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14.3 Gauge Invariance 164
14.4 Back to Physics 165

14.4.1 Steady currents 165
14.4.2 General solution 166
14.4.3 Self-consistency 166
14.4.4 Counting equations 167

14.5 Down From the Mountain: the Oersted Problem 167
14.6 Biot-Savart Law 167

14.6.1 General form 168
14.6.2 More general wires 168

14.7 Boundary Conditions 169
14.8 Magnetoencephalography 170
14.9 Plus Ultra 170
Track 2 171

14.9Õa What about magnetic monopoles? 171
14.9Õb Against pseudovectors 171
14.9Õc Totally antisymmetric tensors are so useful... 171
14.9Õd What about angular momentum conservation? 172

Problems 173

Chapter 15 Units in Electrodynamics 175
15.1 175
15.2 Units in Mechanics 175
15.3 Units in Electrodynamics 177

15.3.1 SI units 178
15.3.2 Derived units 179
15.3.3 Gaussian system 180
15.3.4 One final confusion 182

15.4 Remarks 183
Track 2 184

15.2Õ Elimination of more units 184
Problems 185

Chapter 16 Magnetostatic Multipole Expansion 187
16.1 Tensor Preliminaries 187
16.2 Far Fields of a Steady, Localized Current Distribution 188

16.2.1 Magnetic dipole potential 188
16.2.2 A Familiar Example 188

16.3 Remarks 189
16.3.1 Higher moments 189
16.3.2 No base point ambiguity 189

16.4 Force and Torque on a Magnetic Dipole 189
16.4.1 Fixed dipole strength 189
16.4.2 Diamagnetism, paramagnetism, ferromagnetism 191
16.4.3 Magnetic levitation of objects at room temperature 191

Problems 191

Contents Index Notation



xv

PART III Dynamic

Chapter 17 Beyond Statics 196
17.1 Statics Review 196

17.1.1 Field equations 196
17.1.2 A worked example 196

17.2 Faraday Law 197
17.3 198

17.3.1 Back-EMF 198
17.3.2 Cables, again 199
17.3.3 Energy of magnetic fields 200

17.4 Maxwell’s Modification to Ampère’s Law 201
17.4.1 A bold prediction 201
17.4.2 Boundary conditions 202

17.5 Wave Solutions 203
17.6 204
17.7 Complex Notation 205

17.7.1 Electric Gauss law 206
17.7.2 Faraday law 206
17.7.3 Magnetic Gauss law 207
17.7.4 Ampère law 207
17.7.5 Summary 207

17.8 Potentials 207
17.8.1 Representation of Ę and B̨ 207
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D.14.1.1 For theory enthusiasts only 577

D.14.2 Charge and flux 578
D.14.3 Gauge freedom; fundamental solutions 578

D.15 Units 579
D.16 Magnetic Multipole Expansion 579

D.16.1 More about magnetic dipoles 580
D.16.2 Magnetic polarizability 580

D.17 Nonstatic Fields 580
D.17.1 Potentials, nonstatic case 581
D.17.2 Plane wave solutions 581
D.17.3 Polarization of waves 581

D.18 Energy and Momentum Transport by Waves 582
D.19 Ray Optics 582
D.20 Di�raction 582
D.21 Rainbows 583
D.22 Partial Polarization 583
D.23 Generation of Radiation 583
D.24 Galilean Relativity 583

D.24.1 Rotations 583
D.24.2 Active viewpoint 583
D.24.3 Passive viewpoint 583
D.24.4 Boosts 584

D.25 Strings/Springs 584
D.26 585
D.27 Provisional Lorentz Transformations 585

D.27.1 Addition of velocities 585
D.28 Full Lorentz Transformations 585
D.29 Relativistic Particle Energy and Momentum 586

D.29.1 Some experimentally testable consequences 586
D.30 Four-vectors and -tensors 587

D.30.1 More about 3-vectors and 3-tensors 587
D.30.1.1 For theory enthusiasts only 588

D.30.2 3-scalar, 3-vector, and 3-tensor fields 589
D.30.3 4-vector notation 589
D.30.4 Relativistic particles 591

D.30.4.1 Massive 591
D.30.4.2 Massless 592

D.31 The Faraday Tensor 592
D.31.1 Manifestly invariant form of Lorentz force law 592

D.32 Manifestly invariant form of Maxwell 593
D.32.1 4-covectors et al. 593
D.32.2 4-tensor fields 594
D.32.3 Invariants and invariant equations 595

D.32.3.1 For theory enthusiasts only 596
D.32.4 596

D.32.4.1 For theory enthusiasts only 596

Contents Index Notation



xxviii

D.32.5 Four-vector potential 597
D.32.6 More about the charge–flux 4-vector field 597

D.32.6.1 For theory enthusiasts only 597
D.33 Energy and Momentum of Fields, General 598

D.33.1 598
D.33.1.1 For theory enthusiasts only: Angular momentum of fields 598

D.34 598
D.35 Plane Waves in 4D Language 598

D.35.1 Scalar waves 599
D.35.1.1 For theory enthusiasts only 599

D.35.2 599
D.35.2.1 For theory enthusiasts only 600

D.36 Spherical Waves 600
D.37 Beams 600
D.38 Variational Formulation 600
D.39 Radiation Green Function 600

D.39.1 600
D.40 601
D.41 Electric Dipole Radiation 601

D.41.1 Far fields of an oscillating electric dipole 601
D.42 Higher Multipole Radiation 602
D.43 602
D.44 603
D.45 603
D.46 603
D.47 603

D.47.1 Isotropic, Linear Media 603
D.47.2 Magnetic materials 604
D.47.3 Maxwell equations in media 604
D.47.4 Cross-susceptibility 605

D.47.4.1 For theory enthusiasts only 605
D.47.5 Waves in media 606
D.47.6 Optical activity 607

D.48 Anisotropic Media 607
D.48.1 Ordinary birefringence 607

D.49 Čerenkov 608
D.50 Poynting Theorem in Medium 608
D.51 Photonic Bandgap Materials 608
D.52 Metamaterials 608
D.53 Field Quantization 608

Bibliography 610
Credits 617
Index 623

Contents Index Notation



To the Student
27 January 1884. Thought about electromagnetic rays.
11 May. Hard at work on Maxwellian electromagnetics.
13 May. Nothing but electromagnetics.
16 May. Worked on electromagnetics all day.
8 July. Electromagnetics, still without success.
17 July. Depressed; could not get on with anything.
24 July. Did not feel like working.
7 August. Saw from Ries’s book that most of what I have
found so far is already known.

— From the Diary of Heinrich Hertz

The first goal of these notes is to give you the foundations, working knowledge,
and fluency in some core theory ideas that even the most hard-nosed experimentalist
must know. The second goal is to give you the foundation, working knowledge, and
fluency in some key real-world phenomena that even the most abstruse theorist must
know. My choices of what, precisely, constitute that dual core are what distinguish
this treatment from the dozens of others available.

For example, I have a nice book that belonged to my mother’s grandmother,
titled Fourteen Weeks in Physics by J. D. Steele (1878). Now, first it is interesting and
pleasing to me that a young woman in Camanche, Iowa in the 1890s was encouraged,
or even permitted, to study Physics. Second, notice how little has changed—a semester
is still 14 weeks in physics.

And yet, everything has changed. The book has chapters on electricity, and mag-
netism, and optics—but no inkling that these are the same thing. For this revolution
we must thank not only Maxwell, but also the almost-forgotten Heinrich Hertz (now
he’s a unit!). Partly he lost out on icon status because he was dead at 36, couldn’t
sell himself.

Maxwell’s work came out 1864, well before that textbook was written. Why wasn’t
it mentioned? For one thing, Hertz’s systematic experimental validation took some
time.1 But perhaps also the author said, “This fancy stu� will blow over; students
don’t need to know about it.” Einstein described his frustration as a student, even
much later: “We were desperate to learn Maxwell’s theory, but the old farts didn’t
think it was important.” There’s a parallel in my own life: After my first year in grad
school, I went to a summer school where people who would later become household

1Less systematic observations had been available for some time. For example, long before Hertz or
Maxwell, Joseph Henry wrote, “A single spark from the prime conductor of a machine, of about
an inch long, thrown on to the end of a circuit of wire in an upper room, produced an induction
su�ciently powerful to magnetize needles in a parallel circuit of iron placed in the cellar beneath, at
a perpendicular distance of 30 feet, with two floors and ceilings, each 14 inches thick, intervening” in
1842. [Maxwell was eleven years old!]
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To the student xxxi

names told me about “string theory.” When I returned, the old farts (some of whom
were under 30) mostly said, “This fancy stu� will blow over; it’s not important.”

I feel a point coming on. When your elders say, “Here are some tools and frame-
works to solve di�cult important problems,” you should probably pay attention to
them. But when they say, “That new stu� isn’t important... Somebody already tried
that and it doesn’t work...” listen politely, then make your own decision. Even if such
naysaying is usually right, you don’t want to miss the exceptional opportunities.

Moreover, Maxwell originally wrote twenty equations! Later, when writing his
magnum opus, he fell under the sway of an evil mathematician (Tait) who convinced
him to rephrase everything in quaternions! That guaranteed that no ordinary scientist
would bother to understand them. Only later did some practical American (Gibbs)
write them in a vector form at all recognizable today. No wonder reasonable people
initially saw it as inscrutable academic flu�. Also, Gibbs didn’t publish promptly.
Priority therefore falls to Heaviside,2 years after Steele’s book was published. Maxwell
might not have even gotten credit had he not been such a towering figure for other
work.

I feel a second point coming on: Someday if you revolutionize physics, make sure
you say it in a way that others can grasp.

Last point: If it becomes hard, take heart from Hertz’s struggles (above). Every-
thing worth doing is hard at first. Every physicist has a story of bottoming-out at
some point.3 It never gets easier, but if you keep the fire on, eventually the kettle
will boil, even if nothing seems to be happening for a long time. Later, you get to
remember the previous occasions, and how you overcame them. Ask for help, and
don’t wait till just before an exam or due date.

Some goals of this course
1. Wild intellectual romp; survey of remarkable phenomena (recall our course’s

title). Finally do relativity “right,” i.e. the way physicists actually think about
it.

2. Organize, systematize, integrate, consolidate. In particular, systematize the
notion of symmetry, and its connection to tensors and tensor calculus (what is
the cross product really?). We’ll start in 3D because most of us grew up in a
(seemingly) 3D world. But then we’ll see the vast advantages when we bump
vectors and tensors up to 4D (and beyond). Also you know there’s a relation
between symmetry and conservation laws—we’ll make it precise.

3. Forge links to other kinds of physics, do problems that borrow from those fields
instead of working in a hermetically sealed silo.

4. Meditation on “Where do good theories come from?” with glimpses of QED,
Yang-Mills, GR. Electrodynamics is the gateway to all of current physics.

5. Specifically, systematically explore the physical hypothesis that Nature has
certain symmetries. (Why is that cross product there? Must it be there?)

6. Applications (hence our course’s title). If you’re in the PhD program, your #1

2In1882. Heaviside also introduced many familiar terms, including “impedance,” “inductance,” and
“attenuation.”
3Mine involved spinor algebra.
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question must be, not truth/beauty, but rather “what will I do my PhD on?”
Vistas to all the research in this department.

7. Mathematical modeling. Of course that’s just what physicists do, but it’s
worthwhile from time to time to examine our deep habits and then renew our
vows (or update them). (They value this skill on Wall St too.)

8. A PhD is about research, and in research you keep getting stuck. You need
problem-solving skills. This class is an opportunity to strengthen this generi-
cally useful faculty, but with more real-world problems than you may be accus-
tomed to. You may have done a lot of cookbook problems, but this approach
requires additional skills. Which are learnable. If you make an e�ort.

9. Among those skills are computation/data visualization.

Some uncomfortable questions
I might as well mention some unmentionable topics, since some of you are surely
thinking them.

• “OMG, why must we take this course a fourth time?” (HS, Freshman, Junior, and
again now.) “It’s not even quantum—it’s pre-internet! pre-electroweak! pre-TV!
So old!” Well, but I looked around this department and found that quite a lot
of research rested on understanding electromagnetic phenomena. Microwaves—
there’s the CMBR. There’s the RF sent through your body in a MRI scan.
Etc. Look at the Contents of these notes—the applications we’ll do are not
old-fashioned stu�.

• And anyway, your understanding is still incomplete: I’m sorry if I’m the first one
to tell you this, but there’s no such thing as the electric field. Nor the magnetic
field. Neither has an independent meaning. But (in the classical approximation)
there is an electromagnetic field, a union. We need to understand that. Seems
absurd—they seem to play such di�erent roles. Hmm, space and time also seem
to play di�erent roles, yet they, too, will get unified. Stay tuned.

• Some of you may be thinking, “OMG, no physicist believes that classical physics
is true. Why discuss lies?” Similarly, alumni of 280 may say, “OMG, what’s this
approach got to do with that approach to the same phenomena?”

In a nutshell, PHYS280 studied a quantum theory of light, but at the single-
photon level. That picture was valuable for many phenomena relevant for bio-
physics, such as how single molecules absorb and reemit light. But some other
simple phenomena, like what is in the space outside a permanent magnet, are not
easy to describe in this way. To go further, we must invent a more detailed ver-
sion of electrodynamics. This course will introduce its classical limit. Ultimately,
the complete picture does require that we quantize that theory. Then the state
created outside a permanent magnet can be regarded as a “coherent state” of
the quantum field. I will only have time to hint at that complete theory at the
end of the semester, because until then we’ll be busy with the many important
electromagnetic phenomena that are adequately described by the classical theory.

The virtue of classical electromagnetism is that for many advanced appli-
cations it is a fantastically accurate approximation to the full quantum world
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and much simpler to handle. Specifically, polarization e�ects are awkward in the
approach of 280, yet important for many applications.4 The coherent response
of many electrons in an antenna to a coherent state of EM radiation is another
example. We like simple theories not (just) because we’re lazy, but because with
them we can see further without getting lost in formalism.

Finally, we’ll see in Chapter 55 that the full structure of the classical theory
is needed as the first step to quantization.

• “OMG—How can we cram two semesters into one?” Well, it’s an ambitious
course. If you haven’t taken an intermediate-level E&M class, consider PHYS561–
2 instead. If you’re ready for 516, I’m committed to helping you teach yourself
these di�cult things. And I’ll expect similar commitment from you.

Features of these notes
• Many chapters end with an appendix labeled “Track 2.” These sections are For

Theory Enthusiasts Only. There are also Track 2 footnotes and problems, marked
with the symbol T2 .

• Appendix B summarizes mathematical notation, then lists key symbols that are
used consistently throughout the book.

• The notations “Equation x.y” and “Idea x.y” both refer to the same numbered
series.

• Units appear in sans-serif font, dimensions in blackboard-bold. This way, you
can visually distinguish between m (meters), M (dimension of mass), and m (a
variable that could denote a particular object’s mass, or an integer index, etc.).
In handwriting, I personally can’t do a distinct sans font, so I sometimes find it
helpful not to use standard abbreviations for units (that is, say “meters,” “sec,”
and “coul” instead of m, s and C) to avoid confusion. In fact, even in these notes
I use coul for coulombs and volt for volts.

• The square root of minus one is indicated in roman type (i) to distinguish it from
say, an index. (Some software packages instead refer to this quantity as I or as
j.) The base of natural logarithms is indicated in roman type (e) to distinguish it
from the charge on a proton (e), a constant of Nature. The di�erential operation
is indicated in roman type (d) to distinguish it from any variable called d, which
could denote a distance.

On accuracy
Everybody makes errors. Some people seem to make fewer errors because they catch
them.

• Step 0 is of course to carry units everywhere (see Chapter 15). That’s really
important, but just the start. What if your units are correct but you dropped a
term?

• Step 1: You can lock your work in a drawer and do it over from scratch, then
reconcile. That’s a really good approach too, but it won’t help if you’ve got a
conceptual problem. And/or you can get symbolic software to carry out steps for

4However, we will see how they fit into the quantum theory in Chapter 55.
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you (same problem). And/or you can collaborate, hoping that your collaborator
will make a disjoint set of errors, then reconcile. And/or you can come to o�ce
hours and ask your instructor or teaching assistant. But that stops working when
the course is over.

• Step 2: You should impose general reasonableness tests—features the correct
solution must have.

These steps will take you a long way, but. . . You need the secret weapon, the most
powerful of the Rings of Power. You need Step three.

• Step 3 is, you identify limiting cases in which the answer is obvious, or at least
known, or at least doesn’t require computer math. Specialize your answer to such
a case and reconcile if necessary.

For example, suppose that you are asked to compute the near- and far-fields of an
oscillating dipole. Work hard, but then specialize your answer to the limiting case
of the static dipole far fields and compare to the answer you know. Next, work up
to considering the far fields of an oscillating dipole and compare to your physical
expectations, and so on.

Books
Not all of these sources use the same units and notation as the present notes, so
beware.

Indispensable: Pollack & Stump, 2002 (referred to as “P+S” in these notes); Landau
& Lifshitz, 1979, Purcell & Morin, 2012; Feynman et al., 2010a; Feynman et al., 2010b.

Tensor methods: Fleisch, 2012; Foster & Nightingale, 2006.
Other math: Garrity, 2002; Shankar, 1995.

Other personal favorites: Vanderlinde, 2004; Lorrain et al., 1988; Fleisch, 2008.

Historical: Mahon, 2003; Hirshfeld, 2006; Nahin, 1988; Mahon, 2017

Technical: Zangwill, 2013; Smith, 1997; ?; Landau et al., 1984.

Computers:
Matlab: Nelson & Dodson, 2015 = https://github.com/NelsonUpenn/PMLS-MATLAB-Guide

Python: Kinder & Nelson, 2018.
Möller, 2007.

Let’s get started.
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P A R T I

Preliminaries

It is impossible to study this wonderful theory without feeling as if
the mathematical equations had an independent life and an intelligence
of their own, as if they were wiser than ourselves, indeed wiser than their
discoverer, as if they gave forth more than he had put into them. And
this is not altogether impossible; it may happen when the equations prove
to be more correct than their discoverer could have known with certainty.
It is true that such comprehensive and accurate equations only reveal
themselves to those who with keen insight pick out every indication of the
truth that is only faintly visible in nature. – Heinrich Hertz, 1896



Prologue
0.1 IN THEIR GLORY

I assume that you have already encountered the basic equations of electrodynamics,
and the symbols in which they are formulated, in previous classes. This short chapter
will just establish some notation. Later chapters will:

• Motivate the form of each equation based on simple electromagnetic phenomena;
• Explore less simple phenomena that can be understood on the basis of these

equations;
• Reformulate them in ways that for some purposes are more powerful; and
• Extend their reach by incorporating some idealized forms of macroscopic media.

0.1.1 The Maxwell equations
Maxwell did not write them in this form.1 Each equation is named for somebody prior
to Maxwell; besides systematizing everything, we will see that Maxwell also made a
crucial modification to “Ampère’s” law.

Ǫ̀ · Ę = flq/‘0 electric Gauss (0.1)
Ǫ̀ · B̨ = 0 magnetic Gauss (0.2)

Ǫ̀ ◊ Ę + ˙̨
B = 0 Faraday (0.3)

Ǫ̀ ◊ B̨ ≠ µ0‘0
˙̨
E = µ0j̨ . Ampère (0.4)

These equations can be solved for the electric and magnetic fields if we know the
motions of charged particles.

The dots represent ˆ/ˆt. The constants have numerical values µ0 ¥ 4fi ·
10≠7 m kg coul≠2 (the magnetic permeability of vacuum), and ‘0 ¥ 8.85·10≠12 coul2N≠1m≠2

(the electric permittivity of vacuum).2
Later chapters will define the charge density flq and charge flux j̨ in terms of the

positions and motions of charged particles.3
The o�cial name for Ę is “electric field intensity”; B̨ is the “magnetic induction.”

We’ll just call them the electric and magnetic fields. Some formulas are neater when

1Even Einstein’s original relativity paper used di�erent names for each cartesian component, today
considered horrible.
2Chapter 15 will discuss units in greater detail, and explain why the value of µ0 stopped being exact,
and became only approximate, in 2019.
3Some authors call j̨ the “current density.”
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0.1 In Their Glory 3

Figure 0.1:

electric
and magnetic

fields
particles {r( )(t)}

Maxwell equations

Lorentz force law

expressed in terms of a quantity I’ll call B̌ © cB̨ ,4 because this quantity has the same
dimensions as Ę .

0.1.2 Lorentz force law
Reciprocally, the Lorentz force law describes the motions of a charged point particle
if the fields are known:

d
dt

p̨ = q
1

Ę + v̨ ◊ B̨
2

+ f̨other. (0.5)

This time, d/dt represents the ordinary time derivative along a particle’s trajectory.
The fields Ę, B̨ are to be evaluated at some time t and at the position r̨(t) of the
particle at that time; v̨ = dr̨/dt at that time. q and m are constants completely
characterizing the point charge. f̨other represents any non-electromagnetic force acting
on the charged bodies in the system.5 And the momentum p̨ (t) = mv̨ (t), at least for
velocities much smaller than 108 m/s. (See Chapter 30 later.)

A test body refers to a limiting case of a point object with charge and mass
infinitesimally small, but q/m a finite constant. In practice, a test body is a point
charge so small that does not significantly perturb surrounding fields set up by other
charges.
T2 Section 0.1.2 Õ (page 12) discusses the notion of “charged point particle.”

0.1.3 In words
• The electric Gauss law says, “Charges give rise to electric fields with some constant

of proportionality 1/‘0.”
• The magnetic Gauss law says, “No point sources of magnetic fields.”
• The Faraday law says, “Time-dependent magnetic fields are another source giving

rise to electric fields.”
• The Ampère law says, “Currents give rise to magnetic fields with some constant

of proportionality µ0. Time-dependent electric fields are another source giving
rise to magnetic fields.”

• The Lorentz force law says, “A charged particle experiences a position-dependent
electric force per charge, as well as a position and velocity dependent magnetic
force per charge. The latter force is always directed perpendicular to the velocity.”

4We won’t give this quantity any particular identifying phrase. (Confusingly, gaussian people call it
“the magnetic induction.”)
5Sometimes it’s appropriate to instead introduce a constraint. For example, we can imagine a situation
in which a static charge is fixed onto on a spinning disk.

Contents Index Notation



4 Prologue

0.2 EXPLANATION OF SYMBOLS

0.2.1 3-vectors
A point in 3-space can be specified by choosing a “good” coordinate system (in
particular, a cartesian system6) and quoting its components:

r̨i =
Ë x

y

z

È

i

, i = 1, 2, 3. (0.6)

That is, the symbol r̨ can either represent an abstract geometric object (an arrow),
or it can represent a set of three numbers, called r̨1 = x, r̨2 = y, and r̨3 = z, regarded
as a column (3 ◊ 1 matrix). Note that a Latin subscript on a 3-vector indicates that
only one of its components (an ordinary number) is meant. Again: The overarrow
notation implies that we mean specifically cartesian coordinates.7 We won’t ever use
the 3-vector notation r̨ i (upper index) in these notes.8

Other quantities with an overarrow are understood to be triples of numbers with
the same transformation under rotation of the spatial axes as r̨ , that is, 3-vectors.
The 3-scalar product (also called dot product) is ą · b̨ =

q3
i=1 ąįbi = ą t̨b . We denote

r̨ · r̨ by Îr̨ Î2, r̨ 2, or simply r2; so r ©
Ô

r̨ 2. Thus, ą · b̨ = Îą Î Į̂b Î cos ◊, where ◊ is
the angle between the vectors.

The vector r̂ = r̨ /r has length equal to one. More generally, a circumflex instead
of an overarrow implies that a vector has been normalized, that is, divided by its length
to convert it to a unit vector. Some standard unit vectors include the coordinate-axis
directions x̂, ŷ, ẑ (P+S call them i, j, and k).

The components of a vector field, such as {Ęi}, are themselves functions on
spacetime, i.e. Ęi(t, r̨ ) etc. We di�erentiate them with the vector of operators9

Ǫ̀i =
5

ˆ/ˆx
ˆ/ˆy

ˆ/ˆz

6

i

.

The dot product of Ǫ̀ with itself is the Laplace operator (or laplacian), written as10

Ò2.
The dot product of Ǫ̀ acting on a vector field is called the divergence operator

and denoted Ǫ̀ · V̨ . Note that Ǫ̀ · V̨ is an ordinary function, whereas V̨ · Ǫ̀ is an

6Thus, curvilinear coordinates such as spherical polar are not “good” in this sense. Why make this
restriction? For now, our answer is, “Because these are the coordinate systems in which Maxwell’s
equations look nice, and we’re studying Maxwell’s equations.” Later we’ll consider how the represen-
tation of a vector changes when we switch from one “good” system to another or to a less “good”
system.
7Most authors drop the overarrow when explicitly writing the index on a vector, but in these notes we
retain it for clarity. Later we will sometimes append a sub- or superscript in parenthesis to the name
of a vector. In this case we don’t mean to refer to a component; the label in parenthesis indicates
which one of a set of related 3-vectors is meant (see for example Section 1.1 later).
8Such notation may, however, be useful when dealing with curvilinear coordinates. Later, when we
define 4-vectors, we will introduce an upper-index notation, distinct from lower indices.
9Again, one can also set up a curvilinear coordinate system for expanding vectors, and find corre-
sponding vector di�erential operators, but we’ll rarely use such systems: We are constructing tensor
analysis on flat spaces, usually in the restricted class of cartesian coordinate systems.
10Mathematicians use the symbol — for the laplacian, but physicists don’t. It’s too easy to confuse
that with �, the physicists’ symbol for a change in some quantity.
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0.2 Explanation of Symbols 5

Figure 0.2: If we agree to call this a “right hand,”
then the triad of unit vectors indicated is “right-
handed.”

x̂

ŷ

ẑ

operator that acts on whatever sits to its right and does not involve any derivatives
of V̨ . In fact, (V̨ · Ǫ̀)f is the directional derivative of f along V̨ .

Consider a trajectory parameterized as a function of time, i.e. r̨ (t). The 3-velocity
is then v̨ = dr̨ /dt.

0.2.2 Concerning right-hand rules
The two best things in Italy are spaghetti and [Tullio]
Levi-Civita.

— Einstein

Equations 0.3–0.5 given above assume that we have chosen a convention for “right
hand.” This is the same thing as selecting a reference coordinate system on space
whose unit vectors x̂, ŷ, and ẑ are mutually perpendicular. To see the equivalence,
note that with such a choice made, we can say which of your hands should be called
“right” by the following procedure (Figure 0.2):

• Hold one hand flat with the fingers initially pointing along x̂.
• Orient the hand so that when you bend your fingers by 90 degrees they now point

along ŷ.
• If with that orientation, your thumb is pointing along ẑ, then that hand will be

called “right” according to that coordinate system. If your thumb is pointing
along ≠ẑ, then that hand will be called “left.”

Alternatively, we could start by choosing one particular hand (for example, the one
farthest from the heart of a normal human11), and use it to classify coordinate systems
as “right handed” or not.

The vector operators above are then defined by their usual (cartesian) formulas
in a right-handed coordinate system. For example, the cross product can be expressed
by saying that ą ◊ b̨ = ĉÎą Î Į̂b Î sin|◊|, where ◊ is the angle from ą to b̨ and ĉ is a
unit vector perpendicular to each of them. There are two such unit vectors; we choose
the one specified by the right-hand rule.12

11Less anthropocentrically, we could use the helical structure of the DNA of any (terrestrial) organism.
12That is, we choose c̨ that completes {ą , b̨ } to a right-handed basis in the sense just given. If the
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6 Prologue

Figure 0.3: The 27 numbers that make up the
Levi–Civita symbol Áijk, represented as a stack
of balls. Three entries are +1 (green balls), three
are ≠1 (red balls), and 21 are zero (transparent
gray balls).

k

ji

1
2

3

3

3

1

1

2

There is an equivalent formulation of the cross product that will be helpful through-
out these notes. Although we are not ready to prove the equivalence (see Chapter 13),
we will at least state the definition here, via the formula

(̨a ◊ b̨ )i =
3ÿ

j,k=1
Áijkąj b̨k. (0.7)

The formula involves the 3D Levi–Civita symbol Áijk, which is shorthand for 33 = 27
numbers. Most of those entries equal zero: Áijk = 0 if any two of the indices match,
for example, Á112. If all three are di�erent, then i, j, k must be a permutation of 1, 2, 3;
Áijk is then defined using the parity of that permutation. Thus Á123 = +1, Á231 = +1,
Á132 = ≠1 etc. (Figure 0.3).

The entries ąj and b̨k in Equation 0.7 refer to the components of the vectors in
any right-handed coordinate system, and the formula yields the components of the
resulting vector in that same system.

We are not ready yet to prove that Equation 0.7 is independent of which right-
handed coordinate system we chose, and indeed equivalent to the geometric definition.
But you can readily generate some evidence:

Your Turn 0A
a. Use Equation 0.7 to show that ą ◊ ą = 0 for any vector, in agreement with the
geometric definition.
b. The geometric definition clearly depends on which hand we declare to be
“right.” Show that Equation 0.7 also has this (undesirable) feature. [Hint: Let
u = x, v = y, and w = ≠z, and construct the corresponding unit vectors. Then
a vector ą will have components with ą Õ

1 = ą1, ą Õ
2 = ą2, and ą Õ

3 = ≠ą3. Writing
◊Õ for the alternate version, we find (̨a ◊Õ b̨ )Õ

3 = ą Õ
1̨b Õ

2 ≠ ą Õ
2̨b Õ

1 and so on. Are these
the primed components of the vector ą ◊ b̨ defined in the usual way?]

One advantage of the algebraic formulation, Equation 0.7, is that it will show

angle between ą and b̨ equals zero or 180¶ then the choice is ambiguous—but in that case sin ◊ = 0,
so the ambiguity doesn’t matter.
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0.3 Mathematical Miscellany 7

us how, and in what sense, we may generalize the cross product to more than three-
dimensional spaces.13

The cross product of Ǫ̀ acting on a vector field V̨ is a new vector field called the
curl of V̨ , denoted Ǫ̀ ◊ V̨ .

0.2.3 Kronecker symbol
There’s also the more familiar Kronecker symbol ”ij , which is defined to be +1 if
i = j and 0 otherwise.

0.3 MATHEMATICAL MISCELLANY

From now on we will employ the summation convention: When a vector index appears
exactly twice in a formula, we mean for it to be summed over all its values, even if
we don’t explicitly write the summation symbol. Thus we abbreviate Equation 0.7 as
(̨a ◊ b̨ )i = Áijkąj b̨k. Such a summed index is also called a dummy index. If an index
appears just once in an expression, it’s called a loose index and is not summed. An
expression with one or more loose indices really means several expressions, one for
each set of index values. A loose index on one side of an equation must match a loose
index on the other side (unless the other side is zero, in which case we mean that it’s
zero for all values of the index).

A summed pair of indices must each be named with the same letter of the alphabet.
We can rename them both if we like, as long as they still agree with each other. When
we combine formulas, we sometimes need to rename some index pairs in this way, to
avoid ambiguity. Thus the product of ąįbi times c̨id̨i should be rewritten ąįbic̨j d̨j (or
(̨a · b̨ )(c̨ · d̨ )).

Two crucial theorems from vector calculus are both beefed-up versions of the
Fundamental Theorem of Calculus:

0.3.1 Divergence theorem
⁄

V

d3r Ǫ̀ · Ę =
⁄

ˆV

d2�̨ · Ę . (0.8)

Here d3r is a volume element.
V is a finite volume and ˆV is the closed surface bounding it. Any small element of

that surface, d2�, has two perpendicular directions called normals or (normal vectors).
The surface separates space into “inside” and “outside,” so one of the normals is the
“outward-pointing normal.” We convert an area element d2� into a vector, d2�̨ , by
multiplying it by the unit outward-pointing normal vector.

0.3.2 Stokes theorem
⁄

�
d2�̨ · (Ǫ̀ ◊ Ę ) =

j

ˆ�
d˛̧ · Ę . (0.9)

13And even to curved spaces.
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Here d˛̧ is a vector line element. � is a surface, and ˆ� is its boundary (a curve
in space). An open patch of surface has no “inside/outside” distinction, so we may
choose either face as “outward” when defining the sign of d2�̨ . Then the line integral
along ˆ� must be traversed in the direction selected by applying a right-hand rule to
the chosen outward-pointing vector.14

Please get (re)acquainted with these formulas, and with the specific conventions
they contain concerning choice of handedness.

Your Turn 0B
a. Show that, if you instead make the opposite choice of outward direction, then
each side of Equation 0.9 changes sign, and the formula is still valid.
b. Similarly, show that if we change our convention for which hand is “right,”
then again we get canceling minus signs on each side.

If Ǫ̀ ◊ Ę = 0, we call Ę a curl-free vector field. Then its contour integral depend
only on the two endpoints. Another generalization of the Fundamental Theorem of
Calculus says that in this situation,

i
r̨

r̨0
d˛̧ · Ę (˛̧), regarded as a function of the final

endpoint r̨ , has gradient equal to Ę (r̨ ).

0.3.3 Two useful lemmas
Your Turn 0C

If the cartesian components V̨i of a vector field depend on position r̨ only via its
distance r to the origin of coordinates, then show that
a. Ǫ̀ ◊ V̨ = r̂ ◊ dV̨i/dr, and
b. r̂ · (Ǫ̀ ◊ (r̨ ◊ V̨ )) = ≠2r̂ · V̨ .

0.3.4 Euler theorem
When studying time-varying quantities, it’s useful to know that e≠iÊt = cos(Êt) ≠
i sin(Êt). Thus we can represent both sines and cosines in a unified way: Either one
can be written as 1

2 [b̄e≠iÊt + c.c.] where “c.c” stands for “complex conjugate.” If we
choose b̄ = 1, then this expression equals cos(Êt); if we choose b̄ = i, then it equals
sin(Êt); if b̄ is complex, then we get a sinusoid with frequency Ê but with some phase
shift relative to sine or cosine.

0.3.5 Angle and solid angle
A short line element d˛̧ , seen from a distance, subtends an angle d◊ = Îd˛̧◊r̂Î/r, where
r̨ is the vector from the observer to the line element. This expression is dimensionless,
but sometimes we add “radians” to an angle to emphasize that we are not using
some weird units (like milliradians or degrees). Similarly, a small surface element d2�̨ ,
seen from a distance, subtends a solid angle15 d� = d2�̨ · r̂/r2. This expression is

14Point the thumb of your right hand along the chosen normal, then traverse the boundary in the
sense that follows the curve of your fingers.
15A better name for this quantity might be angular area.
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0.4 What Lies Ahead 9

dimensionless, but sometimes we add “steradians” to a solid angle to emphasize that
we are not using some weird units (like millisteradians or square degrees).

0.3.6 Delta function
See Pollack & Stump, 2002, §3.5.1 for the definition of the delta function.16 Technically,
it’s not really a function at all: When ”(x) is integrated over x, it’s a linear machine
that eats an ordinary function and returns its value at zero:

⁄
dx ”(x)f(x) = f(0).

Thus, the dimensions of ”(x) are always inverse to those of its argument x.
For our purposes it will usually su�ce to regard ”(x) in a sloppy way as limit of

a bump function, for example e≠x
2
/(2‡

2)/(2fi‡), as it becomes sharply peaked holding
the area under the curved fixed to 1. That viewpoint also makes it clear that the
dimensions are inverse to those of x.

Section 33.9.1 will show that

”(f(x)) = 1
|f Õ(xú)|”(x ≠ xú).

Here we suppose that the function f has one zero at xú; if there’s more than one,
the right hand side becomes a sum of terms for each zero. In multiple variables, the
denominator of the prefactor gets replaced by the absolute value of the determinant
of the Jacobian matrix.

0.4 WHAT LIES AHEAD
[Einstein’s first relativity paper] says that the usual
formulation of the law of induction contains an asymmetry
which is artificial, and does not correspond to facts.
According to observation, the current induced depends only
on the relative motion of the conducting wire and the
magnet, while the usual theory explains the e�ect in quite
di�erent terms according to whether the wire is at rest and
the magnet moving or vice versa.

— Max Born

The Maxwell equations are two vector PDEs, plus two more scalar PDEs. That’s
a lot of complexity, even though the equations are linear. We will consider various
reduced special cases before we start analyzing them in earnest, and some practical
applications that can be understood using those simplified versions.

0.4.1 Einstein’s critique
If we know the equations, and accept that they are “true,” aren’t we done? Can’t we in
principle just slap them on some big computer and find what they predict? In fact, it’s

16Sometimes called “Dirac delta function.”
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Figure 0.4: (a) A coil of wire is pushed over a stationary permanent magnet. (b) A permanent magnet is
plunged into a stationary coil of wire.

fair to say that nobody understood the real content of Maxwell (certainly not Maxwell
himself), until Einstein demonstrated a key hidden feature, an invariance property
(or “symmetry”) that was there all along, buried in poor notation. Unfortunately,
nobody understood Einstein, till Minkowski and successors found the appropriate
generalization of vector notation to make this invariance manifest.17

One point that everybody could understand, mentioned right at the start of
Einstein’s first paper on relativity, concerned what happens when a bar magnet enters
a coil of wire (Figure 0.4).

• Every freshman knows how to explain the first of the two setups shown: Charges
in the wire are free to move within it, but they are constrained not to leave
it. When the wire is pushed sideways, as in Figure 0.4a, these charges must
also move sideways. The Lorentz force law (Equation 0.5) then predicts a force
perpendicular to that motion and to B̨, so a charge initially in the plane of the
page gets pushed out of the page, ultimately creating a current measured on the
meter.

• When the coil is stationary (Figure 0.4b), then its charge carriers are not required
to move, so v̨ ◊ B̨ has no reason to be nonzero. In this case, however, the B̨ field
is time-dependent. Faraday’s law (Equation 0.3) then implies an Ę field, which
can push charges that were initially at rest, again in the direction running along
the wire. Again the meter responds.

Einstein said (paraphrasing), it’s crazy to o�er two such totally di�erent explanations
of what is obviously just one phenomenon. After all, if you walk alongside the moving
magnet, it appears stationary to you and the coil appears to move, and vice versa.18

In fact, why should we even invoke a dynamical explanation (rooted in equations
of motion) for this equivalence, which ought rather to be kinematic in character? It
will take us a while to arrive at Einstein’s answer to this question, but for now, su�ce

17A good lesson: We old teachers should, like Minkowski, stay interested in our former students’ work.
By the way, how did Einstein get through peer review, if nobody understood him at first? It’s simple.
At that time, peer review was: Planck was the journal editor. He read the manuscript, said “I don’t
understand it, but it looks good,” and that was that.
18Actually, at the time everybody other than Einstein would have agreed that he was crazy: “Ob-
viously” the two situations were not equivalent, because at most one of them could be at rest with
respect to the “luminiferous æther.” We’ll see later what Einstein said about that argument.
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to note that relativity was born out of frustration with electrodynamics. We will leave
it as a Hanging Question:

Hanging #A: Can we eliminate the asymmetry between our explanations
of the coil/magnet phenomena? (Eventually we’ll rephrase that as: Can
we make full Lorentz symmetry manifest in the equations?)

0.4.2 Some more hanging questions
Section 0.4.1 raised a question that we won’t answer for some time. Here are several
more. Keep them in mind as we work through to their resolutions.

Hanging #B: Why must the Maxwell equations have exactly that
(arbitrary-looking) form?

Hanging #C: How can Ę and B̨ be “two parts of a single object” when
they appear in such non-parallel ways?

Hanging #D: How can we solve the eight Maxwell equations with only
six unknown functions Ę, B̨?

Hanging #E: Our equations are full of cross products, which depend
on an arbitrary choice of which is our “right” hand.19 Can we formulate
electrodynamics in a way that doesn’t conceal its invariance under spatial
inversions?

19“The one farthest from the heart of a normal human” isn’t very universal! Even “the one that
describes DNA in all living organisms on Earth” is too Earth-centric to have fundamental significance.
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T2 Track 2

0.1.2Õ Point charge
A “point charge” is an idealization, having no multipole moments other than its total charge.
Alternatively, if higher moments are present we assume their e�ects are negligible because
surrounding fields are slowly varying. In classical electrodynamics, we assume that any
charged macroscopic body can be regarded as a collection of point charges. But in a strong
enough field gradient, even an electron cannot be regarded as a point charge, because it has
a magnetic dipole moment! Similarly a neutron, although electrically neutral, can be pushed
by a magnetic field gradient, etc.
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PROBLEMS

0.1 All Greek to me
Now’s a good time to learn the Greek alphabet. Here are the letters most often used
by scientists. The following list gives both lowercase and uppercase (but omits the
uppercase when it looks just like a Roman letter):

–, —, “/�, ”/�, ‘, ’, ÷, ◊/�, Ÿ, ⁄/�, µ, ‹, ›/�, fi/�, fl, ‡/�, ·, ‚/�, „ (sometimes written Ï)/�, ‰, Â/�, Ê/�

When reading aloud we call them alpha, beta, gamma, delta, epsilon, zeta, eta, theta,
kappa, lambda, mu, nu, xi (English speakers pronounce it “k’see”), pi, rho, sigma,
tau, upsilon, phi, chi (pronounced “ky”), psi, omega. Don’t call them all “squiggle.”
Sometimes we will use the variant form Ï for phi and Ë for theta.

Practice by examining a quotation by D’Arcy Thompson: “Cell and tissue, shell
and bone, leaf and flower, are so many portions of matter, and it is in obedience to the
laws of physics that their particles have been moved, moulded, and conformed. They
are no exception to the rule that �‘òÎ –‘ÿ̀ “‘Êµ‘·fl‘ÿ̂.” From the sounds made by each
letter, can you guess what Thompson was trying to say? [Hint: Î is an alternate form
of ‡.]
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Warmup: Newtonian Gravitation
Newtonian gravitation isn’t the subject of this course, but it’s useful to introduce
some themes with a scalar field theory before we move up to a vector field theory.

particles {r(`)(t)}field � (r )

r2�N = 4⇡G⇢m

N

r̈(`) = �r�N(r(`)(t))+fother/m

The cartoon above can be summarized as “fields tell particles how to move; particles
tell fields what to be.” Let’s unpack that slogan.

1.1 EQUATIONS

The newtonian potential „N is a function that obeys

Ò2„N = 4fiGNflm. (1.1)

Here GN is a universal constant of Nature and flm is the mass density of matter.
We can think of matter as a collection of N point masses m¸ following trajectories

r̨(¸)(t). Here m¸ is a constant characterizing particle number ¸. In the notation r̨(¸),
the particle number ¸ appears in parentheses to avoid confusing it with a vector index
labeling which component we’re discussing; the vector index has been suppressed to
make the formula more compact.

With that notation understood, then we can finish specifying Equation 1.1 by
constructing the mass density distribution as

flm(t, r̨ ) =
ÿ

¸

m¸”
(3)(r̨ ≠ r̨(¸)(t)). (1.2)

In this formula, ”(3) denotes the product of three delta functions. Notice the big
distinction between r̨ and r̨(¸):
. r̨ labels the “field point,” that is, the point where we wish to evaluate flm.
. The 3N functions of time, r̨(¸)(t), specify the N particle trajectories.
Often it’s a good approximation to think of flm as a continuous function of position,
e�ectively smearing the many delta functions together. Then sums over ¸ turn into
integrals over d3r.

14
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Solving Equation 1.1 gives us the newtonian potential function if we know what
all the masses are doing. Conversely, Newton’s second law amounts to 3N equations
of motion that tell what the masses will do, given the potential:

¨̨r(¸) = ≠Ǫ̀„N(r̨(¸)(t), t) + f̨other/m¸. (1.3)

Thus we get a closed system of equations that, when solved together, tells us the
future evolution of the system from initial conditions—the goal of classical physics.

The standard terminology is confusing: The “newtonian potential” is not the
potential energy of particle ¸. Instead, „N determines each particle’s potential energy
by U¸ = m¸„N; it is potential energy per unit mass of a test body.

The term f̨other allows us to incorporate non-gravitational forces. Sometimes it’s
an adequate approximation to instead introduce a constraint. Here the idea is that
internal stresses supply whatever force is needed to maintain that constraint. For
example, such stresses prevent the Earth from collapsing to a point, so that we may
treat it as a fixed mass distribution. Other constraints ensure that the length of a
pendulum remains constant, and so on.

But what is the field “really?” Newton’s successors eventually gave up fiddling
with vortices in the æther and other mechanistic explanations, and just said, “it’s
really a function on space and time, period. We don’t need a more explicit mechanical
explanation to get on with making testable predictions. We don’t need to know if
it’s really about vortices, or quantum coherent states of gravitons, or condensates of
superstrings. . . . All we need to do is tell how to measure it operationally. If every
time anybody measures it they find that it obeys the equations, then they are good
and useful equations.”

1.2 A TRICKY POINT

To connect these formulas to first-year physics, you can find the solution to Equation 1.1
for the case of a point mass M (“the Earth”) at rest at the origin of coordinates. You
already know the answer is „N(t, r̨ ) = ≠MGN/r, but let’s just confirm that formula,
using steps that we’ll need again and again in this course.

Equation 1.1 tells us to compute the laplacian of „N, that is, the divergence of the
gradient. Let’s start with the gradient, and drop the prefactor ≠MGN. So we want
to find Ǫ̀

! 1
r

"
, where r = Îr̨ Î is the length of the vector r̨ from the point mass to the

observer. The first component of the gradient is

ˆ

ˆx
(x2 + y2 + z2)≠1/2 = ≠ 1

2 (x2 + y2 + z2)≠3/22x = ≠x/r3.

Notice that 1/r has units of inverse meters, as does Ǫ̀, so it’s right and proper that
our answer has units of m≠2. Proceeding similarly with the other two components,
and reinstating the constants, gives

Ǫ̀„N = (≠MGN)(≠r̨ /r3) = MGNr̂/r2,

a familiar result. Here r̂ = r̨ /r is the unit vector pointing to r̨ .

Contents Index Notation



16 Chapter 1 Warmup: Newtonian Gravitation

Now we want to compute the divergence: Ǫ̀ ·
1

Ǫ̀r≠1
2

= ≠Ǫ̀ · (r̨ /r3). We use the
Leibnitz property of derivatives (“product rule”) to write this as

≠ r≠3Ǫ̀ · r̨ ≠ r̨ · Ǫ̀(r≠3). (1.4)

The first term is easy because Ǫ̀ · r̨ = ˆx

ˆx
+ ˆy

ˆy
+ ˆz

ˆz
= 3. For the second term, adapt

the previous result:

Ǫ̀(x2 + y2 + z2)≠3/2 = ≠ 3
2 (x2 + y2 + z2)≠5/2

Ë 2x
2y

2z

È
= ≠3r̨ /r5.

So Equation 1.4 becomes Ò2(r≠1) = ≠3r≠3 ≠ r̨ · (≠3r̨ /r5) = 0.
Oops. We succeeded too well. We wanted the laplacian to vanish away from

the point mass at the origin, but we seem to have proved instead that it vanishes
everywhere. The problem is that everything we’ve done is invalid right at r = 0, where
the potential function is singular. To handle that point, consider a spherical surface
surrounding it and use the divergence theorem:1

⁄

surf
d2�̨ · Ǫ̀(r≠1) = (4fir2r̂) · (≠r̂/r2) = ≠4fi.

So the integral of Ò2(≠GNM/r) over any spherical volume containing the origin is
always 4fiGNM , even though Ò2(≠GNM/r) = 0 everywhere other than the origin.
The same things can be said of 4fiGNflm for a point mass (that is, flm(r̨ ) = M”(3)(r̨ )),
so we see that the familiar newtonian potential (which gives rise to the familiar
newtonian force) really does solve Equation 1.1 for a point mass.

1.3 EARTH/MOON

The 1/r potential gives the equation of motion for a test particle (that is, a mass too
small to itself pull appreciably on M):

¨̨r = ≠Ǫ̀„N(t, r̨ ) = ≠MGNr̂/r2. (1.5)

That’s the familiar formula that gives rise to Kepler’s laws.
Just to find the simplest solution, recall that uniform circular motion has ¨̨r =

≠Ê2r̨ where Ê is the angular frequency. Taking the value of Ê that corresponds
to a sidereal month, and r to be the Earth–Moon distance, and substituting into
Equation 1.3 gave Newton a rough2 numerical value for the quantity GNM .

Newton also knew the acceleration of gravity for an object dropped near Earth’s
surface. Knowing the radius of the Earth (a bit inaccurately, at the time) gave him
another, independent estimate of GNM . With historic understatement, Newton wrote

1See Equation 0.8. To be a bit more precise, imagine the mass distribution not as a singular point,
but spread over a very small volume. Take the spherical surface to lie outside this occupied region.
Then the radius of that region drops out of the formulas, so we can take the limit where it, and the
surface, shrink to zero size.
2It’s not really a good approximation to suppose the Earth stationary, because the Moon’s mass is
not much less than Earth’s. You can do better by using the “reduced mass.”

Contents Index Notation



1.5 Meaning 17

that these two estimates “answered pretty nearly.” That was the first grand unified
theory—of celestial and terrestrial motions.

By the way, the fact that Earth is not quite spherical is easy to incorporate into our
assumed mass density function. Then we can solve the field equation and find the not-
quite-spherical potential surrounding Earth, and from there the not-quite-Keplerian
orbits of, say, spy satellites. Stay tuned for this idea in the context of electrostatics.

1.4 PLUS ULTRA

1. It’s true that we only found the solution to the field equation for a point mass,
but perhaps surprisingly that’s all we need. Because the field equation is a linear
PDE, and also invariant under spatial translations, we can subdivide any complicated
distribution of mass into small chunks, apply the fundamental solution to each chunk,
then use superposition to assemble all the sub-solutions into the full solution for „N.

We’ll similarly exploit the linearity of Maxwell’s equations for a similar win. The
fundamental solution that must be integrated is called the Green function for what-
ever field equation we seek. We’ll find simplified Green functions for electro- and
magnetostatics, then a more elaborate one for the full Maxwell equations.
2. Why introduce the potential function? Why not just work directly with the forces?
One huge practical advantage is that the potential is a scalar. Combined with the
preceding point, this means that we can conveniently integrate contributions from
a complicated source (the ellipsoidal Earth, etc.), then at the very end compute
the gradient, instead of having to carry around vector quantities throughout the
calculation.
3. From this promising start, Newton and his successors3 proceeded to explain plane-
tary motion, motions of moons around other planets, comet orbits, tides, the nonspher-
ical shape of the Earth, phase-locking of Mercury and of Earth’s Moon, precession
of Earth’s axis, e�ects of Jupiter on other planets—a fantastic wealth of testable
predictions from very few assumptions.4

Once the idea sank in that Nature was governed by laws, on Earth as it is in Heaven,
the seeds were sown for the Enlightenment and all that entailed. Newton’s biggest
fan in France was Voltaire, who thought that if Nature itself is subject to natural
laws, not the whims of a supernatural being, then the divine rights of capricious kings
looked a bit silly. But that is another story.

1.5 MEANING

Before we can claim that Equations 1.1–1.3 make testable predictions, we need to give
meaning to all the quantities that they relate. Later developments showed that even

3Notably Euler and Laplace.
4Later in the course, we will follow Einstein’s steps as he realized that the equations in this chapter,
and in particular their invariances, are not quite correct. We are reviewing them because the cartoon
at the start of this handout is still a good way to think about more advanced theories.
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the very coordinates r̨ = (x, y, z) and t require careful interpretation.5
Newton wrote some mumbo-jumbo about absolute space and time, but a more

fruitful attitude emerged slowly. Today we say that what the equations are claiming
is merely that there exists a way of labeling events by sets of four numbers, such that
that any motion of any set of masses, with any initial conditions, corresponds to a
solution of the equations.

This may sound like a big loss of predictive power—maybe there’s a physical
motion that fails to satisfy the equations, but we could rescue them by merely relabeling
the points! But even in this weakened form, the equations have the character of an
interlocking web of many predictions: One single coordinate choice is supposed to
handle any conceivable apparatus that we might wheel into the lab,6 any initial
conditions we may set on that apparatus, etc.

Interestingly, and important for our later discussion, once we find one set of “good”
coordinates on spacetime (that is, coordinates for which all phenomena obey the
equations in their usual form), then there will also be other such “good” coordinate
systems with the same property. You won’t be surprised to know that rigidly shifting
or rotating x, y, z (leaving t unchanged) gives a new “good system.” Also, shifting
tÕ = t+t0 works, and so does negating any or all of x, y, z, or t. Later we’ll investigate
just how big the set of “good” systems is. For now, we content ourselves with the
statement that the content of newtonian physics includes the claim that at least one
“good” coordinate system exists.

1.6 MORE HANGING QUESTIONS

Hanging #F: Can we introduce a potential function for electromag-
netism analogous to the gravitational potential, and reap benefits analo-
gous to the ones we got in that situation?

Hanging #G: What physically makes some coordinate systems “good”
and others not?

PROBLEMS

1.1 The first grand unification
Repeat Newton’s early unification: Look up the radius and period of the Moon’s orbit,
calculate its acceleration, and estimate the quantity GNMearth. (Make the approxima-
tion that the orbit is circular. You can also ignore the reduced-mass e�ect, that is,
make the approximation that the Moon is much less massive than Earth.) Next look
up the Earth’s radius and again estimate GNMearth, this time based on the terrestrial
acceleration of gravity. Compare the two values you found for GNMearth.

5A system of coordinates on spacetime is sometimes called a frame of reference or coordinate frame,
but those terms can get confusing: Some authors restrict them to refer only to inertial (“good”)
coordinate systems, but others don’t. Still other authors use the shorter term observer, but this, too,
can get confusing: An observer is a person (or apparatus).
6Henry Cavendish designed a gravitational experiment that fits in a room.
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1.2 Flyby
The text claimed that the birth of Western science was when Newton solved the
planetary orbit problem, deriving Kepler’s empirical observations as predictions and
predicting the return of Halley’s Comet (among many other things). Because of the
similarity between electrostatics and gravitation, we get to revisit this highlight in
this course, as it’s mathematically the same problem as one needed to understand
proton therapy.7 In this problem, assume that everything is moving much more slowly
than the speed of light; thus you may use familiar nonrelativistic mechanics.

A heavy object M sits at the origin of coordinates. We will neglect any pertur-
bation to its position during this problem, because the other object in the collision,
m, is much lighter. The lighter object comes initially along a straight line parallel
to the x̂ axis, moving from negative to positive x. If it were not deflected by M ,
the trajectory would pass within distance A of M ; that is, its initial trajectory is
x(t) = v0t, y(t) = A when t æ ≠Œ. Set up polar coordinates centered on M , in which
Ï is measured clockwise from the ≠x̂ axis. Thus the incoming body starts with Ï = 0,
and Ï increases with time. If M were not present, then the trajectory would have
Ï æ fi at t æ +Œ.
a. Express the angular momentum of m about the origin, and the kinetic energy, both

in terms of r(t) and Ï(t). Use the constancy of the angular momentum to eliminate
Ï̇ from the KE.

b. Write the potential energy as ≠K/r. Thus K = GNMm for celestial mechanics,
and K = ≠q1q2/(4fi‘0) for the nuclear case. Find the equation for the shape of the
trajectory, that is, for dr/dÏ.

c. Substitute u(t) = r(t)≠1; that is, get an equation for du/dÏ. We will be solving
this equation for u(Ï).

d. Initially u æ 0. Work out the initial value for du/dÏ from the fact that initially
m is moving in uniform straight-line motion.

e. Solve the equation given the initial conditions. Determine the value of Ï at which
u stops increasing and turns around. Double this angle to find the total angular
deflection during the encounter. Be sure that your answer covers both the attractive
and repulsive cases.

f. An electron flies past a stationary proton with A = 100 pm and v0 = 0.01c. (A
picometer is 10≠12m.) What is the total deflection?

g. A proton flies past an initially stationary electron. The proton’s path is approx-
imately una�ected by the electron, but the electron gains some kinetic energy.
Find how much. Evaluate your answer for the illustrative case A = 100 pm and
v0 = 0.01c.

7One can also argue that the birth of modern Physics was Rutherford’s discovery of the atomic
nucleus; this problem is relevant for that discovery as well.
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Static and Almost-static

“In the Middle Ages it had been the custom to ring peals of bells in the church
steeples to disperse the thunder, as a result of which a high number of bell-ringers
had been electrocuted. Indeed as late as 1786 the Parlement of Paris enforced
an edict forbidding the practice, because over the previous thirty-three years no
fewer than 103 unfortunates had been killed on the ends of their wet bell-ropes....
In 1708 Dr. Wall, in England, wrote that electricity “seems in some degree to
represent thunder and lightning....” Concern soon focused on lightning strike
and the danger it presented to gunpowder arsenals all over Europe. The row
over exactly how to protect them began with the work of a hitherto obscure
fifteenth child of a Bostonian soap-boiler, Benjamin Franklin.... He suggested
that a church steeple be used to prove his theory. The Royal Society was not
interested....

The explosion of an arsenal in Brescia, northern Italy, in 1769 made the rod a
political issue. An estimated 175 000 pounds of powder exploded, destroying 190
houses within a radius of 639 feet from the explosion. The Brescia authorities
asked the Royal Society for help in preventing a further disaster, and a committee
was set up, of which Franklin was a member. An issue developed over whether
the rods should be pointed at the top, as Franklin said, or round. The British
settled for the round variety, on the grounds that Franklin was a revolutionary.
Conductors sprang up all over Europe. There was even a chapeau paratonnerre
- an anti-lightning hat—for the ladies of Paris in 1778.” – James Burke



C H A P T E R 2

Electrostatics Introduced

2.1 FRAMING

Maxwell’s equations simplify a lot if we consider a static, or nearly-static, situation.
That is, all charges are either motionless or slowly moving.1 We will arrive at a system
of equations of the form:

electric
potential particles
 (r )

{r( )(t)}

r2 = � / 0⇢q

m r̈( ) = �q r (r( )(t), t) + fother

The cartoon above looks a lot like the one at the start of Chapter 1, but now each
particle is characterized by two items of intrinsic information, called “mass” m (as
before) and “charge” q. Each has a density: flm (as before) and flq respectively. Again,
“fields tell particles how to move; particles tell fields what to be.” Let’s work through
the second part of that slogan.

Although the equations in the figure are in principle complete, later we will find
it useful to modify them in ways that approximately treat complicated systems in
simpler, tractable ways:

• In this chapter and the next, we imagine the “other” forces to be constraints, that
is, whatever is required to keep the charges at rest. In that case, the distribution
of charge is invariant under both time shift and time reversal.2

• Later Chapter 5 will introduce dielectric media, containing molecules (deformable
distributions of charge). Instead of treating these “bound” charges explicitly, we
will summarize them with a modified value of the permittivity.

• Next Chapter 7 will go beyond statics, introducing conductors, in which mobile
charges are impeded by their surroundings, and e�ectively obey a dissipative law
of motion (Ohm’s “law”) instead of the ballistic one in the figure.

• Then Chapter 9 will introduce thermal agitation, which changes the equation of
motion for the charges by adding a statistical-physics aspect. Charges will still
be assumed to be slowly moving

1Eventually we’ll say more precisely “slowly enough that we may neglect magnetic field e�ects.”
2In contrast, current flowing steadily through a wire is invariant under time shifts but not under
time reversal—that’s called “stationary,” not static.
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22 Chapter 2 Electrostatics Introduced

• Later, we’ll consider situations in which, although charges move slowly, neverthe-
less they are so numerous that magnetic e�ects may not be ignored (Chapter 14).

• Chapter 17 will begin our study of charges with general motions.

For now, however, we will stick to the most basic situation: electrostatics. Thus we
focus on the lower arrow on the figure.

2.2 REPHRASE IN TERMS OF A POTENTIAL

2.2.1 Field equations

Because j̨ = 0 and ˙̨
E = 0, there are no magnetic fields (B̨ = 0), and all we have left

of Maxwell are
Ǫ̀ · Ę = flq/‘0, Ǫ̀ ◊ Ę = 0. (2.1)

Here flq is electric charge density and ‘0 is a proportionality constant. Some such
constant is needed for dimensional reasons: Because charge carries a new kind of
dimension that cannot be converted to length, time, or mass, and Ę is force per
charge, ‘0 must among other things cancel two powers of charge units.

Our equations look much more complicated than those of newtonian gravity! Let’s
first address that defect.

Choose any fixed “reference point” r̨0 in space and define the electrostatic poten-
tial as the scalar function

Â(r̨ ) = ≠
⁄

r̨

r̨0

dr̨ · Ę . (2.2)

Here the notation denotes the line integral along any path that starts at the reference
point r̨0 and ends at the “field point” r̨ . It doesn’t matter which such path we choose.
Any two such paths di�er by a closed loop, so switching to a di�erent path changes
Â by the integral ≠

i
dr̨ · Ę around that closed loop. By Stokes’s theorem, this can

be written as a surface integral of Ǫ̀ ◊ Ę , which is always zero by Equation 2.1.
It is true that the potential depends on the arbitrary choice of reference point, but

in a trivial way: Changing r̨0 just adds a constant to Â. We won’t explicitly indicate
the dependence on r̨0, because we are already accustomed to the fact that potential
energy is only well defined up to an additive constant.

By the Fundamental Theorem of Calculus, we then have that Ę = ≠Ǫ̀Â. And
the other Maxwell equation above becomes the Poisson equation

Ò2Â = ≠flq/‘0. (2.3)

In a region with no net charges, the right hand side is zero and the equation is often
rechristened the Laplace equation.

2.2.2 Force law
The Lorentz force law with no magnetic field becomes:

˙̨p(¸) = ≠q¸Ǫ̀Â(r̨(¸)(t)). (2.4)
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Here q¸ is the electric charge, a fixed quantity that is attached to particle ¸.
The electrostatic potential Â(r̨ ) is the potential energy per unit charge of a test

body located at r̨. Its units are therefore joules per coulomb, which is the definition of
“volt.” Most authors abbreviate this unit “V,” but that could lead to confusion with
volume or something, so I’ll write it volt.

The electric field ≠Ǫ̀Â therefore has units of newtons per coulomb, or equivalently
volts per meter.

2.2.3 Step back
We have transformed electrostatics from a set of four linear PDEs in the three un-
known functions Ę (Equation 2.1) to one linear PDE in one unknown function Â, a
considerable simplification. Indeed, it’s the same equation as in newtonian gravitation.

Our success relied on establishing an integrability lemma: While clearly any gra-
dient has zero curl, we found that conversely any curl-free vector field can be written
as a gradient via Equation 2.2. We will upgrade this argument when it’s time to find
a potential for magnetostatics (Chapter 14), and then again when it’s time to find a
4-vector potential for electrodynamics (Chapter 36).

2.3 DIFFERENCES FROM GRAVITATION

There is an obvious big di�erence between newtonian gravity and electrostatics: The
mass density flm must always be nonnegative (everything attracts everything), but
charge density flq need not be nonnegative (some pairs of things attract but others
repel). (Placement of the 4fi factor is just a convention. In gravity we put it into the
Poisson equation; in electrostatics, it’s conventional to bury it in the definition of the
constant ‘0.)

2.4 ANOTHER LOOK AHEAD

2.4.1 Reality
“But what is the electric field really?” This question turned out for many practical
purposes to be as unnecessary as the similar one about the newtonian gravitational
field. In this class, Ę (t, r̨ ) is a set of three functions on spacetime, period.

But another kind of “reality” question deserves comment. We could imagine saying,
“there’s no such thing as the electric field, just action at a distance between charges via
Coulomb’s law.” Today physicists find such nonlocal hypotheses to be repugnant, but
that could be prejudice. Must we attribute independent reality to Ę ? Occam’s Razor
would say, “not if you can avoid doing so.” (Especially we should avoid introducing
entities that you cannot see, hear, feel, smell, or taste.)

Let’s look ahead a bit. When we graduate to full electrodynamics, we’ll find
wave solutions that are “real” (e.g. transport real energy) even after the charges that
generated them have stopped moving or even ceased to exist. For example, dipping
into quantum phenomena for a moment, consider the atom-like bound state of an
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24 Chapter 2 Electrostatics Introduced

electron and a positron. At some moment the electron and positron annihilate each
other, as for example in positron emission tomography (PET) imaging. Now nothing
remains of them, nothing that could be exerting forces on distant charges—and yet,
distant detectors eventually receive any radiation that the electron and positron gave
o� when they formed that bound state. It would be contrived at best to attempt to
represent this situation as action at a distance from charges that no longer exist at
the time of detection!

Occam says don’t add new entities unnecessarily. But this example shows that
the field concept is unavoidable, if we want to live in a world in which energy is locally
conserved.3 Of course, “wanting” isn’t enough. Eventually we’ll need to prove some
mathematical result about local conservation.

Hanging #H: Where is the energy in between emission and absorption
of radiation? What continues to carry that energy even after the source no
longer exists? Is there even a useful concept of “electromagnetic energy,”
and for that matter, what does “useful” mean?

Chapter 34 will show that there is a unique way to attribute energy to fields in such a
way that the total energy (particles plus fields) is locally conserved. As a bonus, we’ll
also get similar results for momentum and angular momentum.

2.5 BASIC SOLUTIONS

2.5.1 Point charge
One solution of the Poisson equation is the one we found in gravitation: A point
charge of strength q located at the origin gives Â(r̨ ) = q/(4fi‘0r), or more generally

Â(r̨ ) = q

4fi‘0Îr̨ ≠ r̨úÎ

if the charge is located at r̨ú.4 You should find the negative gradient of this function,
then go back via Equation 2.2 to see how it all fits together.

The minus sign in the Poisson equation tells that a + charge creates a +1/r
potential, that is, a potential energy hill for another + charge. Hence similar charges
repel, unlike in gravity.

2.5.2 Continuous charge distribution
The Poisson equation is linear in Â, so we can quickly generalize our point-charge
solution to the case of a continuous distribution with charge density flq(r̨ú). Simply
subdivide charge into small elements dq = flq(r̨ú)d3rú and add up their contributions.
We’ll call r̨ú the source point, to distinguish it from the point r̨ where we wish to

3 T2 This example is not quite satisfying—if we’re going to allow quantum ideas into the world, then
we can say that light is a stream of little particles that inhabit space and that carry energy. But
those particles do a lot of weird things not very much like, say, baseballs. The only way so far found
to understand all light phenomena is to introduce fields, then quantize them (Chapter 55).
4The 4fi had to pop up somewhere! We banished it from the Poisson equation, so it appears here.
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know the potential (the field point). Thus the potential at the field point becomes an
integral over source points:

Â(r̨ ) =
⁄

d3rú
flq(r̨ú)

4fi‘0Îr̨ ≠ r̨úÎ . (2.5)

This expression gives the general solution to the Poisson equation. It is called a Green
function solution, and 1/(4fiÎr̨ ≠ r̨úÎ) is called the Green function of the Laplace
operator.

We should think carefully before applying a formula of this type. Suppose that
we wish to know the potential at a field point somewhere inside the distribution, that
is, a point where flq(r̨ ) ”= 0. The expression in Equation 2.5 seems to involve 1/0
when r̨ú = r̨! But consider the integrand close to that point. Let R̨ = r̨ ≠ r̨ú. Then the
suspicious part of the integral is d3r/R, times the smooth function flq(r̨ ≠ R̨ ). And
d3r/R = RdÏd(cos ◊) presents no problems near R æ 0.

2.6 CONDUCTORS

Another di�erence from gravity concerns “conductors.” These are a class of macroscopic
bodies for which it’s a good approximation to say that charges (eventually) arrange
themselves freely inside the body, without leaving it.5

It may seem a nightmare to handle problems of this sort—we can’t find the fields
until we know where the charges go, and vice versa. In practice, however, the method
of potentials gives an elegant approach: The free charges in a conductor just scoot
around till they no longer feel any net force, that is, until Ę = 0 everywhere inside
the conducting body (and hence Â = constant). Because Â is a potential energy per
test charge, it cannot change discontinuously across the conductor’s surface. Thus we
get a boundary condition on the potential’s gradient (the derivatives of the potential
parallel to the surface equal zero):

ĘÎ = 0. just outside a good conductor, static (2.6)

The normal component E‹ need not be zero at the surface; by the Gauss law, E‹
tells us about the surface charge density.

Often we don’t even need to know the surface charge distribution. But if we do,
we can find it by computing ‘0Ǫ̀‹Â once we have solved the boundary-value problem
for the potential.

Chapter 9 will modify the preceding comments, acknowledging that they are true
only at zero temperature. At nonzero temperature, thermal fluctuations are constantly
knocking surface charges away from the surface, so there will be a thin layer with
nonzero interior electric field even in equilibrium. That’s called a depletion layer in
semiconductors, or electric double layer in soft matter.

5“Eventually” because charges may rearrange slowly, due to friction.
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2.7 UPCOMING

2.7.1 Quasi-static
We’ll see in Section 7.5 that many situations of interest are not precisely static, but
may nevertheless be regarded as such because charges are moving slowly.

2.7.2 Beyond static
When things are moving fast, so that we’re not even approximately static, it may
seem that we can’t get to first base: The electric field won’t be curl-free, which seems
to preclude introducing a potential. Luckily that’s not true—later we’ll construct a
version of the potential that applies in this case as well. It won’t have any interpretation
as potential energy per unit charge, but nevertheless it will still be called a “potential.”
Sorry for that misleading, but standard, terminology.
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T2 Track 2

2.2Õ

Equations 0.1–0.5 simultaneously give operational meaning to the electric and magnetic
fields, and to the charge/mass ratios of the charged bodies, and to the choice of good
coordinates on spacetime. In addition to defining the quantities they contain, they also make
falsifiable predictions about relations between those quantities! The way this works is that
the formulas have the character of an interlocking web of many predictions:
–. Suppose that we have reproducible classes of test bodies (e.g. protons, muons. . . ), and
an apparatus that creates repeatable situations. Then there exists at least one coordinate
system on spacetime, and a number q¸/m¸ characterizing each test body ¸ (but independent
of the apparatus and the test body’s motion), and a set of six functions Ę (t, r̨ ), B̨ (t, r̨ )
characterizing the apparatus but independent of the test body and its initial conditions, such
that any physically realizable trajectory of any test body is a solution to Equation 0.5.
—. If the apparatus consists of charges executing specified motions, then the functions Ę

and B̨ , measured as described in (–) above, are not arbitrary, but are solutions to the partial
di�erential Equations 0.1–0.4 with sources determined by the charges.
“. If the apparatus consists of point charges which are themselves free (other than being
influenced by EM fields and known forces f̨other), then the combined history of the fields and
charges is a self-consistent solution of Equations 0.1–0.5, with sources given by formulas in
Section 7.2 and Section 33.6.1 (specifically Equation 33.8 (page 368)).

Once we find one set of “good” coordinates on spacetime (that is, coordinates for which
all phenomena obey the equations in their usual form), then there will also be other such
“good” coordinate systems with the same property. You won’t be surprised to know that
rigidly shifting or rotating x, y, z (leaving t unchanged) gives a new “good system.” Also,
shifting t

Õ = t+t0 works, and so does negating any or all of x, y, z, or t. Later we’ll investigate
just how big the set of “good” systems is. For now, we content ourselves with the statement
that the content of the Maxwell/Lorentz equations includes the assertion that at least one
“good” coordinate system exists.

Einstein called a “good” coordinate system on spacetime an inertial frame of refer-

ence. Note that all “good” coordinate systems in the above sense are, in particular, cartesian
in x, y, and z and non-accelerating. One can extend the definitions of the vector operators,
dot product, etc. to accommodate curvilinear or accelerated coordinates, but the very fact
that those formulas look di�erent from the usual cartesian form means that the Maxwell
and Lorentz equations are not form-invariant under arbitrary change of coordinate systems.
There is something special about inertial coordinate systems.

For sure, there will also be bad coordinate systems, in which the equations as written
are not valid (just as there are accelerating systems in newtonian physics). What Einstein
found illuminating, however, was the transformations between the presumed good systems,
which were not what everybody had expected.
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PROBLEMS

2.1 Statics basics
A static charge distribution produces a radial electric field Ę = Ar≠2e≠br r̂, where
A, b are constants. r̂ is the unit vector in the radial direction.
a. What is the total charge Q?
b. What is the charge density? Let g(r)dr denote the charge located in a shell between

radius r and r + dr, and sketch a graph of g(r).

2.2 Scalar potential
a. Suppose that far from a source we measure the static electrostatic potential

Â(r̨ ) = K

r5 (2x2 ≠ y2 ≠ z2),

where r̨ = (x, y, z), r =
Ô

r̨ 2, and K is a constant. Working in cartesian coordinates,
derive a formula for the electric field Ę (r̨ ).

b. Compute Ǫ̀ · Ę for the field you found in (a) and comment. To what class of
potential functions does this one belong?

c. Could this function describe the newtonian gravitational potential far from a
localized distribution of mass?

2.3
Figure 2.1 represents the electric field lines outside a static charge distribution that
is overall neutral. (The gray disks are singular regions, where I have not drawn the
field lines.)
a. Sketch a charge distribution that could result in such a field.
b. If the electric field’s magnitude falls with distance as Ę ≥ r‹ , what is ‹?

2.4 Proton therapy
This problem continues Problem 1.2. In that problem, you found a formula for the
deflection angle when an electron flies by a stationary proton. Your formula involved
the quantity

Y © K/(mAv0
2)

where K = e2/(4fi‘0), m =electron mass, and v0 =magnitude of initial velocity. A is
the perpendicular distance from the proton to the electron’s initial trajectory.
a. You also considered the related problem in which a proton flies by an initially

stationary electron; you got a formula for the electron’s final kinetic energy W . Do
a little trigonometry to express the answer in the form

W = (stu�)/(A2 + (more stu�)),

where the factors in parentheses don’t depend on A; you are to find them.
b. When a proton flies through a gas of many initially stationary electrons6, it oc-

casionally encounters one with a small value of A and gives it a significant kick.

6We will neglect screening in this problem.
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Figure 2.1:

During that encounter we’ll pretend that the proton is una�ected, but over many
collisions it will lose energy, about equal to the sum of all the W values for each
encounter.

Suppose that the medium has a uniform number density of electrons, fle. Ini-
tially the incoming proton is at depth x = 0 within the tissue, and has kinetic
energy T0. After passing through to depth x, its velocity has fallen to some value
v(x) < v0 due to many encounters, and so its kinetic energy has also fallen to T (x).
Neglect the fact that the proton’s direction will also change; suppose it is always
moving in the same direction.

In the next dx, there are electrons at various values of A. Of these,

(2fiAdAdx)fle

have A values lying between A and A + dA. Write a formula for the total energy
loss to the proton due to these electrons, and integrate it over A to get the energy
loss per depth, dT/dx.

c. Uh-oh. You found an infinite result; the integral is divergent. But wait. The
electrons in human tissue aren’t free; they are bound into molecules. If the energy
transfer exceeds the binding energy, then maybe it’s OK to neglect that fact, as
we have done. But otherwise, the passage of the proton just deforms the molecule
temporarily without necessarily any net loss of energy; your formula from (a) is
not applicable in this case.

We’ll take this complication into account crudely by just cutting o� the integral
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in (b) at the value Amax at which W equals the ionization energy I of a molecule.
Find a formula for Amax.

d. Now do the integral over A, that is, find dT/dx in terms of T , I, fle, and constants.
Note that T = 1

2 Mpv2, where Mp is the proton mass (i.e., it’s not 1
2 mv2).

e. Simplify your expression by defining a suitable length scale and expressing x in
terms of it. Also substitute some numbers:
You know K = e2/(4fi‘0) = 1.4 eV nm.
You know the electron and proton masses.
Suppose I ¥ 10 eV.
Tissue is mostly water. You know how to compute the electron density fle of water.
(Assume that all the electrons have the same ionization energy.)
Suppose that the proton initially has T0 = 100 MeV.

f. Now you can find the relation between x and T (x). This will involve solving the
di�erential equation dT/dx =(expression you found). Luckily that equation can be
solved just by doing an integral. Unluckily I don’t know how to do that integral. Ask
some computer to evaluate it numerically, and hence find the x values corresponding
to a set of T ’s starting at T0 and decreasing to, say, T0/50. Plot your answer as a
graph of remaining kinetic energy T versus x.

g. Actually, we are more interested in the deposition of energy as a function of depth.
Make a second plot showing dT/dx as a function of x, and comment on its general
form.
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Electrostatic Multipole Expansion
Electrostatics is easy if you are told where the charges are (fixed charge distribution).
And that’s often a reasonable approximation when we study molecules, for example
H2O or CO2. The charge distributions on these molecules come from quantum me-
chanics, but given that, we can ask what electrostatic fields they create, and what
qualitative conclusions we can draw.1 Moreover, often we are only interested in the
fields far from a molecule. It’s convenient to be able to summarize the distribution
for such purposes with just a few numbers. Here we systematize that procedure.

Besides bringing technical and conceptual benefits, Chapter 14 will extend these
ideas to get a similarly useful magnetic multipole expansion. Then it will come around
a third time, when we study radiation in Chapter 42. It’s a powerful method.

r

a~~r(`)

3.1 WHAT IS TO BE SHOWN

Consider an isolated, static charge distribution confined to a region of size ¥ a, viewed
from far away; that is, r ∫ a. We’ll choose an origin of coordinates somewhere inside
that region, so that charge #¸ sits at a position r̨(¸) with r(¸) π r. The goal is to show
that the electrostatic potential at r̨ can be expanded in powers of a/r as

Â(r̨ ) = qtotÂ
[0](r̨ ) + D̨E · Ą̂ [1](r̨ ) +

ÿ

ij

Ë¡
QE,ij

¡
Â [2]

ij
(r̨ )

È
+ O(a3/r4). (3.1)

In this formula, qtot is a scalar constant called electric monopole moment or “zeroth
moment of charge.” The three constants D̨E form a vector called electric dipole moment
or “first moment of charge.” The constants

¡
QE are called the electric quadrupole tensor

or “traceless part of the second moment of charge.” These quantities are defined by2

qtot =
ÿ

¸

q¸, D̨E,i =
ÿ

¸

q¸r̨(¸)i,
¡
QE,ij =

ÿ

¸

q¸

!
3r̨(¸)ir̨(¸)j ≠ r(¸)

2”ij

"
. (3.2)

1It’s true that a molecule is not quite fixed—it can deform, e.g. polarize, but for many purposes we
don’t need that level of detail.
2Some authors move a factor 1/2 from the quadrupole field into the definition of

¡
QE; others instead

use the convention given here.
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32 Chapter 3 Electrostatic Multipole Expansion

Although the indices on the quadrupole tensor each run from 1 to 3, so that it has
nine entries, only five of these have independent values. That’s because

¡
QE,ij , regarded

as a matrix, is always symmetric and traceless.
For a continuous charge distribution, we have analogously

qtot =
⁄

d3rú flq(r̨ú), D̨E =
⁄

d3rú flq(r̨ú)r̨ú,

the zeroth and first moments of the charge distribution with respect to the chosen
reference point, and similarly for

¡
QE.

Continuing to unpack Equation 3.1, the multipole potentials are universal func-
tions of observer position (independent of the nature of the charge distribution):3

Â[0](r̨ ) = 1
4fi‘0r

; Ą̂ [1]
i

(r̨ ) = 1
4fi‘0r2 r̂i;

¡
Â [2]

ij
(r̨ ) = 1

8fi‘0r3
!
r̂ir̂j ≠ 1

3 ”ij

"
. (3.3)

These formulas define a single monopole field, a set of three dipole fields, and a set of
five independent quadrupole fields.

3.2 SOME TAYLOR EXPANSIONS

We need to prove Equation 3.1. First recall some useful facts.
We will often use the series expansions for the functions (1 + ‘)±1/2 near ‘ = 0:

Ô
1 + ‘ = 1 + 1

2‘ ≠ 1
8‘2 + · · ·

1/
Ô

1 + ‘ = 1 ≠ 1
2‘ + 3

8‘2 + · · · .

It is good to know how to get these from Taylor’s theorem.

Your Turn 3A
You may wonder how good these approximations are, how small ‘ must be, and
so on. (a) Get a computer to make a graph of the residuals: f0(‘) =

Ô
1 + ‘ ≠ 1,

f1(‘) =
Ô

1 + ‘ ≠ (1 + ‘/2), f2(‘) =
Ô

1 + ‘ ≠ (1 + ‘/2 ≠ ‘2/8) and comment.
(b) Repeat for (1 + ‘)≠1/2.

Now suppose that the small quantity ‘ is itself given in terms of another small quantity:
‘ = ” + A”2, and we wish to organize our result as a series in ”. Substituting gives

1/


1 + ” + A”2 = 1 ≠ 1
2 ” + ”2(≠ 1

2 A + 3
8 ) + · · ·

Note how part of the term that was first order in ‘ has entered into the term that is
second order in ”.

3The ”ij terms in Equations 3.2 and 3.3 are redundant: You can omit either (but not both) without
changing Â. I included both to emphasize that: (a) The potential at order r

≠3 has a traceless
character, no matter what the charge distribution; and (b) the trace of the second moment of charge
cannot contribute at all to the parts of the field that are of order r

≠3 or lower.
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3.3 PROVE THE ELECTROSTATIC MULTIPOLE FORMULA

Now that we have a precise claim (Equations 3.1–3.3), it’s time to prove it starting
from the basic solution for the potential around a point charge. Use Taylor’s theorem
to expand the 1/r factor:

Â(r̨ ) =
ÿ

¸

q¸

4fi‘0

!
Îr̨ ≠ r̨(¸)Î2"≠1/2 =

ÿ

¸

q¸

4fi‘0
(r2)≠1/2

31 r̨

r
≠

r̨(¸)

r

22
4≠1/2

= 1
4fi‘0r

ÿ
q¸

1
r̂2 ≠ 2

r̨ · r̨(¸)

r2 +
(r̨(¸))2

r2

2≠1/2

= 1
4fi‘0r

ÿ
q¸

1
1 ≠ 1

2
!
≠2

r̨ · r̨(¸)

r2 +
r2

(¸)

r2
"

+
! 3

8
"1

≠2
r̨ · r̨(¸)

r2 + · · ·
22

+ · · ·
2

.

The ellipses indicate terms that fall o� at long distance faster than r≠2.

= 1
4fi‘0r

ÿ
q¸

1
1 +

r̨ · r̨(¸)

r2 + 1
r2

!
≠ 1

2 r2
(¸) + 3

2r2 (r̨ · r̨(¸))2"
+ · · ·

2

= 1
4fi‘0

ÿ1q¸

r
+

q¸r̂ · r̨(¸)

r2 + q¸

2r3 r̂ir̂j

!
3r̨(¸)ir̨(¸)j ≠ r2

(¸)”ij

"2
.

This result is nearly the one announced earlier. We only need to note that the di�erence
between the last formula and Equation 3.1 is 1/(8fi‘0r3) times

≠ 1
3

¡
QE,ij”ij = ≠ 1

3

ÿ
q¸

!
3r̨(¸)ir̨(¸)j ≠ r2

¸
”ij

"
”ij = 0.

3.4 WHY SHOW THIS

Now that we’ve proved the result, it’s worthwhile to ask if it was worthwhile.
The virtue of Equation 3.1 is that each term has been written as a product of a

universal, archetypal field (one of the Â[p]’s) times a number (one of the moments).
The fields are completely independent of details of the source—they are just the
possible solutions of the Laplace equation. The moments are independent of position
r̨ —they are saying how much of each field type is present. The first few moments are
a convenient summary of the relevant aspects of the source for purposes of finding its
far fields. Specifically, keeping up to order p (the “2p-pole approximation”) tells us
the distant potential up to order (a/r)p+1, or equivalently the electrostatic field up to
order (a/r)p+2. It can be more convenient to work with just these few moments than
to include all the irrelevant other details of the full charge distribution.

It also gives us insight to connect symmetry of, say, a molecule to the character
of its long-range forces (see Section 3.6.3).

3.5 MORE REMARKS

3.5.1
Without a lot of fancy math, we have found that
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34 Chapter 3 Electrostatic Multipole Expansion

• If a static, localized charge distribution has any part of its potential that falls as
1/r, that part of the field must be spherically symmetric.

• If it has any 1/r2 term, that part of the field must have a specific angular depen-
dence (it must be dipolar), and so on.

3.5.2 From potentials to fields
This derivation would have been a nightmare had we worked directly with the electric
field. So the potential method has practical advantages. After finding the quadrupole
fields from the moments, then we can take a negative gradient and find the field,
should we wish that.

Your Turn 3B
Find the contributions to the electric field coming from the dipole and quadrupole
potentials Ą̂ [1] and

¡
Â [2] appearing in Equation 3.3.

3.5.3 Apparent singularity
Every term in the multipole expansion of Â is singular at r = 0. The corresponding
singularities in the electric field are worse still. Is that a problem? No: The expansion
is a power series in a/r, so it breaks down (becomes inaccurate) at r æ 0. A smooth
distribution of charge will have smooth potential and field. [Similarly, the Earth’s
gravitational potential looks like 1/r outside the Earth, but that doesn’t imply there’s
a black hole at the center.]

3.5.4 Base point dependence
Our expansion of Â depends implicitly on our choice of the origin of coordinates. If
we choose a di�erent origin, then qtot won’t change, but in general D̨E will (unless
qtot = 0), and so will

¡
QE (unless qtot = 0 and D̨E = 0), etc. It’s not really about

coordinate choice: we could have defined moments relative to any reference point h̨
via

D̨E =
ÿ

¸

q¸(r̨(¸) ≠ h̨ ), etc.

3.5.5 Spherical distributions
Any spherically-symmetric distribution of charge trivially has D̨E = 0, and not so
trivially

¡
QE = 0 also.4 In fact all moments beyond the 0th are zero: Â = qtot/(4fi‘0r)

outside any such distribution (Birkho�’s theorem).

3.5.6 Moments that must equal zero by symmetry
Even without spherical symmetry, we sometimes have a shortcut to seeing that some
moments must equal zero.

4See Problem 3.2.
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Any static charge distribution with an inversion symmetry through a point will
have D̨E = 0 when evaluated with respect to that point. Any distribution with a plane
of reflection symmetry will have D̨E · n̂ = 0 where n̂ is the normal to that plane.

Next, suppose that +q is located at (0, 0, a) and ≠q is at (0, 0, ≠a). Then D̨E =
(2qa)ẑ. You should compute that

¡
QE = 0 directly from the definition, but here is a

more insightful, and generalizable, argument.
Consider any arbitrary static charge distribution. Create a new charge distribution

obtained from the given one by inverting all positions, r̨ Õ
(¸) = ≠r̨(¸) and also reversing

the signs of each charge, qÕ
¸

= ≠q¸.
. The new distribution has qÕ

tot = ≠qtot.
. The new distribution has two minus signs in the dipole moment, so D̨

Õ
E

= D̨E.
. The new distribution has three minus signs in the quadrupole moment, so

¡
Q

Õ
E

=
≠

¡
QE.

Back to the specific case with +q located at (0, 0, a) and ≠q at (0, 0, ≠a): The transfor-
mation described above leaves this distribution unchanged, so every multipole moment
is also unchanged.
. We conclude that qtot = qÕ

tot = ≠qtot, so qtot must equal zero (as it does).
. We also find that D̨E = D̨

Õ
E

= D̨E, which is a tautology, so there is no restriction
on the dipole moment.

. And we get that
¡
QE =

¡
Q

Õ
E

= ≠
¡
QE, so the quadrupole moment equals zero. In fact,

every 2p-pole moment with p an even integer must be zero.

Your Turn 3C
But octupole, for example, is up for grabs; we cannot conclude it’s zero. In fact,
try carrying the Taylor expansion out to next order for this special case (don’t
attempt the general case), and find a formula for the part of the potential that
falls as r≠4.

Your Turn 3D
Think up a charge distribution that, under the above transformation, becomes
minus itself. Explain why, for any such distribution, every 2p-pole moment with p
an odd integer must equal zero. [Hint: Try four point charges all in the xy plane.]

3.5.7 Pure dipole
The two-charge distribution discussed in the previous subsection must have vanishing
quadrupole moment, but as mentioned, nothing prevents it from having octupole and
higher moments.

If we want to get a purely dipole field, then we must consider a limiting case, in
which the separation 2a between the two point charges is sent to zero while increasing
the charge so as to hold the dipole moment fixed. Thus in this limit the charge
q = DE/(2a) æ Œ. That singular limit is called the pure dipole or point dipole
distribution.
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3.6 FORCE AND TORQUE ON A CHARGE DISTRIBUTION

3.6.1 Force
Suppose that a localized charge distribution (subsystem 1) sits in an externally created
electric potential Âext (from system #2). The distribution has a reference point which
we take as the origin of coordinates, and consists of charges q¸ located at o�sets r̨(¸)
from that point.

Suppose that the potential is slowly varying over the size of subsystem 1, and
also that subsystem 2 is not significantly distorted by the presence of #1. Consider
rigidly displacing each element of #1 by the same vector �r̨. Then we can write the
potential energy as

U(r̨ ) =
ÿ

¸

q¸Â
ext(r̨(¸) + �r̨ ).

Use a Taylor expansion to show that

U =
ÿ

¸

q¸Â
ext(0)+

ÿ

¸

q¸

dÂext

dr̨

---̨
0
·(r̨¸+�r̨ )+ 1

2

ÿ

¸

q¸

d2Âext

dr̨idr̨j

----̨
0
(r̨¸+�r̨ )i(r̨¸+�r̨ )j+· · ·

(3.4)

= const + �r̨ · (≠Ę ext |̨0)
ÿ

¸

q¸ +
!
≠ˆĘi

ˆr̨j

"
�r̨i

ÿ

¸

q¸r̨(¸)j + · · · , (3.5)

where the dots are subleading terms.
We can now compute the negative gradient to find the force on the charge distri-

bution. In addition to the expected qtotĘ ext, there is now a new term, which we can
write either as D̨E,jǪ̀Ę ext

j
or as D̨E,jǪ̀jĘ ext (plus terms with higher derivatives). If

the distribution is rigid, these formulas can also be written Ǫ̀(D̨E · Ę ).

Your Turn 3E
Suppose that subsystem 2 is itself a distant, static electric dipole, with net charge
zero and dipole moment D̨E(2). Suppose that it is far from dipole 1.
a. Find the leading-order contribution to the interaction potential energy, U(r).
How does it depend on the separation r?
b. Holding r fixed, consider four possible orientations of the two dipoles: (ø · · · ø);
(æ · · · æ); (ø · · · ¿); (æ · · · Ω). Rank-order these according to their interaction
potential energy and say which feel attractive and which feel repulsive forces.

Your Turn 3F
Even if the net charge and dipole moment of dipole 1 are both zero, in general there
will nevertheless be some interaction: Continue the Taylor expansion, Equation 3.4,
to the next order and describe what you get.

3.6.2 Torque
Until now we have allowed the charge distribution to translate (that is, to change its
position r̨ ) but not rotate. If its potential energy changes upon rotation about some
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point, then it will experience a net torque about that point. To be concrete, consider
rotation by d◊ about an axis parallel to ẑ and passing through the reference point we
used to define the multipole expansion. Then ≠dU/d◊ is the z component of torque,
·̨3, computed about the reference point. To find it, we displace each constituent charge
from r̨(¸) to Sr̨(¸), where the infinitesimal rotation matrix S is defined by

S =

S

U
1 ≠d◊ 0
d◊ 1 0
0 0 1

T

V + · · · = 11 + dT + · · · .

The ellipses denote terms of second and higher order in small quantities. The infinites-
imal matrix dT is d◊ times a matrix called the generator of the rotation S. To first
order, the potential energy is then

U =
ÿ

¸

q¸Â
ext(r̨¸ + dT · r̨¸)

= const +
ÿ

¸

q¸

ˆÂext

ˆr̨i

--
0
!
r̨¸ + dT · r̨¸

"
+ · · ·

The change as we rotate is
dU = ≠Ę · dT · D̨E.

Notice that the antisymmetric matrix can be written dTij = ≠Áij3d◊. So

·̨3 = ≠dU/d◊ = ≠Áij3ĘiD̨E,j = (D̨E ◊ Ę )3.

More generally , ·̨ = D̨E ◊ Ę.
In short, a neutral dipole free to rotate in an external field tends to align with

that field: It feels a torque that vanishes when D̨EÎĘ. When aligned, we already found
in Equation 3.5 that it further tends to migrate toward stronger ÎĘÎ (it feels a force).

3.6.3 Some famous molecules
• Sodium chloride is just a lot of ions (electric monopoles).
• Water and HCl consist of molecules that are neutral but that have big net dipole

moments.
• CO2 has no dipole moment but nonzero quadrupole moment.
• Methane is a tetrahedron.
• Neon is a perfectly spherical charge distribution; all of its multipole moments

vanish.

Hmm, that list is also ordered in terms of boiling points! For example, the dipole-
dipole attraction of water molecules for each other gives them a strong cohesive force
that discourages them from separating (vaporizing). As we go down the list, the
intermolecular forces fall faster with distance and the boiling point goes down.

The preceding paragraph is a bit glib. The reasoning may not seem applicable
to molecules with permanent dipole moment in liquid state, e.g. water at room tem-
perature, because they are thermally randomized; the average ÈD̨EÍ = 0. However,
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the random thermal fluctuations of neighboring molecules will be partially correlated,
leading to nonzero ÈD̨E(1) · D̨E(2)Í ”= 0, and hence decreased energy via Equation 3.5.
So there will be a net attraction, in this context sometimes called Keesom interaction.

Even neon does liquefy, albeit at a low temperature. So its atoms do have some
attraction, despite being perfectly spherical in the ground state! To understand this
qualitatively, remember that even though the dipole moment’s expectation is zero,
still its instantaneous value will have quantum fluctuations. And these quantum
fluctuations again have an energetic tendency to correlate with those of a neighboring
atom. This source of electrostatic attraction is sometimes called London force or
dispersion interaction.

Together, the quantum and the statistical correlation attraction e�ects are some-
times called the van der Waals interaction. Van der Waals interactions play a dominant
role in some soft matter systems.

3.6.4 Induced dipole moment
We can summarize the preceding remarks by saying that an atom or molecule may
have no average dipole moment in isolation, yet may nevertheless develop one in the
presence of an external field.

Moreover, real atoms and molecules are not perfectly rigid; they may deform in the
presence of an external field, developing a nonzero average dipole moment. Although
our preceding energy arguments assumed a rigid distribution of charge, they can be
equivalently stated by computing forces on each element of the distribution; then we
see that the force and torque we computed remain valid even in this situation.

In the simplest situation, the resulting induced dipole moment will align with the
external field, and then experience a force pushing it toward regions of higher field
strength, even if the atom or molecule is neutral and had no dipole moment to begin
with.

To get intuition, imagine the molecule as two charges on a Hooke-law spring.
Then the induced dipole moment is linearly proportional to the imposed electric field:
D̨E = –Ę, where – is a constant called the molecular polarizability. That induced
moment in turn feels a force –ĘiǪ̀(Ęi) = 1

2 –Ǫ̀(E2) directed toward the region of
higher field strength.

Note that the electric field appears squared. If it changes sign, that doesn’t a�ect
the force. So even the rapidly-varying electric field of a laser beam will create a
net force pulling a polarizable object into the beam. This observation is one way to
think about optical tweezers, which can pull a micrometer-scale object with precisely
controlled, piconewton-scale forces. Typically the object is not in vacuum, but what
matters is the di�erence between its polarizability and that of the surrounding water
(at optical frequency).

FURTHER READING

General: Pollack & Stump, 2002, §3.8; Zangwill, 2013, ch. 4.
Optical tweezers: Perkins, 2014.
Van der Waals interactions: Butt & Kappl, 2018; Israelachvili, 1992.

Contents Index Notation



Track 2 39

T2 Track 2

3.1Õa Counting
There’s only one kind of monopole field, characterized by only one overall constant of pro-
portionality, qtot. There’s essentially only one kind of dipole field: You can convert any of
the Â

[1]

i into any other just by rotating and rescaling, or in other words you can place any
dipole in a standard orientation, normalize its overall strength; it then resembles any other.

Quadrupole fields are more interesting. Even if we choose a standardized normalization,
the quadrupole tensor

¡
QE has 5 ≠ 1 = 4 independent degrees of freedom, too many to be

reduced to a standard form by the action of just three rotations.
Indeed, a symmetric matrix like

¡
QE,ij has three real eigenvalues, each of which is rotation-

invariant. One of these is redundant because
¡
QE is traceless, but the ratio of the other two

invariantly characterizes the quadrupole. Qualitatively, we may say that some quadrupoles
have more symmetry than others, because there is an invariant distinction between those for
which two eigenvalues match (uniaxial symmetry) and those for which no two match (biaxial
symmetry).5 Try to find concrete examples of each case.

It’s an example of the unity of physics that these same concepts arise in liquid crystals.

3.1Õb Connection to spherical harmonics
We won’t say much about the spherical harmonic functions Y

¸m in this course, but take a
moment to examine the quadrupole fields (Equation 3.3), and show that:
. The angular dependence of

¡
Â

[2]

zz is the same as that of Y
20.

. The angular dependence of
¡
Â

[2]

xx is the same as a linear combination of Y
2,±2 and Y

20.
. The angular dependence of

¡
Â

[2]

xy is the same as a linear combination of Y
2,±2.

. The angular dependence of
¡
Â

[2]

zx and
¡
Â

[2]

zy are the same as linear combinations of Y
2,±1.

(The dipole fields Ą̂
[1]

i are easier to identify with the Y
1m.)

If you’ve studied spherical harmonics, you probably found them at the end of a tortuous
derivation in spherical polar coordinates, involving Legendre polynomials and so on. So
it’s remarkable to see them just pop out e�ortlessly when we apply Taylor’s theorem to a
superposition of 1/r potentials in cartesian coordinates.

T2 Track 2

3.6.3Õa
Pursuing the quadrupole term may seem like hairsplitting—it’s subleading in powers of the
small quantity. But:

• Sometimes the dipole moment of a neutral atom or molecule is zero for symmetry
reasons, e.g. in CO2. In that case, the quadrupole term is the dominant one.

• There is also a multipole expansion for electromagnetic radiation, as we’ll see. Here,
too, if the transition dipole moment is zero, still the atom or molecule can radiate via
its quadrupole moment. But that radiation is weaker in classical electrodynamics (the

5Why can’t all three match?
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rate is smaller in the quantum version), a reflection of its higher-multipole character,
just as we found that the static quadrupole field falls faster than a dipole field.

• In gravitational radiation, there’s never a dipole component; the leading order behavior
involves the time-dependence of the quadrupole moment of mass (unless that’s zero).

3.6.3Õb
Interestingly, no fundamental particle is known to have a permanent electric dipole moment.
A nonzero moment would break “CP” symmetry, and although the Standard Model predicts
such breaking, it does so very weakly. For example, the predicted moment for the electron is
¥ (10≠38

e) cm, whereas in 2018 the experimental bound was DE
<≥ (10≠29

e) cm. (In contrast,
many fundamental particles, such as electrons and neutrons, have readily measurable magnetic
dipole moments, which do not violate CP symmetry.)
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Figure 3.1:

PROBLEMS

3.1 Electrostatic multipole
a. Find the electrostatic potential far away from two point charges, q and ≠q fixed on

the z-axis at z = a, ≠a respectively. Give only the first two nonzero terms in the
expansion of the potential in powers of r/a. Comment on why your answer “had
to” behave this way.

b. Consider point charges q, ≠2q, q located on the z-axis at z = a, 0, ≠a respectively.
Discuss the part of the electrostatic potential at r ∫ a that falls o� as r≠4.

3.2 Just a moment
Consider a spherically symmetric charge distribution: flq(r̨ ) = f(r) is independent of
the polar and azimuthal angles.
a. Clearly such a distribution must have vanishing dipole moment, because there’s

no spherically-symmetric vector (other than zero). But work this out directly from
the definition of dipole moment as an integral over the distribution.

b. More precisely, the dipole moment computed about the point of symmetry must be
zero. Repeat your calculation but this time suppose that the distribution, while
spherically symmetric, is centered about some point h̨ other than the origin.

c. Repeat (a) but for the distribution’s quadrupole moment. This time we can’t just
say, “It must equal zero because there’s no such thing as a rotationally-invariant
rank-2 tensor,” because that’s not a true statement. So work it out and then discuss.

d. Repeat (b) for the quadrupole moment.

3.3 Tetrahedron
a. Consider four identical point charges q rigidly fixed at the vertices of a tetrahedron

(solid dots shown in Figure 3.1), and ≠4q fixed at its center. The distance from
the center to any vertex is a. Find the dipole moment and quadrupole tensor for
this distribution. What do these results imply about the behavior of the electric
field to leading order in a/r? [Remark: A convenient construction of a tetrahedron
begins with a cube centered on the origin, that is, with vertices (±¸, ±¸, ±¸) for
some length ¸ related to a. You can select four of the cube’s eight vertices and use
them as the vertices of the desired tetrahedron.]

b. Does your result appear to be relevant to the behavior of some well known small
molecule? Does it explain a big qualitative di�erence between that molecule’s
properties and those of, say, water?
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3.4 Benzene I
We can idealize an isolated aromatic molecule, such as benzene, as follows. Charge
≠q is spread uniformly throughout a thin ring (annulus) in the xy plane, that is, the
region w <


x2 + y2 < 2w. A point charge +q is all concentrated at the center of

the ring. Find the static electric potential far from this charge distribution to leading
nontrivial order in powers of r≠1 for r ∫ w. Also find the static electric field Ę in the
same approximation.

3.5 Benzene II
Let us idealize the benzene molecule as six positive point charges q in the xy plane
at the vertices of a regular hexagon, each a distance a from the origin. There is also
a washer-shaped ring (an annulus) with uniform charge density and total charge ≠6q,
also in the xy plane, extending from radius b out to c.

Find the dipole and quadrupole moments of this charge distribution in terms of
q, a, b, and c and comment. For example, maybe your result has something to do
with the fact that benzene is more volatile than water, despite being a more massive
molecule.

3.6 Ab Ovo
a. A rigid ellipsoid is defined by the equation (x/a)2 + (y/b)2 + (z/c)2 Æ 1. It has net

charge q uniformly distributed throughout its volume, balanced by a point charge
≠q at the center. Find the quadrupole tensor of this charge distribution. [Hint:
Take the reference point to be its center.]

Suppose that the ellipsoid in (a) has a = c = 1 m and b = 0.5 m (so it’s “oblate”). The
center of the ellipsoid is placed at the origin of coordinates, in an external electrostatic
potential Â(r̨ ) = –̨ · r̨ + —yz + “(x2 ≠ y2)z. Here r̨ = (x, y, z) and –̨ , —, and “ are
constants with appropriate dimensions.
b. Under what conditions may we use the multipole expansion to calculate the force

on this charge distribution?
c. Assuming the condition in (b) is met, find the force on the ellipsoid exerted by this

field to leading order in the multipole approximation.

3.7 Multipole math
Get a formula for Ò2(r≠5r̨ir̨j) where Ò2 is the Laplace operator and the indices
i, j = 1, 2, or 3. If your answer is nonzero, explain how the expression r≠5r̨ir̨j is
admissible as a term in the multipole expansion of the electrostatic field.

3.8 Quadrupole
Four point charges are placed in the xy plane as follows:
1,2: Charges +q are placed at points (0, ±a, 0).
3,4: Charges ≠q are placed at points (±a, 0, 0).

An observer sits at a position r̨ , with r ∫ a.
a. Work out the monopole, dipole, and quadrupole moments of this distribution. Is

it uniaxial or biaxial?
b. Substitute the nonzero moment(s) into the general formula to find the far-potential

of this static distribution to leading order in 1/r. Hint: If you don’t remember
the formula, you can instead write out the four contributions to the point-charge

Contents Index Notation



Problems 43

a edcb

z

x

Figure 3.2:

potential felt at r̨ , approximate each one by using Taylor’s theorem, and add them,
keeping only the leading term in the expansion in powers of a/r.

c. Di�erentiate your answer to (b) to get an analytic formula for the electric field.
Simplify by evaluating only on the plane z = 0.

d. Use a computer to display this vector field, after first normalizing it to unit length.
On the same axes, but in a di�erent color, display the exact answer for the electric
field of the charge distribution (1–4) and comment.

3.9 Pictures at an exhibition
In this problem, you are to make graphical representations of electrostatic fields
corresponding roughly to charge distributions encountered in simple molecules. Sec-
tion 3.5.7 described a limiting charge distribution whose potential consists of only the
dipole term of Equation 3.1. By computing minus the gradient of such a function you
can find the corresponding electric field. In this problem, you are to find and display
exact expressions for the fields outside pairs of pure dipoles that are not located at
the origin.
a. Figure 3.2a represents two dipoles of equal strength, both directed along +ẑ, but

located at (0, 0, ±a). Write an expression for the electric field. Use a computer to
evaluate this vector field on a suitable grid of points in the xz plane covering the
region ≠3a < x < +3a and ≠3a < z < +3a.6 (Arrange your grid so that the two
singular points (0, 0, ±a) are not themselves grid points.) Normalize the vector field
to a constant length, to make it easier to see each arrow,7 and display it. Then
get your computer to find and show some representative streamlines of the vector
field in a separate plot. You don’t need a specific value for the length scale a (why
not?), but for a molecule it could be, say, 0.2 nm. You also don’t need a specific
value for the strength of the dipoles (why not?).

b. Repeat for the situation in (b): two dipoles directed along +ẑ located at (±a, 0, 0).
c. Repeat for (c): two dipoles tilted ±60¶ away from ẑ towards the ±x-axis and

located at (±a, 0, 0). What familiar molecule might this model?
d. Repeat for (d): similar to (a), but the dipoles oppose each other. What familiar

molecule might this model?
e. Repeat for (e): similar to (b), but the dipoles oppose each other. This might model

two familiar molecules electrostatically sticking to each other (like what?)

6One way to approach the problem is to evaluate the potential first, then compute its gradient
numerically. You’ll get numerically better results, however, if you instead evaluate the electric field
directly.
7Changing the normalization does not change the streamlines.
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f. The fields in examples (a–c) all fall into one group, and examples (d–e) into a
di�erent group, based on some common characteristic. What is it and what does
it mean physically?

3.10 Electrostatic multipoles II
a. Consider equal but opposite point charges q and ≠q held at a fixed positions
(0, 0, ±d/2). Expand the electrostatic potential Â at a distant point r̨ in power series
in d/r, and find the first two nonvanishing terms in the series. Then comment.
b. Now flesh out the general argument I made to get the same conclusion: Consider
the combined operation that reverses the sign of all charges, and also inverts all
positions through the origin. The charge distribution in (a) is unchanged by this
operation. Examine the behavior of the generic expressions for the monopole, dipole,
and quadrupole moments of a charge distribution (formulas in Brau), and find their
behavior under this operation. Thus argue that some of them must equal zero for the
particular distribution in (a).

3.11 3D field line plot
Learn how to get a computer to create 3d streamplots, and show them for an electric
dipole field. Look at various viewing angles till you find one that is most informative.

3.12
[Not ready yet.]

3.13 Classical model of FRET
We can get some insight into fluorescence resonance energy transfer by using ideas
from newtonian physics. Imagine an oscillator representing the charge cloud (electric
dipole moment) of a donor fluorophore. The donor gives rise to an electrostatic force
on a second oscillator, which represents the acceptor fluorophore. Suppose that this
force f(t) has fixed angular frequency ÊD (determined by the donor’s excited state),
and amplitude J (determined by the donor’s state and the distance to the acceptor):

f(t) = J cos(ÊDt). (3.6)

We model the acceptor’s electron cloud as a point object with mass m. It’s
attached to a fixed object (representing the molecule’s heavy nuclei) by a spring, with
spring constant k. Moreover, the acceptor slowly dissipates energy to “friction,” which
represents energy loss from the acceptor, for example by fluorescence. Calling the
friction constant ÷, Newton’s law f = ma states that the donor’s position x(t) obeys

m
d2

dt2 x = ≠kx ≠ ÷
d
dt

x + f. (3.7)

To simplify this equation, define new symbols ÊA =


k/m, ÷ = ÷/m, and K = J/m,
and eliminate k, ÷, and J by writing them in terms of the new symbols.
a. After a short transient, the solution x(t) will oscillate at frequency ÊD. So consider

the trial solution x(t) = A cos(ÊDt) + B sin(ÊDt). Find the constants A and B in
terms of K, ÷, ÊD, and ÊA.

b. In the steady state that we are studying, the rate at which the acceptor gets energy
from the donor must equal the rate at which it loses energy to dissipation, which
is P = ÷(dx/dt)2. Evaluate this for your solution.
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c. The quantity you found in (b) is always positive, but it oscillates. Actually, we only
need its time-average ÈP(ÊD, ÊA)Í, which is given by a simpler expression than the
answer to (b). Find that.

d. Actually, the donor and acceptor are not in precisely known states: Rather, each
moves within a distribution of possible states, with varying values of ÊD, ÊA. The
average rate of energy transfer is then the average of the quantity you found in (c),
weighted by the corresponding distributions ˝D(ÊD) and ˝A(ÊA):

ÈÈPÍÍ =
⁄

dÊD˝D(ÊD)
⁄

dÊA˝A(ÊA) ÈP(ÊD, ÊA)Í.

To simplify this expression, suppose that the damping ÷ is very small. Then your
expression from (c) is very sharply peaked near ÊD = ÊA. Exploit this fact by
letting

ÊD = Ê̄ ≠ 1
2 �Ê; ÊA = Ê̄ + 1

2 �Ê,

and changing integration variables from ÊD, ÊA to Ê̄, �Ê. Then approximate your
answer to (c) by replacing �Ê by 0 everywhere, except for the one term in the
denominator responsible for making the sharp peak. With this approximation, you
can readily do the integral over �Ê.

e. The donor creates a dipole field, which shakes charges on the acceptor. Imagine
the acceptor as having a fixed axis p̂A and a charge q that is only able to move
along that axis. Then the force driving that charge’s motion is the product of
the charge times the component of the donor’s electric field along p̂A. From this
information, the behavior of dipole fields, and your calculations, comment on how
the energy transfer rate depends on the separation and relative orientation of donor
and acceptor.
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Curvilinear Coordinates and Separation of
Variables

4.1 SEPARATION OF VARIABLES IN THE LAPLACE EQUATION

Earlier sections stressed that cartesian coordinates are “good” because Maxwell’s
equations look exactly the same in any cartesian coordinate system. We will say much
more on that subject later. But you already know that some non-cartesian coordinate
systems are “pretty good” because Maxwell’s equations look almost the same in them,
and that such a system can be extremely convenient for certain kinds of problems, for
example, those with certain symmetries. Here we will sharpen the notion of “pretty
good” to introduce systems for which the Laplace operator is separable.

The potential method is especially useful for electrostatic problems involving
conductors because Â = constant is a nice boundary condition for the Laplace equation.
However, the Laplace equation is still a 3D partial di�erential equation. It’s nicer still
when we can reduce it to a few ordinary di�erential equations. We’ll see that this
works if we choose coordinates with the separability property, and if the boundary of
our conductor looks simple in those coordinates.

In fact, the Laplace operator is separable in ordinary cartesian coordinates x, y, z,
but many problems have boundaries that don’t look simple in those coordinates. So we
will sometimes use other separable coordinate systems, collectively called curvilinear,
in which the Laplace operator is again separable but certain frequently-encountered
shapes look nice.

4.2 FAMILIAR STUFF

4.2.1 Cartesian coordinates
Because the Laplace operator is the sum of a term not involving y, z, plus a term
not involving x, z, plus a term not involving x, y, we can look for solutions of the
form A(x)B(y)C(z), where AÕÕ = ŸA, BÕÕ = ⁄B, C ÕÕ = ‹C, and Ÿ + ⁄ + ‹ = 0. If our
boundaries also look nice in cartesian coordinates, then this coordinate choice can be
useful.

4.2.2 Plane polar coordinates
For simplicity, let’s warm up with just two dimensions. Let x = r cos Ï and y = r sin Ï
as usual. You already know what the Laplace operator looks like in these coordinates,
but let’s redo that derivation in a way that will generalize easily.

Define two vector fields ę(r)(r, Ï) and ę(Ï)(r, Ï) as the motions we make as we
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vary one or the other of the new coordinates:

ę(r) = ˆr̨

dr
, ę(Ï) = ˆr̨

dÏ
. (4.1)

Note that the first of these is the same as the unit vector r̂, but the second is not the
same as Ï̂. Instead, ę(Ï) = rÏ̂. It will soon be convenient that these two vector fields
are everywhere perpendicular to each other.

We want to formulate the Laplace operator in terms of the new variables. Let
f be a function on the plane, and abbreviate fr = ˆf/ˆr, fÏ = ˆf/ˆÏ, etc. The
cartesian components of the gradient can be written

Ǫ̀f = J
5

fr

fÏ

6
, where J =

S

U
ˆr

ˆx

ˆÏ

ˆx

ˆr

ˆy

ˆÏ

ˆy

T

V . (4.2)

Here’s a useful trick to get an expression for the Laplace operator reexpressed in
terms of our new coordinates. Let g be any function and let f be a function that is
zero everywhere except in some small region. Then Equation 4.2 gives that

⁄
d2r̨ Ǫ̀f · Ǫ̀g =

⁄
d2r̨

#
fr, fÏ

$
JtJ

5
gr

gÏ

6
. (4.3)

However, we also have
⁄

d2r̨ Ǫ̀f · Ǫ̀g =
⁄

d2r̨
#
Ǫ̀ · (fǪ̀g) ≠ fÒ2g

$
= ≠

⁄
d2r̨ fÒ2g. (4.4)

In the last step, we used the divergence theorem to express the first term as an integral
over the boundary. That term is zero because of our assumption about f .

We have found two expressions that must agree for any choice of f . To get a
formula for Ò2g, then, we will just manipulate the right-hand side of Equation 4.3
until there are no more derivatives on f , then compare to the right-hand side of
Equation 4.4.

First we need an explicit formula for the 2 ◊ 2 matrix JtJ. It’s messy to compute
J directly, because once we compute ˆr/ˆx etc. we must then reexpress everything as
functions of r and Ï. Luckily there’s a shortcut to make that step unnecessary. Note
that J≠1 is the matrix S

U
ˆx

ˆr

ˆy

ˆr

ˆx

ˆÏ

ˆy

ˆÏ

T

V .

(Proof: The stated matrix transforms cartesian derivatives to polar, the opposite of
what J does.) The nice property about J≠1 is that its rows are the components of ę(r)
and ę(Ï) defined by Equation 4.1. Thus, we may write

J≠1(J≠1)t =

S

U
Îę(r)Î2 ę(r) · ę(Ï)

ę(r) · ę(Ï) Îę(Ï)Î2

T

V =
5
1 0
0 r2

6
.

We want JtJ, which is the inverse of the preceding result. But the inverse of a diagonal
matrix is easy. That’s the benefit we get from the fact that the ę(i)’s are everywhere
perpendicular to each other.
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Now we can return to Equations 4.3–4.4. For the first of these, we use the result
just found for JtJ then integrate by parts:

⁄
(r dr dÏ)

!
frgr + fÏr≠2gÏ

"
= ≠

⁄
(dr dÏ)

!
f

ˆ

ˆr
(rgr) + fr≠1 ˆ

ˆÏ
gÏ

"
.

We want to rephrase this expression into a form resembling the right side of Equa-
tion 4.4, so multiply and divide by r:

= ≠
⁄

(r dr dÏ)f
#
r≠1 ˆ

ˆr
(rgr) + r≠2gÏÏ

$
. (4.5)

Equation 4.4 says that the last expression equals ≠
s

d2r̨ fÒ2g for any function f that
vanishes outside a small region. For example, f could be a bump function localized
anywhere. The only way that these expressions could be equal for arbitrary f if the
terms in square brackets of Equation 4.5 are equal to Ò2g, and of course this is a
familiar formula:

Ò2g = r≠1 ˆ

ˆr

1
r

ˆg

ˆr

2
+ r≠2 ˆ2g

ˆÏ2 .

4.2.3 Plane polar payo�
If we have a circularly-symmetric, 2D problem, we can entertain trial solutions of the
form Â(r̨ ) = A(r)B(Ï). Then Ò2Â = 0 becomes

0 = BÏÏ

B
+ r

A

ˆ

ˆr
(rAr).

The first term is completely independent of r. The second term is completely indepen-
dent of Ï. Their sum is the constant 0, so each term must separately be a constant.
That reduces our problem to two decoupled ordinary di�erential equations.

If moreover our boundary conditions can be stated simply in these coordinates,
for example as A(R) = 1, then we win.

4.2.4 Some food for thought
It is definitely not the case that the Laplace operator can be written as ˆ2/ˆr2 +
ˆ2/ˆÏ2! Einstein asked himself, “What’s special about some coordinate systems (such
as cartesian) that makes the Laplace operator look simpler in them than in others
(such as polar)?” Following that road led him into general relativity.

For now, we just notice that in polar coordinates the Laplace operator still looks
fairly simple, whereas in general coordinates it does not.

4.2.5 Three dimensions
Your Turn 4A
Run through all these steps for cylindrical and spherical polar coordinates, to see
how they yield the rather mysterious formulas found on the inside cover of any
E&M textbook.
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4.3 A SPHERICAL CONDUCTOR IN A UNIFORM FIELD

Consider a spherical conductor of radius R between two distant, infinite, flat, parallel,
charged plates. We choose an origin of coordinates centered on the center of the sphere
and set up spherical polar coordinates with polar axis along ẑ, which is normal to the
planes.

At the sphere, Â(r = R) must be independent of ◊ and Ï; we may take its value
to be zero. Far from the sphere, we get the same uniform electric field we’d have had
without the sphere, so Â æ Cz where C is a constant related to how much charge is
on the plates. Now we want Â everywhere.

Our problem isn’t spherically symmetric, but at least it’s axially symmetric, so
we get a shortcut: Â will be independent of Ï. The boundary condition is simple in
polar coordinates (it involves only r), so let’s seek a solution of the form A(r)B(◊). In
order to solve the Laplace equation in the space between sphere and plates, we need
functions A, B satisfying

A≠1(r2AÕ)Õ = ⁄ for r Ø R and B≠1 1
sin ◊

(sin ◊BÕ)Õ = ≠⁄ for 0 Æ ◊ Æ fi.

In the first equation, prime means d/dr; in the second one, prime means d/d◊. Let
µ = cos ◊, so dµ = ≠ sin ◊d◊. Thus, the second equation becomes the Legendre
equation:

B≠1 d
dµ

!
(1 ≠ µ2)dB

dµ

"
= ≠⁄. (4.6)

One solution is B = const, which gives ⁄ = 0. But that’s a spherically symmetric
solution, and our boundary condition is not spherically symmetric. The next most
complicated solution to Equation 4.6 is B = µ, which gives ⁄ = 2. Put that back into
the equation for A:

(r2AÕ)Õ = 2A.

This equation is homogeneous, so maybe a power-law solution will work: A(r) = rp.
Substituting shows that p = 1 or ≠2 both work:

Â(r, ◊) = (Cr + Dr≠2) cos ◊.

Indeed, Â æ Cz at r æ Œ, as desired.1 And we can satisfy the boundary condition
by choosing D = ≠RC.

We’re done. The second term is familiar from the multipole expansion, but the
first term is new: Multipole missed it because it does not fall o� with distance.

4.4 LIGHTNING ROD

Our Founder, Ben Franklin, was not the first to discover that electric discharges tend
to occur at sharp points. It’s not at all clear that he even did the dangerous and
stupid experiment that he almost, but not quite, claimed to have done with the kite.

1The apparent singularity at r æ 0 is not a problem because this solution is only to be used outside
the sphere.
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(Others did it, and not all survived.) Ben’s breakthrough was to point out that putting
a grounded, pointy conductor on top of a house could save it from burning down.2

How shall we find the electric field just outside a charged ellipsoid? Conformal
transformation only works for 2D problems. The multipole expansion only gives the
potential far away from an object, and even then requires that we know the charge
distribution in advance. Spherical harmonic expansion goes bad in the limit of interest,
where the ellipsoid is very pointy.3 Finite-grid numerical solution also loses accuracy
in that limit.

Really, we’d like an exact solution. Spherical polar coordinates were good for
spherical conductors. Remarkably, a di�erent curvilinear system exists that can handle
an ellipsoid. Problem 4.1 introduces a coordinate system in which an ellipsoid is the
level set of one of the coordinates. By following the steps in this chapter, you can also
discover that the Laplace operator is separable in those coordinates as well, and hence
get an exact solution for the lightning-rod problem almost as readily as in Section 4.3.

4.5 DIVERGENCE OPERATOR

So far we have restricted attention to the Laplace operator, but the rest of vector
calculus can be cast into curvilinear coordinates when that’s helpful. Just remember
that as always, it’s better to know where the formulas came from, so that you can use
them correctly.

We will eventually want to know the divergences of special vector fields such as

V̨ = 1
r

x̂eikr. (4.7)

Here r is distance from the origin, and k is a scalar constant. We will first do this the
hard way, just to highlight how much easier our second approach is.

4.5.1 Hard way
The hard way at first seems easier: Just look in any book and find the formula

Ǫ̀ · V̨ = r≠2 ˆ

ˆr

!
r2V̨r

"
+ 1

r sin ◊

# ˆ

ˆ◊
(sin ◊ V̨◊) + ˆV̨Ï

ˆÏ

$
.

But it’s tricky to apply this formula to Equation 4.7 correctly. Note that r̂ =
[sin ◊ cos Ï, sin ◊ sin Ï, cos ◊]t, so

x̂r = r̂ · x̂ = sin ◊ cos Ï, x̂◊ = ◊̂ · x̂ = cos ◊ cos Ï, x̂Ï = Ï̂ · x̂ = ≠ sin Ï.

After you substitute these into the famous formula, you still must do a lot of algebra
to find

Ǫ̀ · V̨ = sin ◊ cos Ï
!
≠r≠2 + ik/r

"
eikr.

2Some people objected—lightning strikes were manifestations of divine will, which humans would
defy at their peril. Ben was persistent.
3It’s also bad in another limit of interest, where the ellipsoid is squashed very flat to a thin disk.
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4.5.2 Easy way
Instead of a black-box formula, let’s do it from scratch. Use the product rule, Ǫ̀·(fx̂) =
x̂ · Ǫ̀f + fǪ̀ · x̂ and take f = r≠1eikr. The second term is zero because the cartesian
components of x̂ are all constants. Thus

Ǫ̀ · V̨ = x̂ · r̂
ˆ

ˆr

!
r≠1eikr

"
= sin ◊ cos Ï

!
≠r≠2 + ik/r

"
eikr.

4.6 PLUS ULTRA

There are a total of 11 coordinate systems in which the 3D Laplace operator is
separable, plus two more that are almost as good. See the references.

