print next calibration message 
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        delay(1000); 

      } 

      else if (entryVar == '2') 

      { 

        delay(1000); 

        // Averaging Loop 

        for (int i = 0; i <= 100; i++) 

        { 

          delay(30); 

          myoLimitDown = myoLimitDown + analogRead(myoPinDown); // Sum 

100 EMG Values 

        } 

        myoLimitDown = (myoLimitDown / 100) * myoScale; // Calculate 

average and adjust threshold 

        Serial.println("DOWN threshold set to:"); 

        Serial.println(myoLimitDown); 

        printVar = 4; // Set flag to print next calibration message 

        delay(1000); 

      } 

      else if (entryVar == '3') 

      { 

        delay(1000); 

        // Averaging Loop 

        for (int i = 0; i <= 100; i++) 

        { 

          delay(30); 

          myoLimitLeft = myoLimitLeft + analogRead(myoPinLeft); // Sum 

100 EMG Values 

        } 

        myoLimitLeft = (myoLimitLeft / 100) * myoScale; // Calculate 

average and adjust threshold 

        Serial.println("LEFT threshold set to:"); 

        Serial.println(myoLimitLeft); 

        printVar = 6; // Set flag to print next calibration message 

        delay(1000); 

      } 

      else if (entryVar == '4') 

      { 

        delay(1000); 

        // Averaging Loop 

        for (int i = 0; i <= 100; i++) 

        { 

          delay(12); 

          myoLimitRight = myoLimitRight + analogRead(myoPinRight); // 

Sum 100 EMG Values 

        } 

        myoLimitRight = (myoLimitRight / 100) * myoScale; // Calculate 

average and adjust threshold 

        Serial.println("RIGHT threshold set to:"); 

        Serial.println(myoLimitRight); 

        stateVar = 1; // Set flag to exit calibration routine 

        delay(1000); 

      } 

    }   
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  } 

 

  // Mouse Cursor Move Code 

  // Don't run until calibration routine is complete (check flags) 

  if (stateVar == 1 && printVar == 7)  

  { 

    Serial.println("Mouse control START"); 

    if (analogRead(myoPinUp) > myoLimitUp)  

    { 

      Serial.println("UP");                     

      Serial.println(analogRead(myoPinUp)); // Display EMG value 

      Mouse.move(0, -pixelStep); // Move cursor specified increment 

      velDelta = (delayTime / ((analogRead(myoPinUp) / myoLimitUp) * 

velScale)); // Cursor velocity control: scale movement delay by ratio 

of reading over threshold 

      delay(velDelta); 

    } 

    else if (analogRead(myoPinDown) > myoLimitDown)  

    { 

      Serial.println("Down");                  

      Serial.println(analogRead(myoPinDown));  // Display EMG value 

      Mouse.move(0, pixelStep); // Move cursor specified increment 

      velDelta = (delayTime / ((analogRead(myoPinDown) / myoLimitDown) 

* velScale)); // Cursor velocity control: scale movement delay by ratio 

of reading over threshold 

      delay(velDelta); 

    } 

    else if (analogRead(myoPinLeft) > myoLimitLeft)  

    { 

      Serial.println("Left");                   

      Serial.println(analogRead(myoPinLeft));  // Display EMG value 

      Mouse.move(-pixelStep, 0); // Move cursor specified increment 

      velDelta = (delayTime / ((analogRead(myoPinLeft) / myoLimitLeft) 

* velScale)); // Cursor velocity control: scale movement delay by ratio 

of reading over threshold 

      delay(velDelta); 

    } 

    else if (analogRead(myoPinRight) > myoLimitRight)  

    { 

      Serial.println("Right");                  

      Serial.println(analogRead(myoPinRight)); // Display EMG value 

      Mouse.move(pixelStep, 0); // Move cursor specified increment 

      velDelta = (delayTime / ((analogRead(myoPinRight) / 

myoLimitRight) * velScale)); // Cursor velocity control: scale movement 

delay by ratio of reading over threshold 

      delay(velDelta); 

    } 

    // Activate mouse "left click" when signal exceeds threshold for 

left and right inputs. Multiplier is scale factor. 

    if ((analogRead(myoPinLeft) > (myoLimitLeft*1.4)) && 

(analogRead(myoPinRight) > (myoLimitRight*1.4)))     

    { 

      Serial.println("Left Click"); 

      Mouse.click(MOUSE_LEFT); // Activate mouse left click 
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      delay(delayClick); // Button debounce delay (so don't click 

multiple times) 

    } 

  } 

} 

 