FURTHER READING

Pollack & Stump, 2002, §5.2.1.
About the famous list of 13 separable coordinate systems: See Weisstein, Eric W.
‘Laplace’s Equation’: http://mathworld.wolfram.com/LaplacesEquation.html .
Also see books: Landau and Lifshitz Mechanics ch. VII; Arfken; and Morse and
Feshback.

PROBLEMS

4.1 NSOM probe
In class I motivated the study of a long, thin metal probe in a uniform background
electric field, which is relevant to apertureless nearfield scanning optical microscopy.

We can define an ellipse as the locus of points in the xz plane that solve

(x/–)2 + (z/—)2 = 1,

where the constants – and — > – are called the “semimajor” and “semiminor” axes,
respectively. Thus 2—, the “major axis,” is the distance between the two most distant
antipodal points (the “poles”), and 2–, the “minor axis,” is the distance between the
two least distant antipodal points.

Define two points P± on the ẑ axis, located at z = ±‡. For any other point, let
r± be the distances from that point to P±. We can specify this point either by its
x, y, z values, or its cylindrical polar coordinates fl, Ï, z, or by new coordinates ›, ÷,
and Ï. Here Ï is the same as in cylindrical coordinates and

› = (r+ + r≠)/(2‡) ÷ = (r+ ≠ r≠)/(2‡).

a. Show that the surface {› = ›0} is what you get by rotating an ellipse about its
axis. Find its major and minor axes in terms of ‡ and ›0.
We wish to find the field outside a conductor whose surface is the one in (a), in
the presence of a background electrostatic field that’s uniform at infinity. But first
some math.
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b. Express fl and z in terms of › and ÷. [Hint: Express ›÷ and (›2 ≠ 1)(1 ≠ ÷2) in
terms of fl and z, then think.]

c. Thus express x, y, z in terms of ›, ÷, and Ï. Di�erentiate to find the vector ę(›) ©
ˆr̨ /ˆ›, and similarly ę(÷) and ę(Ï). These three vectors have a very nice property
similar to the one we found in class for plane polar coordinates — what is it?

d. Use (c) to express the volume element d3r in terms of d› d÷ dÏ. Find the region
in ›–÷ plane corresponding to the region outside the surface in (a).

e. Use (c,d) to express the integral
s

d3r Ǫ̀� · Ǫ̀Â in the coordinates ›, ÷, and Ï.
Here Â is any function independent of Ï, while �, also independent of Ï, is nonzero
only in some small region of › and ÷.

f. Use integration by parts to work out the Laplace operator Ò2Â in these coordinates,
for the case where Â is independent of Ï.
You’re ready to begin the problem, which is to find the electrostatic potential in
the region outside the conductor, subject to the boundary conditions:

Â = 0 on the surface, Â æ ≠EŒz far away.

We seek an exact solution Â = A(›)B(÷) by separation of variables.
g. Translate the boundary conditions above into conditions on A and B. Find a

solution to the equation for B meeting those conditions.
h. Now that you know the dependence on ÷, write the required ordinary di�erential

equation and boundary conditions on the function A.
i. The equation is second order, so it has two independent solutions. You can readily

guess one of them from the boundary condition at infinity, and substitute to confirm
that it works.

j. But we need the other solution too, in order to enforce the surface boundary
condition. I don’t remember how to find the other solution, but Mathematica,
Maple, and Wolfram Alpha do. So ask one of them (unless you know all about
obscure special functions).

k. Finish the problem: Work out the magnitude of the electric field just outside the
conductor at its two poles, and compare this value to the applied EŒ.

l. Consider a conductor with major axis 100 µm and minor axis 0.5 µm and evaluate
your expression in (k) for the field ratio numerically. Then make a contour plot of
the normalized electrostatic potential Â/EŒ in the xz–plane.

m. Here is a related problem that’s easy after you invent the above formalism: Now
consider a metal ellipsoid carrying nonzero net charge Q but totally isolated, that
is, the electric field approaches zero at infinity. Adapt the procedure of parts (a–
j) to find the exact solution for the potential. Then make a contour plot of the
electrostatic potential Â/Q in the xz–plane for the same geometry as in (l).

[Remark: At optical frequencies, most metals are not really well described by our
assumption of perfect conductors. Moreover, the geometry of a probe approaching a
surface is probably closer to a hyperboloid near a plane than to the geometry assumed
in this problem. Nevertheless, ›-÷ coordinates are still useful in realistic treatments
of NSOM probes and their field-focusing properties.]
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4.2 Razor’s edge
A thin metal plate in vacuum is placed in the half-plane y ¥ 0, x < 0 for all z. Thus
the edge of the plate is the z axis. The electrostatic potential Â is constant everywhere
on the plate, but the plate may be charged.

We can seek a solution by using separation of variables in cylindrical coordinates,
for which the plate occupies the half-plane with Ï = ±fi:

Â(fl, Ï, z) = f(fl) cos(Ï/2).

This guess for the angular dependence satisfies the boundary condition Â(fl, ±fi, z) = 0.
Write and solve the equation satisfied by the radial function f . Comment on how your
solution behaves near the edge.
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Capacitors

5.1 FRAMING

Section 2.1 pointed out that what makes electrodynamics physics, not math, is that we
must constantly seek idealizations of systems too complex to handle explicitly. Thus,
in an electron beam we may be able to use Newton’s laws of motion with electrostatic
forces on each electron, but many other situations involve condensed (solid or liquid)
matter, which is packed with too many charges to handle explicitly. This chapter will
introduce one sort of idealization that is useful in many real situations: A dielectric
material.

5.2 PARALLEL PLATES IN VACUUM

Charge q is placed on a flat planar conductor with area �. Charge ≠q is placed
on another such conductor, parallel and a distance a away from the first in the +x
direction. Both conductors are much bigger in y and z than a. By symmetry, the
electric field must point along x̂. Let ‡q = q/� be the surface charge density on the
left plate.

Use the electric Gauss law to find that between the planes, Ęx = ‡q/‘0. Integrate
≠Ę along x to find the potential throughout the gap, and its total change �Â =
Â(0) ≠ Â(a) = ‡qa/‘0. We define the capacitance as the constant of proportionality
relating charge and potential:

C = q/�Â. (5.1)

Mnemonic: If you have large “capacity,” you can store lots of charge without developing
a big potential. That’s why q is in the numerator and �Â is in the denominator.

For this system, neglecting edge e�ects, C = ‘0�/a per unit area. The natural SI
unit for capacitance is coulombs per volt, which is called the farad: 1 F = 1 coul/volt.

5.3 ENERGY STORED

We can now imagine pulling a charge dq away from the negative plate and depositing
in on the positive plate. If dq is positive, then we must do work against the electric
field to accomplish this: (dq)�Â = dq(q/C) = d( 1

2 q2/C). If we wish to build up charge
starting from zero, then we must do a total amount of work

E = 1
2 q2/C.
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56 Chapter 5 Capacitors

Rephrasing using Equation 5.1 gives the stored electrostatic potential energy as

E/(volume) = ‘0
2 Ę 2. (5.2)

That’s interesting: The total energy is proportional to the volume, as though it were
stored in empty space with a density depending quadratically on the field. We’ll need
to do a lot more work before we can be confident about this suspicion, however.

5.4 CYLINDRICAL CONDUCTORS IN VACUUM

Consider a long, straight metal cylinder (“wire”) carrying linear charge density fl(1D)

q
(coulombs per meter). Inside any good conductor the electric field must equal zero,
so the potential must be a constant. Outside, the potential must obey the Laplace
equation: Ò2Â = 0. Cylindrical coordinates make this problem straightforward:
Â(r, Ï, z) = B ln(r/r0) outside the cylinder (and uniform inside). Here B is a constant
related to fl(1D)

q and to the radius (thickness) of the wire.

Your Turn 5A
Find that relation.

r0 is an uninteresting constant; changing it just adds a constant to the potential.
Next consider two long, parallel cylinders with charge densities ±fl(1D)

q . We can
superpose two solutions of the above form. The result will again solve the Poisson
equation with charge 0 outside each cylinder. It won’t be exactly constant on the two
cylinders’ surfaces, but it will be approximately so if their radii are much smaller than
their separation.

Your Turn 5B
Work out the potential di�erence in this approximation between the two wires
as a function of fl(1D)

q , the radii, and the separation. From this, work out an
approximate formula for the capacitance per unit length of this “twinlead” cable.

5.5 PARALLEL PLATES WITH MEDIUM

Now fill the gap between conductors with some nonpolar atoms or molecules, maybe
liquid neon, or more prosaically some kind of oil. What matters is that there be no
free charges, so that the material is an insulator. In this context such a material is
generically called a dielectric.

Each atom/molecule has no dipole moment in isolation, but nevertheless it can
deform under the influence of an external field, and so develop an induced dipole
moment.1 Figure 5.1 suggests that the resulting uniform polarization density will lead
to canceling net charge density in the interior (see the dashed red lines in the figure),
but not on the two boundaries of the medium. Suppose that each molecule separates

1Recall Section 3.6.4.
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Figure 5.1: Polarizable “molecules” with den-
sity flstu� fill the gap between parallel conduct-
ing plates, creating a density of dipole moment
P̨ = q1a1flstu� x̂. On the left, a layer of thick-
ness a1 contains uncanceled ≠q1 per molecule,
so the total bound charge near that plate is
(a1flstu��)(≠q1). The bound surface charge den-
sity on the left plate is therefore ‡b = n̂ · P̨ ,
because the outward-pointing unit vector is
n̂ = ≠x̂. Similarly, on the right side there is
again a partial cancellation of free and bound
charges.
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charge q1 by distance a1, and that they are packed with volume density flstu� . Then
the uncanceled net charge forms a thin “bound” layer at the interface, with areal
density

‡b = n̂ · P̨, (5.3)

where P̨ is the volume density of induced dipole moment (polarization) and n̂ is the
unit vector perpendicular to the surface and directed away from the medium.2 We
will refer to ‡b as the bound surface charge density, because it can’t escape from
the medium, nor even move freely within it; in contrast, the free charge on either
plate could be moved elsewhere by connecting a wire to the plate. We’ll call the areal
density of free surface charge ‡f .

On the left side of the figure above, P̨ and ≠n̂ point rightward, so the bound
charge is negative and indeed partially cancels the charge we put on the left plate.

Most dielectric materials have zerp polarization in the absence of an externally
applied field.3 So it’s natural to suppose that it will have a Taylor expansion, whose
leading term is P̨ Ã Ę. The constant of proportionality is called the bulk polarizability
of the medium. It is traditionally expressed as ‘0‰e, where ‰e is called the dielectric
susceptibility. The relation P̨ = ‘0‰eĘ is our first example of a response function.
Unlike laws of Nature, it is approximate (for example, we assumed the response was
linear in the field strength) and nonuniversal (di�erent materials will have di�erent
values of ‰e).5

Applying the electric Gauss law at the left-hand plate gives

Ęx = (‡f + n̂ · (‘0‰eĘ ))/‘0 where n̂ = ≠x̂.

2Chapter 49 will look at the general situation, where the polarization density may be nonuniform.
3Nothing forbids a permanent electric polarization, analogous to the phenomenon of permanent
magnetism, and indeed materials with this property, called ferroelectricsferroelectric, are known.4
Other materials develop permanent e.d.m. when mechanically strained; they are called piezoelectric.
5We also assumed that the induced polarization points parallel to the applied field. Chapter 50 will
explore interesting phenomena that arise in materials that don’t obey that assumption.
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Solving gives
D̨x = ‡f , (5.4)

where the electric displacement is defined as6

D̨ = ‘0Ę + P̨ (generally). (5.5)

In the context of our specific model we have

D̨ = ‘Ę, (linear isotropic medium) (5.6)

where the permittivity ‘ of the medium7 is

‘ = (1 + ‰e)‘0. (5.7)

Thus, the e�ect of the medium is simply to replace the vacuum permittivity ‘0 by a
larger e�ective value. Instead of accounting explicitly for every charge in the medium,
we can simplify by forgetting it and making this one substitution. Equation 5.6 is
called a constitutive relation for the material in the capacitor.

The same argument as earlier now gives capacitance as

C = ‘�/a, (5.8)

which is greater than the vacuum value.

5.6 ENERGY PUZZLE

Can we still maintain our idea of energy as stored in the space between the plates?
At first it looks bad: Our previous formula gave 1

2 ‘0Ę 2. We could minimize this
expression by assuming enough polarization to completely neutralize the applied
charge, and hence get zero energy storage! That doesn’t seem right.

To see what went wrong, remember that the polarization surface charge arose
from deformation of molecules (or atoms) throughout the gap. The molecules will
resist this deformation. They therefore store energy; the final polarization must involve
optimizing the total energy (field plus deformation). For weak deformation we may
assume a Hooke-law (linear) force law.

To keep things simple, this section will make the unjustified assumption that
each dipole responds to the spatially-averaged electric field Ę.8 Again imagine an
individual molecule as a pair of charges ±q1, with a Hooke-law spring constant k1
controlling their separation. Thus a1 = q1Ęx/k1. Suppose that the polarizable objects
are distributed with density flstu� .

6To understand this name, notice that the second term of this expression really involves the movement
of charges in the dielectric. Maxwell initially imagined the first term as having a similar origin, a
“displacement” of charge in the æther.
7Many authors use the notation advocated here. Beware, however, that some older works write the
permittivity as ‘‘0, so for them the symbol ‘ is what we would call ‘/‘0, a dimensionless quantity
often called the dielectric constant. To avoid confusion, we will not introduce any symbol for dielectric
constant.
8Section 5.7 will show that this is justified when the dielectric is of low density, and will give an
improved derivation for dense matter.
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Your Turn 5C

Show that in this model, P̨x = q1
2Ęxflstu�/k1, and so

‘0‰e = q1
2flstu�/k1

for the low-density medium we are studying.

To understand this result from an energy viewpoint, let’s write down the total stored
energy (electric field plus elastic deformation energy):

E/(volume) = 1
2 ‘0Ęx

2
+ 1

2 k1a1
2flstu� = 1

2

1
‘0 + q1

2

k1
flstu�

2
Ęx

2
(5.9)

= 1
2 (‘0 + ‘0‰e)Ęx

2
= 1

2 ‘Ęx

2
= 1

2
‡f

2

‘
. (5.10)

We see that, for fixed free charge introduced on the plates, the system finds an equi-
librium: a compromise between minimizing the two kinds of energy. The energy is
smaller than it would have been with no polarization at all (because ‘ > ‘0). The
energy is also lower than it would have been if the material had polarized enough to
eliminate the electric field altogether. But it’s not zero, as suggested at the start of
this section!

Instead of using the Hooke law, we could have left a1 arbitrary. Then Equation 5.9
has two terms that are analogous to a mechanical system: two springs in series. We
know that that system minimizes its total energy by distributing overall deformation
between the springs, rather than assigning all of it to just one of them. Similarly, our
capacitor will minimize total energy by canceling some, but not all, of its imposed
free charge with bound charge, resolving the paradox at the start of this section.

The reduction of total energy when we introduce a dielectric material at fixed
free charge implies a force that pulls that material into the gap. For example, a fluid
dielectric will be pulled into the space between charged plates, even if it must overcome
gravity to do so.9

5.7 DENSE MEDIUM

The preceding section warned that it is not really justified to assume that each po-
larizable molecule responds to the spatially-averaged field. This may be surprising:
Often, when a medium is uniform on macroscopic length scales, we may work with
spatially averaged quantities, such as the local velocity in fluid mechanics. This section
will make some more ad hoc assumptions, but we will at least see why this reasoning
breaks down in the presence of long-range forces such as electrostatics.

We again imagine a parallel-plate capacitor with a uniform, polarizable medium
between the plates. This time, however, we will single out one particular molecule for
study, and set up polar coordinates centered on it. This dipole of interest responds
to the net electric field created by all charges except itself. Those charges include
the free charge on the distant plates, as well as bound charges in the medium. To

9See Problem 5.4.
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Figure 5.2: A spherical surface has been drawn
surrounding one polarizable molecule in a
medium. We regard the interior of this surface as
a “cavity” containing only a point dipole repre-
senting the molecule.
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improve, if only slightly, on our previous derivation, we now suppose that we may
treat the medium as continuously and uniformly polarized, except in a spherical cavity
surrounding the dipole of interest, with volume equal to 1/flstu� . After all, surely it is
foolish to insist on a continuum distribution below the molecular scale.10

Figure 5.2 illustrates our idealization. An induced dipole of unknown moment D̨E

sits at the center of a spherical cavity. It feels a local field Ęloc with three contributions:
from free charge with surface density ±‡f at the plates, from bound charges ±‡b,p at
the plates, and from bound charges ‡b,c on the surface of the cavity. The free charge
density is given, but we must find all of the bound charge densities and the average
dipole moment density P̨ .

Because P̨ points to the right in the figure, we define b as its magnitude via
P̨ = bx̂. The same reasoning as in Section 5.5 gives the bound charge density at the
left plate as ‡b,p = (≠x̂) · P̨ = ≠b.

Let r̂ú be the unit vector from the dipole of interest to a point on the surface of
the cavity and let a be its radius. Then the unit vector perpendicular to the surface
and “outward” (away from the bulk material) is ≠r̂ú, and the bound surface charge
at the cavity is ‡b,c = (≠r̂ú) · P̨ = ≠b cos ◊ú, where ◊ú is polar angle measured from x̂.
The figure illustrates why the cosine factor is needed: For example, at ◊ú = fi/2 the
molecular distortion is parallel to the surface and no net bound surface charge arises.

We wish to find the electric field at the center of the cavity, Ętot(0), because that
is what acts on the molecule we are studying. It receives a contribution from the
charges on the plates:

Ęplate = ‡f + ‡b,p
‘0

x̂ = ‡f ≠ b

‘0
x̂. (5.11)

The other contribution, Ęcav, comes from ‡b,c. To find it, first use the potential formula
Equation 2.5

Âcav(r̨ ) = 1
4fi‘0

⁄

sphere
d2� ‡b,c(r̨ú)

Îr̨ ≠ r̨úÎ .

10More sophisticated treatments consider a spherical hole that is much larger than the molecular scale,
but in the end they still make assumptions, and still give only rough answers except for extremely
special media such as liquid helium. For a much more sophisticated treatment see Zangwill, 2013,
chapt. 6.
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Ęcav(r̨ ) = ≠Ǫ̀Âcav = ≠1
4fi‘0

⁄

sphere
a2d(cos ◊ú)dÏú

≠b cos ◊ú
(≠2)Îr̨ ≠ r̨úÎ3 2(r̨ ≠ r̨ú)

Ęcav(̨0 ) = ≠b

4fi‘0

a2

a3

⁄

sphere
cos ◊úd(cos ◊ú)dÏú(≠r̨ú)

= x̂
b2fi

4fi‘0

⁄ 1

≠1
cos2 ◊úd(cos ◊ú) = x̂b/(3‘0).

The induced dipole moment equals the total field times the molecular polarizability:

D̨E = –
!
Ęplate + Ęcav(̨0 )

"
= x̂–

1‡f ≠ b

‘0
+ b

3‘0

2
.

We have now established a connection between the induced moment D̨E and the
strength b of the average polarization P̨ . But the same connection applies to every
molecule, so we also have

P̨ = flstu�D̨E.

Combining the last two displayed equations and recalling that P̨ = bx̂ gives

b

flstu�
= –

‘0

1
‡f ≠ 2b

3

2
.

Solving for b gives
P̨ = x̂‡f

! 2
3 + ‘0

–flstu�

"≠1
.

Now compare the last formula for P̨ to Equation 5.11 to find

P̨ = Ęplate
‘0

‘0
–flstu�

≠ 1
3

.

Writing this as ‘0‰eĘplate at last gives the dielectric susceptibility in terms of molecular
polarizability:

‰e = –flstu�
‘0 ≠ –flstu�/3 . Clausius–Mossotti formula (5.12)

Many materials conform to approximate versions of this formula, although with other
factors of order unity in place of the factor of 1/3 that came from our simplified
approach.

Returning to the start of this section, consider subdividing a substance more and
more finely, flstu� æ Œ while holding –flstu� fixed. Equation 5.12 shows that even
in this limit, the susceptibility disagrees with the naive continuum version in Your
Turn 5C.

5.8 POLAR FLUID MEDIUM

So far we have considered molecules that have no intrinsic dipole moment, but that
can polarize by deforming slightly. We can also consider a medium consisting of polar
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molecules that initially are randomly oriented; an important example is liquid water.
No energetic penalty must be paid to polarize such a medium if it is a fluid; the
molecules can simply align to create net polarization.

So once again we may at first worry that this system would always cancel an
applied Ę, at least up until the molecules had reached perfect alignment. But there
is a price to be paid, even if it is not energy: Aligning the molecules costs entropy,
or equivalently raises the free energy of the system. In a weak field, the compromise
between free energy cost and electrostatic energy reduction will be mathematically
similar to what we previously worked out, again leading to an incomplete cancellation
of the electric field. Although the polarizability is therefore not infinite, for water at
room temperature it is quite high: ‘ ¥ 80‘0. Interestingly, solid water (ice) has a much
smaller permittivity, because its molecules are not free to reorient. Like any other
molecules, they may also deform, but the e�ective spring constant for deformation is
much sti�er than the one for alignment.

The reorientation of water molecules is accompanied by frictional loss as they rub
against their neighbors. When Ę is shaken at microwave frequency, the associated
heating can be considerable, and indeed you know that a microwave oven heats pure
liquid water, with its strong and mobile dipoles, much faster than it does glass, plastic,
or even ice.11

At higher frequencies, however, the reorientation response is too slow to follow the
field fluctuations. That is, the permittivity of water is strongly frequency-dependent
and much closer to that of ice in the optical range than at lower frequency. Later
we will find that the polarizability of a medium slows the transmission of light, and
indeed, the velocity of light in liquid water is only a little slower than in vacuum (3/4
as fast).

5.9 PARTITIONING OF IONS AT A FLUID INTERFACE OR CELL
MEMBRANE

Imagine an oil-water interface. An ion, for example Na+, is dissolved in the water.
Although Section 5.5 only considered uniform fields, a similar argument suggests
that the ion’s surrounding electric field is will be reduced relative to vacuum by the
polarizability of water. Hence its net energy, in this situation called the ion’s Born
self-energy, is also reduced. For water, that reduction will be substantial.

Now suppose that the ion crosses the interface to the oil side. The low polarizability
of oil means that the self-energy increases. Thus, even though there is no material
barrier at the interface, ions will segregate to the water side, following the Boltzmann
probability rule.

Living cells are surrounded by a few-nanometer thick membrane that is essentially
oil. The water either side of this bilayer membrane contains lots of ions, but they will
not cross the membrane because of the high Born self-energy they would incur in the
intermediate states while crossing. That is, cell membranes are electrically insulating,
despite being so thin. Because of that thinness, such membranes have extremely high

11Food contains salty water, which is a conductor. The electric fields in the applied microwaves
therefore induce currents, which give rise to additional heating by the usual resistive mechanism.
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capacitance per unit area (Equation 5.8).12 The passage of ionic current into or out of
a cell is strictly controlled by ion channels embedded in the membrane. Chapters 10–11
will show how the interplay of high capacitance and controlled passage leads to the
phenomenon of nerve impulses.

5.10 BOUNDARY CONDITIONS

The same discussion we gave at an interface between a conductor and vacuum continues
to hold at interfaces between a conductor and a dielectric, a dielectric and vacuum,
or between two di�erent dielectrics (Section 2.6): E‹ can jump at such an interface,
because free charges (in a conductor) or bound charges (in one or both dielectrics)
can be localized at the surface.

For example, suppose that a dielectric material 1 faces vacuum and let n̂ be the
perpendicular to a point on the surface that points away from the material. Suppose
there is no free surface charge; for example, the dielectric could have been neutral
before an external field was applied. Then Equation 5.3 and the electric Gauss law
give that (Figure 5.3a)

n̂ · (Ę[vac] ≠ Ę[1]) = n̂ · P̨ [1]/‘0. (5.13)

If we know the polarization in terms of the electric field, for example via P̨ [1] =
‘0‰eĘ[1], then we get a condition for how E‹ jumps. Rephrasing in terms of the
displacement gives the simple form

�D‹ = 0. dielectric boundary (5.14)

Turning now to the components of Ę that are tangential to the surface of a
conductor, integrating both sides of Ǫ̀ ◊ Ę = 0 over a small area that passes through
the interface shows that Ę Î may not jump as we cross the boundary (Figure 5.3b):

�ĘÎ = 0. dielectric boundary (5.15)

For example, these two components must equal zero just outside a conductor.

FURTHER READING

See also Pollack & Stump, 2002, ch. 4 and 6.
Electrets: https://en.wikipedia.org/wiki/Electret
Piezoelectricity: https://en.wikipedia.org/wiki/Piezoelectricity
Bioelectricity, Coulter counter: Grodzinsky, 2011.

12Chapter 8 will discuss how this prediction was confirmed experimentally.
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Figure 5.3: [Sketches.] Boundary conditions near
a conductor. (a) The short red cylinder has one
end cap just outside a conductor and the other
just inside. Integrating the electric Gauss law
over it, and using the divergence theorem, shows
that the component of Ę perpendicular to the
surface can have di�erent values just inside and
outside the conductor, at least over length scales
larger than the thickness of the surface charge
layer. (b) The red rectangle has one of its longer
edges just outside a conductor and the other
just inside. Integrating the curl-free condition,
and using Stokes’s theorem, shows that any com-
ponent of Ę parallel to the surface must have
the same values just inside and just outside the
conductor.

a

b

PROBLEMS

5.1 Capacitor fun
A simple capacitor is a device formed by two insulated conductors adjacent to each
other in vacuum. If equal and opposite charges are placed on the conductors, there
will be an electrostatic potential di�erence between them. The ratio of the magnitude
of charge on one of them to the magnitude of �Â is called capacitance, measured in
farads (or F). Using the electric Gauss law, calculate the capacitance of:
a. Two large flat conducting sheets of area A separated by small distance d.
b. Two concentric conducting spheres with radii a and b.
c. Two concentric conducting cylinders of length L, large compared to their radii a, b.
d. What is the diameter of the outer conductor in a vacuum-filled coaxial cable whose

central conductor is a cylindrical wire of diameter 1 mm and whose capacitance per
unit length is 0.5 µF/cm?

5.2 Twinlead cable
Two long, cylindrical conductors of radii a, b are parallel and separated by distance d,
which is much bigger than either a, b.
a. Let c =

Ô
ab and show that the capacitance per length is approximately proportional

to (ln(d/c))≠1. Find the constant of proportionality.
b. What diameter wire (in mm) would be necessary to obtain 0.1pF/cm if the separa-

tion is d = 5 mm? (That symbol means 10≠12 F.)
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5.3 Can you take the pressure?
Let us understand why there is such a strong tendency for matter to be electrically
neutral. Consider a spherical balloon filled with gas. At atmospheric pressure and
room temperature, a balloon of radius R = 17 cm contains about one mole of gas.
a. Now assume that we remove one electron from one out of every million gas atoms,

while holding R fixed. The remaining uncompensated charges will repel each other,
so they will distribute themselves on the surface of the sphere. Find the electrostatic
self-energy of this assembly of charge, in joules.

b. Di�erentiate your result in (a) to find the pressure (change of energy per change of
volume) exerted on the balloon. Express your answer as a multiple of atmospheric
pressure, which is about 105N/m2.

5.4 Fluid-filled capacitor
[Not ready yet.]

5.5 Biocapacitor
a. Show that the electric field outside a line of charge in vacuum is Ę = r̂fl(1D)

q /(2fi‘0r).
Here r is the distance from the observation point to the line and r̂ is the unit vector
pointing from the line, perpendicular to it, and passing through the observation
point. fl(1D)

q is the charge per unit length on the line, which we assume to be uniform.
b. Suppose that instead the charge is distributed on a cylinder of radius R1, and that

an equal and opposite charge is distributed on a larger cylinder, with radius R2.
The two cylinders are concentric (they have the same centerline). Use (a) to state
the capacitance per unit length of this coaxial “cable.”

c. The neurons in your body each have a long cylindrical “output line” called the axon.
It’s got a good conductor inside (axoplasm) and outside (salt water), separated by
a thin insulating layer (cell membrane). The insulating layer has permittivity ‘,
which may be di�erent from ‘0, but with this modification we ought to be able to
apply your result in (b) to find the capacitance of the membrane. And yet, people
always use a formula that looks quite di�erent from yours, namely, the parallel-
plate capacitor formula C = �‘/”. Here � is the total area of the membrane and
” is its thickness. Resolve this apparent discrepancy. Hint: An axon may typically
have diameter 1 µm. Its membrane may typically have thickness 2 nm.

5.6 Microwave heating
[Not ready yet.]

5.7 Measure ‘0
If you know about fringe fields, neglect them in this problem.
a. A flat, circular plate, of radius r = 14 cm, in vacuum, carries total charge q. Write

an approximate expression for the electric field strength Ę very near the plate as
a function of distance d to the plate (so d π r).

b. A second such plate is held close to, and parallel to, the first one, and carries total
charge ≠q. Find the force df on each surface area element dA of the second plate
due to the charge on the first plate.

c. Find the electric field strength and the electrostatic potential drop �Â between
the plates as a function of their separation d.

Contents Index Notation



66 Chapter 5 Capacitors

d. A mechanical force f is required to maintain the second plate at a fixed distance
d. Find this force as a function of r, d, �Â and physical constants.
item I did this experiment and measured the �Â needed to balance a force of
10≠2N at separation d = 0.5 cm. I got �Â ¥ 1055 volt. Use this information to
determine the approximate numerical value of ‘0 (that is, don’t use the standard
value listed in books). [Note: The plates are were air, so really you are finding the
dielectric susceptibility ‘air. But air is similar to vacuum.]

e. Make a prediction for the speed of light based on your answer to (e).
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Electohydrostatics
It is a pleasure to find out how di�erent observable
phenomena of the physical world fit together. . . . It is the
discovering of the connection between physical phenomena
and describing them by mathematical analysis, rather than
the analysis itself, which is interesting.

— G. I. Taylor

6.1 FRAMING

Think about soap bubbles you have observed. The usual closed ones come to a hydro-
static equilibrium where they stop wobbling and assume a spherical shape (Figure 6.1a).
Since childhood people have told you, “A sphere has the smallest surface area for
given volume, so surface tension dictates that shape.” Indeed, when we see videos of
astronauts on the Space Station creating zero-gravity blobs of soup and then slurping
them up, the equilibrium shapes are spherical, again due to the air–liquid interfacial
tension. Even with gravity and wind resistance, raindrops are also roughly spherical.

Think some more. A wire frame dipped in soap solution can lead to other kinds
of equilibrium surface shapes. Dip a frame shaped like a Pringle potato chip and you
get a saddle-shaped film (figure panel (b)). Dip two circular rings and if you’re careful
you can get a catenary-type surface spanning them (figure panel (c)). (With even
greater care, you could in principle get a cylinder with closed caps.)

But many other shapes never arise: You never get a free, sharp point, nor indeed
any sort of cone (Figure 6.2e)—not for open nor closed soap films, nor for water
droplets.1 And yet, Figure 6.3 shows a conical surface of a fluid–fluid interface, in
equilibrium, displaying a sharp point. We’d like to answer questions like:

• How is this possible at all?
• Are there restrictions on the sort of conical shapes we can realize?
• Is there technological relevance? (Ans: Yes, lots.)

Another goal of this chapter is to foreshadow some ideas about tensors for future
elaboration.

The next sections introduce many symbols, which we summarize here for reference:

1It is possible to obtain equilibrium soap films with line singularities that terminate on corners. We
will tacitly exclude these from consideration in this chapter. Also, crystals of frozen water are a
completely di�erent matter.
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Figure 6.1: Some fluid-fluid-fluid interfaces in mechanical equilibrium. (a) Closed (distinct inside and outside
regions). (b) Open. (c) Open. [(c): Photo by RE Goldstein, A Pesci, and K Mo�att.]

s arclength coordinate along a curve
�(s) deviation from tangent line
Ÿ curvature of a curve in a plane
› small perpendicular displacement of a curve or surface
�T jump in surface tension upon crossing a 1D barrier
F line tension
L total arclength of a curve in a plane

u, v local coordinates centered on a point P
Bij description of surface shape near a point;

ki, its eigenvalues when expressed in normal coordinates
H = (k1 + k2)/2 mean curvature of a surface in 3-space
G = k1k2 Gauss curvature of a surface in 3-space
�p jump of fluid pressure upon crossing a 2D interface
T interfacial tension of a fluid-fluid interface or free film
N(r), M(◊) functions used in separation of variables
◊0 polar angle for a cone with opening angle 2(fi ≠ ◊0)

6.2 SOME GEOMETRY

6.2.1 Curves in a plane
Before we discuss surfaces with interfacial tension, let’s warm up by studying curves
in a plane, possibly with line tension, for example, a stretched rubber band. Consider
the curve shown in Figure 6.4a. At the point P, construct the tangent line as shown.
As we walk away from that point, the perpendicular distance �(s) from the tangent
to the curve begins to grow as a function of arclength s (unless the line is straight at
P). The Taylor series of �(s) has no linear term (that’s what it means to be tangent).
The quadratic term describes whether the curve is straight or not at P. Writing that
term as 1

2 Ÿ(P)s2, the coe�cient Ÿ(P) has dimensions L≠1 and is called the curvature
at P.

The curvature as just defined also controls how a new curve, obtained by displacing
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Figure 6.2: Some illustrative 2-surfaces. (a–b) A
closed soap bubble can reach hydrostatic equilib-
rium as a surface of constant curvature, possibly
confined on a wire frame: (a), a free-standing
sphere; (b), a cylinder with bulging caps.
(c–d) An open soap film can reach equilibrium
as a surface of constant zero curvature: (c), flat
plane; (d), saddle.
(e) A sharp conical point never arises as an equi-
librium shape—except in the situation shown in
Figure 6.3.
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Figure 6.3: Conical point of an oil–water inter-
face (side view). The surface with polar angle
◊0 is a cone with half-angle fi ≠ ◊0. [From Taylor,
1964, Fig. 9.]
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the original by an amount ›(s) along the perpendicular, will have slightly di�erent
arclength from the original; see Figure 6.4b. Intuitively, a straight line is the shortest
curve joining two given points,2 because if there’s a bend, “you could instead take a

2In flat euclidean space.
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Figure 6.4: (a) �(s) is perpendicular distance from a curve to its tangent line at P, af-
ter we travel arclength s away from P within the curve. The quadratic part of �(s) is a
measure of curvature at P. (b) The curve has been shortened (dashed) by displacing it a
perpendicular distance ›(s).

shortcut.” To make that more precise, in Problem 6.1 you’ll show that:
a. To first order in ›, the total length change is the integral along the
curve of arclength times ≠Ÿ› (a local formula).
b. In contrast, the area in the plane occupied by one side of the curve
grows, and the other side shrinks, by an amount proportional to the line
integral of arclength times › without any factor of curvature (another local
formula).

(6.1)

6.2.2 Mechanical equilibrium of an interface in a plane
Now imagine a floating skimmer designed to contain an oil slick. If you pin it between
two fixed points and put it under line tension F , and there’s no oil slick, then it
will minimize length by assuming a curve of constant, zero curvature (a straight
line). If one side confines an oil slick, however, then the skimmer will bulge out: It
is pulled sideways by the higher air–water interfacial tension on the oil-free side.3 It
now assumes a shape that is a circular arc: Constant, but not zero, curvature. Let’s
understand why.

To understand the situation, think in terms of energy. In mechanical equilibrium,
the line tension F that we apply to the skimmer is constant along its length. The
interfacial tension di�erence �T is also constant, set by properties of water and oil.
Mechanical equilibrium also requires that the curve’s shape minimize total energy.
We described a small shape disturbance by a function ›(s). Idea 6.1 says that the
corresponding first-order change in energy has two parts: The interfacial tension
di�erence �T multiplies

s
ds ›, whereas the line tension F multiplies4 ≠

s
ds ›Ÿ. In

mechanical equilibrium, the net first-order variation of free energy must be zero:

0 =
⁄

ds (�T ≠ FŸ)›.

This relation must hold for any displacement ›(s), so:
Mechanical equilibrium selects a shape that has constant curvature Ÿ =
(�T )/F . (6.2)

Idea 6.2 explains two familiar situations:

3Try floating a thin loop of string on water and add a drop of detergent to the inner surface.
4The minus sign reflects a particular choice of which direction of deviation from the tangent will be
called positive (Figure 6.4a,b). Strictly speaking, interfacial tension involves the free energy cost.
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• When we float an open string on a surface, �T = 0. If we pull the ends, then
F > 0 and the string stretches out straight (Ÿ = 0).

• When we float a closed loop of string on a surface, then add some oil or detergent
to the water it encloses, then �T > 0. The string jumps outward to form a circle
(Ÿ constant).

6.2.3 Surfaces in space
Our real goal is to understand mechanical equilibrium of a 2D surface in 3D space.
So we must make some substitutions in the preceding discussion:

• Line tension F along a skimmer ; surface tension T of a soap film, or the
interfacial tension of a fluid–fluid interface. Again, in mechanical equilibrium it
will be constant throughout the surface.

• Interfacial tension di�erence �T between two sides of skimmer ; pressure dif-
ference �p between sides of our surface. Again, in mechanical equilibrium it will
be constant throughout the volume on each side of the surface.

• Curvature of a curve in a plane ; . . . what?

To make progress, we must generalize Idea 6.1a to get a simple local formula
for the change in area of a curved surface to first order in a small perpendicular
displacement ›. We can proceed as before: At any chosen point P, set up a tangent
plane. Then measure the perpendicular displacement �(u, v) between that tangent and
the actual surface, where u, v are two surface coordinates (e.g. latitude and longitude
on a sphere). We’ll require that u and v be centered on P.

• As before, the Taylor series expansion of � will again have no linear terms: That’s
what tangency means.

• To leading order, then, � is a quadratic function of the two small excursions u, v.
That function is zero if the surface is flat, so it describes curvature.

• More generally, the quadratic part may be expressed as

�[2](u, v) = 1
2
!
B11u2 + 2B12uv + B22v2"

. (6.3)

Unfortunately, the coe�cients B11, B12, and B22 depend on our choice of coor-
dinate system u, v for the surface. In one dimension, we removed this ambiguity
by specifying arclength as the coordinate s. But what’s the analog of that choice
on a 2D surface?

Although there is no unique, standard coordinate system, we may at least restrict
the choice by requiring that if we start at P and move to a nearby point, then the
arclength squared of the resulting curve within the surface must take the form

ds2 = du2 + dv2 + · · · , (6.4)

where the ellipsis is terms of higher than quadratic order.5 If our coordinates don’t

5The presence of the higher-order terms may surprise you—isn’t Equation 6.4, without any higher
terms, just the pythagorean theorem? Indeed, on a flat plane we may choose cartesian coordinates,
in which the usual formula is exactly true. Certain curved surfaces may also admit such special
coordinates; however, in general they don’t exist and Equation 6.4 is the best we can do.
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have that property, we can always find new coordinates that do have it just by applying
a linear transformation to u, v. We’ll call such a choice normal coordinates in the
surface at P.

Your Turn 6A
a. Look up the latitude (fi/2) ≠ ◊0 and longitude ≠Ï0 of your hometown. You
could choose u = ◊ ≠ ◊0 and v = Ï ≠ Ï0, but do they satisfy Equation 6.4? If not,
find a linear transformation that turns them into good coordinates.
b. Even with the choice you made in (a), does Equation 6.4 hold exactly, that is,
without higher-order terms?

Once we find local coordinates that meet our criterion, however, they will still not
be unique: Other choices will also obey Equation 6.4. However, all such choices are of
the form Ë

u
Õ

vÕ

È
= S

Ë
u

v

È
+ · · · ,

where S is a 2D rotation matrix and the ellipsis again denotes possible higher-order
terms. If we reexpress Equation 6.3 in terms of uÕ, vÕ, then it will involve three new
coe�cients BÕ

11, BÕ
12, BÕ

22. That is, none of these quantities invariantly characterizes
the surface near P, due to the residual coordinate freedom.

Luckily, there is a way out. The quadratic function �[2](u, v) can be expressed in
terms of a matrix B =

Ë
B11 B12
B21 B22

È
. Its new form involves a new matrix BÕ = (S≠1)tBS≠1.

But 2D rotations have the special property that St = S≠1, so BÕ is related to B via a
similarity transformation. And any matrix has two famous properties that are invariant
under similarity transformation, and hence don’t care which local coordinates we chose
(as long as they obeys Equation 6.4).

In the present context, those invariants are called the Gauss curvature, G = det B
and the mean curvature, H = 1

2 Tr B. Put di�erently, the two eigenvalues of B are
called principal curvatures. Both are invariant; we just repackage them into G = k1k2
and H = (k1 + k2)/2. Now examine Figure 6.2. Panel (c) shows a case where both
principal curvatures are zero. Panels (b,e) show cases where k1 = 0 while k2 is not
zero but constant (lateral surfaces in panel (b)) or nonconstant (panel (e)). Panel (a)
shows both k1 and k2 nonzero with the same sign; (d) shows opposite signs. Thus,
the mean curvature is zero in (c), and potentially also (d) (if k1 = ≠k2 exactly). The
Gauss curvature is zero in panels (b,c,e).

Your Turn 6B
Assume a spherical Earth. Continuing Your Turn 6A, find Earth’s two principal
curvatures at your hometown. (What about my hometown?)

A cone has a sharp apex, so it shouldn’t surprise you that its mean curvature is
infinite there, and hence nonconstant elsewhere. In fact, if we let r denote distance
from the apex to P, then axial symmetry implies that H = H(r), and you’ll show in
Problem 6.2 that H Ã r≠1.
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6.2.4 The Young–Laplace formula
As in Section 6.2.1, we now imagine distorting a surface to a nearby one by moving
each point P a distance › perpendicular to the surface at P.6 We can now state the
result we need, analogous to Idea 6.1:

a. To first order in perpendicular displacement ›, the total area change
is the integral over the surface of its area element times ≠2H› (a local
formula).
b. In contrast, the volume occupied by one side grows, and the other
side shrinks, by the integral over the surface of its area element times ›
without any factor of curvature (another local formula).

(6.5)

We won’t prove Idea 6.5,7 but look at the example surfaces in Figure 6.2a,b,e: Flatten-
ing a patch of any of these surfaces will reduce the surface area. So Gauss curvature
cannot be what controls this loss, because it’s zero for panels (b) and (e). Instead,
all three of these surfaces have nonzero mean curvature. In contrast, panel (c) has
extremal area and also zero mean curvature. So it’s reasonable to suppose that mean
curvature controls the first-order change in area.

Now imitate the argument in Section 6.2.2, modified as at the start of Section 6.2.3.
A soap bubble, or a fluid–fluid interface, costs some energy proportional to its surface
area; the constant T is called surface or interfacial tension.8 In mechanical equilibrium
it’s constant, because molecules can rearrange parallel to the surface. A closed surface
(closed soap bubble or liquid drop boundary) separates two sides that can have di�erent
hydrostatic pressures; this pressure di�erence �p is also constant in equilibrium.9 The
equilibrium surface shape must minimize total free energy. Arguing as before (Idea 6.2
but with Idea 6.5) now gives

Mechanical equilibrium selects a shape that has constant mean
curvature. The value of mean curvature will be zero for an
open soap film, or more generally 2H = �p/T for a closed
bubble or fluid–fluid interface.

Young–Laplace
formula

(6.6)
Pressure is measured in newtons per meter squared, whereas interfacial tension is in
newtons per meter, so Equation 6.6 is at least dimensionally correct.

Although we didn’t prove the mathematical result Idea 6.5, it has led to Idea 6.6,
which does accord with experience. Look at the examples in Figure 6.2 and note how
the Young–Laplace formula applies to each one: Each is a possible equilibrium surface,
except not (e).

6Also as in 2D, our convention is that the deviation is positive if the perpendicular from the tangent
plane to the surface points parallel to the perpendicular chosen when defining ›.
7 T2 See Section 6.2.4Õ (page 78).
8More precisely, the tension is the free energy cost per area.
9Pressure can be nonconstant only if a “body force” like gravity acts on the bulk of the fluid. In
the experiments we are studying, the net e�ect of gravity involves the density di�erence of the two
fluids and is negligibly small. Surface tension can also be nonconstant, for example in the presence
of temperature or chemical gradients (Marangoni e�ect), but those are nonequilibrium situations.
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6.3 EFFECT OF ELECTRIC FIELD

6.3.1 New contribution to energy balance
So, great: Now you know why you have never seen a conical soap bubble or fluid–fluid
interface. The only problem is. . . you have seen one in Figure 6.3. Contrary to Idea 6.6,
this shape has mean curvature that is nonconstant and indeed diverges at the cone’s
apex. What physics have we forgotten to include?

The new physics is that the lower fluid in the photo was electrically conducting,
and the system was subjected to a strong electrostatic field. To see how that matters,
recall that there is no electric field inside a conducting body, and hence no electric
field energy there; any dielectric properties of the fluid are immaterial. But there
is field energy in empty space or an insulator, and unlike hydrostatic pressure, its
density need not be uniform. Indeed, Chapter 5 argued provisionally that that density
equals10 ‘ÎĘ Î2/2. If we deform the interface, then this energy cost grows or shrinks
proportional to the change of volume on the side with nonzero field.

In the region near the point, Our Founder Ben Franklin told us to expect a
nonconstant electric field. Moreover, the field becomes huge near the point, so we
can neglect any hydrostatic pressure di�erence (set �p = 0) and attempt to balance
electric field energy against interfacial tension.

6.3.2 Electrostatics near a conical point
Before we ask about mechanical equilibrium, let’s first ask what sort of static electric
field could exist outside a cone-shaped conductor. It will be convenient to use spherical
polar coordinates, because the Laplace equation is separable in such coordinates, axial
symmetry is easy to implement, and our boundary condition is simply that the cone
with one particular value ◊0 of polar angle must be an equipotential:

Â(r, ◊0, Ï) = 0 for all r and Ï. (6.7)

Following Chapter 4, let us therefore look for potentials of the form

Â(r, ◊, Ï) = CN(r)M(cos ◊) where M(cos ◊0) = 0. (6.8)

Here C is an unknown overall constant. Our conducting fluid cone is the region ◊ Ø ◊0,
so its half opening angle is fi ≠ ◊0.

If a solution of the form Equation 6.8 exists, the function N must obey11 2rN Õ +
r2N ÕÕ = ⁄N for some constant ⁄. Moreover, we know how N must diverge at r æ 0.
The electric field energy density involves ÎǪ̀ÂÎ2, and our generalized form of the
Young–Laplace formula says it must balance the mean curvature, which diverges as
r≠1. So the potential must itself diverge as r1/2. Substituting that trial solution into
the radial equation yields that the behavior is in fact exactly r1/2 and the eigenvalue
⁄ equals 3/4.

Meanwhile, the angular function obeys Equation 4.6 (page 50):
!
(1 ≠ µ2)M Õ"Õ = ≠⁄M,

10See Equation 5.10 (page 59). Detailed derivations must wait for Chapters 34 and 52.
11See Section 4.3 (page 50).
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Figure 6.5: Left: Cross-section of Taylor’s apparatus, showing the curved electrodes (hatched). “The cone A
was truncated so that its upper edge was a horizontal circle 1 cm diameter which could form the lower edge of
a conical liquid surface if such a surface could in fact be formed.” [From Taylor, 1964, Fig. 5.] Right: Taylor cone
(bottom) giving rise to a jet of fluid (methanol with a small amount of hydrochloric acid). [From Pantano et al.,
1994.]

where now prime indicates d/dµ and µ = cos ◊. We know the solutions to this equation
are Legendre polynomials, at least for integer ⁄. Indeed, the standard form of the
Legendre equation is

(1 ≠ µ2) M ÕÕ ≠ 2µM Õ + [¸(¸ + 1)] M = 0.

Comparing shows that we need the case ¸ = 1/2. Thus, the function M that we need
is a Legendre function of order 1/2. It’s not a finite polynomial like the ones we’re
used to, but it’s a perfectly well defined function. You’ll evaluate it in Problem 6.3,
but first we can say some simpler things.

We have found a function, Equation 6.8, that satisfies the Laplace equation,
is axisymmetric, and has the right kind of singularity at r æ 0. But we haven’t
yet enforced the boundary condition Equation 6.7, which also requires M(◊0) = 0.
So remarkably, there is only one possible angle for an equilibrium cone singularity,
regardless of the value of the interfacial tension. When you evaluate it in Problem 6.3,
you’ll see that experimentally, the angle in Figure 6.3 really is as predicted.

Figure 6.5a shows two electrodes shaped approximately as equipotentials of the
solution to our equation, apart from a missing conical bit at the point labeled G. At
the appropriate value of potential di�erence, a puddle of conducting fluid at G was
observed to rise up and form the sharp point shown in Figure 6.3.
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6.4 TECHNOLOGICAL APPLICATIONS

In 2002, John B. Fenn shared a Nobel Prize, not for discovering the cone state, but
for applying it. Fenn knew that at high applied potential, a molecular-scale jet of fluid
can emerge from the apex of the cone (Figure 6.5b). This proved to be a convenient
way to gently isolate and ionize dissolved macromolecules without breaking them; it
led to a big advance in mass spectrometry.

More broadly, Derek Stein wrote me, “There’s a lot of beautiful physics involved
in electrospray. For instance, how it provokes a cascade of ‘Coulomb explosions,’ with
charged droplets shrinking due to evaporation and then spontaneously developing
one or more Taylor cones from which even smaller charged droplets emerge. Another
example is the formation of a fluid jet at the end of the Taylor cone from which those
charged droplets detach; the detachment process very naturally creates singularly
sharp points. We’re using Taylor cones to deliver ionized biomolecules from liquid into
the vacuum environment of a mass spectrometer. We’re looking into an interesting
regime of Taylor cones developing at the end of a nanoscale capillary: we find that
single ions jump directly from the liquid into the vacuum. This is quite di�erent from
a conventional electrospray, where a cone-jet mode delivers charged droplets into a
mass spectrometer.”

6.5 PLUS ULTRA

6.5.1 A look ahead
Once again, a tensor quantity has popped out in the course of other business. Previously
this happened when we invented the quadrupole tensor; this time, the quadratic
function �[2](u, v) involved the coordinate-dependent, symmetric matrix B. Later
chapters will extend and systematize the notions introduced informally in this chapter.

6.5.2 Other physical surfaces
We have barely scratched the surface of surfaces. Soap films and simple interfaces are
characterized by a single parameter, the interfacial tension T . A cross-linked surface,
such as the bacterial cell wall, will also resist shear deformation as well as local changes
in area. Other membranes, such as lipid bilayers, have no such shear moduli, but may
nevertheless have a preferred value of mean curvature, for example zero. They resist
deviations with an energy cost per area of the form (H ≠ H0)2, that is, di�erent from
the one giving rise to the Young–Laplace formula.

6.5.3 A glimpse of general relativity
Section 6.2.3 took some trouble to characterize a surface using invariantly defined
local quantities (the scalar fields G and H). Only one of these was needed for our
application.

But the concept of curvature enters physics in many other ways, and we’d be remiss
not to mention a remarkable property of the other curvature G. For a 2D surface
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embedded in ordinary 3D space, we defined curvature via a procedure involving points
outside the surface (that is, via the deviation � between the surface and its tangent
plane). However, the Gauss curvature can be reexpressed solely in terms of distance
properties within the surface.12 We need not even imagine any surrounding 3D space.
This realization set in motion B. Riemann’s study of intrinsic curvature for spaces
of dimension greater than two. Much later, that framework was just what Einstein
needed to understand gravitation.

Riemann found that in higher dimensions there is an entire tensor of intrinsic
curvatures generalizing Gauss’s simple scalar G. Einstein found that Riemann’s cur-
vature tensor roughly plays the same role as Ò2„N in a field equation, and that it also
controls the separation of two nearby freely falling bodies.

FURTHER READING

Mathematics of curvature: Dubrovin et al., 1992.
Young–Laplace formula: Butt & Kappl, 2018; Safran, 2003; Nelson, 2014, §7.2.2.
Don’t miss the hilarious yet profound video: Lloyd Trefethen, Surface tension in fluid
mechanics (National Committee for Fluid Mechanics films, 1963)
http://web.mit.edu/hml/ncfmf.html .
It is also available at: https://www.youtube.com/watch?v=DkEhPltiqmo

https://www.youtube.com/watch?v=yiixltf HKw

https://www.youtube.com/watch?v=5d6efCcwkWs .
The phenomenon discussed in this chapter is often called the “Taylor cone” after
Taylor, 1964, p. 392.
John Fenn’s Nobel Lecture:
https://www.nobelprize.org/prizes/chemistry/2002/fenn/lecture/ . From Gauss to
Riemann: Spivak, 1979.

12Gauss called this fact his “Theorema egregium” (outstanding theorem).
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T2 Track 2

6.2.3Õ

We can rephrase the construction of Section 6.2.3 in a more elegant way, using ideas to be
developed later in these notes.

The quadratic part of the deviation �[2] defines a rank-
!

0

2

"
tensor related to the “second

fundamental form” of a 2-surface embedded in 3-space. The quadratic part of the distance-
squared function ds

2 defines another rank-
!

0

2

"
tensor called the metric (also called “first

fundamental form”) of the surface. We can use the metric to convert the second fundamental
form to a rank-

!
1

1

"
tensor (by “raising an index”). The new tensor transforms by similarity,

so its trace and determinant are scalars.
Something similar happened in our discussion in Section 3.1Õ (page 39). There we were

working in flat 3D space, so we could just choose globally cartesian coordinates when defining
the quadrupole tensor. We again face the issue that there is some freedom to choose di�erent
cartesian systems, but again this amounts to a similarity transformation acting on the
components of

¡
QE. So again its three eigenvalues are invariants, and hence they invariantly

characterize di�erent kinds of quadrupole (uniaxial versus biaxial).

T2 Track 2

6.2.4Õ

Here we establish the formulas in Idea 6.5.
A 2-surface in 3-space is specified by a vector function r̨ (u, v). The two parameters

range over some fixed region of the uv plane. Let n̂(u, v) be a choice of normal vector to each
point of the surface. The area of the surface can then be written as

� =
⁄

dudv

... ˆr̨

ˆu
◊ ˆr̨

ˆv

....

Abbreviate ˆ/ˆu by ˆu and so on, and let J denote the square of the integrand above. Thus

J = Îˆur̨ Î2 Îˆv r̨ Î2 ≠ (ˆur̨ · ˆv r̨ )2
.

A new surface is specified by an ordinary function › via ˛Âr (u, v) = r̨ (u, v)+ n̂(u, v)›(u, v).
Suppose that the normal displacement function ›0 equals zero at the boundary of the chosen
region in u, v. The first-order variation of the surface area is then

”A =
⁄

dudv J
≠1/2

#
ˆur̨·ˆu(›n̂)Îˆv r̨ Î2+ˆv r̨·ˆv(›n̂)Îˆur̨ Î2≠(ˆur̨·ˆv r̨ )(ˆur̨·ˆv(›n̂)+ˆv r̨·ˆu(›n̂))

$
.

(6.9)
Now integrate by parts, using that › = 0 on the boundary, and write the result as ”A =s

dudv ›q. We wish to find a convenient expression for the function q at any point P in terms
of the surface shape near that point.

Our formula is invariant under translations and rotations of r̨ , so we may suppose that
our 3D coordinates are centered on P and that moreover the tangent plane to the surface is
the xy plane. We can also shift the two parameters u, v to center them on P and scale/rotate
them to arrange that

r̨ (u, v) = ux̂ + vŷ + 1

2
[u, v]

#
B11 B12
B21 B22

$#
u
v

$
ẑ + O(3).
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The last term represents terms of order three or greater in u, v. The constants B11, B12 =
B21, B22 have the same meaning as in Equation 6.3.

Note that

ˆur̨ = x̂ + (B11u + B12v)ẑ, ˆv r̨ = ŷ + (B12u + B22v)ẑ,

Îˆur̨ Î = 1 + O(2), Îˆv r̨ Î = 1 + O(2), and J = 1 + O(2).

The unit normal to the surface is

n̂(u, v) = ˆur̨ ◊ ˆv r̨

Îˆur̨ Î Îˆv r̨ Î = ẑ ≠ x̂(B11u + B12v) ≠ ŷ(B12u + B22v) + O(2).

We can now evaluate the integrand of Equation 6.9 at the chosen point:

”A =
⁄

dudv ›n̂·
#
≠ˆu(J≠1/2

ˆur̂Îˆv r̂Î2
J

≠1/2)≠ˆv(J≠1/2
ˆv r̨ Îˆur̨ Î2

J
≠1/2)+(ˆuˆv r̨+ˆvˆur̨)(ˆur̨·ˆv r̨ )

$
.

That expression simplifies when we evaluate at P: The integrand at that point is

q(P) = n̂ · (≠ẑ(B11 + B22)).

Finally, we note that the local coordinates we have chosen have the property expressed
in Equation 6.4 (page 71), and so the quantity B11 + B22 equals twice the mean curvature
at P. Thus Equation 6.9 is equivalent to the first statement in Idea 6.5.

The second statement concerns the volume of a thin shell of perpendicular thickness
›(u, v). Multiply the area element by the thickness to get the volume.
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PROBLEMS

6.1 Variation of arclength and area
a. A curve in a plane is specified by a vector function r̨ (s), where s is arclength,

0 Æ s Æ L. Let n̂(s) be a field of perpendicular vector all along the curve. A
new curve is specified by an ordinary function › via Ą̂r (s) = r̨ (s) + n̂(s)›(s). The
displacement function › equals zero at s = 0 and L.
The parameter s still runs from 0 to L, but it’s no longer arclength for the new
curve, so the new total length will no longer be L. Establish the formula in Idea 6.1a.
[Hint: You’ll need to use integration by parts.]

b. Establish the formula in Idea 6.1a.

6.2 Mean curvature of a cone
Show that the mean curvature of a cone with opening half-angle – is H(r, Ï) =
(cot –)/(2r). Here r is distance from the cone’s apex to the point of interest and Ï is
the angular position on each “latitude” line. [Hint: If you have di�culty, first draw a
very wide cone, with – just slightly less than fi/2. It’s nearly a plane, so its curvature
must be smaller for given r than that of a narrower cone. Make sure your derivation
accounts for this.]

6.3 A pointed remark
Finish the derivation of the stability problem started in the main text. Set up spherical
polar coordinates and consider a cone of electrically conductive fluid occupying the
region of space with ◊ Ø ◊0, as in Figure 6.3 (page 69). Thus the half-opening angle
of the cone is fi ≠ ◊0. Take the electrostatic potential to have the form Equation 6.8,
where N(r) = r1/2, M is the Legendre function of order 1/2, and C is an undetermined
overall constant. You may assume the pressure drop is �p = 0, but the interfacial
tension is fixed to some given value T .
a. Get a computer to find the only zero of the function M in the range ≠1 < cos ◊0 < 1,

and in that way predict ◊0 and hence fi ≠ ◊0.
b. Evaluate the electrostatic potential throughout the plane y = 0 (or just the half-

plane with Ï = 0), display it as a contour plot, and comment.
c. Evaluate the derivative dM(cos ◊)/d◊ at ◊0 numerically.
d. Using your results in (a–b), write a formula for the electric field squared just outside

the surface (◊ <≥ ◊0).
e. Generalize the Young–Laplace formula Idea 6.6 appropriately by finding an expres-

sion for the electrostatic field energy density just outside the surface and setting
it equal to 2TH, where H is the mean curvature from Problem 6.2 and T is the
interfacial tension of oil and water. Substitute the result you found in (c).

f. Obtain a prediction for the constant C in terms of T and the relative permittivity
‘/‘0 of oil. Once we look up those values, for example for an oil–water interface,
then we learn how many volts we’ll need in an apparatus before we can expect to
see a conical singularity.
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Charge Flux, Continuity Equation, Ohmic
Conductors
We gradually start to look at non-static situations.

7.1 ONE DIMENSION

Imaging a long thin pipe with some conserved “stu�” inside. Maybe it’s air, and the
“stu�” is mass.1 Define a 1D density fl(1D)(t, z) (stu� per meter). At any z0, also define
the 1D flux j(1D) as the net rate at which stu� crosses the point z = z0, moving from
smaller to larger z. For example, a particle crossing in the opposite direction makes a
negative contribution to the 1D flux of mass.

Then conservation of stu� implies

≠j(1D)(z + dz) + j(1D)(z) = rate of pileup at z = d
dt

!
fl(1D) dz

"
, or

ˆj(1D)

ˆz
+ ˆfl(1D)

ˆt
= 0. (7.1)

Here is a pictorial way to understand Equation 7.1: Imagine a small range of space
and time near (t, z) (dashed box in Figure 7.1a). Multiply Equation 7.1 by �t�z to
get

0 = �t
!
�z

ˆj(1D)

ˆz

"
+ �z

!
�t

ˆfl(1D)

ˆt

"
. (7.2)

Figure 7.1a shows three particle trajectories. Points 1 and 3 Õ contribute to the first
term of Equation 7.2, whereas 2, 3, 1 Õ, and 2 Õ contribute to the second term. Because
every trajectory that enters the dashed box must also leave it, these terms must sum
to zero.

7.2 TWO OR MORE DIMENSIONS

From now on, we will be more interested in electric charge than in mass, so unless
otherwise stated the symbol j will refer to charge flux. Figure 7.1 shows a world
without z (two spatial dimensions). We now also generalize to allow particles to
exchange charge, merge, or even explode as shown in the figure. In between such
interactions, each particle’s trajectory is a curve in spacetime carrying a fixed number
(its “charge”). Even in an interaction, this number is conserved locally (at each vertex

1Yes, I know that mass isn’t really conserved! It’s just an illustration familiar from classical physics.
Really we are interested in charge, which really is conserved, even in relativity.
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a

z

b

Figure 7.1: (a) Three trajectories in one spatial dimension. (b) A charge-conserving inter-
action in two spatial dimensions.

separately). For example, in the weak decay2 shown, the incoming line has charge 0
while the outgoing lines have charges 0, e, and ≠e.

The net charge entering any closed surface, like the surface of the box shown, is
therefore zero. In the neutron decay shown, we have
. 0 (neutron trajectory enters via bottom face of the box);
. ≠(e) (proton and neutrino, total charge +e, exit via top face of the box);
. ≠(≠e) (electron exits via right face of the box).
Those quantities do sum to zero. For trajectories that don’t branch inside the box,
it’s even simpler: Everything that enters the box must also exit, carrying its charge.3

Often it’s reasonable to think of charge as a “river” of many particles, defining
an essentially continuous flow. Charge density fl(2D)

q (t, r̨ ) in 2D has units coul m≠2.
Charge flux j̨ (2D)(t, r̨ ) in 2D has units coul m≠1s≠1. The quantity j̨ (2D)

1 (t, x0, y0) is
defined as the net charge per length per time crossing a short line segment of constant
x = x0 near position (x0, y0) at time t. Here again “net” means that a charge q passing
from smaller to larger values of x contributes q, while charge passing the opposite way
contributes ≠q.

What’s new compared to one dimension is that now we get another component
of flux, j̨ (2D)

2 , when we consider charge crossing a short line segment with constant y.
The total charge entering the infinitesimal spacetime box shown is

. +fl(2D)

q (0, 0, 0)�x�y from the t = 0 (lower) face (plus terms of higher order in
�x and �y);

. ≠fl(2D)

q (�t, 0, 0)�x�y from the t = �t (upper) face;
. +j̨ (2D)

2 (0, 0, 0)�x�t from the y = 0 (left) face;
. ≠j̨ (2D)

2 (0, 0, �y)�x�t from the y = �y (right) face;

2By the way, the reaction shown is also an example of two other local conservation laws, those of
lepton and nucleon numbers. Each has its own continuity equation analogous to the one discussed in
these notes.
3And trajectories that never enter the box also never exit it.
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. +j̨ (2D)

1 (0, 0, 0)�y�t from the x = 0 (rear) face;
. ≠j̨ (2D)

1 (0, �x, 0)�y�t from the x = �x (front) face.
These contributions must always sum to zero. Grouping them in pairs and using a
Taylor expansion gives

0 =
!
≠ ˆ

ˆt
fl(2D)

q ≠ ˆ

ˆy
j̨ (2D)

2 ≠ ˆ

ˆx
j̨ (2D)

1
"
�x�y�t. (7.3)

(Higher order terms vanish when we take the limit of a small box.) The infinitesimal
box may be located anywhere, so

0 = ˆ

ˆt
fl(2D)

q + Ǫ̀ · j̨ (2D). continuity equation (7.4)

We can do the whole derivation again, with any number of spatial dimensions (for
example three). The charge density and flux have di�erent units, but they still obey
the same continuity equation.

7.3 REMARKS

1. Charge flux is sometimes called “current density,” though I prefer to reserve the word
“density” to mean “per unit volume.” I use flux to mean “per transverse dimensions
per time.” In 1D there are no transverse dimensions and j(1D) was just stu� per time.
In 2D there is one dimension transverse to a given direction. In 3D there are two.
2. The result we have found is purely a kinematic identity, not an equation of motion.
It is valid regardless of whether the particle trajectories obey any equation of motion.
It merely expresses local conservation of charge (or any other scalar quantity); beyond
that physical assumption, it’s just bookkeeping.
3. In a stationary situation, where charge density is unchanging (perhaps zero), the
continuity relation guarantees that j̨ is divergence-free.

7.4 NONSTATIC SITUATIONS

Many materials are insulators: j̨ = 0. Some others are approximately ohmic: they
develop currents via a dissipative law4

j̨ = ŸĘ. ohmic material (7.5)

The constant Ÿ is a material parameter called conductivity of the material. I call this
a “hypothesis” because we must check whether a medium is e�ectively ohmic for a
given application. Copper, at ordinary frequencies, is approximately ohmic, as is salt
water. I call Equation 7.5 “dissipative” because it relates j̨, a quantity that changes

4Discovered by H. Cavendish, half a century before G. Ohm. Cavendish failed to publish this important
result, and many others as well. Many books call it “Ohm’s law,” but so many exotic materials are
not ohmic that it’s a bit silly to call it that. Instead we say that some materials, in some conditions,
have ohmic behavior.
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sign under time reversal, to Ę, a quantity that doesn’t. Thus, this formula breaks
time-reversal invariance: It describes the irreversible conversion of electric energy into
heat.

Equation 7.5 may not look like Ohm’s “law” as it appeared in first-year physics:
It’s a local rule involving a material parameter. To make the connection, consider a
thin wire of length h with cross-sectional area �. Total current I flows, leading to a
charge flux j = I/�. Thus, I = �ŸE. But the electric field within the wire leads to a
potential drop as usual, �Â = hE. Thus

�Â = IR where R = h/(�Ÿ).

The resistance R depends on the geometry (h and �) of the wire as well as on the
material (Ÿ). The SI unit for resistance is called ohm and abbreviated �. The SI unit
for conductivity is then �≠1m≠1. Another name for �≠1 is the siemens, abbreviated
S.5

Other quantities you may hear include conductance, defined as 1/R, and resistivity,
defined as 1/Ÿ.

Let’s quantify the “frictional” (dissipative) character of the ohmic hypothesis.
Some external agency must expend energy (dq)�Â to push a lump of charge through
our wire. Multiplying �Â by the total rate of charge transport thus gives the power
absorbed by the wire as P = (�Â)I = I2R = (�Â)2/R. Again, that power must end
up as heat, an e�ect called Joule or ohmic heating Indeed, if you plug an appliance
with an internal short circuit (R <≥ 1 �) into the wall (�Â fixed), you get a lot more
heat than when you plug in a normal light bulb (R ∫ 1 �).

7.5 QUASISTATIC SITUATIONS

We will be interested in situations where everything is changing slowly in time, for
example, the millisecond time scales characteristic of nerve impulses. There is a useful
simplification we can use in this case.

In static (zero-frequency) situations, Section 2.6 argued that charge will rearrange
to erase any electric field inside a conductor. Even at nonzero frequency, we get the
same conclusion for a perfect conductor. What about a non-static situation with a
non-perfect conductor? Charge takes time to move around, because moving too fast
incurs too much frictional resistance. Let’s combine the continuity equation, the ohmic
hypothesis, and the Gauss law to find

d
dt

flq = ≠Ǫ̀ · (ŸĘ ) = ≠Ÿflq/‘.

We see that
Any initial nonuniformity of net charge density gets exponentially sup-
pressed over time scales longer than ‘/Ÿ. (7.6)

5Don’t confuse it with the sievert (Sv), a unit of ionizing radiation dose, nor with the svedberg (also
abbreviated S), used to describe sedimentation rate.
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Figure 7.2: Two typical animal cells drawn to
scale. Upper: Human striated muscle cell (my-
ocyte). Dark blobs are cell nuclei. Lower: Human
neuron. The unbranched tube on right is the
“output line” (axon), which may extend for up to
a meter to communicate with another neuron,
a muscle cell, or an endocrine cell. Other tubes
represent “input lines” (dendrites), each of which
communicate with other neurons (including sen-
sory receptors). 10 µm

Your Turn 7A
Check that the units work out.

Again we see that an ohmic material breaks time-reversal invariance: Fluctuations
in charge density always shrink, never grow, in time.

For salt solution at concentration 100 mM, we can look up Ÿ ¥ 0.1 �≠1m≠1. We also
know that pure water is highly polarizable; indeed, ‘ ¥ 80‘0 at low frequency.6 So for
frequencies below about 100 MHz, we can assume that salt water is everywhere locally
neutral, and hence also that Ǫ̀ · Ę = 0, just as in electrostatics! This simplification will
help us in Section 7.6 and in later chapters. Just as in the case of a perfect conductor,
however, surface charges can and do build up at boundaries.

7.6 ELECTROENCEPHALOGRAM/ELECTROCARDIOGRAM

7.6.1 EEG
Right now, in your brain vast numbers of nerve cells (neurons, Figure 7.2) are com-
municating with one another and with your muscles, sensory receptors, and even
endocrine-secreting cells throughout your body. The mechanism by which these sig-
nals travel long distances, without diminution, is the subject of Chapters 10–11. Right
now we will only study the e�ect of such signaling on nearby tissue.

All of your body’s cells are filled with a solution of salt and various other molecules.
All are in turn bathed in another such solution. The interior and exterior fluids have
equal hydrostatic pressure, which is why delicate structures like cells and their axons,
bounded by fragile membranes, can exist. The two fluids also have well matched
overall osmotic pressure, so that the cell’s interior volume can remain constant. But
the concentrations of particular ions can be quite di�erent inside and outside of the
cell. Figure 7.3a shows some of these concentrations for a well-studied axon in the
squid Loligo. The exterior sodium ions feel a big electrochemical gradient toward the
interior, but are frustrated by the barrier membrane. The interior potassium ions
get conflicting forces: The negative interior potential tends to keep them in, but is
overbalanced by the high interior concentration. These nonequilibrium concentrations

6See Section 5.8 (page 61).
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Figure 7.3: (a) A resting nerve axon. The cell membrane separates inner and outer fluids with strikingly di�er-
ent ion concentrations, of which two key players are shown. (b) A solitary, traveling wave of temporary depolar-
ization progresses along the axon. At the wavefront, ion channels selective for one species (here sodium) open.
This small ring-shaped region becomes a sink for sodium ions from the outer fluid. Other positive ions nearby
that were previously attracted to the low-potential interior are now free to leave, e�ectively forming a source
for positive ions in the region just in front of the wavefront, which has not yet released them. (c) Behind the
leading edge, a second traveling wave follows in which di�erent ion-selective channels open transiently. These
allow the escape of potassium ions. (d) Idealization of the whole system as a set of short, insulated wires, par-
allel to the actual axon, that pull in charge at some points and emit it at others, forming a multipolar pattern
of current in the outer fluid. (e) The total current dipole vector moves periodically, rotating and stretching
with each heartbeat. The z axis comes out of the page.

form a continuously distributed source of free energy, constantly maintained by active
transport of sodium out of, and potassium into, the cell.

The axon membrane is studded with doorways, ion channels that while normally
closed, can open upon command, permitting the transport of specific ion types across
the membrane. A nerve impulse involves the opening of ion channels specific for
sodium in a small patch of membrane. As sodium ions rush into the long, narrow
interior of the axon, others come from all directions in the outer fluid to replace them
and maintain the overall neutrality of the solution. As a result of the ion motion,
a region of the axon becomes depolarized: Its electrostatic potential rises from its
resting negative value toward zero. The sodium channels soon close again, but by that
time a nearby patch has opened, leading to a traveling wave of depolarization.7

The depolarization spreads to nearby membrane regions, releasing ions that had
been clinging near the surface, attracted to the negative interior yet unable to enter
(Figure 7.3b). Thus, a source of positive ions appears in the exterior solution, displaced
from the sink. In addition, a later event in the nerve impulse involves the opening of

7More details appear in Chapter 11. Here we only regard the axon as a particular localized current
source for the exterior world.
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potassium-specific channels behind the sodium-channel opening (Figure 7.3c), creating
a second displaced current source. Later still, all channels close and the whole system
returns to its resting state after the impulse has passed.

In short, at any time t the exterior fluid sees a distribution j(1D)(t, x) of current
sources and sinks localized at points x along the axon. This current spreads into the
surrounding fluid following the quasistatic rule, Idea 7.6. That is, at any instant it
obeys Ǫ̀ · j̨ = 0 with boundary conditions at the axon determined by the form of
the nerve impulse. But this equation implies Ǫ̀ · Ę = 0, which is just the Laplace
equation. We therefore know that far from the axon, the currents will have a multipole
expansion of the usual form.

Figure 7.3c looks complicated, but we can get its main qualitative feature by
remembering charge neutrality. The axon’s cross-sectional area � and its conductivity
Ÿ determine the internal axial current Iax created by the varying potential Âin via

Iax = ≠(Ÿ�) d
dx

Âin.

The 1D continuity relation would require that nonuniformity of this current leads to
charge buildup, were it not for the possibility that charge passes through the membrane.
Charge can either literally pass through, via ion channels, or e�ectively pass through
by discharging the membrane capacitance (both mechanisms are shown in the figure).
Either way, the axon maintains local neutrality by releasing charge to the exterior
with total 1D radial charge flux j(1D)

tot = (Ÿ�) d2

dx2 Âin.
The expression just found for j(1D)

tot is a total derivative, and the potential ap-
proaches a constant at x = ±Œ, so the monopole moment of the current source equals
zero. Moreover, the quantity

xjr,tot = (Ÿ�) d
dx

!
x

dÂin
dx

≠ Âin
"

is also a total derivative. Because the potential approaches the same constant value
at x = ±Œ, we see that the dipole moment of the current source also equals zero.

Hence, the leading-order current distribution far from the axon is in general of
quadrupole form (Figure 7.3d). Any one impulse will create extremely small distant
currents and fields. However, the concerted firing of impulses on many parallel axons
in the brain can create a macroscopically measurable e�ect. Electric fields set up
by the internal current can in turn penetrate even an intervening electrical insulator
(such as the skull and surrounding skin). In this way, at least major brain activities
can be measured noninvasively simply by attaching external electrodes to the skin and
measuring the electric potential, a procedure called electroencephalography (EEG).

7.6.2 EKG
Muscle cells also support traveling waves of depolarization much like those in nerve
cells, with the important di�erence that a single wave spreads over the entire long
cell for the duration of a contraction. Thus in this situation the dipole moment of the
current source need not equal zero.

For mechanical reasons, muscle tissue consists of huge numbers of parallel fibers
that all contract in unison, leading to a big net dipole moment of the current distribu-
tion. Again, exterior electrodes on the skin can easily pick up this signal, determining
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not only the magnitude of the dipole (traditional electrocardiogram, or EKG) but
also its spatial direction (vector electrocardiogram, Figure 7.3e). The time course of
this net dipole vector is a valuable diagnostic of heart disease.

FURTHER READING

General: Pollack & Stump, 2002, chapt. 7.
Quasistatic approximation: Pollack & Stump, 2002, §7.6.
Neuroelectricity, EEG, EKG: Hobbie & Roth, 2015; Benedek & Villars, 2000.
Advanced: Malmivuo & Plonsey, 1995; Gratiy et al., 2017.

PROBLEMS

7.1 Reactance
A real capacitor’s dielectric may not be a perfect insulator: Some current may “leak”
across when a potential di�erence is applied. Here’s a way to measure both the
capacitance C and resistance R at once, by applying a time-varying current I(t) and
observing the resulting transmembrane potential Â(t).
a. Write an expression for the total current into a membrane in terms of Â(t). The

total current consists of the leakage plus the time change of the charge stored in
the membrane’s capacitance.

b. Suppose we impose a known current I = Ī cos(Êt). Find the resulting Â(t), and
show that it has both cos(Êt) and sin(Êt) terms; that is, it’s not in phase with the
current. Show how to deduce R and C from this measurement.

7.2 Bulk conductor, I
Consider two electrodes immersed in an infinite bath of poor conductor, such as salt
water. The electrodes are insulated except for their ends, which are small metal spheres
of radius R0. The conductor obeys an ohmic relation, and the zero-frequency (DC)
conductivity of the medium is a constant, Ÿ. The ends are separated by a distance
R ∫ R0. Find the total DC resistance between the two electrodes as a function of R
and comment on the (possibly surprising) form of your answer.

[Hints: Start by noticing that the units of conductivity are not the same as
those of 1/(resistance). Think about the possible forms of the desired formula for
resistance as a function of Ÿ, R, and R0, in the stated limit. Next begin the problem
by guessing a form for the electrostatic potential in the medium that solves the relevant
equations and is approximately constant over each electrode in the stated limit. From
the potential you can find the current density everywhere, as well as the total potential
drop.]

7.3 Electrosurgery
Patients undergoing electrosurgery sometimes su�er burns around the perimeter of
the electrode. Consider a thin circular metal disk electrode of radius a and potential
Â0 in contact with a medium of conductivity Ÿ. The circuit is completed by another
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electrode at some unspecified, distant, place; for example, you could imagine it as a
sphere at potential 0 far from the disk electrode.
a. Show that the normal component of current density at the surface of the electrode

is given by
j‹ = 2ŸÂ0

fi(a2 ≠ r2)1/2

where r is distance from the center of the disk (so it ranges from 0 to a). (The
circuit is completed by some unspecified other electrode far away from the one
in question.) This is a hard problem; we’ll need to discuss the strategy in detail
during the recitation.

b. Even if you can’t do (a), proceed assuming it. Find the total current coming out
of the electrode.

c. Thus find the electrode’s resistance.
d. Find the rate of heat production in the medium and explain why the patient gets

burns near the edge of the electrode.
Method: Here is an outline of how to do (a). We will replace the disk by an ellipsoid,
and at the end of the calculation take a limit where the ellipsoid gets squashed down
to the desired disk.
i. To define the ellipsoid, let ‡ be some positive constant (the distance from the
center to one focus of an ellipse). Set up cylindrical coordinates fl, Ï, z centered on
the center, with ẑ the axis of symmetry. Now define r± =


z2 + (fl û ‡)2 and

› = (r+ + r≠)/2‡, ÷ = (r≠ ≠ r+)/2‡.

Thus the surface › = ›0 is an ellipsoid for any constant ›0. Our goal is to find the
potential outside a conductor whose surface is this ellipsoid, given that the potential
drop between the surface and infinity is Â0. When we’ve done that, then the limit
›0 æ 1 will give us the case of a thin disk.
ii. We know that the potential solves Laplace’s equation outside the conductor, so
we’re faced with a familiar class of problem: a boundary-value problem. If we use ›, ÷,
and Ï as coordinates, the problem is

Ò2Â = 0, Â æ 0 at infinity, and Â(›0, ÷, Ï) = Â0.

The boundary conditions look nice in these coordinates. Let’s show that the Laplace
operator is separable.
iii. Express fl and z in terms of › and ÷. [Hint: Express ›÷ and (›2 ≠ 1)(1 ≠ ÷2) in
terms of fl and z, then think.]
iv. Thus express x, y, z in terms of ›, ÷, and Ï. Di�erentiate to find the vector
ę (›) © ˆr̨ /ˆ›, and similarly ę (÷) and ę (Ï). These three vectors have a very nice
property similar to the one we found in class for plane polar coordinates — what is
it?
v. Use (iv) to expresss the volume element d3r in terms of d› d÷ dÏ.
vi. Use (iv,v) to express the integral

s
d3r Ǫ̀f · Ǫ̀g in the coordinates ›, ÷, and Ï.

Here f and g are any two functions, both independent of the azimuthal angle Ï and
vanishing at infinity.
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insulated except at tips

5 cm

Figure 7.4:

vii. Use integration by parts to work out the Laplace operator Ò2g in these coordi-
nates, for the case where g is independent of Ï.
viii. We seek an exact solution Â = A(›)B(÷) by separation of variables. Substitute
this trial solution into the boundary conditions, and into your formula in (vii), and
solve for Â.

Other note: One might worry that the sharp edge of the disk could generate a
singularity that gives pathological answer, like infinite (or zero) resistance. Indeed the
formula above shows that there are large currents at the rim of the disk. But you’ll
find the total resistance is nice and finite.

7.4
Imagine a small current source (hearing-aid battery) with narrow wires sticking out.
Everything is insulated except for the tips of the wires, which are separated by 5 cm.
The whole thing is immersed in an infinite bath of isotropic conductor, for example
seawater, and the current source supplies a steady total current I = 1 mA (Figure 7.4).

a. What equation governs the steady electric potential throughout the seawater?
b. Write down a solution to that equation appropriate to the problem by superposing

two simpler solutions.
c. The conductivity of seawater is Ÿ ¥ 0.1 �≠1m≠1. Use that fact, and the form of

your answer to (b) up close to one electrode tip, to get the overall constant in front
of your solution, and hence finish explicitly evaluating the steady electric potential
throughout the seawater.

7.5 [Not ready yet.]
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Cell Membrane Capacitance
8.1 FRAMING

Every living cell needs a wrapper to maintain a distinct interior environment. We now
know that this plasma membrane is a few nanometers thick, which is why nobody
could see it prior to the invention of the electron microscope. Nevertheless, H. Fricke
“saw” it (that is, deduced its existence and thickness) in 1925.

Actually, the existence of a molecular-scale membrane had been hypothesized prior
to this. There was some precedent. Ben Franklin had long ago done measurements on
the spreading of oil on an air-water interface; Rayleigh made these more precise and
was brave enough to propose the interpretation, that oil could be spread to a monolayer
just a few nanometers thick, but no further (without holes appearing).1 Others realized
that, even without an air-water interface, a double layer of such molecules could form,
stably separating one aqueous medium from another one. There remained the problem
of confirming this hypothesis and, if confirmed, characterizing the membrane in detail.

8.2 FRICKE EXPERIMENT

Living cells require a salty environment; in pure water, they burst from osmotic flow.
And of course the interior of a cell is also salty (it contains small, mobile ions). But
the membrane is largely impermeable to those ions, because of the high electrostatic
cost to them of leaving a highly polarizable environment (water) and entering the
nonpolar (oily) interior of the membrane. That is, the membrane amounts to a thin
insulating layer between two conductors: a capacitor.

Fricke knew that such a thin membrane would have substantial capacitance, and
that this might be relevant for electrophysiology, so he sought to measure the capaci-
tance. Knowing that the lipid molecules constituting a membrane are similar to other
oils then let him predict that the capacitance per unit area would be C = ‘/”, where
” was the membrane thickness. Thus, knowing the permittivity ‘ and measuring C

would allow a determination of ”.
Naively, one could imagine stretching such a membrane all the way across a

chamber, imposing a potential drop across it, and measuring how much charge flowed
while establishing that drop (“charging the capacitor”). Incredibly, such an approach
is possible today via patch-clamp measurements. But not in 1925. To get there 60
years ahead of when the measurement “ought” to have been possible, Fricke found a
more clever approach.

1Strutt, 1890.
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92 Chapter 8 Cell Membrane Capacitance

Figure 8.1: (a) Imagined experiment to measure membrane capacitance directly. (b) In
Fricke’s experiment, both electrodes were on the same side of the membrane (the cell exte-
rior). The cell disrupted what would otherwise be a uniform flow of current (ions in solu-
tion). The membrane is modeled as a sphere of radius a.

Rather than having electrodes on either side of a membrane (Figure 8.1a), Fricke’s
experiment involved suspending many cells in salt water and passing alternating
current through the chamber. I admit that I did not at once see how this would tell
us anything about the membrane, but that is the point of these notes. The frequency
of the current was around 100 kHz, so we may use the quasistatic approximation for
our analysis.

We idealize the system as salt water on either side of a single spherical shell of
radius a. (Later we will assume that if there are many cells, they are well separated
in space.)

In a conducting medium, j̨ = ŸĘ. Because we assume that no current may cross
the membrane, we must have j̨‹ = 0 at the inner and outer surfaces, and hence
Ę‹ = 0 also. The system arranges this by having thin layers of excess charge pile up
just outside the membrane as shown in Figure 8.1b. Elsewhere there is no net charge
(good conductor), so Ǫ̀ · Ę = 0. Thus, we may write Ę = ≠Ǫ̀Â as usual, but with a
jump in Â as we cross the membrane.

We now have two decoupled electrostatics problems:

Inside cell
Ò2Â = 0, subject to

ˆÂ

ˆr
= 0 on the spherical surface r = a.

There is only one spherical solution to the Laplace equation that is nonsingular at
the origin, namely Âin = const.2

Outside cell
Ò2Â = 0, subject to

ˆÂ

ˆr
= 0 on the spherical surface r = a and

2See Section 4.3.
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Â æ ≠EŒz = ≠EŒr cos ◊ far away.

There is one solution to the Laplace equation with the required behavior at infinity,
namely r cos ◊. In addition, many other solutions fall o� at infinity, so adding them does
not spoil the behavior at infinity. Of these, r≠2 cos ◊ has the same angular dependence
as the first one, and so is a candidate to fix its behavior at r = a. (It doesn’t matter
that the second of these solutions is singular at r = 0, because we are only interested
in the exterior region.)

Enforcing the boundary condition lets us find the unknown constant – multiplying
the second solution:

0 = ˆ

ˆr

---
a

!
≠EŒr cos ◊ + –r≠2 cos ◊

"

0 = ≠EŒ ≠ 2–a≠3

Âout = ≠EŒ cos ◊(r + 1
2

a
3

r2 ) + const.

Match the solutions
By symmetry, Â must not jump as we cross the membrane at the equatorial plane
◊ = fi/2. So Âout = Âin there and we may take both = 0.

8.2.1
We solved the electrostatic problem, but we still must connect to what was exper-
imentally measured. First notice that the potential jump across the membrane is
�Â(◊) = ≠EŒ

3a

2 cos ◊. Each surface area element is a capacitor charged to that
potential, and hence stores energy

dE = 1
2 (�Â)2dC where dC = Cd2�.

The total stored energy is then

E =
⁄

dE =
⁄

(sin ◊d◊dÏ) 1
2 EŒ

2 cos2 ◊
9a2

4 C

= 3fi

2 a4EŒ
2
C.

For N well-separated cells in suspension, the total is N times this formula.
Fricke applied alternating voltage �Â(t) = Â̄ cos(Êt), and measured the resulting

current. The current had the same frequency Ê, so its form was Ī cos(Êt ≠ „); Fricke
therefore measured the dependence of Ī and „ on Â̄ and Ê at fixed, known values of N
and a. We wish to see what our solution to the electrostatic problem predicts about
this relationship, with the goal of finding the numerical value of the one remaining
unknown parameter, the areal density of membrane capacitance C.

8.2.2
The electric power entering the experimental chamber is

P = ÂI = Â̄Ī cos Êt cos(Êt ≠ „)
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94 Chapter 8 Cell Membrane Capacitance

= Â̄Ī
!
cos2 Êt cos „ + cos Êt sin Êt sin „

"
. (8.1)

The first term is always nonnegative. This represents ohmic (resistive) dissipation
of energy into heat. The second term averages to zero. This indicates an “elastic”
element, constantly storing energy and giving it back. The storage mechanism is the
charging and discharging of the membrane capacitance, so this term must equal

≠ d
dt

(NE) = ≠N
3fi

2 a4
C

1 Â̄

L

22 d
dt

cos2 Êt,

where L is the length of the chamber (distance between electrodes).

= N3fia4
CÊ cos Êt sin Êt.

Compare that result to the second term of Equation 8.1 to find

Â̄Ī sin „ = N3fia4
CÊ

1 Â̄

L

22
.

Rearranging gives the desired result

C = Ī

Â̄

L2 sin „

N3fia4Ê
.

Fricke substituted his experimental values and found C ¥ 1 µF/cm2. The permit-
tivity of oil is around 3‘0, so he inferred a membrane thickness value ” ¥ 3 nm, within
a factor of two of the accepted value. Remarkably, that value is also similar to the
one implied by measurements made by Franklin in 1773!

FURTHER READING

Sohn et al., 2000.

PROBLEMS

8.1 Measure cell membrane capacitance
In this problem you’ll find an experimentally practical way to measure the capacitance
of a cell membrane.

Electrically speaking, a sea urchin egg is a thin spherical shell of insulator (the
cell’s bounding membrane), surrounded by a medium-good conductor (sea water), and
enclosing a medium-good conductor (also a salt solution). The apparatus consists of
a suspension of such eggs in a chamber, which is a rectangular prism. Plates at either
end set up a potential drop from one end of the chamber to the other, that is, from
z = 0 to z = L.

An imperfect conductor can maintain a nonzero electric potential gradient accord-
ing to the ohmic relation j̨ = ŸĘ , where Ÿ is the conductivity. The component of
the electric current perpendicular to the membrane must equal zero just inside and

Contents Index Notation



Problems 95

just outside of it, because the membrane is assumed to be an insulator. Hence the
component Ę‹ = 0 there as well.

Suppose that there is only one egg in the chamber. Set up spherical polar coor-
dinates centered on the center of the egg, and let its radius be a. Then the electric
potential approaches

Â(r̨ ) æ (�Âtot)(z/L + 1/2) = (�Âtot/(2L))(r cos Ï)

far from the egg. In static, or quasistatic, conditions, we also know that Ǫ̀2Â =
Ǫ̀ · (≠Ę ) = ≠(Ǫ̀ · j̨ )/Ÿ = 0 everywhere.
a. Inside the egg, we are looking for a solution to the Laplace equation that is every-

where nonsingular for r < a and that satisfies r̂ · Ǫ̀Â = 0 at r = a. We can shift
the solution by a constant to ensure Â(̨0 ) = 0. There is only one solution with all
of those properties. What is it?

b. Outside the egg, there are two linearly independent solutions to the Laplace equa-
tion with the required angular dependence. One of those solutions is Â(r̨ ) =
(�Âtot/(2L))(r cos Ï), which of course also behaves the way we want at infinity.
But by itself this solution does not satisfy the boundary condition at r = a. A
second solution is a friend from the multipole expansion; it is singular at r = 0,
but that’s irrelevant, as we are only looking for solutions outside. Find the unique
linear combination of these two solutions that does satisfy the boundary conditions
both at r = a and at r = Œ.

c. We now know the potential inside and outside of the membrane. They are not
equal at r = a: There is a potential jump

�Â(◊, Ï) = Âout(a, ◊, Ï) ≠ Âin(a, ◊, Ï)

across the membrane. (Note that �Â(◊, Ï) is the potential jump across the mem-
brane at the indicated location; it is not the same as �Âtot, which is the total
potential drop across the entire experimental chamber.)
An insulating layer with a potential jump across it is a capacitor. Call the capaci-
tance per unit area of the membrane C; this is the quantity that we wish to know.
We therefore seek a formula connecting C to something experimentally measurable.
So each small area element d� of the membrane has capacitance dC = Cd�. If
a potential jump is maintained across the membrane at position ◊, Ï, this means
that the patch of membrane is storing energy dE = 1

2 (�Â(◊, Ï))2dC.
Integrate dE over the sphere to find the total capacitively stored energy in

terms of �Âtot, a, L, and C.
d. Now imagine applying a �Âtot that is alternating in time. In pure sea water, we’d

just get an alternating current in the chamber that is always in phase with �Âtot.
With one (or more) eggs present, however, energy storage in the cell membrane will
generate a phase lag between potential drop and current. Let �Âtot(t) = Â0 cos(Êt)
for some frequency Ê and amplitude Â0, and write the resulting current as I(t) =
I0 cos(Êt ≠ „). By imposing �Âtot(t), and measuring I(t), we can in principle find
I0 and „.
The phase lag „ is a measurable manifestation of membrane capacitance. To get
a prediction for it, notice that the power sent into the experimental chamber is
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�Âtot(t)I(t). Express this in terms of Â0, I0, Ê, and „. You expression will have
two terms. One term is always positive, and indicates electrical energy sent from
the current source into the chamber, and converted to heat via resistive losses.

e. The other term is more interesting, because its time average is zero. This is the
result of a system element that is constantly exchanging energy with the external
source. You can write another expression for the exchanged energy, as the time
derivative of the stored energy that you found in part 3. Set these two expressions
equal, to obtain a formula relating a, L,C, Ê, I0, Â0, and „. One of these quantities,C,
is the thing we wished to measure. All the others are either set by the experimenter
(L, Ê, Â0) or measured (a, I0, „).

f. If there are N eggs in the chamber, then the stored energy is N times as great as
before. Modify your formula to include N , and explain in words how to measure C.

Before we actually do an experiment, it’s essential to make an estimate, to see if the
supposedly measurable quantity really is measurable. (If not, then we say, “Oh Fricke”
and redesign the experiment before we waste time doing it.)

The goal of the experiment was to measure C, the membrane capacitance per
unit area. But when designing the experiment, we turn things around and use an
estimate for C, in order to predict whether the observed phase lag „ between voltage
and current will be large enough to measure (e.g. on an oscilloscope). Thus assume
C ¥ 1µF cm≠2. Here are some other typical numbers I extracted from Fricke’s original
paper:
Cells of the sort studied by Fricke and Cole have radius a ¥ 3 · 10≠4cm.
The applied current had a frequency of 87 000Hz, or angular frequency Ê = 2fi ◊
87 000 s≠1.
The overall resistance of the seawater in the chamber was Â0/I0 ¥ 300 �.
The number density of cells in the chamber is such that they occupy about 20% of
the chamber volume.
The chamber dimensions are: cross-section A ¥ 15 cm2, length L ¥ 7 cm.
g. Use these numbers and our analysis to find the predicted phase lag angle „ in
radians. (Ahem, make sure the units work out properly.) Does it seem likely to be
measurable?

8.2 Fricke 2
Use a computer to visualize the electrostatic potential outside a spherical cell in
conducting solution, with an applied Ę field at infinity that is uniform along ẑ. That
is, show Â(x, 0, z) as height above or below the xy plane. Then show the same function
as a contour plot. Describe in words the relevant physical aspects of the solution.
Finally, make a vector-field plot of the corresponding Ę field.
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Electrostatics in Solution
Section 2.1 mentioned that it is often important to find condensed (implicit) descrip-
tions of some of the actors in a complex system. Thus, we would like to follow mobile
charges explicitly but not have to think about everything else. One example of this
approach was our introduction of a modified permittivity to account for a dielectric
medium. This chapter introduces another example, where we account for the inces-
sant thermal bumping of uncharged actors, for example, water molecules, against the
charges of interest via a Boltzmann distribution.

9.1

9.1.1 The Nernst relation sets the scale of membrane potentials
Many of the molecules floating in water carry a net electric charge, unlike the water
molecules themselves. When table salt dissolves, for example, the individual sodium
and chlorine atoms separate, but the chlorine atom grabs one extra electron from
sodium, thereby becoming a negatively charged chloride ion, Cl≠, and leaving the
sodium as a positive ion, Na+. Any electric field present in the solution will then exert
forces on the individual ions, dragging them just as gravity drags colloidal particles
to the bottom of a test tube.

Suppose first that we have a uniform-density solution of charged particles, each
of charge q, in a region with electric field Ę. For example, we could place two parallel,
flat plates just outside the solution’s container, a distance h apart, and connect them
to a battery that maintains a constant electrostatic potential di�erence �Â across
them. We know from first-year physics that E = �Â/h and each charged particle
feels a force qĘ, so it drifts with the net speed vdrift = qE/÷, where ÷ is a constant
describing viscous friction.

Imagine a small net of area � stretched out perpendicular to the electric field
(that is, parallel to the plates); see Figure 9.1. To find the flux of ions induced by the
field, we ask how many ions get caught in the net each second. The average ion drifts
a distance vdriftdt in time dt, so, in this time, all the ions contained in a slab of volume
vdriftdt� get caught in the net. The number of ions caught equals this volume times
the number density cion. The flux jion is then the number crossing per area per time,
or cionvdrift. (Check to make sure this formula has the proper units.) Substituting the
drift velocity gives jion = qEcion/÷, the electrophoretic flux of ions.

Now suppose that the density of ions is not uniform. For this case, we add the
driven (electrophoretic) flux just found to the di�usive (Fick’s law) flux, obtaining

jion(x) = qE(x)cion(x)
÷

≠ Dion
dcion
dx

,
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Figure 9.1: [Sketch.] Origin of the Nernst relation (Equation 9.3). An electric field pointing
downward drives positively charged ions down. The system comes to equilibrium with a
downward density gradient of positive ions and an upward gradient of negative ions. The
number flux j̨ion for the ion species shown points downward with magnitude equal to the
number density cion times vdrift. The corresponding contribution to charge flux is qj̨ion.

where Dion is the di�usion constant for the ion species in question. We next rewrite the
viscous friction coe�cient in terms of Dion, using the Einstein relation ÷Dion = kBT
to get1

jion = Dion

1
≠dcion

dx
+ q

kBT
Ecion

2
. Nernst–Planck formula (9.1)

The Nernst–Planck formula helps us to answer a fundamental question: What
electric field would be needed to get zero net flux, that is, to cancel the di�usive ten-
dency to erase nonuniformity? To answer the question, we set jion = 0 in Equation 9.1.
In a planar geometry, where everything is constant in the y, z directions, we get the
condition

1
cion

dcion
dx

= q

kBT
E. (in equilibrium) (9.2)

The left side of this formula can be written as d
dx

(ln cion).
To use Equation 9.2, we now integrate both sides from the top plate to the

bottom one (see Figure 9.1). The left side is
s

h

0 dx d
dx

ln cion = ln(cbot/ctop), that is,
the di�erence in ln cion from one plate to the other.2 To understand the right side, we
first note that qE is the force acting on a charged particle, so the particle’s potential
energy obeys ≠dU/dx = qE, or U(x) = ≠qEx. The electrostatic potential Â is the
potential energy per unit charge, so �Â © Âbot ≠ Âtop = ≠Eh. Writing �(ln cion) for

1 T2 In three-dimensional language, the Nernst–Planck formula becomes j̨ ion = Dion

!
≠Ǫ̀cion +

(q/kBT )Ę cion

"
.

2Normally it is meaningless to speak of a nonlinear function like log applied to a quantity with units.
However, a di�erence of two such logs can be written as the log of the dimensionless ratio, so we
always get the same result regardless of what units we choose.
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ln(cbot/ctop) then gives the condition for equilibrium:

�(ln cion) = ≠q�Âeq/kBT in equilibrium (Nernst relation). (9.3)

The subscript on �Âeq reminds us that this is the voltage needed to maintain a
concentration jump in equilibrium.

Equation 9.3 predicts that positive charges will migrate toward the bottom of
Figure 9.1. It makes sense: They’re attracted to the negative plate. We have so far
been ignoring the corresponding negative charges (for example, the chloride ions in
table salt), but the same formula applies to them as well. Because they carry negative
charge (q < 0), Equation 9.3 says they migrate toward the positive plate.

Substituting some real numbers into Equation 9.3 yields a suggestive result. Con-
sider a singly charged ion like Na+, for which q = e. Suppose that we have a moderately
big concentration jump, cbot/ctop = 10. Using the fact that (kBTr/e) ¥ 1

40 volt, we
find �Â ¥ +58 mV. What’s suggestive about this result is that many living cells,
particularly nerve and muscle cells, really do maintain a potential di�erence across
their membranes of a few tens of millivolts! We haven’t proven that these are equilib-
rium (Nernst) potentials, and indeed they’re not. But the observation does show that
dimensional arguments successfully predict the scale of membrane potentials with
almost no hard work at all.

Something interesting happened on the way from Equation 9.1 to Equation 9.3:
When we consider equilibrium only, the value of Dion drops out. That’s reasonable:
Dion controls how fast things move in response to a field; its units involve time.
But equilibrium is an eternal state; it can’t depend on time. In fact, exponentiating
the Nernst relation gives that cion(x) is a constant times e≠qÂ(x)/kBT . This result
is an old friend: It says that the spatial distribution of ions follows the Boltzmann
distribution. A charge q in an electric field has electrostatic potential energy qÂ(x) at
x; its probability to be there is proportional to the exponential of minus its energy,
measured in units of the thermal energy kBT . Thus, a positive charge doesn’t like
to be in a region of large positive potential, and vice versa for negative charges. Our
formulas are mutually consistent.

9.1.2 The electrical resistance of a solution reflects frictional dissipation
Suppose that we place the metal plates in Figure 9.1 inside the container of salt
water, so that they become electrodes. Then the ions in solution migrate, but they
don’t accumulate: The positive ones get electrons from the ≠ electrode, whereas
the negative ones hand their excess electrons over to the + electrode. The resulting
neutral atoms leave the solution; for example, they can electroplate onto the attracting
electrode or bubble away as gas.3 Then, instead of establishing equilibrium, our system
continuously conducts electricity, at a rate controlled by the steady-state ion fluxes.

The potential drop across our cell is �Â = Eh, where h is the separation of the
plates. According to the Nernst–Planck formula (Equation 9.1), this time with uniform

3 T2 Electroplating does not occur with a solution of table salt because sodium metal is so strongly
reactive with water. Nevertheless, the following discussion is valid for the alternating-current con-
ductivity of NaCl.
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cion, the electric field is E = (kBT/(Dionqcion))jion. Recall that jion is the number of
ions passing per area per time. To convert this expression to the total electric current
I, note that each ion deposits charge q when it lands on a plate; thus, I = qjion�,
where � is the plate area. Putting everything together gives

�Â =
3

kBT

Dionq2cion

h

�

4
I. (9.4)

This is a familiar result: It says that our solution is ohmic, �Â = IR. Equation 9.4 gives
the electrical resistance R of the cell as the constant of proportionality between voltage
and current. To use this formula, we must remember that each type of ions contributes
to the total current; for table salt, we need to add separately the contributions from
Na+ with q = e and Cl≠ with q = ≠e, or in other words, double the right-hand side
of the formula.

The resistance depends not only on the solution but also on the geometry of the
cell. It’s customary to eliminate the geometry dependence by defining the electrical
conductivity of the solution as Ÿ = h/(R�). Then our result is that each ion species
contributes Dionq2cion/kBT to Ÿ. It makes sense: Saltier water conducts better.
T2 Section 9.1.2 Õ (page 112) mentions other points about electrical conduction.

9.2 A REPULSIVE INTERLUDE

Until now, we have studied osmotic forces under the assumption that interactions
between solute particles can be neglected. That may be reasonable for sugar, whose
molecules are uncharged; but, as we’ll see in a moment, electrostatic interactions
between the objects contained in a cell can be immense. Accordingly, this section will
introduce mixed forces, those that are partly entropic and partly energetic.

9.2.1 Electrostatic interactions are crucial for proper cell functioning
Biomembranes and other big objects (such as DNA) are often said to be “electrically
charged.” The term can cause confusion. Doesn’t matter have to be neutral? Let’s
recall why people said that in first-year physics.

Ex.
Consider a raindrop of radius R = 1 mm suspended in air. How much work would
be needed to remove just one electron from just 1% of the water molecules in the
drop?
Solution: Removing an electron leaves some water molecules electrically charged.
These charged water molecules migrate to the surface of the drop to get away from
one another, thereby forming a shell of charge of radius R. The electrostatic potential
energy of such a shell (also called its Born self-energy) is 1

2 qÂ(R), or q2/(8fi‘0R).
The charge q on the drop equals the number density of water molecules, times the
drop volume, times the charge on a proton, times 1%. Squaring gives

1q

e

22
=

3
103 kg

m3
6 · 1023

0.018 kg ◊ 4fi

3 (10≠3 m)3 ◊ 0.01
42

= 1.9 · 1036.

Multiplying by 2.3 · 10≠28 J m and dividing by 2R yields about 2 · 1011 J.
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Two hundred billion joules is a lot of energy—certainly it’s much bigger than
kBTr! And indeed, macroscopic objects really are electrically neutral (they satisfy the
condition of “bulk electroneutrality”). But things look di�erent in the nanoworld.

Your Turn 9A
Repeat the calculation for a droplet of radius R = 1 µm in water. Recall that the
permittivity ‘ of water is about 80 times bigger than the one for air used in the
Example. Then repeat for an R = 1 nm object in water.

Thus it is possible for thermal motion to separate a neutral molecule into charged
fragments. For example, when we put an acidic macromolecule such as DNA in water,
some of its loosely attached protons can wander away, leaving some of their electrons
behind. In this case, the remaining macromolecule has a net negative charge: DNA
becomes a negative macroion. This is the sense in which DNA is charged. The lost
atoms are positively charged; they are called counterions, because their net charge
counters (neutralizes) the macroion. Positive ions are also called cations, because
they’d be attracted to a cathode; similarly, the remaining macroion is called anionic.

The counterions di�use away because they were not bound by chemical (covalent)
bonds in the first place and because by di�using away, they increase their entropy.

The counterions, having left the macroion, now face a dilemma. If they stay too
close to home, they won’t gain much entropy. But to travel far from home requires
lots of energy, to pull away from the opposite charges left behind on the macroion.
The counterions thus need to make a compromise between the competing imperatives
to minimize energy and maximize entropy. This section will show that for a large flat
macroion, the compromise chosen by the counterions is to remain hanging in a cloud
near the macroion’s surface. After working Your Turn 9A, you won’t be surprised to
find that the cloud can be a couple of nanometers thick. Viewed from beyond the
counterion cloud, the macroion appears neutral. Thus, a second approaching macroion
won’t feel any attraction or repulsion until it gets closer than about twice the cloud’s
thickness. This behavior is quite di�erent from the behavior of charges in a vacuum:
In that case, the electric field doesn’t fall o� with distance at all! In short,

Electrostatic interactions are of long range in vacuum. But in solution, a
screening e�ect reduces this interaction’s e�ective range, typically to a
nanometer or so.

(9.5)

We’d like to understand the formation of the counterion cloud, which is often called
the di�use charge layer. Together with the charges left behind in the surface, it forms
an electric double layer surrounding a charged macroion. The previous paragraph
makes it clear that the forces on charged macroions have a mixed character: They
are partly electrostatic and partly entropic. Certainly, if we could turn o� thermal
motion, the di�use layer would collapse back onto the macroion, thereby leaving it
neutral, and there’d be no force at all; we’ll see this in the formulas we obtain for the
forces.

Before we proceed to calculate properties of the di�use charge layer, two remarks
may help set the biological context.
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Figure 9.2:

First, the cells in your body contain a variety of macromolecules. A number
of attractive forces are constantly trying to stick the macromolecules together, for
example, the depletion force or the more complicated van der Waals force. It wouldn’t
be nice if they just acquiesced, clumping into a ball of sludge at the bottom of the
cell, with the water on top. The same problem bedevils many industrial colloidal
suspensions, for example, paint. One way Nature, and we its imitators, avoid this
“clumping catastrophe” is to arrange for the colloidal particles to have the same sign
of net charge. Indeed, most of the macromolecules in a cell are negatively charged and
hence repel one another.

Second, the fact that electrostatic forces are e�ectively of short range in solution
(summarized in Idea 9.5 above) matters crucially for cells, because it means that

• Macroions will not feel one another until they’re nearby, but
• Once they are nearby, the detailed surface pattern of positive and negative

residues on a protein can be felt by its neighbor, not just the overall
charge (Figure 9.2).

This observation goes to the heart of how cells organize their myriad internal biochem-
ical reactions. Although thousands of macromolecules may be wandering around any
particular location in the cell, typically only those with precisely matching shapes and
charge distributions will bind together. We can now see that the root of this amazing
specificity is that

Even though each individual electrostatic interaction between matching
charges is rather weak (relative to kBTr), still the combined e�ect of many
such interactions can lead to strong binding of two molecules—if their
shapes and orientations match precisely.

(9.6)

Notice that it’s not enough for two matching surfaces to come together; they must
also be properly oriented before they can bind. We say that macromolecular binding
is stereospecific.

Thus, understanding the very fact of molecular recognition, which is crucial for
the operation of every cell process, requires that we first understand the counterion
cloud around a charged surface.
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Figure 9.3: [Schematic.] A planar distribution of charges. A thin sheet of negative charge (hatched, bottom) lies
next to a neutralizing positive layer of free counterions (shaded, top). The individual counterions are not shown;
the shading represents their average density. The lower box encloses a piece of the surface; so it contains total
charge ≠‡qd�, where d� is its cross-sectional area and ≠‡q is the surface charge density. The upper box en-
closes charge flq(x)dx�, where flq(x) is the charge density of counterions. The electric field Ę (x) at any point
equals the electrostatic force on a small test particle at that point, divided by the particle’s charge. For all pos-
itive x, the field points along the ≠x̂ direction. The field at x1 is weaker than that at x2, because the repelling
layer of positive charge between x1 and x = 0 is thicker than that between x2 and x = 0. Moreover, there is
less positive charge between x1 and infinity pushing a test charge downward than between x2 and infinity.

9.2.2 The Gauss law
Figure 9.3 represents a thin, negatively charged sheet with uniform surface charge
density ≠‡q, next to a spread-out layer of positive charge with volume charge density
flq(x). Thus ‡q is a positive constant with units coul m≠2, whereas flq(x) is a positive
function with units coul m≠3. Everything is constant in the ŷ and ẑ directions. We’ll
write E for the component of the electric field in the x̂ direction.

The electric field above the negative sheet is a vector pointing along the ≠x̂
direction, so the function E(x) is everywhere negative. Just above the sheet, the
electric field is proportional to the surface charge density: Applying the Gauss law for
a flat, charged surface gives

E|surface = ≠‡q/‘. (9.7)

Away from the surface, the Gauss law gives

dE

dx
= flq

‘
. (9.8)

Section 9.2.3 will use this relation to find the electric field everywhere outside the
surface.

9.2.3 A charged surface in pure water is surrounded by a neutralizing ion cloud
The mean field
Now we can return to the problem of ions in solution. A typical problem might be to
consider a thin, flat, negatively charged surface with surface charge density ≠2‡q and
water on both sides. For example, cell membranes are negatively charged. You might
want to coax DNA to enter a cell (say, for gene therapy). Because both DNA and cell
membranes are negatively charged, you’d need to know how much they repel.
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Figure 9.4: [Schematics.] Behavior of counterions near surfaces. (a) Counterion cloud out-
side a charged surface with surface charge density ≠‡q. (b) When two similarly charged
surfaces approach, their counterion clouds begin to get squeezed. (c) When two oppositely
charged surfaces approach, their counterion clouds are liberated and entropy increases.

An equivalent, and slightly simpler, problem is that of a solid surface carrying
charge density ≠‡q, with water on just one side (Figure 9.4a). Also for simplicity,
suppose that the loose positive counterions are monovalent (for example, sodium,
Na+). That is, each carries a single charge: q+ = e = 1.6 · 10≠19 coul. In a real cell,
there will be additional ions of both charges from the surrounding salt solution. The
negatively charged ones are called coions because they have the same charge as the
surface. We will neglect the coions for now (see Section 9.2.3Õ, page 112).

As soon as we try to find the electric field in the presence of mobile ions, an
obstacle arises: We are not given the distribution of the ions, as we were in first-year
physics, but instead must find it. Moreover, electric forces are of long range. The
unknown distribution of ions will thus depend on each ion’s interactions not only with
its nearest neighbors but also with many other ions! How can we hope to model such
a complex system?

Let’s try to turn adversity to our advantage. If each ion interacts with many others,
perhaps we can approach the problem by thinking of each ion as moving independently
of the others’ detailed locations but under the influence of an electric potential created
by the average charge density of the others, or ÈflqÍ. We call this approximate electric
potential Â(x) the mean field and this approach the mean-field approximation. The
approach is reasonable if each ion feels many others; then the relative fluctuations in
Â(x) about its average will be small. To make the notation less cumbersome, we will
drop the averaging signs; from now on, flq refers to the average density.

The Poisson–Boltzmann equation
We want c+(x), the number density of counterions. We are supposing that our surface
is immersed in pure water; hence, far away from the surface, c+ æ 0. The electrostatic
potential energy of a counterion at x is eÂ(x). We are treating the ions as moving
independently of each other in a fixed potential Â(x), so the density of counterions,
c+(x), is given by the Boltzmann distribution. Thus c+(x) = c0e≠eÂ(x)/kBT , where c0
is a constant. We can add any constant we like to the potential because this change

Contents Index Notation



9.2 A Repulsive Interlude 105
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Figure 9.5: [Diagram.] Strategy to find the mean-field solution. Neither the Poisson equation
nor the Boltzmann distribution alone can determine the charge distribution, but solving
these two equations in two unknowns simultaneously does the job.

doesn’t a�ect the electric field E = ≠dÂ/dx. It’s convenient to choose the constant
so that Â(0) = 0. This choice gives c+(0) = c0; so the unknown constant c0 is the
concentration of counterions at the surface.

Unfortunately, we don’t yet know Â(x). To find it, apply the Gauss law, taking
flq equal to the number density of counterions times e. The potential obeys the
Poisson equation: d2Â/dx2 = ≠flq/‘. Given the charge density, we can solve the
Poisson equation for the electric potential. The charge density, in turn, is given by
the Boltzmann distribution as ec+(x) = ec0e≠eÂ(x)/kBT .

It may seem as though we have a chicken-and-egg problem (Figure 9.5): We need
the average charge density flq to solve the Poisson equation for the potential Â. But
we need Â to find flq from the Boltzmann distribution! Luckily, each of the arrows in
Figure 9.5 represents an equation in two unknowns, namely, flq and Â. We just need
to solve these two equations simultaneously to find the two unknowns.

Before proceeding, let’s take a moment to tidy up our formulas. First, we combine
the various constants into a length scale:

¸B © e2

4fi‘kBT
. Bjerrum length, in water (9.9)

¸B tells us how close together we can push two like-charge ions, if we have energy kBT
available. For monovalent ions in water at room temperature, ¸B = 0.71 nm. Next,
define the dimensionless rescaled potential Â̄:

Â̄(x) © eÂ(x)/kBT. (9.10)

Your Turn 9B
Now combine the Poisson equation with the Boltzmann distribution to get

d2Â̄

dx2 = ≠4fi¸Bc0e≠Â̄. Poisson–Boltzmann equation (9.11)
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The payo� for introducing the abbreviations Â̄ and ¸B is that now Equation 9.11 is
less cluttered, and we can verify at a glance that its dimensions work: Both d2/dx2

and ¸Bc0 have units m≠2.
Like any di�erential equation, Equation 9.11 has, not one, but a whole family of

solutions. To get a unique solution, we need to specify additional information, namely,
some boundary conditions on the unknown function Â(x). For example, if you throw a
rock upward, Newton’s Law says that its height z(t) obeys the equation d2z/dt2 = ≠g.
But this equation won’t tell us how high the rock will go! We also need to specify how
hard you threw the rock, or more precisely, its speed and location when it left your
hand at time zero. Similarly, we should not expect Equation 9.11 to specify the full
solution because it doesn’t mention the surface charge density. Instead, the equation
has a family of solutions; we must choose the one corresponding to the given value of
‡q.

To see how ‡q enters the problem, we now apply the surface form of the Gauss
law (Equation 9.7), which gives ≠ dÂ

dx

--
surface = ≠‡q/‘, or

dÂ̄

dx

----
surface

= 4fi¸B
‡q
e

. (when the allowed region is x > 0) (9.12)

When using this formula, remember that ‡q is a positive number; the surface has
charge density ≠‡q.

Ex. How does one remember the correct sign in this formula?
Solution: The electrostatic potential Â goes down as we approach a negative ob-
ject. Thus, approaching counterions feel their potential energy eÂ decrease as they
approach the surface, so they’re attracted. If x is the distance from a negatively
charged surface, then Â will be decreasing as we approach it, or increasing as we
leave: dÂ/dx > 0, so the sign is correct in Equation 9.12.

Solution of the Poisson–Boltzmann equation
We have reduced the problem of finding the counterion distribution outside a surface
to solving Equation 9.11. This is a second-order di�erential equation, so we’ll need
to impose two boundary conditions to determine a unique solution. Furthermore, the
equation itself contains a third constant c0, which requires a third condition to fix its
value. The conditions are

(i) The boundary condition at the surface (Equation 9.12),
(ii) An analogous condition dÂ̄/dx = 0 at infinity, because no charge is located there,

and
(iii) The convention that Â̄(0) = 0.

It’s usually not easy to solve nonlinear di�erential equations like Equation 9.11.
Still, in some special situations, we do get lucky. We need a function whose second
derivative equals its exponential. We recall that the logarithm of a power of x has the
property that both its derivative and its exponential are powers of x. We don’t want
Â̄(x) = ln x, because that’s divergent (equal to infinity) at the surface. Nevertheless,
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a slight modification gives something promising: Â̄(x) ?= B ln(1 + (x/x0)). This trial
solution has the feature that Â̄(0) = 0; it automatically satisfies conditions (ii–iii)
regardless of what values we choose for B and x0.

We now check whether we can choose values for the constants B and x0 in such a
way that the proposed solution solves the Poisson–Boltzmann equation. Substituting
B ln(1 + (x/x0)) into Equation 9.11, we indeed find that it works, provided we take
B = 2 and x0 = 1/

Ô
2fi¸Bc0.

Next we must impose the boundary condition (Equation 9.12). Substituting into
the trial solution, this condition says 2/x0 = 4fi¸B(‡q/e). It may seem as though we
have exhausted all our freedom to adjust the trial solution (when we chose values for B
and x0). But the Poisson–Boltzmann equation itself contains an unknown parameter,
c0. You can check that taking this parameter to be c0 = 2fi¸B(‡q/e)2 ensures that
our trial solution satisfies the boundary condition, and that then

Â(x) = 2kBT

e
ln(1 + (x/x0)), where x0 = (2fi¸B‡q/e)≠1. (9.13)

Your Turn 9C
Find the equilibrium concentration profile c+(x) away from the surface. Check
your answer by calculating the total surface density of counterions,

s Œ
0 dx c+(x),

and verifying that the whole system is electrically neutral.

The solution you just found is sometimes called the Gouy–Chapman layer; x0 is
called the Gouy–Chapman length. This solution is appropriate in the neighborhood
of a flat, charged surface in pure water.4 Let’s extract some physical conclusions from
the math.

First, we see from Your Turn 9C that, indeed, a di�use layer forms, with thickness
roughly x0. As argued physically in Section 9.2.1, the counterions are willing to
pay some electrostatic potential energy in order to gain entropy. More precisely, the
counterions pull some thermal energy from their environment to make this payment.
They can do this because doing so lowers the entropic part of their free energy more
than it raises the electrostatic part. If we could turn o� thermal motion (that is,
send T æ 0), the energy term would dominate and the layer would collapse. We see
this mathematically from the observation that then the Bjerrum length would go to
infinity and x0 æ 0.

How much electrostatic energy must the counterions pay to dissociate from the
planar surface? We can think of the layer as a planar sheet of charge hovering at
a distance x0 from the surface. When two sheets of charge are separated, we have
a parallel-plate capacitor. Such a capacitor, with area �, stores electrostatic energy
E = qtot

2/(2C). Here qtot is the total charge separated; for our case, it’s ‡q�. The
capacitance of a parallel-plate capacitor is given by

C = ‘�/x0. (9.14)

4 T2 Or more realistically, a highly charged surface in a salt solution whose concentration is low
enough; see Section 9.2.3Õ (page 112).
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Combining the preceding formulas gives an estimate for the density of stored electro-
static energy per unit area for an isolated surface in pure water:

E/(area) ¥ kBT (‡q/e). (electrostatic self-energy, no added salt) (9.15)

That makes sense: The environment is willing to give up about kBT of energy per
counterion. This energy gets stored in forming the di�use layer.

Is it a lot of energy? A fully dissociating bilayer membrane can have one unit of
charge per lipid head group, or roughly |‡q/e| = 0.7 nm≠2. A spherical vesicle of radius
10 µm then carries stored free energy ¥ 4fi(10 µm)2 ◊ (0.7/nm2)kBTr ¥ 109kBTr. It’s
a lot! We’ll see how to harness this stored energy in Section 9.2.6.

9.2.4 Excess salt shrinks the electric double layer
For simplicity, the preceding calculations assumed that a dissociating surface was
immersed in pure water. In real cells, however, the cytosol is an electrolyte, or salt
solution. In this case, the density of counterions at infinity is not zero, and the counte-
rions originally on the surface have less to gain entropically by escaping; so the di�use
charge layer will hug the surface more tightly than it does in Equation 9.13. That is,

Increasing salt in the solution shrinks the di�use layer. (9.16)

Problem 9.3 makes this expectation quantitative.
T2 Section 9.2.3 Õ (page 112) solves the Poisson–Boltzmann equation for a charged
surface in a salt solution, arriving at the concept of the Debye screening length and
making Equation 9.16 quantitative.

9.2.5 The repulsion of like-charged surfaces arises from compression of their ion
clouds

Now that we know what it’s like near a charged surface, we’re ready to find the force
between two such surfaces in solution. Figure 9.4b shows the geometry. One might
be tempted to say, “Obviously, two negatively charged surfaces will repel.” But wait:
By symmetry, everything to the left of the central plane x = 0 (that is, the surface,
together with its counterion cloud) is net electrically neutral, as is everything to the
right. Thus, the electrostatic force that one side exerts on the other must equal zero!
But electrostatic force is not the only kind of force in the problem. As the surfaces
get closer than about twice their Gouy–Chapman length x0, their di�use counterion
clouds get squeezed; they resist that squeezing just as an ideal gas resists compression.
Here are the details.

If we could turn o� thermal motion, the mobile ions would collapse down to the
surfaces, and there would be no net charge anywhere. That observation motivates
us to look at entropic forces. Examining Figure 9.4b, we see that charged particles
are required to be in the gap, by charge neutrality. That is, the concentration of a
dissolved ion species is higher in the gap than in the bulk. In such a situation, we
expect an osmotic pressure in the gap, proportional to the concentration di�erence
times the absolute temperature. This fluid pressure is what physically pushes the two
surfaces apart, not a literal electrostatic repulsion.
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For simplicity, let’s again suppose that the surrounding water has no added salt
and, hence, no ions other than the counterions dissociated from the surface.5 This time
we’ll measure distance from the midplane between two surfaces, which are located at
x = ±h (Figure 9.4b). We’ll suppose that each surface has surface charge density ≠‡q.
We choose the constant in Â so that Â(0) = 0; hence the parameter c0 = c+(0) is the
unknown concentration of counterions at the midplane. Â(x) will then be symmetrical
about the midplane, so our previous trial solution (Equation 9.13) won’t work. Keeping
the logarithm idea, though, this time we try Â̄(x) = A ln cos(—x), where A and — are
unknown constants. Certainly this trial solution is symmetrical and equals zero at the
midplane, where x = 0.

The rest of the procedure is familiar. Substituting the trial solution into the
Poisson–Boltzmann equation (Equation 9.11) gives A = 2 and — =

Ô
2fi¸Bc0. The

boundary condition at x = ≠h is again Equation 9.12. Imposing the boundary condi-
tions gives a condition fixing —:

4fi¸B(‡q/e) = 2— tan(h—). (9.17)

Given the surface charge density ≠‡q, we solve Equation 9.17 for — as a function of
the spacing 2h; then the desired solution is

Â̄(x) = 2 ln cos(—x), or c+(x) = c0(cos —x)≠2. (9.18)

As expected, the charge density is greatest near the plates; the potential is maximum
in the center.

By symmetry, the electric field at the midplane is zero, so an ion feels zero external
force there. However, an ion that tries to di�use out of the gap gets pulled back in,
partially rectifying its Brownian motion and creating an high-pressure zone in the
gap. The osmotic pressure di�erence equals kBT times the di�erence between c0 and
the concentration outside the gap (which is zero), so the repulsive force per unit area
on the surfaces is given approximately by the osmotic pressure formula:6

f/(area) = c0kBT. repulsion of like-charged surfaces, no added salt (9.19)

In this formula, c0 = —2/(2fi¸B) and —(h, ‡q) is the solution of Equation 9.17. You
can solve Equation 9.19 numerically (see Problem 9.4), but a graphical solution shows
qualitatively that — increases as the plate separation decreases (Figure 9.6). Thus the
repulsive pressure increases, too, as expected.

Note that the force just found is not simply proportional to the absolute tem-
perature, because — has a complicated temperature dependence. This means that
our pressure is not a purely entropic e�ect, but a mixed e�ect: The counterion layer
reflects a balance between entropic and energetic imperatives. As remarked at the
end of Section 9.2.3, the qualitative e�ect of adding salt to the solution is to tip this

5 T2 This is not as restrictive as it sounds. Even in the presence of salt, our result will be accurate
if the surfaces are highly charged because in this case, the Gouy-Chapman length is less than the
Debye screening length (see Section 9.2.3Õ, page 112).
6This formula is valid at low enough concentration c0.
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Figure 9.6: [Mathematical functions.] Graphical
solution of Equation 9.17. The sketch shows the
function 2fi¸B‡q/(e—), as well as tan h— for two
values of the plate separation 2h. The value of
— at the intersection of the rising and falling
curves gives the desired solution. The figure
shows that smaller plate separation gives a larger
solution —2 than does large separation (yielding
—1). Larger — in turn implies a larger ion con-
centration c0 = —

2
/(2fi¸B) at the midplane and

larger repulsive pressure.
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Figure 9.7: [Experimental data with fits.] The repulsive pressure between two positively charged surfaces in
water. The surfaces were egg lecithin bilayers containing 5 mole% or 10 mole% phosphatidylglycerol (circles
and stars, respectively). The curves show one-parameter fits of these data to the numerical solution of Equa-
tions 9.17 and 9.19. The fit parameter is the surface charge density ‡q. The dashed line shows the solution
with one proton charge per 24 nm2; the solid line corresponds to a higher charge density (see Problem 9.4).
At separations below 2 nm, the surfaces begin to touch and other forces besides the electrostatic one appear.
Beyond 2 nm, the purely electrostatic theory fits the data well, and the membrane with a larger density of
charged lipids is found to have a larger e�ective charge density, as expected. [Data from Cowley et al., 1978; see
Dataset 1.]

balance away from entropy, thereby shrinking the di�use layers on the surfaces and
shortening the range of the interaction.

This theory works (see Figure 9.7). You’ll make a detailed comparison with
experiment in Problem 9.4.
T2 Section 9.2.5 Õ (page 114) derives the electrostatic force directly as a derivative of

the free energy.
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9.2.6 Oppositely charged surfaces attract by counterion release
Now consider an encounter between surfaces of opposite charge (Figure 9.4c on
page 104). Without working through the details, we can understand the attraction of
such surfaces in solution qualitatively by using the ideas developed earlier. Again, as
the surfaces approach from infinity, each presents a net charge density of zero to the
other; there is no long-range force, unlike the constant attractive force between two
such planar surfaces in air. Now, however, as the surfaces approach, they can shed
counterion pairs without sacrificing the system’s neutrality. The released counterions
leave the gap altogether and hence gain entropy, thereby lowering the free energy
and driving the surfaces together. If the charge densities are equal and opposite, the
process proceeds until the surfaces are in tight contact, with no counterions left at
all. In this case, there is no separation of charge, and no counterions remain in the
gap. Thus, all the self-energy estimated in Equation 9.15 gets released. This energy
is substantial: Electrostatic binding between surfaces of matching shape can be very
strong.

FURTHER READING

Bioelectricity: Benedek & Villars, 2000; Nelson, 2014; Grodzinsky, 2011.
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T2 Track 2

9.1.2Õ

1. Frictional drag must generate heat. Indeed, it’s well known that electrical resistance creates
heat, for example, in your toaster. Each ion passed between the plates falls down a potential
hill, losing potential energy q ◊�Â. The total number of ions per time making the trip is I/q,
so the power (energy per time) expended by the external battery is �Â ◊ I. Using Ohm’s
“law” gives the familiar formula: power = I

2
R.

2. The conduction of electricity through a copper wire is also a di�usive transport process
and also obeys an ohmic relation. But the charge carriers are electrons, not ions; and the
nature of the collisions is quite di�erent from that in salt solution. In fact, the electrons
could pass perfectly freely through a perfect single crystal of copper; they only bounce o�
imperfections (or thermally induced distortions) in the crystal lattice. Figuring out this story
required the invention of quantum theory.

T2 Track 2

9.2.3Õ

The solution Equation 9.13 has a disturbing feature: The potential goes to infinity far from
the surface! It’s true that physical quantities like the electric field and concentration profile
are well behaved (see Your Turn 9C), but still, this pathology hints that we have missed
something. For one thing, no macromolecule is really an infinite plane. But a more important
and interesting omission from our analysis is the fact that any real solution has at least some
s; the concentration cŒ of salt in the surrounding water is never exactly zero.

Rather than introducing the unknown parameter c0 and then going back to set it, this
time we’ll choose the constant in Â(x) so that Â æ 0 far from the surface; then the Boltzmann
distribution reads

c+(x) = cŒe≠eÂ(x)/kBT and c≠(x) = cŒe≠(≠e)Â(x)/kBT

for the counterions and coions, respectively. The corresponding Poisson–Boltzmann equation
is

d2
Â̄

dx2
= ≠1

2⁄
≠2

D

#
e≠Â̄ ≠ eÂ̄

$
, (9.20)

where again Â̄ = eÂ/kBT and ⁄D is defined as

⁄D © (8fi¸BcŒ)≠1/2
. Debye screening length (9.21)

In a solution of table salt, with c = 0.1 M, the screening length is about 1 nm.
The solutions to Equation 9.20 are not elementary functions (they’re called elliptic

functions), but once again, we get lucky for the case of an isolated surface.
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Your Turn 9DCheck that

Â̄(x) = ≠2 ln 1 + e≠(x+xú)/⁄D

1 ≠ e≠(x+xú)/⁄D
(9.22)

solves the equation. In this formula, xú is any constant. [Hint: It saves some writing to
define a new variable, ’ © e≠(x+xú)/⁄D , and rephrase the Poisson–Boltzmann equation
in terms of ’, not x.]

Before we can use Equation 9.22, we still need to impose the surface boundary condition.
Equation 9.12 fixes xú, via

exú/⁄D = e

2fi¸B⁄D‡q

1
1 +


1 + (2fi¸B⁄D‡q/e)2

2
. (9.23)

Your Turn 9ESuppose that we only want the answer at distances less than some fixed xmax. Show that
at low enough salt concentration (big enough ⁄D), the solution Equation 9.22 becomes
a constant plus our earlier result, Equation 9.13. How big must ⁄D be?

We can now look at a more relevant limit for biology: This time, hold the salt concentra-
tion fixed and go out to large distances, where our earlier result (Equation 9.13) displayed
its pathological behavior. For x ∫ ⁄D, Equation 9.22 reduces to

Â̄ æ ≠(4e≠xú/⁄D )e≠x/⁄D . (9.24)

That is,

The electric fields far outside a charged surface in an electrolyte are exponentially

screened at distances greater than the Debye screening length ⁄D.
(9.25)

Idea 9.25 and Equation 9.21 confirm an earlier expectation: Increasing cŒ decreases the
screening length, shrinking the di�use charge layer and hence shortening the e�ective range
of the electrostatic interaction (Idea 9.16).

In the special case of weakly charged surfaces (‡q is small), Equation 9.23 gives e≠xú/⁄D =
fi¸B⁄D‡q/e; so the potential simplifies to

Â(x) = ≠‡q⁄D

‘
e≠x/⁄D . potential outside a weakly charged surface (9.26)

The ratio of the actual prefactor in Equation 9.24 and the form appropriate for weakly charged
surfaces is sometimes called charge renormalization: Any surface will, at great distances,
look the same as a weakly charged surface, but with the “renormalized” charge density
‡q,R = (4‘/⁄D)e≠xú/⁄D . The true charge on the surface becomes apparent only when an
incoming object penetrates into its strong-field region.

In the presence of added salt, the layer thickness no longer grows without limit as the layer
charge gets smaller (as it did in the no-salt case, Equation 9.13); rather, it stops growing when
it hits the Debye screening length. For weakly charged surfaces, then, the stored electrostatic
energy is roughly that of a capacitor with gap spacing ⁄D, not x0. Repeating the argument
at the end of Section 9.2.3, we now find the stored energy per unit area to be

E/(area) ¥ kBT

1
‡q

e

22

2fi⁄D¸B.
(electrostatic energy with added salt,
weakly charged surface) (9.27)
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T2 Track 2

9.2.5Õ

The crucial last step leading to Equation 9.19 may seem too slick. Can’t we work out
the force the same way we calculate any entropic force, by taking a derivative of the free
energy? Absolutely. Let’s compute the free energy F of the system of counterions+surfaces,
holding fixed the charge density ≠‡q on each surface but varying the separation 2h between
the surfaces (see Figure 9.4b on page 104). Then the force between the surfaces will be
p� = ≠dF/d(2h), where � is the surface area.

First we notice an important property of the Poisson–Boltzmann equation (Equation 9.11
(page 105)). Multiplying both sides by dÂ̄/dx, we can rewrite the equation as

d
dx

51dÂ̄

dx

22
6

= 8fi¸B

dc+

dx
.

Integrating this equation gives a simpler, first-order equation:
1dÂ̄

dx

22

= 8fi¸B(c+ ≠ c0). (9.28)

To fix the constant of integration, we noted that the electric field is zero at the midplane,
and c+(0) = c0 there.

Next we need the free energy density per unit area in the gap. The free energy density of
an inhomogeneous ideal gas (or solution) is c(r̨ ) (U(r̨ ) + kBT ln(c(r̨ )/cú)). The free energy
for our problem is the integral of this quantity, plus the electrostatic energy7 of the two
negatively charged plates at x = ±h:

F/(kBT ◊ area) = ≠1
2

‡q

e

!
Â̄(h) + Â̄(≠h)

"
+

⁄ h

≠h

dx

Ë
c+ ln c+

cú
+ 1

2c+Â̄

È
.

In this formula, cú is a constant whose value will drop out of our final answer.
We simplify our expression by first noting that ln(c+/cú) = ln(c0/cú) ≠ Â̄, so the terms

in square brackets are c+ ln(c0/cú) ≠ 1

2
c+Â̄. The first of these terms is a constant times c+,

so its integral is 2(‡q/e) ln(c0/cú). To simplify the second term, use the Poisson–Boltzmann
equation to write c+ = ≠(4fi¸B)≠1

!
d2

Â̄/dx
2
"
. Next integrate by parts, obtaining

F/(kBT ◊ area) = 2‡q

e

Ë
ln c0

cú
≠ 1

2 Â̄(h)
È

+ 1
8fi¸B

dÂ̄

dx
Â̄

----
h

≠h

≠ 1
8fi¸B

⁄ h

≠h

dx

3
dÂ̄

dx

42

.

We evaluate the boundary terms by using Equation 9.12 (page 106) at x = ≠h and its analog
on the other surface; they equal ≠ (‡q/e) Â̄(h).

To do the remaining integral, recall Equation 9.28: it’s ≠
s h

≠h
dx (c+ ≠ c0), or 2(hc0 ≠

(‡q/e)). Combining these results gives

F/(kBT ◊ area) = 2hc0 + 2‡q

e

1
ln c0

cú
≠ Â̄(h) ≠ 1

2
= const + 2hc0 + 2‡q

e
ln c+(h)

cú
.

The concentration at the wall can again be found from Equations 9.28 and 9.12: c+(h) =
c0 + (8fi¸B)≠1(dÂ̄/dx)2 = c0 + 2fi¸B(‡q/e)2.

7Notice that adding any constant to Â̄ leaves this formula unchanged, because the integral
s

c+dx =
2‡q/e is a constant, by charge neutrality. To understand the reason for the factor 1

2
in the first

and last terms, think about two point charges q1 and q2. Their potential energy at separation r is
q1q2/(4fi‘r) (plus a constant). This is one half of the sum q1Â2(r1) + q2Â1(r2). (The same factor of
1

2
also appeared in the electrostatic self-energy Example on page 100.)
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A few abbreviations will make for shorter formulas. Let “ = 2fi¸B‡q/e and u = —h,
where — =

Ô
2fi¸Bc0 as before. Then u and — depend on the gap spacing, whereas “ does not.

With these abbreviations,

F/(kBT ◊ area) = 2hc0 + “

fi¸B

ln c0 + “
2
/(2fi¸B)

cú
.

We want to compute the derivative of this expression with respect to the gap spacing, holding
‡q (and hence “) fixed. We find

p

kBT
= ≠ 1

kBT

d
!
F/(kBT ◊ area)

"

d(2h) = ≠c0 ≠
3

h + “

2fi¸Bc0 + “2

4
dc0

dh
.

In the last term, we need

dc0

dh
= d

dh

3
u

2

h22fi¸B

4
= u

fi¸Bh3

1
h

du

dh
≠ u

2
.

To find du/dh, we write the boundary condition (Equation 9.17 (page 109)) as “h =
u tan u and di�erentiate to find

du

dh
= “

tan u + u sec2 u
= “u

h“ + u2 + (h“)2
.

This has gone far enough. In Problem 9.5, you’ll finish the calculation to get a direct
derivation of Equation 9.19. For a deeper derivation from thermodynamics, see Israelachvili,
1992, §12.7.
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PROBLEMS

9.1 T2 Debye–Hückel I
a. Calculate the Debye screening length for a 100 mM solution of sodium chloride.

That is, the concentration of Na+ ions is 0.1 mole per liter.
b. Calculate the Debye screening length for a salt solution whose ions are not nec-

essarily monovalent (singly charged). Do this by writing the appropriate Poisson–
Boltzmann equation, linearizing it, and collecting terms.

c. Evaluate your answer for a 100 mM solution of magnesium chloride. That is, the
concentration of Mg2+ ions is 0.1 mole per liter.

9.2 Debye–Hückel II
Context: The main text claimed that electrostatic interactions in solution have a
number of features that make them well suited to implement the remarkable specificity
of interactions between biomacromolecules. In this problem you explore the ranges of
both the overall attraction due to total net charge, and also of the pattern-dependent
part of the attraction.

Setup: Consider a surface that is the infinite xy plane. Suppose that the electric
field inside the surface is everywhere zero, so that the potential gradient at the surface
reflects the surface charge density. But unlike the discussion in class, suppose that the
fixed charge distribution on the surface is a constant plus a “checkerboard” component,
i.e. that

ˆÂ

ˆz

----
z=0

= A + B sin(kx) sin(ky)

Suppose that the surface is immersed in a salt solution with Debye screening length
⁄. Suppose that A and B are both small enough to justify linearizing the Poisson–
Boltzmann equation.

Do: Find Â(x, y, z). Comment on the z dependence of your solution in light of
the above remarks.

9.3 Weak-charge limit
Section 9.2.3 considered an ionizable surface immersed in pure water. Thus, the
surface dissociated into a negative plane and a cloud of positive counterions. Real
cells, however, are bathed in a solution of salt, among other things; there is an external
reservoir of both counterions and negative coions. Section 9.2.3Õ (page 112) gave a
solution for this case, but the math was complicated; here is a simpler, approximate
treatment.

Instead of solving Equation 9.20 exactly, consider the case where the surface’s
charge density is small. Then the potential Â(0) at the surface will not be very di�erent
from the value at infinity, which we took to be zero. (More precisely, the dimensionless
combination Â̄ is everywhere much smaller than 1.) Approximate the right-hand side
of Equation 9.20 by the first two terms of its series expansion in powers of Â̄. The
resulting approximate equation is easy to solve. Solve it, and give an interpretation
to the quantity ⁄D defined in Equation 9.21.

9.4 Charged surfaces
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a. Use some numerical software to solve Equation 9.17 for — as a function of plate sep-
aration 2h for fixed charge density ‡q. For concreteness, take ‡q to equal e/(20 nm2).
Now convert your answer into a force by using Equation 9.19 and compare your
answer qualitatively with Figure 9.7.

b. Obtain Dataset 1. Repeat (a) with other values of ‡q to find the one that best
fits the upper set of points in the figure at separation greater than 2 nm. If this
surface were fully dissociated, it would have one electron charge per 7 nm2. Is it
fully dissociated?

9.5 Direct calculation of a surface force
Finish the derivation of Section 9.2.5Õ (page 114). The goal is to establish Equa-
tion 9.19.

9.6 Counterions in cylindrical geometry
Section 9.2.3 discussed the counterion distribution for a planar, charged surface. The
text concluded that the counterions do not run away to infinity; that is, there is a
nonzero concentration of ions near the surface.

One way to understand this result is to consider a single ion (of charge e > 0)
near a surface with charge per unit area ‡q < 0. Suppose that the ion is initially
confined to a distance a from the surface. If the ion is now allowed to explore a larger
distance R from the surface, then the increase in its entropy is kBln(R/a). However,
the electrostatic energy cost for the ion to travel out to a distance R is e(R ≠ a)‡q/‘.
The change in free energy is thus approximately �F ¥ e(R ≠ a)‡q/‘ ≠ kBT ln(R/a),
which increases as R gets very large. Therefore, to minimize the free energy, the ion
does not run away to infinity but remains near the surface.
a. Using a similar argument, determine whether or not the counterions will run away

to infinity for an infinite-length charged cylinder of radius b and charge per unit
length Ÿ.

b. Apply your result to the case of DNA, with two negatively charged phosphate
groups for every basepair.

9.7 Counterion cloud
If you haven’t done Problem 9.3, look at it before attempting this problem.

Consider a spherical macromolecule of charge q = ze and radius a in a solution
containing a monovalent salt, such as sodium chloride. As discussed in Problem 9.3,
in the limit that the potential satisfies |Â(r)| π kBT/e, you may approximate the
Poisson–Boltzmann equation in its linearized (“Debye–Hückel”) form. In spherical
coordinates, the resulting equation is

1
r

d2(rÂ(r))
dr2 = 1

⁄D
2 Â(r),

where ⁄D is the Debye length.
a. Justify the following boundary conditions:

Â(r) æ 0 as r æ Œ , ≠ dÂ

dr

----
r=a

= Er(surface) = q

4fi‘a2 .

b. Find Â(r) in terms of ⁄D, a, and q.
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c. The charge density from salt ions is given by

flq(r) = ≠‘
1
r

d2(rÂ(r))
dr2 .

Using your result for Â(r) from (b), show explicitly that the integral of this charge
density is equal to ≠q.

d. Imagine placing the charge q on the surface of the spherical macromolecule by
successive increments dqÕ, starting from q = 0. By integrating the work required
to bring the charge up to q, find the total potential energy of the charged macro-
molecule and its neutralizing cloud.

e. The solubility of proteins in dilute salt solution generally increases with increas-
ing ionic strength of the solution. Use your result from (c) to explain this e�ect
qualitatively.

9.8 [Not ready yet.]

9.9 [Not ready yet.]
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Cable Equation

x
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�
�
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in in

10.1 CABLES AND THEIR EQUATIONS

10.1.1 The ill-fated transatlantic cable
By 1854, the first industrial revolution (steam power) had already transformed the
world, and the second one (electric generation, motors, lights and related technology)
was underway. But in at least one sense, the world remained unimaginably primitive:
It still took weeks for any information to pass between Europe and America. The tele-
graph, by then a decade old, had eliminated communication barriers within continents,
but between them, the only method of communication was by ship. In that year, a
retired industrialist named Cyrus West Field decided to rectify this unsatisfactory
situation. How hard could it be, he asked? One could simply string a cable across
the narrowest part of the Atlantic ocean. With the growing economic significance
of the United States, the first corporation to accomplish this simple task could reap
enormous profits.

Field was ready to supply some of the needed capital investment, and he had the
connections to bring in others like himself. But he also had the foresight to engage
William Thomson, the future Lord Kelvin and already a noted expert on electricity.
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Thomson took the assignment, but he saw some clouds on the horizon: Existing, but
shorter, undersea cables in the Mediterranean were not behaving as expected. When
electric current was poured in one end of such cables, a lot of it. . . disappeared. Equally
bad, crisp on/o� telegraph signals sent in one end arrived blurry at the other end (to
the extent that they arrived at all).

Undersea cables had a “coaxial” structure. The one eventually laid across the
Atlantic contained seven strands of a good conductor (copper) down the middle,
surrounded by insulating substances (gutta-percha and tarred hemp), and then a
third layer of iron strands, similar to those used in suspension-bridge cables. The iron
was a poor conductor of return current; its main job was to supply strength, so that
the entire cable could withstand undersea currents, as well as the stress from its own
weight as it was reeled out from a giant spool on the ship initially laying it. The overall
diameter was 1.8 cm. I actually possess a small chunk of the original cable:

Developing older ideas from Michael Faraday, Thomson realized that part of the
transmission problem must be the capacitance of existing cables: Instead of passing all
the way through the cable and out the other end, some charge could simply stop in the
middle, paying a finite energy cost to create an electric field across the thin insulating
layer. Eventually that charge could leak across the finite resistance of the insulating
layer, never arriving at the other end at all. This loss mechanism was unexpected
because for overland transmission cables it was negligible: There the standard design
was a pair of wires separated by a meter of air, with negligible capacitance per unit
length (and enormous leak resistance per length).

Thomson therefore recommended reengineering the cables with a much thicker
insulation layer than had originally been planned. Unfortunately, the thin cable had
already been ordered and paid for. Field took the time-honored approach of finding
another engineer willing to reassure him that everything would be fine. The new chief
engineer in turn pulled the elderly Faraday out of retirement for a public meeting to
reassure the investors, after first misleading Faraday about some recent experimental
results. Cable-laying began in 1857.

The first attempt ended in failure with the cable snapping in water too deep to
retrieve the lost end. Another attempt the following year involved two ships. They
planned to meet in the middle of the Atlantic, splice their respective cables together,
then head for Ireland and Newfoundland respectively, paying out cable as they went.

The ships immediately encountered one the worst storms recorded in the North
Atlantic. The ships were damaged; the cable snapped more than once and had to be
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spliced; one ship was attacked by an angry whale. Nevertheless, ultimately an intact,
if thin, cable at last stretched across the ocean. Wild celebrations ensued before the
device had even been tested, including a torchlight procession that set fire to New
York’s City Hall.

Most of the initial telegraph tra�c on the cable consisted of “Send more slowly,”
“Repeat,” or simply “What?” It took sixteen hours to transmit the Queen’s 99-word
congratulation to the President, and thirty hours for the equally brief reply. Des-
perate to get a stronger signal, the lead engineer increased the voltage supplied to
the cable, until the insulation broke down somewhere in the middle of the ocean,
turning the entire cable into worthless undersea trash. The investors lost their money.
A parliamentary inquiry was mounted to see who should be blamed. Eventually a
rumor spread that the entire project had been a massive hoax. Not until 1866 (after
another snapped-cable fiasco), did a successful cable, following Thomson’s original
advice, come into operation.

10.1.2 Setup
Thomson had understood both the loss and the spread of signals before the first cable
was even attempted. He found his way through the physical problem by an approach
that is routine today but astonishing in the mid-19th century: He set up the problem
mathematically, then noticed that it involved the same equation as a problem that
seemed physically to be completely di�erent. The same equation must have the same
solutions, so Thomson benefited at once from extensive work that had already been
done on the other problem. Let’s see how that worked.

We’ll make some idealizations. Imagine a cable consisting of a solid cylindrical core
of ohmic conductor (such as copper), surrounded by a sheath of partially insulating
material, which in turn is surrounded by a perfect conductor. That last assumption
is purely for mathematical convenience; relax it, the equations just get a bit longer.

Finally, we continue to work in the quasi-static regime, where we may neglect the
back-reaction of any magnetic fields on electric fields and currents, and where we may
assume that there is no net charge buildup on macroscopic length scales. That last
statement is often called one of the “Kirchho� laws,” but I would rather not refer to
an approximation as a “law.”

To give things symbols, let a be the radius of the central core and Ÿ its conductivity.
Let g be the conductance per unit area of the sheath. It’s positive and has units1

�≠1m≠2. Also let C denote the capacitance per area.
If the system is isolated, it eventually comes to the boring state with potential

everywhere equal to a constant. We are interested in transient solutions that have not
yet arrived at that state, so we need to find and solve some equation.

1Some authors use the synonym siemens (symbol S) for inverse ohm; an older synonym is the mho
(symbol 0). We won’t use either notation, instead writing �

≠1. Note that conductance per area has
units di�erent from those of the conductivity, Ÿ, of a bulk material: The latter has units m

≠1
�

≠1.
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10.1.3 Discretize
The capacitance and the resistances are all continuously distributed along our cable.
However, things will look more familiar if we imagine dividing the cable into slugs
of length �x and treating them as discrete elements (see the figure). This is not an
approximation because later we’ll take the limit �x æ 0.

What is an approximation is that we’ll suppose the central conductor to be good
enough, and thin enough compared to longitudinal length scales we will consider, that
potential may be taken to be uniform throughout each cross-section. Potential may
of course jump across the sheath, and it may vary along the length of the conductor.

Each element has an axial resistance for the inner material, Rx. We are taking
the corresponding axial resistance for the outer material to be RÕ

x
= 0, so right

away we learn that the exterior potential is a constant, which we may take to be
Âout = 0. Another “radial” resistance, Rr, impedes current passage through the sheath.
However, charge can instead approach the sheath and pile up against it, as long as an
equal charge leaves the other side. In this way, no macroscopic net charge separation
occurs, although there is some separation across the sheath. We are accounting for
the electrostatic cost of this local separation via the capacitance. The combined e�ect
of charge passage and charge pileup is symbolized in the figure by a resistor Rr and a
capacitor C in parallel for each slug.

Elsewhere, currents must balance. Thus, for example, the three-way junctions at
the top must each have zero net charge flowing into them:

Ix(t, x) ≠ Ix(t, x + �x) = Âin(t, x)/Rr + C
ˆÂin
ˆt

.

Similarly, charge entering each resistor on the top must all leave it: Ix is the same on
both sides. Finally, the hypothesis of ohmic behavior in the core says

Âin(x ≠ �x) ≠ Âin(x) = Ix(x)Rx.

Next, express the discrete element properties in terms of quantities introduced earlier:

C = C�memb and Rr = 1/(g�memb), where �memb = 2fia�x

Rx = �x/(Ÿfia2).

10.1.4 Cable equation
You should combine the preceding formulas and take the continuum limit, obtaining

Ÿfia2 ˆ2Âin
ˆx2 = 2fia

!
gÂin + C

ˆÂin
ˆt

). (10.1)

Define the space constant and time constant as

⁄cable ©


aŸ/2g; ·cable © C/g. (10.2)

(Check that these expressions have the units of length and of time, respectively.) These
abbreviations yield

(⁄cable)2 ˆ2Âin
ˆx2 ≠ ·cable

ˆÂin
ˆt

= Âin. linear cable equation (10.3)
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Change variables from Âin to w(x, t) © et/·cableÂin(x, t). Then the linear cable
equation becomes

(⁄cable)2

·cable

ˆ2w

ˆx2 = ˆw

ˆt
.

Kelvin’s great insight was to recognize this as mathematically identical to the di�u-
sion equation, or to Fourier’s heat equation. The analog of the di�usion constant is
(⁄cable)2/·cable = Ÿa/(2C), so we see that a good cable must have small capacitance.2

We already know some solutions to the di�usion equation. For example, the
response of our cable to a localized injection of current is

Âin(t, x) = const ◊ e≠t/·cablet≠1/2e≠x
2
/(4t(⁄cable)2

/·cable). passive-spread solution
(10.4)

You should confirm that this function does solve Equation 10.3. It’s a gaussian profile at
any instant of time, which initially widens out fast, then slows down, all the while dying
o� exponentially in time. Try this: Imagine sitting at a fixed location xú and observing
the time course of the potential disturbance. At what time does the disturbance reach
its peak? How does the the peak strength vary as a function of xú? Maybe you should
also get a computer to draw Âin(t, xú) for various xú.

In fact, the linear cable equation has no traveling wave solutions. Try this: sub-
stitute a trial solution of the form Âin(t, x) = f(x ≠ Ët), into Equation 10.3, where Ë
is a constant, the speed of the proposed traveling wave. Is there any value of Ë that
yields a physical solution?

In short, our passive cable su�ers from dispersion, even if there is no leak conduc-
tance (g dropped out of the expression for the di�usion constant).

10.2 NEURONS

10.2.1 A new phenomenon
People talk casually about the brain as a “computer” and its neurons as “wires,” but
a little thought shows they must be very di�erent from ordinary wires. A coaxial cable
brings Internet into your apartment via signals that move at around 2 · 108 m/s. Your
nerves carry signals that move at around 10–20 m/s. They are also poorly insulated
and surrounded by a conductive medium!

A neuron has a long projection, its axon, that is a “cable” of the sort we are
considering: It is a tube of conductor (salt water) surrounded by a partially insulating
layer (cell membrane), which is surrounded by another conductor (salt water).3 So
we may expect that electrochemical disturbances will also spread di�usively along an
axon.

2That result led Kelvin to propose redesigning the cable with thicker insulation (smaller C) and
thicker central conductor (bigger a), but the Suits declared it was too late and too expensive to
change the design.
3You may object that axons are filled with lots of other machinery, including microtubules. Amazingly,
experiments have been done in which all those contents are emptied out of the axon and it is refilled
with just a salt solution. All the phenomena we will discuss (passive spread and the action potential)
behave identically with these gutted axons as they do in living cells.
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Figure 10.1: [Experimental data.] The role of sodium in the conduction of an action potential. One of the top
traces was taken on a squid axon in normal seawater before exposure to low sodium. In the middle trace, ex-
ternal sodium was reduced to one-half that in seawater, and in the bottom trace, to one-third. (The other
top trace was taken after normal seawater was restored to the exterior bath.) The data show that the peak of
the action potential tracks the sodium Nernst potential across the membrane, an observation supporting the
idea that the action potential is a sudden increase in the axon membrane’s sodium conductance. [Data from
Hodgkin & Katz, 1949.]

For some nerve cells, that’s good enough (e.g. photoreceptors in the eye). They are
short, and over a few micrometers di�usive spread is not a problem. Longer nerve axons
also exhibit passive-spread behavior when stimulated with very small disturbances.
But that wouldn’t be very useful for, say, the axons that start in your spinal cord
and end a meter away in your foot! In fact, above a threshold of stimulation, axons
transmit a traveling impulse that moves unchanged in form, at constant speed. We
just proved that is impossible, so we have some work to do.

One big di�erence, we will see, is that a resting neuron carries a distributed source
of free energy that can continuously regenerate an impulse as it travels, counteracting
dissipative (ohmic) loss. Indeed, ion imbalance is the one crucial thing needed to
get action potentials in experiments where the interior of the axon is evacuated and
replaced by salt solution; specifically, excess exterior sodium ions (Figure 10.1).

The other big di�erence will be a crucial non-ohmic behavior of the leakage
conductance, which can continually reshape the impulse as it travels, counteracting
dispersion. How these new elements conspire to generate a nonlinear traveling wave
solution is a remarkable story. If you want a metaphor, think of a burning fuse in
some Hollywood blockbuster: Stored chemical energy is released in a controlled way,
leading to a flame front that self-regulates to move at constant speed.

10.2.2 Ions in and out of equilibrium
Salt water conducts electric current by the movement of ions, not electrons. One key
di�erence with ordinary conduction in metals is that there are several types of ions,
in contrast to just one charge carrier (electrons) in a metal. Each ion species ¸ has
its own concentration c¸. For electrons in a metal, the neutralizing atomic nuclei are
fixed in space. So in the quasistatic approximation, charge neutrality implies that,
although the electrons are mobile, their density cannot vary. In contrast, in aqueous

Contents Index Notation



10.2 Neurons 125

solution charge neutrality does not prohibit a change in one ion’s concentration, as
long as the other species make compensating changes.4

The membrane leakage conductances per area for each ion species, g¸, can all
have di�erent values, because ions are passed through exquisitely engineered protein
complexes embedded in the cell membrane; far from being just tubes, each of these ion
channels is sculpted in a way that selects for a particular ion or class of ions. (However,
we will make the approximation that ions of each species all have the same mobility
in bulk solution, leading to an overall conductivity Ÿ that doesn’t care which species
is moving.)

Thus, the net charge flow (current) through a channel due to species ¸ is the
conductivity times the sum of two driving forces:
. There is an electrostatic force proportional to the di�erence of electric potentials

on either side of the membrane times the charge on species ¸.
. There is also a thermodynamic force, involving the di�erence of concentrations.

Just like the air in a balloon, ions will “want” to escape from the side where their
concentration is greater.

More precisely, ions of species ¸ will seek an equilibrium concentration c¸ which reflects
a Boltzmann distribution of probability to be on either side:

c¸,in
c¸,out

= c0e≠q¸Âin/kBT

c0e≠q¸Âout/kBT
= e≠q¸�Â/kBT . (equilibrium)

That is, equilibrium with given concentrations requires a potential drop called the
Nernst potential for species ¸:

ÂNernst
¸

= ≠kBT

q¸

ln(c¸,in/c¸,out).

But beware: The Nernst potential may not be equal to the actual potential drop.
If they disagree, that just means that species ¸ is out of equilibrium, and hence will
flow. We may guess that, at least for small deviations from equilibrium, the resulting
ion flow would give rise to a charge flux of the form

jr,¸ = (�Â ≠ ÂNernst
¸

)g¸. ohmic conductance hypothesis (10.5)

This formula gives the radial charge flux contribution from species ¸, with the sign
convention that positive means net charge leaving the axon (radially outward). The
potential drop is defined as �Â = Âin ≠Âout. The conductance per area g¸ involves the
permeability of a channel, the density of channels in the membrane, and the square
of the charge carried by species ¸; it is a positive quantity.

The two terms in Equation 10.5 mean that there can be net flow of ions against
the electrostatic gradient, if the “pressure” term outweighs the “field” term

Here are some typical values for three ion species that are relevant in the squid
“giant” axon (so called because it can be up to a millimeter in diameter—not because
it comes from giant squid5):

4A similar remark applies in plasma physics, and indeed there are some phenomena in common
between that situation and aqueous solution. For example, both exhibit charge screening.
5Nor from a superconducting quantum interference device!
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interior exterior Nernst potential
ion charge q¸ c¸,in, mM relation c¸,out, mM Â

Nernst
¸ , mV

K+ +e 400 > 20 ≠75
Na

+ +e 50 < 440 +54

Cl≠ ≠e 52 < 560 ≠59

The salient feature of this table is the middle line: There is no value of �Â that
even approximately satisfies all three of these ion species. In fact, resting neurons are
polarized with �Â negative. Sodium is way out of equilibrium under those conditions.

In its resting state, the neuron maintains these nonequilibrium concentrations by
continuously pumping ions across its membrane, but we don’t need to worry about that.
Even when we shut down a living cell’s metabolism, it still preserves the preceding
values of ion concentrations for several minutes, because the interior and exterior are
large reservoirs. During that time, the neuron’s axon conducts action potentials and
otherwise behaves electrically like a living cell. All the pumps do is to set up and
maintain the conditions given in the table.

We can summarize the preceding discussion with a little circuit diagram repre-
senting the contribution of one species to the current through a patch of membrane:

Nernst
� 

(in)

(out)

 
`

Rr,` = 1/(g`⌃memb)

Ir,` = jr,`⌃memb

Placing the resistor and battery symbols in series, as shown, encodes the fact that
current is driven by the di�erence between actual �Â and the Nernst potential for
this species.

10.2.3 Linear cable equation for an axon
Let’s see how the preceding considerations a�ect signal propagation along an axon.
As far as charge is concerned, each ion species makes its own contribution to current,
so we can simply represent the driving forces and conductances by three modules in
parallel:6

RNa+ RK+ RCl�

(in)

(out)

 Nernst
Na+  Nernst

K+  Nernst
Cl�

6The circuit diagram also correctly represents the fact that all ion species share the same exterior
and interior values of the electrostatic potential at any position x.
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As before, we simplify by supposing the outer bulk resistance equals zero. Thus, again
Âout © 0 and �Â = Âin. The dashed arrow reminds us that, although the “resting”
membrane transmits no net current, still individual ion species are flowing.

Our hope was that the latent energy source, symbolized by the battery symbols
in the diagram, could regenerate a disturbance as it travels along the axon.

Your Turn 10A
To investigate, first show that the entire preceding diagram can be equivalently
replaced by a single resistor/battery unit, and find formulas for the e�ective overall
battery potential Â0 and radial resistance Rr,tot. Explain the sense in which “the
ion species with the biggest conductance gets the biggest vote when determining
the membrane potential.”

A typical magnitude for the overall conductance per area of a resting squid axon
membrane is about 5 m≠2�≠1.

With this insight, we see that the axon’s overall diagram is almost exactly the
same as the one at the start of this document, just with the addition of a battery in
each module. Thus, the needed modification to the linear cable equation just amounts
to introducing Â0:

Ÿfia2 ˆ2Âin
ˆx2 = 2fia

!
gtot(Âin ≠ Â0) + C

ˆÂin
ˆt

).

We can then eliminate the battery altogether if we change variables to v = Âin ≠ Â0:

(⁄cable)2 ˆ2v

ˆx2 ≠ ·cable
ˆv

ˆt
= v. (10.6)

Here the space constant and time constant are defined as before.
Some numerical values are revealing: Taking illustrative values of a = 0.5 mm,

gtot ¥ 5 m≠2 �≠1, C ¥ 1 µF cm≠2, and Ÿ ¥ 3 �≠1 m≠1 yields

⁄cable ¥ 12 mm , ·cable ¥ 2 ms. (10.7)

We seem to have hit an impasse. All that stored electrochemical energy seems
unable to a�ect nerve impulses—it dropped out of the equation, which has the same
disappointing solutions as before! Indeed, experimentally that’s the observed behavior
for weak disturbances. For example, when we inject a subthreshold charge into the
axon, we do find passive spread, which in this context is also called “electrotonus.” For
the more spectacular action potential, we must look for another physical idea.

10.2.4 Day breaks
The resting membrane potential in squid axon was found to be about ≠50 mV. This
is not far from the Nernst potential of potassium ions given in the earlier table. That
coincidence suggests one possible interpretation: The conductance for potassium ions
is much bigger than that for sodium ions.

When an action potential travels along the membrane, the membrane potentially
locally and temporarily shoots up to something more like +40 mV. This is not so
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di�erent from the Nernst potential of sodium, suggesting another interpretation:

The conductance for sodium ions briefly overtakes that for potassium, and
a resulting ion flow tries to establish that new value of membrane potential
drop as a new steady state.

(10.8)

In fact, Hodgkin and B. Katz had previously found that during an action potential,
conductances change from their “resting” values:

gK+ ¥ 25gNa+ ¥ 2gCl≠ . (resting) (10.9)

to
gK+ ¥ 0.05gNa+ ¥ 2gCl≠ . (at the action potential peak) (10.10)

What could change the ion conductance of sodium in just the right way? Hodgkin
and Huxley realized that even a few millivolts across a nanometer-thickness membrane
amounts to a huge electric field, which could tug on charged residues in the proteins
making up an ion channel. With the appropriate arrangement, a reversal in the
direction of that tugging could open a channel that was normally closed! Hodgkin
and Huxley therefore proposed that the conductance of the membrane to specific ions
is itself voltage-dependent: We must use a function of potential gNa+(�Â) in the
cable equation. The result is now nonlinear in Â. Interesting things can happen with
nonlinearity.

In particular, suppose that depolarization (making �Â less negative than usual)
causes sodium channels to open. Then a localized electrical disturbance that depo-
larizes a patch of membrane lets sodium ions rush in, which further depolarizes that
patch. The disturbance can then spread to a neighboring region, where the same
sequence is repeated. Thus, the axon can be in a stable, steady state, yet poised to
release energy. A disturbance at one end, like lighting a fuse, can lead to a propagating
wave of depolarization.

Does it really work? See Chapter 11.

FURTHER READING

Undersea telegraph cables:
Bodanis, 2005.

https://en.wikipedia.org/wiki/Transatlantic_telegraph_cable,

archived as https://perma.cc/QU4Y-YF6J

https://en.wikipedia.org/wiki/Cable_theory

https://en.wikipedia.org/wiki/William_Thomson,_1st_Baron_Kelvin#Transatlantic_cable

https://en.wikipedia.org/wiki/Submarine_communications_cable#Bandwidth_problems
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C H A P T E R 11

Nerve Impulses

11.1

11.1.1 The time course of an action potential suggests the hypothesis of voltage
gating

Chapter 10 foreshadowed what is about to come. We must abandon the ohmic hy-
pothesis, which states that all membrane conductances are fixed (Equation 10.5),
in favor of something more interesting: The temporary reversal of the sign of the
membrane potential reflects a sudden increase in gNa+ (Equation 10.10 instead of
Equation 10.9), so gtot temporarily becomes dominated by the sodium contribution
instead of by potassium. This change drives the membrane potential away from the
potassium Nernst potential and toward that of sodium, thus creating the temporary
reversed polarization characteristic of the action potential.

In fact, the cable equation shows quite directly that the ohmic hypothesis breaks
down during a nerve impulse. We know that the action potential is a traveling wave
of fixed shape, moving at some speed Ë. For such a traveling wave, the entire history
Â(x, t) is completely known once we specify its speed and its time course at one point:
We then have Â(x, t) = Ẫ(t ≠ (x/Ë)), where Ẫ(t) © Â(0, t) is the time course of an
action potential (Figure 11.1a). Hence,

ˆÂ

ˆx
= ≠ 1

Ë

dẪ

dtÕ

----
tÕ=t≠(x/Ë)

,

by the chain rule of calculus. Rearranging the cable equation (Equation 10.1) then
gives us the total membrane current jr from the measured time course Ẫ(t) of the
membrane potential at a fixed position:

jr = aŸ

2Ë2
d2Ẫ

dt2 ≠ C
dẪ

dt
. (11.1)

Applying Equation 11.1 to the measured time course of an action potential,
sketched in Figure 11.1a, gives us the corresponding time course for the membrane
current (Figure 11.1b). We can understand this result graphically, without any calcu-
lations. Note that the membrane current is particularly simple at the inflection points
of panel (a) (the dashed lines labeled 1, 3, and 5): Here the first term of Equation 11.1
equals zero, and the sign of the current is opposite to that of the slope of Ẫ(t). Sim-
ilarly, at the extrema of panel (a) (the dashed lines labeled 2 and 4), we find that
the second term of Equation 11.1 vanishes: Here the sign of the current is that of the
curvature of Ẫ(t), as shown in panel (b). With these hints, we can work out the sign
of jr at the points 0–6; joining the dots gives the curve sketched in panel (b).
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Figure 11.1: [Sketch graphs.] The time course of an action potential. (a) The sketch shows
the membrane potential Ẫ(t), measured at a fixed location x = 0. ṽ(t) refers to the di�er-
ence between the membrane potential and its resting value Â

0. The dashed lines are six
particular moments of time discussed in the text. (b) Reconstruction of the total mem-
brane current from (a), using Equation 11.1. An ohmic stage A gives way to another stage
B. In B, the membrane potential continues to rise but the current falls and then reverses;
this is non-ohmic behavior. [Adapted from Benedek & Villars, 2000.]

Comparing the two panels of Figure 11.1 shows what is happening during the
action potential. Initially (stage A), the membrane conductance is indeed ohmic:
The cell’s interior potential begins to rise above its resting value, thereby driving
an outward current flux, as predicted from your calculation of the potential of three
resistor–battery pairs (Your Turn 10A (page 127)). But when the membrane has
depolarized by about 10 mV, something strange begins to happen (stage B): The
potential continues to rise, but the net current falls.

Idea 10.8 made the key point needed for understanding the current reversal, in
terms of a switch in the membrane’s permeabilities to various ions. Net current flows
across a membrane whenever the actual potential di�erence Â deviates from the
“target” value. But the target value itself depends on the membrane conductances. If
these suddenly change from their resting values, so will the target potential; if the
target switches from being more negative than Â to more positive, then the membrane
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current will change sign. Because the target value is dominated by the Nernst potential
of the most permeant ion species, we can explain the current reversal by supposing
that the membrane’s permeability to sodium increases suddenly during the action
potential.

So far, we have done little more than restate Idea 10.8. As outlined in Sec-
tion 10.2.4, Hodgkin and Huxley noted that the increase does not begin until after
the membrane has depolarized significantly (Figure 11.1, stage B), so they proposed
that

Membrane depolarization itself is the trigger that causes the sodium con-
ductance to increase.

(11.2)

That is, they suggested that some collection of unknown molecular devices in the
membrane allow the passage of sodium ions, with a conductance depending on the
membrane potential. Idea 11.2 introduces an element of positive feedback into our
picture: Depolarization begins to open the sodium gates, a process that increases the
degree of depolarization. The increased depolarization opens still more sodium gates;
and so on.

The simplest way to implement Idea 11.2 is to retain the ohmic hypothesis, but
with the modification that each of the membrane’s conductances may depend on Â:

jr =
ÿ

¸

(Â ≠ ÂNernst
¸

)g¸(Â). simplified voltage-gating hypothesis (11.3)

In this formula, the conductances g¸(Â) are unknown (but positive) functions of
the membrane potential. Equation 11.3 is our proposed replacement for the ohmic
hypothesis.1

The proposal Equation 11.3 certainly has a lot of content, even though we don’t
yet know the precise form of the conductance functions appearing in it. For example,
it implies that the membrane’s ion currents are still ohmic (linear in ln(cout/cin)) if
we hold Â fixed while changing the concentrations. However, the membrane current
is now a nonlinear function of Â, a crucial point for the following analysis.

Before proceeding to incorporate Equation 11.3 into the cable equation, let’s place
it in the context of this book’s other concerns. We are accustomed to positive ions
moving along the electric field, which then does work on them; they dissipate this work
as heat as they drift against the viscous drag of the surrounding water. This migration
has the net e�ect of reducing the electric field: Organized energy (stored in the field)
has been degraded to disorganized (thermal) energy. But stage B of Figure 11.1b
shows ions moving inward, that is, in a direction opposite to that of the potential drop.
The energy needed to drive them can only have come from the thermal energy of
their surroundings. Can thermal energy really turn back into organized (electrostatic)
energy? Previous chapters have argued that such unintuitive energy transactions are
possible, as long as they reduce the free energy of the system. And in fact, the axon
started out with excess free energy, in the form of its nonequilibrium ion concentrations.
The source of this stored free energy is the cell’s metabolism, via the membrane’s ion
pumps.

1The symbol �Â appearing in Chapter 10 is abbreviated in this chapter as Â.
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#
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�

Figure 11.2: [Schematic.] Mechanical analog of the action potential. A heavy chain lies in
a tilted channel, with two troughs at heights di�ering by �h. (a) An isolated kink will
move steadily to the left at a constant speed Ë: successive chain elements are lifted from
the upper trough, slide over the crest, and fall into the lower trough. (b) A disturbance can
create a pair of kinks if it is above threshold. The two kinks then travel away from each
other.

Note that Equation 11.3 implies that the conductances track changes in potential
instantaneously. Section 11.1.2 will show how this simplified conductance hypothesis
already accounts for much of the phenomenology of the action potential.2

11.1.2 Voltage gating leads to a nonlinear cable equation with traveling wave
solutions

We can now return to the apparent impasse reached in our discussion of the linear
cable equation (Section 10.2.3): There seemed to be no way for the action potential to
gain access to the free energy stored along the axon membrane by the ion pumps. The
previous section motivated a proposal for how to get the required coupling, namely,
the simplified voltage-gating hypothesis. However, it left unanswered the question of
who orchestrates the orderly, sequential increases in sodium conductance as the action
potential travels along the axon? The full answer to this question is mathematically
rather complex. This section will implement a simplified version, in which we can
actually solve an equation and see the outline of the full answer.

Consider first a mechanical analogy, a chain that progressively shifts from a higher
to a lower groove (Figure 11.2a). This system can support a traveling wave of fixed
speed and definite waveform. Now we must translate our ideas into the context of
axons, and do the math.

The force needed to pull each successive segment of chain over its potential barrier
comes from the previous segment of chain. Translating into the language of our axon,

2Nelson, 2014, §12.3.1 describes how Hodgkin and Huxley managed to measure the conductance
functions and how they were forced to modify the simplified voltage-gating hypothesis somewhat.
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this idea suggests that even though the resting state is a stable steady state of the
membrane,

•Once one segment depolarizes, its depolarization spreads passively to the
neighboring segment;
•Once the neighboring segment depolarizes by more than 10 mV, the pos-
itive feedback phenomenon described in the previous section sets in, trig-
gering a massive depolarization; and
•The process repeats, spreading the depolarized region.

(11.4)

Let’s begin by focusing only on the initial sodium influx. Thus we imagine only one
voltage-gated ion species, say, Na+. We also suppose that the membrane’s conduc-
tance for this ion, gNa+(v), depends only on the momentary value3 of the potential
disturbance v © Â ≠ Â0.

A detailed model would use an experimentally measured form of the conductance
per area gNa+(v), as imagined in the dashed line of Figure 11.3a. We will instead use
a mathematically simpler form (solid curve in the figure), namely, the function

gNa+(v) = g0
Na+ + Bv2. (11.5)

Here g0
Na+ represents the resting conductance per area; as usual, we lump this in with

the other conductances and call the sum g0
tot. B is a positive constant. Equation 11.5

incorporates the key feature of increasing upon depolarization; moreover, it is always
positive, as a conductance must be.

The total charge flux through the membrane is then the sum of the sodium
contribution, plus ohmic terms from the other ions:

jr =
1ÿ

¸

(Â ≠ ÂNernst
i

)g0
¸

2
+ (Â ≠ ÂNernst

Na+ )Bv2. (11.6)

As in Your Turn 10A (page 127), the first term in Equation 11.6 can be rewritten as
g0

totv. Letting H denote the constant ÂNernst
Na+ ≠ Â0, we can also rewrite the last term

as (v ≠ H)Bv2, obtaining

jr = vg0
tot + (v ≠ H)Bv2. (11.7)

Figure 11.3b helps us understand graphically the behavior of our model. There
are three important points on the curve of current versus depolarization, namely, the
points where the membrane current jr is zero. Equation 11.7 shows that these points
are the roots of a cubic equation. We write them as v = 0, v1, and v2, where v1 and
v2 equal 1

2 (H û


H2 ≠ 4g0
tot/B), respectively. At small depolarization v, the sodium

permeability stays small, so the last term of Equation 11.7 is negligible. In this case,
a small positive v gives small positive (outward) current, as expected: We are in the
ohmic regime (stage A of Figure 11.1). The outward flow of charge tends to reduce v
back toward zero. A further increase of v, however, opens the voltage-gated sodium
channels, eventually reducing jr to zero, and then below zero as we pass the point v1.
Now the net inward flow of charge tends to increase v, giving positive feedback—an

3These assumptions are not fully realistic; thus our simple model will not capture all the features of
real action potentials. Nelson, 2014, §12.3.1 discusses an improved model.
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Figure 11.3: [Sketch graphs.] Voltage-gating hypothesis. (a) Dashed curve: The conductance
gNa+ of an axon membrane to sodium ions, showing an increase as the membrane potential
increases from its resting value (v = 0). Solid curve: Simplified form for membrane sodium
conductance (Equation 11.5). This form captures the relevant feature of the dashed curve,
namely, that it increases as v increases and is positive. (Even the dashed line is not fully
realistic: Real membrane conductances do not respond instantly to changes in membrane
potential; rather they reflect the past history of v.) (b) Current-voltage relation result-
ing from the conductance model in (a) (Equation 11.7). The special values v1 and v2 are
defined in the text.

avalanche. Instead of returning to zero, v drives toward the other root, v2. At still
higher v, we once again get a positive (outward) current, as the large outward electric
force on all the ions finally overcomes the entropic tendency for sodium to drift inward.

In short, our model displays threshold behavior: Small disturbances get driven
back to v = 0, but above-threshold disturbances drive to the other stable fixed point
v2. Our program is now to adapt the steps in Section 10.2.3.

Equation
We first substitute Equation 11.7 into the cable equation (Equation 10.1 (page 122)).
Some algebra shows that v1v2 = g0

tot/B, so the cable equation becomes

(⁄cable)2 ˆ2v

ˆx2 ≠ ·
ˆv

ˆt
= v(v ≠ v1)(v ≠ v2)

(v1v2) . nonlinear cable equation (11.8)

Unlike the linear cable equation, Equation 11.8 is not equivalent to a di�usion equation.
In general, it’s very di�cult to solve nonlinear, many-variable di�erential equations like
this one. But we can simplify things, because our main interest is in finding whether
there are any traveling wave solutions to Equation 11.8. Following the discussion
leading to Equation 11.1, we can represent a wave traveling at speed Ë by a function
ṽ(t) of one variable, via v(x, t) = ṽ(t ≠ (x/Ë)). Substituting into Equation 11.8 leads
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Figure 11.4: [Mathematical functions.] Traveling wave solution to the nonlinear cable equation (see Prob-
lem 11.1). The membrane potential relative to rest, v(x, t), is shown as a function of time at three di�erent
fixed locations (three solid curves). Points at larger x see the wave go by at later times, so this wave is travel-
ing in the +x̂ direction. The parameter s © v2/v1 has been taken equal to 3 for illustration. This simplified
model qualitatively reproduces the leading edge of the action potential (Figure 11.1a). The dashed line shows
a solution to Equation 11.9 with a value of the front velocity Ë di�erent from that in Equation 11.11; this so-
lution is singular. Time is measured in units of ⁄cable/Ë. The potential relative to resting is measured in units
of v2 (see text).

to an ordinary (one-variable) di�erential equation:
3

⁄cable
Ë

42 d2ṽ

dt2 ≠ ·
dṽ

dt
= ṽ(ṽ ≠ v1)(ṽ ≠ v2)

v1v2
. (11.9)

We can tidy up the equation by defining the dimensionless quantities v̄ © ṽ/v2,
y © ≠Ët/⁄cable, s © v2/v1, and Q © ·Ë/⁄cable, finding

d2v̄

dy2 = ≠Q
dv̄

dy
+ sv̄3 ≠ (1 + s)v̄2 + v̄. (11.10)

Solution
You could enter Equation 11.10 into a computer-math package, substitute some reason-
able values for the parameters Q and s, and look at its solutions. But it’s tricky: The
solutions are badly behaved (they blow up) unless you take Q to have one particular
value (see Figure 11.4). This behavior is not surprising in the light of Figure 11.2: Our
mechanical analog system selects one definite value for the pulse speed (and hence Q).
You’ll find in Problem 11.1 that choosing

Ë = ±⁄cable
·

Ú
2
s

1s

2 ≠ 1
2

(11.11)

yields a traveling wave solution (the solid curves in Figure 11.4).
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Interpretation
The hypothesis of voltage gating, embodied in the nonlinear cable equation, has led
to the appearance of traveling waves of definite speed and shape. In particular, the
amplitude of the traveling wave is fixed: It smoothly connects two of the values of v
for which the membrane current is zero, namely, 0 and v2 (Figure 11.3). We cannot
excite such a wave with a very small disturbance. Clearly, for small enough v, the
nonlinear cable equation is essentially the same as the linear one (Equation 10.3 (page
122)), whose solution we have already seen corresponds to passive, di�usive spreading
(electrotonus), not an action potential. Thus

a. Voltage gating leads to a graded, di�usive response for stimuli below
some threshold, but above-threshold, depolarizing stimuli yield a large,
fixed-amplitude response.
b. The above-threshold response takes the form of a traveling wave of fixed
shape and speed.

(11.12)

Our model, a mathematical embodiment of Idea 11.4, has captured many of the
key features of real nerve impulses. We didn’t prove that the wave rapidly forgets the
precise nature of its initial stimulus, remembering only whether it was above threshold
or not, but such behavior should seem reasonable in the light of the mechanical analogy
(Figure 11.2). We also get a quantitative prediction. The velocity Ë is proportional to
⁄cable/· =


aŸgtot/(2C2) times a factor independent of the axon’s radius a. Thus the

model predicts that if we examine a family of unmyelinated axons of the same general
type, with the same ion concentrations, we should find that the pulse speed varies with
axon radius as Ë Ã

Ô
a. This prediction is roughly borne out in experimental data.

Moreover, the overall magnitude of the pulse speed is approximately ⁄cable/· . For the
squid giant axon, our estimates give this quantity as about 12 mm/2 ms = 6 m s≠1, a
value within an order of magnitude of the measured action potential speed of about
20 m s≠1.

In the mechanical analogy, the wave speed is proportional to the density of stored
energy divided by a friction constant. Examining our expression for Ë, we notice
that both Ÿ and gtot are inverse resistances, so Ô

Ÿgtot is indeed an inverse “friction”
constant. In addition, the formula E/� = 1

2 q2/(C�) for the electrostatic energy density
stored in a charged membrane of area � shows that the stored energy is proportional to
1/C. Thus our formula for Ë has essentially the structure expected from the mechanical
analogy.
T2 Section 11.1.2 Õ (page 137) discusses how the nonlinear cable equation determines

the speed of its traveling wave solution.

REFERENCES

Neurons:
The approximate treatment discussed here appears in Benedek & Villars, 2000; Nelson,
2014; Keener & Sneyd, 2009, §6.2; Bresslo�, 2014, §2.2.
See also Phillips et al., 2012.
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T2 Track 2

11.1.2Õ

1. Problem 11.1 pulls an exact analytic solution out of a hat. The fact that any such solution
exists may seem a miracle, a pathology of our particular simplification of the equations. To
see that the behavior we found is actually generic, here is a physically inspired argument.
Begin with Equation 11.8. We are interested in traveling wave solutions, representing the
situation where the initial resting state (v = 0) is invaded by the excited state (v = v2). Thus
we explore trial solutions of the form v = f(t ≠ x/Ë) where f(t) æ 0 as t æ ≠Œ etc. The
wave velocity Ë is not known yet.

To get a recognizable equation, first change variables:

y = ≠|Ë|t/⁄cable,
d
dt

= ≠ |Ë|
⁄

d
dy

.

As a function of y, we now have f(y) æ 0 as t æ +Œ etc. Now multiply both sides of
Equation 11.8 by df/dy and rearrange to find

d
dy

5
1

2

!df

dy

"2 + U(f)
6

= ≠Q

!df

dy

"2

where
U(f) = ≠ 1

v1v2
[ 1

4
f

4 ≠ 1

3
(v1 + v2)f3] ≠ 1

2
f

2
, and Q = · |Ë|/⁄cable.

We know how to think about nonlinear ODEs of this sort. Think of a roller-coaster car,
rolling on a potential energy landscape U . On the left side of this equation we have the
time derivative of kinetic plus potential energy. On the right side we have frictional loss (in
a world where roller coasters are immersed in a viscous fluid). Our roller coaster starts at
“time” y æ ≠Œ on top of the taller hill (f = v2). After a long time (set by the size of an
initial small perturbation), it rolls o� the hill toward the left.

I took total resting membrane conductance to be 5 �≠1m≠2 and H = 100 mV. To get a
value for B, I noticed that the sodium conductance rises from negligible to about 13 times the
resting total conductance as membrane potential rises from resting to about 40 mV greater
than that. This gave (B/g0,tot)(40 mV)2 = 13, and then v1 = 0.60, v2 = 200 mV. The value
of v2 is much higher than the actual maximum of an action potential, but we only want the
leading edge; we are neglecting the later potassium currents and sodium channel inactivation
that later cut o� the rise of potential.

The graph of the e�ective potential function U(f) levels o� at 0, v1, and v2. The figure
below shows a detail close to zero (the starting point is far to the right, at v2):

0.0 0.5 1.0

f

�0.10

�0.05

0.00

0.05

U
(f

)
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138 Chapter 11 Nerve Impulses

The generic behavior that ensues is that the roller coaster ends up at v1, perhaps after
some oscillations. But v1 is an unstable solution for the nerve impulse: It’s right in the
middle of the negative-resistance regime. It may be stable in our roller-coaster model, but
that explores only a very restricted domain (constant-speed traveling waves). Another generic
behavior, if the friction is low enough, is that the roller coaster surmounts the hill on the left
and flies o� to f æ ≠Œ. That’s definitely unphysical. But if the friction is just exactly right,
we can get another behavior: The roller coaster ends up poised right at f = 0, approaching
it asymptotically. That is the traveling wave solution we sought. We can always arrange
for such a solution to exist by choosing the right value of friction Q, that is, the right wave
propagation velocity Ë. This argument is unchanged if we make small modifications to the
assumed potential U , even if there are no longer any exact solutions.
2. Actually, all types of ion channels potentially have voltage-dependent conductance, not just
sodium. We focused on sodium because it’s responsible for the switch to the high-conductance
state (leading edge of an action potential). Later, potassium channels open, and later still
the sodium channels “inactivate”; both of those processes contribute to shutting down the
conduction and returning the axon to its resting state.

Moreover, they don’t respond instantaneously to changes in potential (each has its own
kinetics). Still, we already see the germ of the idea, and neglecting these fine points gives us
a tractable equation that displays the qualitative behavior we were trying to explain.
3. The word “later” reminds us that channels do not actually respond instantly to the current
membrane potential. Introducing realistic kinetics leads to a much more complicated system,
though with similar behavior at the leading edge. There is a useful intermediate theory,
however, the “FitzHugh-Nagumo” system, in which the fastest ion channels (sodium) are
assumed to respond instantly, and slower dynamics are merged into a single independent
dynamical variable (Keener & Sneyd, 2009).
4. A nonlinear traveling wave is sometimes called a soliton.4 Here is another context for them.
The cables that send Internet between cities are not wires at all, but optical fibers. They can
be formulated with ultra-low loss (absorption), but they still su�er from optical dispersion
(mushing-out of signals). Modern optical fibers have nonlinear optical e�ects that make them
transmit those ones and zeros as solitons, preserving their shape for hundreds of kilometers.

4Some authors reserve this word for the special case of an “exactly integrable” system.
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PROBLEMS

11.1 Analytical solution for simplified action potential
Show that the function v̄(y) = (1 + e–y)≠1 solves Equation 11.10 (page 135), if we
take the parameter Q to be given by


2/s

!
s

2 ≠ 1
"
. Hence derive the speed of the

action potential (Equation 11.11). – is another constant, which you are to find.
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Examples of 3-tensors in Physics
The image of the theorist that emerges is of a surprisingly
unsophisticated individual who must anthropomorphize
nature to understand it: I like symmetry and beauty; ergo,
nature likes symmetry and beauty. It reminds one of the
Parisian animal trainer who teaches his bear to respond to
voice commands and concludes that bears speak French.

— Dick Teresi

12.1 FRAMING

We have informally introduced a mathematical object called a “tensor.” Chapter 3
introduced the quadrupole moment, a tensor in three-dimensional space or 3-tensor.
Chapter 6 constructed the metric and curvature tensors of a two-dimensional surface;
they are 2-tensors.

Ultimately our goal is to define and exploit 4-tensors. Before we go there, let’s see
some more examples that may be familiar to you, at least implicitly, from previous
work. Like the man who discovered he had been speaking prose all his life, you are
already familiar with some tensors.

12.2 RANK ZERO; RANK ONE

A “rank-zero three-tensor” is just a fancy term for a single number. More precisely,
it expresses a physical quantity that is the same in any coordinate system. Electric
charge is an example. It doesn’t need any coordinate index (that is, it carries zero
indices).

A “rank-one three-tensor” is just a fancy term for what we have been calling a
3-vector. Velocity is an example. It carries one coordinate index because we need three
real numbers to express it in a given coordinate system.

Equally, we can think of a rank-one three-tensor as a function that eats a vector,
emits a scalar, and is linear. For example, the projection f(v̨ ) = ą · v̨ is such a function,
where ąi is a set of three constants. Either way, we need three numbers to specify an
object in this class.

From now on, I’ll usually drop summation symbols on tensor indices, relying on
the convention that a repeated index is to be summed unless otherwise noted.
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12.3 Rank Two 141

12.3 RANK TWO

Three-tensors of rank two play two closely related roles in pre-Einstein physics:1

• A tensor may express a vector-valued function of another vector that is linear
(or the linearized approximation to a more general function).

• A tensor may express a scalar-valued function of a vector that is quadratic (or
that is linear in each of two vector arguments).

12.3.1 Tensors as linear vector-valued functions of a vector
When an auto mechanic says your car’s wheels need to be “balanced,” what does
(s)he mean? Clearly it’s desirable to ensure that the wheel’s center of mass lies on
the axle. Otherwise, spinning the wheel would require the CM to move in a circular
orbit. Circular motion implies acceleration, which requires a force. So as the wheel
spins, the axle is constantly subjected to sideways forces, which would wear out the
bearings etc. if not corrected.

But there is more. Suppose that the CM lies on the axle, but the wheel is bent, so
that its axis of symmetry does not coincide with the axle. Spinning the wheel about
the axle, even at constant angular velocity, then generates torque, which is just as bad
for the car as the forces mentioned previously. What is going on?

When we spin a rigid body about any axis with angular frequency Ê, we can define
the angular velocity Ę̂ as the product of Ê with a unit vector pointing along that axis,
with sign chosen by the right-hand rule. Suppose that the body is subdivided into
small masses m¸ located at positions r̨¸ relative to a reference point fixed in the body.
Then the resulting angular momentum L̨ has components that are linear functions
of Ę̂, and that therefore may be written2 as L̨i =

¡
I ijĘ̂j , or simply L̨ =

¡
I · Ę̂ . The

moment of inertia tensor is defined by the formula
¡
I =

ÿ

¸

m¸

#
(r(¸))2¡

11 ≠ r̨(¸)r̨(¸)
$
. (12.1)

The first term above is the tensor whose entries are the unit matrix. The second term
is called a dyad product, shorthand for the tensor with nine components

[r̨ r̨ ]ij =

S

U
x2 xy xz
yx y2 yz
zx zy z2

T

V

ij

.

When two vectors are juxtaposed with no dot or cross joining them, a dyad product
is implied.3

1Post Einstein, we have tensors in four or more dimensions, as well as tensor operators in quantum
mechanics and tensor representations of internal symmetry groups in high energy physics. All are
subject to similar analysis. There are also generalizations to handle intrinsic particle spin, called
“spinors” (Section 33.4Õ, page 376).
2Most authors omit the over-arrow when stating components, but I’ll retain it to emphasize the
tensor status of the object they describe.
3Some authors use the symbol ¢ to make dyad products explicit, and refer to it as the “tensor
product.” Mathematicians sometimes call it “outer product.”
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Figure 12.1: [Schematic.] Principle of flagellar propulsion in bacteria. A thin, rigid, helical rod is cranked about
its helix axis at angular speed Ê. For better visualization, a phantom cylinder has been sketched, with the rod
lying on its surface. Two short segments of the rod have been singled out for study, both lying on the near
side of the helix and separated by one turn. The rod is attached (black circle) to a disk and the disk is ro-
tated, cranking the helix about its axis. The two short segments then move downward in the plane of the page
(along ≠x̂). Thus, df̨ lies in the xz plane, but tipped slightly to the left as shown. A net force with a negative
z-component would be required to keep the helix spinning in place; without such a force, the helix will move to
the right.

A tensor whose matrix of components is symmetric, for example
¡
I , will itself be

called a symmetric tensor.
Note that although L̨ depends linearly on Ę̂ , it need not point parallel to it. Also

note that, although both L̨ and Ę̂ change sign if we switch to a left-handed coordinate
system, nevertheless the relation between them is una�ected. Indeed, Equation 12.1
does not contain any Levi-Civita symbols (where did they go?).

Your Turn 12A

a. Work out Equation 12.1 from the definition L̨ =
¡
I · Ę̂ .

b. Show that the matrix of components
¡
I ij is symmetric, though not traceless

(unlike the quadrupole tensor).
c. Work out the moment of inertia tensor of a cylinder with uniform mass density,
using some convenient coordinate system. Make an Appropriate Comment about
spinning it about an axis that passes through its center but does not coincide
with the axis of symmetry.

Here are some more examples:

1. When we pull a rigid body through a viscous fluid, the fluid exerts a retarding
drag force. If the body is spherical, then the drag force points oppositely to
the velocity, but more generally we have a linear relation f̨ =

¡
’ · v̨ , involving

a viscous drag tensor. The fact that f̨ need not be parallel to v̨ is the secret
to bacterial locomotion (Figure 12.1).

2. An object suspended on an array of springs has an equilibrium position. If we
apply a small force to the object, then it responds by finding a new mechanical
equilibrium displaced by some r̨ , such that f̨ = ≠

¡
K · r̨ . Here the spring

constant tensor
¡
K summarizes the spring system as far as its linear response

is concerned. Conversely, r̨ = ≠
¡
K≠1 · f̨ ; the tensor whose components are the

inverse matrix of
¡
Kij is called the compliance.
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3. Continuing (2), suppose that the object is charged; for example it could be part
of a molecule. Then it responds to an applied electric field with a displacement,
which in turn gives an induced dipole moment. If the force is applied by an
external electric field, then in the linear regime

D̨E = ¡
– · Ę

where ¡
– = q2 ¡

K ≠1 is the polarizability tensor.
4. Some electrically conductive media are ohmic but anisotropic. Analogously to

example #1, this means that j̨ = ŸĘ is modified to read j̨ = ¡
Ÿ · Ę . More

generally, any molecule or ion that moves di�usively has a mobility tensor,
which will not be a scalar in an anisotropic medium.

5. The force exerted by a small element of fluid on its adjacent neighbor is propor-
tional to the area d� of the interface between them, but need not be directed
perpendicular to that surface. Thus, df̨ =

¡
T · d�̨, where the stress tensor

¡
T is

another symmetric rank-2 tensor.4 Its trace divided by 3 is called the pressure
of the fluid; other non-trace contributions represent viscous stresses.

6. The order parameter describing the state of a nematic liquid crystal can also
be regarded as a traceless symmetric rank-two tensor.

12.3.2 Symmetric tensor as a scalar-valued, quadratic function of a vector
The length-squared function, f(v̨ ) = Îv̨ Î2, is a scalar-valued function that is quadratic
in the components of v̨. We’ll call it the 3D metric tensor.5 Its components are given
by the Kronecker symbol ”ij .

Here are some more examples of this idea.

4If we regard an imaginary surface element as separating region 1 from region 2, then f̨ is the force
that 1 exerts on 2 and d�̨ is the normal directed from 1 to 2; thus a normal fluid’s pressure is
nonnegative. If we exchange the roles of 1 and 2, then both f̨ and d�̨ change sign and the stress
tensor is unchanged.
5This same tensor, regarded as a linear function on a vector, was called

¡
11 in Equation 12.1.
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Your Turn 12B

. Show that the kinetic energy of a spinning rigid body is 1
2 Ę̂ ·

¡
I · Ę̂ .

. Show that the rate at which work is done pulling a rigid object through
viscous fluid is v̨ ·

¡
’ · v̨.

. Work out that the potential energy stored by the spring system is 1
2 r̨ ·

¡
K · r̨ .

Similarly to the kinetic energy of a rigid body, we again see that a symmetric,
second-rank 3-tensor can be used to specify a quadratic function of a vector.

. Convince yourself that the dissipated power density in a general ohmic ma-
terial is Ę · ¡

Ÿ · Ę , another quadratic function of a vector. Think about how
the units work in this formula.

. Chapter 6 introduced a quadratic function of small displacements describing
how a curved 2D surface bends away from its tangent plane. (However, we
extracted two scalar functions from this rank-2 symmetric 2-tensor, namely
the mean and gaussian curvatures.)

A tensor that specifies a quadratic function must be symmetric, because any
antisymmetric part would cancel in the expressions appearing above. So the moment
of inertia, quadrupole, metric, and curvature tensors all have this property.

The electric quadrupole moment
¡
QE also defines a contribution to the far potential

that depends quadratically on r̨ (see the third term of the far potential, Equation 3.1,
page 31). Also like the examples above,

¡
QE has a coordinate representation as a 3 ◊ 3

matrix, which changes when we change coordinates (or rotate the object) in the same
way as any of the other tensors above. In addition, it is traceless.

12.3.3 Some linear vector functions, but not all, arise as the derivative of a
quadratic scalar function

In ordinary calculus, any linear function can be written as the derivative of a quadratic
function: –x = (1

2 –x2)Õ. Some vector-valued functions of a vector can similarly be
written as the gradient of a quadratic function. For example, the Hooke-law force is
the gradient of minus the potential energy. Unlike in one dimension, however, not
every linear f̨ (r̨ ) can be expressed in this way.

For example, consider again a rigid body. When we rotate it about the z axis, the
position of each mass element ¸ changes from r̨(¸) to r̨(¸) + dr̨(¸), where

dr̨(¸)i = d
¡
�ij r̨(¸)j with

¡
�ij = d◊

Ë 0 1 0
≠1 0 0

0 0 0

È

ij

.

This linear function of r̨(¸) is expressed by an antisymmetric matrix, whereas anything
arising from a quadratic function would have to be expressed by a symmetric matrix.

12.4 RANK THREE

We can extend these ideas.
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Figure 12.2: A parallelepiped is a six-sided solid
with three pairs of parallel faces, each of which is
a parallelogram.

V

W  
U

12.4.1 A vector-valued bilinear function of vectors
Here is a recipe that you recall: Given two vectors, return zero if they are parallel (or
if either is zero). Otherwise, find the vector n̂ perpendicular to the plane that they
span and chosen using the right-hand rule. Let a be the area of the parallelogram
with the two given vectors as edges, and define the cross product as an̂. This new
vector is linear in each of the two that we began with, for example:

• If we double either vector, a doubles and n̂ is unchanged.
• If we replace either vector by its negative, a is unchanged but n̂ reverses.

The cross product returns another 3-vector, so we need an array of numbers
with three indices to express it. Instead of imagining its components as a matrix
(grid of cells addressed by row and column), imagine it as a building with “rooms”
addressable by row, column, and floor, each containing a number. Those 27 numbers,
the components of the Levi-Civita tensor, are given by the Levi-Civita symbol defined
earlier (Figure 0.3), as we can see by substituting x̂ and ŷ into the definition. Chapter 13
will discuss this rank-3 tensor in more detail.

12.4.2 A scalar-valued trilinear function of vectors
Here is another way to look at the Levi-Civita tensor. Given three vectors Ų , V̨ , and
W̨ , construct the parallelepiped that has these vectors as three edges (Figure 12.2).
Compute the volume v of this solid and multiply by ‡ = ≠1 if the three given vectors
form a left-handed triad (otherwise ‡ = +1):

Á(Ų, V̨, W̨ ) = v‡. (12.2)

Exchanging any two of the three vectors reverses the sign of ‡, so we say that Á is
totally antisymmetric.6

To see that Equation 12.2 yields a function that is linear in all three of its vector
arguments, note:

• If we double the length of any vector, v doubles and ‡ is unchanged.
• If we replace any vector by its negative, v is unchanged but ‡ is replaced by its

negative.

6A totally symmetric rank-3 tensor would be unchanged under exchange of any of its inputs, just as
in rank two.
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In fact, our function is just Ų · (V̨ ◊ W̨ ), similar to the relation between the two
interpretations of rank-1 tensors in Section 12.2.

Again, substituting Ų = x̂, V̨ = ŷ, and W̨ = ẑ shows that the 1,2,3 component of
this tensor equals 1, which agrees with the 1,2,3 entry entry of the Levi-Civita symbol.
We also see that permuting the three vectors leaves v unchanged but changes ‡ by the
sign of the permutation, again like Áijk, so again we find that the Levi-Civita symbols
are components of a totally antisymmetric, rank-3, 3-tensor.

Just as an antisymmetric matrix can be visualized in terms of reflections through
the diagonal, so a totally antisymmetric 3-tensor has properties under reflections
through planes (visible in Figure 0.3).

When there are more than 2 indices (rank higher than 2), it’s too cumbersome
to put any doodad above the symbol to indicate tensoriality. Also, in this situation
we will rarely wish to drop the indices, so their presence su�ces to announce that Á
is a third-rank tensor.
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T2 Track 2

12.2Õ Tensor properties of probability density functions
[Not ready yet.]

Contents Index Notation



148 Chapter 12 Examples of 3-tensors in Physics

PROBLEMS

12.1 Rotationally invariant, symmetric 3-tensor
Chapter 49 will argue that the propagation of light through a medium of randomly-
oriented molecules involves the average of the polarizability tensor over rotations.
Perhaps it seems reasonable to add, “That average must be a constant times the
identity tensor.” Let’s prove this.

Note first that the rotational average must itself be a rotationally-invariant, sym-
metric 3-tensor. Call it

¡
A ; then its matrix of components in some coordinate system

must have the property that StAS = A for any rotation matrix S. In particular, this
property holds for any infinitesimal rotation. Recall that an infinitesimal rotation is
given by S = 11 + ‘T +O(‘2), where T is an antisymmetric matrix and 11 is the identity
matrix.

Work out the consequences of invariance under such transformations (to order ‘)
and prove that A is a constant times 11.

12.2 Liquid crystals
Let’s illustrate the utility of tensor methods in another branch of physics.

Suppose that I tell you that some kind of matter (an “isotropic ferromagnet”) has
states characterized by a spatially varying 3-vector field v̨ (r̨ ) (the “order parameter”).
The energy cost to be in one of these states is some analytic, local, rotationally invariant
function of v̨ and its derivatives, integrated over space. Because it’s analytic, we can
expand that function in Taylor series as a polynomial in the components of v̨ . Clearly
the part of this function with no derivatives must involve only even powers of the
components v̨ i. This trivial fact has profound consequences for the phase-transition
behavior of ferromagnets.

Now suppose that I tell you that some kind of matter (a “nematic liquid crystal”)
has states characterized by a spatially varying, symmetric, traceless rank-2 tensor

¡
M .

The free energy cost to be in one of these states is some analytic, local, rotationally
invariant function of

¡
M and its derivatives, integrated over space. Because it’s analytic,

we can expand that function in Taylor series as a polynomial in the components of
¡

M . The part of this function with no derivatives must be at least quadratic in the
components of M (explain why).

Now find all possible contributions to the free energy cost function (if any) that are
quadratic or cubic in the components of

¡
M . Your answer has profound consequences

for the phase-transition behavior of nematic liquid crystals.
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Tensors from Heaven

13.1 FRAMING

The preceding chapter gave many examples of tensors in physics. A little thought
shows that they fall into two main classes:

• Most of the examples were contingent; they describe properties of an object. If
we rotate a mass distribution, its moment of inertia tensor in general changes
(unless we rotate about a symmetry axis). Even total mass, which is rotationally
invariant, changes if we consider a di�erent object.

• Two of the examples were di�erent: The 3D metric tensor is a property of space
itself, not contingent on anything. And the Levi-Civita tensor is almost as uni-
versal; it depends only on a binary choice of which coordinate systems we will
choose to call “right-handed.”

Let’s explore these last two tensors “from Heaven” a bit more. Along the way we
will also examine how any tensor’s representation changes if, instead of changing the
physical objects under consideration, we merely change our choice of coordinate system.
This understanding will prove useful when we start to construct more elaborate things,
and then again when we upgrade everything to four dimensions.

13.2 THE COMPONENTS OF A TENSOR TRANSFORM UPON
CHANGE OF COORDINATES

13.2.1 Linear coordinate changes
Section 12.3.2 said that we may think about a spring constant tensor

¡
K as a function

that eats a displacement vector and spits out a number, the stored potential energy
1
2 �r̨ ·

¡
K · �r̨. This function is quadratic in the components of r̨. It can be represented

in any coordinate system by a matrix of ordinary numbers. We call those numbers
the components of

¡
K in the chosen coordinate system, and denote them by

¡
Kij . It’s

important that the nine numbers
¡
Kij depend not only on the physical object (system

of springs), but also on a choice of coordinate system on space. That is, the same tensor
can have di�erent representations when referred to di�erent coordinate systems.

Suppose that we define new coordinates by

r̨ Õ
a

= Sair̨i. (13.1)

Then the same spring potential energy function as befor can also be written as
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1
2 �r̨ Õ ·

¡
K

Õ
· �r̨ Õ, where the new components are determined by

r̨i

¡
Kij r̨j = r̨ Õ

a

¡
K

Õ
ab

r̨ Õ
b

= r̨ · (St ¡
K

Õ
S) · r̨.

This must hold for any spring displacement, so
¡
K = St ¡

K
Õ
S, or

¡
K Õ

ab
= SaiSbj

¡
Kij . (13.2)

13.2.2 Cartesian coordinates and their transformations
In euclidean geometry there are always some special ways to associate numbers to
points in space (that is, to choose a coordinate system1). What’s special about these
“cartesian” coordinate systems is that the distance-squared between two points always
takes the pythagorean form2

Î�r̨ Î2 =
ÿ

i

�r̨i�r̨i in cartesian coordinates. (13.3)

Certainly we can find other coordinate systems for euclidean space in which
the metric tensor doesn’t have the simple form Equation 13.3, for example, polar
coordinates. What makes euclidean space special is that at least one such set of “good”
coordinates does exist (unlike, say, on the surface of a sphere).

If one cartesian coordinate system exists, then many other equally good systems
will exist also. To see this, again define new coordinates via Equation 13.1, where now
S is specifically an orthogonal matrix, that is, one for which

SSt = StS =
Ë 1 0 0

0 1 0
0 0 1

È
. (13.4)

Then the new coordinates again have the property that the length-squared of a vector
equals �r̨ Õ

a
�r̨ Õ

a
, which has the same form as Equation 13.3. For future use, note that

Equation 13.4 implies

(det S)2 = 1, and hence det S = ±1 for an orthogonal matrix. (13.5)

13.2.3 A reformulation
We defined tensors as operations involving vectors and showed that their components
have certain transformation rules generalizing those of vectors. Alternatively, we
could turn things around and instead define a general rank-2 tensor, such as a spring
constant tensor

¡
K, as a set of numbers that transform like the components of r̨ r̨.

Similar relations can be used to define a 3-tensor of any rank p: There will be p copies
of the transformation matrix on the right-hand side of Equation 13.2.

1Many physicists say “frame of reference” to mean specifically a coordinate system on space and
time (four dimensions). For now, we consider three-dimensional space only.
2If you are worried about up- versus down-indices, we’ll get to that fine point later. It’s traditional to
forget about this distinction when we work on euclidean space in cartesian coordinates, and always
write coordinate indices as subscripts. If we use tensors on a non-euclidean space, or with curvilinear
coordinates, the distinction becomes essential.
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Let’s look at the metric tensor from this new viewpoint. Instead of the geometric
definition, we can say

Choose any cartesian coordinate system. Define
¡
11 to be that 2-tensor

whose components in this coordinate system are ”ij .
(13.6)

The corresponding quadratic function defined by
¡
11 is then the usual length-squared.

The formulation Equation 13.6 may worry you: What if you and I start out
with di�erent cartesian coordinate systems? Will we agree on the meaning of

¡
11? To

investigate, let’s see how the components of your ¡
g look in my (primed) coordinate

system:
¡¡
11 Õ

ab
= SaiSbj”ij = SajSbj = [SSt]ab = ”ab, (13.7)

the same nine constants as before. That is, it doesn’t matter what coordinate system
we started with, as long as it’s cartesian: the components of the metric tensor are
always the same. So the tensor we defined is not contingent on coordinates chosen;
it is a property of space itself. Of course, in this case that conclusion is a tautology,
not a surprise, because we explicitly restricted attention to those “good” coordinate
systems in which it is true. However, Section 13.3.1 will use the same logic to get a
more nontrivial result.

13.3 3D LEVI-CIVITA TENSOR

13.3.1 Coordinate version
Section 12.4 gave two geometric definitions of the Levi-Civita tensor, then noted
that its components are given by the Levi-Civita symbol (that is, the constants ±1
or zero). As before, one may worry: What if you and I choose di�erent coordinate
systems when defining it? As before, we must show that if we start in one cartesian
system, then transform to any other, that the components are numerically the same
as before. Then the tensor that they define won’t actually depend on my original
choice of coordinates—it will belong intrinsically to space itself. We know this must
work out somehow, because we started with a geometric definition, but the details are
interesting.

Even more interestingly, when mathematicians studied this problem they found
that there were essentially no more new 3-tensors “from Heaven.” You can build up
higher-rank examples by sticking together some metric and Levi-Civita tensors (for
example, ”ij”k¸), but that is all.

Suppose that we have a space that is euclidean, and that moreover we have agreed
that one of the cartesian coordinate systems will be called “right-handed.”3 We now
define a 3-tensor by stating its components as in Section 0.2.2 (page 5):

Áijk = 0 if any two of the indices are equal;
Áijk = +1 if i, j, k are an even permutation of 1,2,3;
Áijk = ≠1 if i, j, k are an odd permutation of 1,2,3. (13.8)

3This has nothing to do with your hands, which side of your body your heart is on, nor the shape of
your DNA. Any cartesian coordinate system may be singled out and given this special status.
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Next, we must calculate the new components

ÁÕ
abc

= SaiSbjSckÁijk. (13.9)

and show that they are the same 27 numbers as in Equation 13.8. First, note that

ÁÕ
112 = S1iS1jS2kÁijk.

The sums over i and j involve something antisymmetric under exchange (that is,
Áijk) times something symmetric under exchange (that is, S1iS1j). Altogether, the
expression is therefore antisymmetric, so it gives zero when summed over i, j. Indeed,
we get zero when any two indices of ÁÕ

abc
are equal, in agreement with Equation 13.8.

All that remains, then, is to check the case where i, j, k are all di�erent. In fact,
you can readily show that ÁÕ

abc
= ≠ÁÕ

bac
and so on, as desired, so we only need to

check a single permutation, for example, ÁÕ
123. And of the 27 terms being summed in

Equation 13.9, all but six are zero:

ÁÕ
123 = S11S22S33 + S12S23S31 + S13S21S32 ≠ S11S23S32 ≠ S13S22S31 ≠ S12S21S33

= det S.

But we know that det S = ±1 for any orthogonal matrix (Equation 13.5). Moreover,
any two right-handed coordinate systems are related by a rotation. Any rotation can
be continuously obtained from the identity, whose determinant is +1. The determinant
must always equal ±1, and it cannot change discontinuously,4 so it must be +1. Thus
ÁÕ

123 = +1, completing the proof that all components are the same in any right-handed
system.

13.3.2 Caveat
Had we used Equation 13.8 in conjunction with a left-handed system, then we would
have defined a di�erent tensor, equal to minus the Levi-Civita tensor. You can see
that by reexpressing it in terms of a right-handed system, because in that calculation,
det S = ≠1.5 So the definition of the Levi-Civita tensor, as well as anything defined
with its help (cross product, curl, vector representation of an area element d2�̨) requires
that we make a convention about which is our “right” hand. For this reason, some
authors refer to the “Levi-Civita pseudotensor.”6 I prefer the viewpoint that Á is a
perfectly well defined 3-tensor, once we have made a choice for which coordinate
systems we will call right-handed.

4After all, the determinant of a matrix is just a polynomial in the entries of that matrix.
5An orthogonal matrix with determinant ≠1 corresponds to a rotation combined with a reflection
through a plane, or through a point, and therefore reverses the handedness of a coordinate system.
Any two left-handed coordinate systems can be continuously connected by a family of rotations, and
you can easily find examples where the determinant is ≠1, so all must have this property.
6Similarly, a vector quantity that depends on a choice of handedness is sometimes disparaged by the
prefix “pseudo.” Thus the three numbers we will use to represent the magnetic field and call B̨i are
sometimes said to define a “pseudovector”; also the usual components of angular momentum, angular
velocity, and torque are pseudovectors. There are even pseudoscalars, single quantities that change
sign upon change of handedness, such as the field that when quantized represents the pion.
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Figure 13.1:

13.4 CONNECT TO ELEMENTARY THINGS

Although the above reasoning is a model for more complicated things to come, it’s
also good to see how it connects to things you already know.

13.4.1 Dot product
Besides telling us how long a vector is, the metric tensor can tell us the angle between
two vectors v̨ and w̨. Define the dot product as 1

2 (Îv̨+w̨ Î2 ≠Îv̨≠w̨ Î2). It’s a machine
that eats two vectors and spits out a number that is separately linear in each one
(it is “bilinear”). Although I expressed it invariantly, you can quickly see that in any
cartesian coordinate system it’s given by the usual formula v̨i”ijw̨j = viwi. The same
derivation as the one above then assures us that we get the same answer regardless
of which cartesian coordinate system we chose.

For example, choose a system with x̂ parallel to ų and v̨ lying in the xy plane
(Figure 13.1). Let ◊ be the angle between ų and v̨ . Thus ų = (1, 0, 0) and v̨ =
(v cos ◊, v sin ◊, 0). The sum ųiv̨i = uv cos ◊ as stated in the Prologue to these notes.

13.4.2 Cross product
Because we proved the coordinate-invariance of the Levi-Civita tensor, we know that
we can compute Áijkųj v̨k using any right-handed coordinate system we like. The three
resulting numbers, interpreted as vector components in the same system, will then
define a vector that does not depend on which system we chose. We will call that
vector ų ◊ v̨.

If v̨ is parallel to ų, for example v̨ = —ų, then the cross product becomes —Áijkųj ųk.
This is the sum (“contraction”) of something antisymmetric on jk times something
symmetric on jk, so it’s zero.

If v̨ and ų are not parallel, then as in Section 13.4.1 we may choose a right-handed,
cartesian coordinate system with x̂ parallel to ų and v̨ in the xy plane. This time,
we must be careful to specify that ◊ is the angle from ų to v̨ , and that ◊ is taken
to be positive if that angle is counterclockwise when viewed along the z axis from
positive toward negative values of z (Figure 13.1). Then again ų = (u, 0, 0) and
v̨ = (v cos ◊, v sin ◊, 0) and

(ų ◊ v̨ )3 = Á31kuv̨k = Á312u(v sin ◊) = uv sin ◊, (13.10)
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as in the Prologue to these notes. (You should show that the other two components
of ų ◊ v̨ equal zero.)

13.5 USEFUL IDENTITIES

13.5.1 Swap dot and cross
The geometrical interpretation of ų · (v̨ ◊ w̨) as a volume makes it clear that this
quantity equals (ų ◊ v̨ ) · w̨. For practice, you should derive this algebraically by using
the properties of the Levi-Civita symbol.

13.5.2 Triple cross product
First note that

ÁijkÁijk =
ÿ

permutations
(±1)2 = 6. (13.11)

Next, try the same expression but don’t set the last indices equal nor sum them: ÁijkÁij¸

is an invariant symmetric tensor of rank 2, so it must be a multiple of ”k¸. To find
the constant of proportionality, set k = ¸, sum over i, and compare to Equation 13.11.
This gives

ÁijkÁij¸ = 2”k¸. (13.12)

Finally, try not setting the last two indices equal: ÁijkÁim¸ is an invariant tensor of
rank 4, and it’s antisymmetric upon exchange of jk as well as m¸. But it’s symmetric
if we swap jk with m¸. Suppose j = 1, k = 2; then only one term of the sum over i is
nonzero, namely i = 3. This in turn implies that m, ¸ must be either 12 or 21. For all
those reasons, we must have

ÁijkÁim¸ = M(”jm”k¸ ≠ ”j¸”km) for some constant M. (13.13)

To evaluate M , this time set m = j and ¸ = k, sum both, and again compare to
Equation 13.11:

6 = ÁijkÁijk = M(”jj”kk ≠ ”jk”kj) = M(3 · 3 ≠ ”jj) = 6M.

Thus M = 1 in Equation 13.13.

Your Turn 13A
Try using one of the three preceding identities to get a familiar formula for
ų ◊ (v̨ ◊ w̨).

13.6 PLUS ULTRA

It may seem that we have gone the long way round the barn to reconstruct something
you already knew. But when calculations start to get complicated, the benefits of
using Á to express cross products will become clear. Also, the approach used in these
notes continues to work in any number of dimensions: For example, we will find it
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useful to know that a metric space of dimension 4, with a choice of handedness, gets
a rank-4 Levi-Civita tensor “from Heaven,” despite the fact that there is no concept
of cross product. The argument is exactly the same as the one in Section 13.3.1.

Finally, understanding Á as a tensor will prove valuable as we seek to reformulate
electrodynamics without any cross products, thereby making its inversion invariance
obvious.
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T2 Track 2

13.3Õ

1. The appearance of the Levi-Civita tensor in the laws of Nature should bother you! Classical
mechanics and electrodynamics are supposed to be invariant under spatial inversions, so why
do we need any right-hand rule (or equivalently any choice of handedness) to formulate them?
The answer is: We don’t. Both classical mechanics and electrodynamics can be expressed
completely without ever introducing cross products or pseudoquantities. In fact, doing this
for electrodynamics is one of our goals in this course.7 The same can be said for the strong
nuclear interaction, but not for weak interactions: For example, when a neutron decays, the
outgoing neutrino always has the same helicity. There is a spin operator analogous to Á that
appears in the weak interaction, that changes under spatial inversion, and that cannot be
removed by redefining things.
2. We don’t get a Levi-Civita tensor until we select a “handedness,” that is, select one
privileged class of cartesian coordinate systems that we call “right-handed.” Mathematicians
call this a choice an “orientation,” but that term can lead to confusion and we won’t use it.
(Normally a physicist understands the words “change the orientation” to mean “rotate [an
object],” not “reverse the handedness convention of space.”)
3. What does “from Heaven” mean? Our constructions all relied on choosing cartesian coordi-
nates. In fact, with some more work they can all be generalized to curvilinear coordinates on
flat space, or even to curved space; for example, all we need in order to construct an invariant
analog of

¡
11 is a local distance function. That’s the first step to formulating electrodynamics

on curved space(time), for example, to study di�raction e�ects in gravitational lensing.
Similarly, the Levi-Civita tensor can be defined on any space with a metric plus a

distinction between left- and right-handed coordinate systems: The geometric construction
of Section 12.4 works on any such space and does not require any coordinate choice.

T2 Track 2

13.4Õ

The main text takes the following attitude:

1. Vectors and tensors are real objects with concrete geometrical meaning independent
of any choice of coordinate system (they “point”).

2. The Levi-Civita tensor, and things constructed with its assistance, are ambiguous
defined until we choose an orientation (choice of which hand is “right”). Once such
an overall sign choice has been made, however, they become ordinary vectors and
tensors.

Actually, however, in three dimensions there is an intriguing reinterpretation of “pseudo”
objects that is just as intrinsic (independent of coordinate choice) as ordinary vectors and
tensors. For this reason, some authors replace the deprecatory “pseudo” by the more neutral
“twisted” to specify these objects.8 Thus, angular momentum and magnetic induction B̨ are
twisted vectors, whereas velocity and force are ordinary vectors.

7Doing it for rigid-body dynamics is similarly rewarding, but outside the scope of these notes.
8Others speak of “tensor densities.”
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Figure 13.2: [Diagrams.] Twisted vectors and
their operations. (a) An ordinary vector. The
reflection y æ ≠y turns it into minus itself.
(b) A twisted vector. The reflection y æ ≠y

leaves it unchanged.
(c) Cross product of vector with vector yields a
twisted vector (see text).
(d) Cross product of vector with twisted vector
yields a vector (see text).
(e) Cross product of twisted vector with twisted
vector yields a twisted vector (see text).
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To visualize an ordinary vector, we draw a line segment, choose one end, and draw an
arrowhead on that end. To visualize a twisted vector, we again draw a line segment, but with
no arrowhead. Instead, draw a directed loop encircling the segment. That loop can run in
one of two ways, similar to the fact that we can draw the arrowhead on an ordinary vector
in two ways. But contrast the objects in Figure 13.2a–b: One changes sign upon a particular
reflection, whereas the other does not.

Of course, if we make a choice of which hand to call “right” then we can associate an
ordinary vector to any twisted vector and vice versa. If we don’t make any such choice, we
must keep these two categories distinct.

We can now define an intrinsic cross product that does not require any choice of right
hand, as long as we keep track of the fact that it adds or removes “twistedness”:

• Given two ordinary vectors, return zero if they are parallel or antiparallel. Otherwise,
the vectors determine a plane. Construct a line segment perpendicular to the plane
with length Îv̨ Î Îw̨ Î | sin ◊|. Imagine a rotation in the plane that turns from the first to
the second vector. Instead of trying to put an arrowhead on the perpendicular segment,
define the loop encircling it that turns from v̨ toward w̨ (Figure 13.2c). That choice of
loop converts the segment into a twisted vector, which we call v̨ ◊ w̨.

• Given a vector v̨ and twisted vector B̨, return zero if they are parallel or antiparallel.
Otherwise, proceed as above to draw a perpendicular line segment. This time, however,
we place an arrowhead on one end of the segment, as follows: Rotate the arrow repre-
senting v̨ about the segment representing B̨ in the sense determined by the loop around
it. This brings the arrowhead on v̨ closer to one end of the segment (dashed line in
Figure 13.2d); place the arrowhead on the other end.9

• Given two twisted vectors B̨ and �̨, return zero if they are parallel or antiparallel.

9This construction also lets us associate an antisymmetric rank-2 tensor ¡
Ê to any twisted vector

B̨ and vice versa: The tensor takes any vector v̨ and returns the vector ¡
Ê · v̨ = 1

2
v̨ ◊ B̨, which is

Equation 14.3 (page 161).
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Otherwise, proceed as above to draw a perpendicular line segment. There will be a
rotation in the plane spanned by the two twisted vectors that superimposes �̨’s loop
onto that of B̨. That rotation defines a direction for a loop about the perpendicular
segment (Figure 13.2e), allowing us to define it as a twisted vector.

Higher rank twisted tensors can also be defined, but it’s harder and less useful to make
visualizable metaphors for them. For more details see Burke, 1985.

Because our goal is to move away from three dimensions, we will not pursue these
constructions further. We regard the magnetic field as an ordinary vector defined with the
help of some choice of right-hand convention, and similarly for cross products. Eventually
we will eliminate “pseudo” quantities from our formulation of electrodynamics altogether.
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PROBLEMS

13.1 Dots and crosses
Prove the identity (Ą ◊ B̨ ) · (C̨ ◊ D̨ ) = (Ą · C̨ )(B̨ · D̨ ) ≠ (Ą · D̨ )(B̨ · C̨ ).
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Magnetostatics
Oersted received his PhD in 1799 in the medical faculty of
Copenhagen; his topic dealt with Kant’s philosophy. . . .
[His] discovery, easy to reproduce, was the first direct
demonstration of the connection between electricity (a
current) and magnetism, and it was first done by accident at
the end of a lecture demonstration. Interestingly, Oersted
was apparently all “thumbs” in the lab, and all his
experiments had to be carried out by his students and
assistants.

— R. M. Clegg

You are quite right to say that it is inconceivable that for
twenty years no one tried the action of the voltaic pile on a
magnet. . . . Coulomb’s hypothesis on the nature of magnetic
action. . . rejected any idea of action between electricity and
the so-called magnetic wires. This prohibition was such that
when Arago spoke of [Oersted’s] phenomena at the Institute,
they were rejected. . . . Every one decided that they were
impossible.

— Ampère, to a friend

We have already started thinking about charges in motion, but we have not yet
considered the magnetic fields that they create. This was allowed because (a) we
studied slow time variations, where the magnetic fields if any do not react back on the
electric fields, and (b) we assumed that the charges were executing specified motions,
so that any forces they might get from magnetic fields were unimportant. Nevertheless,
magnetic fields do get generated by even slowly-moving charges, so let’s start to study
that.

14.1 A NEW FORCE AWAKENS

Imagine a steady current through a long, straight wire. There is no net charge anywhere
to create any electric field. A test charge outside that wire will feel a kind of force
that we have not yet encountered: It di�ers from the electrostatic force because

• The force is zero unless the test charge is moving; and
• The force is always perpendicular to the test charge’s velocity.

160
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Indeed, the force on a test charge is a linear function of the velocity. We now know
what to call such a machine: It is a second-rank tensor on space:1

˛(force)
i

= 2q
¡
Êij v̨j . (14.1)

Given a current distribution in the lab, we can operationally measure ¡
Ê by throwing

a lot of charged test bodies and seeing how they accelerate.
Moreover, the second point above means that the current specifically creates an

antisymmetric rank-two tensor ¡
Ê. To see this, think about two velocities v̨ and ų.

Then ¡
Ê · (v̨ + ų) must be perpendicular to (v̨ + ų):

0 = (v̨ + ų) · ¡
Ê · (v̨ + ų) = v̨ · ¡

Ê · v̨ + ų · ¡
Ê · ų + v̨ · ¡

Ê · ų + ų · ¡
Ê · v̨.

The first two terms are zero by assumption, so the last two must always sum to zero.
Up until now, well-meaning but misguided people have thought you weren’t ready

for tensors, so they have repackaged the magnetic field: Define the three quantities

B̨i = Áijk

¡
Êjk. (14.2)

In a sense, we lose nothing by this reformulation, because it is invertible: We can
always recover ¡

Ê from B̨.

Your Turn 14A
Show that

¡
Êim = 1

2 ÁkimB̨k. (14.3)

(Where did the factor of 1/2 come from?)

Then B̨ looks superficially like a vector field and everyone is comfortable. But there
is a terrible price to pay for this approach:

• Equation 14.2 requires us to choose a handedness on space. Using B̨ instead of
¡
Ê then introduces Levi-Civita tensors into our equations of physics, obscuring
their inversion symmetry. For example, the force law Equation 14.1 becomes
f̨ = qv̨ ◊ B̨.

• B̨ also obscures the Lorentz invariance of electrodynamics, which is why it took
a genius (Lorentz) to see that property, and another genius (Einstein) to see the
implications. We will have to abandon B̨ later, in order to construct a formulation
in which even fools like me can see the full invariance.

Despite those comments, of course we do need to be able to talk to people who use B̨.
So we’ll need to be able to switch between both representations, by using Equations 14.2
and 14.3.

1We will see later that this formula remains valid in relativistic situations, if we interpret the left side
as the time derivative of particle momentum. Putting the factor of 2 in the definition Equation 14.1
is convenient because it makes another 2 elsewhere go away.
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14.2 VECTOR POTENTIAL

14.2.1 Preliminary
Let’s brush up on a point we’ll need soon. Suppose that f is a function of r̨. We can
construct a function of four variables, g(u, r̨ ), by evaluating f at the point (ur̨ ). Make
sure you understand how the chain rule implies that

ˆg

ˆu
= ˆf

ˆr̨i

---
ur̨

ˆ(ur̨i)
ˆu

= r̨ · Ǫ̀f
--
ur̨

(14.4)

ˆg

ˆr̨1
= ˆf

ˆr̨i

---
ur̨

ˆ(ur̨i)
ˆr̨1

=
!
Ǫ̀if

--
ur̨

"
(u”i1) = uǪ̀1f

--
ur̨

, (14.5)

and similar results for ˆg/ˆr̨2,3. Think about how the indices match on each side of
these formulas.

14.2.2 No scalar potential this time
In electrostatics, Maxwell’s equations boiled down to just one equation for a potential
function. That was handy. It worked because we found a general solution to Faraday’s
law, Ǫ̀ ◊ Ę = 0, in terms of Â, so we could just substitute Ę = ≠Ǫ̀Â into the Gauss
law and forget Faraday. Can we duplicate that victory?

At first it looks bad. The magnetic field is not curl-free: Ampère’s law says
Ǫ̀ ◊ B̨ ”= 0. It’s true that sometimes we want to solve for magnetic fields throughout
a current-free region, and in such a case we may get some success by introducing a
“magnetic scalar potential.” But let’s instead try to exploit the magnetic Gauss law,
Ǫ̀ · B̨ = 0, because it’s always true.

14.2.3 Revisit electrostatics
The magnetic Gauss law Ǫ̀ · B̨ = 0 looks pretty di�erent from Ǫ̀ ◊ Ę = 0, but
surprisingly there is a close analogy. To bring it out, let’s return briefly to electrostatics.
Previously I used Stokes’s theorem and the equation Ǫ̀ ◊ Ę = 0 to conclude that the
line integral of Ę was well defined. Here is more self-contained construction, which
also sets us up for a generalization we’ll need.

Your Turn 14B
Use an appropriate Levi-Civita identity to show that the curl-free condition is
equivalent to

Ǫ̀iĘk ≠ Ǫ̀kĘi = 0 for any i and k (stationary case). (14.6)

As in Chapter 2, choose some arbitrary reference point and center coordinates on
it. Again choose a path from the reference point to a given observation point r̨, for
example, the straight line ur̨ where u ranges from 0 to 1.

Now define
Â(r̨ ) = ≠

⁄ 1

0
(r̨ du) · Ę (ur̨ ). (14.7)
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In this expression, r̨ is held constant during the integration over u. Then the negative
gradient is (see Equation 14.5)

≠ ˆÂ

ˆr̨i

=
⁄ 1

0
du

C
Ęm(ur̨ )ˆr̨m

ˆr̨i

+ r̨m

ˆĘm

ˆr̨k

---
ur̨

ˆ(ur̨k)
ˆr̨i

D

=
⁄ 1

0
du

C
Ęi(ur̨ ) + ur̨m

ˆĘm

ˆr̨i

---
ur̨

D
.

In the last term, we may replace ˆĘm/ˆr̨i by ˆĘi/ˆr̨m, thanks to Equation 14.6. We
can now use Equation 14.4 to find

≠Ǫ̀iÂ
--
r̨

=
⁄ 1

0
du

d
du

#
uĘi(ur̨ )

$
= uĘi(ur̨ )

--1
0 = Ęi(r̨ ).

Once again, we have established the potential representation for electrostatics. There
is still the usual ambiguity in Â: Adding a constant to Â, for example, by choosing a
di�erent reference point, doesn’t change its gradient.

The payo� for the potential formulation is that we have fewer and simpler equa-
tions to solve. In fact, Chapter 2 got a complete, general solution to electrostatics
with a specified charge distribution. The caveat is that we’ll need to rethink when we
go beyond statics, because then Ǫ̀ ◊ Ę ”= 0.

14.2.4 Poincaré lemma
We’d like an integrability lemma like the one just given, but applicable to magnetism.

Your Turn 14C
Use Equation 14.2 to show that the magnetic Gauss law is equivalent to

ÁimkǪ̀k

¡
Êim = 0. (14.8)

That is, when we take all the first derivatives of ¡
Êim and antisymmetrize, the result

is always zero. This resembles Equation 14.6, albeit with an extra index.

Your Turn 14D
Show that, of the six nonzero terms in Equation 14.8, half are redundant; that is,
it may be written as

Ǫ̀k

¡
Êim + (2 cyclic permutations) = 0. (14.9)

With this preparation, we’re ready to generalize Section 14.2.3. Analogously to
Equation 14.7, define

Ąi(r̨ ) = 2
⁄ 1

0
(ur̨m du) ¡

Êmi(ur̨ ). (14.10)
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We now wish to compute the curl of this new vector field, or equivalently

Ǫ̀kĄi ≠ Ǫ̀iĄk = 2
⁄ 1

0
du u

5
ˆ(r̨m)
ˆr̨k

¡
Êmi(ur̨ ) + r̨m

ˆ
¡
Êmi

ˆr̨n

---
ur̨

ˆ(ur̨n)
ˆr̨k

6
≠ (i ⌦ k)

= 2
⁄ 1

0
du u

5!¡
Êki ≠ ¡

Êik

"
+ ur̨m

1ˆ
¡
Êmi

ˆr̨k

≠ ˆ
¡
Êmk

ˆr̨i

2---
ur̨

6
.

The last two terms can be simplified by using Equation 14.9: They equal ≠Ǫ̀m

¡
Êik

--
ur̨

.
Thus, we get

= 2
⁄ 1

0
du

5
2u

¡
Êki(ur̨ ) ≠ u2r̨m

ˆ
¡
Êik

ˆr̨m

---
ur̨

6

= 2
⁄ 1

0
du

ˆ

ˆu

Ë
u2¡

Êki(ur̨ )
È

= 2u2¡
Êki(ur̨ )

---
1

0
= 2¡

Êki(r̨ ). (14.11)

Now tidy things up by recalling the formula for curl and Equation 14.2:

(Ǫ̀ ◊ Ą )m = ÁmkiǪ̀kĄi = 1
2 Ámki(Ǫ̀kĄi ≠ Ǫ̀iĄk) = Ámki

¡
Êki = B̨m.

Indeed, we have constructed a vector field Ą whose curl equals B̨ .
Our payo� is that using potentials in magnetostatics will soon prove to be just

as useful as it was in electrostatics. Also, the result we proved works in any number
of dimensions:

Given any antisymmetric rank-two tensor with the prop-
erty that its antisymmetrized first derivatives vanish (Equa-
tion 14.8), it is always possible to write it as the tensor of
antisymmetrized derivatives of a vector field (Equation 14.11).

Poincaré lemma

(14.12)
Later, when we need this result in four dimensions, we won’t need to prove this again.2

14.3 GAUGE INVARIANCE

We have found the general solution to the magnetic Gauss law, so we can just substitute
Ǫ̀◊Ą for B̨ into Ampère’s law and forget about Gauss.3 However, there is an ambiguity
in this representation. After all, if we add the gradient of anything, Ą æ Ą̂

A = Ą +Ǫ̀�,
then the curl of Ą doesn’t change. So B̨ doesn’t fully determine its vector potential
Ą . This fact is known as gauge invariance, though maybe “redundancy” would have
been a better term to use. The substitution Ą æ Ą̂

A is called a gauge transformation
of the vector potential. This is much more freedom than what we had in electrostatics,
where adding a constant to Â left Ę unchanged.

2It even works for tensors of rank di�erent from two. For example, for rank 1 it’s what we proved in
Section 14.2.3.
3Beware that all books use the symbol Ą for magnetic vector potential. But all books also use the
same letter A to denote a di�erent quantity, the 4-vector potential. I will disambiguate by using Ą

for the former and A for the latter.
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Gauge invariance sounds like a nuisance, but it can be helpful. We can use that
freedom to represent a magnetic field by a vector potential that additionally satisfies
some other condition (gauge fixing). For example, we can always insist that Ą obeys

Ǫ̀ · Ą = 0. Coulomb gauge condition

To see this, suppose that we represent a B̨ field by some vector potential that doesn’t
satisfy Coulomb gauge. If we then gauge transform it we get Ǫ̀ · Ą̂

A = Ǫ̀ · Ą + Ò2�.
We just need to choose � to be a function of position that solves the Poisson equation
with source given by ≠Ǫ̀ · Ą . With this choice of gauge transformation, we find that
Ą̂
A is in Coulomb gauge.

14.4 BACK TO PHYSICS

14.4.1 Steady currents
To keep things simple, let’s temporarily consider situations where where matter is
moving (net charge flux j̨ ”= 0) but neutral (flq(r̨ ) = 0). Also, we’ll restrict to steady
motion (ˆj̨/ˆt = 0). Thus, our system will be invariant under time translation (it is
stationary), though not under time reversal (it is not static).

This can only be an idealized, approximate situation. Really each electron or
proton is pointlike, so as any one passes any point, the electric and magnetic fields
pulse. We replace discrete charges by a continuous “river of charge,” an approximation
that certainly makes sense in a macroscopic apparatus. The overall river can flow
steadily if we neglect its granular character in this way. (Don’t worry; later we’ll get
to a fully dynamic formulation.)

Our approach in this course is to take the Maxwell equations as a physical hy-
pothesis and explore their testable consequences. In the situations we have studied so
far, their traditional form simplifies to just

Ǫ̀ · Ę = flq/‘0 = 0 Gauss (no net charge)

Ǫ̀ · B̨ = 0 Gauss

Ǫ̀ ◊ B̨ = µ0j̨ Ampère (stationary case)

Ǫ̀ ◊ Ę = 0 Faraday (stationary case). (14.13)

These equations have falsifiable content because B̨ has an independent definition: We
can measure it throughout space by looking at the motions of test charges, which feel
a force qv̨ ◊ B̨. Once B̨ is measured, we can check if it does or does not obey the
above equations for a steady current distribution. Because we’re also restricting to
the case where flq = 0, we also have Ę = 0.

In the most basic situation, we can guess a trial solution to Equations 14.13 and
adjust it until it works: Consider an infinite straight wire carrying steady current I,
uniformly distributed across its cross-section. This situation has so much symmetry
that we can try a trial solution where B̨ is everywhere pointing radially outward from
the wire. That fails. But the next possibility, in which B̨ (r̨ ) = f(r)Ï̂, is also axially
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symmetric and more promising. We integrate Ampère’s law over a disk of radius R
perpendicular to and centered on the wire:

⁄
d2�̨ · (Ǫ̀ ◊ B̨ ) = µ0

⁄
d2�̨ · j̨ = µ0I

=
j

B̨ · r̨ = 2fiRf(R).

So B̨ (r̨ ) = Ï̂µ0I/(2fiR), the famous answer.
Other problems are harder than this one. We need a more systematic approach.

14.4.2 General solution
Section 14.3 showed that any magnetic field can be represented in terms of a divergence-
free vector potential.

Your Turn 14E
To see the power of this observation, show that Ampère’s law may be written as4

Ò2Ą = ≠µ0j̨. in Coulomb gauge (14.14)

That scary vector partial di�erential equation has magically separated into three inde-
pendent copies of the Poisson equation. And we already know how to solve the Poisson
equation, from electrostatics (Equation 2.5)! For each component of j̨, compute5

Ą i(r̨ ) = µ0

⁄
d3rú

j̨i(r̨ú)
4fiÎr̨ ≠ r̨úÎ . (14.15)

So we just finished magnetostatics: Given a steady current distribution, solve
Equation 14.14 for the three components of Ą . Then compute the curl to get B̨ .

14.4.3 Self-consistency
Before we accept Equation 14.15, we should check that it really is a potential in
Coulomb gauge. If not, then the fact that it solves Equation 14.14 is irrelevant, because
Equation 14.14 is not Ampère’s law except in Coulomb gauge!

Your Turn 14F
Work out the divergence of the expression in Equation 14.15. [Hint: Use the
continuity equation to show that Ǫ̀ · j̨ must always be zero in a steady situation.]

4The notation Ò2
Ą means that we apply the Laplace operator to each component of Ą and interpret

the results as the components of a vector. This operation only makes sense in cartesian coordinates;
a more elaborate form of the derivation is needed in curvilinear coordinates.
5This is P+S eq. 8.60.
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14.4.4 Counting equations
The equations of electro- and magnetostatics (Equation 14.13) appear to be eight
equations in the six unknown functions Ęi, B̨i, an issue first raised in Hanging Question
#D (page 11). And yet, we have reformulated electrostatics as one equation in one
unknown: the Poisson equation (Equation 2.3, page 22), and magnetostatics boiled
down to three Poisson equations for the three components of Ą (Equation 14.14).
So at least in statics, our puzzle has disappeared: We have four equations in four
unknown potential functions.

In fact, two of the eight Maxwell equations are identities; they do not constrain
the fields and hence should not be included in our count. For example, taking the
divergence of both sides of the Faraday law gives 0 = 0 identically, regardless of what Ę
may be. Similarly, taking the divergence of both sides of Ampère’s law (Equation 14.13)
gives

Ǫ̀ ·
!
Ǫ̀ ◊ B̨

"
= Ǫ̀ · j̨ (stationary case).

The left side is identically zero regardless of what B̨ may be; the right side is also
identically zero in magnetostatics (Your Turn 14F). Again, we end up with equal
numbers of unknowns (the six field components) and equations (the remaining six
Maxwell equations).

14.5 DOWN FROM THE MOUNTAIN: THE OERSTED PROBLEM

The previous sections got a bit abstract. Let’s see how the story plays out in a familiar
problem. As in Section 14.4.1, suppose that a thin wire carries current I. It stretches
along the entire z axis. Thus, its charge flux is

j̨(r̨ ) = I”(2)(r̨‹)ẑ. (14.16)

Here r̨‹ denotes the two-component vector
Ë

x

y

È
. Each delta function contributes a

dimension L≠1, so this expression has dimensions appropriate for a charge flux.6 You
already found the resulting magnetic field in Section 14.4.1.

Your Turn 14G
a. Do it again, this time by solving Equation 14.14 with source given by Equa-
tion 14.16 and then computing the curl of your answer. Make sure it’s what
we already found in Section 14.4.1. [Hint: The Green-function solution given in
Section 14.4.2 isn’t the easiest way to do this problem, which has lots of useful
symmetry. Instead, make a Good Guess, then check and adjust it.]
b. Confirm that the vector potential you found really is in Coulomb gauge.

14.6 BIOT-SAVART LAW

6See Section 0.3.6.
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Figure 14.1:

y

z

x

dxdz

wire carrying I

14.6.1 General form
We can now find the magnetic field created by an arbitrary current distribution by
computing the curl of Equation 14.15.

Your Turn 14H
Show that

B̨(r̨ ) = µ0
4fi

⁄
d3rú j̨(r̨ú) ◊ r̨ ≠ r̨ú

Îr̨ ≠ r̨úÎ3 . (14.17)

This is a generalization of the usual Biot–Savart formula to cover an arbitrary current
distribution (not necessarily confined to a thin wire).

14.6.2 More general wires
Sometimes it is appropriate to consider a limiting case in which j̨ is everywhere zero
except along a mathematical curve (a “thin wire”). We already considered the simplest
case in Equation 14.16.

In a static situation, the total current I through any cross-section of that wire
has everywhere a constant value, by the continuity equation. Suppose that the wire
is described by a parameterized curve in space ˛̧(s). For example, we could choose s
to be arclength along the curve. Then at any point s0 the current is flowing parallel
to the tangent vector, that is, to the unit tangent d˛̧/ds|s0 .

Start by considering just one chunk of wire, of length ds and centered at s0
(Figure 14.1). Choose a coordinate system centered on ˛̧(s0), and rotated so that the
tangent lies along ŷ. Chapter 7 explained how to find the y-component of the charge
flux: Find the net charge piercing the element shown in the figure in time dt, and
divide by dxdzdt. That charge equals Idt if the element dxdz includes the wire (the
origin); otherwise it’s zero. Thus, our chunk has

j̨2(t, x, 0, z) = I”(x)”(z)ŷ. (14.18)

Think about why this formula has the units appropriate for a charge flux.
We can now make our formula less dependent on a specific choice of coordinates.

First, notice that the one chunk of wire we considered is also confined to a limited
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Figure 14.2: [Sketches.] Boundary conditions near
an interface. (a) The short red cylinder has one
end cap just outside a material and the other
just inside. Integrating the magnetic Gauss law
over it, and using the divergence theorem, shows
that the component of B̨ perpendicular to the
surface must be the same just inside and outside
the material (Equation 14.20).
(b) The shallow red rectangle has one of its
longer edges just outside a material and the
other just inside. Integrating Ampère’s law,
and using Stokes’s theorem, shows that any
component of B̨ parallel to the surface may
jump if there is a surface current layer (Equa-
tion 14.21).

a

b

range dy = (dy/ds)ds. With that observation, we get the more general form

d̨j(r̨ ) = I”(3)!r̨ ≠ ˛̧(s)
"d˛̧

ds
ds. short segment of thin wire (14.19)

This formula has the same dimensions as Equation 14.18, but it’s no longer restricted
to any special coordinate system, nor to one particular point on the wire. To get the
charge flux for the entire wire, integrate Equation 14.19 over it.7

Your Turn 14I
Substitute Equation 14.19 into Equation 14.17 and recover the usual form of the
Biot–Savart law.

14.7 BOUNDARY CONDITIONS

Regardless of whether we use the potential formalism, the magnetic Gauss law implies
a jump condition for the magnetic field across a boundary, similar to the one in
electrostatics8 but without any dependence on the behavior of charges or currents at
the surface:

�B‹ = 0. (14.20)
This fact can be especially useful if we know that the magnetic field is zero on one
side. For example, superconductors exclude magnetic fields, so B‹ = 0 just outside
as well.

7Compare P+S eqn. 8.21.
8See Figure 14.2a and Section 5.10.
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Similarly, integrating Ampère’s law around a loop near the surface gives a condition
on the tangential component of B̨ (Figure 14.2b). We must allow for the possibility
of currents confined to the surfaces of one or both of the media, so let j̨ (2D) denote
the net 2D charge flux9 (with units A/m).

Your Turn 14J
Show that

�B̨Î = µ0j̨ (2D) ◊ n̂. (14.21)

Here �B̨Î = (B̨[2] ≠ B̨[1])Î and n̂ is the unit normal vector pointing from region
1 to region 2.

14.8 MAGNETOENCEPHALOGRAPHY

[Not ready yet.]

14.9 PLUS ULTRA

We found the general solution to magnetostatics with specified, steady currents. But
we actually got much more: We also found a simplified formulation of the equations
that involves a potential (in this case a vector potential), and it always works, even
in nonsteady situations (because Ǫ̀ · B̨ = 0 always). Soon we’ll find an even more
powerful object that combines the vector potential with electric potential, and that,
unlike our previous construction of Â, remains valid beyond statics.

9Some authors call this quantity “surface current density.”
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T2 Track 2

14.9Õa What about magnetic monopoles?
The magnetic monopoles predicted by grand unified theories, if observed, would seem to
invalidate the discussion in Section 14.2.2: A point source of B̨ implies that Ǫ̀ · B̨ = 0
somewhere. Indeed, inside such hypothetical objects there is always a region in which classical
electrodynamics breaks down altogether (other fields like the ones associated to the W and Z
bosons have nonzero expectation values).10 Magnetic monopoles haven’t (yet) been observed
experimentally in free space.11

Quite apart from such theoretical concerns, E. Parker realized that the observed fila-
mentous structures in distant galaxies is evidence for large-scale magnetic fields, and that
this observation in turn implies a severe bound on the hypothetical existence of magnetic
monopoles. Just as free electric charges screen electric fields in a conductor, so also free
magnetic charges (if they existed) would screen magnetic fields. The fact that such fields are
observed (hence not screened) then implies a limit on the flux of free magnetic charges. For
a review of magnetic monopoles and flux limits, see, e.g, J Preskill, Annu. Rev. Nucl. Part.
Sci. 34:46(1984).

14.9Õb Against pseudovectors
The main text pointed out the conceptual benefits of formulating magnetic e�ects in terms
of the tensor ¡

Ê, not the traditional B̨. In fact, every “pseudovector” quantity in classical
physics, including angular velocity and angular momentum, can be eliminated in favor of
tensor quantities, whereupon all the cross products appearing in rigid body dynamics etc.
disappear and everything is manifestly inversion-invariant.

It is true that we can conveniently draw (visualize) a vector field. But nothing is really
happening along B̨: A moving particle does not feel any force in that direction, nor does it
create a B̨ that points in that direction.

Is this distinction just Puritanical fussiness? First, I’ll point out that you never see any
physics formulas involving the sum Ę + cB̨ , any more than you ever see people adding
momentum to angular momentum (or temperature to velocity). Temperature and velocity
have di�erent tensor structures; it’s not meaningful to add them, and the same for electric
and magnetic fields.12 It’s a quirk of three dimensions that they happen to have the same
numbers of components, but nevertheless they are di�erent. Second, Section 14.2.4 showed a
deep analogy that only becomes apparent when we abandon the superficial analogy obtained
by representing magnetism by B̨ . Third, and most important, everybody does agree that
B̨ has got to be scrapped when we unify electricity and magnetism and reformulate the
theory relativistically. Our destination is a formulation in which invariance under Lorentz
transformations is explicit; when we arrive there, we’ll find that explicit invariance under
inversions has come along for free.

Until that happy day, notice that in Equation 14.13, the Gauss law doesn’t care about
the ambiguous sign of B̨. Ampère’s law looks suspect because its right-hand side isn’t zero,
but the left side has two sign changes if we switch handedness conventions, so it, too, is
secretly invariant.

10See Problem 16.2.
11There may be collective excitations in condensed matter with this character.
12OK, I admit I have seen exotic articles that introduce Ę + iB̨. The formulas in those articles are
not invariant under inversions.
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14.9Õc Totally antisymmetric tensors are so useful...
that mathematicians have a separate name for them: di�erential forms of rank p, or just
“p-forms” for short. Standard mathematical notation abbreviates by omitting the indices
and overarrows; you must remember the tensor character of each symbol from its original
definition. The totally antisymmetrized first derivatives of such a tensor form a similar object
of rank p + 1, called the “exterior derivative” and denoted by the very concise symbol d. The
exterior derivative operator has the property that d2 = 0.

The Poincaré Lemma thus states that if dÊ = 0, then we may write Ê = dA for some
(p≠1)-form A. There is an important caveat: This result is valid only on a contractible region
of space. (On a torus, for example, we would not be able to choose an unambiguous path
to each r̨ in the way we did above, and di�erent choices of path are not guaranteed to give
answers that agree.) The study of exactly how the Poincaré lemma fails on a topologically
nontrivial space is called deRham cohomology.

In this language:

• The existence of an electrostatic potential is the case p = 1. The Maxwell equation
dE = 0 implies that we may write E = ≠dÂ.

• For magnetostatics we need the case p = 2: We found that the Gauss law for magnetic
fields can be elegantly written as dÊ = 0,13 which implies that we may write Ê = dA.
There’s an ambiguity: Because d2 = 0, we may add any gradient d� to the vector
potential A without altering dA. That’s gauge invariance.14

• Some exotic field theories derived from superstrings involve higher-rank antisymmetric
tensor fields. They, too, are subject to the Poincaré lemma.

14.9Õd What about angular momentum conservation?
Maybe you recall from first-year physics that the proof of angular momentum conservation,
as presented even in the Feynman Lectures, involves the assumption that every force on any
particle is directed along the line joining that particle to another one. That certainly does not
seem to be the case with magnetic forces! What happens to angular momentum conservation?
Chapter 34 will get back to this, but the spoiler is: It survives, once we correctly attribute
angular momentum to the fields themselves.

13I leave it to you to find equally elegant forms of Ampère’s law and the Stokes theorem.
14For example, changing the base point used in Equation 14.10 results in a gauge-transformed ÂA.
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I

L

a

Figure 14.3: (a) An experiment to demonstrate magnetoelectrophoresis. Pepper is sprinkled on the surface of
a salt-water solution to visualize bulk flow. A central electrode sends direct current outward to a ring-shaped
electrode at the rim of the dish. A magnet pole can be brought toward the surface (red). (b) Simplified 1D
geometry for Problem 14.2.

PROBLEMS

14.1 Jaws
Let us explore a possible mechanism for sharks to navigate using Earth’s magnetic
field. Given that a shark can detect an electric field strength of 0.5 µV/m, how fast
would if have to swim through Earth’s magnetic field to experience an equivalent force
on a charged test particle? Can sharks really swim that fast?

14.2 Salt and pepper
Figure 14.3a shows a demo involving salt, pepper, and an overhead projector. It may
seem remarkable that those tiny little ions could pull hard enough on the surrounding
water to get it into bulk (macroscopic) motion. Let’s make some estimates.

The demo setup shown has a circular geometry. But to simplify the math, in
this problem instead imagine a rectangular geometry (Figure 14.3b): Current passes
between two parallel plates separated horizontally by distance L = 5 cm. The plates
have width w = 5 cm and are immersed in a solution with depth h = 1 cm. The water
between the plates contains sodium and chloride ions, each at concentration (ions per
volume) c. Each ion carries electric charge ±e, where e is the charge on a proton (the
pepper is irrelevant). The solution consisted of about one gram of NaCl dissolved in
volume Lhw of water.

A total current of I = 1 A passes through the solution. In time dt, ions of each
species migrate an average distance v±dt toward or away from the + electrode. Thus,
all ≠ charges originally in a layer with this thickness near the electrode arrive there
and deposit negative charge; similarly, all + charges originally in that layer move away
and get replaced by new + charges from the electrode. In all, net charge Idt leaves
the + electrode.
a. Write a formula that connects v±, I, and other quantities in the problem, and solve

it for v±. (Don’t evaluate it numerically yet.)
b. Now imagine adding a uniform magnetic field perpendicular to the plane of the
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picture, with strength B = 0.03 T. Write a formula for the resulting magnetic force
on a single ion of each species. Then convert this to a formula for the total force
per unit volume. (Still don’t evaluate yet.)

c. Multiply your result for (b) by the volume of the chamber to get the total force
and evaluate it. Is it big enough to drive the slow but visible motion we observed?

14.3 Parity
a. The Maxwell/Lorentz equations, in the traditional form (Sects. 1.1-1.2 of the

Formula Sheet), are manifestly invariant under spatial rotations, because they
involve constructions that we showed were invariant. They are also invariant under
spatial inversions (parity), but this is not quite so obvious, because they involve
the Levi–Civita tensor, which is not parity invariant. Find a reformulation of these
equations that involves no Áijk factors, by re-expressing the magnetic field B̨ in
terms of ¡

Êij = ÁijkB̨ k.
b. Similar criticisms can be leveled at rigid body mechanics, which is also parity

invariant, yet full of cross products. Construct second-rank tensors that are dual to
the usual angular velocity, angular momentum, and torque. Consider a rigid body
with some mass distribution flm(r̨ ). Write the law of motion for the rate of change
of your angular momentum, without using any cross products.

14.4 [Not ready yet.]

14.5 Helmholtz coils
[Not ready yet.]

14.6 3D magnetic field line plot
a. Consider a circular loop of wire in the xy plane, of radius a and carrying a steady

current. The magnetic field that it creates, when evaluated anywhere in the yz
plane, itself lies in that plane. Hence the streamline that passes through any point
in that plane remains confined to it. Learn how to get a computer to create 2D
streamplots, and use it to show a representative collection of magnetic field lines
in the yz plane.

b. Learn how to get a computer to create 3D streamplots, and show a representative
sample throughout space for the same system. Look at various viewing angles till
you find one that is most informative.

[Hint for both parts: Replacing B̨ by B̨/ÎB̨ Î will not change the field lines, but it
will change the parameterization of the curves in space that you’ll find. Specifically,
this transformation will ensure that your streamlines are parameterized by arclength,
which may help your computer to find them more readily.]
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Units in Electrodynamics
So far, we have been using SI units without much discussion. Some day you may need
to read an article by (or even talk to) a person who uses some other system of units.
Many books cheerfully suggest that everything will be fine if you just use a confusing
table of conversions. It’s better to know how to obtain those conversions for yourself.

15.1

There are several systems of units for electrodynamics, but today you mainly see just
two: SI units and “gaussian units,” sometimes called the “CGS” system.1 Of course,
Nature doesn’t care what units we use; the formulas we will write, like any correct
physical formulas, must be valid in any system of units! So what’s the problem?

One problem is that many students don’t get the full benefit of dimensional
analysis, in part because they’ve learned it in a haphazard way. Another problem,
specific to electrodynamics, is that it turns out that the di�erence between the SI
and gaussian systems actually involves three independent issues, only one of which is
strictly about which base units to use. I put quotation marks around “gaussian units”
above to remind us of this fact. Once we separate the issues and state them explicitly,
it becomes fairly easy to see how to convert between di�erent authors’ work.

The three issues are (i) choice of base units, (ii) choice of whether to
eliminate charge units, and (iii) choice of what physical quantity we use
to represent the magnetic induction.

(15.1)

15.2 UNITS IN MECHANICS

Just about every useful, correct, thing you’ve ever learned about units in mechanics
can be systematized via a simple maxim:

Almost any physical quantity should be regarded as the product of
a pure number times one or more units.2 A unit can be regarded as
a symbol representing an unknown quantity, just as we use the letter
x for an unknown number.

1Actually, gaussian units are just one of several systems using cm, g, and s. The others are much less
often used, so frequently people say “CGS” to mean specifically gaussian. My goal here is to explain
“gaussian units.”
2“Almost” because a few are dimensionless. Also, one quantity (temperature) is sometimes expressed
with an o�set that complicates its conversions.
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Again: The units are part of the quantity. We carry these unit symbols along
throughout our calculations. They behave just like any other multiplicative factor;
for example, a unit can cancel if it appears in the numerator and denominator of an
expression. Although they are unknowns, we do know certain relations among them;
for example, we know that 1 inch ¥ 2.54 cm. Dividing both sides of this formula by
the numeric part 2.54, we find 0.39 inch ¥ 1 cm, and so on.

In mechanics, all we really need to choose are base units, those for length, time,
and mass. Two popular choices are {meter, kilogram, second} and {centimeter, gram,
second}. This choice is the first of the three issues listed in (15.1) above. Other
quantities, like force, can then be expressed as products of base units raised to various
powers.

In newtonian physics, there is no universal speed, so units of length and time
are independent, that is, both are arbitrary.3 In special relativity, there is a universal
speed, so we could agree always to use unit pairs for length and time that are related
by c, like meters and meters/c (or lightyears and years). It’s often inconvenient to
do this because human-size units like meters and seconds are far from this relation.
In other words, if we define the tick by 1 tick = 1m/c, then tick ¥ 3 ns, not a very
human-size unit.

However, I made that point to introduce the issue (ii) mentioned in (15.1). First
let me make explicit some options for how to proceed.
A. No elimination of units: A physical quantity like force, or a constant of Nature
like Newton’s gravitational constant, is the product of a number times some units.
The numerical part changes if we change units. For example, c ¥ 3.0 · 105 km/s ¥
186 000 mile/hour. We refer collectively to m, cm, inches . . . as di�erent units for the
same “dimension,” which we denote generically by L. Similarly time and mass have
generic dimensions called T and M respectively. Any valid formula, like f = ma,
involves an equality between quantities with the same dimensions, and is valid in any
set of units. We can simplify formulas using the definitions 1 m = 100 cm etc., which
are themselves valid formulas because both sides have the same dimensions.
Here is another, equivalent approach:
B1. Elimination of all units: Alternatively, we could choose once and for all a
set of base units, and agree to express everything in terms of them. For example, if we
choose SI base units then in place of acceleration a, we define ā = a/(1 m/s2), which
is the numerical part of a. Similarly c̄ ¥ 3 · 108. Now our formulas, expressed in terms
of the barred quantities, contain no units at all. But those formulas are only valid if
we consistently use the stated system.

Suppose we were asked to find a force. After we do our calculations, we wind up
with a numerical value for f̄ . Knowing the meaning of force, we interpret this number
as the actual force in newtons, because the combination of SI base units with the
dimensions of force (MLT≠2) is kg m/s2, which is called newton. And we get the same
final answer as in approach A—if we didn’t make any errors along the way.

The virtue of approach B is that our formulas are compact. Moreover, if we choose

3Nor is there any natural scale of length (or of time). Perhaps we could declare the size of a hydrogen
atom as our length unit, but it’s not determined by newtonian physics, so this choice doesn’t simplify
anything.
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our base unit of time to be m/c, not seconds, then we find c̄ = 1, so we can drop all
the factors of c̄ from our formulas, abbreviating them still further. The disadvantage
of approach B is that we forfeit the real benefit of dimensional analysis: Dimensional
analysis expresses certain homogeneity (rescaling) properties of Nature, which appear
as redundancies we can use to spot our errors. Eliminating units removes this helpful
mechanism for checking our work.

We can compromise and take this process only partway:
B2. Elimination of some units: We agree to measure length in some unit xx
and time in xx/c (for example, meters and “ticks,” where 1 tick = 1 m/c); we don’t
commit to any particular unit for mass. For each physical quantity X, we define X̄ to
be X divided by as many powers of c as are needed to eliminate the time dimensions.
Thus, all barred quantities have dimensions that are powers of L and M: We have
only eliminated time units. We again have the virtue that c̄ = 1, so we needn’t write
it. But we have also retained some of our error-checking abilities.

For example, we have force f̄ = f/c2, mass m̄ = m, acceleration ā = a/c2, and
energy Ē = E/c2. Then some famous formulas become

f̄ = m̄ā; Ē = m̄.

We’ll use approach A exclusively. Students often tacitly use B, e.g. when working
exams, and so miss errors they would have caught by carrying the units explicitly.
Generally A involves more writing, but it’s worth it.

Section 15.3.3 below outlines how “gaussian” authors use a variant of approach B2.

15.3 UNITS IN ELECTRODYNAMICS

Classical electrodynamics acknowledges no natural unit of electric charge.4 So we have
to make an arbitrary choice of charge unit. There’s no human intuition for charge,
so we don’t feel constrained to use “human sized” units. Some choices are nicer than
others; we will explore two popular choices below.

Because charge units are arbitrary, we assign a new dimension symbol Q to charge.
Below we’ll discuss two popular choices called coulombs and statcoulombs.

4It’s a mysterious true fact that all isolated, fundamental charged particles do appear to have charges
equal to an integer times the proton charge e. But making e our base unit would not be very
convenient for lab work. Besides, both quarks and fractional quantum Hall e�ect excitations are also
“fundamental,” and their charges are not integers times e.
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15.3.1 SI units
Here are the Maxwell equations as stated in the Prologue:

Ǫ̀ · Ę = flq/‘0 Gauss
Ǫ̀ · B̨ = 0 Gauss

Ǫ̀ ◊ Ę + ˙̨
B = 0 Faraday

Ǫ̀ ◊ B̨ ≠ µ0‘0
˙̨
E = µ0j̨ Ampère.

[0.1–0.4, page 2]
and the Lorentz force law:

dp̨ /dt = q
!
Ę + v̨ ◊ B̨

"
. [0.5, page 3]

We had to introduce the two constants of Nature, ‘0 (the permittivity of vacuum)
and µ0 (magnetic permeability of vacuum), in order for the dimensions to work out
in Eqns. 0.1–0.5.

The dimensions of the electric and magnetic fields follow from the Lorentz force
law:

Ę ≥ ML
T2 Q and B̨ ≥ Ę /c ≥ M

TQ .

Here “≥” means “has the same dimensions as.”5

The Gauss and Ampère laws then give the units of ‘0 and µ0:

‘0 ≥ Q
L3

T2 Q
M ≥ Q2 T2

L3 M µ0 ≥ M
TQL

L2 T
Q ≥ ML

Q2 .

Because these physical constants involve charge dimensions, their numerical parts
will depend on what we choose for our unit of charge. We can use this freedom to
arrange that the numerical part of one of the three quantities µ0, ‘0, or the proton
charge e has an exactly specified numerical part. Once we do that, then there’s no
more freedom; the other two have numerical parts set by Nature, which we can only
measure and quote to a certain number of significant figures.

The SI system uses m, kg, s, and coul as base units. Prior to 2019, the SI defined
the coulomb by requiring that µ0 have the exact value

µ0 = 4fi · 10≠7 m kg
coul2

(obsolete).

A more straightforward approach would be to declare that the proton charge
is exactly one “attopenn.” Then the numerical values of ‘0 and µ0, expressed using
“penns,” would both need to be measured in the lab. Indeed, after May 2019, the SI
takes an approach equivalent to this one, though sadly not using that cool name: The
coulomb is now defined as

1 coul = e/1.602 176 634 · 10≠19 exact.

5The symbol “¥” means “is approximately equal to.”
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That strange, but exact, multiple was chosen to make old and new definitions nearly
equivalent in practice.6 Again, this means that µ0 no longer has an exact value; instead,
it is now a measured quantity, with experimental error:7

µ0 ¥ (4fi)(1.000 000 000 82 · 10≠7) m kg coul≠2. (15.2)

Thus, µ0 and ‘0 are now on equivalent logical footing: Both are measured constants
of Nature, not conventional values.

The ampere is still defined by 1 A © 1 coul/s, but using the revised coulomb.
Physically, Equation 15.2 says that if two long, parallel wires each carry current 1 A
and are separated by a meter of vacuum, then the force per length that they exert on
each other is about 2 · 10≠7 N/m. That may seem like peculiar choice, but it implies a
convenient magnitude for the ampere: It’s approximately the current through a 100 W
light bulb.8

Once we choose a unit of charge, there is no more freedom. The permittivity of
vacuum ‘0 then has a measured value, namely ‘0 ¥ 8.854187817 · 10≠12 coul2N≠1m≠2.

Note, however, that there’s a combination of constants called c, with no dependence
on the chosen unit of charge:

c © (µ0 ‘0)≠1/2 ≥ L
T . (15.3)

In fact, the SI also defines the meter in a way that gives c the exact value

c = 299 792 458 m/s exact.

15.3.2 Derived units
Starting from the base units coul, m, kg, and s, various useful combinations have been
given names:9

6You may wonder why the proton is privileged among all the many fundamental particles. Remarkably,
every known, isolable, fundamental particle has charge that is an integer multiple of e. Even quarks,
which are not isolable, and quasiparticles in condensed matter are rational multiples of e. The Standard
Model of particle physics o�ers no necessary reason for this numerical coincidence; explaining it was
one of the original motivations behind grand unification, which to date has not been confirmed
experimentally.
7The unit m kg coul

≠2 is also written H m
≠1. Note that µ0 = (4fi~/e

2
c)– where – is the “fine

structure constant.” The factors in parentheses now all have exact conventional values, so the relative
uncertainty in µ0 is the same as that of –. See Davis, 2017.
8In the USA system of 110 volt mains. Also, the total charge delivered in a lightning strike is of
order 1 coul.
9SI style police say to use V where I use volt and C where I use coul. I’d rather write these out than
risk the confusion of a one-letter abbreviation. On the chalkboard, V could look like a volume; C

could look like the speed of light.
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Quantity Symbol Unit Name Abbrev. Alternative Alternative
charge q coulomb coul C
current I ampere A coul/s
magnetic induction B̨ tesla T kg/(coul · s) volt · s/m2

magnetic flux �B weber Wb kg · m2
/(coul · s) volt · s

electric field Ę — — kg · m/(coul · s2) volt/m
electric potential Â volt volt V J/coul
charge density flq — — coul/m3

charge flux j̨ — — A/m2 coul/m2 · s
inductance L henry H kg · m2

/coul2 J/A2

capacitance C farad F s2 · coul2/(kg · m2) coul2/J or coul/volt
electric dipole moment DE debye debye D 10≠21 coul m2s≠1

/c

resistance R ohm � volt/A J · s/coul2
conductance G siemens=mho S = 0 �≠1

Hence ‘0 can also be written as ¥ 8.85 · 10≠12 F/m, and µ0 ¥ 4fi · 10≠7 H/m =
4fi · 10≠7 N/A2.

15.3.3 Gaussian system
There are several CGS-based systems; here I describe the most common one, often
called “gaussian units.”10 When someone says “I use gaussian units,” they are generally
saying three distinct things. Let’s take them one at a time:

Base units
The gaussian system uses cm, g and s. The base unit of charge is called statcoul; it is
defined by requiring that ‘0 (not e) have an exact numerical part:

‘0 = 1
4fi

statcoul2 · s2

g · cm3 . (15.4)

In this system, it’s µ0 and e that have approximate, measured values. We determine
µ0 by using Equation 15.3:

µ0 = 4fi

c2
g · cm3

statcoul2 · s2
.

Combining Equations 15.2, 15.3, and 15.4 yields

1 statcoul ¥ (0.1 m/s)c≠1coul ¥ 1
3 · 109 coul. (15.5)

We also measure flq in statcoul/cm3 and j̨ in statcoul/(cm2 · s), etc.
Another useful unit conversion involves electrostatic potential. The SI unit is

volt = J/coul. The corresponding gaussian unit is statvolt = erg/statcoul.

Your Turn 15A
Find the relation between these.

10Maxwell and F. Jenkin had more to do with developing this system than Gauss (Maxwell & Jenkin,
1865).
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Modified magnetic field
“Gaussian” authors also redefine the magnetic induction, introducing a physically
di�erent quantity that I’ll call

B̌ © cB̨ .

Confusingly, they call this quantity “the magnetic induction” and use the symbol B̨
for it! We won’t do that.

We can use B̌ in any system of units; we’ll occasionally find it convenient to
express magnetic fields in this way. For example, B̌ has the same units as Ę , so we
can compare them directly.11 “Gaussian” authors similarly define modified magnetic
flux by �̌B = c�B and magnetic moment by ĎM = D̨M/c.

Maxwell’s equations then say:

Ǫ̀ · Ę = flq/‘0 (15.6)
Ò · B̌ = 0 (15.7)

Ò ◊ Ę + 1
c

ˆB̌

ˆt
= 0 (15.8)

Ò ◊ B̌ ≠ 1
c

ˆĘ

ˆt
= 1

‘0

j̨

c
(15.9)

and the Lorentz force law says
ˆ

ˆt
p̨ = q

3
Ę + v̨

c
◊ B̌

4
. (15.10)

The equations are still valid in any system of units; in gaussian base units we have
the numerical values ‘0 = 1

4fi

statcoul
2·s2

g·cm3 and c ¥ 3 · 1010 cm s≠1.
The electric and modified magnetic fields have the same dimensions, but it’s

traditional to call the unit of B̌ the gauss, and that of Ę the statvolt/cm. In fact,
these (and the oersted) are all the same as g cm/(s2 statcoul).

Your Turn 15B
Show by using Equation 15.5 that their SI equivalents are

1 gauss ¥ c · 10≠4 T

1 statvolt/cm ¥ 3 · 104 volt/m.

That is, a field B̨ = 1 T corresponds to B̌ = 104 gauss.

Elimination of charge units
We could stop there. But “gaussian” authors take one more step, similar to the one
outlined in Section 15.2. So far we have stayed with what I called approach A, but
now we switch to:

11A spatial region A, of uniform electric field Ę(A), and no magnetic induction, will have the same
energy density as a region B of uniform magnetic induction B̌(B), and no electric field, if ÎĘ(A)Î =
ÎB̌(B)Î.
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B2: Elimination of charge units: For each physical quantity X, “gaussian” authors
define X̄ to be X divided by as many powers of (statcoul)(s)(g cm3)≠1/2 as are needed
to eliminate the Q dimensions.12 Why this crazy choice? With this choice, ‘̄0 becomes
dimensionless, with exact numerical value equal to 1/(4fi).

Thus all barred quantities have dimensions that are powers of L, M, and T: We
have eliminated charge units. The vacuum Maxwell equations now take the elegant
form

Ǫ̀ · ¯̨
E = 4fiflq

Ǫ̀ · ¯̌B = 0

Ǫ̀ ◊ ¯̨
E + 1

c

ˆ ¯̌B
ˆt

= 0 (“gaussian” units)

Ǫ̀ ◊ ¯̌B ≠ 1
c

ˆ
¯̨
E

ˆt
= 4fi

c
¯̨j

dp̨

dt
= q̄

! ¯̨
E + v̨

c
◊ ¯̌B

"
.

In this system, the constant ‘̄0 = 1/4fi not only has a nice numerical part; it has
also been purged of all units. Then we get Coulomb’s Law in the ultra-simple form
Â̄(r̨ ) = q̄/Îr̨ Î, etc. The price we pay is that the above equations are valid only in the
gaussian system (unlike Equations 0.1–0.5, which are valid in any units).

“Gaussian” authors confuse us by omitting all the bars and checks! That explains
a lot of bizarre-sounding assertions like “1 F = 9 ·1011 cm,” which one sometimes hears.
More precisely, this statement says that “a capacitance of C = 1 F corresponds to the
reduced quantity C̄ = 9 · 1011 cm.”

Your Turn 15C
Check the last claim. Then find analogous statements for an inductance of 1 H
and a resistance of 1 �.

15.3.4 One final confusion
“Gaussian units” eliminate the dimension Q, but they still retain the familiar L, T,
and M.

Incredibly, it is commonplace for authors not to state any specific units. In-
stead they often just write something like “esu” for everything, which roughly means
“whichever of those units is appropriate for this quantity in the system I’m using.”
You’re supposed to supply the appropriate unit using context. It works if you never
make any errors, and you are communicating with someone who uses the same unit
system as you do, but I don’t recommend it!

12This step does not change the numerical part of X if we’ve expressed it in the base units cm, g, s,
and statcoul. That’s because this factor’s numerical part equals one in that case.
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15.4 REMARKS

I hope that the di�erence between units is starting to seem like, say, the di�erence
between French and Spanish. You need to talk like the natives, wherever you’re going,
but they’re always the same Maxwell equations in any language.

The “gaussian” unit system eliminates one of the two constants of Nature in
Maxwell’s equations: Instead of ‘0 and µ0, all we now have is c. Some people find
this beautiful. I think that making fewer errors in my work is beautiful, so I don’t
advocate eliminating units.

Some say that gaussian units make the duality of the electric and magnetic field
clearer. It’s true, but in a trivial way. We will get the same benefit just by expressing
Maxwell’s equations in terms of B̌ instead of B̨ (Equations 15.6–15.9), regardless of
whether we measure B̌ in gauss or in T · c. Ultimately we’ll construct a single, unified
“Faraday tensor” out of the components of Ę and B̌.

Finally, don’t try looking on Amazon for a “statvoltmeter” or an “statammeter.”13

Using SI units in our math keeps us connected to the real world of experiments, where
people use volts and amperes.

FURTHER READING

Redefinition of SI units:
https://en.wikipedia.org/wiki/2019 redefinition of SI base units (accessed 11/2018).

13Especially don’t ask for an “abammeter.”
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T2 Track 2

15.2Õ Elimination of more units
In gravitational physics, many authors take elimination of units one step further, agreeing
also to measure mass in units of (1 m)c2

/GN (not kg). Here GN is Newton’s constant. The
barred quantities are obtained by dividing physical quantities by enough powers of c and GN

to eliminate both M and T, leaving only L. In this scheme, ḠN = 1 and c̄ = 1, so both can
be dropped from formulas.

In high-energy physics, many authors choose instead to eliminate both L and T, leaving
only M, which they typically measure in GeV/c

2. They set up barred quantities by demanding
that c̄ = 1 and ~̄ = 1, leading to confusion when they try to talk to gravitational physicists.
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PROBLEMS

15.1 Dimensional shortcut
Background: A magnet is dropped through a nonmagnetic, but conducting, tube.
Friction with the tube’s walls is negligible. But instead of increasing without bound,
the magnet’s velocity saturates at a surprisingly small value vú. At this terminal
velocity, the release of gravitational potential energy does not go into increasing the
magnet’s kinetic energy; instead, it all goes into ohmic heating of the tube, via induced
“eddy” currents.

We could try to set up Maxwell’s equations, but it would be a big pain. Instead,
obtain an estimate for the terminal velocity as follows. Before you begin, note that:

(i) The e�ect depends on the strength of the magnet, i.e. on its dipole moment D̨M.
Actually the dipole moment always enters into formulas multiplied by µ0, so let
X = µ0|D̨M|. In the limit X æ 0, there’s no e�ect and (in vacuum) the falling
magnet’s velocity increases without limit, i.e. vú æ Œ.

(ii) The e�ect depends on the electrical conductivity Ÿ of the material constituting
tube. In the limit Ÿ æ 0, there’s no e�ect and again vú æ Œ.

(iii) The terminal velocity depends on the weight F of the magnet (a force). We expect
that pulling harder on the magnet will let it achieve larger terminal velocity, by
analogy to the case of pulling on an object immersed in a viscous fluid, i.e. vú is
an increasing function of F .

(iv) The e�ect depends on the size scale of the apparatus, e.g. on the diameter L of
the tube.14

(v) I looked up some typical values: Button magnets like the ones used in demos have
magnetic moment ¥ 0.3 A m2 and mass ¥ 7 g. The conductivity of aluminum is
Ÿ ¥ 5 · 107 �≠1m≠1. A typical demo apparatus has diameter L ¥ 1 cm.

Now take these steps:
a. Find a combination of the relevant constants X, Ÿ, F , and L that has the dimensions

of a velocity.
b. Confirm that the formula you found in (a) has the expected behaviors listed in

(ii–iii) above.
c. Evaluate the formula for vú numerically with the values given in (v) above.

15.2 Units: conductivity
a. Infer the units of conductivity Ÿ from the formula j̨ = ŸĘ . Infer the units of

resistance from the formula �Â = IR.
b. Use dimensional analysis to guess the relation between Ÿ and R for a long wire of

length L and cross section A.
c. Substitute SI base units into the dimensions of R to find the definition of the SI

unit of resistance (the ohm) in terms of base units.

15.3 Units: Polarizability

14You can neglect possible dependences on other dimensions, e.g. on the thickness of the tube’s wall.
(That is, pretend it’s infinitely thick, a long straight hole bored into a big solid block of metal.)
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a. Show that the units N/coul and volt/m are the same. Then use that insight to give
two interpretations of what we mean by the strength of the electric field.

b. Explain the apparently paradoxical utterances of gaussian people, e.g. when they
say say: “Electric polarizability is the ratio of the electric dipole moment of a
molecule to the applied electric field. Its units are cm3.”

15.4 Unit fun
Explain the paradoxical-sounding utterances of gaussian people, when they say:
a. “1 � =? s/cm.”
b. “1 H =? s2/cm.”
Also fill in the missing numbers (i.e., derive them).

15.5 Units: Capacitance
Explain the paradoxical-sounding utterances of gaussian people, who say:
a. “1 farad=9 · 1011 cm.”
b. “Electric polarizability is the ratio of the electric dipole moment of a molecule to

the applied electric field. Its units are cm3.”
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Magnetostatic Multipole Expansion
Analogously to electrostatics, we consider a stationary, localized distribution of electric
current. Thus j̨ = 0 outside a region of size a, and we wish to know the fields far
away, as an expansion in powers of a/r. Again place the origin of coordinates at some
fixed point inside the source. We’ll again exploit Taylor’s theorem for Îr̨ ≠ r̨úÎ≠1, but
there are some tricky tensor things to get right.

r

r a
*

16.1 TENSOR PRELIMINARIES

First, recall that a stationary source must have Ǫ̀ · j̨ = 0.1 So

0 =
⁄

d3r (r̨i)(Ǫ̀ · j̨ ) = ≠
⁄

d3r j̨k(Ǫ̀kr̨i) = ≠
⁄

d3r j̨i. (16.1)

(The boundary term is zero because we assumed a localized source.) We conclude that
each cartesian component of j̨ , when integrated over the source, yields zero.

Similarly,
0 =

⁄
d3r (r̨kr̨i)Ǫ̀ · j̨ = ≠

⁄
d3r j̨mǪ̀m(r̨kr̨i)

=
⁄

d3r (”mkr̨ij̨m + ”mir̨k j̨m) =
⁄

d3r (r̨ij̨k + r̨k j̨i). (16.2)

Define the magnetic dipole moment tensor
¡
� =

⁄
d3r r̨ j̨. (16.3)

Equation 16.2 says that
¡
� is a rank-2, antisymmetric 3-tensor.

From now on, we will change notation from r̨ to r̨ú to refer to the location of a
point inside the source. The notation r̨ will now refer to the position of an observer,
as in the cartoon above.

1Section 7.3 (page 83).
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16.2 FAR FIELDS OF A STEADY, LOCALIZED CURRENT
DISTRIBUTION

16.2.1 Magnetic dipole potential
Suppose that it makes sense to talk about a continuously distributed current source,
maybe some interstellar plasma or the flow of ions outside a nerve cell. Section 14.4.2
(page 166) showed that each component of the vector potential obeys the Poisson
equation. Applying a Taylor expansion as we did in electrostatics thus gives

Ą(r̨ ) = µ0
4fir

⁄
d3rú j̨(r̨ú)

!
1 + r̨ · r̨ú

r2 + · · ·
"
. (16.4)

In principle we’re done! But some further simplification is useful.
Equation 16.1 says that the first term of Equation 16.4 is zero: There is no

contribution at order r≠1, i.e. no “magnetic monopole” field.2
The definition Equation 16.3 lets us rephrase the second term:

Ą(r̨ ) = µ0
4fir3 r̨ ·

¡
� + · · · .

We have accomplished our usual goal of expanding the potential in a systematic power
series and, at each order, separating a potential into a product of universal, standard
functions of r̨ (here the three functions µ0r̨/(4fir3)) multiplied by some constants
characterizing the source (here

¡
� ). Next, we manipulate a bit to cast our result into

a traditional form.
Recall that any antisymmetric 3-tensor can be rewritten in terms of a vector (as

we did with B̨ ). Thus we get relations analogous to Equations 14.3 and 14.2 (page
161):

¡
�in = ÁinkD̨M,k where D̨M = 1

2

⁄
d3rú

!
r̨ú ◊ j̨ (r̨ú)

"
. (16.5)

The three constants D̨M are called the magnetic dipole moment vector. Then

Ą (r̨ ) = µ0
4fi

D̨M ◊ r̂

r2 + O(r≠3). (16.6)

Thus the leading nonzero term of the vector potential outside a general local current
distribution falls like r≠2, similarly to the electrostatic dipole potential in electrostatics.

16.2.2 A Familiar Example
Your Turn 16A
a. To make sure you understand how it all works, consider a thin, circular loop of
wire of radius a in the xy plane, centered on the origin of coordinates and carrying
current I. Work out D̨M for this current distribution. Hint: Use Equation 14.19
to find the current and substitute into Equation 16.5.
b. Also, compute the curl of Equation 16.6 to find the magnetic field far away
from a current source to leading nontrivial order in a/r.

2See, however, Problem 16.2.
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16.3 REMARKS

16.3.1 Higher moments
Naturally, there are higher magnetic multipole fields controlled by higher magnetic
multipole moments. For example, consider a pair of circular wire loops, lying in parallel
planes but shifted perpendicular to those planes and carrying opposite currents. The
total magnetic dipole moment is zero, but there will nevertheless be magnetic fields
outside this source. Those magnetic quadrupole fields fall o� with distance faster than
those of a magnetic dipole.

Your Turn 16B
Work out the far field by retaining the next-order term in Equation 16.4.

16.3.2 No base point ambiguity
Returning to Equation 16.5,

Your Turn 16C
Show that, had we chosen a di�erent origin of coordinates shifted by some constant
vector h̨ , we would have ended with the same values for D̨M.

(Similarly to the electrostatic case, higher moments may depend on the choice of
basepoint; more precisely, only the first nonzero moment is unambiguously defined.)

16.4 FORCE AND TORQUE ON A MAGNETIC DIPOLE

16.4.1 Fixed dipole strength
Consider a current distribution that can translate or rotate in space but is otherwise
rigid: All current elements are steady in time and maintain fixed spatial relations with
each other. A macroscopic example could be to imagine a sti� loop of wire with a
constant-current source. Also, some individual molecules can create a magnetic field
because of persistent currents in their electron state.

This current distribution is immersed in an external static magnetic field B̨ ext,
which varies with a characteristic length scale much bigger than the size of the dis-
tribution itself. We have Ǫ̀ ◊ B̨ ext = 0 because whatever the source of the external
field, it doesn’t overlap the current distribution.

Choose an origin of coordinates somewhere inside the current distribution. Any
internal forces must add up to zero. The Lorentz force law applied to each current
element gives3

F̨ =
⁄

d3rú j̨ (r̨ú) ◊ B̨ ext(r̨ú).

3We’ll revisit this argument in more detail later (Equation 34.5, page 385).
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Similarly to Section 3.6, we now make a Taylor expansion of the external field near
the reference point:

F̨i = Áink

C
B̨ (0)

k

⁄
d3rú j̨n(r̨ ú) + ˆB̨ ext

k

ˆr̨m

---
0

⁄
d3rú r̨úmj̨n(r̨ ú)

D
+ · · · .

The first term on the right equals zero by Equation 16.1. The second involves the
magnetic dipole moment, which we again express as in Equation 16.5:

F̨i = Áink

ˆB̨ ext
k

ˆr̨m

---
0
Ámn¸D̨M,¸

= ˆB̨ ext
k

ˆr̨m

---
0

!
”im”k¸ ≠ ”i¸”mk

"
D̨M,¸

= D̨M,¸Ǫ̀iB̨ext,¸ ≠⇠⇠⇠⇠⇠
D̨M,iǪ̀ · B̨, or

F̨ = Ǫ̀(B̨ext · D̨M). (16.7)
As with an electric dipole in an electric field, so too a magnetic dipole feels no net
force in a uniform magnetic field.

We can also work out the torque on this rigid current distribution:

·̨ =
⁄

d3rú r̨ú ◊ (̨j (r̨ ú) ◊ B̨ ext).

For example,

·̨3 =
⁄

d3rú
#̨
j3(r̨ú)(r̨ú · B̨ ext) ≠ B̨ ext(r̨ú · j̨ (r̨ú))

$
.

First consider the terms without derivatives of the external field:

B̨ (0)
i

⁄
d3rú j̨3(r̨ú)r̨úi ≠ B̨ (0)

3

⁄
d3rú j̨i(r̨ú)r̨úi.

The second term is zero because the magnetic dipole moment tensor is antisymmetric.
The first term can be written in terms of the moment as

= B̨ (0)
i

1
2 Á3ik

⁄
d3rú (̨j ◊ r̨ú)k

·̨ = ≠(B̨ (0) ◊ D̨M).
We conclude that a free magnetic dipole of fixed strength in an external field expe-
riences a torque tending to align its moment with the B̨ field. Once it is aligned,
Equation 16.7 shows that it also feels a force driving it to a region of higher ÎB̨ Î.
You’ll explore a practical application of these results to manipulation of micrometer
objects in Problem 16.3.

Note that a quantum-mechanical spin cannot freely “reorient,” due to spatial
quantization. Thus a single neutron, which has a permanent magnetic dipole moment,
(or a neutral atom such as silver) will migrate along or against the gradient of ÎB̨ Î
depending on its spin state: The Stern–Gerlach e�ect (1922).4 Even particles currently
thought to be fundamental, like the electron and muon, have permanent intrinsic
magnetic dipole moments.

4Stern and Gerlach were astonished to find an even number of discrete spin states, not the odd
number predicted from the theory of orbital angular momentum.
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16.4.2 Diamagnetism, paramagnetism, ferromagnetism
Just as some molecules can “polarize” (develop an electric dipole moment) under the
influence of an external electric field, so others are magnetically polarizable: They
develop persistent internal currents under the influence of an external magnetic field,
giving rise to a magnetic dipole moment. Bulk materials containing such molecules
can develop a density of magnetic dipole moment throughout their volume.5 Also
analogously to the electric case, a material can polarize simply by the alignment of
preexisting, but initially disordered, intrinsic dipole moments.

The induced moment can be parallel to the applied field (paramagnetism), or
antiparallel to it (diamagnetism). If there is a nonzero net magnetic dipole moment
density even at zero applied field, we call the material ferromagnetic.

16.4.3 Magnetic levitation of objects at room temperature
See https://www.youtube.com/watch?v=a8sCtLY-vZY .

FURTHER READING

General: Zangwill, 2013, ch. 11.
Diamagnetic levitation: Berry & Geim, 1997.

PROBLEMS

16.1 Cell sorting
Magnetic cell sorting is a way to isolate cells of one particular type. Small particles
(about 50 nm diameter spheres) are bound to an antibody that attaches specifically
to the cell type of interest (e.g. a cancer cell). Cells are then mechanically separated
by the di�erence in force applied to the target cells versus normal cells.

The magnetic particles are “superparamagnetic”; you may assume that this means
that they respond to an external magnetic field B̨ by developing their own magnetic
dipole moment D̨M = vB̨ /µ0, where v is the volume of the particle.6

The cells are then placed in a magnetic field gradient, and the resulting force is
used to manipulate the cell. What is the force if 100 of these particles are attached
to a cell that is in a magnetic field of 1 T, with gradient 10 T/m?

16.2 Magnetic monopole potential
We found that a localized current distribution will not create any magnetic monopole
field. Nevertheless, we can imagine a stationary magnetic field configuration for which
B̨ points everywhere radially outward from some point in space, much like the electric
field from a point charge. We hit an interesting problem when we seek a vector
potential for this field.

5See Problem 16.1 and Problem 16.3.
6 T2 In more detail, generally B̨ = µ0(H̨ +M̨ ) where H̨ = M̨ /‰m and M̨ = D̨M/v (see Chapter 49).
Superparamagnetic means the susceptibility ‰m ∫ 1, so D̨M = vB̨ /µ0.
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Let r, ◊, Ï be spherical polar coordinates.
a. Find an expression for the gradient Ǫ̀Ï. Find an expression for Ǫ̀◊. Find an

expression for the cross product Ǫ̀Ï ◊ Ǫ̀◊.
b. Consider the time-independent magnetic vector potential given by

Ą = gÏ̂
cos ◊

r sin ◊
. (16.8)

Here g is an overall constant and Ï̂ is the unit vector in the azimuthal direction.
Compute the magnetic field corresponding to this vector potential as follows. First
reexpress Ą as a scalar function times Ǫ̀Ï using your result in (a).

c. Prove the identity Ǫ̀ ◊ (f · V̨ ) = (Ǫ̀f) ◊ V̨ + f · Ǫ̀ ◊ V̨ for any scalar function f
and vector field V̨ .

d. Use (a–c) to compute the curl of Ą and interpret the result.
e. Not surprisingly, the expression Equation 16.8 is singular at r = 0. But it’s also

bad all along the polar axis! Show that the two modified expressions

Ą (±) = gÏ̂
±1 + cos ◊

r sin ◊

di�er from Equation 16.8 only by gauge transformations, and hence describe the
same magnetic field.

f. Show that one of the new vector potentials is nonsingular all along the axis ◊ = 0,
whereas the other one is nonsingular all along the axis ◊ = fi. Thus, we have a
good vector potential representing a magnetic monopole everywhere except right
at the origin, where there is a real singularity.

16.3 Magnetic tweezers
The following page shows some unpublished information I got from my friends in Paris
about their magnetic tweezer setup. The first graph gives the magnetic moment per
gram of their bead, as a function of applied magnetic field. The second graph shows
the measured magnetic field as a function of the vertical distance z from the magnet
pole.
a. Apparently “emu” is some CGS unit for magnetic dipole moment. Figure out the

appropriate unit and explain the cryptic notation “1 emu= 10≠3 SI.”
b. Look at the part of the first graph where it’s approximately linear. Lay a ruler on

the graph and find the slope. (Or if you prefer you may find it using the information
given in the graph’s inset.) Use this linear approximation from now on.

c. Look at the part of the second graph for z between 2 and 4 mm. Lay a ruler along
this semilog graph and approximate it by a straight line. That is, find the constants
Bmax and z0 mentioned at the top.

d. Now get an approximate formula for the force on the bead as a function of z, using
your results from (a–b). Write a suitable log scale for force along the left-hand side
of the second graph, and draw the expected force-versus-z curve.
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Force estimation and measurement in magnetic Tweezers:

The force can be estimated by approximating the magnetic field as an exponential:
B ~ Bmax exp(-z/z0)

1 emu = 10-3 S.I.

Timothée Lionnet and Vincent Croquette, Ecole Normale Superieure

16.4 Levitation of single cells
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Figure 16.1: [From https://commons.wikimedia.org/wiki/File:Solenoid currents inducing a toroidal magnetic moment.tif]

[Not ready yet.]

16.5 Ambidextrous 2
Rederive the results of Section 16.4.1 without making use of the Levi-Civita tensor;
that is, formulate them in terms of the magnetic field tensor ¡

Ê (Equation 14.3) and
the magnetic dipole moment tensor

¡
� (Equation 16.2).

16.6 Static toroidal moment
Work out the far field from the steady current distribution shown in Figure 16.1.

Comment in the light of your result to Your Turn 16B (page 189). Evaluate the
relevant magnetic quadrupole tensor and show that it’s not zero.
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C H A P T E R 17

Beyond Statics

17.1 STATICS REVIEW

17.1.1 Field equations
We have explored some equations whose solutions seem to describe the electric and
magnetic fields set up by stationary charges and currents:

Ǫ̀ · Ę = flq/‘0 Gauss (17.1)
Ǫ̀ · B̨ = 0 Gauss (17.2)

Ǫ̀ ◊ Ę = 0 (stationary case) (17.3)
Ǫ̀ ◊ B̨ = µ0j̨ Ampère (stationary case). (17.4)

I belabored these equations because

• They have a lot of practical implications. You can understand nerve impulses,
photocopiers, lightning rods, molecular recognition, and much more with these
equations.

• We will need to be sure we are standing on firm ground when later we arrive at
some conclusions that physicists found unpalatable, even revolutionary.

17.1.2 A worked example
To anchor all the abstractions that are to come, here is an old result from magneto-
statics that you probably recall from first-year physics. Figure 17.1 represents a coil
of wire wound in a helix of radius a around a long cylinder of length h. Such a coil is
often called a solenoid. It consists of N loops. Steady current I is sent through the
wire. Work through the next paragraphs to exercise those Stokes-theorem muscles.

Figure 17.1:

h
~B

I(t)

a

196
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Each loop makes a dipole field. The helicity of the coil is such that if I > 0,
then in front of the page, current is moving upward; behind the page, current is
moving downward. Deep inside the cylinder (far from the ends), symmetry suggests
that B̨ will point axially as shown, though we still need to confirm the direction. To
find its magnitude, consider the path shown as a dashed line. We can traverse that
path in either direction;1 a specific choice is shown. That choice determines a vector
perpendicular to the rectangular surface bounded by that path via the right-hand
rule: �̨ points into the page.

Integrating Ampère’s law over the surface bounded by the path gives
⁄

d2�̨ · (Ǫ̀ ◊ B̨ ) =
⁄

d2�̨ · (µ0j̨ ). (17.5)

Stokes’s theorem gives the left side as
i

d˛̧ · B̨ . The part of the path lying inside
the cylinder contributes Bh, because B̨ is uniform along the coil2 and points axially
(B is its component in the leftward direction). The sides of the rectangular path are
perpendicular to B̨ , so here d˛̧ · B̨ = 0. And B̨ ¥ 0 outside the cylinder, because the
field lines fan out once they exit the ends.

On the right side of Equation 17.5, each time the wire pierces the surface element
we get a contribution I to the integral. (That’s because �̨ and j̨ both point into the
page at each such point.) Thus Equation 17.5 becomes

Bh = µ0NI, or B = µ0NI/h, (17.6)

a familiar result. Inside the solenoid, B̨ is uniform; it does not depend on how far we
are from the coil’s axis.

As an aside, our result can be reexpressed in terms of the total magnetic flux3

�B = Nfia2B as
�B = LI, (17.7)

where the self-inductance L in this case equals fia2µ0N2/h.

17.2 FARADAY LAW

In electrostatics, Equation 17.3 says that the electric field gives rise to a conservative
force on charges, similarly to the newtonian gravitational force. We might guess that
it would continue to hold in non-static situations, and indeed everyone did believe
that before Michael Faraday. After all, newtonian gravity had that same form, even
with all those planets whizzing around.4 Perhaps that prejudice was what prevented
the Continental scientists from seeing what Faraday saw.5

1Your Turn 0B (page 8).
2We are neglecting end e�ects.
3This traditional term is an exception to our general convention that a “flux” is the rate of transport
of some conserved quantity (such as charge) per unit transverse area.
4Today we know that even newtonian gravity required modification; those moving planets actually
generate tiny “gravitomagnetic” e�ects.
5See Chapter 35.
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In the gravitational case, a roller-coaster that traverses a closed loop returns to its
starting point with the same kinetic energy as it began (minus frictional losses), because
the gravitational force on it is the gradient of a potential energy function. Michael
Faraday observed, however, that plunging a magnet into a loop of wire generates an
electromotive force (EMF), which pushes on the electrons all around the loop. Rather
than suppose that this EMF is something entirely new, we will regard it as simply a
contribution to the electric field that is not conservative. Faraday found that its e�ects
were proportional to the time rate of change of the magnetic field, which suggests the
following modification to Equation 17.3:

Ǫ̀iĘj ≠ Ǫ̀jĘi = ≠2 ˆ

ˆt
¡
Êij Faraday.

Here ¡
Ê is the antisymmetric tensor field representing magnetism.6 This formulation of

Faraday’s proposal makes it clear that it’s rotationally invariant (it equates tensors of
the same type) and also invariant under spatial inversion (it contains no Levi-Civita
tensor). Also the units match on each side.7

It’s more conventional to contract both sides of the preceding formula with a
Levi-Civita tensor, which yields8

Ǫ̀ ◊ Ę = ≠ ˆ

ˆt
B̨ . Faraday (17.8)

Your Turn 17A
Suppose that we have a circular loop of wire. Integrate both sides of Equation 17.8
over a surface bounded by the loop, and show that the current induced by a time-
dependent applied B̨ field flows in the direction that generates an opposing B̨
(“Lenz’s law”).

17.3

17.3.1 Back-EMF
We now return to the concrete situation considered Section 17.1.2, but this time
suppose that we force a current I(t) through the coil that varies slowly in time. Here
“slowly” means too slowly for us to need to account for the time-derivative term in
Ampère’s law (which is multiplied by a very small constant). Faraday’s law says that
an electric field will result. To find it, we integrate both sides of Faraday’s law over
a surface, but not the same surface as in Figure 17.1. Instead, our surface will be a
disk transverse to the axis, bounded by the cylinder on which we wrapped the wire
(Figure 17.2). Again we can choose any direction we like for the rim of that disk; to
keep things simple, choose the same direction as that of current flow. So

⁄
d2�̨ · (Ǫ̀ ◊ Ę ) = ≠ d

dt

⁄
d2�̨ · B̨ . (17.9)

6Equation 14.3 (page 161).
7Why is the factor of ≠2 needed? Chapters 31–33 will argue that the form of this equation, including
this factor, is ultimately dictated by Lorentz invariance.
8Recall Equation 14.2.
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Figure 17.2: The green object is a disk-shaped
surface of radius a, viewed edge-on, that is inte-
grated over in Equation 17.9.

~B

I(t)

a

This time, Stokes’s theorem gives the left side as
i

d˛̧ · Ę . By axial symmetry, the
integrand is constant, so we get 2fiaĘÏ, where ĘÏ is the component in the direction
of current flow.

The right-hand rule selects the perpendicular vector to our surface that points
leftward. Equation 17.6 then lets us write the right side of Equation 17.9 as

≠fia2

h
µ0N

dI

dt
.

Setting this expression equal to the left side of Equation 17.9 gives

ĘÏ = ≠µ0Na

2h

dI

dt
.

The minus sign says that the induced electric field opposes changes in current.9 Thus,
to increase I we must do work against an opposing electric field. Let’s see how much
work is needed.

The electric potential drop across the solenoid is the work per unit charge needed
to push charge through it, that is, the force per charge times the distance:

�Â = Ę Ï(2fiaN) = ≠µ0N2a2fi

h

dI

dt
= ≠L

dI

dt
. (17.10)

That is, the potential drop is linear in the current, like a resistor, but with a time
derivative. Engineers sometimes call this contribution to the potential drop a back-
EMF.

17.3.2 Cables, again
Chapter 10 introduced a model for the propagation of an electrical disturbance along
a cable. As cables grew to transatlantic length, however, inadequacies of Kelvin’s
mathematical model became obvious. The problem was not just resistive loss. A sharp
step function introduced at one end emerged blurred at the other end, limiting the
speed of transmission. Eventually Heaviside and others realized that the problem was
the neglect of self-induction in Kelvin’s model. Incorporating self-induction raised
the possibility of wavelike solutions, but those solutions were found to su�er from
dispersion (Problem 17.3). The problem became more severe with the advent of the
telephone, because audio signals cover a wider range of frequencies than was needed
for telegraphy.

9Lenz’s law again.
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Astonishingly, Heaviside discovered that dispersion could be eliminated by inten-
tionally introducing leakage between the conductors of a cable. Problem 17.4 has the
details.10

17.3.3 Energy of magnetic fields
Imagine charge subdivided into packets �q. The retarding force on one packet is
ĘÏ�q. To get all the way through the wire, some external source must push this
packet through a distance 2fiwN , doing work equal to the force times this distance.
Moreover, packets arrive at rate I/(�q). Multiplying everything together, energy must
be supplied at the rate

dP = (dqĘÏ)(v̨Ï) = (fl(1D)

q ds)µ0Na

2h

dI

dt

I

fl(1D)

q
.

Summing over all charges in the coil means replacing ds by 2fiaN , so the total power
is

P = µ0
fia2N2

h

d
dt

3
I2

2

4
.

To find the total energy cost to bring current up from zero to I, integrate the above
formula over time. We can do that by just dropping the time derivatives:

E = µ0
fia2N2

h

I2

2 = 1
2 LI2. (17.11)

In the last form, L is the self-inductance introduced in Equation 17.7.
It’s important not to confuse the work E with “frictional” loss (Joule heating due

to ohmic resistance). Resistive losses occur even when current is held steady, and only
in resistive media (not superconductors). In contrast, the energy cost E just computed
applies even to superconductors, but only when current is changing. Moreover, all the
energy that we invest in increasing the current can be recovered if later we let the
current decrease—the induced electric field also opposes that change, and can even
be used to extract the same amount of useful work that we expended when we set up
I. A superconducting coil stores energy; it doesn’t dissipate it.

We get a very suggestive result if we reexpress our answer in terms of the magnetic
field:

E = fia2h

2µ0
ÎB̨Î2. (17.12)

This formula has forgotten everything about the original geometry except the volume
of the region with significant fields. It suggests that there’s energy inside the cylinder,
with volume density equal to a constant times the field strength squared.

Equation 17.12 is reminiscent of a result we got long ago for capacitors:11 We
found that the energy needed to charge up a capacitor is 1

2 ‘0ÎĘ Î2 times the volume of
the region with nonzero electric field. That result suggested that there’s stored energy

10Not so astonishingly, given his personality, Heaviside neglected to patent his very practical discovery,
so others made a fortune from it.
11See Equation 5.2 (page 56).
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between the capacitor plates, again with volume density given by a constant times
field strength squared. That is:

Maxwell’s equations for electrodynamics appear to be compatible with
energy conservation if we attribute energy density to empty space. Specif-
ically, we’ve found energy density 1

2
!
‘0Ę 2 + B̨ 2/µ0).

(17.13)

How are these energies stored? Apparently not in any medium—our coil and
capacitor each have nothing inside! A more precise version of this question is, “Can
we prove a general statement of the conservation of energy, in which electric and
magnetic fields themselves can store it?” We’ll pursue this in Chapter 34. Right now,
we have just circumstantial evidence in special cases (a parallel-plate capacitor and a
solenoid).

In Maxwell’s time, the answer seemed obvious. Paraphrasing what many believed:

“So-called vacuum, which you get by removing all the air from a vessel, is
still full of stu�, the ‘æther.’ An electric field stretches that stu�, storing
elastic energy. A magnetic field sets it in motion, storing kinetic energy.”

We’ll soon see that after Einstein, eventually nobody believed that proposition.12 Then
the question got more urgent: What, then, carries the energy? We’ll return to that
story after we understand Einstein.

17.4 MAXWELL’S MODIFICATION TO AMPÈRE’S LAW

We have modified the static equation Ǫ̀◊Ę = 0 in order to accommodate experimental
reality (induction). Now we must modify Ampère’s law for a di�erent reason.

17.4.1 A bold prediction
Hanging Question #D (page 11) raised the issue that we must solve eight Maxwell
equations with just six fields Ę and B̨ . In statics, Section 14.4.4 (page 167) argued
that the field equations are secretly just six independent equations, by taking the
divergences of the two curl equations.

Moving beyond statics, we now take the divergence of Faraday’s modified equation,
Equation 17.8, and see that it’s still vacuous (always satisfied, doesn’t constrain the
fields). But taking the divergence of Equation 17.4 and using the continuity equation
now gives

0 = µ0Ǫ̀ · j̨ = ≠µ0
ˆ

ˆt
flq. (17.14)

That’s just false in nonstatic situations, so we have a problem. However, notice that

(i) The bad right-hand side equals ≠µ0‘0Ǫ̀ · ˆĘ

ˆt
, so

12Like many overturned ideas, this one had a long half-life. Lenard, Lorentz, and Michelson reportedly
never gave up on it.
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(ii) Modifying Ampère’s law could cure this inconsistency, replacing Equation 17.14
by an identity that’s always true and rescuing our 8 æ 6 argument. The required
modification is just13

Ǫ̀ ◊ B̨ = µ0‘0
ˆĘ

ˆt
+ µ0j̨ . Ampère (17.15)

We have arrived at Maxwell’s famous modification of Ampère’s law. The exact
reasoning that Maxwell used to motivate it is unclear, although it may have boiled
down to assuming that the current associated with bound charge in a real dielectric
medium14 was accompanied by a similar current from the æther that Maxwell and
others believed filled empty space.

The argument given above based on mathematical consistency looks pretty trivial
to us because we have the clean notation of vector calculus, and clean conceptions of
quantities like charge density. What makes us call Maxwell a genius was his ability
to see through the fog of the unclear notation and conceptual framework of his day.
Indeed, there is no evidence that he was motivated by symmetry of the equations
(Heaviside said that much later) nor by the requirement that they be consistent with
the continuity of charge.

Nor was Maxwell following some definitive experimental result: the constant of
proportionality µ0‘0 ¥ 1.1 · 10≠17 m≠2 s2 on the new term is extremely small, so no
experiment existing in his day could directly confirm or refute it. One would need
fields with extremely fast time dependence (large time derivative) to start seeing the
e�ects of this hypothetical term on laboratory length scales.15 Today we say that the
conclusive proof was Hertz’s verification of the predicted propagating electromagnetic
waves.

We’re all done tinkering with the equations of electrodynamics. Equations 17.1–
17.2, 17.8, and 17.15 are Maxwell’s equations in their final form.16

17.4.2 Boundary conditions
We can now revisit some conclusions we got in electro- and magnetostatics, concerning
fields at interfaces. The results that rested on integrating Gauss laws are unmodified
in dynamics, because the Gauss laws themselves are unmodified:

�B‹ = 0. always [14.20, page 169]

n̂ · (Ęvac ≠ Ę(1)) = ≠n̂ · P̨(1)/‘0, dielectric/vacuum [5.13, page 63]

with a similar formula for a dielectric/dielectric interface.

13Note that the left hand side of Equation 17.15 can be expressed without any Levi-Civita tensors,
if we use the antisymmetric tensor representation of the magnetic field. And the right side certainly
doesn’t have them, so the whole thing is invariant under spatial inversions.
14See Section 49.2.1. Ironically we no longer believe in the æther, but the name “displacement current”
that this analogy inspired has stuck.
15Maxwell wrote 1868: “This part of the theory... has not been verified by direct experiment. The
experiment would be a very delicate and di�cult one.”
16We will, however, build a useful alternate version of these equations to describe electromagnetism
in media without having to handle every electron explicitly. That version is an approximation to the
equations written here, which are more fundamental and universal.
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Turning now to the results that rested on integrating the Faraday and Ampère
laws, we find that they, too are unchanged! That’s because the time derivative terms
are to be multiplied over an area that goes to zero in the limit of a narrow rectangle
in Figure 5.3b or Figure 14.2b. Thus,

�ĘÎ = 0 and [5.15, page 63]

�B̨Î = µ0j̨ (2D) ◊ n̂, [14.21, page 170]

where j̨ (2D) is the net 2D charge flux at the surface.

17.5 WAVE SOLUTIONS

Section 17.4 suggested that Maxwell’s modification to Ampère’s law might not be
quantitatively important in experiments. But let’s keep an open mind, and look for
solutions to the modified equations. They look a bit complex—lots of equations in
lots of unknowns. Let’s try to eliminate B̨ , arriving at a smaller set of equations just
involving Ę . Also, let’s simplify by looking at empty space, a region with no charges
nor currents. Certainly we know lots of static solutions applicable to that situation.

To do the elimination, consider taking the curl of both sides of the curl equations.
In vacuum,

Ǫ̀ ◊ (Ǫ̀ ◊ Ę ) = ≠ ˆ

ˆt
Ǫ̀ ◊ B̨

or (using the Gauss law)

≠ Ò2Ę = ≠µ0‘0
ˆ2

ˆt2 Ę . (17.16)

Maxwell noticed that this is an example of a wave equation. Substitute the trial
solution

Ę (t, r̨ ) = ˛̄E cos(kz ≠ Êt), (17.17)

where ˛̄E is any real, constant vector, k is a real constant, and Ê is a real positive
constant. Such a vector field is called a plane wave, because there is a stack of planes
(each parallel to the xy plane), on each of which it is constant. The wave moves at
speed Ê/k.

Substituting the trial solution into Equations 17.16 and 17.1 gives the condition
for the trial solution to work:

k2 = µ0‘0Ê2 and ẑ · ˛̄E = 0. (17.18)

We call Ê the angular frequency (dimensions T≠1, SI unit rad/s) and k the wavenum-
ber (dimensions L≠1, SI unit rad/m). Note that “radian” is a dimensionless unit of
angle (because it equals circumference divided by radius), and many authors omit it
when stating numerical values of Ê and k. But that risks confusion with the related
quantities:
.. frequency ‹ = Ê/(2fi) (dimensions T≠1, SI unit s≠1, also called Hz)
.. spectroscopic wavenumber k/(2fi) (dimensions L≠1, SI unit m≠1). Some authors

call our k the “angular wavenumber” to avoid confusion with this quantity.
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Additional descriptors include:
.. period T = 1/‹ (dimensions T, SI unit s)
.. wavelength ⁄ = 2fi/k (dimensions L, SI unit m).
The period is how long you have to wait at fixed position for the wavefront to repeat.
The wavelength is how far you have to travel at a fixed instant of time for the wavefront
to repeat.

Your Turn 17B
Confirm that Equations 17.17–17.18 really do yield a solution to all of Maxwell’s
equations, not just the one combination Equation 17.16. You’ll need to find the
appropriate B̨ (t, r̨ ) first.

Combining the result you just found for B̨ with Equation 17.17 shows that
the fields form a wave traveling at speed Ê/k. Equation 17.18 gives that speed as
(‘0µ0)≠1/2, independent of the amplitude Î ˛̄E Î, the polarization (direction of ˛̄E ), or the
direction of travel (sign of k). It’s a constant of Nature, which we’ll call c. Substituting
numerical values shows that Maxwell’s modification leads to wave solutions that travel
at about three hundred million meters per second. That rang a bell for Maxwell.17

17.6

We have anchored each ingredient in the Maxwell equations, including the sign of
each term, using an observable electromagnetic phenomenon. The only exception is
Maxwell’s term, which we introduced to salvage mathematical consistency. Yet even
this term led to a testable prediction: Solutions that resemble the behavior of light.
The obvious hypothesis is that light is itself an electromagnetic phenomenon. But
there are a lot of aspects to light, which must all be checked to see if the equations
correctly predict them. So we need to work on those, after introducing some helpful
machinery in the following sections. First, however, a few remarks:

• There are many other interesting solutions besides plane waves, for example,
spherical waves that spread from a point (Chapter 37).

• Because Maxwell’s equations are linear, we can get more solutions by superposing
(adding) the fields of two solutions at each point of spacetime. So the rich world

17“Wilhelm Eduard Weber and Rudolf Kohlrausch demonstrated in 1856 that the ratio of electrostatic
to electromagnetic units [today (‘0µ0)≠1/2] produced a number that matched the value of the then
known speed of light. This finding led to Maxwell’s conjecture that light is an electromagnetic wave.
Also, the first usage of the letter c to denote the speed of light was in an 1856 paper by Kohlrausch
and Weber” [ https://en.wikipedia.org/wiki/Wilhelm Eduard Weber ]. Specifically they obtained
c = 3.107 40 ·108

m/s, fairly close to Fizeau’s measured 3.14850. “Maxwell was impressed, as Kirchho�
had been before him, by the close agreement between the electric ratio and the velocity of light, and he
did not hesitate [in 1862] to assert the identity of the two phenomena [Whittaker, 1951, p254].” (“He
had worked out the formulae in the country, before seeing Weber’s result” [Campbell and Garnett,
Life of Maxwell p244].) Later (1868), Maxwell and C Hockin made an improved measurement of
(‘0µ0)≠1/2 ¥ 2.88 · 108

m/s, and compared it to Foucault’s improved measurement of light speed
2.9836.

Contents Index Notation

https://en.wikipedia.org/wiki/Wilhelm_Eduard_Weber


17.7 Complex Notation 205

of interference phenomena observed with light and other EM radiation is all
contained in the electromagnetic-wave theory of light.

• All kinds of wave phenomena display interference, e.g. sound, ripples on water,
etc. We have the more specific prediction that there are polarizations of light
corresponding to the directions transverse to the direction of propagation. Indeed,
we noticed transverse polarization e�ects in the demo that generated microwaves
via electric currents. And visible light was already well known in Maxwell’s
time to display two independent polarizations, a detailed agreement with the
electromagnetic theory of light. In contrast, there is only one kind of sound
wave in air or water (one “polarization”). Sound in a rigid solid like steel has a
three-dimensional space of polarizations, because steel can elastically resist both
compression (longitudinal) and shear (transverse) deformation. Thus light di�ers
from all kinds of sound by having no longitudinal polarization.

• Notice that in Your Turn 17B, Ę and B̨ are perpendicular to each other, and
each is perpendicular to the direction of motion ẑ. Also notice that each varies
sinusoidally with time and space, and they are in phase with each other. So at any
instant, there are periodically-spaced planes where both equal zero! Normally we
don’t notice that, because waves rush around so fast that we can only perceive
the time-averaged fields. But we can use superposition to create a standing wave,
and it really does have points with zero field.

17.7 COMPLEX NOTATION

Our trial solution Equation 17.17 involved the cosine function, but there is nothing
special about cosines.

Your Turn 17C

Use the chain rule to show that Ę (t, r̨ ) = ˛̄Ef(kz ≠ Êt) works for any function f ,
and constant vector ˛̄E, as long as Equation 17.18 is satisfied and ˛̄E ‹ ẑ.

That is, no matter what waveform we choose, the speed is always ¥ 3 · 108 m/s.
Nevertheless, sines and cosines are a convenient basis, from which any waveform

can be constructed by Fourier synthesis. An even more convenient basis is the complex
exponentials; we will usually write waves in terms of the functions

�
k̨,Ê

(t, r̨ ) = ei(k̨·r̨≠Êt). (17.19)

Of course, Ę and B̨ must still be real-valued vector fields, so in any formula involving
�

k̨,Ê
we will eventually need to take the real part to get the physical fields. But in

intermediate steps, the complex notation is often nicer. That’s because sine and cosine
exchange roles under di�erentiation, whereas the derivative of exponential is always
still exponential:

ˆ�
k̨,Ê

ˆt
= ≠iÊ�

k̨,Ê
, Ǫ̀j�

k̨,Ê
= įk �

k̨,Ê
.
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Let’s use complex notation to redo what was done in the preceding section, and
extend it in two ways. We’ll write a trial solution of the form

Ę (t, r̨ ) = 1
2

˛̄E�
k̨,Ê

(t, r̨ ) + c.c. (17.20)

The notation “c.c.” denotes the complex conjugate of whatever precedes it, and guar-
antees that the overall expression is real. The factor of one half says that specifically
we are taking the real part of the first term. The notation ˛̄E refers to a constant
vector, called the complex amplitude of the real vector field Ę(t, r̨ ).

The two extensions we are considering are that
. The wavevector k̨ need not point along ẑ.

. The polarization vector ˛̄E need not be real. Write it as ˛̄E(R) + i ˛̄E(I).
We now impose the Maxwell equations one by one.

17.7.1 Electric Gauss law
Spatial gradients are easy to compute by the rule Ǫ̀ æ ±įk, so Equations 17.19 and
17.20 give

0 = 1
2 įk · ˛̄E�

k̨,Ê
+ c.c. = 1

2 įk · [ ˛̄E(R)i sin(· · · ) + i ˛̄E(I) cos(· · · )] + (two more terms) + c.c.

The third and fourth terms on the right get clobbered by taking the real part. The
ellipses denote k̨ · r̨ ≠ Êt.

Equation 17.7.1 must hold at every point of space, at every time. The only way
this could happen is if the coe�cients of sin(· · · ) and cos(· · · ) separately vanish. So
each of k̨ · ˛̄E(R) = 0 and k̨ · ˛̄E(I) = 0 must hold, or

k̨ · ˛̄E = 0. (17.21)

In short, when dealing with linear expressions in the fields, we don’t need to think
explicitly about the complex conjugate terms. From now on, we’ll abbreviate logic
like the foregoing by passing directly from an equation of the form 1

2 b̄�
k̨,Ê

+ c.c. = 0
to conclude that b̄ = 0, where b̄ is some complex constant.18

For the special case where ˛̄E = ẑ, Equation 17.21 is the same transversality
condition that we found earlier (Equation 17.18).

17.7.2 Faraday law
If Ę is a plane wave, it seems a reasonable guess that B̨ will be too, so extend the
trial solution:

B̨ (t, r̨ ) = 1
2

˛̄B�
k̨,Ê

(t, r̨ ) + c.c.,

where ˛̄B are three more unknown complex constants. Note that we allow for the
possibility that the magnetic field’s variation may be shifted in phase relative to that

18Nonlinear expressions will require more care; see Section 17.10.
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of the electric field: One advantage of the complex exponential notation is that such
a shift can be represented as a multiplicative factor in the coe�cients ˛̄B.

Again we may replace Ǫ̀ by ±įk, and now ˆ/ˆt by ±iÊ. Thus, Faraday becomes

1
2 įk ◊ ˛̄E�

k̨,Ê
+ c.c. = ≠(≠iÊ) ˛̄B�

k̨,Ê
+ c.c.

Solving gives
˛̄B = (k̨/Ê) ◊ ˛̄E.

We conclude that B̨ must be perpendicular to k̨, and also to Ę . Moreover, the spatial
and temporal variation of B̨ match that of Ę (no relative phase shift). We see this
from the fact that ˛̄B is a real constant times ˛̄E. These results generalize what you
found in Your Turn 17B.

17.7.3 Magnetic Gauss law

Similar logic as before reduces this equation to k̨ · ˛̄B = 0, but we already know that
from the Faraday law. Thus we get no additional restriction on our trial solution.

17.7.4 Ampère law

įk ◊ ˛̄B�
k̨,Ê

+ c.c. = c≠2(≠iÊ) ˛̄E�
k̨,Ê

+ c.c.

k̨ ◊
1 k̨

Ê
◊ ˛̄E

2
= ≠c≠2Ê ˛̄E.

Your Turn 17D
Simplify the triple cross product to get ck = Ê as before (Equation 17.18).

17.7.5 Summary
There are plane-wave solutions in vacuum that move in any direction, with any fre-
quency, and any polarization as long as it’s perpendicular to the direction of propaga-
tion. All such solutions move at the same speed c. All have B̨ perpendicular to, but
in phase with, Ę . Each satisfies the dispersion relation ck = Ê.

17.8 POTENTIALS

17.8.1 Representation of ~E and ~B

We found simplified reformulations of electrostatics and magnetostatics in terms of
potentials Â and Ą . Can we do something similar for the full Maxwell equations?

We still have Ǫ̀ · B̨ = 0, so we can still write B̨ = Ǫ̀◊ Ą for some vector potential
Ą . However, we no longer have Ǫ̀ ◊ Ę = 0, so electrons feel a nonconservative force,
unlike in statics. That is, there is no function whose gradient is minus the electric field.
Nevertheless, there is a vector quantity whose curl equals zero, namely Ę + ˆĄ

ˆt
, so we
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can construct a “scalar potential” whose gradient equals that quantity. We’ll continue
to call it ≠Â, but keep in mind that Â can no longer be interpreted as potential energy
of a test body per unit charge. In short, we can always find potential functions such
that

Ę = ≠Ǫ̀Â ≠ ˆĄ

ˆt
and B̨ = Ǫ̀ ◊ Ą . (17.22)

Equations 17.22 let us express six unknown fields (Ę and B̨ ) in terms of just four
unknown potentials (Ą and Â), a significant simplification.19 We will soon see that
further simplifications arise when we substitute this representation into Maxwell’s
equations.

17.8.2 Gauge invariance
One key idea about potentials in the static case was gauge invariance.

Your Turn 17E
Show that the generalized transformation

Ą æ Ą + Ǫ̀�, Â æ Â ≠ ˆ�
ˆt

gauge transformation

doesn’t change the electric or magnetic fields.

17.8.3 Coulomb gauge
Thus again, the potentials are ambiguous, and we can use that fact to insist on a
subsidiary condition if doing so simplifies our equations. For the moment, we’ll again
impose the Coulomb gauge choice

Ǫ̀ · Ą = 0.

The proof that this is always possible is the same as it was in statics (Section 14.2.4),
because we have not modified the gauge transformation formula for Ą.

We can now substitute Ę = ≠Ǫ̀Â ≠ ˆĄ

ˆt
and B̨ = Ǫ̀ ◊ Ą into the Maxwell

equations and simplify by using the Coulomb gauge condition Ǫ̀ · Ą = 0. As in statics,
Ǫ̀ · (Ǫ̀ ◊ Ą ) = 0 is now an identity, so we can forget the magnetic Gauss law. Also,
Faraday’s law becomes an identity, so forget it too. We are left with four equations in
the four unknowns Ą and Â:20

Ò2Â = ≠flq/‘0 (electric Gauss), and

Ò2Ą = ≠µ0j̨ + µ0‘0
!
Ǫ̀ˆÂ

ˆt
+ ˆ2Ą

ˆt2
"
. (Ampère)

It’s tempting to say that we have just found another resolution of Hanging Question
#D (page 11) (“eight equations in six unknowns”), but we must be a bit careful.

19This result addresses Hanging Question #F.
20The derivation of this formula depended on our default choice of cartesian coordinates. The left-
hand side would look more complicated in curvilinear coordinates.
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The four equations just given are only correct if Ǫ̀ · Ą = 0, which looks like a fifth
equation constraining the potentials. However, when we take the divergence of the
second equation, and substitute the first, we find that this combination is vacuously
satisfied; it does not constrain the potentials. So e�ectively we do have four equations
in four unknowns.

17.8.4 The case of zero charge density
We can simplify still more if we’re studying a region with zero net charge density.21

(There can still be currents, however, as in a neutral wire.)
Suppose that we have described our fields with a vector potential in Coulomb

gauge. Then we still have some freedom to apply a further gauge transformation:
Transforming with any function � that obeys Ò2� = 0 will not spoil the Coulomb
gauge condition. Let’s try

�(t, r̨ ) =
⁄

t

t0

dtú Â(tú, r̨ ).

Your Turn 17F
Show that:
a. This choice of gauge transformation preserves Coulomb gauge, and
b. This choice of gauge transformation eliminates the scalar potential altogether
(transforms it to zero).

There can still be electric fields, of course—they are just represented by minus the
time derivative of Ą (Equation 17.22). In short, we found that in vacuum we can
reduce still further from four unknown potential functions to just three.

Your Turn 17G
a. Show that the electric Gauss law is now just an identity.
b. Show that what remains is just three independent equations in three unknowns:

Ò2Ą = ≠µ0j̨ + µ0‘0
ˆ2Ą

ˆt2 in Coulomb gauge if flq = 0 and Â = 0. (17.23)

Here, then is another resolution to Hanging Question #D, for the special case where
net charge density is zero. Again we must be careful, but again the additional condition
Ǫ̀ · Ą = 0 is balanced by the fact that the divergence of Equation 17.23 is vacuously
satisfied.

21Actually, Chapter 37 will achieve a similar simplification even with charges present, but we don’t
need that much power yet.
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17.9 WAVES, AGAIN

We can use the representation of fields by potentials to explore plane wave solutions
in vacuum more systematically. In Your Turn 17G you showed that all of Maxwell’s
equations in vacuum reduce to three copies of the scalar wave equation, supplemented
by Ǫ̀ · Ą = 0. From this, we can quickly recover the results in Section 17.5, and other
results too. For example, the plane wave solutions moving along ẑ take the form

Ą (t, r̨ ) = 1
2 ’̨ �

k̨,Ê
(t, r̨ ) + c.c., (17.24)

where k̨ = kẑ, the polarization vector ’̨ is a constant vector in the xy plane, and �
k̨,Ê

is one of the family of complex functions in Equation 17.19.
More generally, we get plane wave solutions moving in any direction, as long as

k̨ and Ê obey the dispersion relation

Îk̨ Î = Ê/c where c = 1/
Ô

µ0‘0 (17.25)

and ’̨ is any vector perpendicular to k̨.
We have simplified the Maxwell equations, and streamlined the derivation of

plane waves, but it may seem that we have been too successful: For any choice of
k̨ , Equation 17.24 seems to give three linearly independent solutions, whereas the
analysis in either Section 17.5 or Section 17.7 gave only two (for the two directions
perpendicular to k̨ )! The resolution to this puzzle is that Equation 17.23 is only
equivalent to the Maxwell equations in Coulomb gauge, and hence our trial solution
will only work if ’̨ ‹ k̨.

Your Turn 17H
Work out the electric and magnetic fields arising from the solution Equation 17.24,
and hence the relation between the polarization vector ’̨ and the vector ˛̄E ap-
pearing in Equation 17.17. Show that as before, Ę , B̨ , and k̨ are mutually
perpendicular.

17.10 COMPLEX POLARIZATIONS

17.10.1 Linear, circular, elliptical
If ’̨ is a vector with real components, then Ę oscillates about the ±’̨ direction; we
say the plane wave is linearly polarized, because the tip of its Ę vector oscillates back
and forth on a line in the plane perpendicular to k̨.

But there are other options. There’s no mathematical problem with a complex
polarization vector, just as in our earlier derivation Section 17.7. But this is a new
and physically interesting wave.

Your Turn 17I

If you assumed that ’̨ was real when you checked Equation 17.25, work through
it again without this assumption. Specifically, work out Ę · k̨ and B̨ · k̨ .
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Your Turn 17J

a. Consider the wave with k̨ = kẑ and ’̨ = x̂ + iŷ. If we sit at a fixed location
in space, say the origin of coordinates, and watch Ę (t, 0̨ ) as time goes by, what
figure does its tip trace out? Why do you suppose this wave is said to be circularly
polarized?
b. Try it again with ’̨ = x̂+2iŷ and interpret such elliptically polarized solutions.

17.10.2 Circular polarization basis
Starting from a particular k̨ , choose a pair of real unit vectors ’̂(1), ’̂(2) perpendicular
to k̨ and forming a right-handed triad with it. That is, ’̂(1)◊’̂(2) = k̂. Any polarization
for the given k̨ can be written as a linear combination of these two basis vectors.

Alternatively, we can define

’̂(±) = (’̂(1) ± i’̂(2))/
Ô

2. helicity basis (17.26)

Any polarization vector ’̨ can be written as a (complex) linear combination of ’̂(1,2),
or of ’̂(±). If the polarization vector is purely along ’̂(+), then the wave is said to be
circularly polarized with positive helicity, and similarly for a pure ’̂(≠) wave (which
is negative helicity).22

17.11 SPHERICAL WAVES

You may ask, “What was the point of redoing everything with potentials? Section 17.5
already found plane waves directly in terms of Ę and B̨ , and it wasn’t much easier
in Section 17.9.” One answer is that the calculations get harder, and the benefit of
the potential formulation becomes more important, when we study spherical waves
(Chapter 37):23 The algebra is much easier than dealing directly with Ę , B̨ .

17.12 PLUS ULTRA

In electrostatics, the electric field could be regarded as a mathematical convenience—
introducing it into the formulas was optional. We could, after all, just say that all
charges exert forces on each other directly, following Coulomb’s law. Although we
found a useful concept of electrostatic energy density in the space between capacitor
plates, this interpretation, too, was physically optional—we could just say that the
energy of a capacitor was the total potential energy of all the separated charges in
each others’ force fields.

Waves change everything. We’ll see that shaking (accelerating) a charge generates
these waves, and they in turn can shake other distant charges. Suppose that we shake

22Beware that di�erent authors disagree about the convention for which is positive and which negative.
23Also see P+S §11.5.4.
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a charge for a while, then stop. Suppose too that the nearest other charges are far
away. Then there will be a period after the original charge has lost some energy, but
before any other charge has gained energy. Hanging Question #H (page 24) already
asked: Where is the energy at that time?

As mentioned in Section 17.3, Maxwell and his contemporaries believed that the
so-called vacuum was actually filled with some substance, the stu� that jiggles when a
wave goes by. The fields were just the state of motion and deformation of that stu�, and
their stored energy was just its kinetic and deformation energy, just as when sound
passes through steel. Einstein realized, however, that this stu� (the “luminiferous
æther”) had to have contradictory physical properties. Eventually he concluded that
it didn’t exist, or at least not as any material substance. Then the question comes back
to us: If vacuum is truly empty, what carries that energy? Our answer will be, “It’s
in the fields themselves. The propagation of waves is what transports energy through
space.”

PROBLEMS

17.1 Faraday
A thin ring of copper spins freely in zero gravity, about an axis that includes one of
its diameters. The ring’s radius is 0.1 m. Its initial angular velocity is Ê0, a certain
number of radians per second.

At time zero, we turn on a magnetic field B̨0, with magnitude 0.02 T and directed
perpendicular to the axis of rotation. The ring’s initial kinetic energy gets dissipated
in resistive heating of the ring. Calculate the time needed for the angular frequency
to decrease to Ê0/e, where e is the base of natural logarithms.

The electrical resistivity of cold-drawn copper is24 1.7 · 10≠8 � m, and its mass
density is 9000 kg/m3. You may assume that the slowdown is gradual, or

d
dt

ln Ê π Ê0.

17.2 Feeling the heat
In this problem, you will develop a simple model for estimating radio-frequency (RF)
energy absorption in a patient undergoing an MRI scan.
a. The wavelength of an RF wave is bigger than a person, so suppose that a spatially

uniform, but time-varying magnetic field B̨(t) = ẑ
!
B(0) + ”B̄ cos Êt

"
is applied.

Apply Faraday’s law to a circular path in a plane perpendicular to B̨ to find the
amplitude of the resulting electric field. Your answer depends on the radius R of
the circular path; later we will set R to a value comparable to a human radius.

b. Model the patient as a uniform conductor with electrical conductivity Ÿ. Use the
ohmic transport relation to find the average power dissipated in the conductor per

24http://www.matweb.com . You may be more familiar with the conductivity, which is the reciprocal
of resistivity.
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C C

L L

Figure 17.3:

volume. Actually, the RF signal is not continuous; it consists of pulses of duration
�t which come once every repetition period TR, so make the appropriate correction.

c. It’s customary to report the “specific absorbed rate,” which is power per unit body
mass. Find the SAR in terms of body mass density flm and Ÿ, R, Ê, ”B̄, �t, and
TR.

d. The pulse duration, field strength, and frequency are related by the requirement
that the pulse rotate proton spins by an angle fi/2. You can take as given that this
requirement amounts to ”B̄ = 2fi/(2“ �t) and Ê = “B(0), where “ is some constant
and B(0) is the background magnetic field, a given number. Use this information
to eliminate ”B̄ and Ê from your formula for SAR.

e. Now substitute typical human values: R Æ 0.17 m, Ÿ ¥ 0.3 �≠1m≠1. And use typical
instrument values B(0) ¥ 0.5 T and TR ¥ 1 s. Also, the “gyromagnetic ratio” of a
proton is “ ¥ 2.7 · 108 Hz/T.

f. Safety requires that we not heat the patient too much! So demand that SAR<
0.4 W/kg. Find the corresponding requirements on �t and also on ”B̄.

17.3 Lumped-element transmission line
This problem explores a circuit that is sometimes useful for signal conditioning, for
example, removing noise known to have a specific frequency. Recently, a filter like this
was added to the MicroBooNE experiment’s electronics at Fermilab.

The main text introduced a solenoid. More generally, any circuit element that
obeys the linear relation Equation 17.10 for some constant L is called an inductor.25

You can purchase devices that approach this idealized behavior (approximately, over
some frequency range).

Consider a chain of discrete elements with circuit diagram shown in Figure 17.3
The chain contains inductors each with inductance L, and capacitors each with ca-
pacitance C. Write equations analogous to the ones we wrote for the cable equation
but appropriate to this situation (no resistors). Unlike in the cable equation, however,
we will not take any continuum limit.
a. Show that the quantity LC has the dimensions s2.
b. Following the analysis in Chapter 10, eliminate the currents Ij to get an infinite

set of coupled, linear, ordinary di�erential equations in the variables {Âj}. They
have constant coe�cients, so we expect solutions of the form

Âj(t) = 1
2 Â̄je≠iÊt + c.c.. (17.27)

25In particular, an idealized inductor has negligible electrical resistance and capacitance.
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Figure 17.4:

c. Substitute that trial solution to get an infinite set of coupled algebraic equations.
d. It still looks hard, but your equations are invariant under shifting everything one

step in space. So our experience with related systems suggests that we make the
trial solution

Â̄j = Â0eijk (17.28)

where k is some constant. Substitute this trial solution into your algebraic equations
and see what k must be, for a given angular frequency Ê, in order to get a solution.

e. For a certain range of angular frequency values there will be a real solution k
to your condition, and a solution of the form Equations 17.27–17.28 describes a
wave traveling along the chain to infinity. Outside that range, however, there will
be no real solution; the transmission line has a cuto�. Find the allowed range of
frequencies.

17.4 Realistic transmission line
Figure 17.4 shows another transmission line, but made more realistic by the addition
of resistance R along the segment shown and leak conductance G. The figure shows
the line as a series of lumped-element circuits, but actually we suppose that all four
material properties R, L, C, and G are continuously distributed with densities r, ¸, c,
and g respectively. Thus you should initially consider a segment of length �x, with
R = r�x and so on; at an appropriate moment, take the limit �x æ 0.

The line is infinitely long. We suppose that at some point an external agency
imposes a harmonic potential Â(0; t) = 1

2 Â̄e≠iÊt + c.c. We would like to find the
solution everywhere. The problem is time-translation invariant, so a reasonable guess
is again harmonic: Â(x; t) = 1

2 Â̄(x)e≠iÊt + c.c.
a. Follow the strategy in Chapter 10 to write a second-order di�erential equation for

Â̄(x).
b. The problem is also spatially translation invariant apart from the imposed boundary

condition, so seek a solution of the form Â̄(x) = eikx where k is a constant you are
to find.

c. The wavenumber k you found depends on the frequency (the cable’s dispersion
relation). Why would it be desirable for k to take the general form k = ±(Ê/vcable +
i⁄), where vcable and ⁄ are constants?

d. The desirable condition does not generally hold, but Heaviside found that it does
hold if the material parameters r, ¸, c, and g obey a certain relation. Find that
condition.

e. Some resistance R is unavoidable in any long cable. But it had previously seemed
that any nonzero value of g would be a bad thing, to be avoided at all costs. Why
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did Heaviside disagree?

17.5 Helicity basis
The helicity basis is defined in Equation 17.26, starting from a choice of two vectors
’̂(1), ’̂(2) perpendicular to each other and to k̨ and forming a right-handed triad with
it.

• Show that if we choose a di�erent pair of unit vectors ’̂ Õ
(1), ’̂ Õ

(2), which also make a
right-handed, orthonormal triad with k̨ , then we get essentially the same helicity
basis. That is, ’̂ Õ

(+) is a constant times ’̂(+) and similarly for ’̂ Õ
(≠).

• Also show that ’̂(±) · ’̂ú
(±) = 1 and ’̂(±) · ’̂ú

(û) = 0.
• Compute k̂ ◊ ’̂(±) and express it in the helicity basis; show that the helicity

basis vectors are eigenvectors of the operation “k̂◊.” (This operation generates
infinitesimal rotation about k̂.)

17.6 Microwave waveguide
We have been studying wave solutions in infinite empty space, but there are interesting
solutions in confined regions as well. P+S devote an entire chapter to this subject, but
for the special case discussed here you’re probably better o� starting from scratch.

A waveguide consists of an infinitely long rectangular prism along the z axis, made
of perfect conductor. It encloses the region 0 < x < a, 0 < y < b. Inside is vacuum,
where the electric and magnetic fields must obey the wave equation as usual. All we
need are solutions obeying boundary conditions appropriate to conductors.

Consider the following trial solution for the electric field in this region:

Ę (t, r̨ ) = 1
2 E0(y)x̂e≠i(Êt≠kz) + c.c.

Here E0(y) is a function of y only, which you are to find.
a. Find a condition on the function E0(y) so that the electric field obeys the wave

equation, as it must inside the waveguide. Find boundary conditions so that the
electric field obeys Ę Î = 0 on the walls of the cavity. This is a familiar math
problem with a series of solutions; find the simplest one (other than E0 = 0!).

b. Use Faraday’s law to find the magnetic field corresponding to your solution in (a).
The magnetic field needs to satisfy B̨ ‹ = 0 on the walls of the cavity, so impose
this.

c. Once you have found your solution, examine its dispersion relation (relation between
Ê and k). In empty space, there are always solutions for any value of Ê; is that the
case here? Show that all solutions of this form have “group velocity” smaller than
c. (The group velocity is defined as dÊ/dk.)

17.7 Zeeman e�ect
Background: The “Zeeman e�ect” refers to the e�ect on atomic spectra of an applied
magnetic field. Remarkably we can understand it (partially) without using quantum
mechanics.

Problem: Consider a charged particle of mass m and charge q in an isotropic, 3D
harmonic oscillator potential: U(r̨ ) = 1

2 k r2. The particle moves nonrelativistically; its
oscillation is a�ected very little by the radiation it gives o�. It has three independent
normal modes of oscillation, all with the same frequency Ê0 =


k/m.
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Figure 17.5: Magnet used in Zeeman’s experiments.

a. Now we place this system in a static external magnetic field B̨ directed along the
+ẑ-axis. Find the frequencies of the resulting oscillation modes. You can suppose
that B̨ is “small” in any relevant sense, and work to leading nontrivial order in it.
[Hint: Treat oscillations in the xy plane together, but separately from those along
z. Try to guess two trial solutions for xy motions that will still give solutions to
Newton’s F̨ = mą , even when B̨ is turned on.]

b. The frequencies you found in (a) correspond to three kinds of radiation the system
can emit. We have not yet systematically worked out the radiation by a moving
point charge. However, from the symmetries of the problem and what you do
know about light, you should be able to make an educated guess about what
kinds of polarizations will be emitted. So find the frequencies and corresponding
polarizations of radiation seen by an observer located far away on the ẑ-axis.

c. Explain how observation of this radiation can be used to determine the charge/mass
ratio of the electron, including its sign, even if the value of the spring constant k
is unknown.

d. Evaluate your answer for the frequency shift numerically, assuming ÎB̨ Î = 2 T.
Compare to the frequency of visible light. Is it a big e�ect?
Comments: Zeeman did this experiment in 1896. Following a suggestion by HA

Lorentz, he looked for, and found, the polarization e�ect discussed in the problem.
Lorentz then analyzed the data and found the charge-mass ratio that they implied.
Zeeman and Lorentz shared a Nobel Prize for this work. In the second iteration of this
experiment, Zeeman obtained a charge/mass ratio for the electron within 10% of the
modern value. Still later experiments showed that the e�ect is much more complicated
than the classical picture discussed here. However, the qualitative conclusion about
the sign of q/m is valid.
Some highly magnetized stars (magnetars) have much bigger B than what is attainable
in the lab, so this e�ect gives a useful way to establish the value of B on a distant
object.
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First Look at Energy and Momentum
Transport by Waves
Section 17.12 suggested that “EM fields store energy; the field equations have traveling
wave solutions; therefore such a wave carries energy.” We’ll eventually make a general
framework for studying this claim, but first let’s do some simple calculations a concrete
situation.

Sound and water waves carry energy: Sound can actuate those tiny bones in your
inner ear; the tsunami brings the earthquake to your shores. So it’s not surprising
that EM waves can also carry energy, though the details are significantly di�erent
from the other cases. We’ll see, however, that light also does some completely new
things: It also transports linear and angular momentum.

18.1 LINEAR POLARIZATION

18.1.1 Energy transport
As in Chapter 17, we’ll make the useful abbreviation

�
k̨,Ê

(t, r̨ ) = ei(k̨·r̨≠Êt), (18.1)

and consider a solution to Maxwell’s equations that propagates along the +ẑ direction
and is linearly polarized along x̂:

Ę = 1
2 iÊ’̄x̂�kẑ,Ê + c.c., B̨ = 1

2 ik’̄ŷ�kẑ,Ê + c.c.. (18.2)

Here ’̄ is a real scalar constant.
We suppose that this wave travels through empty space, then impinges on a

charged particle with charge q. The particle is constrained to move only in the xy
plane, that is, the plane z = 0, so we will denote its trajectory as r̨‹(t). We assume
that within that plane, its motion is damped by viscous friction with coe�cient ÷.
That is, it feels a friction force ≠÷(dr̨‹/dt).

In the limit of strong friction, we may neglect inertia in Newton’s law of motion:

0 = ≠÷
dr̨‹
dt

+ q
!
Ę + dr̨‹

dt
◊ B̨

"
‹.

The second term on the right equals zero, because dr̨‹/dt and B̨ both lie in the xy
plane, so their cross product has no component in that plane. Thus

dr̨‹
dt

= qĘ

÷
.
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We can now find the rate at which the field does work on the particle. Because
the particle is constrained to move only in the xy plane, and we assumed ’̄ is real,

P = f̨‹ · dr̨‹
dt

= q2ÎĘ Î2/÷ (18.3)

= q2Ê2’̄

4÷

..ix̂e≠iÊt ≠ ix̂e+iÊt
..2 = q2Ê2

÷
’̄2!

Im e≠iÊt
"2

. (18.4)

This quantity is always greater than or equal to zero. Its time average is

ÈPÍ = q2Ê2

2÷
’̄2. (18.5)

Your Turn 18A
a. Check that the units in this formula (and every formula) make sense.
b. Also, redo this derivation for the more general case in which ÷ is not so huge,
so that we must also account for the inertial term mẍ in Newton’s law. Check
that the limits m æ 0 and ÷ æ Œ holding frequency fixed work the way you
expect.

So far, our result is not very surprising: Like any wave, an EM wave carries energy
proportional to its amplitude squared. The charged particle can extract some of that
energy, much as a cork floating on water extracts kinetic energy from passing waves.

18.1.2 Momentum
Even though we assumed our particle was constrained to move only in the xy plane,
still it can feel forces in every direction. You might expect that because force is a
vector, unlike energy, such forces would average out to zero. Indeed the electric force,
which is directed along x̂, does follow that expectation. But a moving particle will
also experience a magnetic force directed along k̨:

f̨Î = q
!dr̨‹

dt
◊ B̨

"
Î = q

!qĘ

÷
◊ B̨

"
Î. (18.6)

We now substitute Equation 18.2:

f̨Î = q2Êk

÷

1
4

!
(i’̄x̂e≠iÊt + c.c.) ◊ (iŷ’̄e≠iÊt + c.c.)

"
Î

= ≠q2Êk’̄2

4÷
(e≠iÊt + c.c.)2 = q2Êk’̄2

÷

!
Im e≠iÊt

"2
. (18.7)

The time average is then

Èf̨ÎÍ = q2Êk’̄2

2÷
. (18.8)

Recall that force is the rate of momentum transfer. So the wave continually
transfers momentum to the particle, or in other words the particle continually extracts
momentum from the wave.
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Your Turn 18B
As before, generalize the calculation to include the inertia term, and check the
limits m æ 0 and ÷ æ Œ for reasonableness.

Our result has no counterpart with, say, sound waves: Sound in air involves pressure
variation. It can shake things along its direction of propagation, but gives no net push.
Even sound in, say, steel, which can have transverse polarizations, only shakes things.
In contrast, we just found net momentum transport.

Our derivation still su�ers from the same critique as in the preceding section: We
see that the wave carries momentum, but we don’t yet know how much. All we found
was how much momentum one particular system can extract.

18.1.3 Some electromagnetic phenomena
Just knowing that light can transport momentum, and that the delivered momentum
is in the direction of its propagation, already gives us a lot of physics.

• This “radiation pressure” phenomenon underlies the observation that a comet’s
dust tail always streams away from the comet in the direction away from the
Sun.

• At the earliest times after the Big Bang, radiation pressure dominates over the
gas pressure of ordinary matter, so it is crucial for cosmology.

• It supplements ordinary gas pressure in stars, opposing gravitational collapse
(until the nuclear fuel is exhausted).

• It detonates thermonuclear bombs.
• It allows exquisitely fine manipulation of micrometer-size objects via optical

tweezers.
• One day it may even provide a tiny but inexhaustible source of impulse for “solar

sail” spacecraft.1

18.2 LIGHT CANNOT BE INTERPRETED AS A STREAM OF
NEWTONIAN PARTICLES

Although we haven’t found the absolute energy or momentum content of a wave,
something interesting comes up if we divide the results of the two preceding sections:

rate of energy extraction
rate of momentum extraction = c. (18.9)

Everything specific to our silly little imagined system (charge q, friction coe�cient)
cancels out of this universal ratio.

Your Turn 18C
Confirm that the particle mass m, which you added in Your Turns 18A–18B, also
drops out.

1See Problem 18.1.
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So it’s plausible that this result will have far greater generality, and will continue to
apply to all the energy and momentum carried by a plane wave.

This result gains further significance in the quantum theory of light. That is a
dual picture of light as a stream of particles, each with energy E = ~Ê. Our charged
particle intercepts and absorbs some of them at a rate r. Equation 18.9 then implies
that each particle of light must also carry linear momentum p = ~Ê/c, or

E = pc.

That result sounds paradoxical: Newtonian mechanics instead says that E =
p2/(2m) = pv/2! It’s no accident that when Albert Einstein was working on his
light-quantum hypothesis, he was also working out special relativity. Chapter 30 will
give his resolution to this apparent paradox.

18.3 OTHER POLARIZATIONS

We now drop the assumption that our wave be linearly polarized along x̂. That is, let
’̨ be any complex vector satisfying ’̨ · k̨ = 0.

Your Turn 18D
a. Start from Equation 18.3 and find the analog of Equation 18.5 in this situation.
b. Start from Equation 18.6 and find the analog of Equation 18.8.
c. Is Equation 18.9 still true in this more general situation?

Equations 18.4 and 18.7 showed that the power and force transmitted to a particle
by a linearly polarized wave fluctuate (though they don’t change sign).

Your Turn 18E
a. Show that on the contrary, if the wave is circularly polarized then the power
and force are both constant in time.
b. Show that for elliptical polarization, we get something in between those ex-
tremes.

18.4 ANGULAR MOMENTUM

Section 17.10.1 showed that there are plane waves in which the electric and magnetic
fields twirl around the axis of propagation, instead of shaking along a fixed direction.
You can generalize the preceding thought-experiment to a situation in which the
charged particle is only constrained to move in the xy plane. It may seem reasonable
that then the particle will execute uniform circular motion, in a direction determined
by the wave’s helicity. That motion requires a torque, or in other words the transfer of
angular momentum from the wave to the particle (which in turn is coupled by friction
to the surrounding fluid that we imagined). You’ll work out details in Problem 18.2.
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FURTHER READING

Historical:
JH Poynting predicted the phenomenon of radiation pressure in 1884. P Lebedev,
and independently E F Nichols and G Ferrie Hull, detected its e�ect on macroscopic
objects and absorbing gases in 1901.
Poynting also predicted angular momentum of EM fields (Proc. Roy. Soc. Lond.
A82:560(1909)). Experimental discovery: Beth, R. A. (1935). Direct Detection of the
Angular Momentum of Light. Phys. Rev., 48, 471–471 http://doi.org/10.1103/PhysRev.48.471
(Beth, 1935). Beth, R. A. (1936). Mechanical Detection and Measurement of the Angu-
lar Momentum of Light. Phys. Rev., 50, 115–125 http://doi.org/10.1103/PhysRev.50.115
(Beth, 1936).
In the early 1970s, Arthur Ashkin showed that laser-induced optical forces could be
used to alter the motion of microscopic particles and neutral atoms, work honored in
2018 with a Nobel Prize.
Modern:
Optical tweezers: Jones et al., 2015; Perkins, 2014.

Contents Index Notation



Track 2 223

T2 Track 2

18.1.2Õ Pondermotive force
[Not ready yet.]
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PROBLEMS

18.1 Radiation pressure
“Yuri Milner, a Russian physicist and billionaire investor, announced a plan to
develop the technologies that interstellar flight would need. Mr. Milner is devoting
himself to the challenges of deep space.. . . He is going to spend $100m on a
“Breakthrough Starshot” research programme.” – The Economist, April 2016.

Sounds crazy, but maybe you could get a little slice of that $100m. (Previously he
pledged a di�erent $100m to SETI.)

Milner’s idea is to power a tiny spacecraft—with mass just five grams—by radi-
ation pressure from a humungous laser based on Earth. The Economist makes it all
clear by stating that “A gigawatt laser beam—roughly the power output of a large
nuclear plant—provides a force equivalent to that required to lift a glass of beer.”
a. Estimate the attainable force and see if the Economist got it right. If that last quote

is not precisely phrased, for example, if it’s missing some other parameter describing
the spacecraft or laser, choose some parameter value(s) that seem reasonable to
you and that allow a precise statement.

b. Milner’s plan involves illuminating a reflector on the tiny spacecraft for ten minutes.
The spacecraft is launched from outside Earth’s atmosphere (no air resistance).
With the acceleration corresponding to the force you found in (a), how fast would
the spacecraft be flying at the end of ten minutes?

18.2 Angular momentum transport
Suppose that a plane, circularly polarized electromagnetic wave of angular frequency
Ê travels along the +ẑ direction.
a. Write the electric and magnetic fields analogous to Equations 18.2, again parame-

terized by a single real constant ’̄ with appropriate dimensions.
The wave encounters a point charge q. Again, the charge is free to move in the xy
plane. There is friction slowing it down, so its equation of motion is

m(d2r̨‹/dt2) = ≠÷(dr̨‹/dt) + (Lorentz force).

Neglect any radiation by the charge, and again neglect the left-hand side of the above
formula (pretend that it’s zero).
b. Find the steady state solution to the equation of motion for the charge. Your

formula will involve Ē, q, and other constants.
c. The EM field does work against friction. Let P be the rate at which it does this

work, averaged over a cycle. Find P.
d. The wave also pushes the charge in the xy plane, exerting a torque ·z. Find the

average of this torque over a cycle.
e. The ratio È·zÍ/P has a remarkably simple form: Find it in terms of the parameters

in the problem.
f. Following Section 18.2, momentarily unlock the quantum part of your brain and

reinterpret your answer (e) in terms of a stream of little packets, each carrying a
lump of energy Eú and a lump of angular momentum Lú. That is, interpret your
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answers to (c,d) as saying that the charge absorbs some of these lumps; then make
a statement about the relation between Eú and Lú using your result in (e). Draw
a conclusion about the intrinsic angular momentum carried by one packet.
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Ray Optics and the Eikonal

19.1 FRAMING

• Real-world problems are mathematically harder than the idealized problems we
encounter in our first textbooks. Often, we need some sort of unfair advantage
before we can make a dent in a real-world problem. Often such an advantage comes
in the form of a limiting case; for example, some quantity may be numerically
small in cases of interest. In this chapter, we’ll study the propagation of light in
media that, while not uniform, at least vary on length scales much bigger than
the wavelength of the light under study. That is, we’ll study situations in which
⁄ÎǪ̀nÎ is very small. This circumstance arises in many practical problems, and
lets us approach otherwise forbiddingly complex situations.

• In everyday life, light seems to travel along “rays” that are generally straight
lines—except when the light gets reflected or refracted. No concept of “rays”
appears in the Maxwell equations, however. What, then, is a “ray?” This chapter
will explore that question, which turns out to be connected to the preceding
point.

Figure 19.1: [Saul Steinberg.]
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Figure 19.2: Refraction and total internal reflec-
tion. A plane wave passes through a planar in-
terface. Lines represent the planes of constant
phase for the incident- and transmitted-wave
parts of the solution. (A reflected-wave part is
also present but not shown.) Left, perpendicular
incidence (◊(1) = ◊(0) = 0). Center, the angle
◊(1) is nonzero but less than the critical value.
Right, no solution is possible when the angle ◊(1)

is too large. If the wave is coming from within
the medium (traveling upward) as shown, then
in this case it cannot escape and must be totally
internally reflected.
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19.2 UNIFORM MEDIUM

Consider a uniform, isotropic dielectric medium. Following Chapter 5, we will assume
that the medium can be summarized simply by using an e�ective permittivity ‘(1) > ‘0
that is scalar in character.1 Then the same analysis as in Chapter 17 shows that there
will be transverse wave solutions with dispersion relation Ê = (c/n(1))Îk̨ Î, where the
index of refraction n(1) =


‘(1)/‘0 is a constant larger than 1.

19.3 PIECEWISE-UNIFORM MEDIUM

19.3.1 Refraction law
Consider a sharp junction between an otherwise uniform dielectric medium 1 and
vacuum. (Junctions between two media can be handled similarly.) We assume that
the medium and its boundary are not changing in time (think about a chunk of glass).
Then Maxwell’s equations are still linear partial di�erential equations with coe�cients
that are constant in time, so they will still have solutions with overall time dependence
everywhere Ã e≠iÊt.

The coe�cients are not constant in space, however, due to the boundary, so we
can’t expect solutions with a single overall eįk·r̨. Separately on each side, however,
there are solutions of this form. So consider a trial solution with transverse plane
waves on either side of the boundary, with wavevectors k̨(1) and k̨(0).

Figure 19.2a illustrates the situation when k̨(0) is perpendicular to the interface.
The horizontal lines represent the planes of constant phase, for example, where Ę =
B̨ = 0. These “wavefronts” are more widely spaced on the vacuum side because the
two regions have the same frequency but di�erent wave speed.

Figure 19.2b shows a more general situation. The vertical component of electric
field may change discontinuously across the boundary, due to the possibility of bound
charges there, but Faraday’s law shows that the horizontal components must be

1Chapter 49 will justify this prescription in greater detail. We also assume that the magnetic polar-
izability is negligible, so µ = µ0.
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Figure 19.3: (a) The observer on the bridge gets an accurate impression of the location of
the fish (head is at b). The observer on the bank, unconsciously assuming that light travels
on straight lines, gets the inaccurate impression (the head seems to be at a). (b) Viewed
from below, part of the air-water interface appears to be a mirror.

continuous. Then in particular the loci of zero horizontal Ę field must match up
across the boundary. The only way for this boundary condition to be consistent with
di�erent wavefront spacing is for the wavevector to bend, as shown.

Your Turn 19A
Because the frequency is the same on each side, we know from the dispersion
relations that Îk̨(1)Î = nÎk̨(0)Î.
a. Convince yourself geometrically that the direction of the wavevector must
change according to

sin ◊(0) = n sin ◊(1). (19.1)

b. How does this formula change for an interface between two dielectric media?

Figure 19.3a shows one familiar consequence of refraction.

19.3.2 Optical tweezers
Figure 19.4 shows how a spherical object with di�ering index of refraction from its
surroundings will feel a net sideways force when it encounters a beam of light. This
phenomenon is useful for manipulation of micrometer-scale objects (and of nanometer-
scale objects that we may tether to them): The optical tweezers e�ect.

19.3.3 Spherical aberration
The law of refraction is also the basis for the focusing of light by a lens. Figure 19.5a
shows a bundle of parallel light rays that impinge on a spherical dielectric object. If the

Contents Index Notation



19.3 Piecewise-uniform Medium 229
Figure 19.4: Generation of transverse force on a
dielectric sphere by a beam of light, in the ray-
optics regime. (a) The sphere is not centered in
the beam. Two rays in the beam miss the sphere
altogether. One ray is bent, undergoing a change
in its momentum (a vector quantity). Newton’s
third law requires that the bead receives a con-
tinuous impulse toward the left. (b) The sphere
is centered in the beam. The central ray is unde-
flected, and the ones flanking it make cancelling
contributions to the net transverse impulse.

a b

a bair

glass

Figure 19.5: Spherical aberration. (a) [Ray diagram.] Parallel rays arriving at a lens with
spherical surfaces, and passing close to its center (thinner lines), nearly coincide at a com-
mon focus (smallest dot at far right). However, rays initially farther from the axis (heavier
lines) cross it in a spread-out array (larger dots). The rays shown were computed by us-
ing the law of refraction (Equation 19.1), for the case of a glass lens immersed in water.
(b) [Photograph.] The spread-out focus is visible as the bright line in this photo. [(b) From
Cagnet et al., 1962.]

object’s diameter is much bigger than the wavelength of the light, then we may apply
the law of refraction separately to each of the lines shown. The line passing through
the center of the sphere is undeflected, but flanking rays are bent more and more,
which tends to bring them to a common point, or focus. Unfortunately, however, the
focusing is not perfect. The figure shows piecewise-straight lines that bend according
to Equation 19.1, with index values appropriate for glass and water. The lines close to
the center do arrive at a common point, but the ones farther out do not, a phenomenon
called spherical aberration that limits the useful light-collecting region of microscope
lenses.

19.3.4 Total internal reflection
Figure 19.2c shows geometrically that there may be no solution of the type described
above, if the angle of incidence exceeds a critical value. In terms of your result from
Your Turn 19A, we see that sin ◊(1) must be smaller than 1/n because sin ◊(0) cannot
exceed 1. If a plane wave originates in the medium (directed toward the vacuum
side) and this condition is violated, then there can be no transmitted plane wave. All
incoming energy instead gets reflected back into the medium, a phenomenon called
total internal reflection (TIR).
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Your Turn 19B

a. What if a plane wave originates on the vacuum side (k̨ directed toward the
medium)?
b. Imagine yourself submerged in a swimming pool. Looking straight upward,
you see the sky. But beyond a certain angle, the surface above you looks like a
mirror (Figure 19.3b). Why?

TIR is the basis for guiding light through fibers. As long as the fiber does not
bend too sharply, an initially axially propagating wave will remain trapped inside it.2
Such a fiber can carry vastly more data than a coaxial cable because the frequency
of visible light is so much higher than the radio frequencies that the coax can carry.
Also, a bundle of such fibers can carry each pixel of a complete input image faithfully
to the same relative position at its output end, regardless of overall bends along the
way. Such fiber-optic endoscopes are indispensable for noninvasive medical diagnosis.

TIR is also the basis for a form of fluorescence microscopy that achieves high
signal-to-noise, called TIRF microscopy.

19.4 GRADIENT-INDEX MEDIUM

19.4.1 Streamlines
We can now return to the framing questions (Section 19.1). First, however, think to
a more concrete situation, a steady flow of water. At any point in a flow there is a
local flux of mass, j̨m(r̨ ). We can ask about the streamlines of this vector field. The
streamlines are curves in space that are everywhere tangent to j̨m. No individual
water molecule will literally follow a streamline, due to its random Brownian motion;
nevertheless, the streamlines give a good impression of what is going on. A small but
macroscopic tracer particle suspended in the water really will follow a streamline.

Similarly, in optics we can consider the streamlines of the energy flux j̨E. In a
uniform, isotropic medium, we found plane wave solutions, for which k̨ is a constant.3
Because the energy flux is always parallel to k̨, the streamlines of a plane wave are
a family of straight, parallel lines. But this idea has wider usefulness than that one
example.

19.4.2 Almost-plane waves
In a medium whose index changes, but only slowly compared to the wavelength of
light, it seems reasonable to look for solutions to Maxwell’s equations that locally
resemble plane waves, but for which k̨local varies slowly over space. In a moment we
will make that notion precise, and verify our expectation that such solutions exist. So

2This primitive description is appropriate for thick fibers. Modern fiber-optic lines are thin and
function more like waveguides; their composition is also modulated across their cross-section; some
even transmit light in the form of nonlinear traveling waves (solitons).
3For an anisotropic medium like calcite we must reconsider this statement.
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it makes sense to define
Rays of light are the streamlines of the energy flux for a solution of this
locally-plane wave form.

Just as a given chamber can have water flowing in various ways, so too a given optical
system can have various locally-plane wave solutions, and hence various di�erent
families of rays passing through it.

With this terminology, in a piecewise-uniform medium, the law of refraction can
be interpreted as saying that rays bend as they pass a boundary, a phenomenon that
indeed corresponds to the behavior of a laser pointer’s beam when crossing from air
to water (or the other way). So we will continue to use this viewpoint when we have
a continuously varying index of refraction. For example:

• Radio waves that originally were sent away from Earth’s surface encounter the
ionosphere, whose index of refraction can be smaller than 1. We’ll discuss the
resulting refraction phenomenon in Section 19.4.6.

• The air close to a hot road surface has nonuniform temperature, and hence also
density and hence also n, leading to mirage phenomena (see Section 19.5.1).

• Our own eye lenses have this property: Although they are transparent, the index
varies continuously from a maximum at the center to a minimum at the surface
(see Section 19.5.2).

• Perhaps most exotic, Einstein’s gravity theory predicts that even empty space will
behave like an inhomogeneous medium if strong gravitational fields are present
(Section 19.5.3).

We might expect some continuous version of the law of refraction to hold in situations
like these. Let’s find it.

19.4.3 Eikonal equation
Solving vector PDEs without a lot of symmetry is in general di�cult. But at least
the situations just mentioned are all steady, that is, invariant under time translation,
so we can again assume harmonic time dependence for our solutions. Moreover, all
of the situations in the preceding list share a convenient aspect: The length scale L0
over which the index varies is much greater than the wavelength of the light we wish
to study, or in other words, c/(L0Ê) π 1. In this regime, it’s reasonable to look for
approximate solutions to Maxwell’s equations of eikonal form

Ą = 1
2 e≠iÊt’̨(r̨ )eiÊ—(r̨ )/c + c.c. (19.2)

In this expression, —(r̨ ) is called the eikonal function, or simply “the eikonal.” For
a plane wave it would be k̂ · r̨. The other unknown function, ’̨(r̨ ), allows for the
possibility that the polarization is not constant throughout space. We assume that
both — and ’̨ vary slowly in space, with a length scale similar to L0.

We would like to see under what conditions the eikonal trial solution works,
to leading order in the small parameter c/(L0Ê) π 1. One way to describe this
short-wavelength limit is to say that we are neglecting di�raction e�ects; this is the
regime where we may hope that a “ray” concept will be useful. We will now develop
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a formulation called ray optics that is useful for handling such situations, and that
makes the notion of “ray” precise.

Close to any point r̨ú, our trial solution Equation 19.2 thus resembles a plane
wave with local wavevector k̨local = Ê

c
Ǫ̀—

--
r̨ú

. In particular, the energy flux Ę ◊ B̨

everywhere points along Ǫ̀—. So once we establish that a particular phase function
—(r̨ ) solves Maxwell’s equations, we can compute its gradient. The streamlines of the
resulting vector field will be the rays that we seek.

First, we impose Coulomb gauge; then the rest of the Maxwell equations will take
the simple form Equation 17.23. Thus, we require

0 = 1
2 e≠iÊt

!
Ǫ̀ · ’̨ + ’̨ · iÊ

c
Ǫ̀—

"
eiÊ—/c + c.c.

We may drop the first term, because the second dominates in the short-wavelength
limit. Thus, not surprisingly, 0 = ’̨ · k̨local, just as we found for plane waves.

The wave equation now says

1
2 e≠iÊt

3
Ǫ̀j

1!
Ǫ̀j ’̨i + iÊ

c
(Ǫ̀j—)’̨i

"
eiÊ—/c

24
+ c.c. = ≠

!
Ê

c

"2 1
2 ’̨ie≠iÊt+iÊ—/c + c.c.

Again drop the first term in parentheses on the left, because the other term dominates
it.

iÊ
c

(Ǫ̀j—) · (Ǫ̀j ’̨i) + iÊ
c

’̨iÒ2— +
! iÊ

c

"2
’̨i(Ǫ̀—)2 = ≠

!
Ê

c

"2
’̨i.

The last term on the left dominates the others, so we find that our trial solution works
if

ÎǪ̀—Î2 = 1 eikonal equation in vacuum (19.3)

Some simple solutions to the eikonal equation include —(r̨ ) = k̂ · r̨ (plane wave)
or = Îr̨ Î (spherical wave). In the former case, the rays are parallel straight lines; in
the latter case, they are straight radial lines.

In principle, we’re now done with the vacuum case, but it may not be clear that
we have made progress: We have approximated Maxwell’s equations, which are linear,
with the new PDE Equation 19.3 which is nonlinear. But we do not always need all
the information in the phase function —. Let’s now convert our equation into a direct
characterization of the rays (streamlines of Ǫ̀—) themselves.4

19.4.4 Rays in vacuum
We are looking for a family of curves, each of which is everywhere tangent to k̨local.
We can write a curve in parametric form as ˛̧(s), where s is arclength. That is, d˛̧/ds
is everywhere a unit vector. It’s everywhere parallel to Ǫ̀—, which itself is everywhere
a unit vector, so

d˛̧

ds
= Ǫ̀—

--
˛̧(s) for all s. (19.4)

4Note that the polarization vector drops out of Equation 19.3, so we learn nothing about ’̨ from
this approach other than that it must everywhere be perpendicular to Ǫ̀—. To learn more, we would
have to retain some of the subleading terms dropped earlier; instead we will concentrate on just the
rays, and not their polarization behavior.
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One way to characterize a curve is to state its curvature, that is, how its tangent
vector deviates from being a constant. More precisely, we define the curvature vector
as the derivative of the unit tangent to the curve with respect to arclength:

d2˛̧

ds2 = d
ds

1
Ǫ̀—

--
˛̧(s)

2
.

The right-hand side of this formula is the derivative of a function as we walk along
the curve. To evaluate that quantity, we can find the dot product of the gradient (that
is, all partial derivatives) with the unit tangent:

d2˛̧
i

ds2 =
A

d˛̧

ds
· Ǫ̀

B
Ǫ̀i—

--
˛̧ =

!
Ǫ̀j—

"!
Ǫ̀j(Ǫ̀i—)

"
=

!
Ǫ̀j—

"!
Ǫ̀i(Ǫ̀j—)

"

= 1
2 Ǫ̀iÎǪ̀—Î2 = 0.

Note that the phase function — has disappeared from this expression; we don’t need
to solve the eikonal equation after all in order to find the rays. Instead, we conclude
that the curvature is zero:

Light rays in vacuum are straight lines. (19.5)

That makes sense: Ray optics neglects di�raction, and when that approximation holds
indeed objects cast sharp shadows. The two explicit families of solutions found earlier
(straight parallel rays and straight radial rays) both obey this rule.

19.4.5 Rays in an inhomogeneous medium
We now consider the case in which the local speed of light, c/n(r̨ ), is not constant in
space. (The symbol c always refers to the speed of light in vacuum.)

Your Turn 19C
a. Show that generalizing our previous derivation (Equation 19.3) gives

ÎǪ̀—Î2 = n2. eikonal equation in medium (19.6)

b. Show that therefore the analog to Equation 19.4 gives the tangent to a ray as

d˛̧

ds
= Ǫ̀—

n

----
˛̧(s)

. (19.7)
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Your Turn 19D
a. Next show

d
ds

3
n(˛̧)d˛̧

ds

4
= Ǫ̀n

---
˛̧(s)

. ray equation (19.8)

at every value of s.
b. Check that your result from (a) is compatible with arclength parameterization.
That is, show that Îd˛̧/dsÎ remains equal to one if it starts that way.

Once again, the ray equation makes no explicit mention of the eikonal function —.
It tells us how light rays bend as they pass through a medium—a generalization of the
law of refraction. When the ray-optics approximation is justified, this equation reduces
Maxwell’s partial di�erential equations to an ordinary vector di�erential equation, a
net simplification.

The ray equation is nonlinear, but it is simpler than the eikonal equation in a
crucial respect: It is an ordinary di�erential equation, not a PDE. Much like Newton’s
f̨ = m ¨̨r, we can start a ray trajectory at any point, with any initial direction of
motion, and then step through the ray equation to find the subsequent path of that
ray. Solving systems of ODEs numerically is a routine task.

19.4.6 An example
Suppose that n(x) depends only on one variable, the “altitude.” This could be the case
when radio waves travel upward and encounter the Earth’s ionosphere (over distances
short enough to neglect Earth’s curvature).

Initially a ray makes an angle ◊0 with respect to the vertical. Further along on
the ray, ◊ = cos≠1(ẑ · d˛̧/ds) may change. If at any point this angle increases to fi/2,
then the ray bounces (or “skips”) back downward.

Taking the dot product of Equation 19.8 with ẑ gives

d
ds

!
n cos ◊

"
= dn

dz

--
˛̧(s).

Multiply both sides by n:

n
d
ds

!
n cos ◊

"
= 1

2
dn2

dz
.

Next, note that when we move by arclength ds, altitude changes by dz = ds cos ◊, so

n cos ◊
d
dz

!
n cos ◊

"
= 1

2
d
dz

!
n2 cos2 ◊

"
= 1

2
d
dz

!
n2"

.

Thus, n2 cos2 ◊ ≠ n2 is a constant along the ray, a generalized law of refraction:

n sin ◊ = constant. if n depends only on z (19.9)
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Figure 19.6: (a) Formation of a mirage. (b) Depending on atmospheric index profile, a mirage can appear
upright, inverted, and/or stretched. [Lynch & Livingston, 2001, Fig 2.24C p57.]

In the special case where n changes suddenly at a planar boundary, this result reduces
to the usual law of refraction. More generally, given a profile for n it tells us which
initial angles, if any, will give rays that bounce back down to Earth.5

19.5 MORE APPLICATIONS

Here are several situations in which light travels through a medium whose index
varies slowly, that is, whose length scale of variation is large compared to the light’s
wavelength.

19.5.1 Mirage
The formation of mirages is another example of this situation (Figure 19.6). On a
long, flat stretch of highway, solar heating creates a layer of air near z = 0 that is
hotter than elsewhere. That air is less dense than the cooler upper layers. Thus, it
can happen that, when we direct our gaze downward (toward the road) we’ll see

5In Problem 19.3/19.4, you’ll show how a similar framework can describe the phenomenon of mirages.
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water

graded medium

Figure 19.7: [Ray diagram.] Correction for spherical aberration by a continuously graded
index of refraction. (a) A set of parallel incoming rays is shown, with their computed tra-
jectories upon entering the medium. In this case, the rays curve inside the lens, because
its index of refraction is greater in the center than at the periphery. The extra bending
has been arranged to make all the rays nearly meet at a common focus. (Problem 19.5
describes the index function that was used to make this diagram.) (b) Actual light rays
traversing the eyelens of an octopus. [From Jagger & Sands, 1999.]

light originating from the sky that has traveled on the curved path in the figure.
It is easy to misinterpret that light as a reflection from (nonexistent) water on the
road, particularly because it tends to shimmer (due to air convection currents). You
probably know from experience that this illusion only appears in the distance, not up
close. You’ll work out this and other details in Problems 19.3–19.4.

19.5.2 A spherical lens with minimal spherical aberration
ee Figure 19.7.

19.5.3 Gravitational lensing
Einstein’s theory of gravitation postulates that space and time can deviate from the
cartesian (flat) geometry assumed throughout this course, and that this deviation
is responsible for the familiar e�ects of gravitation. Moreover, because light (and
everything else) inhabits spacetime, it, too will be a�ected by gravitational fields. Of
special interest is the fate of a ray that travels through empty space far from any
mass, then passes close to a massive object, and finally emerges back into empty space.
This ray will travel on straight lines before and after the flyby, but those two lines
may not be parallel, because of the transit through a non-cartesian region during the
encounter.

Einstein realized that, although the mathematics of curved spacetime gets compli-
cated, his final expression for the bending of a light ray was mathematically identical
to that of a ray passing through ordinary spacetime with a refracting medium having
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e�ective index given by
ne� ¥ 1 ≠ 2„N/c2 + · · · . (19.10)

Here „N is the newtonian gravitational potential far from the mass, and the ellipsis
represents terms of higher order in „N/c2.

Your Turn 19E
a. Equation 19.10 may be unfamiliar to you, so check that the units make sense.
b. In the neighborhood of a point mass, the formula becomes ne� ¥ 1 + rú/r.
Look up the mass of our Sun and find a formula for rú in terms of M/Msun.

19.6 PLUS ULTRA

Erwin Schrödinger was well trained in optics and acoustics. He reasoned that:

• Einstein and deBroglie say that particles correspond to waves.
• Bohr says that in the atomic world, where the length scale is comparable to the

deBroglie wavelength, the wave idea explains the observed quantization of energy,
analogously to the quantization of harmonics in an organ pipe.

• It is true that newtonian mechanics seems to rule the macro world.
• But this sounds familiar: Maybe we need to seek a wave equation (not the usual

one, but some equation with wavey solutions) whose geometric-optics limit gives
trajectories that solve Newton’s laws (not the law of refraction).

It was already known that, remarkably, newtonian mechanics could be formulated in
a way resembling the rays associated to our eikonal equation. So Schrod̈inger did not
have to look far. His crazy idea needed some interpretation, to be sure. But it worked
out OK. In fact, this could be the biggest successful lateral-thinking jump in scientific
history.

FURTHER READING

Total internal reflection: Nelson, 2017.
Eikonal approximation: Landau & Lifshitz, 1979, chapt. 7; Elmore & Heald, 1969,
§9.2.
Ray equation: Elmore & Heald, 1969, §9.2.
Mirage: Richey et al., 2006.
Gravitational lensing: Basic: Schutz, 1990, chapt. 11 Advanced: Straumann, 2013,
chapt. 5, Nye, 1999. Optical tweezers: Perkins, 2014;
https://www.cell.com/biophysj/collections/optical-tweezers; Smith, 1999; Bech-
hoefer & Wilson, 2002; van Mameren et al., 2011; Lang, MJ; Block, SM. 2003. Resource
letter: LBOT-1: Laser-based optical tweezers. American Journal of Physics 71 (3):
201-215; Jones et al., 2015; Appleyard et al., 2007.
Bustamante et al., 2000; Mehta et al., 1999; Svoboda & Block, 1994; Sheetz, 1998;
A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,”
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Figure 19.8:

PNAS 94 (1997) 4853–60.
https://www.cell.com/biophysj/collections/optical-tweezers;

https://www.nobelprize.org/uploads/2018/10/advanced-physicsprize2018.pdf;
Novaya Zemlya E�ect: Corliss, 1984, p151

PROBLEMS

19.1 Waves in conductive medium
An electromagnetic plane wave propagates through vacuum, then enters a medium.
The medium is not polarizable (‘ = ‘0, µ = µ0). However, it is electrically conductive,
obeying an ohmic relation with conductivity Ÿ:

j̨ = ŸĘ .

Assume the medium is everywhere electrically neutral.
a. Find the dispersion relation for plane waves of angular frequency Ê traveling

through such a medium, and interpret it physically.
b. The wave is initially traveling along a direction perpendicular to the planar surface

of the medium, which extends to infinity beyond that surface. Find a solution
to Maxwell’s equations that accounts for the free current density set up in the
medium, and that includes the incoming wave, a transmitted wave, and possibly a
reflected wave as well.

19.2 Poor wandering one
Figure 19.8 shows light shone from a laser pointer into a tank of—mostly—water. The
surface of the water is near the top of the tank. What do you think might cause the
light to take this bizarre, wandering path?

19.3 Mirage 1
Section 19.4.2 mentioned the problem of light passing through a layer of air that is
heated at the bottom, leading to a temperature gradient, hence a density gradient,
hence a gradient in the index of refraction. This is the special case of a “gradient-index”
material whose index depends only on height z.
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Figure 19.9: [Mathematical function.] Curved stationary-phase path in an inhomogeneous
medium. The x and z axes are not drawn to the same scale. Dashed lines show the simple
solutions mentioned in Problem 19.4. An observer who assumes straight-line propagation
will interpret light from A as having come from B.

Section 19.4.6 worked out a general formula for the angle ◊ that a ray makes with
the z-axis (Equation 19.9).

Suppose that the index has the functional form

n(z) = n0(1 ≠ ae≠z/L)

where a π 1 and n0 > (1 ≠ a)≠1; hence n(z) > 1 for all positive values of the height
z. We are interested in incident rays that are almost horizontal (grazing incidence,
◊0 = (fi/2) + ‘ where ‘ is small and positive).

We want to know whether the ray will hit the ground (z = 0) or will on the
contrary bounce back. That is, we want to know if ◊ decreases to fi/2 before z crosses
zero. Show that this will happen if ‘ is small enough, and find out how small is enough.

19.4 Mirage 2
Section 19.5.1 mentioned the problem of light passing through a layer of air that is
heated at the bottom, leading to a temperature gradient, hence a density gradient,
hence a gradient in the index of refraction. This is the special case of a “gradient-index”
material whose index depends only on height z.

Section 19.4.6 worked out a general formula for the angle ◊ that a ray’s trajectory
makes with the z-axis (Equation 19.9). This condition has two unsurprising solutions:
One is a straight, horizontal line: z = z0, ◊(x) = fi/2. The other is a straight, vertical
line: ◊(x) = 0. But there can also be solutions that are curved.

Suppose that the density profile n(z) is strictly increasing as z increases, and
that ◊ starts out tilted downward (0 < ◊ < fi/2). Then ◊ can increase as z decreases,
potentially even leveling o� (◊ æ fi/2), as shown in Figure 19.9.

Suppose that light is emitted by a source at height z0, and detected somewhere
else, also at height z0 but a distance D away. We can characterize a curve in the xz
plane by its height function, z = h(x), where h(±D/2) = z0. We wish to find functions
h(x) that give solutions to Equation 19.9 subject to these boundary conditions.
a. To be specific, suppose that n(z) = nŒ(1 ≠ –e≠z/L), where nŒ is the index of

air at 30¶C, nŒ(1 ≠ –) is the index of air at 50¶C, L = 20 cm, and your eyes are
z0 = 2 m o� the ground. Look up the values of the two indices of refraction for
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visible light in Appendix C. Use Equation 19.9 to see how close ◊0 must be to
fi/2 in order for the ray’s trajectory to level o� before hitting the ground. Then
estimate how far away the mirage will appear to be.

b. Reformulate Equation 19.9 as a di�erential equation determining the entire curve;
that is, an equation involving dh/dx. Solve it analytically or numerically for the
situation discussed above. If any simplifying approximations are valid, go ahead
and use them. Use the smallest value of ◊0 for which you found that a mirage
would be possible, and use a computer to make a graph showing your solution.
(Use di�erent scales for the x and z axes, to show the shape of your solution clearly.)

19.5 Gradient-index lens
Use the ray-optics approximation for this problem. If you haven’t done Problems 19.3

and 19.4 yet, do them first. Those problems asked you to find light ray trajectories
in a nonuniform medium whose index of refraction depends on only one Cartesian
coordinate, the height. In the present problem, you’ll generalize your results to a
nonuniform medium (a “gradient-index lens”) whose index of refraction depends only
on radius, that is, the distance r to the center of the lens. Section 19.5.2 mentioned that
this situation holds for the eye lenses of animals, and claimed that such nonuniformity
can eliminate much of the aberration created by a uniform spherical lens (compare
Figure 19.5a to Figure 19.7).

In this problem, you can scale all lengths by the radius a of the sphere, that
is, work in terms of r̄ = r/a and so on. Let nc = n(0) be the index at the center,
np = n(1) its value at the periphery, and K = np/nc ≠ 1. Fish eyes have nc ¥ 1.52,
np ¥ 1.38, and

n(r̄) ¥ nc
!
1 + K(0.82r̄2 + 0.30r̄6 ≠ 0.12r̄8)

"
,

and are immersed in media with nw ¥ 1.33 on both sides. It will be convenient to
define g(r̄) = n≠1(dn/dr̄).
a. Choose coordinates centered on the lens center, and a plane passing through that

origin, say the xy plane. Write out both components of the ray equation (Equa-
tion 19.8, page 234), which determines the stationary-phase paths ˛̧(s). It’s a pair
of coupled, second-order ordinary di�erential equations in the two Cartesian co-
ordinates of a path lying in the chosen plane, ¸x(s) and ¸y(s). Parameterize the
curve by arclength s, that is

ds = Îd˛̧/d›Î d›. (19.11)

b. Now generate a picture similar to Figure 19.7, by constructing a series of solutions
to the ray equation. Each ray initially starts outside the lens, traveling parallel to
the x axis. Find the x and y values at which the incoming ray enters the lens, and
the angle it makes relative to the perpendicular (the angle of incidence).

c. Use the law of refraction to find the tangent vector to the ray just after it enters
the lens.

d. Use your results in (b,c) to get the required four initial conditions for the ray
equation, then use a computer to solve it numerically.

e. Follow your solution to find the value s̄exit at which r̄ once again reaches the value
1.
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Figure 19.10: The graceful arcs at the center of
this image from the Hubble Space Telescope
are actually the distorted light of distant
galaxies, twisted to form an Einstein ring by
the gravitational influence of the closer galaxy
cluster SDSS J0146-0929. Credit: ESA/Hubble
and NASA; Acknowledgment: Judy Schmidt
[https://www.nasa.gov/image-feature/goddard/2018/hubble-finds-an-einstein-ring].

f. The tangent vector d˛̧̄/ds̄|sexit then tells you the angle of incidence as the ray
crosses the lensæwater interface. Use the law of refraction again to find its angle
after it leaves the lens.

g. After leaving the lens, the ray is once again straight. Find the point where it hits
the x axis, then have your computer draw all three segments (straight, curved,
straight). Repeat for each ray that you wish to trace.

19.6 Gravitational lens
Use the ray-optics approximation for this problem. Section 19.4.6 considered light
ray trajectories in a nonuniform medium whose index of refraction depends on only
one cartesian coordinate, the height. In the present problem, you’ll generalize your
results to a nonuniform “medium” (a static gravitational field) whose “index of refrac-
tion” depends only on radius, that is, the distance r to the location of a point mass
(Equation 19.10).

Choose coordinates centered on the lens center, and a plane passing through that
origin, say the xy plane.
a. Write out both components of the ray equation (Equation 19.8, page 234), which

determines the stationary-phase paths ˛̧(s). It’s a pair of coupled, second-order
ordinary di�erential equations in the two cartesian coordinates ˛̧

x(s) and ˛̧
y(s) of

a curve (ray) lying in the chosen plane parameterized by arclength s.
It’s convenient to scale all lengths by the radius rú that you found in Your Turn 19E,
that is, to work in terms of s̄ = s/rú and so on. It will also be convenient to define
g(r̄) = n≠1(dn/dr̄).
b. Show that g(r̄) = ≠1/(r̄2(1 + 1/r̄)).
c. Consider a series of rays that each start at x̄0 = ≠10, traveling parallel to the x axis

at various y values. The initial position and direction of each ray amounts to the

Contents Index Notation

https://www.nasa.gov/image-feature/goddard/2018/hubble-finds-an-einstein-ring


242 Chapter 19 Ray Optics and the Eikonal

four initial conditions needed in order to solve the ray equation. Use a computer to
solve it numerically for several values of ȳ0. Because Equation 19.10 is only valid
for weak gravitational fields, only examine values of ȳ0 that are greater than (say)
5.

d. Now generate a picture analogous to Figure 19.7, by having your computer draw
your solutions.

e. Your trajectories are distinguished by their y0 values. For each, find the value xú
at which the trajectory hits the symmetry axis y = 0 and graph xú as a function
of y0.

f. Your trajectories become straight lines far from the point mass, and in particular
when they hit the symmetry axis. So you can find the angle of approach ◊ú at
that intersection from your numerical result in (c). This gives an apparent angular
location in the sky. By the problem’s axial symmetry, the background star appears
as a ring with this angular radius: the Einstein ring (Figure 19.10). Make a graph
of ◊ú as a function of y0.

g. Finally, combine your two previous results to graph ◊ú as a function of xú, that is,
apparent angular width of the Einstein ring as a function of rescaled distance from
observer to the lensing object, for a background star at infinity.

[Note: There is a more elegant way to handle trajectories in a spherically-symmetric
field. However, the method advocated in this problem remains useful in an arbitrary
gravitational potential, not just the field near a point mass.]
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Partial Polarization
22.1 LIGHT IS USUALLY CHAOTIC

See also Zangwill §16.4; Landau and Lifshitz 4th ed §50.
We found plane-wave solutions to Maxwell’s equations. Each such solution had a

single, definite wavevector k̨, and hence a definite frequency: They described monochro-
matic light, such as might be obtained from a laser. Each also had a single, definite
polarization vector. Monochromatic solutions have no start nor end; they have infinite
extent in space and time. For all of these reasons, they are caricatures of light from
real sources. For example, even a laser got switched on at some finite time in the past,
so it has finite duration and hence some spread in frequency. And even if we send light
through a colored filter, that filter has some finite spread in its transmission function.
Moreover, natural light is usually unpolarized (like sunlight), or partially polarized
(like the blue sky). In these notes we’ll see how to characterize partial polarization
more precisely.

A single atom, making a transition between definite states, gives o� a pulse of light
of finite duration. Even if that pulse has a definite polarization vector, the superposed
light from zillions of independent atoms (for example, in the Sun) will be a jumble of
many polarizations. We will model the light in narrow frequency range, traveling in
one direction ẑ, as an incoherent superposition. Evaluating at just one point of space,
such a superposition looks like

Ę (t) = 1
2

˛̄E(t)e≠iÊt + c.c. (22.1)

In this expression, ˛̄E(t) is the sum of the profiles of a bunch of pulses. It varies more
slowly than the mean frequency Ê. Each pulse may have a complex phase relative to
the others, and each may be polarized in a di�erent way (but always perpendicular
to k̂).

In practice, optical instruments in millimeter wavelength and shorter don’t measure
the detailed time dependence of the electric field.1 They just measure the energy
flux delivered by a light source, averaged over a time that’s long compared to the
frequency, and that includes many of the contributions in Equation 22.1. We may
place various filters between the source and detector, to restrict to various polarization
or frequency ranges, but ultimately what’s measured are energy fluxes of the filtered
lights. Moreover, in most optics applications the filters we might use always perform
linear operations. For example, an ideal color filter multiplies ˛̄E(t) by a scalar fraction

1Radiotelescopes do measure just this, so they pick up more detailed information about the waves
they detect than optical instruments like bolometers or photoelectric cells.
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that depends on Ê; a polarizer multiplies it by a matrix that doesn’t depend (much)
on frequency, and so on.

The preceding logic implies that, in optics, anything we can really measure can
be extracted from the eight time-averaged quantities2

È ˛̄Eie≠iÊt ˛̄Eje≠iÊtÍ and È ˛̄Eie≠iÊt ˛̄Eú
j
e+iÊtÍ where i, j = 1, 2

(and the complex conjugates of these quantities). Of these eight quantities, the first
four average to essentially zero because of their fast time variation.

The remaining four constitute a 2 ◊ 2 hermitian matrix:
¡
J ij = È ˛̄Ei

˛̄Eú
j
Í.

The most general such matrix can be written in terms of four real quantities; a
traditional choice involves the four Stokes parameters:

¡
J = 1

2

5
s0 + s1 s2 ≠ is3
s2 + is3 s0 ≠ s1

6
.

The Stokes parameters describe light for the purposes of detectors such as those used
in optics experiments.3 Note that

det
¡
J = (s0

2 ≠ s1
2 ≠ s2

2 ≠ s3
2)/4. (22.2)

22.2 FULLY POLARIZED CASE

Note that the average of a product is not in general the same as the product of the
corresponding averages. So although

¡
J is the average of a dyad product, still it need

not itself be expressible as such a dyad. If, however, the light in question is truly
monochromatic, then ˛̄E is a constant in time, we may drop the averages, and so we
do have a dyad.

For such a wave traveling along ẑ, you should substitute the general polarization
vector ˛̄E = Ax̂+Bei” ŷ into the definition of

¡
J and see how the Stokes parameters look

in terms of A, B, and ”.4 Quite generally, the determinant of a dyad product equals
zero; confirm that your answer has that property. Thus, s1, s2, and s3 always sit on
a sphere of radius s0 (see Equation 22.2). Comment on what parts of this Poincaré
sphere correspond to linearly polarized light, and what parts to circular polarization.

Warning: Although we speak of the Stokes parameters s1, s2, and s3 as lying on
a 3-sphere, they do not constitute a “vector” in the sense of pointing somewhere in
real space. That is, they do not define a rank-1 tensor.5 The Poincaré sphere is an
abstract, but sometimes useful, representation of

¡
J , a complex, rank-2, 2D tensor.

2The magnetic field of a plane wave just tracks the electric field, so we would learn nothing new by
considering terms with B̨ .
3Landau and Lifshitz factor out the overall normalization and define Stokes parameters as ›1 = s2/s0,
›2 = s3/s0, ›3 = s1/s0.
4The tensor

¡
J discards any overall phase, so we don’t need to give A and B separate phases.

5Nor do the full set of four Stokes parameters constitute a 4-vector!
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22.3 UNPOLARIZED CASE

The opposite extreme situation is called unpolarized light. In this case, ˛̄Ei wanders
randomly in spatial direction (though always perpendicular to ẑ) and also in complex
phase. The matrix

¡
J must then be isotropic (rotationally invariant in the xy plane),

and hence a constant times the 2 ◊ 2 identity matrix. Thus, s1 = s2 = s3 = 0;
unpolarized light sits at the center of the Poincaré sphere.

It’s worthwhile to confirm this conclusion more explicitly. Suppose that ˛̄E(t)
consists of a series of N pulses, each linearly polarized in a direction that’s uniformly
distributed over the circle perpendicular to ẑ, and each with a random overall phase,
again uniformly distributed. For simplicity, assume that each pulse has the same
amplitude A. Then

¡
J 11 = ÈA cos ◊(t)ei„(t)A cos ◊(t)e≠„(t)Í = 1

2 A2, (22.3)
¡
J 12 = ÈA cos ◊(t)ei„(t)A sin ◊(t)e≠„(t)Í = 0, (22.4)

and so on. Thus,
¡
J = A2

2

5
1 0
0 1

6
, (22.5)

as expected.

22.4 PARTIAL POLARIZATION

These limits motivate us to define the degree of polarization as (s1
2 + s2

2 + s3
2)/s0

2.
It ranges from zero (unpolarized) to one (fully polarized).

22.5 HOW TO MEASURE THE STOKES PARAMETERS

It’s straightforward to measure s0, because it’s a constant times the total intensity
(energy flux) of the light.

To see how to measure the others (and indeed, why they are needed), let’s first
think about the sorts of filters that we could apply to a light source. Idealize a polarizing
filter as performing a linear projection on the electric field, that is, the linear operation
˛̄E æ ’̂(’̂ú · ˛̄E ). Then the corresponding transformation on the polarization tensor

¡
J

is
¡
J æ È’̂(’̂ú · ˛̄E)( ˛̄Eú · ’̂)’̂úÍ = (’̂ ’̂ú) ·

¡
J · (’̂ ’̂ú).

Consider the case of a linear polarizer, that is, ’̂ =
1

1
0

2
, acting on unpolarized light.

Interpret the new polarization tensor. Repeat for a circular polarizer.
Think about how applying such an operation to an arbitrary

¡
J , then finding the

intensity of the resulting light, lets us deduce the various matrix elements of
¡
J , and

hence the Stokes parameters.
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PROBLEMS

22.1 Stokes
For a given direction of wave propagation, I defined a 2D tensor

¡
J ij = È ˛̄Ei

˛̄Ej
úÍ to

describe the polarization state of a superposition of plane waves. A special case is
a pure (fully-polarized) plane wave, Ę = 1

2
˛̄Ee≠iÊ(t≠z/c) + c.c. I then proposed to

repackage the information in
¡
J as four real quantities s–.

a. Suppose that we have fully polarized light traveling along the z axis, with s– =
3, ≠1, 2, ≠2 respectively (times an overall constant). Find a formula for Ę (t) at
the origin of coordinates r̨ = 0̨ . Confirm that the tip of the electric field vector
sweeps out an ellipse in the xy plane, and describe that ellipse. That is, give its
semimajor and semiminor axes, and the angle that the semimajor axis makes with
the x axis.

b. Repeat with s– = 25, 0, 24, 7.
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C H A P T E R 23

First Look at Radiation
The economy of science requires of us that we should avoid
roundabout ways when a straight path is possible. If with
the aid of our electric waves we can directly exhibit the
phenomena of light, we shall need no theory as interpreter;
the experiments themselves will clearly demonstrate the
relationship between the two things. As a matter of fact
such experiments can be performed.

— Heinrich Hertz

23.1 THE WAVE EQUATION

We formulated the Maxwell equations in terms of potentials, then specialized to the
situation where the vector potential satisfied Ǫ̀ · Ą = 0 (Coulomb gauge). In cartesian
coordinates we found

Ò2Â = ≠flq/‘0 (23.1)

Ò2Ą ≠ c≠2( ˆ2

ˆt2 Ą + Ǫ̀ ˆ

ˆt
Â) = ≠µ0j̨. (23.2)

To keep things simple, we will for now assume that the charge density is everywhere
zero. In Your Turn 17F you showed that in this case, we may take Â = 0.

However, there can be regions in space where the charge flux j̨ ”= 0. The continuity
equation requires that Ǫ̀ · j̨ = 0, but this can be satisfied, for example, by having
current in a wire that is uniform all along the wire’s length. Equation 23.2 reduces to
three decoupled copies of the inhomogeneous wave equation,

Ò2Ą ≠ c≠2 ˆ2

ˆt2 Ą = ≠µ0j̨. Coulomb gauge, no net charge (23.3)

In empty space, we found some simple solutions to this equation: the plane waves. But
of course empty space can also contain no radiation (fields everywhere zero). We’d
like to see how, in the presence of accelerating charges, waves are obligatory.

23.2 RECALL MAGNETOSTATICS

We already encountered the special case of Equation 23.3 in which the charge flux j̨
is time independent. In that case, we had three independent (decoupled) copies of the
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Poisson equation, each of which had the same solution as in electrostatics:1

Ą(r̨ ) = µ0
4fi

⁄
d3rú

j̨(r̨ú)
Îr̨ ≠ r̨úÎ . static case (23.4)

We called this expression the Green function solution to the Poisson equation. As
usual, we call r̨ the “field point” and r̨ú the “source point.” Also define R̨ = r̨ ≠ r̨ú,
and as usual denote its length by R (no arrow). Then the function G(r̨, r̨ú) = (4fiR)≠1

is called the Green function of the Laplace operator.
Today we’d like to find a similar solution for the time-dependent case.

23.3 A PHYSICALLY MOTIVATED GUESS

We might expect that the fields at a spatial position r̨ would again be determined
by currents at r̨ú, with a 1/R fallo�. But we also expect that signals will travel from
source point to field point at the finite speed c. So a simple guess for the generalization
of Equation 23.4 is that each component of Ą is given by

Ą(t, r̨ ) ?= µ0
4fi

⁄
d3rú

1
R

j̨
!
t ≠ R/c, r̨ú

"
. Coulomb gauge (23.5)

In words, we are again proposing that the vector potential at time t gets contributions
from each source point. In the case of stationary currents, j̨ is time-independent and
our guess reduces to the known answer for that case. For time-dependent currents,
our guess says we must look back in time to the moment t ≠ R/c when that source
region’s current could have influenced our observer’s field point r̨ at time t.

Your Turn 23A
Before proceeding, verify that the proposed solution Equation 23.5 really obeys
the Coulomb gauge condition Ǫ̀ · Ą = 0. [Hint: Adapt the approach used in
magnetostatics (Section 14.4.3, page 166).]

The form of our solution suggests part of the answer to Hanging Question #H
(page 24): The fields observed at some time t have nothing to do with the source
at that time. We may have turned o� the apparatus; a radiating star may have died
out; an electron/positron pair may have annihilated by the time radiation gets to our
apparatus. Once formed, radiation proceeds autonomously through space. It reflects
only the behavior of currents at the retarded time.

23.4 CHECK THE GUESS

We now apply the wave operator 2 = Ò2 ≠ c≠2ˆ2/ˆt2 to our proposed solution, to
see whether we recover ≠µ0j̨ (Equation 23.3).2

The wave operator involves derivatives with respect to the field point and obser-
vation time (the unstarred coordinates), so all time derivatives below will denote ˆ/ˆt.
Also Ǫ̀i = ˆ/ˆr̨i.

1See Equation 2.5.
22 is also called the D’Alembert operator, or “dalembertian.”
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23.4.1 Preliminary results
Your Turn 23B
Show that (or review why)

Ǫ̀R = R̂; Ǫ̀ · R̨ = 3; Ǫ̀(R≠p) = ≠pR≠(p+1)R̂; Ò2(R≠1) = ≠4fi”(3)(R̨ ).

To save writing, let „ denote any component of 4fiĄ/µ0, and J the corresponding
component of j̨. So our proposed Green function solution Equation 23.5 says

„(t, r̨ ) =
⁄

d3rú
1
R
J
!
t ≠ R/c, r̨ú

"
, (23.6)

and we wish to show
Ò2„ ≠ c≠2 ˆ2

ˆt2 „
?= ≠4fiJ. (23.7)

The gradient of Equation 23.6 is

Ǫ̀„ =
⁄

d3rú

Ë!
Ǫ̀(R≠1)

"
J(t ≠ R/c, r̨ú) ≠ 1

cR
(Ǫ̀R)ˆJ

ˆt

--
ret

È
.

Here the subscript “ret” means to evaluate at the retarded time t ≠ R/c (after taking
any indicated derivatives).

Taking another derivative gives

Ò2„(t, r̨ ) =
⁄

d3rú

Ë
(Ò2R≠1)J(t≠R/c, r̨ú)≠c≠1(Ǫ̀R≠1)·(Ǫ̀R)ˆJ

ˆt

--
ret≠c≠1Ǫ̀·

!
R≠1R̂

ˆJ

ˆt

--
ret

"È

=
⁄

d3rú

Ë
≠4fi”(3)(R̨ )J(t ≠ R/c, r̨ú) ≠ c≠1(≠R≠2R̂) · R̂

ˆJ

ˆt

--
ret ≠ c≠1Ǫ̀ ·

!
R≠2R̨

ˆJ

ˆt

--
ret

"È

The three delta functions eliminate the integral over r̨ú and set r̨ú = r̨, so continuing,

= ≠4fiJ(t, r̨ ) +
⁄

d3rú

Ë
(cR2)≠1 ˆJ

ˆt

--
ret + c≠12R≠3R̂ · R̨

ˆJ

ˆt

--
ret ≠ (cR2)≠13ˆJ

ˆt

--
ret

¸ ˚˙ ˝

+ (cR)≠2R̨ · (Ǫ̀R)ˆ2
J

ˆt2

--
ret

È
.

The three terms in the brace cancel.
Bringing it all together, we have shown that Equation 23.6 solves Equation 23.7

for any J. Reinstating the vector character of Ą and multiplying by µ0/(4fi) proves
Equation 23.5, the Green function solution to the Coulomb-gauge vector potential
created by a specified current distribution with net charge everywhere zero.

23.5 OUR FIRST ANTENNA

23.5.1 Far fields
Consider a circular loop of wire in the xy plane, centered on the origin, with radius
a. A sinusoidal current I(t) = Ī cos(Êt) runs around this loop. In short, our antenna
is an oscillating magnetic dipole. Charge never piles up anywhere, so flq = 0 and we
may use the formula developed in the preceding section.
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I(t)

'

2a

.

L

x

y

R('*
*
)

Our sign convention for the current is that at time zero, current flows counterclockwise
around the loop as viewed from above (from z > 0).

We know the fields far from a static magnetic dipole: Ę = 0 and B̨ falls with
distance like 1/r2. Now we want to explore what changes when the current alternates.

We imagine sitting somewhere far away along the +x axis, at position r̨ =
(L, 0, 0).3 We ask: What are the electromagnetic fields there, to leading nontrivial
order in powers of 1/L?

We parameterize the wire loop by azimuthal angle Ïú, which runs from zero
(closest point to our observer) to 2fi (same point). At any point on the loop, the
current points in the direction ±Ï̂ú. So Equation 23.5 gives4

Ą (t, r̨ ) = µ0Ī

4fi

⁄ 2fi

0
(adÏú)R≠1# 1

2 e≠iÊ(t≠R/c)Ï̂ú + c.c.
$
.

In the preceding formula, R =


(L ≠ a cos Ïú)2 + a2 sin2 Ïú and Ï̂ is the unit tangent
vector to the loop at angular position Ïú.

Our answer can be simplified a lot because we are only interested in the leading-
order behavior in powers of 1/L (the far fields). Thus R≠1 = L≠1 + · · · , where the
ellipsis contains only terms that we agreed to drop. The leading term is independent
of Ïú, so it comes outside the integral, along with the time dependence factor:

Ą = µ0Ī

4fi

a

L

1
2e≠iÊt

⁄ 2fi

0
dÏú (≠x̂ sin Ïú + ŷ cos Ïú) exp

#
i Ê

c
L(1 ≠ a

L
cos Ïú + · · · )

$
+ c.c.

We must be careful with the exponential. Here the first subleading term may not be
dropped. Even though it is smaller than the leading term, nevertheless it is not small
in an absolute sense, because the L factors cancel.

Your Turn 23C
Check that the terms even higher than this one do fall o� as L æ Œ. (That is
why we abbreviated them by an ellipsis.)

We therefore find

Ą æ µ0Ī

4fi

a

L

1
2e≠iÊ(t≠L/c)

⁄ 2fi

0
dÏú (≠x̂ sin Ïú + ŷ cos Ïú) exp[≠i(Êa/c) cos Ïú] + c.c.

(23.8)

3By rotational symmetry, we get a similar result when we go far away in any direction in the xy

plane. Later we’ll study this situation more generally and get the fields everywhere.
4Equation 14.19 gives the charge flux in the thin-wire approximation.
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The term that points along x̂ integrates to zero by a symmetry argument: It is an
odd function of Ïú, which may be integrated over the symmetric range (≠fi, fi). The ŷ
term need not be zero, however. We conclude that the vector potential far away from
the loop has a contribution that, at nonzero frequency, falls slowly with distance, as
L≠1.

Note that the ŷ term of Equation 23.8 would also integrate to zero in the static
case (Ê = 0); more generally, however, it does not vanish.

Your Turn 23D
a. Suppose that Ê is small but nonzero; use a Taylor expansion of the exponential
to get an approximate answer for the integral.
b. Suppose that Ê is large; use stationary-phase approximation to get an answer
in this limiting case.
c. Ask Wolfram Alpha about Integrate[Cos[t]*Eˆ (-I*p*Cos[t]),{t,-Pi,Pi}].
Graph the answer and look at the limits for large and small p = Êa/c.

Although there are no net charges anywhere, we nevertheless found an
electric field, in contrast to the case of a static magnetic dipole. Moreover,
the field falls o� slowly with distance, as 1/L, in contrast to even a static
electric dipole.

Because we used restricted Coulomb gauge, the scalar potential is zero. Thus, the
electric field is simply ≠ ˆ

ˆt
Ą. The time derivative just introduces a factor of ≠(≠iÊ),

so
Ę æ (const) 1

L
e≠iÊ(t≠L/c)ŷ + c.c. on x axis

We also get a prediction that the outgoing wave observed at this point is nearly a
plane wave traveling along +x̂ and linearly polarized along ŷ. Thus, it is polarized
transversely to the direction of propagation.

What about the magnetic field, given by the curl of Ą ? We might naively imagine
that it must fall as L≠2, but think about the factor eiÊL/c in Equation 23.8. When we
move in the x̂ direction, this factor has a derivative that introduces a factor of iÊ/c,
and not any additional L≠1. Thus, the leading far-field behavior of B̨ is

B̨ æ (constÕ) 1
L

e≠iÊ(t≠L/c)ẑ + c.c.,

a slower fallo� with distance than in the case of a static magnetic dipole. The magnetic
field is also perpendicular to x̂, and also to the electric field, as in any plane wave.
In fact it points along the direction of the magnetic dipole moment whose oscillation
gave rise to the wave.

The magnetic field also falls o� slowly with distance, as 1/L, in contrast to
a static magnetic dipole. Together, the fields again form an approximately
plane wave moving toward the observer. For an observer in the xy plane
the magnetic field points along ±ẑ.
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Your Turn 23E
Keep track of factors that were dropped in the preceding formulas and confirm
two other key features:

For an oscillating magnetic dipole source, the fields are also proportional
to the amplitude of the oscillating dipole moment (here fia2Ī), and to the
frequency squared.

23.5.2 Energy loss
The slow field fallo�s in Ę and B̨ are the hallmark of radiation. They imply that
energy is being continually sent out to infinity, if the frequency Ê ”= 0. To see this,
recall from Chapter 18 that a test charge can extract power proportional to ÎĘ Î2.
Although the direction of Ę oscillates, its mean-square value is nonzero. Imagine a
shell of such receivers at distance L from the source. The area of that shell increases
as L2, whereas the energy we can extract falls like ÎĘ Î2, that is, as L≠2. So the total
energy sent out from the source is independent of L. In other words, our antenna
sends energy out all the way to infinity: It radiates, as a candle radiates light.

23.5.3 Directionality
See Problem 23.1.

23.6 PLUS ULTRA

This is the end of Part Three of these notes. In a sense, we could stop here: We know
most of what’s needed to understand the second Industrial Revolution.5 We have also
found an unexpected electromagnetic phenomenon (waves), including specific details
(about polarization). We have seen one way for waves to be generated, and how they
deliver energy, momentum, and even angular momentum across empty space.

But there is a lot more work to do! Many antennas of interest don’t have zero
net charge (for example, the one in our microwave generator demo), so we’ll need a
more general formalism. Also, today we only found the fields along one axis, and so
on. However, every complicating thing that we’ll do later is just a variation on the
fairly simple calculation in Section 23.5.1.

More importantly, although the derivation we gave today was straightforward,
there was too much magic. We should develop a more sophisticated formalism, and
accompanying physical intuitions, that will make it clear that Equation 23.5 is correct,
without all the messy verification. The first step to a deeper understanding of this
and other magic is to uncover an important aspect of Maxwell’s equations that has
been hiding in plain sight ever since we added Maxwell’s correction to Ampère’s law.

5That’s the one involving electrical technology. The next revolution (semiconductors) involved quan-
tum mechanics.
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FURTHER READING

An alternative to the derivation in this chapter appears in Pollack & Stump, 2002,
§15.1.1.

PROBLEMS

23.1 Directionality of antenna
A circular loop of wire, carrying an oscillating current, lies in the xy plane:

I(t)

2a

.
L

x

z

y

R(')

I obtained a formula for the potentials:

Â(t, r̨ ) = 0; Ą(t, r̨ ) = µ0Ī

4fi

⁄ 2fi

0
(adÏú)R≠1# 1

2 e≠iÊ(t≠R/c)Ï̂ + c.c.
$
.

In this formula, r̨ is position of the field observation. The angle Ïú specifies an element
of the loop located at r̨ú = ar̂. The unit vectors r̂ and Ï̂ are evaluated on the loop at Ïú.
The distance R(Ïú) = Îr̨ ≠ r̨úÎ. The current in the loop is everywhere I(t) = Ī cos Êt.

The main text examined the far fields at points along the x or y axes. Instead,
now find the vector potential, this time for an observer located along the z axis. Then
characterize the far electric and magnetic fields in words and contrast with their
far-field behavior when viewed at points along the x axis.

23.2
Repeat the analysis of Section 23.5 for an antenna that is a square loop of wire with
side a. In particular evaluate the far fields for the limiting case of low frequency and
compare to the result in Your Turn 23Da (page 264). Can you make a statement that
covers both cases?
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23.3 From far to near fields
Background: This chapter derived an exact expression for the vector potential outside
an arbitrary current distribution, for the situation with zero charge density everywhere.
Section 23.5 (page 262) specialized to the case of an oscillating current confined to a
loop of wire. Then we made a “far field” approximation: The observer was assumed
to be far away, so we discarded O(L≠2) terms. Your Turn 23Da made the additional
approximation of long wavelength (low frequency, nonrelativistic source motion). That
was useful for specialized situations. In this problem, you’ll get your assistant to
compute the fields without either of these approximations.

We may guess that close to the source, at each instant of time the magnetic field
looks like the field around a static dipole. Thus, each magnetic field line wraps around
the wire (it’s linked with the current loop). Farther from the source, however, the field
lines must detach from the source and move outward on closed paths that don’t pass
through the current loop. We’d like to see how and where this detachment occurs.6

Problem: Again consider a circular loop of wire of radius a in the xy plane, carrying
a prescribed, harmonically oscillating current I(t) = 1

2 [Īe≠iÊt + c.c.]:

I(t)

'

2a

.

L

x

y

R('*
*
)

Thus Ī is one half of the peak-to-peak current amplitude. You are to find and plot the
magnetic field B̨ (t, r̨ ) everywhere, at various times. This “merely” involves numerically
evaluating a formula obtained in Section 23.5.1:

Ą (t, r̨ ) = µ0Ī

4fi

⁄ 2fi

0
(adÏú)R≠1# 1

2 e≠iÊ(t≠R/c)Ï̂ + c.c.
$
.

More precisely, you’ll work out the curl of this expression, and then evaluate it numer-
ically. In this formula R = ((L ≠ a cos Ïú)2 + a2 sin2 Ïú)1/2 and Ï̂ is the unit tangent
vector to the loop at angular position Ïú.

Actually, it’s enough to examine B̨ (t, r̨ ) only for r̨ in the xz plane, and indeed
to look only at x > 0, because of the azimuthal symmetry. But unlike in the main
text, don’t restrict to r̨ just along the x axis.

Because Ǫ̀ · B = 0, none of the field lines can terminate. Nevertheless we’ll find
that some are attached to the source whereas others are not.
Steps:
Measure all lengths in units of a. (Or equivalently, measure lengths in meters and take

6Heinrich Hertz made similar sketches (Wiedemann’s Ann. 36, 1 (1889)).
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a = 1 m.) Measure time in units of a/c. The numerical value of c is 1 in these units
(that is, in units of a/(a/c)).
a. Write the general expression to be evaluated, specialized for the situation in the

problem. This expression involves an integral, which you’ll eventually have to do
numerically, but not yet. Using this unevaluated expression, show that one of the
three cartesian components of B̨ equals zero throughout the xz plane.
That’s convenient: it means that every integral curve (streamline) of B̨ that starts
in the xz plane will remain completely in that plane. These curves are Faraday’s
magnetic “field lines.”

b. Set Ê = 0 and check your analytic results by comparing to a case that you know, that
is, the far fields that we computed when we did the magnetic multipole expansion
in magnetostatics.7 Then numerically evaluate your complete result for B̨ on a
grid of points with, y = 0 and say, 0 < x < 5a and ≠5a < z < +5a. Get your
software to show the streamlines of this vector field.8 I found I got nice results
if I told the software specifically to make me streamlines that pass through the
points (x0i, 0), that is, points along the x axis at an evenly-spaced series of values
{x0i}. (Just make sure none of your choices is (1, 0), because the fields are singular
exactly on the wire.)
Note that overall factors like µ0Ī/(4fi) drop out when all we ask for is the stream-
lines. Your computer will probably choose di�erent scales for the x and z axes in
your plot, because it wants to make you happy. But that’s not what you want in
this instance, so figure out how to override that default behavior.

c. Some or all of your integral curves will have the property that they link (pass
through) the current loop:9 We say they are “attached to the source.” Find which
ones have this property and comment.

d. Repeat, this time taking Ê = 2fic/(3a) (not zero) and time t = 0. This time, we
expect the far fields to be waves with wavelength 3a. Comment on the behavior
you observe both close to and far from the origin; on the z axis versus on the
equatorial plane; etc. If some of the integral curves (field lines) are not linked with
the source loop, estimate the locus separating the attached lines from the detached
ones.

e. Also compute the longitudinal part of B̂, that is, r̂ · B̨ at time zero, and plot it
in some way that shows how it falls o� with distance from the loop. If there’s
something surprising about your answer, explain it; otherwise explain why it’s not
so surprising. [Remark: You may get more visually informative plots if you just
graph this quantity along a couple of straight rays from the origin, that is, lines
x = ÷z for a couple of values of the slope ÷. Maybe you should also make a relevant
comparison between r̂ · B̨ and ÎB̨ Î.]

7See Your Turn 16A (page 188).
8You learned how to get a computer to draw streamline plots in Problem 3.9. For example, Python
has a function plt.streamline that accomplishes this. Then Problem 14.6 discussed the fields created
by a stationary current loop of finite size.
9You are plotting a slice, the field in the xz plane, so the current loop just looks like the two points
(±a, 0), one of which is outside the range you are plotting. Indicate the other one in your plot by a
dot. A curve in the xz plane “links” the current loop if it encircles that point.
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f. Show some initiative. Suppose these are figures in a paper you’re trying to publish—
figure out some improvements in presentation, informative labels, etc.10 If you think
that the range from 0 to 5a doesn’t show the physics optimally, choose some better
range. Play.

g. A picture may be worth a thousand words, and N pictures may be worth N
thousand words, but still a movie of those N pictures would be better still. After
all, we are studying a spacetime phenomenon. So get your computer to make video
frames for many moments throughout a period 2fi/Ê, then stitch them together
into a video. The Student’s Guide to Python §8.3.2 tells one simple way to do this,
and that’s good enough. However, if you want to upload to YouTube or other social
media, then you’ll need the more elaborate recipe involving ffmpeg, also described
in that section of the Guide.

Hint: You’ll get a smoother movie if you choose initial points appropriately. At time
t, ask your software for streamlines that pass through (x0i + ct, 0), where {x0i} are
the points you used at time zero.

23.4 Twist it up
First do problem Problem 23.3 parts a–d. But then consider a current source consisting
of two circular loops of wire. One lies in the xy plane and again carries sinusoidal
current with frequency Ê the same as in part (d). The other lies in the xz plane and
carries sinusoidal current with the same frequency and amplitude, but shifted in phase
by 1/4 cycle relative to the first one. In this situation we may not restrict everything
to the xz plane.
a. Write a superposition of two formulas each similar to the one you used in Prob-

lem 23.3 part (d).
b. Choose a moment of time at which the current in the xz loop equals zero (and

hence the current in the xy loop is maximum). Write a function that can evaluate
B̨ anywhere in space at the one instant of time you chose.

c. Make a three-dimensional streamplot of some representative magnetic field lines
that pass through a collection of starting points lying along the +x axis. Rotate your
plot to gain some perspective. Print one or two good-looking views, but describe in
words how they look as three-dimensional curves, and how they interpolate between
what you expected at short and at long distances.

Optional: If you think this would be better as a movie... nobody’s stopping you.

10Life is short, so if you wish you can hand-write your labels on a hard copy instead of figuring out
how to get your computer to set them.
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Relativity: Low Tech

“When, in a relativistic discussion, I try to make things clearer by a spacetime
diagram, the other participants look at it with polite detachment and, after a
pause of embarrassment as if some childish indecency had been exhibited, resume
the debate in their own terms.” – J L Synge, 1960



C H A P T E R 25

Galilean Relativity
False views, if supported by some evidence, do little harm, as
every one takes a salutary pleasure in proving their falseness.

— Charles Darwin

This chapter’s goal is to rephrase some familiar ideas in a useful way.

25.1 PRINCIPLE OF RELATIVITY

Galileo believed that the Earth moved around the sun, while also spinning on its
axis. Many found this proposition absurd. If the Earth moves, why doesn’t it feel like
we’re moving? Why aren’t we thrown o�? Galileo patiently constructed arguments
about how you can play ping-pong on a ship moving uniformly on a calm sea and
never notice that the ship is moving. While he didn’t have it completely straight,
his successors (Huygens and Newton) eventually elevated this idea to the status of a
fundamental principle, which we now call the Principle of Relativity:1

No experiment done within an isolated system can determine whether or
how fast that system is moving. More precisely, if we put all our apparatus
in a box and measure time and space via instruments anchored to that
box, then the results of any experiment will be the same regardless of
whether that box is at rest or moving in a straight line at uniform speed.

Einstein didn’t introduce the P of R. Nor did he overthrow it: We still believe it to be
experimentally correct. What Einstein said was that newtonian physics implements
the principle in a way that is demonstrably wrong. Before we get into that, these
notes will review the newtonian situation.
T2 Section 25.1 Õ (page 280) discusses the notion of “isolated system.”

25.2 A SIMPLE SYSTEM

Let’s see how the P of R plays out in a concrete situation. Consider two point masses
of equal mass m joined by a spring with equilibrium length L and spring constant k,
floating freely in outer space (or moving in 1D along a frictionless air track). Newtonian
mechanics says that their motions are solutions to the equations

d2x

dt2 (1) = ≠ k

m

!
x(1) ≠ (x(2) ≠ L)

" d2x

dt2 (2) = ≠ k

m

!
(x(2) ≠ L) ≠ x(1)

"
. (25.1)

1Henri Poincaré seems to have introduced this phrase, centuries later. A “principle” is not a firm
starting point that you can use to prove other things. Nor is it itself a provable proposition. Think
of a “principle” as a generator of interesting hypotheses.
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Although these are familiar equations, let’s unpack their content a bit.2
In classical physics, the fundamental entities are events. An event is specified

by a location in space and a moment in time. A trajectory is a continuous string of
events. We think of events as points in a four-dimensional space, called spacetime, and
trajectories as curves in spacetime. To do analytical work, we must uniquely assign
four numbers to each event; that is, we must impose a choice of coordinate system on
spacetime. In this language, Equations 25.1 are shorthand for saying that:

It is possible to label events (points in spacetime), in such a way that every
allowed motion of this system corresponds to a pair of curves in spacetime
whose coordinate representations are solutions to Equation 25.1.

The following sections review a key fact about newtonian mechanics in this context:
Newton’s laws of motion have a mathematical property called galilean
invariance, which guarantees that the physics they predict will obey the
Principle of Relativity.

Our ultimate goal is to investigate the same claim about Maxwell’s equations and show
it’s not valid. However, we’ll find a di�erent, true, property that again guarantees the P
of R. First we’ll see how it works in newtonian physics, in two equivalent formulations.

25.3 ACTIVE VIEWPOINT: SYMMETRY

Let’s recall some solutions to our equations:

x(1)(t) = C cos(Êt) x(2)(t) = L ≠ C cos(Êt).

Here C is any constant and Ê =


2k/m. Of course, starting from one such solution
we can manufacture many others by adding any constant A to both x(1) and x(2):

Âx(1)(t) = x(1)(t) + A Âx(2)(t) = x(2)(t) + A. (25.2)

I’ll call such transformations active, because the new solution is a physically di�erent
motion from the original. The operation in Equation 25.2 transforms any solution of
the equations of motion into another solution (and nonsolutions to nonsolutions). We
call it a symmetry of the equations.

That is, symmetries permute the solutions of a system of equations among them-
selves. In addition to the overall translation described by Equation 25.2, any isolated,
1D newtonian system also has symmetry under shifts of time by any constant. (There
are also discrete symmetries involving reflections in space and in time.)

25.4 PASSIVE VIEWPOINT: INVARIANCE

There is an equivalent viewpoint to the one in the preceding section that is often more
convenient. Instead of cataloging all the solutions and looking for transformations
that permute them, we focus on a property of the equations themselves.

2See also Section 1.5 (page 17).
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274 Chapter 25 Galilean Relativity

To see how it works, start with any trajectory and reexpress the same trajectory
in a new set of coordinates:

xÕ = x ≠ A tÕ = t ≠ B. (25.3)

Because we are not physically changing the trajectory, this transformation is called
passive: it just changes the representation of a trajectory. Equation 25.2 shifted any
trajectory to the right by A, whereas Equation 25.3 shifts the coordinate axes to the
right by A.

We now change variables in the equations of motion to see how they look when
expressed in terms of the new coordinates: The usual rules of calculus give d/dt = d/dtÕ.
Everywhere else, we just substitute xÕ + A wherever we see x:

d2

dtÕ2 (xÕ
(1) + �A) = ≠ k

m

!
xÕ

(1) + �A ≠ (xÕ
(2) + �A ≠ L)

"
.

Cleaning up, we see that the form of the equation of motion, after expressing it in the
new variables, is the same as it was in the old variables (Equation 25.1), including the
numerical values of constants, k, L, and m. We say that the original equations have
an invariance under the passive transformation Equation 25.3.

The active and passive viewpoints are equivalent: To every active symmetry there’s
a corresponding passive invariance and vice versa.

25.5 ROTATIONS

Continuing with the passive viewpoint, we now upgrade to a world with two spatial
dimensions. If we set up cartesian axes, we can label every point in the plane by two
numbers

!
x

y

"
. Then the same point viewed from a rotated point of view will be labeled

by two di�erent numbers
!

x
Õ

yÕ

"
. We can find the new coordinates by using trigonometry,

and the fact that the new coordinate axes are rotated by some angle – relative to the
old ones. There’s a simple formula expressing this:

5
xÕ

yÕ

6
=

5
cos – sin –

≠ sin – cos –

6 5
x
y

6
. (25.4)

To think about this conceptually, imagine digging up all the streets in Manhattan and
laying down a new grid of streets rotated counterclockwise relative to the old one by
–. Then if the Empire State Building is at a point P , it will still be at the same point
P after the new grid is laid down, but the coordinates of that point (which street and
which avenue) will no longer be the same as they were before.

Now, certainly there are many other coordinate systems we could use to label
points in the plane, besides the two cartesian systems just described. For example, we
could use axes that are not at right angles. But there is something special about a
cartesian system: The distance between two points P1 and P2 is given by the simple
formula d =


(x1 ≠ x2)2 + (y1 ≠ y2)2. If we describe the points using the rotated coor-

dinate system, the formula has exactly the same form:3 d =


(xÕ
1 ≠ xÕ

2)2 + (yÕ
1 ≠ yÕ

2)2.

3See Section 13.2.
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Generic coordinate transformations don’t have this property. For example, if we de-
fine new coordinates via a “dilatation” transform, r̨ Õ = 2r̨, the form of the distance
function is not quite the same. In short,

In euclidean geometry, one class of coordinate systems is special (the
cartesian systems). Within that class, however, any system is just as good
as any other one.

When we upgrade the equations of motion for two balls on a spring from 1D to
2D or 3D, they involve the spring potential energy U = 1

2 kÎr̨(1) ≠ r̨(2)Î2. Because
the distance function takes the same form when expressed in terms of a rotated
coordinate system, the equations of motion will have the same property: They are
rotation invariant.4 In contrast, when expressed in terms of dilated coordinates the
equations of motion take a new form that look similar but that have a di�erent value
of k/m: Newtonian physics does not have any invariance under dilatations.

25.6 GALILEAN GROUP

25.6.1 Some coordinate systems on spacetime are preferred
In math, the assignment of a coordinate system to a space is pretty flexible. Certainly
there are lots of choices we could make on our four-dimensional spacetime. But in
most of these choices, the equations of physics look pretty weird. We already saw
one example (dilatation). Similarly, most time-dependent transformations, such as
r̨ Õ = r̨ + ąt2/2, introduce new “fictitious forces.”5 That is, the equations are again not
form-invariant when reexpressed in terms of this r̨ Õ.

Turning that observation around, we can ask which coordinate systems do leave
the form of Newton’s laws invariant. In other words, we can let physics select the
good systems. We will call them G-inertial, in honor of Galileo. Translations like
Equation 25.3 and rotations like Equation 25.4 are invariances of newtonian physics,
and hence they take one such G-inertial coordinate system to another.

A lot of confusion arises over the use of phrases like “frame of reference” (and
“observer,” which sounds like it gives an essential role to human consciousness). I will
instead usually refer to a “coordinate system,” which may or may not have the property
that the equations of motion take their usual form. If they do, then the coordinate
system is “G-inertial” (or simply “good”). A human observer always has the option
of setting up a G-inertial coordinate system to describe what she measures,6 and
many accounts of relativity implicitly assume this, but actually doing so may be an
elaborate and subtle procedure in practice. Also, beware that the good coordinates
for newtonian physics di�er from those in Einstein physics, yet most authors refer
to both indiscriminately as “inertial.” When necessary, I will disambiguate with the
prefix “G-” (galilean) (and later “E-” for Einstein).

4Exactly the same reasoning establishes the rotation invariance of two masses bound by gravitational
force.
5The “Coriolis force” is another example.
6We must qualify this statement to say “in the absence of gravitational e�ects.” Near a gravitating
body, an observer can only set up a locally approximately inertial system.
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25.6.2 Boosts
Returning to one dimension, there’s another important class of symmetry transforma-
tions, called galilean boosts. In active form we may write them as

Âx = x + vút, Ât = t. (25.5)

You can readily show that applying this transformation to any solution of the particular
equations of motion Equation 25.1 yields another solution.

Your Turn 25A
Show that the corresponding passive coordinate transformations:

xÕ = x ≠ vút, tÕ = t (25.6)

are invariances of the equations of motion. That is, show that reexpressing Equa-
tion 25.1 in terms of the new variables yields equations of identical form.

Equation 25.6 describes a new coordinate system whose axes are moving to the right
at speed vú relative to the original. The minus sign indicates that these moving axes
can overtake an object moving to the right.

25.6.3 Matrix notation
It will sometimes be convenient to express Equation 25.6 in matrix form:

5
tÕ

xÕ

6
=

5
1 0

≠vú 1

6 5
t
x

6
. galilean boost (25.7)

Your Turn 25B
Show that if we make a second transformation of this sort, to tÕÕ, xÕÕ, then we
just get the product of two matrices, which is again a galilean boost, this time
by vú1 + vú2, that is, the matrix

# 1 0
≠(vú1+vú2) 1

$
.

That galilean velocity addition formula agrees with our everyday experience with
baseballs and water waves.

25.6.4 Group structure
All together, in one space dimension newtonian physics has a 3-parameter family of
continuous symmetries/invariances (space translation, time translation, boost). We
call that family the galilean group. Its elements are galilean transformations. In the
passive viewpoint, they connect the various G-inertial coordinate systems to one
another.

Suppose that we define a primed coordinate system by applying a galilean boost,
and a translation, to the original frame. Next, define a double-primed frame by applying
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a second galilean boost, and another translation, to the primed frame. Still working
in one dimension,

xÕÕ = xÕ ≠ vú1tÕ ≠ A1 = (x ≠ vú2t ≠ A2) ≠ vú1t ≠ A1, tÕÕ = tÕ = t. (25.8)

We see that the overall e�ect is again the combination of a boost (with speed vú1 +vú2
as you found in Your Turn 25B) and a shift (by A1 + A2).

In three space dimensions, the galilean group includes a 10-parameter family of
invariances (3 space translations, 1 time translation, 3 space rotations, 3 boosts).

Your Turn 25C
a. Generalize Equation 25.8 to include time shifts also.
b. Show that if we apply any two of these transformations in succession, the result
is a single transformation that is also in this family.
c. Show that any such transformation has an inverse, which is again in the family.

Mathematicians call a set of transformations with those properties is group, hence
the name “galilean group.”

25.6.5 Physical significance of invariance
By now, certain questions may be bothering you:

1. Why are we spending so much time with balls on springs? Even within newtonian
physics, that’s a specialized, and idealized, system.

2. A coordinate system is just an arbitrary labeling scheme for points of spacetime.
So what has all this formalism got to do with physics?

The answer to the first question is that

All of newtonian physics has the overarching mathematical property of
galilean invariance that transcends details of particular springs, clocks,
planets, etc.

(25.9)

Your Turn 25D
For example, confirm that in newtonian gravity, the equations of motion for two
point masses attracting each other also have full galilean invariance.

Idea 25.9 partly explains why in physics we get so much mileage out of study-
ing systems that are obviously absurdly oversimplified, for example, linear springs,
spherical planets, and other nonexistent things. Often we are just working out the
consequences of invariances that continue to apply to realistic versions of those things.
For a simple example of why this principle is significant, notice that invariance under
spatial translations means there is no distinguished special central point in space.

For question #2 above, note that some of the invariances (the boosts) connect
two coordinate systems that are in uniform, straight-line motion relative to each other.
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Because any set of newtonian equations of motion is invariant under such transfor-
mations, then those two frames of reference are indistinguishable by any experiment
confined to the system under study. You can do all the experiments you like, and
always find the same equations of motion in each such frame. Nothing you can measure
says that one such frame is at “absolute rest” or indeed “better” in any way than
another. In short:

Newtonian physics hardwires the Principle of Relativity by using equations
of motion that are invariant under galilean boosts. (25.10)

Let me try one more lapidary phrase:

Physicists study invariance because it strips away details and lays bare
the structural essentials of a dynamical theory. (25.11)

We can now see why Idea 25.9 is so important: If part of physics had galilean
invariance, but another part did not, then we could devise an experiment using the
second part to determine which frames are at absolute rest. Even if two parts of
physics have slightly di�erent boost invariances, we could say that “absolute rest”
was the coordinate system in which both simultaneously took their simplest forms.
Only if all of physics has the same boost invariance can we say that absolute rest is
completely unobservable—the Principle of Relativity.

Many physical problems involving relativity become clearer when seen from this
high-altitude viewpoint: Often, their solution boils down to

• There’s an inertial coordinate system where I know what’s
going on.
• But I want to know what’s going on in some other inertial
system (perhaps one that I set up in my lab).
• So I can use the appropriate transformation to go from the
first to the second.

Relativity
Strategy

(25.12)
Applying this strategy to every situation is not always the fastest route to solve a
particular problem. But in the long run it’s a unified, sure-footed way to cut through
the fog.

We will soon see that Einstein retained most of Ideas 25.9–25.10 and merely
tweaked some details of how the transformations work (Chapters 28–29). Once we
discover the right transformations, we’ll see some examples of the Relativity Strategy
at work.

25.6.6 Light cannot be interpreted as a stream of newtonian particles, part 2
Section 18.2 (page 220) argued that Newton’s model of light as a stream of particles
was incompatible with the alternative model implied by Maxwell’s theory. Here is a
more direct, experimental objection to the newtonian model.

Suppose that we have a catapult that, when at rest, can fire a projectile in
any direction with initial speed vú1. Imagine mounting that catapult on a train car,
bringing it up to speed vú2 directed along x̂, and firing the projectile in the +x̂ direction.
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Intuitively we might expect that on the ground, we’ll observe the projectile moving
with velocity (vú1 + vú2)x̂.

Let’s obtain the result just stated as a consequence of galilean invariance, using
Equation 25.12. We know that there’s a G-inertial frame in which the catapult appears
to be at rest. Whatever mechanism is inside the catapult, we are assuming it to be
galilean-invariant, so the speed of the projectile from the moving catapult, viewed in
the moving frame, must again equal vú1. Apply your result in Your Turn 25B to find
the speed as seen in the ground-based coordinate system.

This result seemed to be bad news for Newton’s model of light as tiny particles
emitted from a source. Consider a binary pulsar, that is, a neutron star orbiting a
companion and emitting x rays, which are periodically eclipsed by the companion. If
that radiation consisted of a stream of newtonian particles, then those particles would
move faster when the pulsar was approaching us, and slower when it was receding.
When the di�erence in (velocity)≠1 got multiplied by the distance to Earth, it would
amount to a big change in arrival times. Some times we might even see a double image,
because the pulsar would emit faster light, then move, then emit slower light from the
new position and both would arrive simultaneously at Earth! No such phenomena are
observed, so light can’t be a newtonian particle.7

25.7 1905 AND ALL THAT

The preceding argument seems to favor a wave model of light over Newton’s particle
conception. But Chapter 27 will expose problems with the classical wave model as
well. Chapter 30 will show how Einstein evaded both problems, paving the way for
today’s dual particle/wave picture of light. We’ll see that Einstein’s contribution was
to say that

Electrodynamics, mechanics, and the rest of physics do hardwire in the
P of R by using equations of motion that are invariant under a kind of
boost transformations, but they’re not quite the galilean transformations
described above.

The correct invariance principle, and hence the correct equations of motion, were missed
for centuries because, for mechanical objects moving relative to each other much more
slowly than 3 · 108 m/s, the di�erence from galilean invariance is quantitatively small.
For objects (or waves) that move at or near that large speed, however, the distinction
becomes important.

7More realistically, the newtonian hypothesis predicts an irregularity in the apparent timing of the
eclipse that was not observed [K. Brecher, PRL 39:1051 (1977)]. Also, light emitted in the forward
direction by a rapidly moving pion travels at c, not at ¥ 2c [T. Alvager et al., Physics Lett. 12:260
(1964)].
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T2 Track 2

25.1Õ

Can a system be truly isolated? You could put it in a Faraday cage to screen out cosmic
microwave background radiation. Then you wouldn’t be able to detect the tiny anisotropy
that arises because we are moving relative to the cosmic microwave background radiation (see
Problem 29.4). In principle, there must be analogous gravitational radiation, which cannot
be so screened, plus relic neutrinos etc., so a truly isolated system may ben an unattainable
idealization in practice. However, such radiation has not yet been observed experimentally.
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PROBLEMS

25.1 Thump
Newton imagined light as a stream of tiny material particles obeying the same sort of
laws as ordinary matter. Benjamin Franklin objected to this model; in 1752 he wrote
in a letter “I must own I am much in the dark about light. . . . Must not the smallest
particle conceivable, have with such a motion, a force exceeding that of a [cannonball]?”
Suppose that a tiny particle, weighing just a picogram, could be brought up to the
speed of light. Evaluate the newtonian kinetic energy formula, 1

2 mv2, for this particle,
and comment on Franklin’s assertion.
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Springs and Strings
We continue our little newtonian holiday. This really is a course on electrodynamics,
but more generally it’s a course about where theories come from. It’s good to see
abstract things first in a concrete setting.

In the preceding chapter, we started with a vague Principle (of Relativity), but
then it turned into precise algebra and calculus (an invariance property). That’s a
very appealing progression, but in this chapter we’ll see that we need to be a bit
careful applying it. The payo� is that we’ll get a framework that we can apply to
field theories, including eventually relativistic ones including electrodynamics. Indeed,
historically physicists’ obsession with symmetry began with electrodynamics.

We’ll also develop some framework relevant to other themes of this course, involv-
ing energy and momentum transport by waves.

26.1 EQUATION OF MOTION

Imagine a coil spring, initially straight and in its zero-tension state, with linear mass
density fl(1D)

m (≥ kg/m).
To analyze this system’s motions, we temporarily break it down into finite elements

with equilibrium separation �x, each with mass �m = fl(1D)

m �x and spring constant
Ÿ/�x. Here Ÿ is a material parameter describing the spring (the stretch modulus,
with units of force).

Consider the mass element in Figure 26.1 whose equilibrium position is x = 0.
Displace it in x by distance u(0). The two springs flanking this element exert restoring
forces on it. More generally, the element gets force ≠(Ÿ/�x)

!
u(0) ≠ u(≠�x)

"
from its

neighbor to the left, and +(Ÿ/�x)
!
u(�x) ≠ u(0)

"
from the right. For small enough

Figure 26.1: The mass initially at x = 0 has
been displaced from equilibrium to the dashed
position.
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�x we can apply a Taylor expansion to find

�m
ˆ2u

ˆt2

--
x=0 = Ÿ

�x

ˆ2u

ˆx2

---
x=0

(�x)2 + · · · , (26.1)

where the ellipsis denotes terms that are higher order in �x. We now take the contin-
uum limit �x æ 0, or equivalently consider only distortions u(x) that vary on length
scales ∫ �x.

Any other mass element has the same dynamics, so u obeys the wave equation
ˆ2u

ˆt2 ≠ c2
s

ˆ2u

ˆx2 = 0 where c2
s = Ÿ/fl(1D)

m . (26.2)

Because this is a partial di�erential equation, we call it a field theory in one space
and one time dimension. It’s a warmup for Maxwell’s equations.

Solutions to the wave equation include the familiar harmonic ones moving at the
“sound” speed cs:

u±(t, x) = ū cos(Ê(±x/cs ≠ t)). (26.3)
Here the angular frequency Ê can have any value.

26.2 TRANSVERSE WAVES

You can repeat all the above analysis for disturbances in which a string under tension
F0 is plucked transverse to the x axis. This time, the displacement (height) u(t, x)
gives rise to a net transverse component of the tension proportional to F0(ˆu/ˆx),
and so on. Again you get Equation 26.2 but with cs =

Ò
F0/fl(1D)

m .

26.3 INVARIANCE LOST

As in the preceding chapter, we will examine galilean invariance from both the active
(Section 25.3, page 273) and passive (Section 25.4) viewpoints.

26.3.1 Active viewpoint
An active transformation replaces a spring configuration u by a di�erent one, Âu. At
any event Q, the new Âu(Q) equals the value of u at a corresponding event P, related
to Q via 5

tQ
xQ

6
=

5
1 0
vú 1

65
tP
xP

6
.

Thus,
Âu±(tQ , xQ) = ū cos

!
Ê(1 ± (vú/cs))

!
± xQ

cs ± vú
≠ tQ

""
. (26.4)

Dropping the subscript Q, we see that the new functions don’t belong to our original
family of solutions (Equation 26.3)!

Your Turn 26A
Show that indeed, Âu± moves at speed ±cs + vú.

In contrast, every wave solution to Equation 26.2 moves at speed ±cs.
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26.3.2 Passive viewpoint
Let’s rederive the preceding result by focusing on the wave equation itself, rephrasing
it in terms of the new variables

xÕ = x ≠ vút, tÕ = t. [25.6, page 276]

Thus, we define
uÕ(tÕ, xÕ) = u(tÕ, xÕ + vút)

and find that uÕ obeys
C3

ˆxÕ

ˆx

ˆ

ˆxÕ

42
≠ c≠2

s

3
ˆxÕ

ˆt

ˆ

ˆxÕ + ˆtÕ

ˆt

ˆ

ˆtÕ

42
D

uÕ = 0.

Simplifying yields C
ˆ2

ˆxÕ2 ≠ c≠2
s

3
≠vú

ˆ

ˆxÕ + ˆ

ˆtÕ

42
D

uÕ = 0.

The original equation, Equation 26.2, expressed in the new variables, doesn’t have
the original form. Thus, the wave equation has neither active symmetry, nor passive
invariance, under galilean boosts.

26.4 INVARIANCE REGAINED

In short, the wave equation is not galilean invariant. Is this a crisis in Physics? No, of
course not—this is a newtonian system, and newtonian dynamics does have galilean
invariance. The problem is that we have neglected a relevant dynamical variable: Before
we plucked that string, it could have been in motion with respect to the observer, and
hence with respect to any coordinate system in which the observer appears to be at
rest. We did not account for this possibility.

That is, the wave equation that we wrote down is incomplete: It only applies
to the special case where the initial state of the string is at rest with respect to the
coordinate system. If that situation holds for the coordinate system t, x, then it won’t
hold for the boosted tÕ, xÕ coordinates, so we shouldn’t (and didn’t) find the same form
for the equation of motion.

Let’s start over and formulate a more general situation, a spring initially in uniform
motion at arbitrary speed vm (the medium’s speed) and again subject to transverse
displacement. Let u(t, x) be the displacement of whichever spring segment is located
at x at time t. Note that observing a fixed coordinate position x0 at two di�erent
times is not the same as following one particular spring segment.

Consider the spring segment that is located at x0 at time t0 = 0. Imagine painting
that one segment red and applying Newton’s Second Law to it. At later time �t, the
red segment has moved to x = x0 + vm�t. Hence, its transverse velocity vy(t0, x0) is
the limit of

vy(t0, x0) = 1
�t

#
u(t0 + �t, x0 + vm�t) ≠ u(t0, x0)

$
=

! ˆ

ˆt
+ vm

ˆ

ˆx

"
u

---
t0,x0

.
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The net transverse force on this segment is still F0�x(ˆ2u/ˆx2) as before, so during
time �t its transverse momentum py changes by F0�x(ˆ2u/ˆx2)�t. That is,

py(t0 + �t, x0 + vm�t) ≠ py(t0, x0) = F0�x(ˆ2u/ˆx2)�t, or
5! ˆ

ˆt
+ vm

ˆ

ˆx

"2 ≠ c2
s

ˆ2

ˆx2

6
u = 0. (26.5)

We just found the generalized wave equation for a spring that is moving w.r.t.
the coordinate system at speed vm. When vm = 0, it reduces to the familiar form
Equation 26.1.

Your Turn 26B
Show that:
a. Equation 26.5 has traveling wave solutions, but they move at speed vm ± cs.
(Indeed, if a distant bell is rung you’ll hear it slightly sooner if there is a wind
blowing toward you than you would in still air.)
b. A traveling-wave solution to this equation, viewed in a boosted coordinate
frame, belongs to the same family of solutions (though with a di�erent vÕ

m).
c. In particular, an observer who flies alongside the spring at speed vm = cs will
see some waves that appear static (find one).
d. Equation 26.5 is invariant under galilean transformations, once we understand
that both u(t, x) and vm must transform.

Thus, galilean transformations really are invariances of the spring system, once
we include all relevant dynamical variables and attribute appropriate transformations
to them. That is, our error in Section 26.3 lay in mistakenly setting the scope of the
system too narrow (treating vm as a fixed constant of the system, rather than as a
dynamical variable subject to transformation).

26.5 CONNECTION TO ELECTROMAGNETISM

Chapter 17 showed that Maxwell’s equations imply the wave equation, and Section 26.3
showed that the wave equation lacks galilean invariance. Everyone already knew this
prior to 1905. Everyone assumed that the cure would be along the lines described
in Section 26.4: “Maxwell’s equations are incomplete, valid only in the special case
of a coordinate frame at rest with respect to the æther. After we generalize them to
account for æther wind, then their full galilean invariance will appear.” One thing that
bothered Einstein was that, despite great e�orts, nobody had succeeded in finding
the right generalization that was mathematically consistent and also consistent with
experiments. We’ll see soon where he went with that line of thought, but first we
pause to think about the transport of energy and momentum in the familiar setting
of springs.

26.6 ENERGY AND MOMENTUM
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26.6.1 Continuity equations
For future use, let’s see how energy and momentum are locally conserved in the
vibrating string. In this section, we will choose a spacetime coordinate system in
which the string is at rest (vm = 0). We also continue to look at transverse waves.

We now seek continuity equations for energy and momentum, analogous to the
one we found for charge (Section 7.2):

kinetic energy =
⁄

dx 1
2 fl(1D)

m (ˆu/ˆt)2; potential energy = const.+F0

⁄
dx 1

2 (ˆu/ˆx)2.

(26.6)
One way to get the second formula is to imagine that an external agent is pulling
the string horizontally with force F0. When curved, the string’s end-to-end distance
shortens by a distance Ltot ≠

s
Ltot
0 (dx/ cos ◊(x)), where ◊ is the angle relative to

straight.1 Shortening does work against whatever external mechanism is supplying
the tension force. Making small-angle approximations gives the work done against the
outside force when the string is curved, per unit length, as 1

2 F0(ˆu/ˆx)2.
Thus, in the continuum limit the total linear density of energy (J/m) at t, x is

fl(1D)

E (t, x) = 1
2 fl(1D)

m
!
(ˆu/ˆt)2 + c2

s (ˆu/ˆx)2"
.

If you pluck just one mass, you’ll create some localized energy, which then spreads.
That energy cannot just vanish somewhere and pop up elsewhere! Instead, energy
flows with a 1-dimensional flux j(1D)

E (units J/s). To find that flux, note that the
rate at which energy gets transported from any mass element to the one at its right
is the rate at which work is done on the right side by the left side. This is the
product of velocity (which is transverse) times the transverse component of force:
j(1D)

E = ≠F0(ˆu/ˆx)(ˆu/ˆt).

Your Turn 26C
Prove that for any solution of the wave equation,

ˆfl(1D)

E

ˆt
+

ˆj(1D)

E

ˆx
= 0. continuity equation for energy

Similarly to the continuity equation for charge (Chapter 7), your result expresses the
fact that energy is a locally conserved quantity: In order to change energy density at
a point (first term on the left side), there must be an imbalance in the fluxes on either
side of that point (second term on the left side).

Your Turn 26D
Now repeat the analysis to find the density and flux of transverse momentum and
prove an appropriate continuity equation relating them.

1We are assuming an inextensible string, so its contour length does not change.
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26.6.2 The case of harmonic waves
For the solutions given in Equation 26.3, the energy density is

fl(1D)

E = 1
2 fl(1D)

m ū2!
Ê2 + c2

s (Ê/cs)2"
sin2(Êt ≠ (Ê/cs)x). (26.7)

Thus, the kinetic and potential energy terms are in phase. They’re both nonnegative,
but both drop to zero twice per cycle, at t = Êx/cs + nfi for integer n. At these “dead
spots,” even the energy flux is zero, because

j(1D)

E = ≠fl(1D)

m c2
s
!
≠ Ê

cs

"
Êū2 sin2(Êt ≠ (Ê/cs)x)

falls to zero at the same places as Equation 26.7. How can energy flow to the right if
there are spots where its flux is zero? Well, first of all the flux is nowhere negative. And
at a node where energy density is zero, the gradient of flux is nonzero. The continuity
equation says that energy arriving from the left of that point begins to pile up there.
So that point stops being a point of zero energy density, and so on.

26.7 PLUS ULTRA

The preceding section started with expressions for energy density and flux that were
nearly obvious, then showed that they obey a continuity relation. Later we will wish
to understand the energy density and flux of electromagnetic fields, which are not so
obvious in form. To find the right expressions, we’ll work backward, guided by the
expectation that these quantities, too, must obey continuity relations.

PROBLEMS

26.1 Slinky
Consider a stretched spring of mass density fl(1D)

m (≥ kg/m) and spring constant Ÿ
(≥ N). Rederive the results of Section 26.6 for the case of longitudinal (compression)
waves.
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Einstein’s Version of Relativity: Overview
Failure to appreciate the role of the structure of
Indo-European languages in a�ecting perception has
repeatedly led western science into error. The “luminiferous
æther” of classical physics was created for the express
purpose of standing as a subject of the verb “to wave.”

— Garrett Hardin

Here is an overview of what we’re going to cover, stated without any equations or
diagrams. Some of these ideas won’t be clear, however, until embodied in equations
and diagrams. That comes later.

27.1 THE ÆTHER HYPOTHESIS

The Principle of Relativity seems experimentally valid for any system that can be
isolated from the rest of the world. Newtonian physics has an overarching mathematical
property (galilean invariance) that transcends details of particular springs, clocks, etc.
and that guarantees that any system will obey the P of R. One way to expose that
property is to see how the equations change their form when expressed in a di�erent
coordinate system on spacetime, identify a subfamily of systems among which the
form does not change, and observe that some of those good systems are in uniform,
straight-line motion relative to the others.

Maxwell found some equations that agreed with experiments in a particular (lab)
coordinate system, and were mathematically self consistent. The equations predicted a
new phenomenon (EM radiation), and Hertz firmed up the evidence that this radiation
was the same as light.

Neither Maxwell nor anyone else at that time believed that the equations were
fully general: At best, they were regarded as correct in a coordinate system at rest
relative to an omnipresent medium called the luminiferous æther. People believed this
because of a general sense that waves could only move through a medium. (How do
you have ripples, without the pond?) Tacitly the words “material medium” implied
a substance that itself had states of motion, like air, water, or a string. Obviously
the state of motion of the medium would have to enter the fully general equations
of electromagnetism, as it does for the equations of sound, water waves, or string
vibrations (Section 26.4).

But the æther had to have some pretty weird properties. It had to be completely
una�ected by any vacuum pump ever invented, because light travels just fine through
vacuum. It had to be present throughout the space between planets, yet exert no
frictional drag on them. It must be rigid, like steel and unlike air, because it supports
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27.2 The No-æther Hypothesis 289

transverse waves. It had to be incompressible, because if not, there would also be a
longitudinal polarization of light, as there is for waves in air or steel (compression
waves). Yet the planets move through it e�ortlessly.

Another problem with the æther was that it did no other job than the one for
which it was introduced (transmitting light). In contrast, air transmits sound, but it
also has other measurable attributes giving rise to other phenomena, for example, its
mass density, temperature, pressure, viscosity, and so on; moreover, these attributes
can be changed by experimental interventions.

Why were people so desperate to cling to this crazy idea? We can look back
and say, a bit more clearly than was said at the time, that people also expected that
all laws of Nature must be form-invariant under rotations, translations, and galilean
boosts. Maxwell’s equations as stated do not have the last of these properties, but it
was assumed that after generalizing them to include the possible motion of the æther,
they would.

Einstein found too many logical problems with this position, not least his and
others’ inability to find a self-consistent set of equations as candidates to generalize
Maxwell’s.1 Even setting aside this formal objection, modifying the wave equation to
account for æther motion did not produce any theory consistent with all experiments.
For example:

• When an object moves through an incompressible fluid, it sets the fluid into
motion. Lab-based experiments could not detect any consequences of such motion.

• And if the Earth itself dragged along the æther, then the observed “aberration
of starlight” wouldn’t happen (Chapter 29).

• But if somehow Earth didn’t drag the æther, then there would be an “æther
wind,” and the Michelson–Morley and Fizeau experiments wouldn’t have given
the results that they did (Chapter 28).

27.2 THE NO-ÆTHER HYPOTHESIS

So Einstein entertained the bizarre suggestion that Maxwell’s equations were actually
correct and complete as written.

• To the objection that they lacked galilean invariance, he said, perhaps experiments
don’t demand such invariance after all; perhaps the equations have some other
invariance. Perhaps the di�erent invariance that Lorentz had already found was
in fact exact and good enough to satisfy the demands of experiment, for example,
the Principle of Relativity.

• To the objection that replacing galilean invariance with Lorentz invariance had
bizarre consequences, Einstein asked, are those consequences actually ruled out by
experiment? For example, is there really any feasible method to measure absolute

1Although the wave equations for sound and light are formally similar, they have quite di�erent
origins. If you propose a modification to the electromagnetic wave equation, you can’t stop there:
You must also propose an acceptable modification to the full set of Maxwell’s equations that gives
rise to your proposed new wave equation and agrees with experiments. This is what Einstein and
others could not do.
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290 Chapter 27 Einstein’s Version of Relativity: Overview

simultaneity? If not, then it’s not so disturbing if theory predicts that di�erent
observers disagree about the simultaneity of two events not located at the same
point in space.

• To the objection that Newton’s laws are incompatible with Lorentz invariance,
Einstein said, maybe we need to reexamine the experimental status of Newton’s
laws.

I did not say above that “The æther does not exist.” It is not really very sci-
entific to claim the nonexistence of a poorly defined thing. Indeed, one sometimes
hears somebody smugly pronounce that the quantum vacuum “is” the æther. Ein-
stein would not object. His proposal merely amounts to saying that the vacuum—the
state you can approach experimentally by using better and better vacuum pumps, or
by going into interstellar space—is unique. Its properties (like the values of µ0 and
‘0) are constants. It has no further state variables beyond Ę and B̨ that need to
appear in Maxwell’s equations, and in particular no states of motion. (More precisely,
it is Lorentz-invariant.) If you want to say it’s filled with an “æther” of virtual parti-
cles and antiparticles, fine, but it’s not the material substance that Maxwell and his
contemporaries had in mind.

In other words, Einstein convinced himself that there’s no logical need for the æther.
Maxwell equations don’t need it. It’s only our brains, trying to make inappropriate
analogies to experience, that want it. We can’t intuitively imagine the EM field, nor
the vacuum which it disturbs. The birth of modern physics came when Einstein said,
“That’s OK—I don’t need to imagine it intuitively.”

Einstein also thought about an observer who flies over a water surface at the
speed of wave propagation. Looking down, that observer sees waves that appear to
be standing still (Your Turn 26B). But there are no static wave solutions to the
Maxwell equations, nor did Einstein see any way to modify the equations to admit
such solutions. Instead of attempting any such modification, Einstein’s clarified a
mathematical property (a new invariance) already hiding in Maxwell’s equations.2
Then he proposed that all the rest of physics had this same invariance, for example, the
mechanisms inside clocks. All his “thought experiments” were mainly attempts to see
if his proposal was obviously ruled out by existing knowledge. Over and over, he found
that potential objections (paradoxes) were based on assuming some procedure that
could not in fact be implemented experimentally (for example, knowing the reading
on a distant clock instantaneously).

Then Einstein asked if his proposal made any characteristic, quantitative predic-
tions that were testable. We’ll never know how much he really knew about Michelson–
Morley; what he explicitly stated was that he relied on the aberration of starlight,
and the Fizeau experiment, as su�cient to show he was on the right track. Not co-
incidentally, both of these concerned. . . electromagnetic phenomena. So we’ll discuss
them in detail in the following chapters.

2Lorentz had already established this in 1904, but even today it is hard to grasp that from what he
wrote. By the way, Einstein actually called his ideas the “theory of invariants.” The phrase “theory
of relativity” was coined by somebody else, and Einstein only adopted it reluctantly some time later.

Contents Index Notation



27.3 Where We are Heading 291

27.3 WHERE WE ARE HEADING

Anyone can open Einstein’s 1905 paper, copy out the transformations of the fields
(updating the awful notation), substitute into Maxwell’s equations, and show they are
indeed an exact invariance. Afterwards, we are still stumped—how could any human
have figured that out?3 Instead we will take a longer route, following Minkowski and
others: We will build a system of thought and notation in which the invariance of
Maxwell’s equations, and other relativistic field theories, becomes obvious at a glance.
That way, even mortals like us can create new relativistic field theories, for example
the ones needed to describe the strong and weak nuclear forces.4

3The whole thing reminds me of public-key encryption.
4It still required some more of Einstein’s personal genius to adapt the ideas to gravitation. And even
Einstein needed the benefits of tensor notation before he could succeed.
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T2 Track 2

27.1Õ

The main text asserted that the vacuum has no user-adjustable properties. Like any bedrock
postulate in science, this one is more subtle, and more subject to fine interpretation, than it
looks.

The empty space outside the pole of a magnet in vacuum has a “property,” the static
magnetic field, because that property is attached to specific points in space in that region.
Physics in that region of space is not isotropic and hence not Lorentz-invariant. So it’s more
precise to say that only a region of vacuum that is far from or shielded from any matter is
universal, including its ability to carry EM fields (or rocks etc), should they be introduced.
When charged matter is present, we attribute their e�ects to a deviation from field-free
vacuum (the EM field) whose dynamics is invariant under a group of transformations, and
so on with other kinds of interaction (strong, electroweak). It’s always the same group, a
circumstance whose universality we attribute to the field-free vacuum itself being invariant.

Remarkably, Einstein abandoned even this more limited statement a few years later when
he formulated general relativity. He found that it proved fruitful to attribute gravitation
directly to. . . user-modifiable properties of spacetime. Moreover, there is no such thing
as “shielding” a region from gravitational fields and no region in space “far enough” from
gravitation to be una�ected by it; indeed, the whole expansion of the Universe is controlled
by gravitation.

Remarkably, however, the statements made in this chapter are still accepted today, in the
following sense. Far enough from any gravitating bodies, Einstein’s general theory predicts
the existence of special coordinate systems (“locally inertial” or “freely falling”), in which
gravitational e�ects are approximately absent and all the rest of physics, including electrody-
namics, has the properties discussed in this chapter. For example, the locally inertial systems
are all related to each other by ordinary Lorentz transformations; those transformations
are invariances of the all non-gravitational dynamics; and so on. Section 33.10 will return
to this train of thought. Ultimately it led to a combined theory of gravitation and other
interactions that, although still not integrated fully with quantum mechanics, nevertheless
has been successfully extrapolated to make predictions about physics even close to massive
objects.

T2 Track 2

27.2Õ Poincaré’s work
“History has not been kind to [Poincaré]’s contributions. In his Science and Hypothesis, first
published in 1902, Poincaré boldly declares:

1. There is no absolute space, and we only conceive of relative motion; and yet in most
cases mechanical facts are enunciated as if there is an absolute space to which they
can be referred.

2. There is no absolute time. When we say that two periods are equal, the statement
has no meaning and can only acquire a meaning by a convention.

3. Not only have we no direct intuition of the equality of two periods, but we have
not even direct intuition of the simultaneity of two events occurring in two di�erent
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places.
4. Finally, is not our Euclidean geometry in itself only a kind of convention of language?

These ideas are at the heart of relativity, and it is di�cult to believe they did not have
a profound e�ect upon Einstein’s thinking. Poincaré was also the first to use the term
‘principle of relativity,’ which is also stated forthrightly in Science and Hypothesis. In a
famous 1904 speech at the International Congress of Arts and Sciences in St. Louis, Poincaré
even glimpses a new theory in which ‘the velocity of light becomes an impassable limit.’
But the mathematician did more than make oracular pronouncements; he wrote a pair of
technical papers on Lorentz’s theory, and in the longer one, completed just before Einstein’s
own, he has nearly everything his shadowy rival does, and in some respects more. In that
paper, Poincaré shows, as Lorentz did, that Maxwell’s equations are invariant if the Lorentz
transformation is correct; he anticipates Minkowski’s combining of space and time, and he
virtually derives E = mc

2. What Einstein did in those fateful weeks that Poincaré did not was
to show that the whole thing results from just the two postulates: the principle of relativity
and the constancy of the speed of light.” – Rothman, 2003, p73
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Provisional Lorentz Transformations and
the Fizeau Experiment

Oh, that Einstein, always cutting lectures—I really would
not have believed him capable of it.

— Einstein’s former teacher Minkowski, upon reading the
relativity paper.

We’ve seen that the wave theory of light has scored some successes, giving a
detailed account of polarization phenomena (Chapter 17), the transport of energy and
momentum (Chapter 18), and so on. But there is still a puzzle, which eventually led
Einstein to some disturbing insights into space and time.

28.1 REVIEW

28.1.1 Galilean
Chapter 25 argued that newtonian physics implements the Principle of Relativity by
having an invariance under galilean transformations. One way to express this is to
say that if we have a system of particles, and a solution to the equations of motion
given by some functions r̨(1)(t), r̨(2)(t), . . ., then the modified functions

Ą̂r(1)(t) = r̨(1)(t) + v̨út, Ą̂r(2)(t) = r̨(2)(t) + v̨út, . . .

will also solve the same equations. Here v̨ú is one overall constant vector.
Equivalently, we can think of relabeling all the events in spacetime according to

5
ctÕ

xÕ

6
=

5
1 0

≠vú/c 1

65
ct
x

6
, [25.7, page 276]

or a similar formula in three spatial dimensions. Chapter 25 showed that if we take
some equations of newtonian physics (two masses joined by a spring1) and reexpress
them in terms of the primed coordinates, the new versions have the same algebraic
form as the old ones. Section 26.3 also showed that the wave equation does not have
this property, but Section 26.4 gave a resolution of that puzzle appropriate for vibrating
strings, sound waves, and water waves: The wave equation must be generalized to
account for possible motion of the medium relative to the observer.

Finally, Section 25.6.4 found a velocity addition formula, which can be stated in

1Or two masses with their newtonian gravitational attraction, etc.
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a rather longwinded way as
If we have two coordinate systems on spacetime, in each of which the
newtonian equations of motion take their usual simple form, then those
systems di�er by a galilean transformation. If that transformation is just
a boost by velocity v̨ú, and a wave or particle in one system is moving at
constant velocity v̨0, then in the other system it will be observed to be
moving at constant velocity v̨0 ≠ v̨ú.

(28.1)

It’s necessary to be so pedantic, because as we’ll see, the post-1905 version of this
claim is weirdly di�erent from the version just stated.

28.1.2 The problem in a nutshell
Chapter 25 noted that light from distant objects was known to come to us at a velocity
independent of the source’s motion. The same can be said of sound or water waves:
Imagine running your finger just above the surface of a ripple tank and periodically
dipping it into the water. Each ripple you cause moves outward at a fixed speed
independent of how fast your finger is moving. That is, as long as the observer is at
rest relative to the medium, waves in a material substance move at a constant speed
independent of the motion of the source. Thus, the wave model of light seemed to
explain why the a binary pulsar never appears doubled (Section 25.6.6).

But the apparent speed of a wave on water or air certainly does depend on the
motion of the observer. In contrast, the speed of light also was found to be unchanged
by uniform, straight-line observer motion. After all, the Earth is hurtling through
space, yet the physics we see in a closed lab does not depend on orientation relative
to that motion.2 This looks bad for the wave model of light. Einstein was alluding to
this problem when he mentioned the prior “failure of attempts to detect a motion of
the earth relative to the ‘light medium’.”3

Let’s pause to dispose of a red herring. Certainly there are bizarre coordinate
systems we could choose in which a particular ray of light seems to move at a speed
other than c. Simply take r̨ Õ = 2r̨, and leave time unchanged; in the primed coordinate
system, light travels at speed 2c.4 What makes this observation physically irrelevant is
that in the primed system, the equations of physics take nonstandard forms. We would
know right away that something was wrong in the new system, for example, because
atoms would have di�erent apparent sizes than in our usual coordinate system. Even
the good coordinate systems (those in which the equations take their usual form) will
disagree about wave speed if there is a material medium, but no such e�ect is observed
for flashes of light.

It seemed to everyone that the observation in the preceding section was not a seri-
ous problem. “Obviously” the solution was that Maxwell’s equations were incomplete,
just like the wave equation we found for a vibrating string: They were only valid in
those inertial coordinate systems that were at rest with respect to the “light medium”

2The restriction to “closed lab” is needed because we do see e�ects of our motion when we look at
distant stars (Chapter 29).
3Einstein was never clear whether he was thinking specifically about the Michelson-Morley experiment,
but there were many such experiments at the time that all came out null.
4Similarly, applying a galilean boost changes the apparent speed of light.

Contents Index Notation
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(or “æther”). But Einstein also noted that previous attempts to modify Maxwell’s
equations in the way we did for the vibrating string had been unsuccessful.

It’s not enough just to say blithely, “So there’s no æther.” After all,

• Eliminating the medium would also eliminate our rescue of galilean invariance
(Section 26.4).

• Galilean invariance is what guaranteed the Principle of Relativity, which is ex-
perimentally validated.

In this chapter and the next, we’ll see how Einstein reconciled Maxwell with the
P of R at the level of a single (scalar) wave equation, temporarily neglecting all the
delicious complexity brought by the vector character of electromagnetic fields.5 As
always, we’ll look to some key experiments for guidance.

28.2 GRAPHICAL EXPLORATIONS

If we suppose the Maxwell equations to be complete and correct as written, then
what invariances do they have? Maybe they have some non-galilean invariance that
nevertheless connects coordinate systems that (i) are in uniform, straight-line motion
relative to each other, yet (ii) also agree on the physical prediction that the speed
of light should be the constant c ¥ 3 · 108 m/s determined by electrostatics (‘0) and
magnetostatics (µ0). That sounds like a contradiction, but in Einstein’s words these
two requirements are “only seemingly incompatible.” In fact, W. Voigt proved that the
scalar wave equation was invariant under what we now call “Lorentz” transformations
in 1887, just 14 years after Maxwell. Lorentz and Einstein took this result seriously,
and crucially, they extended it from the scalar wave equation to the full Maxwell
equations and then to all of Physics.

We can think graphically about the galilean transformation (Equation 25.7) as
introducing a new set of coordinate axes on the xt plane. Actually, it’s easier to think
about the quantities x and ct, because these have the same units, and because then a
trajectory traveling at speed c is a line at 45¶ to the horizontal. Such a trajectory is
drawn as a solid diagonal line in the figure below:

The original x and ct axes are also shown as solid lines. The new xÕ axis is the same as
the x axis, because it’s the locus of events with tÕ = 0 and tÕ = t. However, the new ctÕ

axis is bent over (dashed line). We see graphically that the trajectory shown bisects
the right angle between x and ct axes, but doesn’t bisect the acute angle between xÕ

and ctÕ axes: It changes the apparent speed of light.

5This oversimplification will be remedied in Chapters 31–32.
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a b

rotation provisional Lorentz boost

Figure 28.1:

We have experience with another sort of linear transformation in the plane: a
rotation of the axes. Figure 28.1a shows this option. But this transformation, too,
alters the apparent slope of the trajectory shown; again, the trajectory does not bisect
the angle between xÕ and ctÕ axes. But there is another possibility (panel (b) of the
figure): If we bend both axes by opposite angles, then the diagonal line continues to
bisect the angle between xÕ and ctÕ axes.

Your Turn 28A
Think about the other allowed light trajectory in 1D, which moves at speed ≠c.
It bisects the angle between the ≠x and ct axes. Convince yourself that it also
bisects the angle between the ≠xÕ and ctÕ axes.

28.3 THE WAVE EQUATION IS INVARIANT UNDER PROVISIONAL
LORENTZ TRANSFORMATIONS

Figure 28.1 represents the following linear transformation of coordinates:
5
ctÕ

xÕ

6
=“

5
1 ≠—

≠— 1

65
ct
x

6
. provisional Lorentz boost transformation (28.2)

Here — and “ are constants and “ > 0. Equation 28.2 says “provisional” because,
although all transformations of this form are invariances of the vacuum wave equation,
we’ll see that not all are invariances of the rest of physics (nor even of the full Maxwell
equations).6

Equation 28.2 has a feature that bothered many people: tÕ ”= t. To many, it seemed
necessary that all good coordinate systems would agree on one correct, universal choice
for time. To Einstein, that necessity was not obvious.

6Chapter 29 will argue that the true Lorentz transformations are the special case with “ = (1 ≠
—

2)≠1/2, but we don’t need that fact yet.
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28.3.1 Active viewpoint
To see if Equation 28.2 is at least promising, consider a harmonic wave solution to the
wave equation: „±(t, x) = cos

!
Ê

c
(≠ct ± x)

"
. Following Section 26.3.1 (page 283) we

apply an active transformation, that is, construct di�erent functions Â„± defined by

Â„±(t, x) = cos
!Ê

c
(≠“(ct ≠ —x) ± “(≠—ct + x)

"
,

which can be written as

cos
! ÂÊ

c
(≠ct ± x)

"
, where ÂÊ = Ê“(1 ± —).

These functions are again solutions to the wave equation, traveling at speed ±c! It’s
true that each has a di�erent frequency from the original, but we expected that—there
should be a Doppler shift. Because any solution to the wave equation can be expanded
in Fourier series, we have established symmetry under active transformations.

28.3.2 Passive viewpoint
Encouraged by that result on a particular solution, we now switch to the passive
viewpoint, that is, we focus on the wave equation itself, not its solutions:

Your Turn 28B
Reexpress the wave equation in terms of primed coordinates. (Follow the same
approach as in Chapter 26, but with the new transforms Equation 28.2 instead
of galilean boosts.) Show that the wave equation maintains its original form after
this passive transformation.

Indeed, the wave equation is invariant under a family of transformations that take a
coordinate system and boost it into uniform straight-line motion relative to the original
one. Hence, the wave equation is still compatible with the Principle of Relativity—just
not in the way people had expected.

28.4 VELOCITY ADDITION

Let’s apply the Relativity Strategy (Idea 25.12, page 278) to a wave or particle that in
one good coordinate system appears to be in uniform, straight-line motion with velocity
±v. We can describe that motion parametrically by giving ct and x as functions of a
parameter ›, then see what the motion looks like in the equivalent boosted coordinate
system: 5

ctÕ

xÕ

6
=“

5
1 ≠—

≠— 1

65
›

±v›/c

6
=

5
“›(1 û v—/c)
“›(≠— ± v/c)

6
. (28.3)

Thus, in the primed coordinate system the trajectory again has uniform velocity, given
by

vÕ = c
“›(≠— ± v/c)
“›(1 û v—/c) = c

≠— ± v/c

1 û v—/c
. (28.4)
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Figure 28.2: The velocity addition formula (Equa-
tion 28.4) never gives a result larger than c.
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That’s pretty weird. It sure doesn’t look like the galilean formula vÕ = ≠—c ± v. But
suppose that — π 1 and v π c; in this case we can forget the denominator, and we do
recover galilean behavior. In the everyday world of things moving much more slowly
than light, Einstein’s kinematics resemble the galilean behavior. This is the world in
which we got our intuitions over millions of years of evolution: Throw a spear while
running forward, and the spear’s velocity will be the sum of your arm velocity and
how fast you’re running (better able to bring down that gazelle).

In the opposite, less familiar, regime where v æ ±c, our formula boils down to
vÕ æ ±c. A trajectory that moves at speed c in (t, x) has the same property in (tÕ, xÕ).
As we saw with pictures in Section 28.2, Lorentz invariance reconciles our desire to
connect coordinate systems in relative motion (and hence hardwire the P of R), with
the universality of the speed of light required by the Maxwell equations.7

Finally, you should think about the limit — æ 1, holding v fixed to some value
less than c. Figure 28.2 shows this and every other case graphically.

Because every provisional Lorentz transformation preserves the form of the wave
equation, the combined e�ect of two such transformations in succession will have the
same property.

Your Turn 28C
a. Suppose that a boost with (“1, —1) is followed by another with (“2, —2). Show
that the combined transformation is again of the form Equation 28.2.
b. Find the inverse of the transformation Equation 28.2 and show that it, too, is
a provisional Lorentz transformation.

Thus, our provisional Lorentz transformations form a group, analogous to but distinct

7This observation eliminates an objection we made to the particle picture of light in Chapter 25:
Regardless of how a pulsar may be moving relative to us, light leaving it always travels toward us
at speed c. Although this course will focus on the wave picture, the fact that both viewpoints are
experimentally tenable underpins the dual nature of light revealed in quantum field theory.
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from the galilean group (Section 25.6.4). Just as in newtonian physics, we can promote
everything to three space dimensions, again obtaining a group of invariances. Later,
when we finish specifying the relation between “ and — in Section 29.3, this group
will be called the Lorentz group.

28.5 A NONNULL, FALSIFIABLE PREDICTION

Is this just philosophy? We should think about some real experiment. Later in his
life, Einstein said that just two experimental observations were all he needed to be
convinced he was on the right track. They were the aberration of starlight and an
experiment first done by Fizeau.8 We’ll discuss the second of these now, and the first
in Chapter 29.

You were probably taught that the famous Michelson–Morley experiment falsified
the æther/galilean hypothesis. Einstein was never quite clear on whether he knew and
was influenced by that experiment, but in any case, one problem with it is that it was a
null result; the result was zero dependence of light speed on apparatus velocity, whereas
the æther/galilean theory predicted a nonzero result. Null experiments are subject to
the criticism that zero is a very special value. There may be various explanations for
why you got zero (maybe your sensitivity wasn’t as good as you thought).

It’s more convincing when two theories make two quantitative, di�erent, nonzero
predictions for an experimentally observable quantity, and an experiment excludes
one but not the other. Fizeau’s experiment had that character. Before doing it, Fizeau
first measured the speed of light in air, finding near-agreement with Rømer’s old
astronomical measurement.9 Then he measured the speed of light in water, finding it
to be c/n where n ¥ 4/3. That was a comforting result: Huygens had shown that a
slowdown of light in water was just what was needed to explain the law of refraction
in the wave theory of light. But crucially, Fizeau proceeded to study the propagation
of light in flowing water at various velocities, both along and against the direction
of a light beam.10 Unlike in vacuum, he found that the motion of the water can slow
down or speed up the light, depending on its motion.

Let’s apply the Relativity Strategy to this problem (Idea 25.12, page 278):

• We set up a “good” coordinate system in our lab, that is, one in which the laws
of Nature have their simplest form. Then we measure the speed of light in still
water. Call the result v = ±c/n, where c is the vacuum speed and n is a constant
larger than 1. Thus, the trajectory of a flash of light can be written in parametric
form as 5

ct
x

6
=

5
›

±›/n

6
. first light flash, lab frame

8Fizeau’s experiment was first done in 1859 (the version Einstein knew), then redone with greater
precision by Michelson and Morley in 1896 (a little-known result distinct from the famous MM
experiment). A version with still higher precision was then done by Zeeman. Figure 28.3 below shows
MM’s data. Many more tests of relativity came only after 1905, so were not available to Einstein.
9Light travels a tiny bit slower in air than in interplanetary space.
10Today one uses a chunk of quartz on the rim of a rapidly spinning disk, to eliminate turbulence
that occurs in water.
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Also, the trajectory of an element of water can trivially be written as
#

ct

x

$
=#

›

const
$
.

• Both the hypothesis of galilean invariance, and the hypothesis of provisional
Lorentz invariance, then assert that there will be other coordinate systems, moving
relative to the lab system, in which the relevant laws of Nature have the same
form. The same equations must have the same solutions, so we predict that in
the new frame there will be a di�erent, but allowed, light trajectory described
by the same function of ›:

5
cÂtÕ

ÂxÕ

6
=

5
›

±›/n

6
. new light flash, boosted frame

Also, for this new solution the trajectory of an element of water is
5
cÂtÕ

ÂxÕ

6
=

5
›

const

6
. water, boosted frame

• If the equations of electrodynamics were invariant under galilean transformations,
we could then obtain the speed of the light flash in flowing water, as measured in
the lab coordinate system, by performing a galilean boost back to the lab frame,
obtaining Âv = vú ± c/n.11

• If, on the contrary, the equations of electrodynamics are invariant under provi-
sional Lorentz transformations, then we must instead use the inverse of Equa-
tion 28.2. Applying this procedure to a water element gives that the water is
moving at speed vú. Of greater interest, the light flash’s trajectory

5
cÂt
Âx

6
=

1
“(1 ≠ (vú/c)2)

5
1 vú/c

vú/c 1

65
›

±›/n

6

=
1

“(1 ≠ (vú/c)2)

5
›(1 ± Ê/(cn))
›(vú/c ± 1/n)

6
. new light flash, lab frame

The velocity is then dÂx/dÂt = c(vú/c ± 1/n)/(1 ± vú/(cn)).12

In experiments, we can never get the water flowing anywhere near the speed of light.
So vú/c π 1, and we can make a simplified approximate formula:13

vÕ ¥ (vú ± c/n)(1 û vú/(cn)) ¥ ±(c/n + vú(±1 ≠ n≠2)). (28.5)

At last, we have a testable prediction. The hypothesis that the full equations of
electromagnetism have galilean invariance predicted vÕ = ±(c/n ± vú), which di�ers
from Equation 28.5. If we plot vÕ (speed of light in water, measured in the lab’s coordi-
nate system) versus vú/c, then the two competing theories make di�erent predictions
for the slope of the data.

11After Fizeau’s experiment was done, æther theorists tried to wriggle out of this failed prediction
with a theory that we now regard as laughably contrived. But it’s best not to laugh—we’ll see which
of today’s theories also look comical in the future.
12Alternatively, Equation 28.4 gives this result directly.
13The first published derivation of this formula seems to be by Max von Laue (1907).
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Figure 28.3: Results from Michelson and Mor-
ley’s lesser-known experiment. The leftmost
dot shows light velocity in water at rest with
respect to the lab. Other dots show the data
from a total of 12 trials spanning three di�er-
ent nonzero fluid velocities. The solid line shows
the prediction of Equation 28.5. For comparison,
the dashed line shows the prediction based on
the hypothesis of galilean invariance. [Data from
Michelson & Morley, 1886.]
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That is, both theories make firm, nonnull predictions, with no fudge factors (no
fit parameters).14 That is, both are highly falsifiable, if you’ve got enough accuracy
to measure the e�ect at all. Figure 28.3 shows the data from Michelson and Morley’s
version of Fizeau’s experiment. To get enough accuracy, Fizeau and successors all used
interferometry. Even so, the figure shows significant scatter. But the data certainly
rule out the prediction of the galilean invariance theory (slope 1), and they don’t rule
out Einstein’s prediction.

Michelson and Morley actually measured the di�erences in light speed between
propagation with and against the water flow. In the figure, these di�erences have been
divided by two and added to the speed c/n at zero flow. Because the graph shows
only a small range of values for (water speed)/c, the Einstein prediction appears to
be nearly a straight line. At water speed approaching c, the curve would level o�
(Figure 28.2, page 299), but we’re nowhere near that regime.

28.6 POSTSCRIPT
Science is a way of trying not to fool yourself. The first
principle is that you must not fool yourself, and you are the
easiest person to fool.

— Richard Feynman

1. You may be asking, “Why try so hard to convince me that the theory is true? Just
tell me the facts, so I can get on with becoming a scientist!”

Actually,
Some of today’s accepted theories are wrong, but we don’t know which
ones.

We all need finely-honed critical skills. Studying past revolutions is useful to be ready
for future revolutions.

14The index of refraction, n, is independently measured from experiments on refraction. So it’s a
parameter, but not a fit parameter. Our derivation neglects the e�ect of dispersion in the medium;
see Lerche, 1977.
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In fact, science is a system of tools to prove that your wonderful new theory, which
you love so much, is not true. Discovering that unfortunate fact is the first step to
letting go and finding your next wonderful new theory, which may be true. When you
find it, its truth may still not be clear to the world. It is instructive to see how classic
theories gained the assent of a world that initially was opposed to them, by surviving
tests specifically designed to falsify them.
2. Our provisional Lorentz boost (Equation 28.2) has the disturbing feature that tÕ ”= t.
A lot of people got philosophically confused: “How can time itself change?” I won’t
put words into Einstein’s mouth, but speaking for myself, I’d reply,

• I said nothing about time itself. I don’t know what time itself means. I have no
apparatus to measure time itself.

• I do have various kinds of clocks. They are physical devices with periodic behavior.
As such, they are subject to the postulate under investigation, which is that the
equations governing them are invariant under Lorentz transformations.

• I know ways to attach sets of four numbers to events.15 Some of these coordinate
systems are “good” in the sense that in them, physics is described by simpler
equations than in the others (and always by equations of the same form).

• Einstein’s hypothesis is that the “good” coordinate systems are related to each
other by transformations that include some of the ones given in Equation 28.2.

• It is true that these transformations imply that di�erent, equally good, coordinate
systems will disagree about whether two distant events are simultaneous (t(1) =
t(2) does not imply tÕ

(1) = tÕ
(2)). But what experimental result does that contradict?

(Einstein couldn’t find any.)
• We have seen that the hypothesis of invariance under these transformations im-

plies a testable, and verified, prediction for a nontrivial phenomenon, the “dragging
of light” by a moving medium. We’ll add more phenomena to this list later.

3. There’s a remarkable feature of the derivation above: Nowhere did we find it
necessary to describe the mechanism for the slowing of light in water. That is, details
of the dynamics did not enter, apart from the hypothesis that whatever the slowdown
mechanism is, it (like the rest of physics) is invariant under Lorentz transformations.16

I hope you’ll agree that the kinematic approach followed above is much simpler than
solving Maxwell’s equations for light moving through a medium of water molecules!
4. Other scientists came close to relativity before Einstein. Today we regard their
work as unreadable, because they got bogged down in detailed dynamical hypotheses.
Einstein got simple results because he focused on the kinematics, specifically on one
hypothesis about the invariances of the dynamics.
5. Although Lorentz invariance looks promising, we are far from being done. We wish
to prove that the full Maxwell equations also have exact Lorentz invariance. Rather
than attempt that head-on, we will first construct a new kind of tensor language

15One way to set up such a coordinate system is to use an array of identical clocks and synchronize
them using light flashes.
16Later, when we complete our specification of the Lorentz transformations, you can confirm that
our derivation continues to hold.
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in Chapters 31–32. The new language seems elaborate at first, but it makes many
derivations of this sort very straightforward.

FURTHER READING

Zhang, 1997
Fizeau, 1859.
Michelson & Morley, 1886.
Shankland, 1964.
A critical review of this class of experiments is presented in Lerche, 1977.

Also see Galison, 2003.

PROBLEMS

28.1
Confirm that the provisional Lorentz transformation (Equation 28.2, page 297) really
implements the sketch Figure 28.1b by finding the angles by which the ct and x axes
are bent.
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Aberration of Starlight and Doppler E�ect
And then, beside the Thames at Kew,
the house of Samuel Molyneux
supplied the firm foundations needed.
James Bradley, Samuel’s friend, succeeded
in tracking Hooke’s draconic star ...
The trouble was, it moved too far,
too fast, and in the wrong direction!
Despite the most minute inspection,
Bradley found nothing to suggest
his telescope was not at rest;
the star was shifting in the sky,
though maybe God alone knew why!

— James Muirden

29.1 FRAMING

You showed in Your Turn 28B that a family of transformations leave the 1D wave
equation invariant. Some of these were unsurprising (translations and reflections in
space and time), but a two-parameter family I called “provisional Lorentz boosts” were
more interesting (Equation 28.2, page 297), because they relate two coordinate systems
in uniform relative motion, and hence are candidates for implementing the Principle
of Relativity. We saw that every coordinate system in the family we are considering
agrees about whether or not a trajectory is moving at speed c, by construction.

So it’s not true that Einstein said “everything is relative”: The property of moving
at speed 3 · 108 m/s is absolute (all coordinate systems in an objectively “good” class
agree about it). Certain other properties will prove to be relative. For example, di�erent
“good” systems will disagree about whether two events are simultaneous.1

Chapter 28 stressed the value of predicting a testable, non-null e�ect that di�ers
from newtonian physics; the present chapter will make more predictions of this type.
First, however, we’ll refine our “provisional” form of our proposed transformations to
get their final form.

29.2 NO DILATATION INVARIANCE

The wave equation in vacuum is just one combination of the Maxwell equations. We’ll
now see that some of the “provisional Lorentz” boosts are not invariances of all of

1Section 40.2 will discuss this statement in detail.
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electrodynamics. So we need to throw some of them out. But we must do so carefully:
The ones we keep must form a subgroup, that is, the composition of two successive
transformations in that subset must also be in it. (Also, the inverse of any one of them
must be in the chosen subgroup.)

To see that some of the transformations we found are spurious, consider a situation
that’s not just fields in empty space, specifically the Coulomb repulsion of two charged
particles:2

m
ˆ2

ˆt2 r̨(1) = q2R̨

4fi‘0R3 , etc., where R̨ = r̨(1) ≠ r̨(2). (29.1)

Here two point charges labeled by – = 1 or 2 are assumed to each have the same
charge q and mass m.

Now consider the provisional Lorentz boost with “ ”= 1 but — = 0, that is, r̨ Õ = “r̨
and tÕ = “t. Rephrasing Equation 29.1 in terms of tÕ and r̨ Õ, we find that in the new
coordinates it does not have the same form as initially—there’s a factor of “ that fails
to cancel.3

Actually, we needn’t have worked so hard. If dilatations were an invariance of
the laws of Nature, then there would be hydrogen atoms of any size! In the active
viewpoint, just apply a dilatation to whatever laws dictate the usual solution, and
find new solutions stretched by an arbitrary amount.4

There are several attitudes we could now take:

• We could just try saying, “The charges and/or masses of the particles must also
change under such transformations.” But if the world had such an invariance,
then there’d be a whole family of di�erent electrons with continuously varying
charges and/or masses. Nobody has seen them.5

• Or we could try saying, “There is some new dynamical entity, implicitly set equal
to a fixed value in the Maxwell equations, which should instead be allowed to
transform.” Maybe its transformation rule under dilatations could be arranged
to be exactly what’s needed to make Coulomb’s law invariant. Actually, many
authors have tried theories with such “dilaton” fields, and correspondingly “spon-
taneously broken dilatation invariance,” but none is widely accepted yet.

• Anyway, this course is dedicated to exploring the hypothesis that Maxwell’s
equations are already correct and complete as written. We just noted that those
equations do not have dilatation symmetry. Should we therefore restrict to just
those provisional Lorentz boosts with “ = 1? Unfortunately, you can quickly
show that doing two of those transformations in succession does not amount to

2We combine the equations in this way so that we don’t have to worry about how Ę transforms; it’s
been eliminated. Although this formula will later need relativistic corrections, it’s certainly valid for
slowly-moving particles.
3It’s true that the new equation has the same form except for the value of q

2
/(m‘0), but that’s not

good enough to declare that it’s invariant. Note that an equation of the same form also describes two
uncharged particles attracting each other gravitationally, so newtonian gravity, too, lacks dilatation
invariance.
4Atomic sizes involve quantum mechanics, but even in classical electrodynamics Chapter 46 will show
that an electron’s ability to scatter radiation involves the “classical electron radius,” a length scale
with a fixed value for electrons (distinct from its value for muons etc.).
5Also, each atomic species would come in a continuous range of sizes, contrary to observation.
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any single boost with “ = 1. That is, the “ = 1 transformations do not “close
into a group.”

• But Einstein already knew that there was a di�erent subset, which really do close
into a group, and are still su�cient to bake in in the Principle of Relativity. We
will discover them in the next section.

Einstein then proved that these transformations were also exact invariances of the
Maxwell equations. We’re not ready to do that,6 but nevertheless we’ll be able to
show that the hypothesis that physics is invariant under them makes experimentally
testable predictions, e.g. for the aberration of starlight and the two kinds of Doppler
e�ect. Those predictions agree quantitatively with experiment, which will give us the
courage to later push through the proof that they are invariances of the full Maxwell
equations.

29.3 LORENTZ TRANSFORMATIONS IN ONE SPACE DIMENSION

Again, our task is to find a subset of provisional Lorentz transformations that forms
a group, excludes the bogus dilatations, but still includes boosts. If we succeed, then
we can explore the physical hypothesis that this reduced set of transformations are
all invariances of Nature.

29.3.1 A subgroup that excludes dilatations
One way to specify a 1-parameter subset of the provisional 1D Lorentz boosts is to
require that “ is not independent of —, but instead is a scalar function of it. We wish
to do this in such a way that the subset closes into a group. We will guess a trial
solution, then confirm it. Then we’ll see a deeper meaning for that solution.

The isotropy of space, and the fact that —̨ is a vector in 3D, lead us to expect
that “ won’t depend on which direction —̨ points. We also expect that a boost by —̨,
followed by a boost by ≠—̨, should amount to no boost at all (think about jogging
backwards at speed vú inside a train car that itself is moving at +vú relative to Earth).
Thus, we require

“

5
1 —
— 1

6
“

5
1 ≠—

≠— 1

6
=

5
1 0
0 1

6
.

This fixes “ = (1 ≠ —2)≠1/2, or7

5
ctÕ

xÕ

6
= (1 ≠ —2)≠1/2

5
1 ≠—

≠— 1

65
ct
x

6
. Lorentz boost, 1D (29.2)

In particular, if — = 0 then “ = 1, and so pure dilatations are not part of this subset of
transformations, as desired. From now on, whenever I write “ I’ll mean this particular
function of —.

6See Chapters 31-33.
7Lorentz actually showed in 1904 that these transformations were invariances of the full Maxwell
equations. However, Lorentz viewed this invariance as mathematical curiosity about the Maxwell
equations—not an invariance of all of physics—and certainly not as justification to eliminate the
æther.
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For very small —, the transformations Equation 29.2 reduce to

tÕ = t ≠ (vú/c2)x ¥ t, xÕ ¥ x ≠ vút where vú = —c.

These look just like galilean boosts. That’s why Einstein’s correction to the tÕ for-
mula was missed for hundreds of years, during which Newton’s laws made accurate
predictions about terrestrial and celestial mechanics.

To see the significance of the Lorentz boosts, consider what happens when we
reexpress the wave operator in terms of transformed coordinates:

5
≠ ˆ2

ˆ(ct)2 + ˆ2

ˆx2

6
u becomes “2(1 ≠ —2)

5
≠ ˆ2

ˆ(ctÕ)2 + ˆ2

ˆxÕ2

6
u. (29.3)

We see that among the provisional Lorentz boosts, the subgroup of true invariances are
those that leave the wave operator completely invariant—not just a multiple of itself.
The following chapters will show that indeed these transformations are invariances
of the full Maxwell equations. That is, the coordinate systems in which Maxwell take
the simplest form are related by Equation 29.2, which is physically di�erent from
the situation in newtonian physics. In honor of Einstein, we’ll call any of the “good”
systems an E-inertial coordinate system to distinguish them from the corresponding
notion in newtonian physics.8

29.3.2 Rapidity parameter
The preceding section characterized true Lorentz transformations as those that leave
something (the form of the wave operator) unchanged. Two such transformations
in succession will also have that property, so right away we see that the Lorentz
transformations must close into a group.

It’s algebraically messy to prove that statement directly, but there is a remarkable
reformulation that makes it easy. Begin with an analogy to ordinary rotations. Why
are rotations given by matrices that, in two dimensions, have the form

# cos – sin –

≠ sin – cos –

$
?

One way to characterize such matrices S is by the statement StS = 11 (the identity
matrix). But equivalently, rotations are those linear maps of coordinates that leave
the algebraic form of the pythagorean formula invariant:9 x2 + y2 = (xÕ)2 + (yÕ)2.
Chapter 13 used this property to show that the Laplace operator is invariant under
rotations. Rotations close into a group: For example, in 2D –1 followed by –2 is
equivalent to –1 + –2.

The wave equation involves something analogous but a bit di�erent:

Your Turn 29A
Show that, in one spatial dimension, the Lorentz boosts are linear maps that
preserve the form of the quantity

�·2 = c≠2!
(c�t)2 ≠ (�x)2"

, (29.4)

which we’ll call the invariant interval between two events. [Hint: The proof is
very similar to the proof of Equation 29.3.10]

8The latter were called galilean, or “G-inertial” systems in Section 25.6.1.
9More precisely, the linear maps that leave the pythagorean formula form-invariant consist of the
rotations and reflections in x and/or y.
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Because Equation 29.4 looks similar to the rotation case (except for the minus sign),
we may hope that the appropriate symmetries will also look similar. Indeed, you
should show that 5

cosh � ≠ sinh �
≠ sinh � cosh �

6
(29.5)

does the job, for any �. Some authors call � the rapidity parameter.

Your Turn 29B
a. Confirm that any transformation of the form Equation 29.5 is a special case
of the provisional Lorentz boosts, with “ = cosh � and — = tanh �. . .
b. . . . and that conversely any Lorentz boost can be written in the form Equa-
tion 29.5.
c. Section 29.3.1 argued that because the transformations Equation 29.5 can be
characterized as those that leave something invariant (namely the wave opera-
tor, Equation 29.3), they must close into a group. Now confirm this expectation
directly: Use a trig identity and Equation 29.5 to show that a boost with �1,
followed by one with �2, is equivalent to a single boost with �tot = �1 + �2.
d. Finally, confirm that this combination rule amounts to the same thing as a
boost by the velocity vÕ obtained from the formula we found earlier, Equation 28.4
(page 298).

Thus, once again, we have found a 1-parameter subset of the provisional 1D
Lorentz boosts that closes into a group, excludes dilatations, but includes boosts.
Compared to Section 29.3.1, however, the derivation just given has the advantage
of revealing a geometric interpretation: Lorentz transformations are the analogs of
rigid rotations in a weird new kind of geometry. Either way, we now have a candidate
physical hypothesis about the invariances of Nature and can get to work testing it.

29.4 A TYPICAL PARADOX AND ITS RESOLUTION

People made many objections to Einstein’s theory, and still do. Out of many we could
explore, here is one:

“I can determine whether I am at rest, as follows: I place my apparatus in a
cart that can move at any uniform velocity v with respect to absolute rest. The
cart is rigid: Its length, measured in its own rest frame, is always 0.5 meter. At
some moment I prepare two identical alarm clocks at the center of the cart (as
seen in its rest frame), and synchronize them. One of them is then taken toward
the rear of the cart at uniform velocity ≠u w.r.t. the cart, while the other is
taken toward the front at uniform velocity +u w.r.t. the cart. After equal times
have elapsed on each clock, each emits a flash of light. If those flashes are both
observed to arrive simultaneously at the center of the cart, then we know u = 0
(the cart is at absolute rest). If u ”= 0 then the detector will see them arrive
non-simultaneously at the center, because it is advancing on the light coming
from the front but retreating from the light coming from the rear.”
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Figure 29.1: Thought experiment described in
Section 29.4. The alarm clocks emit flashes of
light at the events shown as dots. The coordinate
axes refer to an E-inertial system in which the
lab is at rest.
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To evaluate this claim, Figure 29.1 shows an accurate spacetime diagram with
v = 0.4c and u = 0.2c. The red line is the trajectory of the center of the cart. The
green lines are the trajectories of the two clocks on their ways to the ends of the cart.
Their slopes are fixed by the velocity addition formula, and their end points are fixed
by the time dilation and length contraction formulas.11 Although the time to alarm
is the same in each clock’s rest frame (because the clocks are identical), they di�er in
the lab’s coordinate system. The blue lines are the trajectories of light flashes emitted
when the alarms go o�. Their slopes are ±45¶ in any E-inertial frame, for example,
the lab.

We see that, contrary to the claim in the indented story above, the flashes always
coincide at the center of the cart, regardless of the value of u. Therefore we cannot use
that observed coincidence to claim that u has any special value. If we use the rules
consistently, we avoid paradoxes.

29.5 LORENTZ TRANSFORMATIONS IN THREE SPACE DIMENSIONS

Another advantage of the geometric picture is that it makes it clear how to introduce
the other two space dimensions: Any transformation that looks like Equation 29.2 in
a 2 ◊ 2 block that includes ct and one spatial direction, and is the identity matrix
in the other two directions, will preserve the form of the (3 + 1)D invariant interval
defined by extending Equation 29.4:

�· = c≠1


(c�t)2 ≠ Î�r̨ Î2, (29.6)

10A more complete statement is that the linear maps that leave the formula Equation 29.4 form-
invariant consist of Lorentz boosts and reflections in x and/or t.
11These formulas in turn came from applying the Relativity Strategy (Equation 25.12, page 278).
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and hence of the wave operator Ò2 ≠ (ˆ2/ˆ(ct)2), and hence of the wave equation
itself. Thus, there are three independent kinds of Lorentz boosts, just as in the galilean
case. Along with the three kinds of rotations, they amount to a six-parameter group
of transformations called the full Lorentz group. Including the four space and time
translations gives a ten-dimensional invariance group called the “Poincaré group.”

We can now put all our ideas together and formulate a successor to Idea 28.1
(page 295):

If we have two coordinate systems on spacetime, in each of which elec-
tromagnetic fields obey the wave equation, then those systems di�er by a
Lorentz transformation. If that transformation is just a boost by velocity
c—x̂, and a wave or particle in one system is moving at constant velocity
c–x̂, then in the other system it will be observed to be moving at constant
velocity x̂c(≠— + –)/(1 ≠ –—).

(29.7)

If the two velocities are not parallel, then the formula is not as simple. However, the
next section shows that in at least one important case it is still straightforward.

Your Turn 29C
Show that only one of the following matrices is a Lorentz transformation:

5
“ ≠“— 0 0

≠“— “ 0 0
0 0 1 0
0 0 0 1

6
; “

5
1 ≠— 0 0

≠— 1 0 0
0 0 1 0
0 0 0 1

6

29.6 MORE KEY EXPERIMENTS: ABERRATION OF STARLIGHT AND
DOPPLER SHIFT

29.6.1 Bending of light-speed trajectories
We are now ready to discuss the second of the two experimental observations that
Einstein said convinced him: the aberration of starlight. Each time we look at the
night sky, the stars’ positions relative to each other are always almost the same, but
not quite. Even when we correct for refraction in our atmosphere, there are some
apparent relative shifts, which are periodic with period one year. That is, the stars
all crowd very slightly toward the direction of our orbital motion around the Sun. At
its maximum, the displacement is just 20 arcsec.

Incredibly, this tiny e�ect was already observed in the late 1600s by astronomers
searching for something completely di�erent (stellar parallax in order to confirm the
heliocentric model of the Solar System). As outlined in the epigraph to this chapter,
Bradley was mystified to find there were indeed tiny annual variations in the relative
positions of stars, but with the wrong magnitude and sign to be explained by parallax.
Bradley even found an æther-based explanation for this phenomenon. Einstein realized
that any alternative theory would need to address it again.

To get a prediction, we again apply the Relativity Strategy (Equation 25.12, page
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278). Consider a trajectory specified in parametric form by
S

U
ct
x
y

T

V =

S

U
›
›
0

T

V.

This formula specifies a chain of events depending on a parameter ›, that is, a curve
in spacetime. It could describe the progress of a flash of light (a wave packet, or one
crest of a wave train) moving at speed c along the x axis.12 Applying a Lorentz boost
transformation along ŷ yields the same trajectory as viewed in another E-inertial
coordinate system:

S

U
ctÕ

xÕ

yÕ

T

V =

S

U
“ 0 ≠“—
0 1 0

≠“— 0 “

T

V

S

U
›
›
0

T

V =

S

U
“›
›

≠“—›

T

V. (29.8)

Your Turn 29D

a. Show that the new trajectory’s speed is


(�xÕ)2 + (�yÕ)2/(�tÕ) =
(�›)2 + “2—2(�›2)/(“�›/c).

b. Confirm that this equals c, as it must.
c. But the new trajectory is no longer directed along x̂Õ. Show that instead, it
makes an angle ◊ with the x̂Õ axis, where tan ◊ = �yÕ/�xÕ = ≠“—.

We could do a similar calculation for any initial angle between the trajectory and
the boost direction (above you did the case where that angle is 90¶). The new angle
depends both on that original angle, and on —, so the relative positions of the stars are
di�erent according to the boosted (Earth-bound) observer. The e�ect is small because
Earth’s velocity change over six months is much smaller than c, but it’s measurable.

Thus, Einstein’s proposal for the invariances of physics makes an absolute predic-
tion for the aberration, with no fudge factors (no parameter at all other than c). It
either succeeds or fails—it’s falsifiable. And, as he pointed out in his very first paper,
it works, without any special pleading, no extra ad hoc hypotheses about how the
æther wind is blowing, etc.

29.6.2 E�ect on frequency
Now you try the derivation again. But instead of transforming a trajectory, this time
transform a plane-wave solution to the wave equation.

Your Turn 29E

Show that again the apparent direction of k̨ changes, but also find the change in
its magnitude. Specialize your result to two famous cases:
a. k̨ is parallel to the boost (“longitudinal Doppler shift”).
b. k̨ is perpendicular to the boost as in Your Turn 29D (“transverse Doppler
shift”).

12We’ll suppress the z coordinate to shorten the formulas. It’s there, but it’s not doing anything
interesting.
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Note that newtonian physics also predicts a longitudinal Doppler shift, but with a
di�erent magnitude from Einstein’s prediction.13 And newtonian kinematics predicts
zero transverse frequency shift, unlike your answer to Your Turn 29E—a testable
prediction.

Quantitative confirmation that the Doppler e�ect follows the relativistic formula,
and excludes the galilean formula, had to wait for the Ives–Stilwell experiment (1938).
Much more accurate experiments have been done right into the 21st century.14

29.7 AN ENORMOUS GENERALIZATION

29.7.1 Lorentz invariance must apply to all of physics
Let’s step back. Section 28.1.2 o�ered the paradox that the wave equation implied
by Maxwell’s equations doesn’t have galilean invariance, so it was not clear that
they are compatible with the Principle of Relativity. But we have now seen that
the wave equation, with no modifications or additions, is invariant under a family of
passive transformations that relate coordinate systems moving at constant velocity
with respect to one another. We still need to do some work to upgrade this result to
a corresponding statement about the full Maxwell equations, but looking ahead, we
can state Einstein’s proposed resolution to the problem of Section 28.1.2 by saying15

Maxwell’s equations hardwire in the Principle of Relativity by using equa-
tions of motion that are invariant under Lorentz transformations—not
galilean transformations.

Einstein took an extraordinary additional step. Up till now, Lorentz invariance
may have seemed to be a peculiarity of electrodynamics, which we could safely ignore
if, say, we were only interested in the motions of planets. But suppose that Maxwell’s
equations and newtonian mechanics were both correct as written. That is, suppose
that there is even one coordinate system in which both of those systems’ equations
of motion correctly describe physics. Applying a galilean boost to that system would
then spoil the form of Maxwell. Applying a Lorentz boost to it would spoil the form of
Newton. In fact, there would be no other coordinate system in uniform, straight-line
motion relative to the original one in which all equations of motion have the same
form. So in such a world we could define “absolute rest” as that original coordinate
system—contradicting the Principle of Relativity:

If we want to hardwire in the P of R via an invariance, then that invariance
must apply to all of physics—even to phenomena not yet discovered.

That’s quite a leap. We can’t have it both ways. Einstein’s hypothesis is that
Although newtonian physics has looked good for hundreds of years, actually
it hasn’t been tested for objects moving at speeds near c, whereas Maxwell
has. So it’s Newton that has to be changed, not Maxwell.

13Compare Equation 26.4, page 283.
14Some experiments were based on an ultrasensitive measure of wave frequency (Mössbauer e�ect).
Other experiments used single atom emitters moving at high speeds.
15Compare our galilean statement (Equation 25.10, page 278).
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springs (linear or not)
clocks
planets, satellites, . . .
gyroscopes
nuclei, quarks, photons, . . .
trains

Lorentz invariance

muon lifetime

aberration of starlight

transvese and longitudinal Doppler

dragging of light by medium

Compton e↵ect

optical Foucault

Figure 29.2:

Or, paralleling Idea 25.9:
Physics has an overarching mathematical property that transcends details
of particular springs, clocks, planets, etc. That property is that the specific
equations for any situation always have a family of preferred coordinate
systems, which are related to each other by Poincaré transformations.

(29.9)

(Recall that the Poincaré group contains Lorentz transformations along with transla-
tions.)

29.7.2 Muon lifetime, CMBR dipole, and more
The hypothesis of universal Lorentz invariance now gives us many nontrivial physical
predictions, all of which start by saying (Figure 29.2) “Suppose that the dynamical
laws governing [some process] are invariant under Lorentz transformations. . . .” From
there, we can apply the Relativity Strategy (Equation 25.12, page 278). For example,
we’ve seen how to understand Fizeau’s experiment, the aberration of starlight, and
both kinds of Doppler shift, by using that approach.16

Note that when we hypothesize that “all laws of physics are invariant under
Lorentz transformations,” we mean all, including quantum physics. Here are more
examples:

• Suppose that, whatever process makes the muon disintegrate, that process is
invariant under Lorentz transformations. We capture some muons, bringing them
to rest with respect to our lab, and find that each one’s lifetime is 2.2 µs. Then we
can predict that a muon moving rapidly relative to the lab’s E-inertial coordinate
system will also live 2.2 µs in an E-inertial coordinate system in which the muon
is at rest (called a rest frame). Transforming this duration into the laboratory
coordinate system via Equation 29.2 (page 307) shows that a fast-moving muon
appears, in the lab, to live longer before disintegrating than does a muon at rest,
as observed. Specifically we predict a lab lifetime “(2.2 µs), during which the
muon travels “—c(2.2 µs), farther than it would have gone under the hypothesis

16For Fizeau: “Suppose that, whatever interactions slow light down in water, they are invariant
under Lorentz trasformations. . . .” For aberration and Doppler: “Suppose that, whatever dynamics
are responsible for the propagation of light in vacuum, they can be expressed in terms of equations
invariant under Lorentz transformations. . . ”
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of galilean invariance.

T2 Section 29.7.2 Õ (page 318) discusses this experiment in more detail.
• Suppose that, whatever nuclear physics is responsible for an excited nucleus of

iron to give o� a gamma photon by recoilless emission,17 that process is Lorentz
invariant. Then a second iron nucleus that could resonantly absorb such a photon
will not do so if it’s in motion relative to the first one, because in its rest frame
the photon is Doppler shifted, and hence o� resonance.

• The Doppler shift formula also lets us deduce the motion of distant galaxies
relative to us:18 We suppose that, whatever atomic physics is responsible for
making hot gas give o� light with a pattern of spectral lines, that process is
invariant under Lorentz transformations. Then a hydrogen atom moving rapidly
relative to us will have the same spectral lines as one in our lab, if it’s measured
in the E-inertial coordinate system in which that atom is at rest. Transforming
that outgoing wave to our lab’s E-inertial coordinate system gives its apparent
frequency when we observe it with a spectrometer.
The Doppler e�ect also predicts that the apparent temperature of the cosmic
microwave background radiation appears slightly higher in one direction of the
sky, and slightly cooler in the opposite direction (the dipole anisotropy). This
was observed shortly after the discovery of the cosmic microwave background
radiation.19 This anisotropy must be subtracted from observations if we want to
see the far smaller, and more cosmologically interesting, anisotropy that arises
from early Universe fluctuations.

• Strong and weak nuclear forces, which are not electrodynamic in origin, lead
to particle reactions that conserve energy and momentum. But we’ll soon see
that, in order for energy and momentum to be conserved in every E-inertial
coordinate system, we must modify their newtonian definitions, in ways that
have experimentally testable consequences in nuclear and high-energy physics.

The incredible power of relativity lies in the fact that these apparently unrelated
phenomena, and many others, are all quantitatively explained with one idea, (29.9).
The existence of laws of this sweeping generality is a miracle, the basic epistemological
miracle of physics. It’s what gives physical law a di�erent character from the rules
governing other branches of science.

Again: The revolutionary aspect of Einstein’s logic was not just the factual content
of his proposal, but also the method: Till then, the general approach had been to
propose a law of Nature, then test it. Instead Einstein went straight to the next higher
level, writing a transformation principle that’s proposed to be an invariance of all
laws of Nature, whatever they may turn out to be.

17You’ll examine this phenomenon in Problem 30.2.
18In 1868, William and Margaret Huggins detected a Doppler shift in the spectrum of Sirius, the
birth of this indispensable astronomical method.
19You’ll explore the CMBR dipole anisotropy in Problem 29.4. Prediction: Peebles and Wilkinson,
Phys Rev 174(1968)2168. Observation: Smoot, Gorenstein, Muller Phys Rev Lett 39(1977)898.
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29.8 WHAT’S NEXT

1. We now have a proposal for a set of transformations that:
. Are invariances of the wave equation; and
. Form a group.
But the wave equation we have studied assumed a scalar field, whereas we know that
the electric and magnetic fields are not scalars. Not only do the components of Ę
transform among themselves under rotation; that nagging experiment with the magnet
and coil seems to imply that Ę mixes with B̨ under a boost (Hanging Question #A,
page 11). So we need to augment our Lorentz transformations on spacetime by making
a proposal for what exactly happens to the components of Ę and B̨ under them. Only
then will we have a firm proposal for what transformations are supposed to leave the
Maxwell equations invariant. Then we can do the math to see if it’s true—after first
inventing some powerful notation to help us (“high-tech relativity”), based on the
close relation of Equation 29.5 to rotations.
2. Our logic may still feel a bit ad hoc, but here we were still just feeling our way
trying to guess the right hypothesis. Now that we’ve got it, and it looks promising,
we are in a position to develop a more streamlined formulation in Chapters 31–32.
3. First, however Chapter 30 will explore more generic (kinematic) consequences of
Lorentz invariance, and their experimental signatures.
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T2 Track 2

29.3Õa Light-cone coordinates
Here’s a more elegant derivation of Lorentz transformations than the one in the main text.

Suppress y, z for the moment, and consider only ct, x. It is helpful to define light-cone
coordinates #

u
v

$
= 1Ô

2

#
1 1

≠1 1

$ #
ct
x

$
so

#
ct
x

$
= 1Ô

2

#
1 ≠1

1 1

$ #
u
v

$
. (29.10)

Then the general solution to the wave equation takes the elegant form f(u) + g(v) for any
two functions f, g. The function f describes a waveform moving to the left; g is a waveform
moving to the right.

The linear transformations u
Õ = Au, v

Õ = Bv change a solution to f
Õ(uÕ) + g

Õ(vÕ) where
f

Õ(uÕ) = f(Au) etc., which has the same functional form as before. So any such transformation
is an invariance of the solution space of the wave equation; that is, waves traveling left or
right at velocity ±c in the original coordinates are again traveling left or right at velocity ±c

in the new system.
In light-cone coordinates, the operation appearing in the wave equation (the wave

operator, or D’Alembertian) has the simple form ˆ
2
/ˆuˆv. In terms of the transformed

coordinates, this is (AB)(ˆ2
/ˆu

Õ
ˆv

Õ). Such transformations are therefore invariances of the
wave equation. They include dilatations with A = B ”= 1; those are invariances of the vacuum
wave equation, but not of the rest of physics. We can eliminate them, and get the expected
1-parameter family of boosts, if we restrict to the case where A = B

≠1. That family of
transformations are precisely the Lorentz boosts.

Ë
ctÕ

xÕ

È
= 1

2

Ë
A+A≠1 A≠A≠1

A≠A≠1 A+A≠1

È Ë
ct
x

È
. (29.11)

This can be placed in its more famous form by letting “ = (A + A
≠1)/2 and — = (A≠1 ≠

A)/(A≠1 + A), yielding Equations 29.2 or 29.5.

29.3Õb Invariant interval
Light-cone coordinates also make it easy to see that the quantity ≠2(�u)(�v)/c

2 = (�t)2 ≠
(�x/c)2 is invariant under Lorentz transformations (it acquires a factor of A/A = 1). The
square root of this quantity, �· , has dimensions of time; we call it the invariant interval
between two events. If those events can be joined by a trajectory moving at ±c, the interval
equals zero because either �u = 0 or �v = 0; if they can be joined by a trajectory moving
slower than c then the invariant interval is real and positive.

29.3Õc Velocity addition
It’s also easy to find the combined e�ect of two Lorentz boosts by using light-cone coordinates.
Please convince yourself that the combined operation is itself a Lorentz boost with Atot =
A1A2. To interpret this result, invert the relations between A and (—, “) to find

A = “(1 + —) or A
≠1 = “(1 ≠ —).

Thus, Atot = “1(1 + —1)“2(1 + —2) gives

—tot = (1 + —1)(1 + —2) ≠ (1 ≠ —1)(1 ≠ —2)
(1 + —1)(1 + —2) + (1 ≠ —1)(1 ≠ —2) = —1 + —2

1 + —1—2

.
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29.3Õd Relation to rapidity
Equation 29.11 is the same as Equation 29.5 (page 309) with � = ln A. This is helpful,
because in light-cone coordinates the composition law is simply Atot = A1A2 (show that).
So �tot = ln(A1A2) = �1 + �2, which agrees with your result in Your Turn 29A (page 308).

T2 Track 2

29.6.2Õ

There is a more geometrical (less algebraic) way to think about the longitudinal Doppler
shift:

The diagram above shows the loci of a chain of wavefronts, each moving along x̂ at speed +c

and separated in time t by period T . The dashed lines are coordinate axes for an E-inertial
coordinate system moving with respect to the unprimed system. The period T

Õ of the same
wave observed in this system depends on the intersection of the t

Õ axis with a wavefront, as
shown. You can work out the relation between T

Õ and T , and again recover the longitudinal
Doppler formula.

T2 Track 2

29.7.2Õ

The muon had yet not been discovered in 1905, so this result was not available to Einstein.
We now call the relevant physical law “the weak interaction,” part of the more general
“electroweak theory.”

Actually, the muon lifetime is a random variable. It has an exponential distribution with
expectation 2.2 µs. It is this expectation that gets transformed when the muon is moving
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relative to the lab. This sounds like an annoying extra complication, but actually it’s what
makes possible a measurement of muon lifetime when we don’t know the exact creation
times of individual cosmic-ray muons. We actually measure the probability per unit time of
disintegration for a sample of muons in flight, and compare it to the corresponding quantity
for a sample of muons that have been captured, and hence slowed down, by atomic nuclei.
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PROBLEMS

29.1 Cart before the horse
Figure 29.1 showed a particular case of the thought experiment described in Sec-
tion 29.4. Maybe the result shown was accidental. Make a similarly accurate figure
showing the case in which the cart’s velocity relative to the lab is v = 0.2c and the
clocks move apart from its center at speeds u = ±0.4c. For concreteness, suppose that
the cart’s total length is 0.5 m. [Hint: It may be easiest to get a computer to make
this figure. If you do that, make sure to use equal scaling for the x and ct axes.]

29.2 Length contraction
A long, straight, thin wire carries current I. A negative point charge ≠q moves relative
to the atoms making up the wire; its relative motion is parallel to the wire’s axis in
the opposite direction to the flow of current. The test charge is located a distance r
from the axis of the wire.

Calculate the force on the point charge, in each of two di�erent coordinate frames
S (“lab frame”) and SÕ (“rest frame”), where:
a. In S, the positive charges in the wire are at rest; the negative charges each move at

average velocity v0; and the point charge also moves at v0. The wire is electrically
neutral in this frame;

b. In SÕ, the positive charges in the wire move with velocity ≠v0; the negative charges
and the point charge are at rest.

c. Explain the relation between the two force vectors you found.

29.3 Optical Foucault pendulum
A lab that is anchored to Earth’s surface sets up a non-inertial coordinate system, due
to Earth’s rotation. We can detect this small acceleration without looking at the stars,
for example, by setting up a Foucault pendulum. In this problem you will explore an
optical analog, which is the basis of an important technology.

Imagine a flat table with mirrors, such that light will traverse a roughly square
path in vacuum and return to its starting point. More precisely, the light path is a
trapezoid: One edge is oriented North–South and has length L in its rest frame. The
next edge (called b) is oriented East–West and has length L in its rest frame. The
third edge is oriented North–South and has length L in its rest frame. The last edge
(called a) is oriented East–West and has length slightly longer than L in its rest frame,
because lines of latitude on Earth are not of equal length.

You will be working out the round-trip transit time for light in the rotating
apparatus, and specifically the di�erence in transit time depending on whether the
light goes round clockwise or counterclockwise (when viewed on a line directed toward
the center of Earth.) The apparatus is much smaller than Earth: L = 1 m. It is
located at north latitude –, that is, the polar angle measured from the north pole is
◊ = fi/2 ≠ –.
a. You know the angular frequency Ê of Earth’s rotation (and which way it is rotating).

From that you can make a dimensionless parameter ‘ = ÊRearth/c. Evaluate this
numerically.
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There would be no di�erence in transit times if Earth were not rotating. But we
may hope that there will be an e�ect at order ‘. So work the following steps keeping
only first-order contributions. (If the answer is zero, you can go back and look at
higher-order terms.) You can also use the fact that L π Rearth.

Let unprimed variables ct and r̨ refer to an inertial (hence nonrotating) coordinate
system in which the center of Earth is at rest. The key facts about rotation are that
(i) edges a and b move at di�erent speeds relative to the unprimed system, because
they are located at slightly di�erent polar angles ◊a > ◊b, and that (ii) each is directed
nearly parallel to its velocity. (Actual lines of latitude and longitude are curved, and so
do not coincide perfectly with the straight edges of the apparatus, but this di�erence
is unimportant in the problem.)

You can forget about the other two edges, which are oriented perpendicular to
their velocities.

You know the length of each edge in its own rest frame. Begin by studying a light
beam that proceeds in a clockwise direction. Thus, it starts at the southeast corner,
traverses a heading West, reflects o� a mirror, proceeds North, and reflects again.
Then it traverses b heading East, reflects one more time, and proceeds South to its
starting point.
b. Find the transit times in the unprimed frame for edges a and b and add them.

[Hint: The Relativity Strategy may be helpful (Idea 25.12).]
c. Repeat for a light beam circulating counterclockwise.
d. Subtract the two preceding results and express your answer in terms of ◊, L, Ê,

Rearth, and constants of Nature. Although you have computed time in the unprimed
frame, explain why the round-trip transit time di�erence will have the same value
according to a clock fixed to the instrument.

e. Evaluate your answer for an apparatus located at north latitude – = fi/4. Which
transit time is faster: the clockwise or the counterclockwise route?

f. Compare your answer to the period of visible light. Is this a measurable e�ect?

29.4 CMBR anisotropy
Let’s think of the cosmic microwave background as a classical EM field consisting of a
superposition of many plane waves. We assume that there’s a reference frame (ct, r̨ )
in which it’s nearly isotropic. That is, in this frame the waves have random phases
and polarizations, and wavenumbers drawn from the probability distribution

˝(k̨ )d3k̨ = Cf0(Îk̨ Î/·)d3k̨ .

In this formula · is a constant related to the temperature of the radiation (about
(2.7 K)kB/(~c)). C is a normalization constant. f0(x) = (ex ≠ 1)≠1 is the familiar
Planck function. We want to know what this EM field looks like in our reference
frame (ctÕ, r̨ Õ), which is moving at speed V0 along the ≠ẑ direction relative to the
original frame. So find the probability distribution ˝Õ(k̨

Õ
) of k̨

Õ
vectors. (You can forget

about polarization.) Show that the distribution in the primed frame, restricted to any
particular direction k̂Õ, again has the Planck form, but with a direction-dependent
e�ective temperature ·e�(k̂Õ), which you are to find.
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29.5 Lorentz I
In class I gave you the famous formula for the transformations of z and t corresponding
to a boost in the ẑ direction. That formula contained the mysterious “ factor. Define
the more general formula

Ë
ct

Õ

zÕ

È
= �

#
ct

z

$
where � = f(—)

5
1
—

—

1

6
. (29.12)

I claimed that only by making the choice f(—) = (1 ≠ —2)≠1/2 can we get the required
composition law, i.e. that �1�2 is again a matrix of the form Equation 29.12 for some
—tot.
a. Show the converse of this claim, that is, assume f(—) = (1 ≠ —2)≠1/2, work out the

matrix product for two boosts —1 and —2, and show that the product is of the form
(*) for some —tot (find it).

b. Let’s rederive it in another, more insightful, way. We know that any 2D rotation
matrix can be written

Ë
cos ◊

≠ sin ◊

sin ◊

cos ◊

È
. Try replacing the angle ◊ by an imaginary

number i‰, so that the trig functions turn into the corresponding hyperbolic func-
tions (cosh ‰ etc.). Make any other necessary changes, and see if you can get a
family of matrices � with the required property to be Lorentz transformations.

c. The form you found in (b) makes it much easier to work out the composition
property than was the case in (a). Work it out: Find ‰tot given ‰1 and ‰2, etc.

d. The family of transformations you found in (c) are the same as the ones in (a).
Show this explicitly by finding the correspondence between ‰ and —.

29.6 Disco discovery
In this problem, as always in this course, use classical (not quantum) physics.
An electromagnetic plane wave has wavelength ⁄ and moves along the positive ẑ
direction when measured in one E-inertial coordinate system (the “lab frame”). The
wave is reflected by a spherical mirror, which is moving relative to the lab frame, also
in the +ẑ direction, but with velocity v.

Ƨ
b

a

a. Some of the light will be reflected directly backward, along the ≠ẑ direction. Find
its wavelength ⁄̃ as measured in the lab frame, in terms of ⁄, v, and physical con-
stants. [Hint: Apply the Relativity Strategy (Equation 25.12, page 278). There’s
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another E-inertial frame (not the lab frame) in which you certainly know the
relation between incident and reflected frequencies. Convert that knowledge into a
statement relating the wavelengths as seen in the lab.]

b. Generalize your answer to the case where the scattered light is observed in an
arbitrary direction, making an angle ◊ with the ẑ axis in the lab frame. [Hint: Same
hint as in (a). You may find it easier to express your answer in terms of the scattering
angle as seen in the other frame, then express that angle in terms of ◊.]

[Notes: (a) If you know the Compton formula, and it disagrees with your answer, don’t
worry. Historically this disagreement led to the acceptance of Einstein’s light-quantum
theory—a modification to classical electrodynamics. In the domain of classical EM
(coherent states of many photons, e.g. bouncing radio o� a satellite) your result is
accurate.
(b) Bouncing a radar beam o� a speeding car and measuring the beat frequency
between outgoing and returning signals is another real-world application.]

29.7 Velocity addition
[Not ready yet.]

29.8 Rapidity
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C H A P T E R 30

Relativistic Momentum and Energy of
Particles
There is another outstanding kinematic consequence of the hypothesis that all of
physics, not just electrodynamics, is Lorentz invariant. It concerns energy and mo-
mentum. However, the experiments confirming it (and later ending WW2), came long
after Einstein’s initial discovery, which was based on . . . electromagnetic phenomena.

30.1 CONSERVATION LAWS LOST

Section 29.7 mentioned that Lorentz invariance is all-or-nothing: We can’t have some
of physics invariant under Lorentz transformations while some other part is invariant
under galilean transformations. Accordingly, let’s think beyond Maxwell’s equations,
to consider any sort of interaction that could be called a “collision” among “particles.”
For our purposes, a “particle” is a region of space containing something that is initially
isolated from the rest of the world (no relevant interactions). We imagine a collection
of these, all initially mutually noninteracting, which come together and interact during
a finite time interval (a “collision”), and suppose that eventually some other collection
of “particles” emerge that are again noninteracting. Thus in some contexts it may
even be appropriate to treat an entire galaxy as a “particle,” or a planet, . . . , on down
to atomic nuclei and beyond.

Suppose that two particles with masses m1,2 and velocities v̨(1,2) are initially
noninteracting, then a “collision” occurs, and two other particles with m3,4 and v̨(3,4)
emerge, eventually separating so that they are again noninteracting.

In first-year physics, we start with Newton’s laws and prove that

p̨ N

(1) + p̨ N

(2) = p̨ N

(3) + p̨ N

(4), where p̨ N

(¸) = m¸v̨(¸) (newtonian). (30.1)

The quantity p̨(¸) is called the newtonian momentum of particle ¸.
But even if we didn’t yet know Newton’s laws, and had merely guessed the conser-

vation law Equation 30.1, we could nevertheless state confidently that it is consistent
with the rotational invariance of the world. That’s because under rotations the com-
ponents of velocity (and hence those of p̨ ) transform in a simple way, as a 3-vector.
Moreover, mass is rotation-invariant (scalar), so the m¸v̨(¸) are also 3-vectors:

p̨ N

(¸) = Sp̨ NÕ
(¸). (30.2)

When we express each term of Equation 30.1 in terms of a rotated coordinate system,
then, the matrix S is a common factor:

S
!
p̨ NÕ

(1) + p̨ NÕ
(2) ≠ p̨ NÕ

(3) ≠ p̨ NÕ
(4)

"
= 0. (30.3)

Multiplying both sides of this equation by S≠1 gives an equation of the same form as
Equation 30.1, so the newtonian conservation law is invariant under rotations.
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Your Turn 30A
In newtonian physics, mass can be exchanged but total mass is conserved in any
collision:

m1 + m2 = m3 + m4 (newtonian). (30.4)

From this, show directly (without appeal to Newton’s laws) that Equation 30.1
is also invariant under galilean boosts.

In short,
Even if we didn’t know Newton’s Laws, or the details of what’s inside
our “particles,” we could nevertheless say that Equation 30.1 is at least
compatible with the overarching principle of invariance under the galilean
group.

However, we cannot adapt the simple argument in Equation 30.3 to show that
Equation 30.1 is consistent with Lorentz invariance, because v̨ Õ is a complicated, non-
linear function of v̨ (Equation 28.4, page 298). Indeed, given a set of four momenta p̨ N

(¸)
that obey Equation 30.1, then their values in another E-inertial frame will not in gen-
eral obey it. So Equation 30.1 cannot be a valid law of Nature in the Lorentz-invariant
world that we are exploring. Nor can Newton’s laws be valid, because Equation 30.1
is a consequence of them.

There is another famous conservation law in first-year physics:1

E
N

(1) + E
N

(2) = E
N

(3) + E
N

(4), where E
N

(¸) = 1
2 m¸Îv̨(¸)Î2 (newtonian). (30.5)

This formula is rotation invariant by an even easier argument than before: Each term
is separately invariant. It is also straightforward to check that Equation 30.5 is galilean
invariant.

However, Equation 30.5 also turns out not to be Lorentz invariant. Therefore it,
too, cannot be a valid law of Nature in any Lorentz-invariant world.

So are energy and momentum not conserved?

30.2 CONSERVATION LAWS RECOVERED

30.2.1 An unexpected analogy
Once again, Einstein realized that there is some freedom in how we interpret the
conservation laws. Maybe p̨ N = mv̨ and E

N = 1
2 mÎv̨ Î2 are not the right formulas,

and some other formula would give conserved quantities.
But where should we look for such formulas? Einstein’s reply was so radically

di�erent from his contemporaries’ that it really deserves to be called Einstein thinking.
Faced with this sort of question, the obvious approach seems to be to guess or deduce
the right equations of motion, then prove a theorem about a mathematical property
they possess.2 By 1905, this approach had led to a lot of unreadable papers, and

1Newton himself didn’t use conservation of energy. Émilie du Châtelet and others seem to have been
responsible for that insight..
2 T2 For example, we might guess the correct lagrangian function, then apply Noether’s theorem to
it.
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326 Chapter 30 Relativistic Momentum and Energy of Particles

moreover, scientists didn’t even realize how hopeless it was, because many phenomena
now described by particle physics hadn’t even been discovered.

Einstein stood the traditional approach on its head:

• Start with a proposal for a symmetry of physics, in this case Lorentz.
• Discard hypotheses incompatible with the proposed symmetries, in this case

conservation of newtonian momentum and energy.
• Find replacement hypotheses that are compatible, without attempting yet to

deduce them from any equations of motion.
• Seek experimentally falsifiable consequences of the proposal.
• If the proposal survives enough nontrivial challenges, use it as a guide to find

the right equations of motion.

To get started on this program, recall again the root of the problem: Velocity is
dr̨/dt, and both the numerator and denominator of this expression transform under
Lorentz boosts (unlike the case with galilean boosts). If only we could replace the
denominator by something that didn’t transform, then we’d be in a simple situation
like that for rotations: t is invariant under rotations, so d/dt doesn’t alter the rotational
properties of r̨, so velocity transforms linearly, leading us to Equation 30.2.

The following argument is an outstanding example of lateral thinking. First, note
that the invariant interval between two events in spacetime (Equation 29.6, page
310) is invariant under Lorentz transformations: �· = �· Õ. Thinking of a particle’s
trajectory as a chain of events in spacetime, the invariant interval d· between any two
neighboring events is always real, because particle trajectories cannot move faster than
speed c. In fact, we’ll see that an ordinary material particle cannot ever reach speed
c, so d· > 0 for any two distinct points. That means that we can integrate d· along
the trajectory to obtain a parameter for the trajectory, called proper time · . That is,
we may consider the time and the spatial position along the particle’s trajectory both
to be functions of · .3 We now define

p̌ = m
dx

d·
, relativistic momentum (30.6)

which is a function along the trajectory. In this formula, m is a constant with dimen-
sions of mass, an invariant property of the particle. We’ll call it “the mass” of the
particle.4

We also introduce an analogous quantity

K = m
d(ct)
d·

. (30.7)

The point of these definitions is that then the pair
Ë

K

p̌

È
= m

d
d·

Ë
ct

x

È

3See also Problem 30.1. We have previously used › to denote a generic parameter along a trajectory;
· is specifically proper time. For the trajectory describing a light flash, however, d· = 0, so we must
use some other parameterization, for example the one used in Section 29.6.1.
4Old books introduce the term “rest mass.” That quantity is now simply called “mass,” because the
alternative concept “relativistic mass” is no longer deemed worthy of any name at all.
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has the same simple transformation under Lorentz boosts as do ct and x:
Ë

K

p̌

È
= m

d
d·

�
Ë

ct
Õ

xÕ

È
= �

1
m

d
d·

Ë
ct

Õ

xÕ

È2
= �

1
m

d
d· Õ

Ë
ct

Õ

xÕ

È2
= �

Ë
K

Õ

p̌Õ

È
. (30.8)

Here � is a 2◊2 Lorentz transformation matrix and we used the fact that d· Õ = d· .
Note that we are allowed to pull the Lorentz transformation matrix outside the
derivative because its entries are constants. Even if the particle is itself accelerating,
nevertheless we are boosting to a coordinate system with some constant velocity
—c relative to the original one. That is, (K, p̌) form a pair with a simple, linear
transformation rule. In fact, it’s the same rule as the one for ct, x.

We now propose two new conservation laws:

p̌(1) + p̌(2) ≠ p̌(3) ≠ p̌(4) = 0 and (30.9)
K(1) + K(2) ≠ K(3) ≠ K(4) = 0, (30.10)

which di�er from the discredited newtonian versions. Exactly as in the discussion
of rotation, we know at once that Equations 30.9–30.10 are automatically Lorentz
invariant. Proof: Equation 30.8 is analogous to Equation 30.2, and we can repeat the
argument based on Equation 30.3.

That’s remarkable: We still haven’t postulated any detailed dynamical laws for
collisions (possibly involving nuclear forces etc.), and yet we still found the corrected
form of the momentum that leads to an acceptable conservation law. Indeed, for a
slowly moving particle p̌ becomes equal to Newton’s momentum. To see this, note
that

d· =


dt2 ≠ (vdt/c)2 = dt


1 ≠ (v/c)2 = “≠1dt, (30.11)
and “ æ 1 for a slowly moving particle. Thus m(dx/d·) æ m(dx/dt) = pN.

What about the new quantity K? To identify its meaning, note that Equation 30.11
gives K = mc“ ¥ mc

!
1 + 1

2 (v/c)2 + · · ·
"
. So Equation 30.10 multiplied by c says

(m1 + m2 ≠ m3 ≠ m4)c2 + E
N

1 + E
N

2 ≠ E
N

3 ≠ E
N

4 + · · · = 0. (30.12)

Equation 30.12 is indeed compatible with the newtonian equations Equations 30.4
(which says the first four terms sum to zero) and 30.1 (which says that the next four
also sum to zero).

More generally, we define

Ě = cK = mc
d(ct)
d·

. relativistic energy (30.13)

How can we dare to change the meaning of “momentum” and “energy?” The newtonian
quantities are just not useful, because they cannot be conserved quantities in any
Lorentz-invariant world. We found di�erent quantities that could be conserved, and
named them after the things they resemble. In fact, from now on we’ll follow other
authors and drop the checks: p, and its 3D generalization p̨ = m dr̨

d·
, will henceforth

refer only to the relativistic formula, and E will always mean mc d(ct)
d·

. There won’t
be any ambiguity, because from now on we won’t use the newtonian quantities at all.
Reinstating the other spatial components gives our proposed conservation law as an
equality of 4D vectors (Chapters 31–32 will christen such quantities four-vectors):

Ë
E(1)/c

p̨(1)

È
+

Ë
E(2)/c

p̨(2)

È
≠

Ë
E(3)/c

p̨(3)

È
≠

Ë
E(4)/c

p̨(4)

È
= 0. (30.14)

Contents Index Notation



328 Chapter 30 Relativistic Momentum and Energy of Particles

30.2.2 What has/has not been shown
We have shown that proposed conservation laws involving two replacements for new-
tonian formulas, Equations 30.6 and 30.13, are at least compatible with the physical
hypothesis that all of physics is Lorentz invariant. We would eventually like these for-
mulas to emerge from some complete theory, but in 1905 it was too early for that, and
remained so for at least another 70 years.5 Instead, following “Einstein thinking,” we
will shelve that project and instead look for direct experimental tests of the proposed
conservation laws, Equations 30.14.

Later chapters will develop the dynamical details in the context of electrodynamics.
Specifically, we will look for appropriate formulas for the energy and momentum of
fields, then prove a conservation theorem about the total energy and momentum of
particles and fields starting from Maxwell’s equations and the Lorentz force law.

30.2.3 A geopolitical consequence
Newtonian physics proves the conservation of energy and assumes separate conser-
vation of mass. But we only obtained a single combined law, Equation 30.12 in the
newtonian limit. Although this is consistent with the separate conservation of mass
and energy, Einstein realized that there was no fundamental reason why masses must
be unchanged, nor even for total mass to be conserved, in collisions. He concluded
that a mass defect (change in total mass) must, according to Equation 30.12, appear
as nonconservation of kinetic energy in a collision reaction.6 He immediately grasped
that even a fraction of a percent change in mass could account for the enormous
energies that seemed to come from nowhere in radioactive decay.7 Experiments per-
formed decades later, with the first particle accelerators, confirmed this prediction
quantitatively.8

That is definitely a practical result. Eventually, everybody realized that if you
could slowly release the energy equivalent of a gram of matter, you’d get 1014 J, plenty
to run a big city for a long time. Everybody also realized that if you could do the
same conversion in a few microseconds, you could burn that same city to the ground.

Nobody knew at the time how either of these transformations could be done in
practice. But within a few decades the outlines began to form. All three belligerents in
the second World War embarked on urgent crash programs to develop such weapons,
with the explicit aim of using them on each other. An entire world vanished forever

5Remarkably, the resulting Standard Model’s interactions all look a lot like electrodynamics.
6The first complete, general derivation appears to be due to Max von Laue in 1911.
7Einstein was up to date: Rutherford/Barnes and Soddy/Ramsey had measured the energy of a single
decay of radon just two years earlier (1903), finding it to be over a million times the energy released
when hydrogen and oxygen combine to form a molecule of water. Just two years later, Einstein wrote:
“Bodies whose energy content is variable to a high degree, for example radium salts,” may perhaps
be used to test his prediction about the mass-energy equivalence. Then in a laconic, eerily prescient
remark in 1907, he wrote “It is possible that radioactive processes may become known in which a
considerably larger percentage of the mass of the initial atom is converted into radiations. . . than is
the case for radium.”
8Cockcroft and Walton, 1932: 7Li + p æ 2– + 14 MeV. The masses of all the participating particles
were measured and mass defect times c

2 was found to agree with the observed increase in total
kinetic energy. For a modern measurement with precision 4 · 10≠7, see S Rainville et al., Nature
438:1096(2005).
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on 16 July, 1945.

30.3 PARTICLES WITH SPEED AT OR NEAR c

Suppose that a particle’s speed approaches c, that is, suppose — æ 1. In this limit, we
expect Newton’s formulas to be badly inaccurate. In this situation, Equations 30.6,
30.7 and 30.13 give

p

E
= m dx/d·

cm d(ct)/d·
= c≠2 dx

dt
æ 1

c
,

or
E ¥ pc. (30.15)

This is precisely the relation that we found earlier for energy and momentum fluxes
of a classical plane wave solution! So a dual, quantum-mechanical interpretation of
light seems possible after all: The “missing” factor of 1/2 that we noticed earlier is
actually just as it should be.9 What was wrong was the expectation that newtonian
formulas should apply to things moving at speed c.

You may object that as — æ 1, our formula for “ æ Œ, and hence also the
momentum becomes infinite! Indeed, there is no way to push an ordinary particle (one
with nonzero mass) up to speed c. However, we can imagine a limit in which — æ 1
and m æ 0 in just such a way that p æ constant:

The only way for a particle to move at speed c is for it to be massless. The
only way for a massless particle to have nonzero energy and momentum
(and hence to exist at all) is for it to be moving at c. We can take the limit
in various ways, so any values of p and E are allowed, as long as E = pc.

So that’s another viewpoint on why light always moves at a universal speed. The
dual particle and wave viewpoints are compatible, at least insofar as kinematics is
concerned. It’s no accident that Einstein’s light-quantum and relativity papers both
appeared the same year.

Another objection to the particle viewpoint was that “If light has a dual character
as a stream of particles, then light from a binary pulsar would move faster, and hence
arrive earlier at Earth, when the pulsar is approaching us than when it is receding.”10

We have already disposed of that objection, however: According to the velocity addition
formula, a massless particle emitted at speed c in the rest frame of the moon also
moves at speed c in the E-inertial frame in which Earth is at rest (our lab frame).

The newtonian conservation laws allow us to predict the results of collisions
among, say, two balls that collide and stick. Similarly, our proposed Lorentz-invariant
conservation laws allow us to make a falsifiable, quantitative prediction for the result
when, say, an x ray photon collides with an electron at rest. The successful test of
this Compton scattering process lent credence not only to the photon hypothesis, but
also to relativity itself.

9See Section 18.2 (page 220).
10Section 25.6.6 introduced this puzzle.
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30.4 PLUS ULTRA

This concludes our study of “low-tech relativity.” Although the structure is logically
satisfying, I have tried to make it clear that Einstein’s version of relativity is justified
because it makes predictions for real experiments (not just thought-experiments).
Those predictions were confirmed, and di�ered from the corresponding newtonian
predictions.

We are starting to see something remarkable: The four coordinates (ct and spatial
position r̨ ) undergo a peculiar kind of linear transformation, a little like rotations.
And now we see that E/c and p̨ undergo the same peculiar but linear transformation
(Equation 30.8). This observation suggests that there may be a tensor formalism
describing such quantities, and other more elaborate ones. Just as 3-tensor notation
helped us to classify quantities and formulate rotationally-invariant laws of Nature,
so we will find that 4-tensor notation will help us to deal systematically with the
consequences of the hypothesis that Nature is Lorentz-invariant. Briefly, we will set
up a parallel between:

3D euclidean geometry: Cartesian coordinates are the ones in which the
pythagorean formula takes its usual form. All cartesian coordinate systems are
related to each other by euclidean motions (translations and rotations, plus
reflections). Three-tensors have definite, linear transformations under rotations.
Every physical quantity in newtonian physics belongs to (is a component of)
some 3-tensor. Any law of physics that sets a 3-tensor equal to zero, such as
Equation 30.1, is automatically rotation-invariant.

and

4D spacetime geometry: E-inertial coordinate systems are the ones in which the
invariant interval has its usual form. All E-inertial coordinate systems are related
by Poincaré transformations (translations, rotations, and Lorentz boosts, plus
reflections). Four-tensors have definite, linear transformations under Lorentz
transformations. Every physical quantity in true (Lorentz-invariant) physics
belongs to (is a component of) some 4-tensor. Any law of physics that sets a
4-tensor equal to zero, such as Equation 30.14, is automatically Lorentz-invariant.

The second of these viewpoints will prove extraordinarily helpful as we get to work
proving that the full Maxwell equations are Lorentz-invariant, and it will also have
practical benefits for solving harder problems than the ones we’ve done so far.

PROBLEMS

30.1 Proper time
Section 30.2.1 claimed that the trajectory of any material particle (that is, not a
photon) admits a convenient parameterization by an invariant quantity called proper
time. This claim is supposed to hold even in the full three spatial dimensions, and
even for particles that are not free, that is, particles that are being accelerated by
some force. You can establish it as follows.

Contents Index Notation



Problems 331

Suppose that we are given a trajectory specified by four functions t(›) and r̨ (›).
The parameterization is arbitrary, except that time t is strictly increasing as a function
of ›. To be physical, the trajectory must always be moving with speed less than c, or in
other words Îdr̨/d›Î2 < (cdt/d›)2 everywhere. Show how to obtain a new parameter
· (an increasing function of ›) that gives the property

≠(cdt)2 + Îdr̨ Î2 = ≠c2(d·)2.
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30.2 Recoilless emission
In this problem you’ll study a phenomenon that is the basis for many extremely
accurate measurements, because it involves emission and absorption spectra that are
fantastically narrow. In its most common implementation, the unstable nuclide 60Co
decays in two steps to an excited state of 57Fe, which then drops to the ground state
emitting a photon with energy 14.4 keV. The half-life of this decay is long, so the
natural width of the spectral line, set by the Uncertainty Relation, is very narrow:
The fractional width �E/E ¥ 3 · 10≠13. Conversely, the absorption line for 57Fe to
get excited by an incoming photon is equally narrow.

An isolated nucleus will give o� a photon with reduced energy, because some
of �E must go to the kinetic energy of the recoil of the 57Fe nucleus. Remarkably,
however, for cobalt atoms in a crystal lattice there is a significant probability that the
final state will involve bulk motion of the entire crystal, not just the one nucleus that
decayed. The mass of the entire crystal is essentially infinite, so the kinetic energy of
the final state is essentially unchanged; no energy is lost to recoil, and the outgoing
photon gets the entire 14.4 keV. This is “recoilless emission.”
a. The mass of an 57Fe nucleus is 56.9 Da. Find the recoil kinetic energy if the iron

nucleus is isolated. A convenient definition of the dalton is 1 Da = 931.5 MeV/c2.
b. What is the corresponding fractional reduction of the energy of the photon, as

compared with the energy of a photon emitted under recoilless conditions?
c. Could the photon emitted by a free nucleus be reabsorbed by another nucleus?

30.3 Constant force
A particle of charge q and mass m, initially at rest, is released in a region of uniform
electric field directed along the x̂ axis. Find the subsequent motion x(t). Be sure to
check that in the nonrelativistic limit your solution has the expected form.
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Relativity: High Tech

“The traditional conceptions of electricities that attract and repel each other, and
that are endowed with actions-at-a-distance as with almost spiritual properties—
with these we are all familiar, and in a way we are fond of them.... Electric
and magnetic attractions followed the same law as gravitational attraction; no
wonder men thought the simple assumption of action-at-a-distance su�cient to
explain these phenomena.... [T]hings changed in [our 19th] century, when the
reactions between electric currents and magnets became known.... It became
necessary to increase the number of actions-at-a-distance, and to improve their
form. Thus the conception [of action-at-a-distance] gradually lost its simplicity
and physical probability....

“Faraday undoubtedly heard it said that when a body was electrified something
was introduced into it; but he saw that the changes that occurred only made
themselves felt outside and not inside the body. Faraday had learned that forces
simply acted across space; but he saw that an important part was played by the
particular kind of matter filling the space across which the forces were supposed
to act. Faraday read that electricities certainly existed, whereas there was much
contention as to the forces exerted by them; but he saw that the e�ects of
these forces were clearly displayed, whereas he could perceive nothing of the
electricities themselves. And so he formed a quite di�erent, opposite conception
of the matter. To him the electric and magnetic forces became the actually
present, tangible realities; to him electricity and magnetism were the things
whose existence might be disputed. The lines of force, as he called the forces
independently considered, stood before the eye of his intellect as states of space,
as tensions, vortices, currents, whatever they might be—this he himself was
unable to determine—but there they were, acting on each other, pushing and
pulling bodies about, spreading themselves around and carrying the disturbance
from point to point.” – Heinrich Hertz, 1889
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Four-vectors and -tensors
In the fall of 1943 [Julian Boyd asked] Einstein to give the
manuscript of the June paper to the Book and Authors War
Bond Committee as a contribution to the sale of war bonds.
Einstein replied that he had discarded the original
manuscript after its publication but added that he was
prepared to write out a copy of its text in his own hand....
Helen Dukas told me how the copy of the June paper was
produced. She would sit next to Einstein and dictate the
text to him. At one point, Einstein laid down his pen,
turned to Helen and asked her whether he had really said
what she had just dictated to him. When assured that he
had, Einstein said, ‘Das hatte ich einfacher sagen konnen.’ [‘I
could have said that more simply.’]

— Abraham Pais

This chapter begins developing what one might call “high-tech relativity.” All
your life, profs have been withholding this vital information from you on the dubious
premise that you’re “not ready yet.” Now you’re ready.

This chapter will rediscover some results already seen in the preceding Parts
III–IV. Why repeat?

• The high-tech approach unifies various ideas that may have seemed disconnected
previously. Before we press on to new results, it is important to see how compactly
we can regenerate the old ones.

• But the high-tech approach is abstract. Physical intuition was better served by
seeing first what could be seen from the older viewpoint, and by building that
viewpoint based on a few key experiments.

31.1 HOW TO AVOID READING THIS CHAPTER AND THE NEXT ONE

We are studying the system of Maxwell’s equations for fields, plus the Lorentz force
law for charged particles. We have seen that these equations correctly describe many
phenomena.

We abstracted Lorentz invariance from just a simplified subset of these equations
(the scalar wave equation). We got some experimentally testable predictions (Fizeau
experiment, aberration of starlight, mass–energy equivalence.) But so far we neglected
the vector character of the fields, and hence also polarization of light. We now want to
build a bridge between the equations and the hypothesis of Lorentz invariance. To do
this, we’ll construct a grammar of Lorentz-invariant constructs, that we can then stick
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together (following some grammatical Rules) to build equations that are guaranteed
to be Lorentz invariant. Then we’ll see if the Maxwell equations can be expressed in
that way.

I expect you to read and work through this chapter. However, nothing stops us
from considering the hypothetical student who wants the plot spoilers up front.

Up and down indices
This chapter develops the modifications to tensor analysis needed to make relativistic
invariance obvious at a glance in equations of motion, just as ordinary vector/tensor
notation makes rotational invariance obvious at a glance. A key complication is that
we will need to keep track of two kinds of coordinate index, which will be called “up”
and “down” indices. Why, when all your life one kind has been su�cient?

The answer will turn out out be that derivatives (d/d(ct) and Ǫ̀) transform
di�erently from coordinates (ct and r̨ ). In euclidean 3-space, if we use cartesian
coordinates, then we can forget about the distinction. In the non-euclidean space that
we’ll develop for relativity, we do have to keep track of it.1

Luckily, we’ll find a set of notational Rules that will make it unnecessary to think
much about this complication. Once we’ve justified the Rules, we’ll see they are easy
to follow. You could, hypothetically, just jump to Section 33.4.

Chicken and egg
We have accumulated some evidence that a new group of transformations may be
symmetries of electrodynamics, and indeed of all of Physics. But now we seem to
face a chicken-and-egg problem: How can we prove that the Maxwell equations are
invariant under these transformations, when we don’t know how the Ę and B̨ fields
should transform? The thought-experiment about the coil and magnet has suggested
that under a boost transformation the components of electric and magnetic fields
should mix (Hanging Question #A). It sounds complicated. Once we make the right
guess we can confirm it by mathematical operations. . . but how do we make the right
guess?

Thinking back, the structure of electrodynamics as I have presented it is that
we took the Lorentz force law as a starting point; it gave an operational meaning to
Ę and B̨ . Once those vector fields were defined, then the Maxwell equations make
falsifiable predictions about their relations to each other and to charges and currents.
So Section 32.2 will again begin with the Lorentz force law, asking:
1. Can it be formulated (perhaps with modifications that are small in the world of

slowly-moving objects) in a way that is Lorentz-invariant?
2. If so, what does that say about the transformation properties of Ę and B̨ ?
3. Are the Maxwell equations really invariant under those transformations?
The plot spoiler is that the answers are:
1. Yes. All we need to do is substitute relativistic momentum for newtonian momen-

1Even in euclidean space, if we use curvilinear coordinates, the distinction matters, which is why
we have done all our tensor analysis in cartesian coordinates. (In the curved spacetime of general
relativity, it matters even more.)
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tum.
2. The electric and magnetic fields together form a single 4-tensor field. When we

transform to a new inertial coordinate system,2 the components of Ę and B̨
scramble among themselves, just as the components of the quadrupole tensor in
electrostatics mix under rotations. We are going to make this analogy precise.

3. Yes. No tweaks will be needed.
You could, hypothetically, jump to Equations 32.2 and 32.5 to see how it works.

31.2 3D PRELUDE

First let’s review some material introduced in Chapters 12–13.

31.2.1 Rotations
Here are some things we’ve already discussed. The components of a 3-vector r̨ , referred
to a particular cartesian coordinate system, are three numbers r̨i, i = 1, 2, 3. These
numbers represent the vector, which is itself a geometrical object.

When we change to another cartesian coordinate system, the same vector is
represented by three di�erent numbers r̨ Õ

a
, where3

r̨ Õ
a

= Sair̨i (and t = tÕ). (31.1)

The matrix S is a set of nine constants. Any 3-component quantity that transforms in
this way will be called a 3-vector, or 3-tensor of rank 1. Again, prime denotes a new
coordinate system. For extra clarity, I will often use coordinate indices i, j, . . . from
the middle of the alphabet for one coordinate system, but a, b, . . . from the start of
the alphabet for the alternative coordinate system.

The matrix S is not arbitrary: The fact that both coordinate systems are cartesian
implies that the pythagorean formula has the same form in each:4

Îr̨ ÕÎ2 = r̨ Õ
a
r̨ Õ

a
= Sair̨iSaj r̨j . (31.2)

It will sometimes be convenient to use the mathematician’s matrix notation. We write
vectors and matrices with square brackets, omit explicit indices, and imply summations
with the usual rules of matrix multiplication. Thus Equation 31.2 becomes

[r̨ Õ]t[r̨ Õ] = [r̨ ]t[StS][r̨ ] (31.3)

This notation is very compact, but you have to be careful about the order in which
you write things.

2Now that we have left newtonian physics far behind, we will abbreviate “E-inertial” as just “inertial.”
3
S is set in sans-serif to remind us it’s a matrix. But it doesn’t get any arrow because it’s not a

tensor: Instead of having a tensorial transformation rule under change of coordinates, it specifies a
change of coordinates.
4The pythagorean formula doesn’t have this form in curvilinear coordinates, but we will stick to
representing tensors in cartesian coordinates.
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The expression in Equation 31.3 will equal r̨ir̨i = Îr̨ Î2, for any r̨ , only if S has
the property5

[StS] = 11. for a rotation matrix (31.4)

Both sides of Equation 31.4 are symmetric matrices, so it amounts to six independent
constraints on the nine entries of S. Therefore we expect a family of solutions with
9 ≠ 6 = 3 parameters—for example, the Euler angles used to specify a rotation.6 Note
that if S and T both satisfy Equation 31.4, then so does the product ST (and also
S≠1): We say that rotations close into a group.7

31.2.2 3-vectors
Other sets of three numbers have the same transformation rule when viewed in a
rotated coordinate system as r̨ . For example, the time derivatives dr̨/dt and d2r̨/dt2

are also 3-vectors, because rotations don’t a�ect time. Now consider Newton’s law for
a harmonic oscillator with viscous friction:

m(d2r̨/dt2) = ≠kr̨ ≠ ’(dr̨/dt). (31.5)

Let’s multiply everything from the left by S:

S · m(d2r̨/dt2) = ≠S ·
!
kr̨ + ’(dr̨/dt)

"
= 0.

We can push the constant matrix S inside the derivatives:

m(d2r̨ Õ/dt2) = ≠kr̨ Õ ≠ ’(dr̨ Õ/dt).

This shows that Equation 31.5, reexpressed in the primed coordinate system, retains
its original form: It’s invariant under rotations.

A bit more precisely, we got rotational invariance under the assumption that t, m,
k, and ’ were all una�ected by the rotation: They are scalars, also called 3-tensors of
rank zero. Of these, m, k, and ’ are scalar constants, whereas t is a scalar variable.

31.2.3 3-tensor transformation rule
Next, consider an anisotropic, but still linear, system of springs (this time without
friction). There is a coordinate system for which every allowed motion is a solution
to the equation

m(d2r̨/dt2) = ≠
¡
K · r̨ . (31.6)

Here
¡
K is a 3 ◊ 3 matrix of constants. Multiply everything from the left by a rotation

matrix:
S · m(d2r̨/dt2) = ≠S ·

¡
K · r̨ = 0

5Mathematicians call such matrices orthogonal, and call the group of all such 3 ◊ 3 matrices O(3).
6There are additional solutions to Equation 31.4 corresponding to reflections, which we won’t study.
Here we’re interested in rotations, which have the additional property det S = +1. Because the
determinant of an orthogonal matrix must always equal ±1, this additional restriction doesn’t reduce
the number of parameters in the space of solutions; it’s still three. Mathematicians call this subgroup
of O(3) the “special orthogonal” matrices, or SO(3).
7Note also that if det S = det T = +1 then det(ST) = +1.
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m[d2r̨ Õ/dt2] = ≠[S
¡
K S≠1][r̨ Õ ].

The new version has the same form as the original equation, albeit with a modified
spring constant matrix:

¡
K Õ

ab
= Sai(S≠1t)bj

¡
K ij .

We have reverted to explicit-index notation, so that we can write the factors in any
order we please. This formula simplifies when we recall that S≠1 = St for a rotation
matrix (Equation 31.4):

¡
K Õ

ab
= SaiSbj

¡
K ij . (31.7)

Any 9-component quantity with this transformation behavior is called a 3-tensor of
rank 2. We say that one copy of S “acts on” each index of

¡
K . In this case, we have

discovered a “spring tensor” governing the restoring force.
The dyad product r̨ r̨ is another example of a 3-tensor of rank 2, because each

factor separately contributes an S.8 More generally, we can define 3-tensors of any
rank p: They are represented by collections of 3p numbers, with a transformation law
involving p copies of S.

Back to the spring system, we can say more if we know more details. For example,
suppose that our mass is suspended between three springs stretched along the original
x, y, and z axes respectively. Then

¡
K = A(1)x̂x̂ + B(2)x̂x̂ + C(3)ẑẑ,

which indeed is a 3-tensor, because each of its terms is separately a 3-tensor.

31.2.4 Symmetric and antisymmetric 3-tensors
A spring constant tensor has the property that

¡
Kij =

¡
Kji, or in matrix language

[
¡
K] = [

¡
K ]t. The quadrupole moment tensor from Chapter 3 also has this “symmetric”

property.

Your Turn 31A
Show that if a tensor is symmetric in one cartesian coordinate system, the same
will be true after transformation via Equation 31.7.

Thus the property of being symmetric is itself a rotationally-invariant property of
a tensor, and hence something that we may legitimately specify without spoiling
rotational invariance.

Similar remarks apply to antisymmetric tensors, for example, the magnetic field
tensor [¡

Ê] or the magnetic dipole moment tensor
¡
� .9

Even if a tensor
¡
T is not symmetric (or antisymmetric), nevertheless its transpose

represents a new tensor of the same rank. That tensor can be added/subtracted
from the original version to produce the “symmetric/antisymmetric part” of

¡
T , with

components
¡
T [S] = 1

2
! ¡
T +

¡
T t",

¡
T [A] = 1

2
! ¡
T ≠

¡
T t" (31.8)

respectively. Then
¡
T =

¡
T [S] +

¡
T [A].

8Thus the electric quadrupole tensor, and the moment of inertia tensor, are physical quantities
specified by 3-tensors of rank 2.
9See Sections 14.1 (page 160) and 16.1 (page 187).
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31.3 OTHER ROTATIONALLY INVARIANT SYSTEMS IN MECHANICS

31.3.1 Gravitation
Here is another example, mentioned in Section 25.5 (page 274): To study celestial
mechanics, we combine Newton’s Second Law with his law of gravitation for a mass
M that is anchored at the origin:

m(d2r̨/dt2) = ≠GMm

r3 r̨ . (31.9)

To analyze this equation’s symmetry, begin with the denominator, which involves
the invariant function r =


Îr̨ Î2 studied in Section 31.2. So the right-hand side of

Equation 31.9 is a scalar constant ≠GMm, times a scalar function r≠3, times the
3-vector r̨ . All together, it’s therefore a 3-vector. Setting it equal to the left side then
yields a rotationally-invariant equation, just as in the isotropic harmonic oscillator.

Equation 31.9 assumes that the Sun is fixed in space.

Your Turn 31B
a. Write the more general form in which two gravitating bodies (“Sun” and
“Jupiter”) are both free in space, and show that the equation is still rotation-
invariant.
b. Show that expanding the scope of the system in this way (acknowledging that
r̨Sun is a dynamical variable) also restores explicit translation invariance. This
was hidden in Equation 31.9.

31.3.2 Angular momentum
You can apply the same reasoning to formulas like the rotational Newton law dL̨/dt =
·̨ :

d
dt

Ëÿ

¸

r̨(¸) ◊ (m¸v̨(¸))
È

=
ÿ

¸

r̨(¸) ◊ f̨ ext
(¸) .

Both sides transform like pseudovectors because the cross product is defined using the
Levi-Civita symbol (which is a tensor despite having constant entries10), and index
contractions (which we already found to be rotation invariant).

31.3.3 Field equations in 3D
We can also discuss field equations in this language, for example, Newton’s gravitational
field equation:11

Ǫ̀2„N = 4fiGflm. (31.10)

First notice that the chain rule from calculus gives

Ǫ̀i © ˆ

ˆr̨i

= ˆr̨ Õ
a

ˆr̨i

ˆ

ˆr̨ Õ
a

= Sai

ˆ

ˆr̨ Õ
a

= (St)iaǪ̀Õ
a
, or (31.11)

10It is a “tensor from Heaven” (Chapter 13).
11See Chapter 1.
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Ǫ̀Õ
a

= SaiǪ̀i. (31.12)
We again used the fact that S≠1t = S for a rotation matrix.

Equation 31.12 is of the same form as Equation 31.1: Ǫ̀ itself transforms as a
vector. More precisely, the gradient of a scalar function (like temperature), is a vector
field (telling us locally which direction to go if we seek higher temperature). This is
the step that will fail in 4D, requiring us to introduce two kinds of index.12

From Equation 31.12, you can prove that Ǫ̀2 = (Ǫ̀Õ)2, and hence that Equa-
tion 31.10 is rotationally invariant if we take G to be a scalar constant, and the mass
density flm and the gravitational potential „N to be scalar fields.

Your Turn 31C

To practice the concepts, show that, if V̨ is a vector field, then
a. Ǫ̀V̨ is a rank-two tensor field; and
b. Ǫ̀ · V̨ is a scalar field, that is, an ordinary function.
c. What can we say about the tensor whose components are Ǫ̀iV̨j + Ǫ̀j V̨i?

31.4 SUMMARY: THE RULES IN 3D

It’s time to announce something that is generally implicit in physics books, yet crucial
to the general comprehensibility of Physics. I’ll call it the Tensor Principle:

Physical quantities all seem to arrange themselves into 3-tensors (or 3-
tensor fields), in some cases constrained by symmetry or antisymmetry.13

Thus mass and charge are rank-0 tensors (scalars); velocity is a rank-1 tensor (vector);
moment of inertia is a symmetric rank-2 tensor, and so on. Temperature is a rank-0
tensor field; Ę is a rank-1 field; and so on. It may have seemed that “pseudo” quantities
such as magnetic field, torque, and so on were exceptions, but we saw how they can be
repackaged as true tensors; for example, Section 14.1 (page 160) reexpressed magnetic
field as an antisymmetric rank-2 tensor field ¡

Ê.
If everything is a tensor, then we should learn the Way of the Tensor. Here are

some Rules that you have been implicitly using all your life. It will help us to generalize
them if we take a moment to state them out loud. Some were proved earlier in this
chapter; others are easy (but worthwhile) to prove now:
a. A 3-tensor of rank p can be represented in a particular cartesian coordinate system

by a collection of 3p numbers, with a transformation law involving p copies of S,
each “acting on” an index.

b. A 3-tensor field of rank p is the same idea, but each entry is a function of r̨.
c. Permuting the indices of a tensor yields another tensor of the same rank.
d. The sums of corresponding components of two tensors with the same rank yield

the components of a new tensor of that same rank.

12See Section 33.2.1 (page 361). This step fails even in 3D euclidean space, if we use curvilinear
coordinates.
13Mathematicians refer to the sort of tensors we are discussing as “linear representations of the group
O(3).” There is also a more general concept of tensors suitable for curved (non-euclidean) spaces.
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e. The derivative operator Ǫ̀ increases the rank of a tensor field increased by 1.
f. The collection of all products of the components of a rank-p and a rank-pÕ tensor

itself constitutes a rank-(p + pÕ) tensor. For example, the dyad product r̨ r̨ is rank
2.

g. The contraction (dot) is an invariant operation that converts a tensor, or tensor
field, to another one with rank decreased by 2.

h. A physics equation of the form Ai1,i2,... = 0, where A is a tensor, is rotationally
invariant. Hence, the same is true for an equation of the form A = B, where
both A and B are tensors (or tensor fields) of the same rank. Examples include
Equations 31.5, 31.6, and 31.9.

i. The volume element d3r transforms to d3rÕ under rotations because the Jacobian
matrix has determinant 1. Thus, we may convert a tensor field to a constant
tensor of the same rank by integrating over all space.
Note that galilean invariance is not as simple as rotations. Diagnosing whether

an equation has this important invariance is not just a matter of glancing at its
index structure. We won’t need to deal with this, however, because we’re pursuing
the hypothesis that the world is not galilean invariant after all.

31.5 FOUR DIMENSIONS

We want to construct an upgraded tensor analysis in which the inertial coordinate
systems in Einstein’s version of relativity play a role analogous to the cartesian
coordinate systems in 3D. That is, we want a formulation of physics in which invariance
under the Lorentz transformations, which take us from one E-inertial coordinate
system to another, is an obvious property of the equations of motion. The Lorentz
transformations modify both the space and time coordinates describing events. So
we introduce a new kind of object that, in a particular inertial coordinate system, is
represented by four numbers:

Xµ =
#

ct

r̨

$µ =
5

ct
x
y
z

6µ

. (31.13)

Here µ is an index that runs over the four values 0, . . . , 3. Note the conventions:
. Time is regarded as coordinate number zero, or more precisely, X 0 = ct.
. The index indicating which coordinate we’re discussing is placed in the upper

position, not lower as we always do in three dimensions. Thus, X1 is the quantity
we’ve been calling x or r̨1 up till now, etc.14 (Lower indices will be given a di�erent
meaning below.)

. Instead of overarrows, we’ll flag 4-tensor quantities with an underscore.

14How do we avoid confusion between a vector component index and an exponent? Often context
helps with this. But sadly, sometimes even experts do get confused. Unfortunately, I am powerless
to change the world’s notation, nor should I teach in some personal me-only notation system. “If
the Lord Almighty had consulted me before embarking on creation I should have recommended
something simpler” (Alphonso X “Alphonso the Wise,” 1221–1284).

Contents Index Notation



342 Chapter 31 Four-vectors and -tensors

As in Section 31.2.3, we will sometimes write [X ] as an abbreviation for Xµ (that
is, we suppress the explicit index µ) and use the rules of matrix multiplication to imply
summations. As in 3D, we regard [X ] as a column vector: [X ]t is the corresponding
row vector.

31.5.1 Lorentz transformations and the invariant interval
We are exploring certain linear transformations on the coordinates representing an
event (that is, a point in spacetime):

X Õ– = �–

µ
Xµ. (31.14)

As in 3D, summation over repeated indices (here µ) is implied. As with 3D rotations,
the entries of � are all constants, and so may be pushed past derivatives.15

It’s convenient to introduce an abbreviation: The metric gµ‹ is the matrix of
constants16

[g] =
5

≠1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

6
. (31.15)

Analogously to the condition for a rotation (Equation 31.4), let’s consider those
special matrices � with the property that

[�tg �] = [g ]. defining property of Lorentz transformation (31.16)

This property is slightly di�erent from Equation 31.4 (page 337), because [g ] is not
the identity matrix. Please confirm that the Lorentz transformations we found in
Chapter 29 obey Equation 31.1617, for example,

Boost along x̂: [�] =
5

“ ≠“—

≠“— “

1
1

6
; Rotation about ẑ: [�] =

5 1
cos ◊ sin ◊

≠ sin ◊ cos ◊

1

6
.

(31.17)
The components of X , or any other set of four quantities that transform under Lorentz
transformation in the same way, are said to constitute a 4-vector.

Lorentz transformations form a group:

Your Turn 31D
Show that, if �1 and �2 both satisfy Equation 31.16, then so does the product
�1�2 (and also the inverse (�1)≠1).

15Also as in 3D, this statement assumes that we work in cartesian coordinates; curvilinear coordinates
introduce more complexities. Those complexities must be faced in general relativity, where no globally
inertial coordinate systems exist, but we won’t need this. Also as in 3D, � has no underscore because
it’s not a tensor: Instead of having a tensorial transformation rule under change of coordinates, it
specifies a change of coordinates.
16[g] is the same set of numerical values in any inertial coordinate system. It may not be obvious
that g defined in this way is a tensor, but Section 33.3.3 will show that that is true, just as in three
dimensions the collection of nine constants ”ij is a “tensor from heaven” (Section 13.2.3).
17Later, we’ll connect our original method of discovering Lorentz transformations to Equation 31.16
(Section 33.2.2).

Contents Index Notation



31.5 Four Dimensions 343

In fact, any Lorentz transformation can be generated from matrix products of the
boosts and rotations (plus reflections). This should not be too surprising: Equa-
tion 31.16 sets two symmetric 4 ◊ 4 matrices equal, so it’s ten independent constraints
on the sixteen numbers [� ]. So we expect a six-parameter family of solutions (because
16 ≠ 10 = 6). If we consider only transformations very close to the identity, there are
indeed a total of six things we can do to a coordinate system: Rotate it (three Euler
angles) or boost it (three components of velocity).

Your Turn 31E
For practice, and for future use, check that Equation 31.16 implies the identities:

[�tg �g ] = 11, [�tg ] = [�g ]≠1, [g �] = [�≠1tg ]
[g �tg �] = 11, [g �t] = [g �]≠1. [g �≠1t] = [�g ]. (31.18)

[Hint: First notice that [g ]2 = 11 and [g ]t = [g ].]

Lorentz transformations are nearly as simple as the rotations in Section 31.2.2.
For example, Section 30.2.1 found a quantity related to time that really is a scalar.
Consider a particle trajectory as a curve in spacetime. For any two nearby points on
that curve, define the invariant interval as18

�· = c≠1
Ò

≠(�X)µgµ‹(�X)‹ . (31.19)

To show that the invariant interval really is form-invariant under Lorentz transforma-
tions, write19

c�· Õ =
Ò

≠[��X]t[g�][�X] =
Ò

≠[�X]t[�tg�][�X] =
Ò

≠[�X]t[g][�X] = c�·.

(31.20)
The invariant interval has units of time. It equals the time that elapses between two
events in an E-inertial coordinate system in which both occur at the same position
r̨ = 0̨. Chapter 30 called its integral along a trajectory the proper time, which is apt20

because that coordinate system would also be the rest frame of an inertial observer
who runs from one event to the other and carries a clock to measure the time between
the two events.

31.5.2 Other invariant quantities
The idea of invariant interval is so useful that we generalize it. If Y is any 4-vector
(not necessarily a displacement in spacetime), we define the notation ÎY Î2 by the
formula

ÎY Î2 = Y µgµ‹Y ‹ . (31.21)
This quantity equals (Y Õ)–g–—(Y Õ)— ; we say it’s a 4-scalar. (The proof is the same as
in Equation 31.20.)

18We already encountered this quantity in Equation 29.6 (page 310).
19This step is analogous to Equation 31.2. This analogy is the reason that g is again called the
“metric.”
20In French or German, “propre” or “eigen” respectively can mean “one’s own.”
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Similarly, for any two 4-vectors the invariant inner product is defined as Y µgµ‹Z ‹ .
It’s also a 4-scalar, analogous to the scalar product (“dot product”) in 3D.

A big di�erence with ordinary geometry, however, is that we can have ÎY Î2 = 0
even if Y itself is not zero. Any 4-vector with this property is called lightlike, because
any two points on a light ray’s trajectory have such a separation.21 If �X is the
spacetime separation between two events, then we call the three cases Î�X Î2 < 0,
= 0, and > 0 by the names timelike, lightlike, and spacelike separation, respectively. A
material particle always moves slower than c, so it will always move to a new spacetime
point that is separated by a timelike displacement vector from its original point.

31.5.3 Four-velocity
We can describe the trajectory of a material particle as a parametric curve in spacetime
by using proper time as the parameter: Xµ(·).22 Because the invariant interval is
a 4-scalar (Equation 31.20), the operation d/d· does not alter the transformation
properties of whatever it hits. Thus, the quantities

Uµ = dXµ

d·
(31.22)

also form a 4-vector, called the trajectory’s 4-velocity at whatever point we evaluate
the derivative. One way to evaluate it is to write the curve with an arbitrary parameter
›, then compute U = (dX /d›)/(d·/d›).

Your Turn 31F
Show that the 4-velocity always obeys the identity

ÎU (·)Î2 © ≠c2. (31.23)

Here is an example: Consider a particle in uniform straight-line motion with speed
v = —c directed along x̂:

[X (›)] =
5

›
—›
0
0

6
; d

d›
[X ] =

5
1
—
0
0

6
.

Equation 31.19 gives d· = c≠1


1 ≠ —2 d› = (c“)≠1d›, where23 “ = (1 ≠ —2)≠1/2, and
so

[U ] = (dX /d›)/(d·/d›) =
5

c“
—c“

0
0

6
. (31.24)

Your Turn 31G
Confirm that Equation 31.23 holds, starting from Equation 31.24.

21Some authors use the synonym null separation for lightlike.
22We can’t use this strategy for the trajectory of a light pulse, because d· © 0 everywhere along a
lightlike curve.
23We previously obtained this in Equation 30.11 (page 327).
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31.5.4 Summary and first payo�
This material has been pretty abstract. But unlike a lot of subjects, where “in theory
it’s easy but not in practice,” in this case it’s the other way round! For many purposes,
all you need to remember is

Position X has an upper index, and hence so does its derivative U . The
constant matrix g as we have used it so far has two lower indices. Keep
calm and only contract upper with lower indices. If you feel an urge to
contract upper with upper, you may be missing a g matrix.

(31.25)

For example, if you forget the [g ] factor in Equation 31.19, the rule (31.25) will quickly
alert you.

Here is another example. When we discussed plane waves in Chapter 29, we found
ourselves manipulating the phase expression ≠Êt + k̨ · r̨ . Notice that this expression
can be compactly written as k µgµ‹X ‹ , where the 4-wavevector is defined as

kµ =
Ë

Ê/c

k̨

Èµ

=
5

Ê/c
kx
ky
kz

6µ

. (31.26)

The virtue of this reformulation is that it tells how k must transform. The invariance
of the inner product says that

k Õ–g –—X Õ— = k µgµ‹X ‹ , where k Õ– = �–

µ
k µ. (31.27)

Thus, the same wave, viewed in the new coordinate system, has a phase function of
the same form (that is, linear) but with modified 4-wavevector, and k transforms as
a 4-vector.

Your Turn 31H
a. Show that this compact statement contains our previous results about the
aberration of starlight and both kinds of Doppler shift (Section 29.6).
b. Also show that the fact that light travels at speed c can also be expressed by
the formula Îk Î2 = 0.

Besides being pretty, that last formula is manifestly Lorentz invariant, as it must
be—we designed Lorentz transformations precisely to maintain the speed of light in
every inertial coordinate system.

31.6 MOMENTUM AND ENERGY REVISITED

With the framework we have developed, we can elegantly restate our earlier proposal
for relativistic energy and momentum24 as

p = mU . four-momentum (31.28)

24See Section 30.2.1 (page 325).
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Thus, p 0 is a particle’s energy/c and p̨ is its momentum. The mass m is a 4-scalar,
a single number characterizing the particle. Because U transforms as a 4-vector, and
the mass is a 4-scalar, therefore the proposed formula for four-momentum is also a
4-vector. That is, unlike Newton’s formula, it has a linear transformation law under
Lorentz boosts. p has the same units as the newtonian momentum; indeed, combining
Equations 31.24 and 31.28 gives that p 0 = mc“ and p i = m“v̨i.

With this definition, Einstein’s proposed conservation law says
ÿ

¸

p (¸,in) =
ÿ

¸

p (¸,out). (31.29)

Certainly if that formula is true in any one inertial coordinate system, it will take the
same form in any other one, by an argument like the one we applied to Equation 31.5:
Both sides transform as 4-vectors.

In short, the distinction between energy and momentum has now melted away
(apart from a factor of c). They are parts of a single 4-vector.

31.6.1 Aside on quantum mechanics
We also saw earlier that frequency and wavevector can be combined into a quantity
that transforms as a 4-vector (Equation 31.27). So when de Broglie proposed that a
particle (for example an electron) has a dual nature as a wave, and related those two
viewpoints by

p = ~k , Einstein/de Broglie relations (31.30)

he didn’t need to check that this proposed law of Nature is Lorentz invariant: Viewed
in another inertial coordinate system, it says p Õ = ~k Õ, with the same numerical value
of the constant of Nature ~.

The 0-component of Equation 31.30 is Einstein’s relation, E/c = ~Ê/c, whereas
the other components are de Broglie’s p̨ = ~k̨ . In fact, this logic is what led de Broglie
to his (then outlandish) prediction that electrons should have wavelike properties with
wavelength given by 2fi~/Îp̨ Î, just as photons do. De Broglie’s insight is all the more
impressive because at that time there was no known candidate for a relativistic wave
equation for electrons. It’s another example of “Einstein thinking.”25

31.6.2 E = mc2

Equations 31.28 and 31.23 imply a relationship between the momentum, energy, and
mass of any particle:

Îp Î2 = ≠(mc)2 or ≠ (p0)2 + pipi = ≠(mc)2. (31.31)

Our identifications of p0 as a particle’s total E/c, and the spatial components pi as its
momentum, p̨i, yield the relation

E
2 = (Îp̨ Îc)2 + (mc2)2. (31.32)

25See Section 30.2.1 (page 325).
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For a particle at rest, this gives the famous and dangerous result discussed in Sec-
tion 30.2.3.

For a particle moving slowly, so that pc π mc2, we can use a Taylor expansion
to get E ¥ mc2 + p

2

2m
+ · · · , approximately a constant plus the newtonian formula,

recovering Equation 30.12 (page 327).

31.6.3 Massless particles
There is another interesting limiting case. For a particle moving fast, so that pc ∫ mc2,
we recover E ¥ pc (Equation 30.15, page 329). For the case m = 0, this relation is
true regardless of the value of momentum:

E = Îp̨ Îc. massless particle (31.33)

You may still be bothered, however: How can a “real thing” have no mass? Maybe
the following thought experiment will help. Imagine a box whose interior walls are
perfect mirrors. Initially there’s no light inside. The box will have some resistance to
acceleration (inertia), which we describe by a mass mbox. Now I fill the box with lots
of light, but otherwise change nothing. The light carries energy, but its net momentum
is zero. The relation Equation 31.32 with p = 0 and Etot > mboxc2 implies that the
mass of the light-filled box is greater than the empty box. So the light contributes
mass, even though it consists of particles that, taken individually, obey E = pc.

31.6.4 Particle creation and destruction
Prior to 1897, those scientists who believed in the atomic theory of matter (by no
means everyone) had a vision in which everything was constructed from about a
hundred species of little, hard marbles that had not been created nor destroyed, only
rearranged, since the Creation. The birth of atomic and then nuclear physics shook
that edifice to its foundations, only to replace it by something rather similar: Atoms
had constituents (electrons and nuclei), and the nuclei themselves had constituents
(protons and eventually neutrons), but those particles were deemed to be little, hard
marbles that had not been created nor destroyed, only rearranged, since the Creation.

Just as Einstein had found no scientific necessity for the masses of atomic nuclei
to be unchanged in a collision, however, so too there proved to be no reason why their
numbers and types should not change. If the incoming participants in a collision have
su�cient energy, then more participants can exit than entered, created from nothing
but that energy. The barrier is especially small to create massless particles. Indeed,
everybody knew that an excited hydrogen atom can give o� light without ceasing
to be a hydrogen atom, but initially that process had seemed di�cult to imagine
from a light-particle point of view. The idea of creation ex nihil solved that puzzle,
and then the much more perplexing puzzle of where the electrons emitted in nuclear
beta decay were located prior to the reaction.26 Later, as particle accelerators became
available, creation ex nihil was observed even for massive particles, first electrons and

26Enrico Fermi broke this impasse in 1933, proposing that the electron or positron did not exist
prior to emission from the nucleus. This article was also the first to use quantized spin-1/2 fields in
particle physics, predating Heisenberg by several months.
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then everything else. Even without constructing an accelerator, we can see showers of
cosmic rays created in the upper atmosphere from a single energetic incoming particle.

Conversely, an electron and positron can mutually annihilate, the key process
underlying positron emission tomography (PET). The energy equivalent of their
combined masses emerges as light.

FURTHER READING

Note that many authors use a di�erent convention that takes g to be minus the matrix
in Equation 31.14. This convention leads to correct results if it is applied consistently.
Be sure you know which convention is in force before you take formulas from a book
or article.

An older tradition, now deprecated, treats time as an imaginary quantity. This
desperate, unphysical attempt to make the metric look euclidean leads to endless
confusion with quantum mechanics, where complex variables enter legitimately.

PROBLEMS

31.1 Time for the stars
Suppose that you receive an invitation to a birthday party on a planet of a distant
star. The star is located along the X1 axis of an inertial frame Xµ in which Earth is
at rest.

You get in your spaceship and accelerate along the x̂ direction. Your trajectory is
a curve in spacetime. Take a minute to sketch how you think this curve should look
in the x–ct plane (and also the trajectory corresponding to the friends and loved ones
you left at home.)

Your trajectory can be written in parametric form: �(·), where · is the time you
perceive on the ship.27 Section 31.5.3 (page 344) defined four-velocity as U = d�/d· .
In the following, we’ll use a dot to indicate d/d· . It will be convenient to define the
dimensionless variable w = U1/c and substitute cw for U1. Equation 31.23 gave a
relation that also lets us express U0 in terms of w.

To travel without too much discomfort, you adjust the rockets so that you feel
pushed against the rear wall of your ship with a constant force just 1.5 times your
normal Earth weight.28 Now translate that requirement into a di�erential equation
for U̇(·), as follows.

Consider one moment ·ú along your journey. There is an inertial frame X Õ– in
which you are momentarily at rest at ·ú. This is the frame obtained by boosting the
unprimed frame by —úc where

—ú = U1(·ú)/U0(·ú).

27Of course, you won’t see the Sun rise and set, but you could measure · by the growth of your
fingernails, or the number of heartbeats, or a clock you carry with you.
28Don’t worry about how the ship is propelled, fuel requirements, etc!
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In it, your velocity at ·ú equals zero, and hence your velocity near ·ú is increasing
from slightly negative to slightly positive.

Even if we don’t know the relativistic modification of Newton’s law, we do know
that physics should reduce to newtonian form when things are moving slowly. So we
know that the acceleration at ·ú, measured in the primed frame, should equal your
weight on Earth, times 1.5, divided by your mass. Call that quantity a0 = 1.5(10 m/s2).
Thus, we demand of the trajectory that

d
d·

Ë U Õ1

c≠1U Õ0

È---
tÕ

ú

= a0. (31.34)

Now apply the Relativity Strategy,29 that is, translate Equation 31.34 to the Earth-
bound inertial coordinate system. Remember that (i) the Lorentz boost connecting
the primed and unprimed systems depends on ·ú, but not on · (it’s not an accelerating
system). (ii) Factors like Uµ that do depend on · may be evaluated at ·ú, but not
until after the derivatives have been evaluated.
a. Express Equation 31.34 in terms of the one unknown function w(·) and its deriva-

tive(s). Specifically show that

ẇ|ú = a0
c


1 + wú2. (31.35)

b. Equations 31.34 and 31.35 must hold at every ·ú along the acceleration part of the
trip; that is, it is a di�erential equation. Solve it for w(·) with appropriate initial
condition.

c. Integrate your answer to (b) to find the actual trajectory �(·).
Of course, you don’t want to arrive at your destination and crash into it! You must
also decelerate. So after proper time ·mid, you reverse the engines and accelerate along
the ≠x̂ direction, again maintaining a constant force of 1.5 times your normal Earth
weight, this time from the front wall of the spaceship, until you come to rest.
d. Revise your sketch to show the entire journey.
e. Suppose that your total elapsed time is 2·mid = 1 year. Find the total distance

�X1 you’ve traveled from Earth after carrying out both steps of the outbound
journey. Express your answers in light-years.

f. You spend a couple of hours at the party, then reverse your trip to come home.
Thus, upon your return you have aged two years. How much have your friends
aged since you last saw them?

g. Convinced that Earth will soon be rendered uninhabitable by its inhabitants, you
organize expeditions to scout other planets, then return home and report. Each
spaceship takes a trip like the one above, but this time the round-trip duration is
such that the crew ages by 30 years (not 2 years). How big a chunk of our galaxy
can you explore in this way? When should we, who stayed behind, expect the
scouts to return home to us?

h. Following (g), take the total distance �X1 to the destination and divide by 15 years,
obtaining a quantity with dimensions of speed. Make an Insightful Comment about

29Idea 25.12 (page 278).
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your answer, then find and calculate some other, more meaningful, quantity with
the same dimensions.
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C H A P T E R 32

The Faraday Tensor
To imagine a language is to imagine a form of life.

— Ludwig Wittgenstein

32.1 A NEW WAY OF THINKING

Prior to Einstein, physicists thought of Physics as a search for the right equations of
motion. When they attempted to marry the mechanics of charged particles with EM
fields, they got bogged down. Einstein and his successors realized that invariances of
Nature should be the primary drivers; once the right invariance principle was found,
dynamics could then follow along.

To get started, let’s propose an upgraded Tensor Principle:1

Physical quantities all arrange themselves into 4-tensors (or
4-tensor fields), in some cases constrained by symmetry or
antisymmetry.

4D Tensor
Principle

(32.1)
If we restrict to rotations only, then every 4-tensor falls into blocks that are themselves
3-tensors; thus Idea 32.1 includes and extends our earlier 3D principle.

So far our evidence in favor of Idea 32.1 is that indeed we found that some
quantities obey it:

• The mass m of a point particle is a single, Lorentz-invariant quantity—a 4-scalar.
Later we’ll also refer to m as a “4-tensor of rank-

! 0
0
"
,” because it has no indices

of any type.
• The speed of light c is a single, Lorentz-invariant constant of Nature—also a

4-scalar.
• The invariant interval d·2 between neighboring events is a 4-scalar as well.
• The time and location of an event have been fused into Xµ, which we have called

a 4-vector. Later we’ll also refer to it as a 4-tensor of rank
! 1

0
"

because it has
one index in the upper position and none in the lower position.

• The frequency and wavenumber of a plane wave have been fused into k, which
we saw indeed transforms the same way as X and hence is also a 4-vector.2

• The energy and momentum of a point particle have been fused into p, which
again is a 4-vector.3

1Compare Section 31.4 (page 340). T2 Quantum mechanics amends this slightly to allow an additional
class of quantities called “spinors” (Section 33.4Õ, page 376).
2See Equation 31.27 (page 345).
3See Equation 31.28 (page 345).
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The next section will explore whether the electric and magnetic fields also follow the
Tensor Principle. First let’s review how we have already begun to see that some laws
of Nature can usefully be written as relations among 4-tensors:

Wave equation
For plane waves, you showed in Your Turn 31H (page 345) that the wave equation
boils down to Îk Î2 = 0, a manifestly invariant condition on k. (Section 33.2.2 will
return to the wave equation itself.)

Momentum conservation
Chapter 30 gave us our first taste of “Einstein thinking”:

• We still expect four conservation laws, even if they’re not exactly Newton’s.
• What could they be? Instead of trying to tinker with Newton’s formulas, start

from scratch. The statement that a four-vector quantity is the same before and
after a collision is an invariant statement.

• What could that four-vector be? Newton says that both energy and momentum
are proportional to an invariant constant, m, intrinsic to the body in question.
And p = mU is a four-vector related to velocity.

• The four quantities
ÿ

¸

pµ

(¸) look like Newton’s momentum and (a constant plus)

energy, in the case of slowly moving bodies whose masses do not change.
• So that revised conservation equation is a strong candidate for a law of Nature.

We then found some experimental confirmation.

Next steps
“Einstein thinking” proved to be powerful, and quickly came to dominate in the search
for other new laws. Next, we’ll apply it to rediscover the Lorentz force law.

32.2 LORENTZ FORCE LAW

32.2.1 The Faraday tensor
Let’s abstract some of structural features of the Lorentz force law, try to guess a
reformulation in terms of 4-tensors, and then compare to the pre-Einstein version. For
fields that are constant in space and time, it has the general structure (Equation 0.5,
page 3):

force = (time rate of change of momentum) = q(linear function of velocity),

where q is a constant of proportionality intrinsic to a test body.
We can write a formula of this sort involving 4-tensors:

dp

d·
= qF (U (·)). Lorentz force law, 4-vector (32.2)
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Here q is a 4-scalar constant characterizing a test particle and p (·) is its 4-momentum
at proper time · . F is a linear function that takes a 4-vector and spits out a di�erent
4-vector. We know that in three dimensions such a machine is specified by a rank-
two tensor: For example,4 the anisotropic spring system studied in Section 31.2.3
had a restoring force given by ≠

¡
K · r̨ . That observation motivates us to define a

4-tensor of rank
! 2

0
"

as a collection of 16 numbers F µ‹ that transforms analogously
to Equation 31.7 (page 338):

F Õ–— = �–

µ
�—

‹
F µ‹ . (32.3)

Such an object can be used to specify a linear function via

U æ F (U ) where F (U )µ = F µ‹g ‹⁄U ⁄. (32.4)

We will call F µ‹ the Faraday tensor, although Faraday himself never thought of it
this way. More precisely, the components F µ‹(X ) are a collection of functions of space
and time, which are to be evaluated along the particle’s trajectory in Equation 32.2.
That is, F is a 4-tensor field.

Your Turn 32A
Show that including the g factor in Equation 32.4 guarantees that F (U ) will
transform as a 4-vector, just as X µg µ‹Y ‹ transforms as a 4-scalar. Multiplying
by the 4-scalar q and setting the result equal to the 4-vector dp /d· thus gives an
invariant equation of motion (Equation 32.2).

At first, Equation 32.2 may not seem promising as a reformulation of the Lorentz
force law, however. We were seeking a 4-tensor to accommodate the electric and
magnetic fields, which have a total of six components, but the object F appearing in
Equation 32.2 seems to have 4 ◊ 4 = 16 entries!

To make progress, note that F is not entirely free. Equation 32.2 says that it
specifies a change in U , but U cannot change in an arbitrary way: Section 31.5.3
pointed out that always ÎU Î2 = ≠c2, a constant. Thus

d
d·

!
Uµgµ‹U‹

"
= 0.

Using the product rule gives 2U µg µ‹

dU
‹

d·
= 0. Equations 32.2 and 32.4 then imply

(U µg µ‹)F ‹⁄(g ⁄›U ›) = 0 for any U .

That is, F must always give us zero when contracted on each of its indices with the
same thing. To guarantee that, we must demand that5 F is an antisymmetric 4-tensor
of rank

! 2
0
"
. This extra condition is itself Lorentz-invariant.6

4Other examples we studied included electric polarizability and the moment of inertia, which are
3-tensors defining linear, vector-valued functions of 3-vectors (Section 12.3.1, page 141).
5The logic is the same as when we interpreted the magnetic field as an antisymmetric 3-tensor
(Section 14.1, page 160), because that machine eats a particle’s velocity and always yields a force
perpendicular to v̨.
6The logic is the same as when we argued that the condition that a 3-tensor is antisymmetric is
rotation-invariant (Section 31.2.4, page 338). Section 33.3.2 will argue that for 4-tensors, it only
makes sense to impose this condition on indices that are all in the same position (in this case, up).
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An antisymmetric 4 ◊ 4 matrix has just six independent entries—just what we
need to hold the electric and magnetic fields.

32.2.2 Relate to traditional form
We can give those six entries any names we like. Here are some suggestive names for
them:

F µ‹ =
C

0 Ęt/c

≠Ę/c 2¡
Ê

Dµ‹

= 1
c

C
0

≠Ę x
≠Ę y

≠Ę z

Ę x
0

≠B̌z
B̌y

Ę y

B̌z
0

≠B̌x

Ę z
≠B̌y

B̌x
0

Dµ‹

. (32.5)

Here the magnetic field tensor ¡
Ê is defined by Equations 14.2 or 14.3 (page 161) and

B̌ = cB̨. Equation 32.5 can be summarized by7

F 0i = ≠F i0 = Ęi/c and F ij = ÁijkB̨k, i, j, k = 1, 2, 3. Faraday tensor

(32.6)
With these names, the 1-component of the proposed reformulation of the Lorentz force
law (Equation 32.2) says

d
d·

p 1 = q(F 10g 00U0 + F 12g 22U2 + F 13g 33U3).

Use Equations 30.11, 31.24, and 32.5 to find

“
d
dt

p 1 = q(≠(Ę1/c)(≠1)(c“) + B̨3(+1)“v̨ 2 ≠ B̨2(+1)“v̨ 3).

Canceling the “ factors shows that this is just the 1-component of the Lorentz force law
in its traditional form (Equation 0.5, page 3), modified only by using the relativistic
formula for momentum. The other two spatial components work similarly.

In short,

The Lorentz force law, formulated using relativistic momentum, can be
compactly stated in 4-tensor form as Equation 32.2. The electric and
magnetic fields enter as the components of an antisymmetric rank-

! 2
0
"

4-tensor via Equation 32.5 or 32.6.

Your Turn 32B

Work out the 0-component of Equation 32.2 in terms of Ę and B̨ , and interpret
it.

32.2.3 Summary
Like any equation of physics, Equation 32.2 is packed with implicit meaning—a frame-
work established in the preceding chapters. Let’s pause to say some of those things
explicitly one more time.

7The identifications in Equation 32.6 are only valid in a right-handed, inertial coordinate system.
That restriction is the drawback to describing Nature using B̨. Equation 32.2 doesn’t su�er from
this restriction.
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We imagine some apparatus, with coils, charged plates, spark gaps, whatever, that
creates some conditions in a region of vacuum (possibly time-dependent). We imagine
interrogating those conditions by shooting in charged test particles and observing their
trajectories in some coordinate system. Equation 32.2 claims that those trajectories
are always solutions to a set of ordinary di�erential equations. More precisely, it claims
that we can find:

• a coordinate system t, r̨ independent of what kind of test particles we use, or
their initial conditions, or the apparatus,

• two fixed numbers m, q characterizing each test particle, independent of what
apparatus we choose and the initial conditions on the test particle trajectory, and

• six functions F µ‹ on spacetime, depending on the apparatus and coordinate
choice but independent of the test particle type or initial conditions,

such that every physical trajectory, in every apparatus, is a solution of Equation 32.2.
Although there are many ways to make these choices, there are even more possible
apparatuses, trajectories, and test particle types, so the claim has falsifiable content,
while at the same time also telling us in principle how to measure the Faraday tensor.

What gives us the right to just declare that F 01 = Ę1/c and so on? Remember,
names are arbitrary. We could give all six entries di�erent letters of the alphabet if
we wished (as indeed Einstein did). Equation 32.5 just assigns names that clarify the
connection to our previous form of the Lorentz force law. What’s important is that we
consistently use the same names everywhere (for example, rename Ę1 as cF 01 both
in the Lorentz force law and in the Maxwell equations).

Note that every entry of the Faraday tensor participates in Equation 32.2 in the
same way. The asymmetry that bothered us between electric and magnetic fields
(Hanging Question #C) was more a matter of unfortunate language than real physics.

32.2.4 On beauty
Any physicist will tell you that Equation 32.2 is “beautiful.” What is beauty?

Opinions di�er, but I’d suggest that it’s the combination of surprise and inevitabil-
ity. We asked for an invariant force law with a general structure, and there was only
one reasonable choice.

Soon we’ll extend this observation to the Maxwell equations themselves. Those ad
hoc-looking features (like the minus sign that’s hard to remember) aren’t real; they
are just artifacts of awkward traditional notation. In good notation, not only is the
Lorentz invariance manifest; also the structure of the equations is will turn out to be
rigidly dictated, with no ad hoc features.

“Beauty” also can involve getting something for nothing, because physicists are
so cheap (we prefer to say “parsimonious”). Without consciously trying, we wrote a
formula (Equation 32.2) that is automatically also invariant under spatial inversions!
That is, if you observe the world with a left-handed coordinate frame, and deduce
the six functions F µ‹ , and I observe with a right-handed frame, and deduce F Õ–— ,
then our F ’s will be related by the inversion matrix and we will both agree that
particle motion is described by Equation 32.2, with the same value of q. We need
never introduce “pseudo-tensor” quantities like B̨.
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T2 Section 32.2.4 Õ (page 359) muses more on beauty in physics.

32.2.5 Better than beauty: an experimental consequence
We have drifted far out into Theoryland. Are there any Electromagnetic Phenomena
that can ratify our proposed modification of the Lorentz force law?

We’ve seen that the manifestly-invariant formula Equation 32.2 reduces to the
Lorentz force law as we have been using it, with the one key modification that we must
use Einstein’s formula for momentum on its left side. We can test this modification:
When charged particles orbit in a uniform magnetic field (“cyclotron motion”), the
naive form of the Lorentz force law predicts that the orbital period will be independent
of energy. The corrected form predicts deviations from this behavior as the particles’
speed approaches c. Not only is this e�ect seen experimentally; it also imposes an
important practical limitation on the design of cyclotron accelerators.

Your Turn 32C
Work out the correction.

32.3 TRANSFORMATION OF THE FARADAY TENSOR

32.3.1 Electric and magnetic fields mix under Lorentz boosts
It is fun to play with tensors, and nice to have beautiful equations. But finding and
confirming the right Lorentz force law has additional benefits. Because Equation 32.2
sets one 4-vector equal to another one, we know that there will be other coordinate
systems, related to the first one by Lorentz transformations, in terms of which the
same set of trajectories that solve it will also solve an equation of the same form,
apart from the very specific transformation8 of F given by Equation 32.3.

Translating into Ę and B̨ language via the dictionary Equation 32.5 or 32.6 then
gives another falsifiable prediction about electromagnetism.

Let’s just work out one example situation. Suppose that in one coordinate system
B̨3 ”= 0 but all other components of Ę and B̨ are zero. Suppose also that the primed
coordinate system is moving at speed —c relative to the unprimed one, along x̂. Then
the components of F Õ will be given by the matrix product [�F �t], or
S

WWU

“ ≠“—

≠“— “

1
1

T

XXV

S

WWU

0 0 0 0
0 0 B̨3 0
0 ≠B̨3 0 0
0 0 0 0

T

XXV

S

WWU

“ ≠“—

≠“— “

1
1

T

XXV =

S

WWU

0 0 ≠“—B̨3 0
0 0 “B̨3 0

“—B̨3 ≠“B̨3 0 0
0 0 0 0

T

XXV.

(32.7)
The final expression is again antisymmetric, as it must be. Comparing to Equation 32.6,
we read o� the primed fields:

B̨ Õ
3 = “B̨3; Ę Õ

2 = ≠“—cB̨3. (32.8)

The second of these formulas illustrates the mixing of electric and magnetic fields
upon Lorentz boosts anticipated in Hanging Question #A.9 That is, Ę and B̨ have

8Again, our logic just follows Section 31.2.3 (page 337).
9See Section 0.4.1 (page 9).
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no separate meaning. They are just bits of some bigger, unified object, the Faraday
tensor. Thus, the situation with Ę = 0 is not a Lorentz-invariant property; it was
true in our original frame but not in the boosted one.10

In his first relativity paper, Einstein somehow managed to find the right transfor-
mations in the ugly, mysterious form Equation 32.8, and show that they were exact
invariances of the Lorentz force law and Maxwell’s equations, all without the benefit
of 4-tensor notation. Today, we view them as consequences of the beautifully simple
Equation 32.3, reexpressed in the awkward, but traditional, symbols. The reformula-
tion of relativity using tensor methods was initiated by Minkowski and developed by
many others.

Was it worth the e�ort? One reply is that most of us would not have been able
to see through the algebra to the happy ending had we tried to guess the right
transformation law, and prove the invariance, in the old 3D notation. The lucidity
we get from 4-tensor notation was also crucial when it was time to invent the more
elaborate parts of the Standard Model (general relativity, Dirac spinors, Yang-Mills
theory) and beyond (supersymmetry. . . ). Even in electrodynamics, we’ll need that
clarity in the following chapter to establish the full invariance of Maxwell’s equations,
and later find the radiation Green function and prove the local conservation of field
energy and momentum.

32.3.2 A charge in uniform, straight-line motion
Let’s apply what we have learned to find the fields created by a point charge q
moving uniformly relative to the lab with velocity c—x̂. Rather than solve the Maxwell
equations with a tricky moving boundary condition, we can apply the Relativity
Strategy:11 First solve them in the inertial coordinate system that is itself moving at
c—x̂ w.r.t. the lab. In this system, the problem is easy: A point charge q is at rest.12

There is no magnetic field, and the electric field is given by Coulomb’s law.
For brevity, let’s restrict to the xy plane and suppress the z direction from our

notation.

Your Turn 32D
Apply the appropriate Lorentz transformation to find that then

Ęx = “(x ≠ —ct)
(“2(x ≠ —ct)2 + y2)3/2

q

4fi‘0
(32.9)

Ęy = “y

(“2(x ≠ —ct)2 + y2)3/2
q

4fi‘0
. (32.10)

These are complicated formulas,13 but note first the ratio

Ęx(t, r̨ )
Ęy(t, r̨ )

= x ≠ —ct

y
= x ≠ xú(t)

y ≠ yú
where

5
xú(t)

yú

6
=

5
—ct
0

6
.

10Unless of course all fields equal zero.
11Idea 32.3 (page 353).
12Remember that charge is a 4-scalar quantity.
13P+S §12.5 give a similar derivation.
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This ratio determines the direction that Ę points. Thus, at any moment, Ę points
along the line of sight from the particle’s position at that time toward the observer
(if q > 0).

Think about how remarkable that result is. When we look at a distant charge,
we are actually seeing it in the past, due to the finite speed of light. And yet, the
electric field at the observer is seen to be directed at the particle’s position at the time
of observation, even though simultaneity between that point and the observation is
relative! The reason this can occur is that the electric field vector from the charge’s
retarded position, which is all that the observer can see, gets bent by the Lorentz boost
in exactly such a way as to point in the direction from the charge’s current position
at the time of observation.

The magnitude of the electric field is also noteworthy:

ÎĘ Î = r≠2“
!
1 + (“2 ≠ 1) cos2 ◊

"≠3/2 q

4fi‘0
.

This is isotropic when the velocity is small, but peaked around ◊ = fi/2 (the equatorial
plane) in a way that gets more pronounced the closer — gets to 1. In short,14

At any time t, Ę(t, r̨ ) points radially outward from the particle’s position
at that time to the observation point r̨. Its magnitude is nonuniform: It
reflects a bunching of field energy into the plane transverse to the particle’s
velocity. ÎĘ Î also falls o� as distance to that position squared.

Your Turn 32E

Do a similar calculation to find the B̨ field, and describe it in words.

32.4 PLUS ULTRA

It is hard to overstate the importance of symmetry analysis in physics. All three of the
physical interactions that today are considered to be both fundamental and accepted
(electroweak, strong nuclear, and the general theory of relativity) are relativistic field
theories that were invented as o�shoots of electromagnetism, starting with proposed
extensions of its invariance properties. (The same is true of all the crazy speculative
theories that may one day supplant the Standard Model.) In each case, appropriate
tensor analysis had to be created or generalized to assist in writing a field theory
whose symmetry was manifest.
T2 Section 32.4 Õ (page 359) gives some more hints about the Standard Model.

14You’ll display the field graphically in Problem 32.4.
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T2 Track 2

32.2.4Õ More on beauty
Is an idea likely to be true because it seems beautiful? Surely not—to think so would be to
anthropomorphize Nature. Rather, the role of beauty may simply be that a scientist who is
moved by a beautiful idea will follow it to the ends of the Earth, without being overwhelmed
by the many red herrings that seem to say the idea contradicts some aspect of reality, nor
by the myriad distractions of everyday life.

Why did evolution install this imperative in our brains? Certainly humans are pro-
grammed to figure things out, and to make connections; the pleasure we get from using
these skills may be reinforcement for a behavior that enhanced our survival in di�cult times.
We habituate, so we need novelty to keep getting that reinforcement. In science, this means
that the most powerful jolts come from unexpected connections that nevertheless carry
conviction—the quality called “surprising yet inevitable” earlier. We call that beauty, both
in art and in science.

T2 Track 2

32.4Õa Bigger symmetry groups
Invoking the Tensor Principle was another sweeping generalization that we owe to Einstein,
Minkowski, and others in that generation. The equations governing strong and electroweak
interactions have additional “internal” symmetries under other groups (called SU(3) and
SU(2)◊U(1) respectively), and all fundamental particles are described by quantizing fields
that are tensors jointly under the Lorentz group and these additional groups. The tensor
structures associated to the extra transformations are called “multiplets”; for example, each
flavor of quark consists of a “color triplet” under SU(3); the up- and down-quark color triplets
in turn form an “electroweak doublet,” and so on. Leptons such as electron, muon, and tau
(and their neutrinos) are all color singlets but some form electroweak multiplets.

Successfully quantizing these field theories required a method that preserves the sym-
metry. After many false steps, such methods were found, though they still only work if an
“anomaly cancellation” condition holds. general relativity has proven to be yet more subtle.

32.4Õb Supersymmetry
Finally, there is also an even bigger set of proposed spacetime symmetries, called “super-
symmetry,” which includes the Lorentz transformations as a subgroup. Invariance under
supersymmetry may or may not be a property of the physical world. Some of the parame-
ters that specify a supersymmetry transformation (analogously to the Euler angles) are not
ordinary real numbers, but rather are anticommuting variables!

We have seen that the parameters of a symmetry transformation may themselves trans-
form, for example under rotations. The anticommuting parameters of supersymmetric trans-
formations themselves transform as spinors under rotations and other Lorentz transforma-
tions.
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PROBLEMS

32.1 Too much of a good thing?
Section 32.2.1 proposed the equation of motion

dp µ

d·
= qF µ

‹
U ‹

as a manifestly invariant form of the Lorentz force law. But, this is four equations,
whereas the Lorentz force law as we initially stated it has only three components.
Give a physical interpretation for the “extra” component of the above equation, and
explain why we don’t really have to solve four independent equations in three unknown
functions r̨ (t) defining the particle trajectory.

32.2 It adds up
A particle of charge q and mass m, initially at rest, is released in a region of uniform
Ę directed along the x̂ axis. Find the subsequent motion. Be sure to check that in
the nonrelativistic limit your solution has the expected form.

32.3 Cyclotron motion
A proton is released into a region of uniform magnetic field (that is, B̨ is a constant
vector field). Its initial velocity is directed perpendicular to the field. Find the orbital
period of the resulting circular motion, in terms of the radius r of the proton’s orbit,
its mass m and charge q, and the field strength |B̨|. Comment on the small- and
large-r limits of your answer (at fixed |B̨|).

32.4 Uniformly moving charge
Get a computer to evaluate Equations 32.9–32.10 and display it as a vector field plot.
That is, find the electric field vector in the xy plane for a charged particle in uniform
motion along the x axis. Luckily, Ę lies in the xy plane, so a two-dimensional plot is
adequate. Also, you lose no generality if you assume t = 0 (why?).
a. Show the case — = 0.1 and comment.
b. Show the case — = 0.9 and comment.
Make sure your computer uses the same scale for the x and y axes, and also that it
displays the lengths of each arrow accurately (without rescaling). If you use Python,
the Student’s Guide §6.9 discusses vector field plots.

32.5 Induced charge
A rigid, conducting sphere of radius R moves with constant velocity v̨ through a
uniform magnetic field B̨ . Assume v π c and find the surface charge density induced
on the sphere to lowest order in v/c.
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Manifestly Invariant Form of Maxwell
You boil it in sawdust, you salt it with glue, you condense it
with locusts and tape,
Still keeping the principal object in view: To preserve its
symmetrical shape.

— Lewis Carroll

33.1 FRAMING

The whole discussion in the preceding chapter may seem like outrageous wish-
fulfillment—a scam. If we get to assume any transformation law we like for the
electric and magnetic fields, then surely we can always arrange for our equations to
be invariant?

Surely not. We have completely specified the transformation of our fields just by
studying the Lorentz force law. There is no further freedom. Now we must cross our
fingers and hope that the Maxwell equations will also be invariant under the same
field transformations.

This chapter begins by studying fields only, that is, no charges or currents. Then
we will construct the notion of charge flux 4-vector, and add it as a source term in
our invariant form of Maxwell’s equations.

33.2 FIELD EQUATIONS IN 4D

So far, many of our constructions have closely paralleled the three-dimensional situa-
tion. Now one key di�erence will emerge.

33.2.1 Transformation of spacetime derivatives
Let’s use the abbreviation ˆ µ to mean ˆ/ˆXµ. Then proceeding as in Equation 31.11
(page 339) gives

ˆ µ = ˆ

ˆX µ
= ˆX Õ–

ˆX µ

ˆ

ˆX Õ– = �–

µ
ˆ Õ

–
= [�t] –

µ
ˆ Õ

–
, or (33.1)

ˆ Õ
–

= [�≠1t] µ

–
ˆ µ. (33.2)

For example, applying both sides of Equation 33.2 to a scalar field tells us that the
4-gradient ˆ µ„ of a scalar function is a set of four functions with the transformation
rule Equation 33.2. The new wrinkle is that this rule is di�erent from the one we
started with (X Õ– = �–

µ
Xµ).1 This issue did not arise in three dimensions, because

1Equation 31.14 (page 342).
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362 Chapter 33 Manifestly Invariant Form of Maxwell

for rotation matrices S≠1t = S, whereas �≠1t ”= � in general.
Thus there are two fundamental tensor types in relativity: the ones previously

called 4-vectors (or 4-tensors of rank
! 1

0
"
), and new ones that transform like Equa-

tion 33.2, which are called 4-covectors (or 4-tensors of rank
! 0

1
"
). The rank notation

is motivated by the fact that the 4-gradient ˆ µ„ has one index in the lower position.
This doubling of index types causes us surprisingly little trouble in practice,

however. Suppose that W µ is a collection of four numbers that constitute a 4-covector.
Define g µ‹ to be a 4 ◊ 4 matrix of constants that is the inverse of the matrix g µ‹ .2
We now show that the four quantities g µ‹W ‹ amount to a 4-vector. That is, there is
a standard way to interconvert between 4-vectors and 4-covectors; if we like, we can
do all of our work using only 4-vectors.

To prove the claimed result, substitute the transformation of the 4-covector into
the quantities being considered:

g –—W Õ
—

= [g W Õ]– = [g �≠1tW ]–.

Next, use one of the identities in Equation 31.18 (page 343) to rewrite this as

= [�g W ]– = �–

µ
[g W ]µ.

Thus as claimed g µ‹W ‹ transforms as a 4-vector! It’s traditional to name these four
new quantities W µ, to emphasize that:
. They are very closely related to W µ, and so deserve to be called by the same

letter of the alphabet, but
. Unlike W µ, they transform like Xµ (or any other quantity with one upper index).
The process of constructing a 4-vector from a 4-covector by contraction with g is
called index raising.3 Because [g]2 = 11, we can invert this operation by another
multiplication by g:

W µ = g µ‹W ‹ . index lowering

It’s not hard to find an invariant product for two covectors: Simply convert each
to a 4-vector and use the usual product:

(g µ‹W ‹)g µ⁄(g ⁄‡V ‡) = [W tg g g V ] = W ‹g ‹‡V ‡.

It’s easier still to find the invariant product of a covector and a vector:

(g µ‹W ‹)g µ⁄U ⁄ = [W ]t[g g ][U ] = W ‹U ‹ .

No g factor at all is needed in this case.

33.2.2 The wave operator
The ideas in the previous section make it straightforward to find a manifestly invariant
derivative operator that, when applied to a scalar function, yields another scalar

2In fact, these are two names for the same matrix, because [g ]≠1 = [g ], but we nevertheless use
di�erent notation for the two di�erent uses, in part because they won’t be the same in general
relativity, nor even in special relativity with curvilinear coordinates.
3A mathematician might call this operation “taking the adjoint with respect to the inner product g .”
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function. To define it, it’s first convenient to define ˆµ by raising the index on ˆ µ.
Then we can construct the Lorentz-invariant operator

2 = ˆµˆ µ.

It’s called the wave operator, D’Alembert operator, or dalembertian.

Your Turn 33A
Show that 2 is the same wave operator that we have been writing all along
(Section 23.4, page 261), and whose invariances led us to discover the Lorentz
transformations in the first place.

But now we can take another step. If we apply the wave operator to any rank
tensor, the result is again a tensor of the same rank. Setting that to zero yields a
Lorentz-invariant field equation. That observation immediately suggests the candidate
equation

2F µ‹ ?= 0

for electrodynamics! Could it really be that simple? Well, no: The Maxwell equations
are only first-order in derivatives. We’ll soon find something almost as simple, and
correct.

33.3 GENERAL 4-TENSORS

33.3.1 Rank
We can now define a 4-tensor of rank

!
p

q

"
as a set of 4p+q numbers with p upper and

q lower indices, transforming with p copies of � and q copies of �≠1t. Extending the
list we started in Section 32.1,
. The gradient of a scalar function has rank

! 0
1
"
;

. The Faraday tensor has rank
! 2

0
"
;

. The quantities F µ‹g ‹⁄ constitute a 4-tensor of rank
! 1

1
"
; and so on.

33.3.2 Symmetry
Let A

µ1...µp
‹1...‹q be a 4-tensor of rank

!
p

q

"
.

Your Turn 33B
Show that:
a. If the components of a tensor A are antisymmetric under permutation of some
or all of its upper indices in one inertial coordinate system, then A will have
that same property in any other such system (and similarly for lower indices).4
Similarly, if the components are symmetric under permutations, that property,
too, is invariant.
b. Also show that the operation of antisymmetrizing (or symmetrizing) a tensor
on some or all of its upper (or lower) indices is invariantly defined.
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But beware: There is no invariant sense to (anti)symmetry between an upper and
a lower index. We must lower one index, or raise the other, before we can speak
invariantly of (anti)symmetry.

33.3.3 The metric is itself a tensor
You now have all the tools to show that the metric is a “tensor from Heaven,” that is,
numerically the same when viewed in any inertial coordinate system.5

Your Turn 33C
a. The metric as we first introduced it, g µ‹ , has two lower indices. Prove that
this matrix indeed gives the components of a constant 4-tensor of rank

! 0
2
"
, as

implied by the notation. [Hint: Use an identity from Equation 31.18 (page 343).]
b. Section 33.2.1 defined the related symbol gµ‹ as the inverse matrix to g µ‹ (that
is, numerically equal to it). Prove that this matrix indeed gives the components
of a constant 4-tensor of rank

! 2
0
"
, as implied by the notation.

33.4 SUMMARY: THE RULES IN 4D

This is getting scary. What saves us from total confusion is that a few Rules make
it unnecessary to think much about these intricate transformations. These Rules
correspond to the ones in Section 31.4 (page 340), and are almost as easy to use.

We are exploring the hypothesis that electrodynamics is invariant under Lorentz
transformations. To generate Lorentz-invariant equations as candidate laws of Nature,
we organize all the dynamical variables into 4-tensors of suitable rank,6 where:
aÕ. A 4-tensor of rank

!
p

q

"
can be represented in a particular inertial coordinate

system by a collection of 4p+q numbers, indexed by p upper and q lower indices,
with transformation law appropriate for each index’s position.

bÕ. A 4-tensor field is the same idea, but each entry is a function of X .
cÕ. Permuting a set of indices of a tensor, all in the same position (all up or down)

yields another tensor of the same rank.
dÕ. The sums of corresponding components of two tensors with the same rank yield

the components of a new tensor of that same rank.
eÕ. The derivative operator ˆ increases the rank of a tensor field by

! 0
1
"

(see Sec-
tion 33.2.1).

fÕ. The collection of all products of the components of a rank-
!

p

q

"
and a rank-

!
p

Õ

qÕ

"

tensor itself constitutes a rank-
!

p+p
Õ

q+qÕ

"
tensor.

4In particular, the statement that a tensor is totally antisymmetric is a Lorentz-invariant property,
as we saw in an example already (Equation 32.7, page 356).
5See Chapter 13.
6See Idea 32.1. Mathematicians refer to the sort of tensors we are discussing as “linear representations
of the group O(3,1).” They also have a more general concept of tensors suitable for curved (non-
euclidean) spacetimes, which is handy when we wish to study electrically charged black holes or the
gravitational bending and redshifting of light as it passes by a massive object.
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gÕ1. Only contract indices in up/down pairs. Such a contraction is invariant; that is,
the result is again a tensor, with reduced rank

!
p≠1
q≠1

"
.

gÕ2. Whenever we are tempted to contract two upper indices, we instead introduce
a factor of the metric. Contracting one upper index with gµ‹ is an invariant
operation that changes the rank from

!
p

q

"
to

!
p≠1
q+1

"
. Then we contract the resulting

new lower index with the other upper index, bringing the rank down to
!

p≠2
q

"
as

desired.
gÕ3. Contracting one lower index with g µ‹ again yields a new tensor, with rank changed

to
!

p+1
q≠1

"
. Because [g ]2 = 11, index raising and lowering are each others’ inverse

operations.
hÕ. A physics equation of the form A = B, where both A and B are tensors (or tensor

fields) of the same rank, is then guaranteed to be Lorentz invariant.
iÕ. The volume element d4X transforms to d4X Õ under Lorentz transformations

because the Jacobian matrix has determinant ±1.7 Thus, we may convert a tensor
field to a constant tensor of the same rank by integrating over all spacetime.

With these Rules, 4-tensor manipulations become so automated that most physicists
don’t consciously distinguish between, say, F µ

‹
and F

µ‹
; both are called F , and only

index placement is used to tell them apart. Either one is called the Faraday tensor. If
you’ve got one, but you want the other, then you convert by index raising or lowering
operations. But beware: If you plan to use index-free (matrix) notation, you need
to state which of these quantities you mean, because they are numerically di�erent.
Matrix notation is extremely concise, but for that very reason we will generally avoid
it, now that we have established our “grammar” of invariant constructions.

33.5 VACUUM MAXWELL EQUATIONS

We wish to establish that the Maxwell equations have the property of form invariance
under Lorentz transformations. But they look pretty complicated; they have some
apparently ad hoc minus signs; we found that Ę and B̨ have complicated transforma-
tion rules under Lorentz transformations. To see through the derivation, let’s start
from scratch.

Chapters 31–32 explained what “from scratch” could mean, via a new way of
thinking, driven by invariance properties. Let’s apply that “Einstein thinking” to the
Maxwell equations:

• Abstract away from Maxwell’s version the structural features: The desired equa-
tions are first-order in space and time derivatives. They involve an antisym-
metric, rank-

! 2
0
"

tensor field F . In addition, half of them involve charges and
currents. There are also two scalar constants ‘0 and µ0, or equivalently µ0 and
c = (‘0µ0)≠1/2.

• What could the equations be? If they take the form (tensor field) = 0, then the
Rules say they’ll be automatically invariant (Section 33.4, page 364).

7Take the determinant of both sides of Equation 31.16 (page 342).
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• Once we have guessed candidate equations that meet the criteria, we can ask
how they look when phrased in terms of the old-school Ę and B̨ fields. If they
coincide with the Maxwell equations as we’ve been writing them, then we’ve
proved that electrodynamics is Lorentz-invariant.

We could implement the first bullet with the candidate equation

ˆ ‹F µ‡ ?= 0, (33.3)

but that can’t be right. For one thing, it’s 4 ◊ 6 = 24 equations, because µ‡ is an
antisymmetric pair, but we only wanted eight equations. Worse, we know all about
the solutions to those equations: They say that all six components of F are constants.
Too many equations have too impoverished a set of solutions.

But maybe we could reduce the equations without spoiling their Lorentz-invariance.
One possibility is to contract indices:

ˆ ‹F µ‹ ?= 0. (in vacuum) (33.4)

The Rules say this formula is still Lorentz-invariant, but now it’s just four equations,
because there’s one loose index.

Your Turn 33D

a. Rephrase Equation 33.4 in terms of the traditional Ę and B̨ using Equa-
tion 32.5 (page 354) and confirm that indeed it’s precisely the electric Gauss law
and Ampère’s law—there is no need to tweak those equations, which were secretly
Lorentz-invariant all along.
b. There are three ways to contract two indices in Equation 33.3, and so far we’ve
only considered one. What about the other two ways?

A second reduction of the candidate equation is possible, but a bit more subtle:

Your Turn 33E
Show that taking the totally antisymmetric part of Equation 33.3 gives

ˆ µF ‹⁄ + ˆ ‹F ⁄µ + ˆ ⁄F µ‹ = 0. (33.5)

The Rules say that the left side of Equation 33.5 is a tensor, so this equation is Lorentz
invariant,8 and hence a candidate for a law of Nature.

Equation 33.5 may appear to be 43 = 64 equations, because it has three loose
indices. Really, however, most of these equations are vacuous or redundant, because
a totally antisymmetric 4-tensor of rank

! 0
3
"

has only four independent components.

8Note that before we can invariantly antisymmetrize a tensor, we must push all the indices into
matching position, either by raising the lower one or (as done above) by lowering the upper ones.
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a b

y⇤

ct⇤

Figure 33.1: Unified construction of (a) charge density and (b) charge flux, an extension of
the one in Figure 7.1 (page 82)b. Dashed lines indicate charged particle trajectories that
make no contribution because they don’t pass through the selected windows. Thus in (a),
trajectory #2 may eventually pass through the spatial region shown, but not at time tú.
Similarly, in (b), trajectory #4 passes through the selected range of ct and x, but not at
yú.

Your Turn 33F
Confirm that last claim in general, then write down all four independent compo-
nents of Equation 33.5. You’ll need the expressions obtained by index lowering
the identifications we found in Equation 32.5 (page 354):

F µ‹ =

S

WWWU

0 ≠Ę1/c ≠Ę2/c ≠Ę3/c

Ę1/c 0 B̨3 ≠B̨2
Ę2/c ≠B̨3 0 B̨1
Ę3/c B̨2 ≠B̨1 0

T

XXXV

µ‹

. (33.6)

Once again, you’ll find precisely the magnetic Gauss law and Faraday’s law—so they,
too, were secretly Lorentz-invariant all along.

33.6 THE CHARGE FLUX 4-VECTOR

To complete our job, we need to upgrade Equation 33.4 to include charges and currents.
(We already know that Equation 33.5 is complete, because the magnetic Gauss law
and Faraday’s law don’t involve charges nor currents.)

33.6.1 A geometrical formulation
This section repeats the discussion in Chapter 7. For artistic reasons, Figure 33.1 only
shows two space dimensions x, y, but z is understood to be present.

We suppose space to contain a swarm of charged particles with trajectories
Xµ = �µ

(¸)(·) for µ = 0, . . . , 3. Each trajectory is a curve in spacetime, parame-
terized by proper time · and labeled by a constant q¸ (its charge). We choose an
inertial coordinate system on spacetime.
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To define charge density at some point X ú (an “event”), set up a small spatial
volume element �3X‹, that is,

ct = X 0
ú = constant,

X 1
ú < x < X 1

ú + �X1,

X 2
ú < y < X 2

ú + �X2,

X 3
ú < z < X 3

ú + �X3.

In Figure 33.1a, the blue rectangle shown represents �3X‹. Now we add up all the
charges on lines crossing this element from past to future, divide by volume �3X‹,
multiply by c, and call the result J 0(X ú). For example, trajectory #1 contributes
cq1/�3X‹, whereas trajectory #2, which misses the volume element, contributes
nothing.

Note that the quantity J0 just defined has units coul/(s m2). In fact, J0 is the
quantity we’ve previously called cflq.

Next, define charge flux at X ú by setting up a new small volume element (Fig-
ure 33.1b), again called �3X‹:

X 0
ú < ct < X 0

ú + �X0,

X 1
ú < x < X 1

ú + �X1,

y = X 2
ú = constant,

X 3
ú < z < X 3

ú + �X3. (33.7)

Add up all the charges on trajectories crossing this element from smaller to larger
values of y, and subtract all the charges on trajectories crossing it in the opposite
sense. Again divide by �3X‹, multiply by c, and call the result J 2(X ú). Thus in the
sketch trajectory #1 contributes cq1/�3X‹, #2 contributes ≠cq2/�3X‹, and #3–4
contribute nothing.

Define the other two components J1 and J3 similarly. Thus, all four components
of J have the same units. In fact, J i are the three quantities called the charge flux9

j̨i in Section 7.2 (page 81). The advantage of the present formulation is that it treats
all four components in the same way. In any inertial frame,

Jµ = net amount of charge crossing the surface Xµ = constant,
from smaller to larger Xµ, per d3X‹, times c. (33.8)

33.6.2 J is a 4-vector
The Tensor Principle claims that all physical quantities can be packaged into 4-tensors.
Does Jµ defined in the preceding section fit?

Chapter 7 considered a small hypercube and showed that, because charge is locally
conserved, we must have

ˆ

ˆt
flq + Ǫ̀ · J̨ = 0. [7.4, page 83]

9And that some authors instead call the “current density.”
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We now can recognize that this continuity equation can be written more elegantly as

ˆJµ

ˆXµ
= 0, (33.9)

or more concisely still as
ˆ µJµ = 0. (33.10)

Our derivation of Equation 7.4 was valid in any coordinate system, so in particular
the form of Equation 33.10 is the same in any inertial system. We also know that ˆ µ

form a covector. Thus the four quantities

Jµ(X ) =
Ë

cflq(t,r̨ )
j̨ (t,r̨ )

Èµ

(33.11)

must themselves transform as a rank-
! 1

0
"

field: the charge flux 4-vector field.10

33.7 COMPLETE, INVARIANT MAXWELL EQUATIONS

We are now ready to add charges and currents to Equation 33.4. Once again, there’s
really no freedom! The left side of Equation 33.4 is a 4-vector, so we must set it equal
to a 4-vector. We have seen that charges and currents constitute a 4-vector. All we
need is a constant of proportionality to make the units work out:

ˆ ‹F µ‹ = µ0Jµ and ˆ µF ‹⁄ + ˆ ‹F ⁄µ + ˆ ⁄F µ‹ = 0. Maxwell equations

(33.12)

Your Turn 33G
Extend Your Turn 33F to confirm that the Equation 33.12 really gives the full
Maxwell equations as we have been using them.

The eight beautiful11 new equations, Equations 33.4–33.5, have turned out to be
exactly the Maxwell equations we have been using all semester! But their complete
Lorentz invariance (and that of the Lorentz force law) is now obvious. Along the
way, we have also addressed Hanging Question #B: The form of the equations isn’t
arbitrary after all, but rather is dictated by general principles. Moreover, no Levi-
Civita tensor appears in Equations 33.12; thus, they are also manifestly invariant
under inversions, unlike the traditional formulation in terms of Ę and B̨.12

T2 Section 33.7 Õ (page 376) discusses the proper counting of these equations and
Hanging Question #D.

10See also Section 33.9.3 for an explicit proof.
11“Surprising yet inevitable.”
12This addresses Hanging Question #E. Nor is any choice of right hand buried in the recipe that
converted particle trajectories into J

µ (Equation 33.8), nor in the one that let us operationally define
(measure) F (the Lorentz force law, Equation 32.2).
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33.8 FOUR-VECTOR POTENTIAL

33.8.1
The second of Equation 33.12, together with the Poincaré Lemma,13 implies that we
can always write the Faraday tensor in terms of a four-vector potential:14

F µ‹ = ˆ µA‹ ≠ ˆ ‹A µ. (33.13)

The known transformation properties of ˆ and F imply that A is indeed a four-vector
field.

Your Turn 33H

Work out the corresponding Ę and B̨, and show that Equation 33.13 reproduces
Equation 17.22 (page 208) if we identify

Aµ =
Ë

Â/c

Ą

Èµ

.

Thus, the potentials we found long ago also adhere to the 4D Tensor Principle. SI
units for the 4-vector potential are [A ] ≥ kg m/(coul s).

Gauge invariance is the observation that the Faraday tensor doesn’t change when
we replace A µ by

ÂA µ = A µ + ˆ µ�. (33.14)

Your Turn 33I
a. Prove that last statement starting from Equation 33.13.
b. Show that when we substitute Equation 33.13 into Maxwell’s equations, one
set is vacuous (always automatically satisfied).
c. Show that the remaining Maxwell equations become

≠2A‹ + ˆ µˆ ‹Aµ = µ0J‹ . (33.15)

Your result establishes that the Maxwell equations can be written as four equations in
four unknown functions, even though they started as eight equations in six unknowns.
T2 Section 33.8.1 Õ (page 376) discusses the counting in more detail.

33.8.2 Particle in uniform motion revisited
For a first look at the benefits of using potentials, we can return to the problem posed
in Section 32.3.2. Again restrict to the xy plane and suppress the z direction from our
notation. Also over the next few lines we’ll temporarily drop the tiresome q/(4fi‘0)

13See Chapter 14.
14Chapter 17 already derived this in a less compact way.
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factor. Denote the moving frame with a prime. Then the 4-vector potential seen in
the moving coordinate system is just that of a point charge at rest:

AÕ– =
5
1/(crÕ)

0̨

6–

.

So

Aµ = (�≠1AÕ)µ = 1
c

S

U
C

“ —“

—“ “

1

DC
f(t, x, y)

0
0

DT

V
µ

= 1
c

S

U
“f

“—f
0

T

V

µ

, (33.16)

where f(t, x, y) = 1/rÕ =
!
“2(x ≠ —ct)2 + y2"≠1/2.

We can now compute the Faraday tensor as usual. For example,

F 01 = c≠1Ęx = ˆ 0A1 ≠ ˆ 1A0 = ≠ ˆ

ˆct

!
c≠1“—f

"
≠ ˆ

ˆx

!
c≠1“f

"
= “f3

c
(x ≠ —ct).

Reinstating the dropped factor q/(4fi‘0) gives again the results found in Your Turn 32D
and Your Turn 32E (page 358). However, sometimes A is all that’s needed, and we
see it was easier to obtain than the electric and magnetic fields.

33.9 MORE ABOUT J

The geometric definition of the charge flux 4-vector in Section 33.6.1 is useful for some
purposes, for example, to see why it obeys the continuity equation. However, for other
purposes it’s good to know that another formulation is equivalent to the geometric
one.

33.9.1 A property of the delta function
First we need to review a key fact about the delta function.15 Think of it as a bump,
”(x; ‡) = (2fi‡)≠1/2e≠x

2
/(2‡

2) with ‡ very small. So
⁄

‘

≠‘

dx ”(x; ‡) æ 1

if we hold ‘ fixed to any positive value and take ‡ æ 0.
Now define a new function f(x; ‡) = ”(2x; ‡) and compute the integral, changing

variables to y = 2x:
⁄

‘

≠‘

dx f(x; ‡) =
⁄ 2‘

≠2‘

dy

2 (2fi‡)≠1/2e≠y
2
/(2‡

2) æ 1
2 .

Again the limit is taken holding ‘ fixed to any positive value and ‡ æ 0. In the same
limit, the integral would have been zero had we chosen any range not centered on
x = 0.

Thus f has the same properties as those defining 1
2 ”(x). More generally,

”(ax) = 1
a
”(x) for positive constant a. (33.17)

15This was introduced in Section 0.3.6 (page 9).
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Next define g(x; ‡) = ”(≠2x; ‡). Its graph is the same as that of f , so it has the
same integral:

”(ax) = 1
|a|”(x) for any constant a.

More generally, if h(x) is any smooth function that vanishes at an isolated point xú,
then16

”(h(x)) =
---
dh

dx

--
xú

---
≠1

”(x ≠ xú). (33.18)

(Equation 33.17 corresponds to h(x) = ±ax.) If h(x) = 0 at several points, then we
get the sum of one term for each such point.

33.9.2 A useful alternative formulation of J

Here is another set of quantities that may also seem reasonable as a candidate for the
current. We will propose it, then show that it’s the same as J .

Define four functions on spacetime by putting bumps all along each trajectory
� (¸):

Jµ

alt(X) =
ÿ

¸

⁄ Œ

≠Œ
cd· q¸U

µ

(¸)(·)”(4)!X ≠ �(¸)(·)
"
. (33.19)

We now want to show that Jalt is equal to the J defined above. (At least the units
match those of J .)

Consider any component of Equation 33.19, for example µ = 2, and any starting
point X. Thus, we wish to show J2

alt(X ) = J2(X ). Let X‹ denote just the 0, 1,
and 3 components (all except the direction 2 that we chose to investigate). As in
Equation 33.7, let �3X‹ be a small region about X obtained by varying everything
except X2. We will now integrate J2

alt and J2 over this region and show that the
answers are the same. Because the region was arbitrary, that result will su�ce to show
that Jalt = J .

Thus we wish to simplify
⁄

�3X‹

d(ct)dxdz J2
alt =

ÿ

¸

⁄

�3X‹

d(ct)dxdz

⁄
cd· q¸U

2
(¸)(·)”

!
X2 ≠ �2

(¸)(·)
"

¸ ˚˙ ˝
”(3)!X‹ ≠ �(¸)‹(·)

"
.

(33.20)
The things in the brace don’t depend on t, x, or z, so we may bring them to the front:

=
ÿ

¸

⁄
cd· q¸ U2

(¸)(·)”
!
X2 ≠ �2

(¸)(·)
"

¸ ˚˙ ˝

⁄

�3X‹

d(ct)dxdz ”(3)!X‹ ≠ �(¸)‹(·)
"

¸ ˚˙ ˝
.

(33.21)
The part of this expression in the second brace just gives 1 if particle #¸’s transverse
coordinates fall anywhere inside �3X‹ at proper time · ; otherwise it’s zero. That is,
as a function of · it’s a kind of step function.

Now turn to the rest of Equation 33.21. If trajectory #¸ is ever inside the range
�3X‹ and crosses the fixed y that we are considering, then let ·ú be the proper time

16See also P+S §3.5.1.
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when that crossing occurs.17 Equation 33.18 gives the integrand in the first brace as

cq¸

d�2
(¸)

d·

-----
d�2

(¸)

d·

-----

≠1

”(· ≠ ·ú) = ±cq¸”(· ≠ ·ú).

We get the plus sign if the trajectory crosses from smaller to larger y, or the minus
sign in the contrary case.

Putting it all together, the only trajectories that make nonzero contributions to
Equation 33.20 are those that actually pass through �3X‹. We may thus restrict
the sum to only those trajectories, which we denote by

qÕ
¸
, and so Equation 33.20

becomes ⁄

�3X‹

d(ct)dxdz J2
alt = c

ÿ

¸

Õ(±q¸). (33.22)

At last we can see that Equation 33.22 is the same property that we used to define the
current J2 in Equation 33.8. Repeating the argument for the other three components
yields that Jalt = J .

33.9.3 Another proof that J is a 4-vector
Before proceeding, let’s pause to show that ”(4)(X) is a 4-scalar. Suppose that G– are
a set of functions of X that define a new set of coordinates, and that they all vanish
at a point X ú. We can generalize the result Equation 33.18 to say that

”(4)!G–(X)
"

=
----det ˆG–

ˆX‹

----
≠1

”(4)(Xµ ≠ X µ

ú ). (33.23)

For a Lorentz transformation, G is a set of four linear functions, so the derivatives
appearing in Equation 33.23 are a constant matrix, which we have called �–

‹
. The

determinant of that matrix is ±1 because [�tg�] = [g], so Equation 33.23 says ”(4)!X )
is a 4-scalar.

Now we can use our reformulation of the current (Equation 33.19) to show that J
is a 4-vector. Indeed, in that equation d· is a 4-scalar, the q¸ are all 4-scalars, we just
showed that the delta function is a 4-scalar, and U is a 4-vector (it is the derivative
of the 4-vector X with respect to the invariant ·).

33.10 A DIZZYING VISTA

Einstein famously said, “Leave elegance to the tailor.” Should we care that Equa-
tions 33.12 are so beautiful?

I’d say: When it’s time to quantize electrodynamics, the covariant form of
Maxwell’s equations is the indispensable starting point. Recast them in a (Lorentz-
invariant) Lagrangian formulation, write the appropriate path integral, and you’re on
your way. It can be done, sort of, without 4-tensor notation, but it’s almost impossible
to do it right without the simplicity we’ve now gained.

17For a small enough region �3
X‹ there will be at most a single crossing. In Figure 33.1b (page

367), trajectory #4 passes through �3
X‹, but it’s not there when it crosses the chosen y value.

Trajectory #3 never visits the chosen y at all.
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Moreover, the train of thought begun in the last few chapters led Einstein in
seven more years to unravel a seemingly unrelated puzzle. It’s a fantastic detective
story: A formal observation about the structure of electromagnetism led Einstein to a
hypothesis, with testable quantitative predictions, about the nature of gravitation.

Einstein began by asking himself, what is it that makes some coordinate systems
(the intertial ones) particularly good? Why aren’t all systems equally good?

Our discussion of waves on a vibrating string gives a hint. Faced with a dynamical
equation (for the string’s transverse displacement) with less symmetry than expected
(no galilean invariance), we realized that some additional dynamical variable (the
velocity of the string) is hiding in the equation, implicitly set to some particular value
(zero). Explicitly acknowledging this implicit physical object, and realizing that its
value, too, will change under coordinate transformations, restored the full galilean
invariance to the string’s wave equation.

Should we try the same thing with the Maxwell equations? What is the hidden
dynamical variable? Einstein argued it’s not the velocity of any luminiferous æther.
Rather, Section 31.5.1 characterized the “good” coordinate systems as those in which
the interval—a metric function on spacetime—looks nice. Thus, to make progress we
should start asking
. What is the origin of the invariant interval function? Is it really a fixed property

of spacetime, or could g itself be a dynamical object? (If so, then we’ll need to
propose some new dynamical law for the metric itself!)

. Do Maxwell’s equations become fully coordinate-invariant if we promote the
metric tensor to a fully dynamical object, with an appropriate transformation
law?

Remarkably, Einstein found that again there is essentially only one acceptable equa-
tion of motion that a metric tensor could have.18 He then asked, what new physical
phenomena are predicted if we introduce this new dynamical variable?

The big clue was a fact from the geometry of curved surfaces: Any metric looks
equivalent to any other one, if we only look to first order in excursions about a
point. Einstein asked, “is there any physical property of spacetime that also has this
property?” His answer was: “Yes, the gravitational field does.” Once again, “Einstein
thinking” suggested that the unique equation of motion dictated by general principles
like invariance should then describe all gravitational phenomena, including even those
not yet imagined (such as dark energy), and once again, this vision was borne out.19

33.11 PLUS ULTRA

As the world’s first relativistic field theory, electrodynamics is also the indispensable
intellectual substrate for creating a relativistic theory of electron spin, and from there
onward to supersymmetry. One could argue that Einstein thinking merely ratified

18Here “essentially” means there’s actually a two-parameter family of equations. One parameter is
Newton’s constant, as expected. The other one is the “cosmological constant.” Despite some initial
missteps, we now see that this parameter, too, corresponds to physical phenomena that are observed.
19Although these notes cannot go further, this thread was the insight needed for Hanging Question
#G.
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Maxwell’s equations. But this sort of thinking was then critical for Dirac to even
propose the right wave equation for particles with spin 1/2.
T2 Section 33.11 Õ (page 377) outlines the relativistic treatment of spin.

FURTHER READING

T2 Spinors: Nonrelativistic: Landau & Lifshitz, 1977.
Relativistic: Wess & Bagger, 1992, Appendix A; Berestetskĭı et al., 1971; Streater &
Wightman, 1964; Sternberg, 1994, §1.2.
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T2 Track 2

33.4Õ Inversions
One of our goals is to eliminate the Levi-Civita tensor from all of classical physics (Hanging
Question #E). Chapter 14 advocated rephrasing electrodynamics by replacing B̨ by the
antisymmetric rank-3 tensor ¡

Ê, and indeed we see that the spatial block of Equation 32.5
does just that. Then our manifestly-invariant form of the Lorentz force law, Equation 32.2,
is also manifestly invariant under inversions of space or time because inversions satisfy the
condition [�t

g �] = [g ]. We’ll see soon that once Maxwell’s equations are formulated in terms
of F , they, too, will make spatial inversion invariance manifest.

T2 Track 2

33.7Õ Degeneracy of Maxwell equations
So in all there are eight distinct equations, just like the usual form of the Maxwell equations.
Previously we worried that the Maxwell equations are overdetermined, being eight equations
in six unknown functions,20 but we found that the system of equations is singular: Two of the
eight equations are tautologies, vacuously satisfied regardless of what the fields and particles
are doing. To see this again, more invariantly,
. Take the 4-divergence of the first set of equations and recall that ˆ µJ

µ = 0 identically.
So one combination of these four equations is vacuous.
. Apply Á

µ‹⁄Ÿ
ˆ Ÿ to the second set of equations and recall that partial derivatives commute.

Here Á is the 4D analog of the Levi-Civita tensor. Again, you find that one combination of
these four equations is vacuous.
A further reduction is possible if we use potentials (Section 33.8.1, page 370).

T2 Track 2

33.8.1Õ Counting equations, again
The main text arrived at four equations, Equation 33.15 (page 370). However, one degree of
freedom in A drops out of the equations, due to their gauge invariance. What rescues the
equations from being overdetermined is that one combination is vacuously satisfied, as we
see by taking the 4-divergence of both sides and using the continuity equation for J .

20Hanging Question #D.
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T2 Track 2

33.9Õ Geometric status of the charge flux
If you know a little di�erential geometry, then we can give a more general formulation of
charge and charge flux, one that does not require any choice of coordinate system at all. The
geometric formulation in Section 33.6.1 specified an inertial coordinate system, so that the
volume of �3

X ‹ was defined. But the same approach can be used to define a machine, called
úJ , that eats any small solid element �3

X and spits out a number (net charge crossing it).
It is linear in the volume. Such a machine is called a 3-form (that is, a totally antisymmetric,
rank

!
0

3

"
4-tensor). More precisely, to obtain a 3-form we must first choose an orientation

on spacetime. Given a point in spacetime and an ordered set of three vectors, we get an
oriented 3-volume element (Figure 12.2). If a particle trajectory pierces this element, then
its velocity at that intersection completes the triad to give an orientation on spacetime.
We count that particle’s charge positively if that orientation matches the one we chose, or
negatively if not. Summing over particles thus gives a number that depends multilinearly
and antisymmetrically on the three vectors: A 3-form depending on a choice of orientation.21

Maxwell’s equations then say

dF = 0, d ú F = µ0(úJ),

where ú on the left denotes the Hodge dual operation, úJ is the 3-form just defined, and d
is the exterior derivative. In fact, úJ really is related to our J by the Hodge dual operation.
That operation, however, requires the use of a metric tensor, so úJ is more directly related
to charged particle trajectories than J .22 Still, at least we can say that on flat Minkowski
spacetime, the 4-vector field J is the same regardless which inertial coordinate system we
used to define it, because the metric has the same form in any inertial system. That’s the
result we got in a more concrete way in Section 33.6.2.

T2 Track 2

33.11Õ Spinors

One of my life’s strongest emotional experiences related to
science occurred when for the first time I understood Dirac’s
equation.

— Abraham Pais

Previous sections have discussed the linear representations of the rotation group SO(3),
which we’ve called “3-tensors.” The key theorem says that, up to equivalence, there is just one

21We don’t even need to assume flat spacetime, because we made no use of any metric tensor; given
the trajectories of particles, their charges, and a choice of orientation, we directly get the charge flux
3-form úJ .
22The di�erence matters in curved spacetime. The Hodge dual operation also depends on a choice
of orientation on 4-space, so the net e�ect is that J does not.
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real, fundamental representation (3-vector); all other nontrivial representations are obtained
by tensor products of this one (3-tensors of rank p), possibly (anti)symmetrized.

In the relativistic case, we have been discussing linear representations of the Lorentz
group SO(3,1), which we’ve called “4-tensors.” This time we found two distinct fundamental
representations (called rank

!
1

0

"
and

!
0

1

"
); all other nontrivial representations are obtained by

tensor products of these two (and are called rank
!

p
q

"
4-tensors), possibly (anti)symmetrized.

In notation, the two fundamental representations are distinguished by up/down placement of
the corresponding indices. Although they are distinct representations, they are “equivalent”:
We can convert between them by index raising and lowering.

We now outline extensions to these ideas introduced by quantum mechanics.

3D
In quantum mechanics, the existence of a symmetry group G only implies that the Hilbert
space of states gives a projective representation of G, or equivalently a true representation of
an extended form of G.23 In nonrelativistic quantum mechanics, the relevant covering group
is SU(2).24 To see this, first note that any real 3-vector v̨ corresponds to a traceless hermitian
matrix via v̨ ¡ M = ‡̨ · v̨, where ‡̨i are the Pauli matrices. Moreover,

det M = ≠Îv̨ Î2
.

Let U be any special unitary matrix and dagger represent hermitian conjugate. Then [U†
MU ]

is traceless and hermitian with the same determinant as M , so it corresponds to a new vector
that’s a rotation of v̨. The correspondence we have set up between SU(2) and SO(3) preserves
the product structures of the groups. But this rotation is the same as the one determined
by ≠U , so the correspondence is 2-to-1.25

The key theorem says that all representations of the covering group are obtained as
totally symmetric tensor products of one fundamental representation. The ordinary 3-tensors
appear as the even-numbered entries on this list (they give ordinary representations of SO(3)).
The odd-numbered entries are new (not encountered in classical physics): They are generically
called “3-spinor representations.”

4D
In relativistic quantum mechanics, we instead need projective representations of the Lorentz
group. Its covering group turns out to be the group of 2◊2 complex matrices with determinant
one (also called SL(2,C)).26 To see this, first note that any real 4-vector X corresponds to a
hermitian matrix via X ¡ M = X

011 + X
i
‡̨i. Moreover,

det M = ≠ÎX Î2
.

Let W be any complex matrix with determinant equal to 1. Then [W MW
†] is also hermitian

with the same determinant as M , so it corresponds to a new 4-vector that’s a Lorentz trans-
formation of X. The correspondence we have set up between SL(2,C) and O(3,1) preserves
the product structures of the groups. But the Lorentz transformation corresponding to W is
the same as the one determined by ≠W , so the correspondence is 2-to-1.

23In this case the appropriate extension is called the “covering group” Bargmann, 1954.
24The special unitary 2◊2 matrix group SU(2), which double-covers the rotation group SO(3), is
also called Spin(3) in this context.
25Note that spatial inversions cannot be obtained in this way and must be treated separately.
26Again, inversions must be treated separately. The group of special linear 2◊2 complex matrices is
also called Spin(3,1) in this context.
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This time, the key theorem says that there are two inequivalent fundamental representa-
tions of SL(2,C). Any other irreducible representation is obtained as the totally symmetric
tensor product of m copies of the first representation, combined with the totally symmetric
tensor product of n copies of the second one. In notation, they are often distinguished by plac-
ing a dot over each two-valued index corresponding to one of the fundamental representations
(and no dot for the other one):

Â
Õ
– = W

—
– Â— ; ÷

Õ
–̇ = [W †t] —̇

–̇ ÷—̇ .

The distinction between the two transformation rules just given is not superficial like the
one between up and down indices on ordinary 4-tensors: The two representations are not
equivalent because there is no standard conversion from one type of index to the other.27

The representations with n + m an even integer correspond to ordinary 4-tensors. The
others are new (not encountered in classical physics): They are generically called “4-spinor
representations.” For example,
. A chiral neutrino has (n, m) = (1, 0).
. An electron can be split into a (1, 0) and a (0, 1).
. Four-vectors appear as the case (n, m) = (1, 1). The sum n + m is even, so this is an
ordinary representation of Lorentz.
. An antisymmetric rank-2 tensor (such as the Faraday tensor F ) can be split into a
positive-helicity part, with (n = 2, m = 0), plus a negative-helicity part with (n = 0, m = 2).
(These names arise because the Faraday tensor of a plane wave with circular polarization
will belong to one or the other of these types, depending on its helicity.)

There are two “spinors from Heaven,” that is, constant matrices that are unchanged by
the transformations we have found: For example, ‘–— =

#
0

≠1

1

0

$
–—

has the property that

W
–

“ W
—

‡ ‘–— = ‘“‡,

and similarly for ‘–̇—̇ =
#

0

≠1

1

0

$
–̇—̇

, because det[W ] = 1. Moreover, following a construction
we made for ordinary tensors, we can also define Â‘ –— = [‘≠1]–— and show that it, too is an
invariant constant spinor:

[W t]–“ [W t]—‡Â‘ “‡ = Â‘ –—
,

with a similar result for the dotted version.
We can now apply “Einstein thinking” to construct invariant equations of motion as

candidates for field equations for spinors, much as we did in the main text for the Faraday
tensor. Here is one:

[‡ µ]–—̇ Â‘ —̇‡̇
ˆ

µ
÷‡̇ = 0, Weyl equation (33.24)

where [‡ 0]–—̇ is the unit matrix and [‡ i]–—̇ are again Pauli matrices. Indeed, quantizing a
spinor field that obeys Equation 33.24 yields states describing massless chiral particles of
spin 1/2. A little more tinkering yields the Dirac equation for a pair of chiral fermions with
mass (for example, an electron).

27However, if we restrict to unitary matrices (that is, to 3D rotations), then [‡̨2÷] does transform
the same way as [Â], so the two corresponding representations of SO(3) are equivalent. Thus in 3D
there is only one fundamental representation, as stated earlier.
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PROBLEMS

33.1 Uniformly moving charge revisited
A charged point particle moves in a straight line with constant speed v. The charge
creates electric and magnetic fields. Find a manifestly covariant expression for the
Faraday tensor. That is, your formula should be an antisymmetric rank

! 2
0
"

tensor
constructed out of scalars and the four-vectors U and X using The Rules. Here X is
displacement from the particle to the observer. Check that your result is equivalent
to the ones in Section 32.3.2. [Hints:
(i) Sometimes it’s easier to start by finding the 4-vector potential, as in Section 33.8.2.
(ii) Again, your result must reduce to Coulomb’s law if the particle is at rest in the
chosen inertial coordinate system.
(iii) The combinations

Kµ‹ = (UµX‹ ≠ (µ ↵ ‹)) and ÎK Î2 = Kµ‹K µ‹

are useful intermediate building blocks for your answer, because the latter is equal to
something useful when computed in the rest frame of the particle.]
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Energy and Momentum of Fields
Initially, Einstein was not impressed [by Minkowski’s
geometrical formulation] and regarded the transcriptions of
his theory into tensor form as “überflüssige Gelehrsamkeit”
[superfluous erudition]. However, in 1912 he adopted tensor
methods and in 1916 acknowledged his indebtedness to
Minkowski for having greatly facilitated the transition from
special to general relativity.

— Abraham Pais

34.1 FRAMING

Every physical quantity carries dimensions, which help us to see its role and to formu-
late reasonable candidate laws. Now we have seen that every physical quantity also has
a tensor character, another meta-property that helps us to see its role and to formulate
reasonable candidate laws. This idea goes way beyond theories like gravitation and
electrodynamics—when you study liquid crystals, fluctuating fluid membranes, etc.,
it’s everywhere.

34.2 WHAT NEEDS TO BE SHOWN AND WHY

So far we’ve just reformulated old laws, but now it’s time for something more ambitious.
We no longer believe that space is filled with gears, pulleys, rubber bands, etc. that
carry the EM fields, so we can’t write down any functions for energy and momentum
based on intuitions gleaned from mechanics. Instead we hope to prove a theorem
about our system of equations stating that certain quantities are locally conserved
and include familiar bits corresponding to energy and momentum of point particles.
But to get started we need a good guess for what those quantities might be.

Chapter 5 computed the work that must be done to charge a capacitor. That
energy isn’t lost—you can get your investment back. Where is that energy in the
meantime? We got a hint: It’s proportional to the volume occupied by electric field.
Maybe it’s in the empty space between the capacitor plates.

Similarly, Chapter 17 computed the work that must be done to set up a current
in a coil of wire. If the wire is superconducting, then the energy is not lost—you can
get your investment back. Where is that energy in the meantime? We found that it,
too, is proportional to the volume. Maybe it, too, is in the empty space inside the coil.
That is, our hypothesis is that the vacuum itself can store energy in static electric
and magnetic fields. We need to make that more general and precise.
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382 Chapter 34 Energy and Momentum of Fields

a b

Figure 34.1:

Chapter 18 also studied energy and momentum fluxes in nonstatic situations,
specifically plane waves. Here again we found them to be quadratic in the field
amplitudes, although we didn’t yet get the constant of proportionality: We just found
how much of the energy and momentum could be extracted by a particular charged
test body.

In short, it’s been an ad hoc approach until now. Now that we have unified Ę
and B̨ , now that we have unified energy and momentum, it’s time for one big result
that covers all these electromagnetic phenomena at once. To get it, we’ll generalize
the discussion of waves on a string (Chapter 26). We found formulas for energy flux
and density, and momentum flux and density. (They were quadratic in the amplitude.)
Then you proved continuity equations expressing local conservation of energy and
momentum. We’ll now attempt the same thing with EM fields.

Using “Einstein thinking,” the strategy will be: Find an expression that’s the
sum of the particles’ pµ

(¸), plus a quadratic function of fields with appropriate tensor
properties. Requiring that this expression must also obey a continuity equation will
uniquely determine it. Then the field term, whatever it turns out to be, will deserve
to be called the “energy and momentum of the fields,” and its continuity equation will
be the local conservation law that we wanted to prove. We’ll see that indeed, energy
and momentum can slosh locally back and forth between fields and particles, while
staying conserved overall.

Certainly the tensor structure will be more complex than in the string/spring
metaphor. That’s one reason why we invented our big language.

34.3 CONTINUITY EQUATION FOR ENERGY AND MOMENTUM IN
THE ABSENCE OF LONG-RANGE FORCES

First consider a swarm of particles with no external forces and no mutual long-range
forces. Between collisions, each trajectory �(¸)(·) is therefore a straight line, which
we parameterize by proper time. Let’s suppose that each collision locally conserves
energy and momentum, much as we assumed in Chapter 7 that collisions locally
conserve electric charge. Analogously to the charge flux 4-vector J , define the energy-
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momentum flux tensor1 by a recipe analogous to Equation 33.8 (page 368):

T µ‹ = net amount of p‹ crossing the surface Xµ = constant,
from smaller to larger Xµ, per d3X‹, times c. (34.1)

Your Turn 34A
Using Figure 34.1, convince yourself that

T 00 = c times the density of (energy/c)
T i0 = flux of (energy/c)
T 0k = c times density of the k component of momentum
T ik = flux along i direction of the k component of momentum.

We can call the part of the energy-momentum flux tensor carried by particles
T part, and write an equivalent formula like the one used for J in Equation 33.19 (page
372): Just replace the charge on particle ¸ by the 4-momentum on particle ¸ at proper
time · :

T µ‹(X) =
ÿ

¸

⁄ Œ

≠Œ
cd· p ‹

(¸)(·)U µ

(¸)(·)”(4)!X ≠ �(¸)(·)
"
. (34.2)

Your Turn 34B
Convince yourself that T is a symmetric, rank-

! 2
0
"

tensor. Then show that the
energy-momentum flux tensor obeys

ˆ

ˆXµ
T µ‹

part = 0. no long-range forces (34.3)

That is, if no long-range forces act then T part obeys four continuity equations, express-
ing the local conservation of each component of the 4-momentum.

34.4 INTERACTIONS SEEM TO SPOIL LOCAL CONSERVATION

34.4.1 Long-range forces
Of course, if some external force acts on our particles, then we don’t expect their
energy or momentum to be conserved: A falling body accelerates (gains momentum).
Even mutual forces, if they act at long range, would destroy local conservation: Two
distant plus charges, initially at rest, start to accelerate away from each other, so equal
and opposite amounts of momentum seem to appear at two distant locations.2

1Often abbreviated “energy-momentum tensor.” Some authors call it the “stress-energy tensor.”
2Also, each gets not-opposite amounts of kinetic energy, again seemingly from nowhere.
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384 Chapter 34 Energy and Momentum of Fields

Sections 2.4.1 and 17.12 argued that introducing an entity called the “electro-
magnetic field” is needed in order to rescue locality. To deliver on this promise, we
need to attribute local energy and momentum to fields as well as to particles. Then
the repulsion of two particles involves each one getting momentum locally from the
field nearby, and so on. It’s not obvious that this can be done! Let’s begin by getting
quantitative about the preceding paragraph.

Adapting our proof of the continuity equation (Chapter 7), again draw a small
four-dimensional box (hypercube) and ask how much net momentum enters it by
particles crossing its faces. As with electric charge, that net change will equal
(≠c≠1ˆ µT µ‹

part)(�4X).3 Unlike that case, however, this quantity won’t equal zero,
because each particle’s momentum and energy change during its passage through the
box. Thus, upon exit from the box each particle carries out a di�erent momentum
and energy from what it brought in, even if it didn’t collide with any other particle:4

�boxp‹ = net pµ into 4-box = ≠
ÿ

¸

Õ
⁄

·out,¸

·in,¸

d·
dp‹

(¸)

d·
. (34.4)

In this formula, we only include those trajectories that actually enter the box;
qÕ

¸

denotes the restricted sum. Moreover, we only include the part of each particle’s
trajectory that is actually spent inside the box. That explains the limits on the ·
integral. Finally, we only need to include the contributions to dp ¸/d· arising from
electromagnetic forces on the particles. Although there can also be collisions inside
the box involving short-range forces, these locally conserve 4-momentum and so cancel
in Equation 34.4.

34.4.2 Nonconservation of particle energy and momentum
We now use the Lorentz force law to relate the last factor in Equation 34.4 to the
fields. The formula is cumbersome, however, because of the restricted sum and integral.
To make it easier to work with, we now make the unobvious step of multiplying by
one, using the identity 1 =

s
d4X ”(4)(X ≠ Xú) for any point Xú in spacetime. For

each term ¸ and each value of · , make the choice Xú = �(¸)(·). Then we move the
integration over X all the way to the left (do it last):

�boxp‹ = ≠
⁄

d4X
ÿ

¸

Õ
⁄

·out,¸

·in,¸

d·
dp‹

(¸)

d·
”(4)(X ≠ �(¸)(·)).

This looks like it’s making our formula more complicated, but now note what happens
if we restrict the X integral to just our little box (hypercube). Then the delta function
automatically selects only the trajectories that pass through the box, so we don’t need
to restrict the sum. And the delta function also automatically selects only those ·
values for which a trajectory lies inside the box, so we don’t need to restrict the ·
integral either. Using that insight, and the Lorentz force law, gives

�boxp‹ = ≠
⁄

box
d4X

ÿ

¸

⁄ Œ

≠Œ
d· q¸ F ‹⁄

!
�(¸)(·)

"
¸ ˚˙ ˝

U (¸),⁄
(·)”(4)!X ≠ �(¸)(·)

"
.

3See Equation 7.3.
4To understand the minus sign, note that if a particle gains momentum during its sojourn in the
box, then it transports more out when it exits than it had upon entry.
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Use the delta-function to reexpress the factor in the brace as F ‹⁄(X), and then push
it to the left of the · integral. What remains is just the electric charge flux four-vector:

�boxp‹ = ≠c≠1
⁄

box
d4X F ‹⁄(X)J ⁄(X). (34.5)

We have now expressed the net change of momentum in the box in terms of electro-
magnetic fields and the charge flux 4-vector.

For a small enough box, we may approximate the integral as �4X times the
integrand. But Section 34.4.1 argued that this change is also c≠1�4X times minus
the 4-divergence of T , or

ˆ µT µ‹

part = F ‹⁄J ⁄. (34.6)
This formula makes precise what was argued qualitatively before: The energy-
momentum flux tensor of particles only does not obey a continuity equation, if
long-range forces are present.

34.5 ACCOUNTING FOR FIELD CONTRIBUTIONS RESTORES LOCAL
CONSERVATION OF ENERGY AND MOMENTUM

Rather than give up, we are hoping to find another contribution to the total energy-
momentum flux tensor of the world, attributing 4-momentum to fields, with the prop-
erties that:
. T µ‹

field is a symmetric 4-tensor given by a local expression in the fields; and
. ˆ µ

!
T µ‹

part + T µ‹

field
"

= 0.

That is, we want to find a contribution to the energy-momentum flux tensor depending
only on fields and with the property that the total T µ‹ obeys a continuity equation.
Once we prove it, that continuity equation will be a Lorentz-invariant formulation of
the local conservation of total energy and momentum (Poynting’s theorem, which was
independently codiscovered by Heaviside).

Equation 34.6 shows what we need:5

ˆ µT µ‹

field = ≠F ‹⁄J ⁄. (34.7)

But we can’t prove this until we guess the correct formula for T µ‹

field!
To get past this impasse, let’s apply “Einstein thinking.” What sorts of symmetric,

rank-two tensors can we build from the Faraday tensor? We already have some anec-
dotal evidence that stored electrostatic energy is a quadratic function of electric field,
with no derivatives (Ã Ę 2). And stored magnetic energy is also a quadratic function
of magnetic field, with no derivatives (Ã B̨ 2). Can we write any such expression that
is a symmetric, rank-

! 2
0
"

tensor?
In fact, we can write just two such expressions. Rather than choose one or the

other, we must keep our options open and suppose that the tensor we are seeking is
some linear combination of them both:

T µ‹

field = –F µ‡F ‹

‡
+ —gµ‹F ‡⁄F ‡⁄. provisional formula (34.8)

5Compare P+S equation 12.112.
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Indeed, the expression above is tensor of the right sort that’s quadratic in fields and
has no derivatives. We don’t know the values of – and — yet, but already we’ve made
a huge simplification: Just those two numbers is all the freedom we have to construct
a suitable tensor.

We now take the 4-divergence of our provisional formula:

ˆ µ

!
–F µ‡F ‹

‡
+ —gµ‹F ‡⁄F ‡⁄

"
.

Use the fact that the fields obey Maxwell’s equations, specifically the first of Equa-
tions 33.12 (page 369):

= –
!
≠µ0J‡F ‹

‡¸ ˚˙ ˝ + F µ‡ˆ µF ‹

‡

"
+ —gµ‹2(ˆ µF ‡⁄)F ‡⁄

¸ ˚˙ ˝
. (34.9)

The first term (first brace) is just what we want! Simply choose the value – = ≠µ≠1
0

and we get Equation 34.7.
We are left with the unwanted other terms (second brace). Can we choose a value

of — such that these terms cancel each other identically? That is, can we ensure that

0 ?= –

—
F µ‡ˆ µF ‡‹ + 2F ‡⁄ ˆ ‹F ‡⁄¸ ˚˙ ˝ ? (34.10)

It’s not as crazy as it sounds, because so far we have only used half of the Maxwell
equations to obtain Equation 34.9. The other half indeed say that something involving
first derivatives of F equals zero:6 The quantity enclosed by the brace in Equation 34.10
equals

≠ˆ ‡F ⁄‹¸ ˚˙ ˝ ≠ˆ ⁄F ‹‡.

In Equation 34.10, this tensor is contracted on ‡⁄ with something antisymmetric,
so we may replace its first term (in the brace) by +ˆ ⁄F ‡‹ . Then Equation 34.10
becomes

0 ?= –

—
F µ‡ˆ µF ‡‹ + 2F ‡⁄

!
ˆ ⁄F ‡‹ ≠ ˆ ⁄F ‹‡

"
(34.11)

=
!

–

—
≠ 4

"
F µ‡ˆ µF ‡‹ . (34.12)

This will be identically true if we choose — = –/4.
Substituting the values we found for –, — into Equation 34.8, we conclude that

T µ‹

field = ≠(µ0)≠1!
F µ‡F ‹

‡
+ 1

4 g µ‹F ‡⁄F ‡⁄
"
.

energy-momentum flux tensor
of the electromagnetic field

(34.13)
This choice meets all the criteria listed at the start of this section.

6See the second of Equation 33.12.
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Your Turn 34C

a. Confirm that its 00 component (energy density), when written in terms of Ę
and B̨ , has the form that you expect from Sections 5.3 (page 55) and 17.3 (page
198).
b. Then show that its i0 components (flux of energy, or density of momentum)
also have a form anticipated in Section 18.3 (page 221).
c. The ij components may be new to you; they are interesting, too, so work them
out and interpret in terms of radiation pressure (Section 18.1.3, page 220).

Note that the traditional formulas for energy density and Poynting vector need no
corrections to account for relativity.

34.6 WHAT HAS BEEN ACCOMPLISHED

At a single stroke, we have established the local conservation not only of energy, but
also of all three components of momentum.7 It is true that the final formulas for
energy density, energy flux, and momentum flux agree with what we found informally
in earlier chapters (Your Turn 34C), but

• Our earlier explorations assumed energy conservation. Now we have proved it as
a property of Maxwell’s equations and the Lorentz force law.

• Previously we didn’t show that our expressions had the appropriate Lorentz
transformation properties. Now it’s obvious because we followed the Rules.

• Previously we only got expressions for energy and momentum flux in plane waves,
and we didn’t find the correct prefactor. Now we have complete and general
formulas.

• Finally, the same derivation will also give us an analogous theorem when we later
add media in Chapter 52.

It may seem that we have cheated! After all, we just cooked up a quantity precisely
so that it would give ˆ µT µ‹

tot = 0, so what has been proved? But it was highly nontrivial
that this works at all. The only cookery allowed was the choice of two constants, –
and —, but the theorem we proved was that four functions of space and time are
everywhere zero.

It may also seem magical that our highly constrained guess, Equation 34.8, could
be adjusted to satisfy the continuity equation. Chapter 39 will rediscover the energy
and momentum conservation laws as consequences of the translational invariance of
the Lagrange function giving rise to Maxwell’s equations.

7This was Hanging Question #H.
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T2 Track 2

34.5Õ

Look in a freshman physics book. In mechanics they prove conservation of linear momentum.
Later they prove conservation of angular momentum, but with an extra assumption that
all forces between particles are directed along the line between them. There is no footnote
saying “Um, that’s false for magnetic interaction.” A hundred pages later, they introduce the
magnetic force; there is no footnote saying, “Um, that invalidates our proof of conservation
of angular momentum.” We must do better than that.

Define the rank-
!

3

0

"
tensor

M
µ‹⁄ = X

‹
T

⁄µ ≠ X
⁄
T

‹µ
.

You can readily show that ˆ µM
µ‹⁄ = 0. Thus, we find six densities by taking µ = 0, leading

to six conserved quantities

L
‹⁄ =

⁄
d3

r M
0‹⁄(t, r̨ ).

The spatial bits of this tensor, L
ij , are the relativistic version of the angular momentum,

and we have just shown that they are conserved when we include both particle and field
contributions to T .8

8See Weinberg, 1972, page 46.
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PROBLEMS

34.1 Boom 2008
The Large Hadron Collider project at CERN su�ered something of a setback in October
2008, when, during a test of one of the quadrupole magnets, which focus the beams
down to tiny size at the collision regions, the magnet failed catastrophically. The
resulting “event” lifted a 20-ton magnet o� its mountings, filled a tunnel with helium
gas, and forced an evacuation (Figure 34.2).

The problem is that a big superconducting magnet stores a lot of magnetic field
energy. If any bit of that magnet stops being superconducting, then suddenly the huge
electric current generates a lot of heat. Eventually all the stored magnetic field energy
ends up as heat. Let’s look at rough numbers. Suppose that the magnet maintains a
field of 7 T in a channel of length 3 m and cross-section of area (56 mm)2.
a. Find the total magnetic energy in joules.
b. The magnet is normally kept superconducting by a reservoir of liquid helium.
The heat of vaporization of liquid helium is 83 J/mole (you can neglect the additional
energy needed to bring He gas up to room temperature). If all the energy in (a) goes
to vaporizing helium (and there’s an unlimited supply in the reservoir), how many
moles of He gas do we get?
c. Suppose all that helium gas exits the system via pressure-release valves, then
comes up to room temperature. A mole of any ideal gas occupies about 24 liters at
room temperature. What volume of helium gas would then flood the underground
tunnel near the magnet?

34.2 Magnetic stress
Consider the attraction between two bar magnets placed end-to-end with one’s N pole
separated from the other’s S pole by a narrow gap. You can ignore fringe fields in this
problem, and assume that B̨ is uniform in the gap and points in the x̂ direction.
a. For this pure magnetic field, show that T µ‹ takes the form uM µ‹ , where M µ‹ is

a constant 4 ◊ 4 matrix and u is the energy density of the field.
b. Use the continuity equation for momentum to show that the force on each magnet

Figure 34.2:
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(total rate of transport of momentum) equals u�, where � is the area of the pole
faces. (Or, if this is not necessarily true, use the idea behind the equation to describe
when it will be true.) Then use Equation 34.13 for T µ‹

field to evaluate this force.
c. The total energy in the field is dominated by the contribution from the high-field

space between the magnet poles, so it’s u�a, where a is the distance between poles.
Give a second derivation, based on energy conservation, for the force of attraction
between the magnets.

34.3 Boom II
Suppose that a superconducting magnet is a cylinder of length 1 m with circular cross-
section of radius 0.5 m. A current maintains a uniform, static magnetic field of 2 T
inside the cylinder (and zero outside). Find the total electromagnetic field energy in
this situation, in joules.

[Culture: If suddenly the magnet stops being superconducting, the current will
rapidly crash to zero. Then all that energy must end up . . . somewhere. Magnets do
explode in the lab. This Electromagnetic Phenomenon furnished the dramatic climax
to the otherwise numbingly stupid film The Man with the Golden Gun.]

34.4 Angular momentum of fields
Background: EM waves can also carry angular momentum. You may use the following
fact: The density of angular momentum Jz, computed using the origin as reference
point, is ẑ · 1

µ0
[r̨ ◊ (Ę ◊ B̨ )]. As usual we will suppose that the fields are harmonically

varying in time and consider only the time average of our answers.
Do:
a. Suppose we have two oscillating dipoles of strength p0 at the origin, pointing at

right angles to each other and both in the xy plane. The dipoles oscillate at the
same frequency Ê but 90¶ out of phase. Compute the density of the z component
of angular momentum far away from the origin, to leading order in powers of 1/r.
Because everything moves radially outward, the radial component of the flux of Jz

is then your answer divided by c.
b. A sphere of large radius surrounds the dipoles and absorbs all the radiation. Before

you compute anything: Will the sphere absorb any net angular momentum Jz?
Why/why not? Now do the calculation using (a), to get the rate at which Jz is
transferred to the sphere.

c. Also find the power absorbed by the sphere.
d. Divide your answers to (b,c) and comment.

34.5 Impulse from changing field
Two opposite walls of a rigid, nonconducting, rectangular box are uniformly charged
with surface charge densities ‡ and ≠‡ respectively. The positively charged wall
occupies the region 0 < x < a, 0 < y < b of the plane z = c. The other wall occupies
the corresponding region of the plane z = 0. Inside the box there is a uniform magnetic
field B̨ = B0ŷ. Assume that c is much smaller than either a or b.
a. Use the Lorentz force law to find the impulse experienced by the box (that is,

momentum delivered to it) if the magnetic field is suddenly switched o�.
b. Find the initial momentum of the electromagnetic field in the box. Make an In-

sightful Comment.
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34.6 Fine point — energy and momentum of fields
At one point in a derivation, I stated that

2F ‡

⁄
ˆ ‡F ⁄

µ

could be replaced by
≠2F ‡

⁄
ˆ ⁄F ‡µ,

where F is the Faraday tensor. Why is this substitution justified?
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Faraday’s Field Lines
In the treatises on physics published in England, there is
always one element which greatly astonishes the French
student: that element, which nearly invariably accompanies
the exposition of a theory, is the model. . . . Here is [Lodge’s
book]. . . . In it there are nothing but strings which move
around pulleys, which roll around drums, which go through
pearl beads, which carry weights; and tubes which pump
water while others swell and contract; toothed wheels which
are geared to one another and engage hooks. We thought we
were entering the tranquil and neatly ordered abode of
reason, but we find ourselves in a factory.

— Pierre Duhem

35.1 FRAMING

Starting in 1821, Michael Faraday drew a lot of diagrams like the ones in Figure 35.1,
and similar ones involving magnets. He found that he could get a consistent picture
of both electric and magnetic forces by imaging invisible “lines of force” sprouting
out of charges and magnet poles. The magnitude of the field increased as the lines
were compressed laterally. The lines of force were under tension, like stretched rubber
bands, yet repelled nearby lines with a transverse pressure-like force. This transverse
pressure made the lines want to avoid each other, so they spread as they left a point
charge; then the connection to density gave rise to the 1/r2 law.

It sounds crazy! Even decades later, the Continental philosophes were particularly
severe on Faraday and his successors (e.g. the quote above). And yet Faraday, with

a b

Figure 35.1: (a) Electric “lines of force” set up by two opposite point charges. The magnetic
“lines of force” set up by two opposite pole tips look the same. The figure is antisymmetric
upon reflection through the central plane (dashed line). (b) Two identical point charges or
magnetic pole tips. This time the figure is symmetric upon reflection.
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practically no formal education and certainly no math, used his intuitive picture to
make a discovery that had eluded everyone else: the law of induction. Maybe his
viewpoint belongs in our toolkit alongside the others.

35.2 FIELD LINES

So far in this course we have expressed electromagnetic phenomena using vector fields,
not “lines of force.” But it’s easy to make a connection: The streamlines of a vector
field define curves in space, and they do resemble the curves Faraday drew for the
two situations in the figure. (Today they are often called field lines.) As in the figure,
they spray out of a point charge, or the pole tip of a magnet. They then spread apart,
indeed as if by mutual repulsion.

To get more precise, let’s warm up with a more tactile system: an incompressible
fluid flowing steadily through a pipe. There is a vector field (the local velocity near each
point inside the pipe), whose streamlines are literally the paths taken by individual
molecules (maybe averaged over thermal motion). Suppose that the flow encounters
a constriction in the pipe. Then individual flowlines must converge. We know from
daily life that the fluid must also speed up as it passes through the constriction; even
though if we sit at any given point we see a time-independent (steady) fluid velocity
there, still a speck of dust being swept along will be moving faster at the constriction.

Indeed, if V̨ (r̨ ) is the velocity field and flm = const is the density of the incom-
pressible fluid, then the flux of mass is flmV̨ is the flux of mass, and the continuity
equation for mass says

Ǫ̀ · (flmV̨ ) = ≠fl̇m = 0.

That is, Ǫ̀ · V̨ = 0: Incompressible flow has divergence-free velocity. We know from
Maxwell’s equations that the magnetic field everywhere has this property, and the
electric field has it in empty space.

Next, write V̨ in terms of its magnitude and direction: V̨ = f(r̨ )n̂(r̨ ). The
divergence-free property implies

n̂ · Ǫ̀f = ≠fǪ̀ · n̂

n̂ ·
1Ǫ̀f

f

2
= ≠Ǫ̀ · n̂. (35.1)

The left side of this equation is the relative rate of change of the magnitude of velocity
as we move along a streamline. The intuition cited above leads us to expect that this
should reflect changes in the transverse density of a set of neighboring streamlines, so
let’s see if the right hand side has any such interpretation.

Consider a simple situation, in which the constriction is just in one direction (y).
Then n̂ lies always in the xy plane, as shown in Figure 35.2. In the middle of this
small box ˆn̂/ˆx = 0 but ˆn̂y/ˆy < 0. Thus Ǫ̀ · n̂, as we expect for a converging
flow. We ask what is happing to the transverse density of streamlines. If N lines
enter at the left, spread over area BC, then they exit crammed into the smaller area
(B ≠ 2dx tan ◊)C, where tan ◊ ¥ ◊ ¥ ≠n̂y evaluated at the top of the box. But n̂y = 0
at the center of the box, so by a Taylor expansion n̂y(top) ¥ 1

2 B ˆn̂y

ˆy
.
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Figure 35.2:

There’s a similar shrinkage at the bottom, so the area of the rectangle containing
the streamlines decreases from BC to B(1 + dxǪ̀ · n̂)C. Then the transverse density
of streamlines increases from N/(BC) to N(1 + dxǪ̀ · n̂)≠1/(BC). Its relative change
is then ≠dxǪ̀ · n̂, which is the right-hand side of Equation 35.1.

The relative rate of change is the logarithmic derivative. If two functions have the
same logarithmic derivative everywhere, then one of them is a constant times the other.
We have therefore established that the magnitude of velocity in an incompressible fluid
is a constant times the transverse density of streamlines. (The constant is arbitrary
because we could start with any number of streamlines.)

The same result holds for magnetic fields, and for electric fields in vacuum. (Electric
charges act like sources or sinks of fluid.) Michael Faraday is smiling.

35.3 ELECTRIC AND MAGNETIC FORCES

The streamlines of Ę thus contain all the information needed to reconstruct the
direction and magnitude of the electric field, and similarly for B̨ . Drawing in the
lines for two opposite point charges, we see maximum density right at the charges,
high density between them, and zero density out at infinity, as we should expect
(Figure 35.1a). Moreover, bringing the two charges closer reduces the volume over
which the lines are closely packed, and increases the volume in which the lines are
sparse. That reduces the integral of Ę 2, that is, the stored electrostatic field energy,
so the opposite charges attract, as if the lines were real rubber bands under tension.

For two identical charges (Figure 35.1a), pushing them together increases the
crowding at the central plane and increases energy, so the charges repel—as if the
lines were real with a transverse pressure.

35.4 FORCES VIA THE STRESS 3-TENSOR

Your study of physics has probably made it clear that often there is both an “energy”
approach to a problem and also a di�erent-seeming “force” approach. In any given
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problem one of those may be easier, so it’s good to understand both. So let’s now look
at electric and magnetic forces predicted by our formula for the stress 3-tensor,

¡
Tij .

Let
¡
R ij = F 0iF j

0 + T ikF j

k
and S = F 0kF 0

k

Recall F 0i = Ęi/c and F ij = ÁijkB̨k. Thus
¡
R ij = 1

c2 ĘiĘj + (”im”¸j ≠ ”ij”¸m)B̨¸B̨m

= 1
c2 ĘiĘj ≠ ”ijB̨ 2 + B̨iB̨j .

Similar steps give S = ≠(Ę /c)2.

Your Turn 35A
Use these results to show that

¡
Tij = ≠‘0ĘiĘj + 1

2 ‘0”ijĘ 2 ≠ 1
µ0

B̨iB̨j + 1
2µ0

B̨ 2”ij . (35.2)

Along the midplane in Figure 35.1a, the electric field points along ŷ, by symmetry.
Everything to the left of the midplane transfers momentum to everything to the right
with flux of p̨2 equal to

¡
T22 = ‘0

!
≠(Ę2)2 + 1

2 Ę 2"
.

That flux density is strictly negative, so when integrated over the plane it predicts
a force on the right charge that is directed to the left, that is, attraction. Michael
Faraday is smiling: This is his rubber-band tension at work.

Along the midplane in Figure 35.1b, the electric field is always perpendicular to
ŷ. Thus

¡
T22 = ‘0

!
≠(Ę2)2 + 1

2 Ę 2"
,

which is strictly positive. This time we predict repulsion. Michael Faraday is smiling:
This is his transverse pressure at work.

35.4.1 Magnetic forces
The pictures look the same. And the magnetic terms of Equation 35.2 have the same
forms as the electric terms. So we get the same results, and again Faraday is smiling.

35.5 MAGNETIC INDUCTION

Faraday took his field lines seriously, as objects with some sort of reality. That helped
him to suggest that whenever a wire “cut across” magnetic field lines, something
physical would happen—its charge carriers would feel a force. Such “cutting across”
could happen when a wire was dragged through a static B̨ field (as in a dynamo), or
when a motionless wire was subjected to a growing or shrinking B̨ (as in a transformer).
Those statements eventually evolved into the magnetic part of the Lorentz force law
and the field equation today called Faraday’s law, respectively.

Contents Index Notation



396 Chapter 35 Faraday’s Field Lines

PROBLEMS

35.1 Push comes to shove

a. Take the expression we found for the energy–momentum flux tensor:

T µ‹

field = ≠µ0
≠1

1
F µ⁄F ‹

⁄
+ 1

4 gµ‹(F ⁄‡F ⁄‡)
2

.

Consider a region where the magnetic field is zero. Write out the component Tzz (part
of the “stress tensor”) in terms of the electric field.
b. Suppose two identical point charges on the z axis are brought close together. We
know they will repel. Draw a picture of the fields near those two poles. Then use your
result in (a) to rederive this qualitative conclusion. [Hint: Put the charges at z = ±a
and think about what crosses the xy plane.]
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Plane Waves in 4D Language

Organize, systematize, consolidate, integrate. Let’s see how some more of our earlier
results reemerge in our new language.

36.1 LORENZ GAUGE

36.1.1 It’s useful
Section 33.8.1 introduced the 4-vector potential via

F µ‹ = ˆ µA‹ ≠ ˆ ‹A µ, [33.13, page 370]

which cast Maxwell’s equations as

≠ˆ µˆ µA‹ + ˆ µˆ ‹Aµ = µ0J‹ [33.15, page 370]

with gauge invariance under

A µ æ ÂA µ = A µ + ˆ µ�. [33.14, page 370]

We could use this freedom to insist on Coulomb gauge as before. But it’s nicer to
insist on a Lorentz-invariant condition,1

ˆ µAµ = 0. Lorenz gauge (36.1)

Your Turn 36A
Show that in Lorenz gauge, Equation 33.15 become four decoupled copies of the
wave equation: 2A = ≠µ0J , or

c≠2 ˆ2

ˆt2 Â ≠ Ò2Â = flq/‘0 and c≠2 ˆ2

ˆt2 Ą ≠ Ò2Ą = µ0j̨ . Lorenz gauge
(36.2)

Unlike our discussion in restricted Coulomb gauge,2 Equations 36.2 are valid regardless
of whether the charge density is zero or not. They are decoupled, but remember that
the Lorenz gauge condition is a constraint linking the four variables Â and Ą .

1Named in honor of Ludvig Valentin Lorenz. It’s a Lorentz-invariant condition, but not named for
Henrik Lorentz.
2See Section 23.1 (page 260).
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36.1.2 It’s permitted
Can we really insist on Lorenz gauge? Suppose that we had a vector potential not
obeying Equation 36.1; that is, ˆ µAµ = f is some arbitrary function. Now apply a
gauge transformation Aµ æ Aµ +ˆ µ�. Then f æ f +2�. But we have already found
the solution to 2� = ≠f via its Green function in Chapter 23. So an appropriate �
exists to bring any 4-vector potential into Lorenz gauge. The whole argument is an
upgrade of one we made in magnetostatics (Section 14.3).

36.2 PLANE WAVES

The scalar wave equation has plane-wave solutions of the form

�(X ) = 1
2
!
exp(ik µXµ) + c.c.

"
,

characterized by a 4-vector k µ =
Ë

Ê/c

k̨

Èµ

(the 4-wavevector). Such a solution solves
the scalar wave equation if Îk Î2 = 0 (“k is a null 4-vector”). Recall that this is just
the condition that the wave moves at speed c.

Similarly to the scalar wave equation, the Maxwell equations in Lorenz gauge
have plane wave solutions characterized by a null wavevector k . Unlike the scalar field
case, each wave also has a polarization 4-vector ’ :

A µ(X ) = 1
2 ’ µ exp(ik ‹X‹) + c.c.

This 4-vector field will be in Lorenz gauge if k µ’ µ = 0.
Gauge invariance also implies that we may add any multiple of k to ’ without

changing the field strengths; this gauge transformation does not spoil Lorenz gauge,
because k µkµ = 0. We can use this freedom to require that also ’0 = 0. With that
choice,

’ µ =

S

WWU

0
P
Q
0

T

XXV

µ

.

Your Turn 36B

a. Work out the Faraday tensor and show that the electric field is parallel to ’̨ ,
and thus perpendicular to k̨ .
b. Show that the magnetic field is perpendicular both to k̨ and to ’̨.
c. Also confirm that your formula for F has the expected units.
d. Suppose that we had not used our freedom to set ’0 = 0. That is, suppose that

’µ =
5

S
P
Q
S

6
. What happens when you compute the Faraday tensor this time?

One way to express what you found in (d) is to note that the Faraday tensor contains
the projection of ’̨ onto the plane perpendicular to k̨.
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36.3 ENERGY AND MOMENTUM

We found the electromagnetic part of the energy-momentum tensor:

T µ‹

field = ≠µ0
≠1

1
F µ⁄F ‹

⁄
+ 1

4 gµ‹(F ⁄‡F ⁄‡)
2

. [34.13, page 386]

Your Turn 36C
Now show that for the Lorenz-gauge plane wave, the time-averaged energy-
momentum flux tensor is

ÈT µ‹

fieldÍ = 1
2µ0

kµk‹ Î’ Î2 = 1
2µ0

kµk‹
!
|P |2 + |Q|2

"
. (36.3)

This compact formula contains the energy and momentum densities, and the energy
and momentum fluxes, of plane electromagnetic radiation. Our previous derivations of
those quantities were less compelling, and anyway did not give us the overall constant
of proportionality.

You should confirm that Equation 36.3 has units appropriate for energy density.
Note that the two polarizations contribute independently to the energy and momen-
tum (no cross-terms). This implies that they cannot interfere with each other; each
polarization can only display interference phenomena with itself.

Your Turn 36D
How would Equation 36.3 change if we had instead used a circular polarization
basis?

The preceding expression is appropriate for a pure plane wave. For a chaotic
mixture of many di�erent plane waves, with uniformly distributed polarizations and
directions, the o�-diagonal contributions to ÈT µ‹

fieldÍ will average to zero. The energy
density, however, is a 3-scalar and will not be zero: flE = ÈT 00

fieldÍ. Also, a symmetric
rank-two 3-tensor such as k̨ k̨ (which appears in T ij) need not average to zero. For
example, the identity tensor

¡
11 is unchanged by rotations (it’s a “tensor from Heaven”).

Also, rotation does not a�ect the trace of a 3-tensor, so the rotational average of k̨ k̨
must be 1

3 Îk̨ Î2¡
11.

The diagonal elements of the stress tensor give the pressure,3 so we get the simple
conclusion that

p = 1
3 flE. equation of state for isotropic EM radiation (36.4)

As mentioned in Section 18.1.3 (page 220), radiation pressure dominates over the
gas pressure of ordinary matter in the early Universe, so Equation 36.4 is crucial for
cosmology.

3See Section 12.3.1 (page 141).
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T2 Track 2

36.1Õa Gravity waves
A nearly identical derivation can be done in the theory of gravitational radiation. This
time, there are ten components to the polarization tensor (it’s a symmetric, rank-2 tensor).
Remarkably, a combination of the equation of motion, a suitable Lorentz gauge, and removal
of residual gauge artifacts again reduces the true number of independent polarizations to
just two.

36.1Õb Spin versus polarization
You may ask, “If the quantum analog of light is a spin-one particle, then how can there be
only two polarizations? After all, other spin-one states (e.g. the p-orbitals of a hydrogen
atom, or a triplet bound state of two spin- 1

2
particles) have three angular momentum states!”

This is interesting. You can always take a hydrogen atom, or a positronium “atom” in
its triplet state, and view it in its rest frame. Then the usual analysis indeed guarantees
three states. But a photon has no rest frame. There is thus no guarantee that the third
polarization must be present, and it’s not.

In contrast, a fundamental particle with spin 1 and nonzero mass, for example a W or
Z boson, will indeed have a third polarization state.

Similarly, the spin-2 graviton has only two polarizations, not the five we might have
expected based on nonrelativistic quantum mechanics. This is again possible only because
the graviton is massless.

Even weirder things can happen in a theory that contains massless particles but that is
not invariant under spatial inversions. When neutrinos were thought to be massless, theories
were written in which only left-handed neutrinos (and only right-handed antineutrinos)
existed! There is no Lorentz boost that changes the helicity of a particle moving at speed
c, so invariance under the connected part of the Lorentz group does not require that the
existence of one helicity entails the existence of the other.
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PROBLEMS

36.1 Interference versus polarization
A plane wave of light, monochromatic with frequency Ê, gets split into two beams
of equal amplitude. The beams travel di�erent distances in vacuum, then recombine
at a screen. Let � be the di�erence in path lengths. The incident beam is linearly
polarized in some direction ’̨ . Along the way, some optical element may rotate the
polarization to ’̨ Õ (without changing anything else). If that element is removed, then
’̨ Õ = ’̨ .
a. Write an expression for the electric field of the recombined beam. Don’t worry

about overall factors, but do include the dependence on ’̨ , ’̨ Õ, �, and time.
b. Write an expression for the time-average of the energy flux in the recombined beam,

including its dependence on ’̨ , ’̨ Õ, �. (You may neglect any overall constant.)
[Hint: You may prefer to find the energy density of the beam instead, then state
and use its relation to the energy flux.]

c. What Electrodynamic Phenomenon that we studied does your answer to (b) help
explain?

36.2 Plane waves in Lorenz gauge
In Lorenz gauge, we studied the plane wave with vector potential Ą(t, r̨ ) = 1

2 ’̨ei(kz≠Êt)+
c.c. We found that its electric and magnetic fields were proportional to

’̨ ≠ ẑ(ẑ · ’̨ ) and ’̨ ◊ ẑ,

respectively.
a. What is the significance of these results for the paradox that the formula for Ą

appears to predict three independent polarizations of light?
b. How might we have resolved that paradox without even bothering to compute Ę

and B̨ , by invoking gauge invariance?

36.3 Waves in 4d notation and T µ‹

a. Write down an expression for the 4-vector potential corresponding to a plane wave
propagating along +ẑ, in Lorenz gauge with frequency Ê.

b. Your answer involves a polarization 4-vector ’ . Write down an expression for
the most general such ’ µ. Your answer will involve three independent, arbitrary
constants.

c. You have found three linearly independent solutions to the wave equation. But
we know light has only two independent polarizations! Resolve this discrepancy
by calculating the Faraday tensor F µ‹ for this wave and making an Insightful
Comment.

d. Use your answer to (c) to work out the time-averaged energy–momentum flux
tensor for your wave. Your answer will be expressed in terms of Ê, the constants
you introduced in (b), and some physical constants. Express in words the meaning
of each nonzero component of your formula for T µ‹

field in this situation. Make another
Insightful Comment about the roles of the two polarizations in your answer.
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[Hints: Remember, you’re working in Lorenz gauge; that simplifies the math.
Recall the formula is

T µ‹

field = ≠µ0
≠1

1
F µ⁄F ‹

⁄
+ 1

4 gµ‹(F ⁄‡F ⁄‡)
2

Stick to 4-dimensional notation; don’t bother to reexpress things in terms of Ę
and B̨.]

36.4 CMBR polarization
The cosmic microwave background radiation fills all of space. In class I mentioned
that even if the CMBR were perfectly isotropic (the same in every direction) when
viewed in one inertial frame, nevertheless in another inertial frame it would appear
anisotropic, slightly hotter in one direction than in the antipodal direction.4

We now ask a di�erent, more detailed question. Suppose that in one inertial frame
(the “CMBR frame”) the radiation is both isotropic and also unpolarized. Will it then
appear partially polarized in another inertial frame? To answer this physical question
in the context of classical electrodynamics, take the following steps.

Suppose we are moving at velocity —cẑ relative to the CMBR frame. Clearly, if
we look out in directions ±ẑ we won’t detect any apparent polarization, by azimuthal
symmetry of the problem. So let’s consider looking out in one of the perpendicular
directions, say ≠ŷ. Now we wonder if there will be some apparent preference for the
polarization along ẑ relative to x̂, or vice versa.
a. Write down the 4-vector potential corresponding to a plane wave of angular
frequency Ê, moving along +ŷ. Express the answer using a wave 4-vector k and a
polarization 4-vector ’ . Use the usual complex exponential representation, and assume
that ’ is real (linear polarization). It will be convenient to work in Lorenz gauge, i.e.
to require ˆ µA µ = 0. What conditions must k and ’ obey in order to have a solution
to the vacuum Maxwell equations?
b. Now apply a Lorentz boost to a frame moving relative to the original frame at
speed (—c) in the +ẑ direction. Confirm that, when viewed in the new coordinate
frame, the wave still obeys the conditions you found in (a). Find the frequency as
observed in this new frame. (What is the name for your result?) Find the direction of
the wavevector in this new frame. (What is the name for your result?)
c. Find the electric field in your wave solution in the original frame of reference.
Show that it’s unchanged if you replace ’ by ’ + ›k for any constant ›. Using this
freedom, we can simplify the problem by also requiring that ’ 0 = 0. Write the most
general polarization 4-vector ’ µ obeying all these requirements. Express it in terms
of an amplitude b and the angle Â that the electric field makes with the x̂-axis.
d. Take your boosted polarization vector from (b). Confirm that its electric field,
viewed in the new frame, is still transverse. Use the trick in (c) to find an equivalent
polarization vector with the convenient property ’ Õ 0 = 0. Express your polarization
vector in terms of a new amplitude b̃ and the angle Ẫ that its electric field makes with
the xÕ-axis. That is, find b̃ and Ẫ as functions of the original wave’s parameters (Ê, b,
and Â), and —.

4In fact this kinematic e�ect is much larger than the tiny true anisotropy of the radiation, and must
be removed from the data before the true anisotropy is reported.
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e. Suppose that Earth is bombarded by cosmic microwave background radiation that,
in one inertial frame, is isotropic and unpolarized. That is, the radiation coming from
any direction in the sky is a superposition of randomly polarized plane waves, whose
polarization angles Â are uniformly distributed. Find the corresponding distribution
of polarization angles Ẫ and comment.
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A Simple Spherical Wave

37.1 FRAMING

Plane waves are nice, but we are never literally going to encounter a wave with infinite,
planar wavefronts. On the other hand, we do frequently encounter small sources of
light (even a single fluorescent molecule) that we view from far away. Our intuition
with mechanical waves leads us to expect some sort of expanding ripple—a spherical
wave solution to the Maxwell equations.

37.2 SPHERICAL WAVE

37.2.1 Exact solution
We know about spherical waves in acoustics, where the wave function is a scalar.
Let’s therefore write the simplest possible generalization to a vector potential as a
trial solution, and see whether it can be adjusted to work. Our trial solution is just a
constant vector times the scalar spherical wave solution:

Ą (t, r̨ ) ?= 1
2 ›̨

1
kr

e≠iÊt±ikr + c.c. (37.1)

Here k is a scalar, r is distance from the origin, ›̨ is a constant vector, and as usual
Ê = ck. The prefactor 1/k is a conventional choice designed to give ›̨ the same units
as the polarization of a plane wave. The upper sign corresponds to outgoing spherical
wavefronts; the lower sign to incoming.

Your Turn 37A

a. The scalar potential Â is not independent of Ą; find it by making a similar
trial solution

A0(t, r̨ ) ?= 1
2 –(r)e≠iÊt±ikr + c.c.

and imposing the Lorenz gauge condition. Here –(r) is an unknown function that
you are to find. The insight is that it may not be a constant, nor even a constant
divided by r, but you can still find it.
b. Confirm that each of the three functions in Equation 37.1 indeed solves the
wave equation.
c. Also check that your answer to (a) has this property.

The second result mentioned is not a surprise—sound waves from a point source also
have this same form for the air pressure as a function of position and time. What
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may be surprising, however, is how the wave energy is distributed. Equation 37.1
has spherical wavefronts. Its amplitude Î›̨Î/(kr) is also independent of direction. We
might suppose, then, that the wave sends energy isotropically in every direction. Let’s
calculate.

37.2.2 Far fields
We could now compute exact expressions for the electric and magnetic fields of the
spherical wave. But first, consider what we see when we move very far away from
the origin along some direction n̂. Out there (near the position Ln̂), the wavefronts
aren’t curved very much, and the solution resembles a plane wave1 with wavevector
k̨pw = kn̂ and polarization vector ’̨ pw,i = ›̨i/(kL). We can therefore apply the
formulas in Chapter 36.

Your Turn 37B
a. Work out the details, including ’0

pw.
b. Then find the electric and magnetic fields in terms of L, n̂, and ›̨.
c. Consider the case where ›̨ is real. Choose spherical polar coordinates with ›̨
pointing along the polar axis. How do the amplitudes of the far fields depend on
the angle between n̂ and ›̨?

Perhaps surprisingly, the fields (and therefore the energy flux) are not at all
isotropic. It is true that the wavefronts (loci where Ą = 0) are nice concentric spheres.
But the amplitudes of the e�ective plane waves in various directions do depend on
angle. They are all maximal in the directions perpendicular to ›̨, and zero when we
view the wave from far away long the directions ±›̂. This pattern of energy flux is
sometimes called the dipole doughnut pattern.2

The far fields have another crucial property: Both Ę and B̨ fall o� with distance as
1/L. So the energy density, and hence also the energy flux, fall o� with distance as 1/L2.
As mentioned in Section 23.5.2 (page 265), this implies that the total energy output
passing through a sphere of radius L approaches a constant as L æ Œ. Whatever
creates an exact outgoing spherical wave therefore constantly sends energy all the way
out to infinity. (We’ll soon see that an oscillating electric dipole can create such a
wave.)

37.2.3 Near field
The opposite limit is interesting too. Instead of expanding for large r at fixed Ê, sit
at a fixed distance from the origin and consider the limit Ê æ 0, that is, keep only
the leading behavior in powers of Ê. You’ll find that in this “near field” regime, Ę
dominates B̨ , and moreover Ę has a very familiar form. The exact spherical wave
solution considered in this section interpolates between this near-field form, which
resembles the dipole field of electrostatics, and the plane-wavy far fields.

1There are corrections that are higher order in powers of 1/L.
2A 3D contour map depiction of sin2

◊ resembles a toroidal pastry, at least when you are hungry.
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37.3 A CIRCULARLY POLARIZED SPHERICAL WAVE?

It’s also instructive to work out the case of complex ›̨, for example x̂ + iŷ.

Your Turn 37C
Use the same strategy as Section 37.2: What kind of plane wave does the solution
look like when we stand far from the origin along some direction n̂? Is there
any direction in which this wave is circularly polarized? Is there any direction in
which it’s linearly polarized? Can you explain your answers intuitively?

37.4 OTHER KINDS OF SPHERICAL WAVES

The solution considered here is just the simplest of a class of spherical waves. We’ll
encounter the others when we study radiation systematically. We’ll also explain why
the solution considered here is generally the dominant part of the radiation given o�
by oscillating charges.

37.5 INTERFERENCE

Just as with sound, we can imagine a set of point sources of spherical waves, all
vibrating in sync. For example, an incoming plane wave could hit an ordered array
of atoms, and set them all in synchronized motion; each will then re-radiate some
spherical wave. The total fields that land on a distant projection screen can then form
a di�raction pattern.

Unlike sound, however, the fact that light has two transverse polarizations compli-
cates matters. There is no way that the crests of a wave traveling along ẑ and polarized
along x̂ can cancel the troughs of another wave traveling in the same direction but
polarized along ŷ, nor will crests combine with crests in the familiar way. Instead,
when light from multiple sources lands on a screen, the illumination on each point of
the screen involves the vector sums of the Ę and B̨ waveforms.

37.6 SUMMARY

The plane wave solutions are exact and simple in either Coulomb gauge (Section 17.9)
or Lorenz gauge (Chapter 36). They carry energy and momentum. For any k̨ there is
a two-dimensional vector space of plane waves di�ering by polarization.3

The exact spherical wave solutions are simpler in Lorenz gauge than in Coulomb
gauge. They carry energy and momentum from a point source out to infinity. For any
k, there is a three-dimensional vector space of spherical waves (plus many more not
considered here). Their wavefronts are spheres (hence the name), but they beam out
energy in a “dipole doughnut” pattern that is maximal in the directions perpendicular
to ›̨.

3See Sections 17.9 (page 210) and 36.2 (page 398).

Contents Index Notation



Problems 407

PROBLEMS

37.1 Exact spherical wave solution
We discussed solutions to Maxwell’s equations of the form

Ą (t, r̨ ) = 1
2r

’̨ e≠iÊ(t≠r/c) + c.c.

Here ’̨ is a constant vector, and r = Îr̨ Î.
a. To finish specifying the solution, I needed to tell you the scalar potential Â, but

I didn’t. Instead I said that it was determined by the Lorenz gauge condition,
Ǫ̀ · Ą = ≠Â̇/c2. Find an exact formula for this scalar potential.

b. Consider the case for which ’̨ = x̂ + iŷ, where i =
Ô

≠1. Far from the origin, the
solution looks like a plane wave. Obtain the limiting forms of the electric field for
the cases where:

• We stand far away along the +x-axis;
• We stand far away along the +y-axis; and
• We stand far away along the +z-axis.

c. Comment on the physical meaning of each result. Which of these directions is
getting the largest energy flux, and why?

37.2 Angular momentum of fields II
Background: EM waves can also carry angular momentum. You found the density of
field momentum in Your Turn 34C. So the density of angular momentum J̨3, computed
using the origin as reference point, is (µ0c2)≠1[r̨ ◊(Ę ◊B̨ )]3. As usual, we will consider
only the time average of J̨3.
a. Confirm that the formula given has the appropriate units to be the density of

angular momentum.
b. Consider the outgoing, exact spherical wave solution (Equation 37.1), with complex

polarization4 ›̨ = C(x̂ + iŷ). Here C is an overall constant with appropriate units.
Work out the electric and magnetic fields far from the origin, to leading order in
an expansion in powers of 1/r.

c. Use your result in (b) to work out the density of the z component of angular
momentum far away from the origin, to leading order in powers of 1/r. What goes
wrong?

d. Go back to (b) and keep also the first subleading terms in the expansion. Then
redo (c) retaining those terms.

e. Because everything moves radially outward at speed c, the radial component of
the flux of J̨3 is your answer to (d), multiplied by c to convert units into a flux.
Suppose that a sphere of large radius R surrounds the origin and absorbs all the
radiation. Before you compute anything: Do you expect physically that the whole
sphere will gain any net angular momentum J̨3? Why/why not?

4We’ll see later that this solution could represent the radiation given o� by a rotating electric dipole
at the origin, in electric dipole approximation.
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f. Now integrate the flux of J̨3 over the surface of the big sphere to get the rate at
which angular momentum is transferred to the sphere.

g. Also find the power absorbed by the sphere.
h. Divide your answers to (f,g) and comment.
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Variational Formulation
x

— y

39.1 FRAMING

Our derivation of T µ‹ in Chapter 34 may have seemed magical—we desired a result
(locally conserved energy and momentum), stated some constraints (Lorentz invariant
tensor of the appropriate rank, quadratic function of fields), and the only candidate
expression worked. But conservation laws should not be magical; they should be
general consequences of symmetries.

Stepping back a bit, we may notice some habits of highly successful physical
theories:

• They are Lorentz invariant.
• They are specified by di�erential equations, either in time (for particle mechanics)

or in spacetime (for fields). That is, they are local; for example, they don’t involve
products of field values at two distant points.

• They generally admit a variational formulation; for example, Newton’s law arises
as the condition for an action functional to be extremal, and a similar result
holds for relativistic mechanics as we review below.

We’ll now see how these same themes play out in electrodynamics, following Joseph
Larmor (1900) and others. Then we’ll see how a variational formulation establishes
conservation laws corresponding to continuous invariances of a field theory, a result
known as Emmy Noether’s theorem.

39.2 NEWTONIAN MECHANICS

Given any particle trajectory, we compute its action by evaluating the action
functional,1 which is the time integral of kinetic minus potential energy. For one-
dimensional motion,

S[x(t)] =
⁄

dtL(x, d
dt

x).

Here the notation S[x(t)] means that S depends on an entire trajectory x(t). The
lagrangian density L is an ordinary function of two variables:

L(x, dx

dt
) = KE ≠ PE = m

2
! dx

dt

"2 ≠ U(x).

1Many authors shorten “lagrangian density” to “lagrangian.”
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Let’s characterize those trajectories for which S is extremal over the space of all
trajectories with fixed values at two time points:

”S = 0 =
⁄

T

0
dt ”

#
L(x, dx

dt
)
$

=
⁄

T

0
dt

!
m

dx

dt

d”x

dt
≠ ”x

dU

dx

"
.

We now integrate by parts. Because we consider only variations that hold the endpoint
values fixed, ”x = 0 at time 0 and T , so the boundary terms equal zero:

0 = ≠
⁄

T

0
dt (”x)

#
≠d2x

dt2 ≠ dU

dx

$
.

The only way this first-order variation could equal zero for any variation ”x(t) is if
the terms in square brackets cancel at each time:

d2x

dt2 = ≠dU

dx
.

But that last formula is Newton’s law.
Generalizing to many variables, we see we can reexpress Newtonian mechanics

as a statement about the variation of the action functional. If moreover the action
functional has some invariance, for example under translations or rotations, then that
fact is also reflected in the resulting equations of motion.

39.3 FIELD EQUATIONS

39.3.1 Scalar field
We now upgrade the variational formulation to accommodate fields. We consider
functionals of fields that are local:

S[traj] =
⁄

d4X L(A , ˆ A ).

For a scalar field, the lagrangian density L is an ordinary function of five variables
(the field and its four space and time derivatives at every point). More generally, L is
a local function of five variables for each component of the field A, for example, the
4-vector potential in electrodynamics

We will also require that L be a 4-scalar function of the fields. Because d4X is
scalar (Section ?? (page ??)), therefore S will be Lorentz-invariant. Also, field theories
such as electrodynamics are invariant under translations in space or time.

Adapting the preceding discussion shows that the generic variational equation is

ˆ µ

1 ”L

”(ˆ µ„)

2
≠ ”L

”„
= 0 Euler–Lagrange equation (39.1)

The first term on the left denotes the result when we

• Vary L with respect to one of its derivative variables, then
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• Substitute values of „ and ˆ µ„, obtaining a function of X , and
• Take a derivative with respect to X .

(The second term denotes the variation with respect to the undi�erentiated „, again
followed by substituting values of „ and ˆ µ„.)

A specific choice for the lagrangian density of a scalar field could be

L[„] = 1
2
!
ˆ µ„ˆ µ„ ≠ ⁄≠2„2"

. (39.2)

Equation 39.1 then says ≠ˆ µˆ ‹„ ≠ ⁄≠2„ = 0, in this context also called the Yukawa
equation for its role in an early theory of nuclear forces.2 Its solutions correspond to
static interactions that fall exponentially with distance as exp(≠L/⁄).

39.3.2 Maxwell/Lorentz system
Beyond translations in space or time, electrodynamics is also gauge invariant. Can
we find an action functional meeting all of the symmetry requirements, and whose
variational equation recovers the Maxwell equations?

The Maxwell equations are linear in the vector potential, and second-order in its
derivatives (Equation ??, page ??). So L must be a quadratic function of A , with
at most two derivatives. There are very few such functions that are also gauge- and
translation invariant:

• F µ‹F ⁄‡Áµ‹⁄‡: This term can be rewritten as 2ˆ µ
!
A ‹F ⁄‡Áµ‹⁄‡

"
, that is, as a

total 4-divergence. Therefore its integral S is a boundary term, by the divergence
theorem, and hence makes no contribution to the local variation of S.

• The expressions (ˆ µA µ)2 and A µ2A µ are not gauge invariant. The expression
A µA µ is not gauge invariant, and moreover contains no derivatives.

• F µ‹F µ‹ is the only remaining option.

We now find the first order variation of our candidate action functional and set
it to zero:

0 = 2
⁄

d4X F µ‹”(F µ‹) = 2
⁄

d4X F µ‹(ˆ µ”A ‹ ≠ ˆ ‹”A µ) (39.3)

= 4
⁄

d4X F µ‹ˆ µ”A ‹ (39.4)

= ≠4
⁄

d4X (ˆ µF µ‹)”A ‹ . (39.5)

For this quantity to vanish regardless of ”A , we must have that ˆ µF µ‹ = 0. This is
indeed Maxwell’s equations in vacuum.

39.3.3 Fields plus particles
Suppose that charged particles are present and executing prescribed motions; that is,
we don’t inquire yet into the equations of motion for particles. We can construct the
charge flux 4-vector J and add it A µJ µ our lagrangian density, because:

2When quantized, the field „ is associated to particle states that could represent pions.
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• This term is Lorentz- and translation invariant.
• J is gauge invariant, so under gauge transformation we have (Equation ??, page

??) ⁄
d4X J µA µ ;

⁄
d4X

!
J µA µ + J µˆ µ„

"
.

Integrating by parts shows that the second term equals zero by the continuity
equation.

Combining the pure-field term from Section 39.3.2 with the particle term just
found and choosing appropriate constants gives finally

L[A , ˆ A ] = ≠ 1
c
( 1

4µ0
F µ‹F µ‹ + A µJ µ). (39.6)

The corresponding variational equation is the Maxwell equation with charges and
currents (Equation ??, page ??). The overall factor of 1/c gives our action functional
the traditional units (J s).

Until now, we have assumed that particle motions were given. However, we can
extend the theory to include equations of motion for the particles as well as the fields
by adding a kinetic energy term for each one via

Spart,¸[trajectory ¸] =
⁄

d· 1
2 (m¸)≠1Îp ¸Î2.

Your Turn 39A
Show that adding the preceding terms to the action functional, and using Equa-
tion ?? (page ??), leads to a variational equation that is precisely the Lorentz
force law for particle ¸.

39.4 NOETHER THEOREM

39.4.1 Scalar field example
To warm up, let’s again begin with a simpler system, consisting of a single scalar
field „. We now explore the consequences of a continuous symmetry, that is, a field
transformation that leaves the equations of motion form-invariant and that changes
fields by an infinitesimal amount. Accordingly, consider a general transformation under
which

„(X ) ; Â„(X ) = „(X ) + ‘D[„](X ) + · · · . (39.7)

Here the ellipsis denotes terms of higher order in the bookkeeping parameter ‘; from
now on we will drop such terms without comment. D is a local expression in fields
and their derivatives, which is then evaluated at each spacetime point X. We suppose
that the expression just given leaves S invariant for any trajectory „(X ), then ask for
consequences in the situation where „ also obeys the variational equation associated
to its action functional.

Here are some concrete examples:

Contents Index Notation



418 Chapter 39 Variational Formulation

• A translation (shift of X by a constant 4-vector ‘b ) corresponds to the local
functional D[„] = b µˆ µ„, as we see by Taylor expanding „.

• Next, consider a set of two scalar fields, each with its own lagrangian density of
the form Equation 39.2. Then

D
Ë#„(1)

„(2)

$È
=

# „(2)
≠„(1)

$

generates an infinitesimal rotation in the internal space of „’s components (not
in physical space).

39.4.2 Consequences of invariance
We cannot assume that the lagrangian density is unchanged by an invariance, but we
at least know that its change, if any, must be a total derivative (so that its integral
will be a pure boundary term and hence zero for any localized variation). Thus, for
each infinitesimal invariance of the system we have

L ; L[Â„, ˆ Â„] = L[„, ˆ „] + ‘ˆ µT
µ[„, ˆ „]. (39.8)

Here T
µ is some local functional of fields and their derivatives that we can find from

the chosen lagrangian density and invariance under consideration. Continuing the two
examples in the preceding section,

• For internal rotations, XXXX.
• For translation by b , we have T

µ = 1
2 ˆ ‹b ‹ˆ µ„ˆ µ„ ≠ 1

2 ⁄≠2b ‹„2.

We will now find a 4-vector field associated to our assumed invariance that obeys a
continuity relation, and hence defines a conserved “charge.” To do this, first substitute
Equation 39.7 into Equation 39.8:

L[„, ˆ „]+‘D[· · · ]ˆ µ

1”L

”„

2
+‘

!
ˆ µD[· · · ]

" ”L

”(ˆ µ„) +O(‘2) = L[„, ˆ „]+‘ˆ µT
µ+O(‘2).

Comparing the sides of this equation shows that the 4-vector quantity

J µ = ”L

”(ˆ µ„)D[„, ˆ „] ≠ T
µ

obeys ˆ µJ µ = 0 as promised.
Returning to our two examples,

• XXXX
• Turning now to translation by b ,

J ⁄ = ˆ ⁄„b µˆ µ„ ≠ 1
2 b⁄ˆ µ„ˆ µ„ + 1

2 ⁄≠2b ⁄„2.

We can summarize all four of the associated continuity equations as

ˆ µT µ‹ = 0 where T µ‹ = ˆ µ„ˆ ‹„ ≠ 1
2 g µ‹(ˆ ‡„ˆ ‡„ ≠ ⁄≠2„2).

In fact, the symmetric tensor T just defined is the energy-momentum flux tensor
of the scalar field theory under consideration.
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39.4.3 Electrodynamics
Let’s upgrade these ideas to electrodynamics, with the lagrangian density Equa-
tion 39.6.

[Not ready yet.]

39.5 PLUS ULTRA

Why are all known fundamental physical theories expressible as variational principles?
I don’t know, but it’s relevant that the quantum version of any such a theory can
be straightforwardly constructed by a path integral: Simply divide the action by ~
(which has units of action), multiply by

Ô
≠1, and exponentiate to obtain a phase.

Integrating that phase over all trajectories yields quantum amplitudes.

FURTHER READING

Chen et al., 2019; Peskin & Schroeder, 1995, ch. 2.
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P A R T VI

Radiation

Optical studies from Roger Bacon’s De multiplicatione specierum. The diagram
shows light being refracted by a spherical glass container full of water.



C H A P T E R 40

Radiation Green Function
40.1 FRAMING

• We found a spherical wave solution in Chapter 37, but we have not yet seen how
such a wave may be created.

• We saw how certain waves may be generated in Chapter 23, but with some
limitations on what kind of source.

• The antenna considered in Section 23.5 did generate a spherical wave, but not the
same one as what we found in Chapter 37! We need a more general understanding
of spherical waves.

• Chapter 23 found a solution to the wave equation, but by the unsatisfying method
of “lucky guess.” Let’s use “Einstein thinking” to recover that result more straight-
forwardly, and to give the generalizations requested in the preceding points.

40.2 TIME ORDERING AND CAUSALITY

Is the upper-left corner of this page higher or lower than the upper-right corner?
Obviously there’s no absolute answer to that question. The higher corner can be made
lower by rotating the page. On the other hand, if you stub your toe in the night,
and a dog barks on the next block, there doesn’t seem to be any doubt about which
happened first. Or is there?

We now believe that newtonian physics is an imaginary world, not an accurate
description of Nature. But its galilean transformations do have a nice property (Fig-
ure 40.1a): Any two G-inertial reference frames1 will agree that event R is simultane-
ous with P, whereas S precedes P and Q follows P. Geometrically, this is a matter of
whether you’re above or below the x axis, and all G-inertial frames have the same x
axis.

Turning to Lorentz transformations, which do seem to be an invariance of Nature,
we find a surprise: An observer moving to the right (figure panel (b)) will disagree
with the original observer, saying that R precedes P (it lies below the xÕ axis)!2

Similarly, a leftward-moving observer (panel (c)) would say that R and even S
happen later than P. Interestingly, however, all E-inertial observers agree that T is
later than P, and U is earlier. That’s because these points lie beyond the wavy lines
at ±45¶ to the axis, and we can never bend the xÕ axis past those lines.

1Recall that a G-inertial frame is one in which the newtonian equations of physics take their usual
form.
2An even faster-moving observer would also say that Q precedes P!!
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422 Chapter 40 Radiation Green Function

c

Figure 40.1: In each panel the wavy line depicts a light trajectory.

Algebraically, we say that the temporal ordering of P and Q is unambiguous if
and only if |tQ ≠ tP | > Îr̨ Q ≠ r̨ P Î/c. We can restate this using the invariant interval:3
The temporal ordering of two events P and Q is unambiguous if �·2 is positive,
that is, if Î�X

P Q
Î2 Æ 0. Section 31.5.2 introduced the terms timelike separation

if Î�X
P Q

Î2 < 0, lightlike if it’s exactly zero, or spacelike if it’s positive. Temporal
ordering is ambiguous (dependent on which initial frame we choose) if the separation
is spacelike.

The relativity of simultaneity just discovered may seem to be a disaster for physics.
How can we claim that anything “caused” anything else, if we don’t know which
happened first?! But it’s not a complete disaster: When two events have timelike or
lightlike separation, then we do know for sure which was first. So we can get out of
di�culty if we insist that

If two events are spacelike separated, then neither one may be said to have
caused, or even influenced, the other.

This makes sense when we notice that, in order for two such events to influence
each other, one would have to send a signal to the other moving faster than the speed of
light in vacuum.4 Really all we’re asserting, then, is that no signal (information, causal
agent) can move faster than light. This prohibition is consistent with the relativistic
velocity addition formula, which always yields a new velocity Æ c. Now we see that
the speed limit is also necessary to avoid a physically nonsensical confusion about
causality.

40.3 RETARDED GREEN FUNCTION

3Note that the notation Îr̨ Î2 denotes the ordinary length-squared of a 3-vector, whereas Î�X Î2

denotes the invariant interval.
4What about quantum entanglement? Luckily that’s not part of this course, but every discussion I’ve
seen ends up, after a lot of analysis, concluding that there’s still no way to transmit useful information
faster than c.
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40.3.1 Scalar wave equation
Section 36.1 obtained a version of Maxwell’s equations valid in Lorenz gauge:

2Aµ = ≠µ0Jµ. (40.1)

This is four decoupled copies of a single equation, so to simplify the notation we’ll
first solve the scalar inhomogeneous wave equation:

2„ = ≠J (40.2)

and later add the 4-vector index and factor of µ0. Chapter 23 found a solution to
the inhomogeneous wave equation, but (a) we had to make an unobvious guess, and
(b) Equation 23.5 didn’t look exactly like a Green function solution. Let’s use “Einstein
thinking” to do better.

The wave equation is linear and translation-invariant, so we expect that the
solution can be written in terms of a Green function:

„(X ) =
⁄

d4Xú Dr(X ≠ X ú)J(X ú). (40.3)

We now use invariance to constrain the possible form of the function Dr, show that
there is only one reasonable choice, then confirm that with that choice, the formula
Equation 40.3 solves Equation 40.2 for any source function J.

The constraints are that

• Dr must be a Lorentz-invariant, scalar function of the 4-vector �X = X ≠ X ú.
• It must have dimensions (length)≠2, by Equation 40.2.
• It must vanish when �X0 < 0, because the behavior of charges in the future

cannot a�ect the values of fields in the past.

We can satisfy all these conditions with a function of this form:

Dr(�X) = 1
2fi

”(Î�XÎ2)�(�X0). radiation Green function (40.4)

Taking the factors in turn,

• Soon we’ll see why the prefactor must be 1/(2fi).
• The delta function is motivated by the idea that electromagnetic influences always

travel at speed c.5 Two points can be joined by a path traversed at speed c only
if they are lightlike-separated.

• The last factor is a “Heaviside step function,” and it enforces causality. Together
with the delta function, it says that fields at X can only be influenced by sources
lying in the “past light cone of X.”

• The delta function has dimensions6 inverse to (length)2. The step function is
dimensionless. So our proposal has the desired units.

5See Section 23.3 (page 261).
6See Section 0.3.6 (page 9).
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The argument of the delta function is a constant times the invariant interval, so this
whole factor is Lorentz invariant. The step function looks bad at first, because Lorentz
transformations can a�ect the temporal ordering of two events: �X Õ0 may not have
the same sign as �X0. However, this problem can only arise for spacelike-separated
events, that is, a pair of events with invariant interval less than zero. The delta function
tells us that such events cannot contribute anything to the proposed Green function.
Only lightlike-separated events contribute, and the temporal ordering of any such pair
of events is unambiguous.

In short, Dr is a 4-scalar function. The other ingredient in Equation 40.3 is d4X,
which we saw in Section 33.9.3 is also Lorentz-invariant. Thus, Equation 40.3 is a
Lorentz-invariant recipe to obtain „ from J, as desired.

Our trial solution has all the qualitative properties we expect it should have. Now
we need to confirm that it really solves the wave equation. But once that’s done,
everything about radiation will follow from Equation 40.4.

40.3.2 Reformulate and confirm
Our proposed Green function is simple, and seems promising. After admiring it, we
now rephrase it in a way that obscures Lorentz invariance but will facilitate checking
that it does solve the wave equation.

We want to substitute our guess Equation 40.4 into Equation 40.3 and ultimately
confirm that Equation 40.2 is valid. After the substitution, we’ve got four integrals
and one delta function. We will now use the delta function to eliminate one of the
integrals, specifically the one over X 0

ú = ctú.
Recall from Section 33.9.1 how delta functions transform:

”(f(tú)) =
ÿ

¸

--f Õ(tú,¸)
--≠1

”(tú ≠ tú,¸),

where tú,¸ are all the values of tú at which f(tú,¸) = 0. For our application,

f(tú) = ≠c2(t ≠ tú)2 + R2 where R = Îr̨ ≠ r̨úÎ.

The quantities t and R are constants for purposes of evaluating the integral over tú.
There are two solutions to f = 0: tú≠ = (ct≠R)/c and tú+ = (ct+R)/c. Of these,

however, the second is acausal and so cannot contribute (the step function eliminates
it). Turning to the first,

df

dtú

--
tú≠

= 2c2(t ≠ tú≠) = 2c2(t ≠ t + R/c) = 2cR.

Thus,
”
!
Î�XÎ2"

�(�X0) = 1
2cR

”(tú ≠ t + R/c).

That result lets us easily do the tú integral in Equation 40.3. The three remaining
integrals become

„(t, r̨ ) = 1
4fi

⁄
d3rú

1
R
J(t ≠ R/c, r̨ú). [23.5, page 261]

We have already confirmed that „ defined by this formula solves the wave equation
in Chapter 23. This time, however, we found it without having to make such a lucky
guess, by “Einstein thinking” (insisting on Lorentz invariance and causality).
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Figure 40.2: The cylinder represents a circular
loop of current fixed in the xy plane. The past
light cone of an observer at time t and position
r̨ intersects the region of nonzero j̨ in the ellipse
shown. Only points on that ellipse contribute to
the potentials observed at t, r̨.

t, r

x

y

ct

40.4 REMARKS

40.4.1 Upgrade to 4-vector fields
Equation 23.5 is pretty simple: For each location inside the source, it tells us to look
back in time to the moment when charges and currents at that location could have
influenced the fields at (t, r̨ ), then introduce a factor of 1/(4fiR). It’s easy to upgrade
this result to electrodynamics, because Equation 40.1 is four decoupled copies of the
wave equation; just use the scalar solution four times with J = µ0J µ:

Aµ(X) = µ0

⁄
d3rú

1
4fiÎr̨ ≠ r̨úÎJµ

!
X0 ≠ Îr̨ ≠ r̨úÎ, r̨ú

"
. Lorenz gauge (40.5)

This result looks a bit like the one we found in Coulomb gauge (Chapter 23). Unlike
that result, however, this one assigns a nonzero value to the scalar potential. It is also
valid even when the charge density is not everywhere zero.

Our recipe gets especially simple for a point charge sitting at rest at the origin,
because J̨ = 0 while flq is time-independent. So our solution reproduces the static
potential of a point charge.

More generally, we have shown that Equation 40.5 with Equation 40.4 gives the
fields created (caused by) a general distribution of charges and currents. Other names
for this causal Green function are retarded Green function or retarded propagator.
The names refer to the fact that the formula “looks back in time.” For example,
Figure 40.2 shows a current loop.

40.4.2 Check self-consistency
We’re not quite done. Equation 40.1 is not equivalent to Maxwell unless A is in Lorenz
gauge. Does our solution have that property?

To find out, we must compute

ˆ µAµ =
⁄

d4Xú Jµ(Xú) ˆ

ˆXµ
Dr(X ≠ X ú).

Next, note that
ˆ

ˆXµ
Dr(X ≠ X ú) = ≠ ˆ

ˆX µ

ú
Dr(X ≠ X ú).
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After that substitution, we can integrate by parts to find7

ˆ µAµ =
⁄

d4Xú Dr(X ≠ X ú) ˆ

ˆXµ

ú
Jµ(X ú).

The right side of this expression is zero, by the continuity equation that any 4-current
distribution must obey.

You may be dissatisfied: “The Green function is the response to a blip, but an
isolated blip cannot obey the continuity equation!” The logic is that
. The Green function is indeed a solution to the wave equation, Equation 40.1, for

an isolated blip source.
. If we assemble a lot of blips together into a J field that obeys the continuity

equation, then we just showed that our solution will also be in Lorenz gauge;
. and therefore, it will also solve the Maxwell equations.

7The reasoning here is similar to something we used in magnetostatics, Section 14.4.3 (page 166),
and again later in our first look at radiation, Your Turn 23A (page 261).
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T2 Track 2

40.3Õa Alternative derivation in Fourier space
David Chow notes:
At times it will be necessary to move between covariant and non-covariant forms, but the
motivations for each will be explained. The EM fields F

–— arising from the 4-current J
–(x)

satisfy the inhomogeneous Maxwell equations

ˆ–F
–— = 4fi

c
J

— which we can write in terms of the potentials,

2A
— ≠ ˆ

— (ˆ–A
–)¸ ˚˙ ˝

=0

= 4fi

c
J

—

Here 2 © Ò2 ≠ 1

c2
ˆ2

ˆt2 and the Faraday tensor F
–— =

3 0 ≠Ex ≠Ey ≠Ez
Ex 0 ≠Bz By
Ey Bz 0 ≠Bx
Ez ≠By Bx 0

4
as usual.

The braced term vanishes by choice of the Lorentz condition, so we may solve this by finding
a Green’s function satisfying

2xD(x, x
Õ) = ”

(4)(x ≠ x
Õ).

But the Green’s function can only depend on the di�erence z
– = x

– ≠ x
Õ– due to the lack of

boundaries, so
2zD(z) = ”

(4)(z). (40.6)
Applying a Fourier transform to eqn 40.6, D(z) = 1

(2fi)4
s

d
4
k D̃(k)e≠ik·z, and recalling that

”
(4)(z) = 1

(2fi)4
s

d
4
k e

≠ik·z, hitting eqn 40.6 with two derivatives from the dalembertian
brings down two factors of ≠ik. Therefore we can solve for D̃(k) to be

D̃(k) = ≠ 1
k · k

, and so D(z) = ≠ 1
(2fi)4

⁄
d

4
k

e
≠ik·z

k · k
.

Notice that we have a singularity to deal with. Let’s deal with the k0 part first:

D(z) = ≠ 1
(2fi)4

⁄
d

3
k e

ik·z
⁄ Œ

≠Œ
dk0

e
≠ik0z0

k
2

0
≠ Ÿ2

, where Ÿ © |k|.

Treating k0 as complex so that we have simple poles at k0 = ±Ÿ, we have two options as to
the contours we may use to evaluate the integral (Figure 40.3). Let’s name them r and a,
with r the one in the positive imaginary half-plane and a in the negative. They will be closed
with semicircles out at ±iŒ. We need to enclose the poles and also have the term e

≠ik0z0

kill the contribution of the semicircle, so the sign of z0 decides which contour we may use.
First let’s take contour r, for which z0 > 0 so that it’s closed in the lower half plane. Then

j

r

dk0

e
≠ik0z0

k
2

0
≠ Ÿ2

= ≠2fiiRes
3

e
≠ik0z0

k
2

0
≠ Ÿ2

4
= ≠2fi

Ÿ
sin(Ÿz0);

thus
Dr(z) = ◊(z0)

(2fi)3

⁄
d

3
ke

ik·z sin(Ÿz0)
Ÿ

,

where ◊ the Heaviside function enforces the condition on z0. Integrating over angles gives

Dr(z) = ◊(z0)
2fi2R

⁄ Œ

0

dŸ sin(ŸR) sin(Ÿz0), where R © |z|

= ◊(z0)
8fi2R

⁄ Œ

≠Œ
dŸ (ei(z0≠R)Ÿ ≠ e

i(z0+R)Ÿ

¸ ˚˙ ˝
=0

).
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Figure 40.3:

Notice these are delta functions, so the second one vanishes because z0 > 0 and R > 0. Thus
Dr(x ≠ x

Õ) = ◊(x0≠xÕ
0)

4fiR ”(x0 ≠ x
Õ
0 ≠ R). This is the (noncovariant) retarded Green’s function;

a nearly identical calculation gives Da(x ≠ x
Õ) = ◊(≠(x0≠xÕ

0))

4fiR ”(x0 ≠ x
Õ
0 + R). To put these

into covariant form we’ll use the identity

”[(x ≠ x
Õ)2] = ”[(x0 ≠ x

Õ
0)2 ≠ |x ≠ x

Õ|2]
= ”[(x0 ≠ x

Õ
0 ≠ R)(x0 ≠ x

Õ
0 + R)]

= 1
2R

[”(x0 ≠ x
Õ
0 ≠ R) + ”(x0 ≠ x

Õ
0 + R)];

here the ◊ functions always select the term you want in the last line, so we can write

Dr(x ≠ x
Õ) = 1

2fi
◊(x0 ≠ x

Õ
0)”[(x ≠ x

Õ)2]

Da(x ≠ x
Õ) = 1

2fi
◊(xÕ

0 ≠ x0)”[(x ≠ x
Õ)2].

You may be concerned that the ◊ functions are not invariant; however, when constrained
in this way by the delta functions, you will find that they are. Therefore, the solutions we
sought are

A
–(x) = A

–
in + 4fi

c

⁄
d

4
x

Õ
Dr(x ≠ x

Õ)J–(xÕ), or,

A
–(x) = A

–
out + 4fi

c

⁄
d

4
x

Õ
Da(x ≠ x

Õ)J–(xÕ),

with A
–
in and A

–
out solutions to the homogeneous (sourceless) wave equations.

T2 Track 2

40.4Õ

When we expand Einstein’s gravitational equation for small fluctuations about flat space,
the result is a second-order PDE. It has a complicated tensor structure, until we impose a
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gauge condition analogous to Lorenz gauge. Then it becomes ten decoupled copies of the
same old wave equation that we just solved! Thus, everything about (weak) gravitational
radiation also follows from Equation 40.4.
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J. J. Thomson’s Pictorial Explanation of
Radiation
41.1 FRAMING

The Gauss law implies that a static positive point charge creates an electric field that
is directed radially outward and falls as r≠2. That behavior is quite di�erent from
radiation. For example, the energy density of such a field configuration falls as r≠4,
too fast to transport any energy to infinity. But there are many other solutions to the
Maxwell equations. In particular, when a charge is in motion, then it’s no longer a
spherically symmetric source, so we need not expect a spherically symmetric solution.
Indeed, Sections 32.3.2 and 33.8.2 found bunching of the field into the equatorial
plane.

This chapter will extend the discussion to accelerating charges by abstracting just
one qualitative fact from Chapter 40: Disturbances in the field propagate at the fixed,
finite speed c. From just those two ideas, and Michael Faraday’s field-line concept,
J. J. Thomson built a pictorial explanation that gives most of the qualitative features
of the electric field arising in radiation. Adding Faraday’s law of induction will then
let us understand the magnetic field as well. Later chapters will work through the
analytic details, but it’s good to have this intuition first.

41.2 ELECTRIC FIELDS FROM AN ACCELERATING CHARGE

The lower panel of Figure 41.1 shows the trajectory in spacetime of a particle that is
motionless from time ≠Œ till time zero, then accelerates along x̂, then decelerates to
rest. At some time tf after that last step, we ask what the fields look like throughout
space.

• A very distant observer, at O1, has not yet learned that the particle is no longer
stationary at P , so it sees radial Ę pointing outward from P toward O1. A ring
of such observers, all at the same distance, see uniformly spaced field lines with
transverse density 1/rOP

2 (outermost arrows in the upper part of the figure).
• At the other extreme, a very nearby observer, at O3, sees the up-to-date infor-

mation, that is, radial Ę pointing from Q.
• In between, an observer, at O2, sees radial Ę pointing from R because that’s

where the charge would have been at time tf , had it not decelerated, and this
observer has not yet had a chance to learn that the charge has decelerated.1

1This has nothing to do with the mental state of the observer. The causal structure of the theory is
such that no instrument can, at the point in space and moment in time, distinguish the trajectory
from one that is in eternal, uniform straight-line motion, and Section 32.3.2 showed that the field
created in that situation is as described here.
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These lines point
toward R.

These lines
point toward P.

light cones
trajectory 
not taken

actual trajectory

Figure 41.1: Bottom: A charged particle trajectory in the xt plane. Top: Snapshot of the corresponding field
lines at one time, in the upper xy half-plane. The full 3D picture would be a figure of revolution about the x̂

axis. The bunching of field lines in the intermediate region, expected when the intermediate velocity is close to
c, is not shown.

We now connect up the three regions whose fields we just described. We know
that Ǫ̀ · Ę = 0, so field lines cannot terminate anywhere except on the charges. Thus,
in the two joining regions the field lines must look as they are drawn in the figure:

• An observer at Oú, for example, sees a pulse of Ę directed transversely to her
line of sight to P (and B̨ = out of page). These kinks lie on a spherical shell
whose radius expands outward in time at speed c.

• There is an opposite kink associated to the deceleration, on another spherical
shell that is also expanding outward.

• The kinks are most pronounced at 90¶ to the direction of acceleration (on the
±y axis); there is no kink along the direction of acceleration (on the ±x axis).
Specifically, the kink is directed along r̂ ◊ (r̂ ◊ ą ) where ą is the acceleration.
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432 Chapter 41 J. J. Thomson’s Pictorial Explanation of Radiation

Next let’s ask about the strength of the transverse fields, for example in the first
kink region (corresponding to the initial acceleration). We learned in Chapter 35 that
ÎĘ Î is proportional to the transverse density of the field lines, which in turn is the
total length of all the lines in a volume, divided by that volume. And the stretching
needed to accommodate the kink without breaking any line crowds more length into
the thin shell than there would otherwise be (without any acceleration)!

Consider the situation at Oú, a particular angle ◊ from the x̂ axis. The charge
accelerates from velocity 0 to v, so the kink joins a line pointing toward P to one
pointing toward R, a distance � = vtf to the right in the x̂ direction (Figure 41.1),
or � sin ◊ in the direction transverse to the field line. The acceleration occurs over a
time interval v/a, so the thickness of the shell between the dashed lines is �ú = cv/a.

Imagine drawing a total of N lines emerging from the charge. We wish to find
the total length of all the field lines passing through a shell of thickness c�ú and
cross-sectional area d�. A total of Nd�/(4fir2) lines enter, bend sideways, travel a
distance vtf sin ◊, bend again, and emerge. Thus

total length of lines
volume = Nd�vtf sin ◊/(4fir2)

d��ú
.

The radius of the sphere is ctf , so we find that ÎĘ Î is proportional to the acceleration,
to sin ◊, and to 1/r. These are the key features of radiation from an accelerated charge:

• The electric field is transverse to the line of sight from observer to source.
• The electric field is mainly in the equatorial plane ◊ = fi/2.
• The electric field falls with distance as r≠1, not ≠2.
• The electric field is proportional to the magnitude of the acceleration.

41.3 MAGNETIC FIELDS

The magnetic Gauss law does not give B̨ any sources or sinks. Hence, B̨ field lines
must all be closed loops. Why then should they exist at all? The answer comes from
the Faraday law.

We consider the same trajectory as before, but focus on only the final deceleration.
The top panel of Figure 41.3 shows the electric field lines at a time t1. We argued a
fixed point S in the xy plane, an observer will initially see a small, radial electric field
(Ã r≠2), then around t1 a pulse of Ęx (Ã r≠1), and then back to small field at later
time t2.

An observer outside the expanding shell has not yet learned about the deceleration,
so she sees the magnetic field of a particle in uniform, straight-line motion, which falls
as r≠2. An observer inside the shell sees the magnetic field of a charge at rest, which
is zero. But at the leading (outer) boundary of the shell (point T), the observer sees
a rising Ęx. The figure shows a small rectangular surface area surrounding T, coming
out of the page in the yz plane. Two of the four edges of this rectangle straddle the
boundary of the shell. Integrating Faraday’s law over this surface element shows that
either B̨y or B̨z must be nonzero there.
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Figure 41.2:

The field lines must form a figure of revolution about the x axis, by axial symmetry,
and they must also be closed curves by the Gauss law. A radial (y) component of B̨
would require field lines to extend to infinity, and hence not close. Also, B̨ = 0 on the
outermost edge of the rectangle. But an azimuthal (z) component is allowed on the
inner edge of the rectangle. So at T we have B̨ pointing into the page, with field lines
forming rings in planes parallel to the xz plane.

A similar argument applies at point U on the trailing boundary of the shell. Here
Ęx is falling over time, but only on the inner edge of the rectangle. So again we find
B̨ pointing into the page.

Throughout the shell we have ÎB̨ Î Ã r≠1 because Ę has that behavior. Thus, we
find that

Ę ◊ B̨ is directed radially outward and falls as r≠2.

FURTHER READING

Freeman et al., 2019, §3.3
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434 Chapter 41 J. J. Thomson’s Pictorial Explanation of Radiation

Figure 41.3: Middle: The decelerating part of
the trajectory in Figure 41.1 (heavy blue line).
Bottom: Determination of magnetic fields. The
small rectangular paths surrounding points T

and U are parallel to the yz plane, that is, they
extend out of the page.

light cones

..
T

U

.S

.U

.T

PROBLEMS

41.1 Relativistic Bremsstrahlung
Consider a charge that is motionless for a long time, then gets rapidly accelerated
to uniform straight-line motion at speed V π c, then gets rapidly decelerated back
to rest. The lower panel of Figure 41.1 shows the worldline of the charge in the xt
plane. The upper panel depicts a snapshot of the electric field lines at a time after
the particle has returned to rest, in the xy plane.

Now you sketch two similar pictures for the case where V is not much smaller
than c. Your pictures will be similar to mine; discuss the di�erences physically.
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41.2 Bremsstrahlung graphic
If you haven’t done Problem 33.1 yet, do it first as a warmup.

A positively charged particle is initially in uniform motion along the x axis at
speed 0.9c. At time zero, it abruptly comes to a halt. An observer later maps out the
electric field at time t0 > 0 in the xy plane.

Close to the particle, the observer sees the usual 1/r2 field. Section 32.3.2 argued
that far from the particle, the observer sees a field that is crowded into the yz plane and
centered on the point where the particle would have been located, if it had continued
to move. Section 41.2 argued further that on the boundary between these regions,
there is a pulse of radiation (bremsstrahlung). Verify these claims numerically, as
follows.
a. Express all lengths as dimensionless quantities times ct0. Find the region in the

xy plane where the observer will see the 4-vector potential of a charge at rest.
b. Make a grid of points at which to evaluate the 4-vector potential. The grid should

be fine enough to get reasonably accurate estimates of derivatives by numerical
di�erentiation.2

c. Evaluate the 4-vector potential at each of the grid points satisfying the condition
in (a).

d. Use ideas from Problem 33.1 to evaluate the 4-vector potential at every grid point
not satisfying that condition.

e. Repeat (a–d) for later time (1.001)t0. Subtract from your previous answer and
divide by 0.001 to estimate the time derivative of Ą throughout the xy plane.

f. Do whatever else you need to do to find the electric field at time t0.
g. Make a graphical depiction of the magnitude ÎĘ (t0, x, y, 0)Î. If the range of values

attained is too large to display properly, compress it by taking a logarithm before
making the plot.

[Remarks: Luckily, Ę lies in the xy plane, so a two-dimensional plot is adequate.
Unluckily, the 4-vector potential field is discontinuous, so you won’t get an accurate
result by numerically di�erentiating it. However, you do get the right qualitative
behavior. This problem is a pathology related to the unrealistic assumption that the
charge stops instantly (that is, infinite deceleration).
Make your plot cover a range of xy values large enough (and also small enough) to
show the interesting features. Make sure your computer uses the same scale for the x
and y axes.
If you wish, you can compare your result to the more complicated formulas in Your
Turn 32D, but that’s not the approach you are to use in this problem.
If you use Python, the Student’s Guide §8.2 discusses heatmaps. Or you may prefer a
contour plot or surface plot. Use your judgement about what is clearest. Why didn’t
I need to tell you the values of t0 and q?]
h. Repeat for speed 0.1c and comment.

2Python users will find useful information in the Kinder & Nelson, 2018, §6.4.1, or in the builtin help
for np.meshgrid.
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Electric Dipole Radiation
42.1 FRAMING

This chapter will show in a special situation that (a) charges will emit electromagnetic
radiation when accelerated, (b) the radiation is polarized transversely to the line of
sight, and (c) its energy flux falls with distance like 1/r. The special situation, which
is frequently realized in practice, is a limit in which the source size is much smaller
than the outgoing wavelength. Unlike Chapter 23, this time, we make no restriction
that charge density is everywhere zero.

42.2 FAR FIELD APPROXIMATION

Suppose that some charges executing prescribed motions are confined to a region of
size a centered on the origin of coordinates. So their locations all obey Îr̨úÎ < a. We
observe fields at r̨ with Îr̨ Î ∫ a. We’ll keep only the leading terms in the power series
in a/r. That’s called the far-field approximation.

Familiar steps: Let R̨ = r̨ ≠ r̨ú. Please review why

R = r ≠ r̂ · r̨ú + · · · (42.1)

R≠1 = r≠1!
1 + r̂·r̨ú

r
+ · · ·

"
. (42.2)

In each case, we have kept the first two orders of a power series in a/r; the ellipses
denote terms of higher order.

Our general, Green-function solution gives the vector potential in Lorenz gauge
as1

Aµ(t, r̨ ) = µ0
4fi

⁄
d3rú

1
R

Jµ(t ≠ R/c, r̨ú). [40.5, page 425]

We need to be careful with our approximation. In the 1/R factor, the second and
higher terms in Equation 42.2 can be dropped—they make subleading contributions
to A. But in the argument to J , we must keep the subleading term of Equation 42.1
because, although it is smaller than the leading term,
. It tends to a constant, not zero, as r æ Œ, and
. When we take J to vary harmonically in the next section, this additive constant

will turn into a multiplicative constant that cannot be dropped.

1We used relativity to obtain this formula. However, in these notes we will consider a nonrelativistic
problem (charges moving much slower than light), so there is no reason to insist on writing only
manifestly Lorentz-invariant formulas.
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438 Chapter 42 Electric Dipole Radiation

Moreover, we’ll see that the apparently leading term will not give rise to any radia-
tion. Thus, dropping the subleading term just mentioned would fool us into thinking
radiation is not possible at all!

Still-higher terms really may be dropped in far-field approximation. Thus,

Aµ(t, r̨ ) = µ0
4fir

⁄
d3rú Jµ(t ≠ r/c + r̂ · r̨ú/c, r̨ú). far field (42.3)

Equation 42.3 is the desired generalization of Equation 23.8 (page 263) to situations
where the net charge density is not everywhere zero.

42.3 HARMONIC TIME VARIATION

Let’s suppose that the source charges and currents J vary harmonically in time with
some angular frequency Ê. That is, assume2

Jµ(t, r̨ú) = 1
2 e≠iÊtJ̄µ(r̨ú) + c.c.,

where J̄µ are four complex functions of position r̨ú only. Then

Aµ(t, r̨ ) = 1
2

µ0
4fir

e≠iÊ(t≠r/c)
⁄

d3rú e≠iÊr̂·r̨ú/cJ̄µ(r̨ú) + c.c. (42.4)

Everything inside the integral is independent of the observer’s distance r. However,
the observer’s direction r̂ is still present inside the integral.

42.4 MULTIPOLE APPROXIMATION

Equation 42.4 is still a bit complicated, but fortunately another approximation is often
justified: Often the quantity c/Ê is much bigger than the source size3 a. That is, the
dimensionless quantity

‘multi = Êa/c multipole parameter (42.5)

is much smaller than 1.
In that case, we may replace the exponential inside the integral by its Taylor

series: 1 ≠ i‘multi(r̂ · r̨ú/a) + · · · . Making this approximation, and truncating after a
finite number of terms, is called multipole approximation. Keeping only the first term
(that is, 1) is called electric dipole approximation, for reasons that will be clear soon.

That is, the far-field, multipole approximation is a double power series expansion
in both a/r and ‘multi.

2If that’s not the case, we can nevertheless decompose J into Fourier components, use the analysis
below on each one, and ultimately add all their contributions.
3If the charges are oscillating or doing circular motion, this condition says that their speed ¥ aÊ is
much smaller than c. This is certainly true of electrons in a radiating atom or molecule.
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42.5 LEADING ORDER: ELECTRIC DIPOLE RADIATION

42.5.1 A time-varying ED moment leads to 1/r potentials
Equation 42.4 has become

Aµ(t, r̨ ) = 1
2

µ0
4fir

e≠iÊ(t≠r/c)
⁄

d3rú J̄µ(r̨ú)
¸ ˚˙ ˝

+ c.c. = µ0
4fir

⁄
d3rú Jµ(tr, r̨ú). (42.6)

In this expression, tr is shorthand for the retarded time t≠r/c, which does not depend
on r̨ú.

We can now get an even simpler formula for the spatial components of A.4 First,
the divergence theorem implies

⁄
d3rú Ǫ̀i(r̨mj̨i)|r̨ú = 0

for each of m = 1, 2, 3. (Remember that j̨ æ 0 outside the finite region where the
source is located.) So

⁄
d3rú ”imj̨i(r̨ú) = ≠

⁄
d3rú r̨úm Ǫ̀ · j̨|r̨ú = +

⁄
d3rú r̨úm

ˆ

ˆt
flq(r̨ú) = d

dt
D̨E,m.

(42.7)
The final step made use of the definition of electric dipole moment D̨E.

Equation 42.7 says that
s

d3rú j̨m = d
dt
D̨E,m. So the three spatial components of

Equation 42.6 reduce to

Ą [ED]
m

(t, r̨ ) = µ0
4fir

dD̨E,m

dt

---
ret

. ED approximation, far field (42.8)

The notation “ret” indicates that the derivative is to be evaluated at time tr = t≠ r/c,
the retarded time.5

Your Turn 42A
Evaluate A 0 using Equation 42.6 and check that it agrees with Your Turn 37Aa
(page 404).

42.5.2 Pure dipole limit
Chapter 37 pulled a spherical wave solution out of a hat and then showed it was an
exact solution.6 Here, we obtained it as an approximate solution to a real physical
problem. We can recover the exact solution by considering the pure-dipole limit, in
which a æ 0 holding fixed the amplitude ˛̄

DE. In this limit, the ED approximation
really does become exact.

4The following derivation should be familiar from Chapter 3.
5Chapter 40 used “ret” to mean evaluation at t ≠ R/c, where r = Îr̨ ≠ r̨úÎ, but formulas like
Equation 42.8 no longer involve R so there is no ambiguity in the change of notation.
6Or see P+S, §14.5.4.
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42.6 RADIATION

42.6.1 Electric and magnetic fields
We now need a physical interpretation of our answer, Equation 42.8. One good step
would be to find the physical fields Ę and B̨ . This calculation, too, is greatly simplified
in far-field approximation.7 The point is that, when taking derivatives, we never need
to di�erentiate the 1/r factor, because that will give 1/r2, which we will see is not
leading order. Recall that Ąi denotes the spatial components of A.

B̨k = ÁkmiǪ̀mĄi = Ákmi

µ0
4fi

ˆ

ˆr̨m

11
r

dD̨E,i

dt

---
t≠r/c

2

= Ákmi

µ0
4fir

d2
D̨E,i

dt2

---
ret

!
≠r̂m/c

"
+ subleading.

(To get the second line, use the chain rule.) More compactly,

B̨ [ED] = ≠ µ0
4firc

r̂ ◊ d2

dt2 D̨E

--
ret. far-field (42.9)

We can see that
. Indeed, the only aspect of the source that matters in this approximation is its

time-varying electric dipole moment, which explains our name “electric dipole
approximation.”

. Specifically, the B̨ field is proportional to the acceleration of the charge.

. The far field wavecrests are spherical and move radially outward at speed c,
because B̨ depends on observer’s distance and time only through the combination
r ≠ ct.

. The far field is everywhere transverse (B̨ points perpendicular to its direction of
propagation r̂).

. The far field falls o� with distance like r≠1.
We could now obtain Ę by returning to Equation 42.6, this time working out A0,

and using the formula for Ę in terms of the vector and scalar potential. But there’s
an easier way. Recall that Ampère’s law says ˙̨

E = c2Ǫ̀ ◊ B̨ , and we just found B̨ .
Again use the fact that derivatives of r≠1 will be subleading and may be dropped in
far-field approximation. Furthermore, derivatives of r̂ fall with distance like r≠1, and
hence will also generate subleading terms. The leading contribution to Ę comes once
again from the retardation factor: Ǫ̀(t ≠ r/c) = ≠r̂/c. So

dĘ

dt
= c2

1
≠ µ0

4firc

21
≠ r̂

c

2
◊

!
r̂ ◊ d3

D̨E

dt3

--
ret

"
.

Because everything is harmonic in time, we can just drop one time derivative from

7The following derivation is essentially a solution to Your Turn 37B.
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both sides of this equation:

Ę [ED] = µ0
4fir

r̂ ◊
!
r̂ ◊ d2

dt2 D̨E

--
ret

"
. far-field

Like B̨ , the electric field is transverse to the line of sight r̂, falls like r≠1, and
involves acceleration of the charge. Moreover, Ę is also perpendicular to B̨ , a property
that we observed some time ago for plane waves. What’s new is that now we know the
quantitative relations between the charge’s motion and the amplitude and polarization
of the wave.

42.7 CONCRETE EXAMPLES

42.7.1 Electric dipole antenna
Usually when we introduce “wires,” we implicitly assume an approximation in which
no charge builds up anywhere. That is, usually we ignore the capacitance of a system
of “wires”; for example, if the wires do not form a closed circuit, we assume that no
current flows.

However, if we attach an alternating potential source to two diverging wires,
then some current will flow into and out of them, particularly at high frequency.
That current alternately builds up charge along the wires, which in turn creates an
oscillating electric dipole moment, which we now know can radiate.

The exact theory of such an “electric dipole antenna” is complicated and involves
self-consistently solving for the fields, currents, and charges. Instead of doing this, we
now assume a simple form for the currents and charges that is at least consistent
with the continuity equation. Suppose that one wire segment stretches from the origin
along the z axis to z = a/2. Another wire segment stretches the other direction to
z = ≠a/2. Alternating current is fed into the top wire at the origin; we will suppose
that its amplitude falls linearly to zero at the end of the wire. An equal and opposite
current is fed into the lower wire at the origin, so that overall the antenna is always
net neutral. Moreover, because the wires run in opposite directions, their respective
currents are always parallel.

In a formula, the current in each wire is

I(t, z) = Ī cos(Êt)(1 ≠ |z|/(2a)) for |z| < a/2.

Current is 1D charge flux, so the 1D continuity equation says

dfl[1D]
q

dt
= ≠dI

dz
= ≠(Ī cos Êt)(±2/a)

for the upper and lower wires respectively. Thus fl[1D]
q = ± 2Ī

aÊ
sin Êt.

We can now find the dipole moment:

D̨E = ẑ sin Êt
#⁄ 0

≠a/2
zdz

≠2Ī

aÊ
+

⁄
a/2

0
zdz

2Ī

aÊ

$
= ẑ

Īa

8Ê
sin Êt.
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Substituting into the general dipole radiation formulas then gives the radiation
created by this antenna. A distant observer in the xy plane will see radiation linearly
polarized along ẑ. An distant observer along the z axis will see nothing. A distant
observer along any other direction will see radiation linearly polarized along the
direction obtained by projecting ẑ to the plane perpendicular to the line of sight.

42.7.2 Greenhouse gases
Absorption and emission by single molecules should properly be treated quantum
mechanically (Chapter 55); however, some qualitative features can be understood in
our classical picture.

Earth’s surface is kept considerably warmer than would otherwise be the case
by its atmosphere. Our atmosphere is largely transparent to visible light from the
Sun, yet it intercepts infrared radiation and impedes its escape to space. Di�erent gas
molecules have very di�erent abilities to absorb and reemit infrared photons, however.

Optical absorption by a molecule involves its distribution of charge and current.
Similarly to what we have seen in this chapter, the most important term is controlled
by the “transition dipole,” which is the matrix element of the electric dipole moment
operator between the ground and excited molecular states.

The molecules O2 and N2, which constitute the bulk of Earth’s atmosphere, are
called homonuclear, because they contain two identical nuclei. A homonuclear diatomic
molecule is symmetric under inversion, even when strained away from its normal
chemical bond length, and hence can have no dipole moment. Thus, the transition
dipole between the ground state and either a rotational or vibrational excited state
must equal zero. Such excited states are typically separated from the ground state by
an energy gap in the infrared region, but a homonuclear molecule cannot use photons
to enter or leave those states, and hence is a poor absorber of infrared light.

Non-homonuclear diatomic molecules, notably nitric oxide (NO), have nonzero
dipole moment in their ground state, which changes when the molecule is set into
rotational motion. Moreover, the vibrational modes of such a molecule change its
dipole moment. The transition dipoles between the ground state and the rotational
and vibrational excited states are therefore non zero, making NO a strong absorber
in the infrared. It is therefore referred to as an infrared-active (“greenhouse”) gas.

A bent triatomic molecule, such as water (H2O), also has a permanent dipole
moment; water vapor is also a potent infrared-active gas. The carbon dioxide molecule
has three nuclei in a linear arrangement, and hence zero dipole moment in its ground
state. Thus, its transition dipoles between ground and rotationally excited states
vanish. However, it develops an oscillating dipole moment in some of its vibrational
states; transition dipoles therefore exist for these and also for mixed rotation-vibration
states, making CO2 another infrared-active gas (Figure 42.1).

42.8 ENERGY FLUX

In this section, we’ll omit the su�x “ret” for brevity and continue to work in the far
field, in electric dipole approximation.
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Figure 42.1: [Infrared photographs.] Energy ab-
sorption by an IR-active gas. Two identical, cylin-
drical chambers with transparent ends, viewed in
the wavelength band 7.5–14 µm. False color indi-
cates radiance in this band (reds are higher than
blues); the scale bar is labeled with approximate
inferred temperature values in degrees Celsius.
The chamber on the right contains dry air. The
one on the left contains carbon dioxide. Both
have axial length 23 cm and are viewed end-on.
(a) Both chambers started at room tempera-
ture. False color when looking into each chamber
matches the backdrop. (b) The chambers were
briefly exposed to infrared light. After irradiation
was stopped, the one containing IR-active gas
was observed to be slightly warmer for about one
minute. That is, more infrared light was observed
coming out of this chamber than was the case for
either the backdrop or the other chamber. [See
also youtu.be/0eI9zxZoipA and Sieg et al., 2019.]

26.2  C10 cm �

24.1  C�

still at room
temperature

elevated
temperature

a

b

Now at last we can see how energy is transported: Its flux is

S̨[ED] = 1
µ0

Ę ◊ B̨ = ≠µ≠1
0

! µ0
4fir

"2 1
c

#
r̂ ◊ (r̂ ◊ d2

dt2 D̨E)
¸ ˚˙ ˝

$
◊

#
r̂ ◊ d2

dt2 D̨E

$
.

The factor in the brace is r̂(r̂ · d2

dt2 D̨E) ≠ d2

dt2 D̨E. Now use the triple cross product
formula again:

S̨ = ≠µ≠1
0

! µ0
4fir

"2 1
c

3
r̂
#!

r̂(r̂ · d2

dt2 D̨E) ≠ d2

dt2 D̨E

"
· d2

dt2 D̨E

$
≠ d2

dt2 D̨E

#!
r̂(r̂ · d2

dt2 D̨E) ≠ d2

dt2 D̨E

"
· r̂

$4

S̨[ED] = r̂
µ0

(4fir)2
1
c

!.. d2

dt2 D̨E|ret
..2 ≠

!
r̂ · d2

dt2 D̨E|ret
"2"

. far-field (42.10)

Thus, the energy flux vector always points radially outward. It’s not spherically
symmetric, however, because its magnitude depends on the direction r̂ to the observer.

The total power output is the rate at which energy passes through a large spherical
shell:8

P
[ED] = lim

BæŒ

⁄

r=B

d2�̨ · S̨[ED] = µ0
(4fi)2c

d2

dt2 D̨E|ret ·
5⁄

d2r̂ (
¡
11 ≠ r̂r̂)

6
· d2

dt2 D̨E|ret

The first term inside the square brackets is the integral over all directions of a constant
tensor, that is, 4fi

¡
11. The second term is 4fi times the average over all directions of

r̂r̂. It has no dependence on the observer’s position. Thus it must be a rotationally-
invariant, yet constant, 3-tensor of rank 2. There is only one possibility: This term

8Because we only want energy that makes it all the way out to infinity, the far-field approximation
is automatically satisfied.
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444 Chapter 42 Electric Dipole Radiation

must be a constant times the unit tensor. Moreover, its trace must be
s

d2r̂ = 4fi,
which fixes the constant to be 1/3. All together, then, the factor in square brackets is
4fi(1 ≠ 1

3 )
¡
11, and we have

P
[ED] = µ0

4fic

2
3

.. d2

dt2 D̨E|ret
..2 total power output, ED approximation (42.11)

T2 Section 42.8 Õ (page 446) justifies a claim made in this section.

42.9 LINEAR POLARIZATION

Consider the case in which D̨E is always directed along a single direction (linear
polarization). We can choose coordinates to make that direction be the z-axis: D̨E =
DE(t)ẑ. First note a relation between the spherical directions:

ẑ = r̂ cos ◊ ≠ ◊̂ sin ◊.

Your Turn 42B
Show that

B̨ [ED] = Ï̂
µ0

4firc

d2

dt2DE|ret sin ◊

Ę [ED] = ◊̂
µ0
4fir

d2

dt2DE|ret sin ◊.

In any direction, we see a linearly polarized plane wave.

Turning now to the energy flux,
.. d2

dt2 D̨E

..2 =
# d2

dt2DE

$2

!
r̂ · d2

dt2 D̨E

"2 =
! d2

dt2DEr̂ · ẑ
"2 =

# d2

dt2DE

$2 cos2 ◊

S̨[ED] = µ0
≠1Ę ◊ B̨ = r̂

µ0
(4fir)2

1
c

# d2

dt2DE|ret
$2 sin2 ◊. (42.12)

Equation 42.12 shows the angular dependence explicitly: Energy mostly comes out
near the equatorial plane (here the xy plane). We can now get the total power output
from Equation 42.11.

If the dipole varies harmonically in time, then we can write DE(t) in terms of the
amplitude (maximum value) D̄E as DE(t) = 1

2 e≠iÊt
D̄E + c.c. Then the time-averaged

power output is

ÈP[ED]Í = µ0
12fic

Ê4|D̄E|2,
total power output,
harmonic source (42.13)

a famous result.

Contents Index Notation



Further Reading 445
Your Turn 42C

Repeat the exercise, but with D̨E(t) = DE0

1 cos Êt
sin Êt

0

2
and interpret the result.

FURTHER READING

Greenhouse gases:
Bohren & Clothiaux, 2006, Chapt. 2.
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T2 Track 2

42.8Õ Only one rank-2 tensor from Heaven
The main text claimed that taking the average of a polarizability tensor over all orientations
must yield a constant times the unit tensor. Certainly that average must be a rotationally-
invariant, symmetric, rank-2 tensor. Certainly the unit tensor is one possibility (Chapter 13).
Can we be sure there are no others?

Consider the e�ect of infinitesimal rotations on a symmetric, rank-2, 3-tensor
¡
T . Choose

a cartesian coordinate system and let the matrix T represent the tensor. Rotational invariance
is the statement that

(1 ≠ ‘�)tT(1 + ‘�) = T + O(‘2)

for any antisymmetric “generator” matrix �.9 That is, the matrix T must commute with any
such �.

For example, consider the generator
¡
�ij = ”i2”j3 ≠ ”i3”j2, which generates rotations

about the x̂ axis. Then
¡
T must obey

0 =
¡
Tm2”j3 ≠

¡
Tm3”j2 ≠

¡
T3j”m2 +

¡
T2j”m3

for any m and j. Specialize further to m = 1; this gives
¡
T12 = 0 and

¡
T13=0. If we instead

specialize to m = 2, we find
¡
T22 =

¡
T33.

Continuing in this way we find that all o�-diagonal entries of
¡
T are zero, whereas all

diagonal entries are equal. That is,
¡
T is a constant times the identity tensor.

9See Problem 17.5 (page 215) and Problem 12.1 (page 148).
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PROBLEMS

42.1 Beyond far-field approximation
Background: In class I derived expressions for the exact electric and magnetic fields
outside an arbitrary charge/current distribution. Then I simplified the result by as-
suming (i) harmonic time dependence of the sources, (ii) observer is far away, so we
may discard O(r≠2) terms, (iii) long wavelength (low frequency, nonrelativistic source
motion), so we may discard all but the leading term in an expansion in powers of a/⁄,
where a is the source size.

I did however sketch the complete fields for an oscillating electric dipole, both
near- and far-field. Close to the source, at each instant of time the electric field looked
like the field around a static dipole. Thus each field line starts on a net + charge
and terminates on a net ≠ charge. Farther from the source, however, the field lines
detach from the source and move outward on closed, banana-shaped paths (they don’t
terminate anywhere).

How and where does this detachment occur? Let’s see. To keep things interesting,
however, we’ll do a slightly di�erent problem.
Problem: Consider a circular loop of wire of radius a in the xy plane, carrying a
prescribed, harmonically oscillating current I(t) = 1

2 [Īe≠iÊt + c.c.]. Thus Ī is one half
of the peak-to-peak current amplitude. You are to find and plot the magnetic field
B̨ (t, r̨ ) everywhere, at various times. This “simply” involves evaluating numerically
a formula we obtained in class. Thus we keep assumption (i) above but drop (ii–iii).

Because of the azimuthal symmetry, it’s enough to examine B̨ (t, r̨ ) only for r̨ in
the xz plane, and indeed to look only at x > 0.

Because this time we are examining B̨ (not Ę ), none of the field lines will
terminate (all are closed loops). Nevertheless we’ll find a distinction between those
lines attached to the source and those that have detached.
Steps:
Measure all lengths in units of a. (Or equivalently, measure lengths in meters and take
a = 1 m.)

• Write the general expression to be evaluated, specialized for the situation in the
problem. This expression involves an integral, which you’ll eventually have to do
numerically, but not yet. Using this unevaluated expression, show that one of the
three cartesian components of B̨ equals zero everywhere on the xz plane.

That’s convenient: it means that every integral curve of B̨ that starts in the xz plane
will remain completely in that plane. These curves are Faraday’s magnetic “field lines.”

• Set Ê = 0 and evaluate B̨ on a grid of points out to a distance of, say, r = 5a
from the origin. Display your answer as a tiny-arrows plot. It may take some
futzing to make your plot look nice (i.e., physically informative).

I found it hard to visualize the answer because the arrows were of such di�ering lengths.
So I found it better to display instead the direction B̂ = B̨ /|B̨ |. This normalized
vector field has the same integral curves as B̨ . (Also, of course overall factors like
µ0Ī/(4fir) drop out when we normalize.)
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• Draw by hand on your plot some of the integral curves obtained by following the
arrows. Some or all of your integral curves will have the property that they link
(pass through) the current loop: We say they are “attached to the source.” Find
which ones have this property and comment.

• Repeat taking Ê = 2fic/(3a) and time t = 0. Thus we expect the far fields to be
waves with wavelength 3a. Comment on the behavior you observe both close to
and far from the origin; on the z axis versus on the equatorial plane; etc. If some
field lines are not attached to the source, find the locus separating the attached
lines from the detached ones.

• Also compute the longitudinal part of B̂, that is, r̂ · B̨ at time zero, and plot
in the xz plane. If there’s something surprising about your answer, explain it;
otherwise explain why it’s not so surprising. [Remark: To show a function of two
variables, you may want to use a contour plot.]

• Try some other values of t, e.g. tÊ = fi/4. Can you find a time where an attached
field line is just about to detach?

• Show some initiative. Suppose these are figures in a paper you’re trying to
publish—figure out some improvements in presentation, informative labels, etc.
If you think that the range 0 < r < 5a doesn’t show the physics optimally, choose
some better range. Play.

42.2 [Not ready yet.]
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C H A P T E R 43

Higher-Multipole Radiation

43.1 FRAMING

Chapter 42 found a solution to Maxwell’s equations that, in the far-field region,
becomes approximately a spherical wave potential with amplitude proportional to
the time derivative of the electric dipole moment (compare Equations 37.1 and 42.8).
Does that mean that a charge and current distribution with electric dipole moment
equal to zero (or a constant) cannot radiate? No, we already found in Chapter 23 that
a purely magnetic dipole also creates far fields that fall like r≠1, indeed as a di�erent
sort of spherical wave.

To see what’s going on, recall a second approximation made in Section 42.4: The
electric dipole approximation retained only the first term in the multipole approxima-
tion. If that term vanishes, then the leading behavior may nevertheless involve some
higher term. In this chapter we’ll pursue such terms, while still making the far-field
approximation. When convenient, we’ll again suppose that the current and charge
distribution is harmonic in time with frequency Ê. In short, we’ll take a second look
at

Aµ(t, r̨ ) = µ0
4fir

e≠iÊ(t≠r/c)
⁄

d3rú e≠i‘multir̂·r̨ú/a 1
2 J̄µ(r̨ú) + c.c. [42.4, page 438]

Recall that in this formula, t and r̨ (and hence also r̂) refer to the observation, whereas
r̨ú is a source point. ‘multi is the small quantity controlling the multipole expansion
(Equation 42.5, page 438), and a is the overall source size (upper bound on Îr̨úÎ).

43.2 NEXT-ORDER TERMS

43.2.1 Order-one terms in ✏multi can be divided into two tensor structures
Proceeding as before, we now expand the exponential factor inside the integral in
Equation 42.4. Chapter 42 evaluated the zeroth-order term, which we’ll now call Ą [0];
instead, now we focus on first order in ‘multi. We’ll call the three spatial components
of that term Ą [1]:

Ą [1](t, r̨ ) = µ0
4fir

e≠iÊ(t≠r/c)
⁄

d3rú (≠i‘multir̂ · r̨ú/a) 1
2
˛̄j(r̨ú) + c.c.

We can write ≠i‘multi/a as c≠1 d
dt

:

= µ0
4firc

r̂ · d
dt

Ë⁄
d3rú r̨új̨(t ≠ r/c, r̨ ú)

¸ ˚˙ ˝

È
.
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The expression in the brace is a rank-2 3-tensor that depends on the observer’s position
only via the retarded time tr = t ≠ r/c. We’ll call it

¡
�(tr); it is a kind of moment.

Like any second-rank tensor,
¡
� can be written as the sum of its symmetric and

antisymmetric pieces, which we’ll call
¡
� =

¡
� [EQ] +

¡
� [MD]

respectively.

43.2.2 Antisymmetric part of the moment
Like any antisymmetric second-rank 3-tensor, we may reexpress the three independent
entries of

¡
� [MD] in terms of a single pseudovector (Equation 16.5, page 188):

¡
� [MD]

np
= ÁnpiD̨M,i where D̨M,i = 1

2 Áiks

⁄
d3rú r̨úk j̨s. (43.1)

Your Turn 43A
a. Establish Equation 16.5.
b. Show that

¡
� [MD] contributes

Ą [MD] = ≠ µ0
4firc

r̂ ◊ d
dt

D̨M

---
ret

far field

to Ą [1].

Your result implies that

• This part of the far field is also a spherical wave (because Ą [MD] depends har-
monically on time via t ≠ r/c).

• It falls like r≠1, and hence can potentially transport energy to infinity.

Your Turn 43B
a. Do a calculation similar to the one in Section 42.6.1 to show that

B̨ [MD] = µ0
4firc2 r̂ ◊

1
r̂ ◊ d2

dt2 D̨M

--
ret

2
. far field (43.2)

b. Then use Ampère’s law to find Ę [MD].

Remarkably
The MD contribution to the magnetic field looks just like the ED contri-
bution to the electric field. The MD contribution to the electric field looks
just like the ED contribution to the magnetic field.

Consider a circular loop of wire in the xy plane, carrying current with amplitude Ī
and frequency Ê, has no net charge anywhere, and hence vanishing electric dipole and
quadrupole moments. But you found in Your Turn 16A (page 188) that the magnetic
dipole moment is nonzero: D̨M = (ẑ�)(Ī cos Êt).
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43.2 Next-order terms 451
Your Turn 43C
a. Find the far electric and magnetic fields and compare to your earlier result
obtained in Coulomb gauge (Your Turn 23E, page 264).
b. Find the Poynting vector and compare with the result in Coulomb gauge (Your
Turn 23E).
c. Integrate the Poynting vector over all directions r̂.
d. Time-average your result from (c) to show that

ÈP[MD]Í =
!Ê

c

"4 (Ī�)2

12fi‘0c
. (43.3)

43.2.3 Symmetric part of the moment
To simplify

¡
� [EQ], we now use a trick remembered from magnetostatics (Section 16.1):

The divergence theorem gives that

0 =
⁄

d3rú Ǫ̀úi

!
r̨úkr̨úmj̨i(r̨ú)

"
,

where Ǫ̀ú denotes partial derivatives with respect to r̨ú. Thus
¡
� [EQ]

mk
= 1

2

⁄
d3rú

!
r̨úmj̨k + r̨úk j̨m

"
= ≠ 1

2

⁄
d3rú r̨úmr̨úkǪ̀ · j̨.

For a static current distribution, this quantity would be zero by the continuity equation.
More generally, however, we get

= 1
2

d
dt

⁄
d3rú r̨úmr̨úkflq

--
ret.

That is, this term involves the second moment of electric charge. We can write that
moment as its traceless part plus the rest, using Equation 3.2 (page 31):

1
3

¡
QE,ml

--
ret + 1

3
¡
11ml

⁄
d3rú rú

2flq
--
ret.

So the contribution of
¡
� [EQ] to the first-order term of the vector potential, Ą [1], can

be written as

Ą [EQ] = 1
6

µ0
4firc

d
dt

r̂ ·
1 d

dt

¡
QE

--
ret +

¡
11

⁄
d3rú rú

2 d
dt

flq(t ≠ r/c, r̨ú)
2

= µ0
24fic

Ë
r≠1r̂ · d2¡

QE

dt2

---
ret

+ r̂r≠1
⁄

d3rú rú
2 d

dt
flq(t ≠ r/c, r̨ú)

È
.

The second term of this expression looks complicated, but it’s purely a gradient, and
hence cannot contribute to the magnetic field. Equivalently, it can be removed by an
appropriate gauge transformation, leaving

Ą [EQ] = µ0
24ficr

r̂ · d2

dt2
¡
QE

--
ret. far field (43.4)
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Once again, we have found an outgoing spherical wave (the potential depends har-
monically on t ≠ r/c), falling in the far field region like r≠1. Compared with electric
dipole radiation, EQ radiation is suppressed by an extra factor of ‘multi = Êa/c, but
it can be the leading term for a source with dipole moments everywhere equal to zero.

43.3 HIGHER ORDERS

Clearly we could carry out the expansion to next order in ‘multi to find Ą [2], with
contributions from magnetic quadrupole and other terms. In the electrostatic and
magnetostatic multipole expansions, we found that each successive order gave fields
falling o� with distance faster than the previous one. In contrast, for time-varying
sources

Every order of the multipole expansion gives a contribution whose leading
far-field behavior is always 1/r. Each order is suppressed relative to the
previous one by an additional factor of frequency, not 1/r.

Thus, all of the orders create outgoing spherical waves, so they can all transport energy
to infinity.

In greater detail, we have in the far field approximation
d
dt

Ę = c2Ǫ̀ ◊ B̨ ¥ ≠cr̂ ◊ B̨

so
S = 1

µ0
Ę ◊ B̨ = c

µ0
B̨ ◊ (r̂ ◊ B̨) = c

µ0
r̂ÎB̨ Î2,

and each nonzero term of
..B̨ [0] + B̨ [1] + B̨ [2] + · · ·

..2 (43.5)

falls with distance as r≠2.
Let’s consider the various contributions according to their order in the multipole

expansion parameter. Equation 42.10 (page 443) gave the ÎB̨ [0]Î2 term (electric
dipole), and Equation 42.13 (page 444) gave its integral over all directions. If this
term is nonzero, it’s the most important one.

The cross term 2B̨ [0] ·B̨ [1] integrated over angles gives zero.1 So the next most im-
portant terms involve ÎB̨ [1]Î2 (magnetic dipole and electric quadrupole, Problem 43.7)
and 2B̨ [0] · B̨ [2] (the “anapole” term2).

43.4 PLUS ULTRA

A spherically symmetric charge distribution will not radiate, no matter how it depends
on time. For example, its monopole moment is fixed by charge conservation, and hence
has vanishing time dependence. We also saw above how the first orders of the expansion
involve D̨E, D̨M,

¡
QE, etc., all of which are zero for a spherically symmetric distribution.

1See Problem 43.6.
2See Rovenchak & Krynytskyi, 2018.
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The deeper point is that a spherically symmetric distribution, for example a shell
of charge that grows and shrinks over time, carries no angular momentum, and yet
photons, which have spin 1, must carry net angular momentum.

FURTHER READING

General: Zangwill, 2013, §20.8.
Anapole moment: Stefan Nanz, Toroidal Multipole Moments in Classical Electrody-
namics (Springer 2016).
Anapole radiation, frequently neglected in textbooks: Rovenchak & Krynytskyi, 2018.

PROBLEMS

43.1 MD antenna
Chapter 23 discussed the radiation we see when standing far away from an oscillating
magnetic dipole. Specifically, the dipole was oriented with its moment in the ±ẑ
direction, we imagined measuring the fields at r̨ = (L, 0, 0), and we only asked for the
leading order term in powers of 1/L. You found a formula for the vector potential
(Your Turn 23E), but even with the far-field limit it was still involved a complicated
integral. In this problem, you’ll find a simplified expression in a special limiting case.

Consider a series of loops with smaller and smaller radii b. However, each loop
also has a larger current than the previous one, in such a way that the magnetic
dipole moment DM(t) = D̄M cos(Êt) is the same for all. In this limit (and also the
far-field limit), find a simplified form for the vector potential, magnetic field, and
electric field observed far from the source along the x axis. If the outgoing wave is
polarized, describe its polarization. Also characterize how the energy density falls with
distance.

43.2 Double-loop antenna
In class we considered an antenna consisting of a circular loop of wire driven by an
oscillator. In this problem we consider an antenna consisting of two circular loops,
each of radius a and parallel to the xy plane, and centered on the z axis at heights
z = ±a. Here a π r. The currents in these loops are ± 1

2 (ĪeiÊt + c.c.) respectively.
Find the lowest-order multipole radiation fields produced by this system.

43.3 Pulsar I
A pulsar is a compact star with a large magnetic dipole moment D̨M frozen into it.
The pulsar rotates uniformly as a solid body (carrying the dipole moment along), with
angular velocity Ê. The dipole moment is located at the center and oriented at angle
– relative to the rotation axis.

The moment D̨M is related to the strength of Bpole of the magnetic field at the
magnetic pole by |D̨M| = ŸBpole, where Ÿ is a constant.
a. Find the rate at which the pulsar radiates electromagnetic energy, as a function
of Ÿ, Bpole, Ê, and –. [Hint: The magnetic dipole radiation formula has the same
general form as the electric dipole radiation formula.]
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b. If the source of the energy is the pulsar’s rotational kinetic energy, E = 1
2 IÊ2 with

I =pulsar’s moment of inertia, find the characteristic slowdown time scale T © ≠ Ê

dÊ/dt

as a function of Ÿ, Bpole, Ê, and –, and I.
c. Suppose that the pulsar has radius R, and get a formula for Ÿ in terms of R.

[Remark: Thus we get a prediction of the slowdown in terms of Bpole, R, Ê, –,
and I.]

43.4 Pulsar 2
A pulsar can be modeled as a rotating neutron star. Such a star is likely to have strong
magnetic field B0 at its surface, because it traps lines of force during its collapse, and
it’s also likely to be spinning rapidly, by conservation of angular momentum during
the collapse. Suppose that the magnetic field is predominantly dipole. If the magnetic
dipole axis does not align with the rotation axis, the star will have a time-dependent
magnetic moment D̨M(t); as with an ordinary permanent magnet, D̨M is frozen with
respect to a body-fixed coordinate frame.

It may seem hard to measure observationally the value of |D̨M|, but it’s related
to the strength of B0 of the magnetic field at the magnetic pole, and one can at least
estimate B0 from the Zeeman splitting of spectral lines (Problem 17.7). Thus the input
parameters of the problem are B0 and the mass M , star radius R, angle between axes
–, and rotation angular velocity Ê.
a. Find an expression for the radiated power P, in terms of Ê, |D̨M|, and –.
b. Assume that rotational kinetic energy of the star is the ultimate source of the
energy given o� by the pulsar, and that the pulsar is a sphere of uniform mass density.

Find a formula for the characteristic slowdown time scale T © ≠ Ê

dÊ/dt
|t=0, as a

function of B0, R, –, M , and the initial value of Ê.
c. Use typical numbers M = 1 solar mass = 2 · 1030 kg, R = 10 km, B0 = 108 T, and
assume – = 90¶. Evaluate P and · for Ê(0) = 104 s≠1, a frequency thought to be
typical of newly formed pulsars.

43.5 Exact MD wave
We have found the general solution to Maxwell’s equations in Lorenz gauge with
the outgoing wave boundary condition, but it’s too awkward for many purposes. We
did find some simple, exact solutions (plane waves), but they’re not appropriate for
outgoing radiation from a finite-size source. We also found some approximate solutions
(multipole far fields), but they’re. . . approximate.

I did give you one exact solution describing outgoing waves from a point (see the
Chapter 37), but I hinted that it was just the first in a series of such exact solutions.
Can we find any others, (almost) equally simple?

To explore this question, consider again the situation with a circular loop of
wire, of radius b, in the xy plane, centered on the origin, carrying alternating current
I(t) = 1

2 Īe≠iÊt + c.c. The corresponding fields are complicated. They become simpler,
however in the “pure magnetic dipole” limit, in which the radius of the loop b æ 0
while the magnetic dipole moment ˛̄m = fib2Ī ẑ is held constant.3

Evaluate the Lorenz-gauge vector potential Ą(t, r̨ ) exactly in this limit. That is,
don’t make the far-field approximation, in which higher powers of 1/r are dropped.

3The observer’s location r̨, and the angular frequency Ê, are also held constant in the limit.
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You’ll get an expression for Ą (t, r̨ ) that is almost as simple as the far field approxima-
tion that we worked out in class. Confirm directly that it does give an exact solution
to Maxwell’s equations in Lorenz gauge, everywhere away from the singularity at the
origin.

43.6
Using Equations 42.9 (page 440), 43.2, and 43.4, show that the cross term 2B̨ [0] · B̨ [1]

integrated over angles gives zero. Thus there is no term in the total radiated power
that is first order in the small parameter ‘multi. [Hint: You will encounter the angular
average of r̂ir̂j r̂k. It must be a rotationally invariant, rank-3, 3-tensor. There’s no
such thing, so this average must equal zero.]

43.7 Electric quadrupole radiation
When we expand Equation 43.5, the term ÎB̨ [1]Î2 includes the cross term 2B̨ [EQ] ·
B̨ [MD]. Show that in the far-field approximation, this term gives zero when integrated
over outgoing directions r̂, leaving only the contribution already found in Equation 43.3
(page 451), plus one other subterm that you are to find.
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C H A P T E R 45

The Microwave Polarizer
45.1 FRAMING

On the first day of class I brought in a microwave generator. We now know how it emits
linearly polarized radiation. I also had a detector with a similar antenna, which was
therefore sensitive to just one polarization. Finally, I introduced a polarizer (a planar
array of long, thin, parallel copper wires). Interesting Electromagnetic Phenomena
ensued.

45.2 A SIMPLIFIED CASE

The wire spacing was smaller than the wavelength, so let’s model the microwave
polarizer as a thin, planar conducting sheet at z = 0. It’s highly anisotropic, conducting
easily in one direction but not the other. Thus, the surface current density j̨ (2D) is
related to the field Ę by a 2D tensor, the surface conductivity:

j̨ (2D) = ¡
Ÿ s · Ę, where ¡

Ÿ s = Ÿsx̂x̂. (45.1)

We approximate the incoming fields far from the source as a plane wave traveling
along ẑ, and begin by supposing that it is linearly polarized along the conducting
direction:

Ę = 1
2 Ēx̂e≠i(Êt≠kx) + c.c., where k = Ê/c.

We will also simplify by considering a poor conductor, that is, Ÿs is small. Then each
surface element will have little influence on the others; each just responds to the
incoming plane wave Ęin via our ohmic hypothesis. Each surface element responds in
phase with the others. Each in turn radiates according to the Green function solution.
For example, at a point along the +ẑ axis we have a total radiation field from all
surface elements given by

Ąrad = x̂
µ0
4fi

⁄
d2rú

1
R

Ÿs
1
2 Ēe≠iÊ(t≠R/c) + c.c.

The integral runs over the whole plane z = 0. Let k = Ê/c.
This kind of integral comes up in many contexts, and it has a surprising feature, so

let’s pause to consider it carefully. We switch to plane polar coordinates; the integral
over Ïú just gives 2fi and we are left with rúdrú. The integrand, R≠1eiÊR/c, is a messy
function of rú, but there is an amazing trick. At an observation point along the +ẑ
axis (z > 0), we have R2 = rú

2 + z2, so RdR = rúdrú. Thus, we can change variables
in the integral to get

⁄ Œ

0
d2rú R≠1eikR = 2fi

⁄ Œ

z

dR eikR.
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45.2 A Simplified Case 467

That integral is easy! But it’s confusing:

= c

iÊ

Ë
eiŒ ≠ eikz

È
.

To understand that first term, suppose that our plane had a large, but finite, extent
L. Then this term would give a contribution to the potential that oscillates as we
consider larger L. But let’s compute the magnetic field, a physical quantity:

Ǫ̀ ◊ Ą = µ0
4fi

2fiŸsĒ

2ik e≠iÊt(ik)(≠x̂) ◊ ẑ
!
≠eikz + zÔ

L2 + z2
eik

Ô
L2+z2"

+ c.c.

Taking L æ Œ at fixed z, we see the second term may be dropped:

B̨ = ≠ŷ
ŸsĒµ0

4 e≠i(Êt≠kz) + c.c.

Your Turn 45A
Compute the electric field as usual, obtaining

Ęrad = ≠x̂
Ÿsµ0Ēc

4 e≠iÊ(t≠z/c) + c.c.

Remarkably, the forward scattered field is again a plane wave traveling along ẑ, but
180 degrees out of phase with the incoming wave. The total forward wave is then

Ętot = x̂ 1
2 Ē

!
1 ≠ 1

2 Ÿsµ0c
"
e≠iÊ(t≠z/c) + c.c. (45.2)

The transmitted wave has lost some of its amplitude.
Where did that energy go? Its flux decreased by the square of the factor in

parentheses, or ¥ (1 ≠ Ÿsµ0c) (remember that we work only to lowest order in Ÿs).
You should work out the radiated wave Ęrad in the backward (reflected) direction,
along ≠ẑ, but clearly its energy flux will be proportional to (Ÿs)2, and so cannot fully
account for the e�ect that we found. Instead, we must look for the culprit elsewhere.

A conductor with finite conductance dissipates energy as heat. The total loss is
⁄

d2rú Ę · j̨ (2D), (45.3)

where the surface current density j̨ (2D) is given by Equation 45.1. The loss per unit
area is just the integrand of Equation 45.3.

Your Turn 45B
Add it to the energy flux from Equation 45.2 and compare to the incoming energy
flux.
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468 Chapter 45 The Microwave Polarizer

45.3 EFFECT ON ARBITRARILY POLARIZED WAVE

Equation 45.1 says that the conductivity tensor’s principal directions are x̂ (eigenvalue
Ÿs) and ŷ (eigenvalue 0). We just saw that an incoming waves polarized along x̂ will
excite no currents and hence will be attenuated. However, a wave polarized along ŷ
will excite no currents and hence will be una�ected—as we saw on the first day of
class.

45.4 REGENERATION

Finally, suppose that the incoming wave polarization is linear but tilted by 45¶: ˛̄Ein =
Ē(x̂ + ŷ)/

Ô
2. Now we find the forward wave to be

Ętot = 1
2 Ē

1 x̂ + ŷÔ
2

≠ Ÿsµ0cx̂

2
Ô

2

2
e≠iÊ(t≠z/c) + c.c.

We can reexpress the second term in the tilted basis by noting that x̂ = (x̂ + ŷ)/2 +
(x̂ ≠ ŷ)/2. The first of these terms destructively interferes with the incoming beam as
before. The other one, however, generates a “transmitted” wave with a polarization
not present in the incoming wave, another Electromagnetic Phenomenon we observed
on the first day of class.

PROBLEMS

45.1 Another integral
Another situation of interest involves a plane wave that impinges on a dielectric
(nonconducting but polarizable) sheet. We then need an integral of the forms Œ

0 (2fifldfl) (1 ≠ cos2 –)eikr/(4fir). Here r =


fl2 + (zú)2 and cos – = fl/r. k, zú
are constants.

Following the discussion in the Feynman Lectures,1 we can wave our hands a
bit and argue that this integral is approximately equal to i

2k
eikzú . You may or may

not find this argument convincing, but either way, it’s good to check. Unfortunately
this integral is probably not one you have met in calculus. Fortunately, however, we
can simplify it to the point where a computer can help us. Notice that the problem
contains two parameters, zú and k. There is only one dimensionless combination of
these parameters; call it M = kzú.
a. Change variables in the integral from fl to r. Define dimensionless variable u = kr,

and express the thing that is to be shown in terms of it. Express it in the form
(a certain integral) ¥ 1.

b. Figure out how to get your favorite mathematical software to do this integral. Eval-
uate it for various values of M and check our expectation. [One visually appealing
way could be to graph the real and imaginary parts of the quantity you found in
(a) as functions of M .]

1Volume 1, sections (30-7)–(31-2).
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c. Are there some values of M for which our expectation is more, or less, accurate?
Hint: To get started, you’ll need to understand how to do integrals numerically. I had
to look in Matlab’s help under quad. In order to understand the help, I then needed
to look up function handles. I still got stuck until I noticed the remark “the function
should accept a vector argument x and return a vector result, the integrand evaluated
at each element of x.” Thus, quad(@(x) xˆ2,0,1) is an error, whereas quad(@(x)
x.ˆ2,0,1) yields 1/3. Try it yourself with some other favorite integral of yours before
doing the problem.
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C H A P T E R 46

Scattering by Free and Bound Charges
See also P+S §15.5.

46.1 SHAKE IT

When an EM wave encounters a charged particle, we’ve seen that it shakes the particle.
Chapter 18 considered the rather fanciful situation of a particle subject to “viscous
friction.” A more realistic case is a free charged particle. For example, in a low-density
plasma like the early Universe just prior to recombination, atoms are dissociated into
nuclei and electrons, each of which feels an overall potential due to all the others but
is not bound to any specific partner.1

Let’s investigate the simplest case, with a single free charge q, of mass m. We
will assume that the charge’s motion is always nonrelativistic (and later justify that
assumption, in a limit that we will make precise). Write an incident plane wave as

Ę(t, r̨ ) = 1
2

˛̄Ee≠i(Êt≠k̨·r̨ ) + c.c.

(and the associated B̨ field). The charge sits at r̨ = 0, so it feels an electric force f̨ =
qĘ. The transverse magnetic force is negligible because E = cB so qv̨ ◊ B̨ ≥ q(v/c)E.
Our assumption of nonrelativistic motion, v/c π 1, means that we can neglect this
part of the force.2

Write the resulting motion as r̨ (t) = 1
2
˛̄re≠iÊt + c.c. Then Newton’s law gives the

amplitude of the shaking motion as ˛̄r = ≠(q ˛̄E )/(mÊ2), whose velocity will be π c if

Îq ˛̄EÎ π mÊc. condition for nonrelativistic motion (46.1)

So our assumption is justified for weak enough fields. In practice, this condition is
nearly always well satisfied.3

46.2 THOMSON CROSS SECTION

Our shaking charge gives rise to a time-dependent dipole moment D̨E(t) = qr̨ (t), so it
will radiate at the same frequency. The charge’s motion remains confined to a region
of size Î˛̄r Î. The criterion for the ED approximation is met:

Î˛̄r ÎÊ/c = (q ˛̄E )/(mÊ2c)Ê π 1,

1A situation e�ectively like this one also holds for some of the electrons in a metal.
2Chapter 18 studied the longitudinal force, for which the magnetic part was the leading term and so
could not be dropped.
3OK, not in the free electron laser.
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46.2 Thomson Cross Section 471

by virtue of Equation 46.1. We can therefore use the ED radiation formulas to find
the energy flux in any direction.

Chapter 42 gave the energy flux for a time-dependent, linear dipole as

S̨ = r̂
µ0

(4fir)2
1
c

d2

dt2DE

2 sin2 Ë, [42.12, page 444]

where Ë is the angle between the dipole moment and the direction of observation.
In our case, suppose that the incoming wave is polarized along x̂; then D̨E(t) =
x̂ 1

2D̄Ee≠iÊt + c.c., with D̄E = ≠q2Ē/(mÊ2). The power output per solid angle is then
=

dP
d�

>
= Èr2r̂ · S̨ Í = 1

(4fi)2
1

‘0c3
q4

m2
1
2Î ˛̄E Î2 sin2 Ë. (46.2)

Remarkably, the frequency Ê drops out of this formula. Note, too, that the incident
wave’s direction k̂ is irrelevant, other than that it defines the plane of allowed directions
for D̨E. Finally, note that a free proton is much less e�ective at scattering than a free
electron, due to the 1/m2 factor.

Equation 46.2 tell us something about how good our charge is at scattering
radiation, but it’s not intrinsic to the charge—it also depends on the strength of the
incoming field. To get something intrinsic, we need to normalize it by some measure
of the strength of the incoming wave. How should we do that? The total power
transported by a plane wave is infinite, because of its infinite extent in the transverse
directions. But most of that extent is irrelevant—bits of the wave that never come
near the charge just cruise by without scattering.

The key insight is that the energy flux (power per unit area) is finite. Think
about holding a penny in the sunlight. The energy removed from the incoming beam
(reflected, absorbed, whatever) equals the solar energy flux times the cross-sectional
area of the penny, or

cross section = (energy removed from beam)/(energy flux incoming).

Note how the units work out: energy and time cancel, leaving behind 1/(1/L2), or
area. The infinite transverse extent of the incoming beam is irrelevant, as desired.

We can similarly characterize how good a single electron is at scattering light by
forming the same quotient; the intensity of the incoming beam cancels from numerator
and denominator, leaving behind a quantity with units of area, which we will again
call “cross section” by analogy to the macroscopic situation. We just need a formula
for the denominator:

ÈÎS̨inÎÍ = Èµ0
≠1ÎĘ ◊ B̨ ÎÍ = 1

2 ‘0cÎ ˛̄E Î2.

The cross-section is traditionally denoted ‡. Extending our original thought experi-
ment, we can subdivide this scattering cross section into bits attributable to scattering
into particular angular bins d�, or:

d‡

d� =
=

dP
d�

>? e
ÎS̨inÎ

f
.

This quantity is generically called the di�erential scattering cross-section.
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472 Chapter 46 Scattering by Free and Bound Charges

For the case of scattering from a single electron, in classical electrodynamics,
combining the preceding generic formula with Equation 46.2 gives

d‡

d� =
3

1
4fi‘0c2

q2

m

42

sin2 Ë. Thomson scattering cross-section

Your Turn 46A
Confirm that the constants in brackets really do combine into a quantity with
dimensions of length, and evaluate it for q and m appropriate for an electron.
This quantity is called the classical electron radius, or rc.

Often we don’t care about angular dependence; we only want to know how much
energy the electron scatters out of the beam. For this, we can integrate the Thomson
formula over all directions, using

⁄
dÏd(cos Ë) sin2 Ë = 8fi/3.

The total scattering cross-section obtained in this way is ‡ = (8fi/3)rc
2, a useful

number you should evaluate for electrons.

46.3 AN ASTROPHYSICAL APPLICATION

The Sun’s interior is hot. There’s a lot of light in there. And yet, that light takes a
long time to make its way to the surface of the Sun. One way to think about this is to
imagine the light constantly scattering, changing direction. Although any one electron
in this plasma isn’t very e�ective at scattering light, there are quite a lot of electrons.
So the light must take a zigzag path; even though it’s traveling at c between collisions,
nevertheless that path will be much longer than the Sun’s diameter, so traversing it
takes a lot of time.

The quantity that characterizes the tortuous light trajectories is a “mean free
path.” Dimensional analysis suggests that, to get dimensions of length, we need to
form the quantity 1/(rc

2n), where n is the density of free electrons. The mean free
path for light is this quantity times some geometrical constants of order one.

46.4 POLARIZED INCOMING LIGHT

Suppose that the incoming light travels along ẑ, with polarization along x̂. Then D̨EÎ x̂.
The electric far field points along x̂ ≠ r̂(r̂ · x̂); that is, it lies in the plane spanned by
r̂ and x̂ and (as always) transverse to r̂.

Linearly polarized light always scatters to some kind of linearly polarized light,
regardless of the scattering direction (or to nothing if we observe along the direction
of polarization, r̂Îx̂).
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46.5 UNPOLARIZED INCOMING LIGHT

So far, we have been considering a monochromatic, pure incoming wave, and in partic-
ular polarized. We can treat unpolarized light as an incoherent superposition of many
pure waves.4 Scattering can create polarization from such light. For example, when
viewed at 90¶ to the original wave’s direction, the scattered light will be 100% linearly
polarized: One component of the incoming light shakes electrons longitudinally to
that viewing direction, so there is no reradiation in that direction at all. At other
scattering angles, the light interpolates between that extreme value and 0% for the
forward and backward directions.

Please read the posted pages from Dodelson’s book about how we can use these
observations to learn about the early Universe from the faint polarization pattern in
the cosmic microwave background radiation.5

46.6 BOUND CHARGES

46.6.1 Rayleigh scattering cross section
Next suppose that the charge is bound, for example, to a heavy atomic nucleus. The
simplest classical model we can make of that situation is to suppose that the charge
gets a linear restoring force with some spring constant k. As usual with harmonic
oscillators, it is convenient to introduce Ê0 =


k/m. Then Newton’s law becomes

≠mÊ2˛̄r = ≠Ê0
2˛̄r + q ˛̄E, so ˛̄r = q ˛̄E

m(Ê02 ≠ Ê2) .

Substituting this expression into earlier results then gives the Thomson expression for
di�erential and total cross-sections, each multiplied by (1 ≠ (Ê0/Ê)2)2. Either of these
formulas is called the Rayleigh cross-section formula. In particular, the di�erential
cross section has the same polarization behavior as what we already observed for free
charges.

Two limiting cases are noteworthy: At high frequency Ê ∫ Ê0, our results reduce to
the Thomson formulas. In this regime, the fact that the charge is bound is immaterial
to its response. In the opposite limit, we get the Thomson formulas multiplied by
(Ê/Ê0)4: The cross-section is now strongly frequency dependent.

46.6.2 Blue sky
Earth’s upper atmosphere consists of polarizable objects (molecules) that are much
smaller than the wavelength of visible light, at low enough density that we may neglect
their mutually interactions and treat them as independently scattering sunlight to
our eyes. They are also randomly placed in space, which eliminates any coherent
e�ects from multiple scattering. In such a situation, the fact that there are many
such molecules just amplifies the scattering without changing its character. Indeed,
we know that

4See Chapter 22.
5Dodelson, 2003, pp310–319.
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474 Chapter 46 Scattering by Free and Bound Charges

• The scattered light is polarized in a way that depends on the direction of the
line of sight relative to the incoming beam.

• The scattered light is bluer than sunlight itself (higher frequencies scatter more
strongly).

• At sunset, we observe sunlight through a thicker layer of air than at noon, and
direct (unscattered) light is redder (more depleted of high frequencies) than at
noon.

46.6.3 A demo
I sent a beam of white light from a projector into a dilute suspension of nonfat
milk. Milk is mainly water of course, but that component is irrelevant. Milk is also
a colloidal suspension of fat globules, but I used nonfat milk for the demo. Milk
contains dissolved lactose, etc., but that just gives a solution that’s homogeneous
on the scale of wavelength of light (it alters the index of refraction), and so again is
irrelevant for scattering. What’s important is that nonfat milk is a colloidal suspension
of protein micelles, which (a) are well separated compared to light wavelength; (b)
are themselves much smaller than wavelength of light (nanometer scale); (c) move
randomly and independently; and (d) Have polarizability di�erent from that of the
surrounding water. Thus, we were in a situation similar to that of sunlight on the
upper atmosphere. You saw what you saw.
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T2 Track 2

46.2Õ

At high frequencies, the quantum character of light starts to matter. Dimensional analysis
gives us a clue: We can form another length scale, the Compton wavelength 2fi~/(mc), by
using Planck’s constant. If the incoming light’s wavelength is shorter than this, then we
start to get billiard-ball collisions of electrons and single photons, the Thomson formula is
no longer valid, and weirder still, the outgoing photon won’t have the same frequency as the
incoming one (Compton e�ect).
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PROBLEMS

46.1 Estimates and approximations
A red laser gives a 100 mW beam that is approximately a plane wave with cross-
sectional area 1 mm2.
a. Find the electric field strength in this beam.
b. Estimate the fractional deformation of a hydrogen atom placed in this beam, due

to the electric field. Is it likely that we could make the approximation of working
to first order in this deformation when we study polarizability?

c. Suppose that this beam encounters a single free electron. The electron responds by
oscillating. Justify our use of the nonrelativistic approximation for that motion.

46.2 Di�usion of light
Idealize the Sun as a highly ionized plasma with average free electron density about
1024 cm≠3.
a. Use the Thomson formula to find the mean free path for electromagnetic radiation

in the Sun, as a function of wavelength.
b. Over lengths longer than the MFP, radiation takes a random-walk path out of the

Sun. Estimate the time required for EM radiation to di�use from the core to the
outside, a distance of 7 · 108 m.
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C H A P T E R 49

Isotropic, Linear Media

49.1 FRAMING

We now return to the study of nonconducting, but polarizable, media, in greater detail
than Chapter 5. Thus, charges are not free to travel throughout the material; however,
the individual molecules can deform slightly.

We will consider an approximation in which

• We assume that the medium consists of polarizable objects (or permanently
polarized, unoriented objects which can become oriented by an external field).
We only consider the dipole fields created by those objects.

• We will neglect all forms of energy dissipation. Thus, we exclude ohmic materials
(conductors). It’s not hard to add this feature to our equations.

• We assume that external fields vary over length scales much longer than the
spacing between the polarizable constituents. We also suppose the latter to be
finely enough divided (compared to the length scales of the disturbances we’re
studying) that they can be treated as a continuous density of dipole moment.1

All formulas in this chapter are understood to be subject to the limitations of these
approximations, whose domain of validity we won’t explore.

49.2 POLARIZABLE MEDIA

49.2.1 Electric
First we must review and extend the discussion of dielectric materials from Chapter 5.2
Let P̨ denote the net density of electric dipole moment. Chapter 5 argued that an
interface, for example between a medium and vacuum, will develop a layer of bound
surface charge with surface density ‡b given by

‡b = n̂ · P̨, [5.3, page 57]

where n̂ is the perpendicular unit vector directed outward. At an interface between
two media, substitute the di�erence in P̨ values on either side.

1Or equivalently, we average the e�ects of finite-size molecules over a length scale smaller than the
one of interest, but much bigger than the molecular spacing. The quantities Ę , P̨ , B̨ , M̨ below are
all averages of this sort.
2Just don’t confuse “dielectric material” with “dialectical materialism.”
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49.2 Polarizable Media 497

Figure 49.1: A collection of electrically polariz-
able “molecules” in a nonuniform electric field
(magnitude increasing as we move to the right).
Net bound charge appears that is minus the di-
vergence of the polarization density, in this case
≠ˆP̨x/ˆx.

–  +

–  +

–  +

0

0
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If P̨ is spatially nonuniform, it will also give rise to a bound charge density flq,b
in the interior of a medium. Figure 49.1 shows a simple example of this e�ect. The
general formula

flq,b = ≠Ǫ̀ · P̨ (49.1)

is rotationally invariant and agrees with the figure in the special case shown there.
Mentally deleting the unpolarized “molecules” at the left of the figure also recovers
our original discovery of Equation 5.3.

If the polarization is time-dependent, then the motion of bound charge will also
give rise to a bound charge flux j̨b,P, via the continuity equation: ˆflq,b/ˆt = ≠Ǫ̀ · j̨b,P.
Substituting that result into Equation 49.1 gives

j̨b,P = ˆP̨ /ˆt electric contribution. (49.2)

To understand this result, suppose that P̨ is initially zero, then switches on to the
form shown in Figure 49.1. Creation of the internal layer of negative bound charge
requires net flow of charge to the right.

The electric displacement is defined by

D̨ = ‘0Ę + P̨ . [5.5, page 58]

(We’ll just call it “the D̨ field.”) With these definitions, the electric Gauss law takes
a simple form (Equation 49.6 below). The only source appearing explicitly in this
formula is the free charge density.
T2 Section 49.2.1 Õ (page 509) introduces dissipation.

49.2.2 Magnetic
Let M̨ denote the net magnetic dipole moment density created by the motions of bound
charges in individual polarizable objects. If M̨ is spatially nonuniform, it will give
rise to a second contribution to the bound charge flux (in addition to Equation 49.2).
Figure 49.2 shows a simple example of this e�ect. The general formula

j̨b,M = Ǫ̀ ◊ M̨ magnetic contribution. (49.3)
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498 Chapter 49 Isotropic, Linear Media

Figure 49.2: A collection of magnetically polariz-
able “molecules” in a nonuniform magnetic field
(magnitude increasing as we move to the right).
Black rings indicate classical currents equivalent
to those induced by the applied field. Net bound
charge flux appears that is proportional to the
curl of the magnetic moment density, in this case
x̂(ˆM̨z/ˆy), which is directed out of the page as
shown.
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is rotationally invariant and agrees with the figure in the special case shown there.
Mentally deleting the unpolarized “molecules” at the left of the figure also shows that
at the boundary between medium and vacuum, we get a bound surface charge flux

j̨ (2D)
b = M̨ ◊ n̂, (49.4)

where n̂ is the normal directed outward.
The magnetic field intensity is then defined by

H̨ = µ0
≠1B̨ ≠ M̨. (49.5)

(We’ll just call it “the H̨ field.”)

49.2.3 Maxwell
We wish to eliminate explicit mention of the bound charges and currents, a job that
we began in Chapter 5. The remaining (non-bound) charges and currents are called
“free”: flq,f , j̨f . Excess static charges, which macroscopically violate charge neutrality,
are considered free, for example, the charge delivered by the leads of a capacitor.
Currents that transport net charge over macroscopic lengths are also considered free,
for example, those in a coil of wire surrounding an inductor.

Your Turn 49A
Using Equations 49.1, 49.2, and 49.3, show that

Ǫ̀ · D̨ = flq,f Gauss (49.6)

Ǫ̀ ◊ H̨ ≠ ˆD̨

ˆt
= j̨f . Ampère (49.7)

Equation 49.6 extends the validity of Equation 5.4 to situations where the polarization
is nonuniform. (The magnetic Gauss law and the Faraday law are una�ected because
they do not involve charges or currents.)
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49.2.4 Boundary conditions
We have already seen that the perpendicular component of the B̨ field must be
continuous across a boundary between media:

�B‹ = 0. always [14.20, page 169]

We also saw that at a dielectric/vacuum interface, with no free surface charge nor
current,

n̂ · (Ę[vac] ≠ Ę[1]) = ‡b/‘0, [5.13, page 63]

�ĘÎ = 0, and [5.15, page 63]

�B̨Î = µ0j̨ (2D)
b ◊ n̂, [14.21, page 170]

where n̂ points outward from medium 1 (toward the vacuum). At an interface between
two magnetic media, or one such medium and vacuum, the contribution from bound
currents can be incorporated into H̨:

Your Turn 49B
Allow for free surface charge density and flux. Use Equations 5.13, 14.21, 5.3, and
49.4 to show that

�D‹ = ‡f ; �H̨Î = j̨ (2D)
f ◊ n̂.

Here �D‹ = (D̨[2] ≠ D̨[1]) · n̂, where n̂ is the unit normal vector pointing from
medium 1 to medium 2; similarly for �H̨Î.

These results are particularly useful when we have reason to believe that an interface
has zero free surface charge density and zero free surface current. The other boundary
conditions are the same as always:3

�(B‹) = 0 and �(ĘÎ) = 0.

T2 Section 49.2 Õ (page 509) mentions more sophisticated ways to think about bound
charge and current.

49.3 LINEAR REGIME

Our goal was to eliminate explicit mention of bound charges and currents from the
Maxwell equations, but Equations 49.6–49.7 didn’t yet succeed: Together with the re-
maining unmodified Maxwell equations, they have doubled the unknown fields, adding
D̨ and H̨ to Ę and B̨. It is true that the new quantities are determined by the old ones,
but in a way that does involve the charges and currents in the medium (Equations 5.5
and 49.5). We now introduce a further level of approximation that, when justified,
finishes our job in a simple way.

3See Sections 5.10 and 14.7.
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49.3.1 Electric
Many dielectric media are approximately linear:4 That is, P̨ is a linear function of Ę ,
described by the dielectric susceptibility ¡

‰e via the response function P̨ = ‘0
¡
‰e · Ę.

The dielectric susceptibility describes how much induced electric dipole moment you
get (deformation times charge per volume) per applied electric field (force per charge).
That is, it is essentially a spring constant tensor, times density and charge squared.
Like any spring constant tensor, it is symmetric.5

For simplicity, let’s assume the medium is isotropic (‰e is a scalar constant). A
medium can be isotropic if its constituent polarizable objects are themselves spherical
(like helium atoms), or if they are arranged with random orientations (like water
molecules in liquid or vapor phase). Define the permittivity ‘ = ‘0(1 + ‰e). Then6

D̨ = ‘Ę .
constitutive relation for uniform, linear,
isotropic, lossless, nonchiral dielectric [5.6, page 58]

More general forms of the constitutive relation include dissipation (complex ‘),
anisotropy (¡

‘ with tensor structure), and chirality.7

49.3.2 Magnetic
Many magnetic media are also approximately linear;8 that is, M̨ is a linear function
of B̨, described by the magnetic susceptibility9 ‰̃m via the response function M̨ =
µ0

≠1‰̃mB̨. Define the permeability µ = µ0/(1 ≠ ‰̃m). Then

H̨ = µ≠1B̨
constitutive relation for uniform, linear,
isotropic, lossless nonchiral magnetic material (49.8)

More general forms of the constitutive relation include dissipation (complex µ),
anisotropy (¡

µ with tensor structure), and chirality.

4Exceptions include piezoelectric crystals under stress, or ferroelectrics (“electrets”), which have
nonzero P̨ in zero applied field. Also, any medium will be linear only in some regime of weak enough
applied fields. For example, the orientational ordering of water molecules must eventually saturate
(100% alignment) at high applied fields. Much of optics deals with media in their linear regime, but
there is also a big field of “nonlinear optics.”
5Unlike a quadrupole tensor, however, it is not traceless.
6 T2 Section 42.8Õ (page 446) showed that a rotationally-invariant rank-2 tensor must be a constant
times the identity.
7Chapter 50 studies anisotropy. Section 49.6 below studies chirality.
8Exceptions include ferromagnets, which have nonzero M̨ at zero applied field. Also, again any
medium is only linear for su�ciently weak applied fields.
9We follow a convention in Feynman et al., 2010b. Sadly, for historic reasons most people instead
define a di�erent quantity ‰m by M̨ = ‰mH̨. The two descriptions are equivalent: The relation
between the susceptibilities is ‰̃m = ‰m/(1 + ‰m).
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49.3.3 Maxwell
Equations 49.6–49.7 are general. For the special case of linear media, they can be
combined with Equations 5.6 and 49.8, and the boundary conditions, to form a closed
system that can be solved to give all fields in terms of free charges and currents.

That is, we can forget about the medium if it’s linear; the Gauss law Equation 49.6
retains its vacuum form, but with a modified value of the permittivity. The Ampère
law Equation 49.7 also retains its vacuum form, but with a modified value of the
permeability. Only the free charge density and flux enter these equations. You also
found in Your Turn 49B that the same is true for the boundary conditions.

In particular, in a bulk isotropic medium there will be the same wave solutions as
in vacuum (two transverse polarizations), except that the velocity is (‘µ)≠1/2 instead
of c. For example, dielectric polarizability (‘ > ‘0) leads to a slowdown, that is, to a
value of the refraction index that is larger than the vacuum value of 1.10

49.3.4 Macroscopic physical realizations
Consider a medium consisting of (or containing):
• A jumble of long, thin, straight strands of wire, oriented randomly. This medium is
electrically polarizable and isotropic.
• A jumble of circular rings of conductor, oriented randomly. This medium is mag-
netically polarizable and istotropic.

49.3.5 Remarks and further examples
The preceding section imagined macroscopic polarizable objects, which could be rele-
vant for radio or microwave propagation, but individual molecules are also polarizable.
Although the details involve quantum mechanics that lies outside the scope of these
notes, nevertheless for many purposes those details can be incorporated into phe-
nomenological values of the susceptibilities.

Note that P̨ and M̨ may arise due to processes that are not instantaneous. Nev-
ertheless, linearity and time-translation invariance of the Maxwell equations imply
the existence of single-frequency solutions. But ‘ and µ will in general be frequency-
dependent, leading to dispersion, that is, the dependence of wave velocity on frequency.
Examples:11

• ‘ ¥ 81‘0 for water at Ê æ 0; it’s highly polarizable. But ‘ ¥ (4/3)2‘0 for water
at visible frequencies; the alignment of permanent dipoles is sluggish.

• For split rings, each ring can act as an RC circuit, and will resonate.12

• Dilute plasma: ‘ = ‘0(1 ≠ ( ÊP
Ê

)2).

10Exotic “metamaterials” exist with ‘ that is not positive in certain frequency ranges, requiring special
interpretation. Anisotropic polarizability, for example in a crystalline material, leads to birefringence
(Chapter 50).
11We also saw examples of dispersion in Thomson and Rayleigh scattering (Chapter 46).
12See Zangwill, 2013, §18.5.6.
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49.4 FRESNEL EQUATIONS, “TOTAL” INTERNAL REFLECTION, AND
THE EVANESCENT WAVE

Our discussion has justified the approach to optics used in Chapter 19, and extended
it to magnetically responsive media.

[Not ready yet.]

49.5 CIRCULAR BIREFRINGENCE

Section 49.3.3 argued that waves propagate in an isotropic linear medium in much
the same way as in vacuum: The medium slows light down, but cannot alter its
polarization. Changing the value of ‘, µ, or both just slows the waves down.

Real materials often consist of objects, such as water molecules, that are indi-
vidually far from being isotropic. Nevertheless, in liquid water many molecules are
jumbled together in random orientations. The same holds for a mixture, such as a
solution, and even for an amorphous solid material such as glass. In each of these
materials, the overall polarizability tensors are therefore averaged over all possible
rotations, and hence are proportional to the identity tensor,13 e�ectively creating an
isotropic medium. So we again predict no e�ect on polarization of light.

The prediction just made fails spectacularly, however, even for everyday material
like a solution of sugar in water! For example, corn syrup (essentially a concentrated
glucose solution) rotates the axis of linearly polarized light in a counterclockwise
direction when viewed along k̨. This electromagnetic phenomenon is called circular
birefringence.14

What property could select this direction of rotation, a choice that breaks spatial
inversion invariance? Because Maxwell’s equations are themselves invariant under
inversions, the only source of optical rotation must be a property of the sugar molecules
themselves—one not shared by, say, water molecules.

Indeed, glucose di�ers from H2O by a property called chirality. An object that
cannot be superimposed on its mirror image by any rotation or translation is called
chiral.15 That is, a chiral object’s very presence breaks inversion symmetry.16

The hypothesis that molecular chirality is the source of optical rotatory power
predicts that molecules that are mirror-images of each other should induce rotation
in opposite directions. But we still face a paradox, because the argument given at the
start of this section seems to apply to an isotropic solution of any kind of molecule,
chiral or not.

We must be missing something crucial. Since we calculated that an e�ect is zero

13 T2 See Section 42.8Õ (page 446).
14Some authors use the synonym “optical activity”; the medium is said to possess “optical rotatory
power.” Circular birefringence is di�erent from ordinary birefringence, which can happen even in a
nonchiral crystal of nonchiral objects (Chapter 50).
15Objects that are not chiral are called “nonchiral” or “achiral.” The two mirror images of a chiral
object are called each other’s enantiomers.
16In contrast, the oxygen, nitrogen, and argon making up most of our atmosphere are achiral, and
hence the polarization of the blue sky is not washed out by di�erent rotations from the many di�erent
distances that contribute to what an observer sees.
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Figure 49.3: (a) A simple chiral molecule can be obtained by bonding four di�erent atoms to a central carbon.
The mirror image of 1 (shown as 2) cannot be brought into coincidence with any rotated version of 1; 3,4 show
some failed attempts. (b) Helical wires as a model for chiral molecules. When B̨ (t) is increasing in magnitude
in the direction shown, the two loops of wire will experience opposite electric polarizations due to their chiral-
ity. The case of nonconstant applied Ę (t) involves a similar cartoon. (c) A macroscopic crystal that cannot be
rotated into its mirror image.

and observed that it’s not, maybe we made a bad approximation. A typical impulse
is to wonder: Maybe we truncated a power series to an order at which the e�ect does
not yet arise. But that’s not the answer.

49.6 CROSS-SUSCEPTIBILITY

The resolution of our puzzle lies in another possibility that we’ve overlooked so far.
The most general response function that is linear, homogeneous, isotropic, and lossless
is: A

P̨

M̨

B
=

A
‘0‰e

¡
11 ?

? 1
µ0

‰̃m
¡
11

B A
Ę

B̨

B
.

That is, the constitutive relations (Equations 5.6 and 49.8) may in general have cross-
terms. I’ll call such terms cross-susceptibilities. As long as they, too, are proportional
to

¡
11, they will still be rotationally invariant (isotropic).

49.6.1 Macroscopic physical realization
Are cross-terms of this sort really allowed? To see, let’s invent another simple physical
realization, along lines similar to Section 49.3.4. Consider a helix of wire open at each
end (Figure 49.3b). This helix can be left- or right-handed. Its handedness has nothing
to do with how it is oriented in space; for example, flipping it end-for-end does not
change the handedness. In short, it is a chiral polarizable object, and that property
will not be erased by rotational averaging.

Imagine a time-dependent Ę field directed along the helical axis direction, with
magnitude ÎĘ Î increasing in time, so that ˆĘ/ˆt is parallel to Ę. The applied field
leads to an electric polarization D̨E as usual. Because it’s time-dependent, we also get
a current j̨z directed axially.
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Your Turn 49C
Show that the helical structure also forces the current to have an azimuthal
component, and hence generates a magnetic dipole moment: D̨M = (c÷Õ)(ˆĘ /ˆt),
where ÷Õ is a positive constant for the right-handed helix, or negative for the
left-handed one.

Explicitly, if ˆĘ/ˆt points upward, positive charges flow up, regardless of the hand-
edness of the helix. The shape of the helix then forces this charge to rotate about the
axis as it moves. The direction of this azimuthal current, and hence the sign of ÷Õ,
depends on the handedness of the helix.

Next, imagine a magnetic field directed along the helical axis direction with ÎB̨ Î
increasing in time, so ˆB̨/ˆt is parallel to B̨.

Your Turn 49D
Use the Faraday law to show that this field induces an EMF in the wire, creating a
cylindrical current sheet that partially cancels the B̨ inside the coil. But the helical
shape also imposes an axial motion of charge and hence an electric polarization:
D̨E = ≠c÷(ˆB̨ /ˆt), where ÷ is a positive constant for the right-handed helix, or
negative for the left-handed one.

That is, the constants ÷Õ and ÷ always have the same sign. (The sign of the charge
carriers is unimportant.)

Both of the arguments above are for Ę and B̨ directed along the helical axis. But
if the medium contains randomly oriented helices, then some fraction of them will
have their axes along Ę or B̨.

49.6.2 General form
The discussion above suggests that in general a uniform, linear, isotropic, lossless,
chiral medium will have17

C
P̨

M̌

D
=

5
‘0‰e ≠÷ ˆ

ˆt

÷Õ ˆ

ˆt
(µ0c2)≠1‰̃m

6 C
Ę

B̌

D
. (49.9)

(Here M̌ = M̨/c and B̌ = cB̨. These definitions simplify our formulas by giving all
the entries in the matrix the same dimensions.)

Generally the constants ‰e, ÷, ÷Õ, and ‰̃m are tensors, but in isotropic medium
such as aqueous solution they get replaced by their averages over orientation, that is,
as 3-scalars times

¡
11.18

As mentioned before, ‰e and ‰̃m may be frequency-dependent. Similarly, for
disturbances at a specific frequency Ê the cross-terms will be functions of frequency,
both due to explicit frequency dependence of ÷ and ÷Õ and because of the explicit time
derivatives in the formula. By time-reversal invariance they must be odd functions, so
these terms vanish at zero frequency.

17There is a slight change of notation here: Now ÷, ÷
Õ include the density of the polarizable molecules.

18See Section 42.8Õ (page 446).
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In the macroscopic physical realization of cross-polarization given above, you
showed that ÷ and ÷Õ have the same sign.19 Replacing the helices by their mirror
images reverses the signs of both ÷ and ÷Õ.

Thus cross-susceptibility is allowed in a medium that breaks spatial inversion
invariance. That could occur either because the medium contains chiral molecules
(such as most sugars, proteins, DNA, . . . ), or nonchiral molecules arranged in a chiral
crystal structure (such as in quartz).

49.7 THE ORIGIN OF CIRCULAR BIREFRINGENCE
Your Turn 49E
a. Formulate a plane wave trial solution for the medium described by Equa-
tion 49.9. To keep things simple, you may (unrealistically) set ‰e = ‰̃m = 0, that
is, neglect the ordinary susceptibilities and focus only on the cross-susceptibilities.
b. Proceeding similarly to Section 50.1, show that the condition for a plane-wave
solution simplifies if we expand the polarization vector in the circular polarization
basis (helicity basis) ’̨ (±) = (x̂ ± iŷ)/

Ô
2.

c. Show that each circular polarization gets a di�erent phase velocity.

The two wave speeds you found can as usual be expressed as indices of refraction,
c/n±, explaining the term “”.

Similarly to Section 50.1, we can now ask what happens to an arbitrary linear
combination of the two circularly-polarized eigenmodes of propagation. Specifically,
if we feed in a linearly polarized plane wave, its frequency will not change, by time-
translation invariance. Once the wave enters the medium, however, each circularly
polarized component propagates with a di�erent wavenumber k(±) (the two values
you found in Your Turn 49E). After the wave reemerges into vacuum at the other
end of a slab of medium, we can reassemble the two components and interpret the
resultant.

Your Turn 49F
a. Try this, and show that the result is again linearly polarized but in a direction
rotated relative to the original. (This observation explains the term optical rota-
tory power.)
b. Show that the angle of rotation is proportional both to n+ ≠ n≠ and to the
thickness of the slab.
c. In particular, show that n+ ≠ n≠ is proportional to the density of chiral polar-
izable objects (for example, concentration of a solution).

Your last result can be stated as saying that the total rotation depends on the “chiral
optical depth,” that is, a constant characterizing the chiral molecule in question times
the projected areal density of those molecules encountered by the light during its
passage.

19 T2 Indeed, Onsager reciprocity implies that ÷
Õ = ÷. See Landau et al., 1984, Eq. 103.10. (Note that

Landau uses spatial derivatives, but these can be converted to time derivatives by using Maxwell
equations.)

Contents Index Notation



506 Chapter 49 Isotropic, Linear Media

In short:

• Cross-susceptibility is physically possible in a chiral medium, even if the medium
is isotropic. The time derivatives in Equation 49.9 predict that it will be strongly
dependent on wavelength. It gives rise to circular birefringence = optical activity
= optical rotatory power.

• The macroscopic realization of these ideas in Section 49.6.1 involved a disordered
sample of helical wires. Perhaps it seems plausible that the conclusions would
extend to obviously helical molecules like DNA as well. Actually, however, the
result is of far wider validity: Any chiral molecule, whether or not it looks helical,
can give rise to optical activity. For example, we could take CH4 and substitute
the 3 hydrogen atoms with distinct things (maybe an OH group for one, a Cl
atom for another, and a chain for the 3rd). Even if each group is itself nonchiral,
the whole thing will break spatial inversion invariance (Figure 49.3a).

• However, air (O2, N2) or H2O won’t display this phenomeon—They are all disor-
dered arrangements of nonchiral (inversion-invariant) objects.

49.8 DEMO

To follow up on those questions, we observed a beaker of corn syrup (concentrated
sugar solution), and illuminated it with polarizers fixed above and below the dish. We
noticed di�erent colors based on the orientation of the polarizer. We did not observe
this e�ect for H2O or glass.

With a thicker layer of syrup, a greater rotation of the second polarizer relative
to the first was required to obtain the same transmission of light.

Blue light rotates more than red. Had we diluted the solution by adding more
H2O to it, the total optical thickness would have gone up but the total projected
density of sugar molecules/area would not; empirically, one indeed finds that the total
polarization rotation doesn’t change.

49.9 CODA

• Remarkably, Fresnel showed in 1825 (long before Maxwell) that a di�erence in
refractive index for left- and right-circularly polarized light would lead to the
polarization rotation observed in optically active liquids, and he predicted that
merely letting a beam of unpolarized light enter at an angle into such a medium
would separate it into circularly polarized beams.

• Louis Pasteur intuited the connection between chiral molecules and optical activ-
ity in 1849, also long before Maxwell’s equations, just by thinking about symmetry.
Pasteur crystallized synthetic tartaric acid and noticed that the tiny crystals came
in two mirror image forms(Figure 49.3c). He painstakingly sorted a pile of these
tiny crystals into two piles, in this way manually purifying the two enantiomers.
Dissolving each one in water then yielded two solutions with opposite optical
activity!
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• Living organisms discriminate between the two enantiomers of each biomolecule,
and only synthesize the one they need. In contrast, most artificial synthesis tech-
niques make both enantiomers indiscriminately (they create a “racemic mixture”).
Similarly, most purification techniques are also unable to separate enantiomers
(apart from Pasteur’s heroic e�ort).20 Thus, the presence of optical activity can
in principle distinguish artificial from synthetic compounds, a circumstance that
provided the crucial plot element in (at least one) novel from the classical era of
British murder mysteries. But maybe I had better not tell you which one.

• A computational chemist might now proceed to formulate what quantum me-
chanical calculation to do to go from molecular structure to a prediction of the
value of ÷. The calculation is long and hard, and in the end you have to discard
most of your work by averaging over random orientations. And to a physicist
it’s not so interesting—what’s interesting is how symmetry says there’s just one
phenomenological parameter ÷ characterizing the e�ect of chirality of an isotropic
medium on light (to leading nontrivial order in frequency).

• The math predicts that optical rotatory power goes to zero at zero frequency,
due to the time derivative in the constitutive relation (Equation 49.9). More gen-
erally, the entire spectrum of optical rotatory power is called the optical rotatory
dispersion, and it forms a fingerprint of the constituent molecules, independent
of the ordinary dispersion. ORD is a convenient thing to measure because the
uninteresting water molecules in a solution don’t contribute to it.21

• There can also be chiral dissipation (“friction”) terms, leading to di�erent absorp-
tion lengths for each helicity (each choice of ê(±)). The entire spectrum of the
di�erential absorption is called the material’s circular dichroism spectrum, yet
another fingerprint of a molecule that can be observed in solution. An unexpected
structural form of the DNA molecule called “Z-DNA” was first discovered via its
nonstandard CD spectrum.

• A similar phenomenon can occur in an astrophysical plasma, if a uniform B̨ field
is present. Although this is a very di�erent kind of medium from sugar solution,
nevertheless it breaks inversion symmetry in a way that is mathematically similar
to what we have studied, again leading to di�erent phase velocities for the two
circular polarizations. Synchrotron radiation from an accretion disk is polarized,
and so this rotation can be used to disclose strong magnetic fields.

49.10 PLUS ULTRA

Was it worth the e�ort? I’d like to suggest that it’s not much of an exaggeration to say
that this story illustrates in miniature how physicists think about nearly everything.
We saw the possibility of a surprising new coupling, we characterized it in terms

20Even mass spectrometry cannot separate them, because they have the same charge/mass ratio.
21Although the polarization rotation angle is ambiguous by 180¶, its di�erential rate of increase as
depth increases is well defined. The (rotation angle)/(depth◊concentration) as a function of frequency
is what characterizes the solute. Chemists sometimes use the baroque unit M

≠1
dm

≠1 for this quantity;
you should convince yourself that it has the same dimensions as area, and indeed is in some sense a
scattering cross-section.
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of symmetry, we looked for what sort of physical setup had the required (lack of)
symmetry, we looked for how the math could transmit the key property from the
physical setup to observable, quantitative predictions. Then we made the observation.

Again: The molecule shown in Figure 49.3a does not have any obviously he-
lical character. After arguing that the structures in panel (a) would exhibit cross-
susceptibility, we still might have no intuition about the molecule in panel (b). But
from the symmetry viewpoint, they are the same: Both lack invariance under spatial
reflections, even when averaged over orientations. And that invariance is the only
thing that forbids cross-susceptibility, and its symptom optical activity. So we expect
it with any chiral molecule—and there it is.

But... is it beautiful? Section 32.2.4 claimed that, to a physicist, “beauty” often
means the combined e�ect of inevitability and surprise. So—I’d say yes. And then
when you see the colors—that’s another level of beauty.

FURTHER READING

Historical: https://en.wikipedia.org/wiki/Louis Pasteur#Molecular asymmetry .
Physical realization of a cross-polarizable material: See Feynman et al., 2010a, §33-5;
Hecht, 2002, §8.10.1; Nieves & Pal, 1994.
Experimental observation of double di�raction from optically active liquids: Ghosh
et al., 2007.
Liquid crystals: de Vries & IUCr, 1951.
T2 Quantum mechanical treatment of optical activity of molecules: Cantor & Schim-
mel, 1980, ch. 8; Craig & Thirunamachandran, 1998, ch. 8; Caldwell & Eyring, 1971.
T2 Relativistic treatment of media: Landau et al., 1984, §76.

Contents Index Notation

https://en.wikipedia.org/wiki/Louis_Pasteur%23Molecular_asymmetry


Track 2 509

T2 Track 2

49.2Õ

Our pictorial approach to bound charge and current summarizes the results of an analysis
that is really only valid for a restricted class of materials, such as dilute gases, nonpolar
liquids, and molecular solids with weak interactions between the molecules. If we want to
predict bulk material parameters from microscopic details in such situations, we can make a
multipole expansion of the fields from each constituent, spatially average over length scales
relevant to the problem (but much longer than the size of the constituents), then find the
e�ective continuous charge density and flux that could have given rise to the same fields.

For many materials, quantum-mechanical couplings between constituents invalidate this
simple approach. A more general approach appears in Zangwill, 2013, ch. 6 and 13. However,
this chapter’s concerns were restricted to understanding general properties of linear response;
the heuristic approach we gave motivated general formulas allowed by principles such as
rotational, time inversion, and (when appropriate) spatial inversion invariance.

T2 Track 2

49.2.1Õ Dissipation and frequency dependence

Suppose that an electric field varies harmonically in time: Ę (t) = 1

2

˛̄
Ee≠iÊt + c.c. In a

medium that is itself time-translation invariant, we will then find that the displacement
D̨(t) = 1

2

˛̄
Ee≠iÊt + c.c. If the medium is linear, then we will have

˛̄
D = ‘(Ê) ˛̄

E,

which defines the frequency-dependent permittivity function. We have tacitly assumed that
‘ is real, but this need not be the case if there is dissipation.

To understand complex permittivity, imagine a material consisting of polarizable
“molecules” with density flmol, consisting of a pair of charges ±q that can separate by
�x. Let ‰e(Ê) = (‘(Ê)/‘0) ≠ 1 as usual. In response to the field, charge will separate by
�x = 1

2
�xe≠iÊt + c.c.

The density of induced dipole moment is then P = flmolq�x. That result lets us find the
velocity v(t) = 1

2
v̄e≠iÊt + c.c., where

v̄ = ≠iÊ‘0‰e(Ê)Ē
qflmol

.

The rate at which the field does work on the particle is qE times v, or

qEv = q

!
1

2
Ēe≠iÊt + c.c.

"!≠iÊ‘0‰eĒ

2fldip

e≠iÊt + c.c.
"
.

The time average of that power, per volume is thus

1

4
(≠i)Ê‘0‰e|Ē|2 + 1

4
(i)Ê‘0‰

ú
e |Ē|2 = 1

2
Ê‘0|Ē|2 Im ‰e.

As claimed, if the frequency-dependent permittivity function is complex then the material
dissipates energy (into heat). Similar remarks apply for the frequency-dependent magnetic
permeability.
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T2 Track 2

49.6Õa Just two enantiomers
Why are there just two of a chiral molecule? The point is that electromagnetism, including its
quantum version, is invariant under the group O(3) of orthogonal 3◊3 matrix transformations
of space. Any two molecules related by such a transformation will have the same energy,
stability, excited states, etc. And this group is twice as big as the rotation group SO(3): The
coset space of O(3) matrices modulo all rotations is just the group Z2 with two elements.

49.6Õb Relativistic formulation
Equation 49.9 (page 504) involves a 6 ◊ 6 matrix of susceptibilities, which is not obviously a
4-tensor. But in fact, we can define a response 4-tensor R analogously to F

µ‹ , as

R
µ‹ =

S

WWU

0 P̨x P̨y P̨z

≠P̨x 0 ≠M̌z M̌y

≠P̨y M̌z 0 ≠M̌x

≠P̨z ≠M̌y M̌x 0

T

XXV

µ‹

. (49.10)

where again M̌i = c
≠1

M̨i. This big formula can be summarized in the usual way by R
0i =

≠R
i0 = P̨i and R

ij = ≠ÁijkM̨k/c. Also, let J f denote the free charge flux 4-vector field.
In terms of these definitions, four of the Maxwell equations take the form

ˆ µH
‹µ = c

≠1
J

‹
f , (49.11)

where
H

‹µ = c‘0F
‹µ + R

‹µ
. (49.12)

Thus H
0m = D̨m and H

nm = c
≠1

Ánm¸H̨¸, in parallel to the naming of elements of F . We
conclude that R must be a tensor because the world is Lorentz invariant, and Equations 49.11–
49.12 are only invariant if R is a tensor.

The remaining four Maxwell equations are unchanged from the case of vacuum, because
they have no source terms.

Linear response is the statement that R is a linear function of F :

R
µ‹ = K

µ‹
⁄‡F

⁄‡
, (49.13)

where the susceptibility operator K is antisymmetric on its first two indices, and also on the
last two.

Let’s apply “Einstein thinking” to see what are the possibilities for the susceptibility
4-tensor. We know that R and F are 4-tensors, so Equation 49.13 implies that K is a 4-
tensor operator. Even an isotropic medium breaks Lorentz symmetry—unlike the vacuum,
it can have states of motion. But isotropy and homogeneity do imply that the only quantity
describing the state of the medium is its 4-velocity U . Hence it must be possible to express
K as a combination of U ’s and invariant quantities describing the medium. K must also be
a symmetric operator in the sense that exchanging µ‹ with ⁄‡, and ˆ æ ≠ˆ , must leave it
unchanged. Playing around shows that there are only three possible forms permitted by the
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symmetries:22

K
µ‹

⁄‡ =–

2
!
”

µ
⁄”

‹
‡ ≠ ”

‹
⁄”

µ
‡

"
+ ·

2
!
U

µ
U ‡”

‹
⁄ ≠ U

‹
U ‡”

µ
⁄ ≠ U

µ
U ⁄”

‹
‡ + U

‹
U ⁄”

µ
‡

"

+ “

2
!
Á

µ‹
·⁄U

·
U ‡ ≠ Á

µ‹
·‡U

·
U ⁄ ≠ Á

µ
⁄‡· U

·
U

‹ + Á
‹

⁄‡· U
·
U

µ
"
U

fl
ˆ fl. (49.14)

Here the 4-dimensional Levi-Civita pseudotensor has Á0123 = +1 etc.

Your Turn 49GSpecialize this formula to an inertial coordinate system in which the medium is at rest,
and show that the constants –, —, and “ can be chosen so that it reproduces Equation 49.9
(which also has three phenomenological parameters ‰e, ‰̃m, and ÷).

Then substituting arbitrary 4-velocity at once tells us the appropriate form of the suscepti-
bility tensor in a moving medium.23

Every term in Equation 49.14 must be time-reversal invariant, because a static collection
of molecules does not break time-reversal invariance.24 (This is why the “ term needs a
derivative.) Also, the – and — terms are invariant under spatial inversions—but not the “

term. Thus, “ must equal zero for an achiral medium, as we observed with liquid water in
the demo.

22More precisely, this is the most general structure to leading order in powers of derivatives. The
logic is similar to what we’ve done before, e.g. in Section 34.5 (page 385). Some terms that may seem
missing from our list are in fact redundant because of Maxwell’s equations and the constraint that
U µU

µ = ≠c
2.

23You previously used similar logic in Problem 33.1 (page 380).
24Ferromagnetism was not allowed.
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PROBLEMS

49.1 Electrorotation of cells
[Not ready yet.]

49.2
Repeat Your Turn 49E, but this time without the unrealistic simplifying assumptions
‰e = ‰̃m = 0.

49.3 Bulk conductor, II
A stationary (time-independent) current distribution is established in a medium which
is isotropic but not necessarily homogeneous. For example, that medium could be
animal tissue.

Specifically, the charge flux j̨ is everywhere a scalar multiplier times ≠Ǫ̀Â, but
that multiplier (the conductivity Ÿ) is not necessarily the same everywhere. However,
you may assume that the dielectric constant ‘/‘0 is uniform and isotropic.
a. Show that the medium will in general acquire a nonzero free electric charge density

flq,f(r̨ ). Show that this charge density may be written as the dot product of Ǫ̀Â
with a certain vector field, and find that vector field.

b. Repeat for the case where ‘ is also nonuniform, though isotropic.

49.4 Polarization of evanescent wave
Preamble: Dr. Beausang discussed an experimental technique called “pol-TIRF,” for
“polarized total internal reflection fluorescence microscopy.” The essential points were:
. TIRF excitation improves-signal-to noise in fluorescence microscopy by only
creating electric fields in a thin layer next to the floor of the experimental chamber.
. These electric fields retain information about the polarization of the laser beam
that gives rise to them, a fact that can be used to learn about the orientation of a
single fluorescent molecule in the sample.
The first point is discussed in our text. We’d like to look closer into the second point.

A linearly polarized, monochromatic wave of frequency Ê enters a sample chamber
filled with water (index of refraction n2 ¥ 1.33) from a medium with larger index n1
(typically quartz, ¥ 1.46). For this problem you may assume that the permeabilities
are equal: µ1 = µ2.

The interface between media is the yz plane. The incoming wave (in the region
x < 0) has wavevector k̨ lying in the xy plane; all fields are independent of z. The
incoming k̨ makes angle ◊ with the normal to the interface, that is, k̨ · x̂ = cos ◊. We’ll
eventually consider the case where the angle of incidence ◊ is large, but you should
first work out the answers for arbitrary ◊, then specialize to large ◊.

It’s convenient to choose the following basis vectors for the incoming polarization:
. “TE” polarization (also called “s-wave”): Ę is parallel to ẑ.
. “TM” polarization (also called “p-wave”): B̨ is parallel to ẑ.
Review P+S §13.2.1 for the definition of the critical angle ◊c, the transmitted wavevec-
tor k̨ Õ, and the reflected wavevector k̨ ÕÕ. Write the incident wave as

Ę (t, x, y, z) = 1
2

Ë
˛̄E ei(k̨ ·r̨ ≠Êt) + c.c.

È
x < 0.
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Here ˛̄E is the incoming polarization vector. The transmitted and reflected waves
are given by similar expressions with ˛̄E Õ, k̨ Õ, etc.; they all have the same value of
Ê.25 Continue reading through §12.2.3 to see the method to find the transmitted and
reflected waves.

The 3-vector ˛̄E Õ describes the amplitude, phase, and polarization of the trans-
mitted wave. We want to know the polarization, particularly in the case where the
transmitted wave is nonpropagating.
Problem:
a. Consider a quartz-water interface and laser wavelength in vacuum 514 nm. Find

the critical angle. Find the exponential amplitude fallo� length scale, assuming
◊ = 70¶.

b. Find the amplitude and direction of the electric field26 for x > 0, in the case of TE
incident polarization. That is, suppose ˛̄E Õ = Ēẑ where Ē is a real constant. Then
specialize to the case with ◊ > ◊c. Characterize in words the type of polarization
you get for the evanescent electric field. Then substitute the numbers in (a) to get
a quantitative characterization.

c. Repeat for the TM polarization. Again characterize in words the type of polarization
obtained, then substitute the numbers in (a) to get a quantitative characterization.

49.5 Relativistic formulation
Use Equations 49.11–49.12, 49.13, and 49.14 to derive the plane wave solutions for
light in flowing water, relevant to the Fizeau experiment. You can also seek solutions
corresponding to light propagating in an isotropic, chiral medium, such as sugar water,
at rest.

25One prime for transmitted, two primes for reflected.
26We are not interested in any overall phase shift.
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Anisotropic Media

50.1 ORDINARY BIREFRINGENCE

The preceding chapter showed that circular birefringence was possible in an isotropic
medium, due to electric/magnetic crossterms in the polarizability. We now consider
a more common situation, a homogeneous medium in which magnetic e�ects are
negligible but the polarizability is not isotropic. For example, a material may consist
of molecules held in a crystal lattice, so that their polarizability is not averaged over
rotations. Typical transparent, crystalline solids include quartz and many kinds of
hard clear plastic. Even liquid crystals can have at least partial orientational order.
The ensuing behavior of light is called ordinary birefringence, or more commonly just
“birefringence.”

Figure 50.1: Zooplankton under parallel and crossed polarizers. Left to right: Cyclosalpa floridana (about 5 cm
across); Bolinopsis sp. (about 5 cm long); Salpa cylindrica (about 2.5 cm long). “The photos were taken by
Edith A. Widder, on a project that we were doing together on a ship.” – Sönke Johnsen
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Thus we will consider a medium with ¡
‰e constant but not scalar and ‰̃m ¥ 0.

Like any real symmetric matrix, ¡
‰e has a basis of three mutually perpendicular, real

eigenvectors. Choose coordinates such that those eigenvectors are x̂, ŷ, and ẑ and
consider a trial solution that is a plane wave propagating along ẑ:

Ę (t, r̨ ) = 1
2 ’̨ e≠i(Êt≠k̨·r̨ ) + c.c. B̨ (t, r̨ ) = 1

2 —̨e≠i(Êt≠k̨·r̨ ) + c.c.

Maxwell’s equations1 then say

įk · ¡
‘ · ’̨ = 0, įk · —̨ = 0, (50.1)

įk ◊ ’̨ + (≠iÊ)—̨ = 0, (50.2)

įk ◊ —̨/µ0 ≠ (≠iÊ)¡
‘ · ’̨ = 0. (50.3)

Equation 50.1 tells us that ’̨ and —̨ must both be perpendicular to k̨. Equation 50.2
tells us —̨ in terms of ’̨ . Substituting into the last equation gives the dispersion relation,
which is simple if ’̨ is directed along either of the two transverse eigenvectors of the
permittivity:

k = Ê
Ô

‘(–)µ0, – = 1 or 2.

Here ‘(–) denotes one of the eigenvalues.
In other words, in this simple situation light propagating along a principal axis,

and polarized along another principal axis, is transmitted without change. However,
those two linear polarizations propagate at di�erent speeds (phase velocities). We’ll
call those speeds c/n(–) where n(–) =


‘(–)/‘0.

50.1.1 Half-wave plate
We can now ask, what happens to a mixture of those two polarizations? In particular,
consider a slab of this medium whose thickness ztot is such that2

Ê(n(1) ≠ n(2))ztot/c = fi. half-wave plate

Now consider light that at time zero, and z = 0, is linearly polarized at some arbitrary
angle to the x axis: ’̨ = x̂ cos – + ŷ sin –. How will it look when it emerges a distance
ztot from its entry point?

We may solve Maxwell’s equations for each eigenvector component separately,
then superpose the answers. Let n̄ = (n(1) + n(2))/2. From previous paragraphs, then,

Ę (t, z) = 1
2 e≠iÊ(t≠n̄ztot/c)#x̂eiÊ�nztot/(2c) cos – + ŷe≠iÊ�nztot/(2c) sin –

$
+ c.c.

= sin
!
Ê(t ≠ n̄ztot/c)

"#
x̂ cos – ≠ ŷ sin –

$
.

Once again, we find that if the wave enters polarized along x̂ or ŷ, it leaves in the same
state. But in intermediate cases, its polarization gets rotated by an angle somewhere
between zero and 90¶. More precisely, it is reflected through a plane (Figure 50.2).
We can arrange for whatever rotation angle we like by twisting the half-wave plate
relative to the polarization of incoming light, making it a useful gadget for optical
setups.

1For example Equations 49.6–49.7 (page 498), with the constitutive relation Equation 5.6 (page 58).
2For simplicity, we suppose that the surfaces of the medium are perpendicular to k̨ , and hence to
one of the eigenvectors of the material, so that there is no refraction.
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Figure 50.2: Change of polarization after passage
through a half-wave plate, for various kinds of
incident light. ’1 and ’2 are components of the
polarization expanded in eigenvectors of the po-
larizability tensor; the third eigenvector points
out of the page and coincides with the propaga-
tion direction.

50.1.2 Linear dichroism
A dense material in an electromagnetic wave can have dissipative losses that also
depend on the polarization of the light. This means that di�erent polarizations can
be di�erentially absorbed.

Edwin Land experimented with polyvinyl alcohol chains aligned on plastic sub-
strate. When the material is heated or stretched, the chains become electrically con-
ducting, creating large polarizability in one direction. This comes along with dissipa-
tion (Chapter 45), and so Land’s “polaroid filter” e�ectively blocked EM radiation
with one linear polarization, much like the microwave polarizer shown in a class demo.
Polaroid filters are not the only way to obtain polarized light, but they were much
cheaper and more convenient than the alternatives available at that time.

50.2 OPTICAL TORQUE WRENCH

[Not ready yet.]

50.3 PLUS ULTRA

[Not ready yet.]Some animals have evolved wing scales that reflect sunlight preferen-
tially in one circular polarization (Figure 50.3).

FURTHER READING

Optical torque wrench: La Porta & Wang, 2004.

Contents Index Notation



Track 2 517

Fig. 1. Photographs of
the beetleC. gloriosa.(A)
The bright green color,
with silver stripes as seen
in unpolarized light orwith
a left circular polarizer. (B)
The green color is mostly
lost when seenwith a right
circular polarizer.

BA

Figure 50.3: Sharma et al., 2009.

Increasing horizontal B field

Critical Transition: Point defect to Line defect

Experiment:

Simulation:

Figure 50.4: [Courtesy Sophie Ettinger, Dan Beller, and Arjun Yodh.]

T2 Track 2

50.3Õ Magnetic anisotropy
“Nematic liquid crystal materials generally contain molecules that possess permanent dipole
moments and that also exhibit an anisotropic electronic polarizability and an anisotropic
diamagnetic susceptibility.” – Smith et al., 2007
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PROBLEMS

50.1 Quarterwave plate
A quarterwave plate is a slab of birefringent dielectric material that has been cut so
that its planar faces are perpendicular to one of its three principal axes. Light enters
along that direction. The thickness of the slab is chosen such that, at a particular
wavelength, the transit times for light linearly polarized along the other two principal
axes di�er by 1/4 of a wave period.

Suppose that a linearly polarized plane wave enters this material, with polarization
vector oriented midway between the two principal directions. What sort of wave emerges
from the other side? Write a short formula to justify your answer.

50.2 Circular polarizer
[Not ready yet.]

50.3 Optical torque wrench
[Not ready yet.]
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Čerenkov radiation
51.1 FRAMING

When we think of the generation of radiation, we generally envision a charge that is
shaking, braking, circulating, or otherwise accelerating. So it may come as a surprise
to find that a charged particle in uniform, straight-line motion can generate radiation!
How can that happen?

51.2 CHARGED PARTICLE IN VACUUM

To begin to answer, we will first revisit a problem we solved already in Section 32.3.2:1
The fields created by a charge in uniform, straight-line motion in vacuum. Reassuringly,
we’ll see that we did it correctly the first time; there is no radiation. But the geometric
approach we use here can be generalized to include a dielectric medium, such as water.
Interesting and unexpected behavior will then appear in Problem 51.1.

Suppose that a point charge q moves along the z axis at speed —c. Thus, its
trajectory can be written as r̨q(t) = —ctẑ, and

flq(tú, r̨ú) = q”(3)(r̨ú ≠ —ctúẑ) (51.1)

j̨ (tú, r̨ú) = q—cẑ”(3)(r̨ú ≠ —ctúẑ). (51.2)

The Green function solution to Maxwell’s equations in Lorenz gauge then gives2

Â(t, r̨ ) = 1
4fi‘0

⁄
d3rú Îr̨ ≠ r̨úÎ≠1flq(t ≠ Îr̨ ≠ r̨úÎ/c, r̨ú¸ ˚˙ ˝),

and similarly for the vector potential. Substitute the expression in the brace for tú in
Equation 51.1:

Â(t, r̨ ) = 1
4fi‘0

⁄
d3rú Îr̨ ≠ r̨úÎ≠1”(3)(r̨ú ≠ —cẑ(t ≠ Îr̨ ≠ r̨úÎ/c)). (51.3)

The three delta functions will eliminate the three integrals, but it’s a bit tricky because
r̨ú appears in two places.

Let w̨ (r̨ú; r̨, t) denote the argument of the delta functions. Then

ˆw̨i

ˆr̨új

= ”ij ≠ —”i3
≠1

Îr̨ ≠ r̨úÎ (r̨ ≠ r̨ú)j(≠1).

1Also see P+S §15.6.1.
2See Chapter 40.
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520 Chapter 51 Čerenkov radiation

Figure 51.1: Graphical solutions of Equation 51.5.
The special case in which the field point r̨ lies on
the ẑ axis. Clearly, one of the two past-directed,
light-speed lines from (ct, z) hits the particle
trajectory exactly once, at (ctú, zú); the other
such line misses the trajectory altogether.

Let R̨ = r̨ ≠ r̨ú as usual. Then the rule for delta functions (Section 0.3.6) simplifies
Equation 51.3 to

Â(t, r̨ ) = q

4fi‘0

ÿ

¸

----det ˆw̨i

ˆr̨j

---
¸

----
≠1

Îr̨ ≠ r̨ú¸Î≠1,

where the sum is over all the solutions r̨ú¸ to the equation w̨ (r̨ú¸; r, t) = 0̨.
Next note that the 3 ◊ 3 determinant equals 1 ≠ —R̨3/R, so

Â(t, r̨ ) = q

4fi‘0

ÿ

¸

--R ≠ —R̨3
--≠1

. (51.4)

To evaluate this expression, we need all the solutions to w̨ = 0. These are points r̨ú
with the properties that:
. The particle was there at some time tú, and hence r̨ú = —cẑtú.
. The distance between that location and the observer at r̨ can exactly be covered

by moving at speed c for time t ≠ tú.
That is, R = c(t ≠ tú), or

R

c
—cẑ ≠ Mbcẑ(t ≠ tú) = 0

R—ẑ ≠ —cẑt + r̨ú = 0. (51.5)

In fact, the last equation always has exactly one solution, at a point we will call
Qr. Figure 51.1 is a familiar spacetime diagram that establishes this claim in a special
case, where the observer is sitting on the z axis. Even when that is not the case, we
can use rotation invariance to choose coordinates for which x = 0 (though y need not
be zero). Figure 51.2a then shows that for any point P in the yz plane, exactly one
of the circles drawn intersects P.

It is worthwhile to give one more proof of the point just made. Again suppose
that we have been given a choice of field point P and observation time t. Figure 51.2b
again shows a particular choice, along with the charged particle’s position Q at t. The
given information determines the angle ◊ between the line QP and the z axis. Extend
this line beyond P (dotted line on the figure).
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hinge

a b

Q

Qr

Figure 51.2: (a) Circles centered on —cẑtú, of radii c(t ≠ tú), for various choices of time tú. A field point P has
been selected; exactly one of the nested circles shown passes through that point. (b) Two sticks (green) joined
by a hinge. The configuration shown can be magnified, holding one endpoint at Q, until its other endpoint
passes through P. The position of the hinge then determines Qr.

The figure also shows another point, Qr, which is is the charge’s position at an
earlier time tú. Thus, the distance QQr equals —c(t ≠ tú). The claim is that we may
choose Qr such that also the distance QrP equals c(t ≠ tú). To see this, imagine two
sticks joined by a hinge. The ratio of the sticks’ lengths is —. Place the free end of
the shorter stick at Q, and align it along the z axis. Hold the short stick in place and
pivot the long stick about the hinge point. The long stick’s end then sweeps out a
circle (dashed in the figure), which intersects QP in exactly one point. Now rescale
both sticks by whatever overall factor is needed to make the long stick’s endpoint pass
exactly through P while maintaining the length ratio —. There is always just one way
to do this.

Your Turn 51A
Figures 51.1–51.2 were all drawn assuming that the observer is ahead of the
charged particle at the time of observation, that is, z > —ct. Redraw them to
make sure they still work in the contrary case.

We conclude that the sum in Equation 51.4 contains just one term. Now we must
evaluate the expression R ≠ —R̨3 that appears in that formula. Figure 51.3 shows a
perpendicular dropped from Q to the segment QrP in red. We know that QrQ has
length —c(t ≠ tr) = —R̨3. However, we want

R ≠ —R̨3 = R ≠ QrM = MP

=
Ò

QP2 ≠ MQ2 =
Ò

r̨‹
2 + (z ≠ —ct)2 ≠ (—R sin Â)2

=
Ò

(1 ≠ —2)r̨‹
2 + (z ≠ —ct)2.

The square root is always real, because — < 1. Finally, substitute this result into
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Figure 51.3:

Equation 51.4 and the similar formula for vector potential:

Â(t, r̨ ) = q

4fi‘0

1
(1 ≠ —2)r̨‹

2 + (z ≠ —ct)2
2≠1/2

Ą (t, r̨ ) = qµ0
4fi

—cẑ
1

(1 ≠ —2)r̨‹
2 + (z ≠ —ct)2

2≠1/2

Not surprisingly, these reproduce the results we got by Lorentz-transforming the fields
of a point charge at rest in Section 32.3.2.

We can proceed to find the electric and magnetic fields as we did before, or take
the following shortcut. Let g(ų ) =

!
“≠2ų‹

2 + ų3
2"≠1/2. Thus

Â(t, r̨ ) = q

4fi‘0
g
1

r̨ ≠ —ctẑ
2

Ą (t, r̨ ) = qµ0
4fi

—cẑg
1

r̨ ≠ —ctẑ
2

So using cylindrical coordinates u‹, Ï, ų3,

B̨ = Ǫ̀ ◊ Ą = qµ0—c

4fi

1
û‹

1
u‹

ˆg

ˆÏ
≠ Ï̂

ˆg

ˆu‹

2

= q mz—c

4fi
(≠1)(≠ 1

2 )g3“≠22u‹Ï̂ = q mz—c

4fi

“≠2u‹

“≠2(u‹2 + “2ų3
2)3/2

Ï̂.

The magnetic field is always pointing in the azimuthal direction.
Next, get the electric field Ę = ≠Ǫ̀Â ≠ ˙̨

A by using the chain rule:

Ę = q

4fi‘0

1
≠Ǫ̀g = (—/c)ẑ(≠—c) ˆg

ˆų3

2

= q

4fi‘0

1
≠û‹(≠ 1

2 )g3“≠22u‹ ≠ ẑ(≠ 1
2 )g32ų3 + ẑ—2(≠ 1

2 )g32ų3

2

= q

4fi‘0
g3!

û‹“≠2u‹ + ẑ“≠2ų3
"
.

Contents Index Notation



Further Reading 523

Note that û‹u‹ + ẑų3 is just ų, which is r̨ ≠ —ctẑ. Thus

Ę = q

4fi‘0

r̨ ≠ —ctẑ

(r‹2 + “2(z ≠ —ct)2)3/2 .

This is the same result we obtained by applying a Lorentz transformation to the
electrostatic field surrounding a static point charge.

The solution that we have found corresponds to a lump of electric and magnetic
field strength that moves at speed —c. The energy flux Ę ◊ B̨, is nonzero, but that just
describes the translational motion of the lump of energy associated to those fields.

51.3 CHARGED PARTICLE IN A DIELECTRIC MEDIUM

We seem to have done a lot of work for nothing, but our real destination is to understand
what happens when a charged particle passes through matter, for example, water.
Section 5.5 argued that in this situation we may forget the medium and simply modify
the Maxwell equations, replacing ‘0 by a larger permittivity ‘. But now an interesting
possibility arises: What if the particle moves faster than the speed of light in medium,
that is, —c > c/n where n =


‘/‘0? It is true that the modified Maxwell equations

have a Lorentz-like invariance, with cm = c/n playing the role of light speed, and we
can use that invariance to find the fields if — < cm. In the contrary case, however,
there’s no Lorentz-type transformation that can bring us to the rest frame of the
particle, and this method breaks down.

Luckily, the proof that the radiation Green function solves the Maxwell equations
is just as correct in the medium as it was in vacuum; we need only substitute c æ cm
in the derivation of Section 51.2. However, the geometry is di�erent when v/cm > 1.
In the language of Figure 51.2b, the stick held fixed on the z axis is longer than the
pivoting stick. You’ll explore the consequences of this di�erence in Problem 51.1, but
the upshot is that [Not ready yet.].

51.4 INTERPRETATION

[Not ready yet.]The result just announced may seem paradoxical: How can a non-
accelerating charge radiate? Remember, however, that the one charge we investigated
is not the only one in the system. The medium that we added is polarizable because
it contains many charges in the deformable molecules that constitute it. As the free
charge of the particle flies past one such molecule, it gives that molecule a momentary
jolt. The sum of the resulting fields from all of the molecules can and does include a
radiation component, if v > cm.

FURTHER READING

Smith, 1997; Ginzburg, 1989
Historical: Jelley, 1958.
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“Cherenkov radiation, also known as Vavilov–Cherenkov radiation (VCR) (named af-
ter Sergey Vavilov and Pavel Cherenkov), is electromagnetic radiation emitted when
a charged particle (such as an electron) passes through a dielectric medium at a
speed greater than the phase velocity of light in that medium. The characteristic blue
glow of an underwater nuclear reactor is due to Cherenkov radiation. It is named
after Soviet scientist Pavel Cherenkov, the 1958 Nobel Prize winner who was the
first to detect it experimentally. A theory of this e�ect was later developed within
the framework of Einstein’s special relativity theory by Igor Tamm and Ilya Frank,
who also shared the Nobel Prize. Cherenkov radiation had been theoretically pre-
dicted by the English polymath Oliver Heaviside in papers published in 1888–89.” –
https://en.wikipedia.org/wiki/Cherenkov radiation

PROBLEMS

51.1 What a shock
The main text worked out the fields created by a point charge in vacuum, in uniform,
straight-line motion, by using the Green function solution.3 Not surprisingly, the fields
were exactly the same as what we found by doing a Lorentz transformation on the
fields of a charge at rest (Section 32.3.2).

In this problem, you’ll consider fields in a dielectric medium, perhaps water. There
is an approximate regime (fields not too strong, time variation not too fast) in which,
as I argued long ago, we may forget the medium and just replace ‘0 by some larger
constant ‘, the “permittivity” of the medium. We’ll neglect the analogous possibility for
magnetic fields (it’s negligible for many dielectric media). Then we just get Maxwell’s
equations, and in particular the wave equation, in their usual form apart from a
reduced value of the speed of light c̃ = (µ0‘)≠1/2. For example, the Green function is
the same apart from that one change.

We can now consider the problem of a charged particle that cruises through this
medium at uniform speed —c̃. If — < 1, then everything is exactly the same as before,
and we find that (in this approximate treatment of the medium) the charged particle
just carries a blob of field energy along with it, and in particular there is no energy
radiated out to infinity.

The interesting new electromagnetic phenomenon concerns the possibility that
now — may exceed 1. No physical law forbids a particle from moving through water
at, say 0.9c, which is ¥ 1.2c̃. Now, however, we are on new territory. The modified
Maxwell equations have a Lorentz-type invariance, but no transformation of this form
can bring a particle from rest to faster than c̃, so we may not obtain the fields in this
easy way. Nevertheless, the proof that the Green function solves the equations is still
valid, so we can still use that method.

The main text argued that, for — < 1, there was always exactly one source point
in the past light-cone of any observation point.
a. Show that, for — > 1, at any time t some observation points have no source

point in their past light-cone. The fields at such points, at time t, must equal zero.

3See also P+S §15.6.1.
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Characterize the set of all such points. [Hint: Start by finding the appropriate
1D spacetime diagram, that is, in the (c̃t)(z) plane. Then generalize to two space
dimensions, adapting the “two sticks” argument to show that some angles ◊ cannot
be attained.]

b. Show that all observation points inside the allowed region each have two source
points in their past light cone.4 [Hint: Make the needed changes to the “third proof”
in Section 51.2.]

c. Then get expressions for the scalar and vector potentials.
d. Compute appropriate derivatives to find what direction Ę and B̨ , and hence the

Poynting vector, poynt. Which way does energy flow? Will it just stay concentrated
along the z axis, or flow outward?

4Right on the edge of the allowed region, those two points merge into one.
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Field Quantization, Polarization, and the
Orientation of a Single Molecule
55.1 A SINGLE MOLECULE EMITS PHOTONS IN A DIPOLE

DISTRIBUTION

Before we unleash a lot of formulas, let’s first frame the issues with an experimental
observation. A concrete example of what we’d like to understand is the pattern of light
seen from a single immobilized fluorophore, for example in defocused orientation imag-
ing (Figure 55.1). The distribution of photon arrivals resembles the dipole radiation
pattern found in Chapter 42, but the emission of single photons by a single molecule is
as far from being classical as one can get. Is the observed agreement in radiation pat-
terns just a coincidence? This chapter will argue that in fact, a quantum-mechanical
treatment recapitulates the classical distribution of energy flow as a probability density
function for photon arrivals.

55.2 MAXWELL EQUATIONS AS DECOUPLED HARMONIC
OSCILLATORS

Classical electrodynamics describes a system whose states are field configurations. But
Nature is described by quantum probability amplitudes, not classical state variables.
The goal of this section is therefore to recast Maxwell’s eight equations for the electric
and magnetic fields in a form that is suitable for quantization. Later, Section 55.3 will
recover the photon concept as a consequence of field quantization.

As usual, we can represent electric and magnetic fields via a scalar potential field,
Â(t, r̨ ), and a vector potential field, Ą (t, r̨ ):

Ę = ≠ ˆ

ˆt
Ą ≠ Ǫ̀Â; B̨ = Ǫ̀ ◊ Ą . [17.22, page 208]

Figure 55.1: Defocused orientation imaging. [Ex-
perimental data and fits.] Top: Observed point
spread functions for three single fluorophores.
Lighter colors correspond to pixels with larger
photon counts. Bottom: Corresponding theoret-
ical predictions, after finding the best-fit value
of the angle between the transition dipole and
the centerline. From left to right, the fit values
of this angle were 10 deg, 60 deg, and 90 deg. The
in-plane orientation (azimuth) was also obtained
by fitting. [From Toprak et al., 2006.]
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536 Chapter 55 Field Quantization

Chapter 17 showed that in this representation, half of Maxwell’s equations are identities
(automatically true). We will choose to work in Coulomb gauge, that is, use only vector
potentials that obey Ǫ̀ ·Ą = 0.1 Section 17.8.4 showed that in a world with no charged
particles we can always specialize further, supplementing Coulomb gauge with the
extra condition that the scalar potential Â = 0 everywhere. (Later sections will
reinstate Â when we consider coupling of the field to electrons.)

We wish to show that Maxwell’s equations reduce to a set of simple, decoupled
dynamical systems. It’s convenient to imagine a finite world of some very large size
L, which will ultimately be taken to be infinity, and specifically to take that world
to be a cube with periodic boundary conditions. Then the vector potential can be
expanded as

Ą (t, r̨ ) = 1
2

ÿ

k̨

Õ!
Ą

k̨
(t)eįk ·r̨ + c.c.

"
. (55.1)

In this formula, each coe�cient Ą
k̨

is a complex 3D vector depending on time. There
are many such vectors, indexed by a discrete label k̨ with components of the form
2fi÷i/L; the ÷i are integers, not all of which are zero. The primed summation means
that for each such wavevector k̨ , we exclude the redundant ≠k̨ .

The Coulomb gauge condition implies that k̨ · Ą
k̨

= 0, or in other words that the
component of each Ą

k̨
along its k̨ must equal zero. The other two components are

unrestricted, so for each k̨ , we choose a basis of two real unit vectors perpendicular
to it and to each other; we denote these polarization basis vectors by ’̂(–,̨k ), where
the index – runs from 1 to 2. Then Equation 55.1 becomes

Ą (t, r̨ ) = 1
2

ÿ

k̨,–

Õ!
A

k̨,–
(t)’̂(–,̨k )e

įk ·r̨ + c.c.
"
. (55.2)

The polarization basis vectors are not dynamical variables. The dynamical variables,
whose equations of motion we wish to find and quantize, are the mode expansion
coe�cients A

k̨,–
(t).

Your Turn 55A
Show that, with these definitions, Maxwell’s equations in Coulomb gauge become
simple:

d2

dt2 A
k̨,–

= ≠(ck)2A
k̨,–

. (55.3)

Here – runs over 1,2, k̨ runs over the nonredundant set described earlier, and k
denotes the length of the vector k̨ (that is, Îk̨ Î).

Equation 55.3 shows that every distinct combination of polarization – and wavevec-
tor k̨ corresponds to an independent dynamical system, decoupled from the others. To
make the system more familiar, we now give separate names to the real and imaginary
parts of A

k̨,–
:2

A
k̨,–

= (‘0L3/2)≠1/2!
X

k̨,–
+ iY

k̨,–

"
. (55.4)

1Section 17.8.3 (page 208).
2The overall rescaling chosen in the definitions of X and Y will simplify some later formulas.
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The real scalar quantities X
k̨,–

and Y
k̨,–

separately obey Equation 55.3, so we see that

Maxwell’s equations in vacuum are mathematically equivalent to a set of
decoupled harmonic oscillators. (55.5)

The harmonic oscillator has a well known quantum-mechanical formulation, so
Idea 55.5 achieves the first goal of this section.

To understand the meaning of these oscillators better, we now express the elec-
tromagnetic field energy E and momentum P̨ in terms of the new variables X and Y .
Let ˙̨A denote the time derivative ˆĄ /ˆt. Then Your Turn 34Ca (page 386) gives

E = ‘0
2

⁄
d3r

!
Ę 2 + c2B̨ 2) = ‘0

2

⁄
d3r

!
(≠ ˙̨A)2 + c2(Ǫ̀ ◊ Ą )2"

= ‘0
2

ÿ

k̨1,–

Õ ÿ

k̨2,—

Õ
⁄

d3r
Ë

1
2
!
≠Ȧ

k̨1,–
’̂(–,̨k1)e

įk1·r̨ + c.c.
"

· 1
2
!
≠Ȧ

k̨2,—
’̂(—,̨k2)e

įk2·r̨ + c.c.
"

+ c2 1
2
!
A

k̨1,–
įk1 ◊ ’̂(–,̨k1)e

įk1·r̨ + c.c.
"

· 1
2
!
A

k̨2,—
įk2 ◊ ’̂(—,̨k2)e

įk2·r̨ + c.c.
"È

.

(55.6)

The integrals are easy to do, because most of them vanish: Only those cross-terms
with k̨1 = k̨2, and hence involving eįk1·r̨ e≠įk1·r̨ = 1, survive. Moreover, we have
’̂(–,̨k ) · ’̂(—,̨k ) = ”–— , leaving

E = ‘0L3

4
ÿ

k̨,–

Õ!|Ȧ
k̨,–

|2 + (ck)2|A
k̨,–

|2
"

= 1
2

ÿ

k̨,–

Õ!
Ẋ

k̨,–

2 + (ck)2X
k̨,–

2 + Ẏ
k̨,–

2 + (ck)2Y
k̨,–

2"
. (55.7)

The field momentum is given by a similar calculation, starting with the Poynting
vector (Your Turn 34C (page 386)b):

P̨ = ‘0

⁄
d3r Ę ◊ B̨ (55.8)

= ‘0
ÿ

k̨1,–

Õ ÿ

k̨2,—

Õ
⁄

d3r 1
2
!
≠Ȧ

k̨1,–
’̂(–,̨k1)e

įk1·r̨ + c.c.
"

◊
1

Ǫ̀ ◊ 1
2
!
A

k̨2,—
’̂(—,̨k2)e

įk2·r̨ + c.c.
"2

= ≠‘0L3

4
ÿ

k̨,–

Õ ÿ

—

!
Ȧ

k̨,–
Aú

k̨ ,—
’̂(–,̨k ) ◊ (≠įk ◊ ’̂(—,̨k )) + c.c.

"

= ‘0L3

4
ÿ

k̨,–

Õ!įk Ȧ
k̨,–

Aú
k̨,–

+ c.c.
"

= 1
2

ÿ

k̨,–

Õ
k̨

!
(iẊ

k̨,–
≠ Ẏ

k̨,–
)(X

k̨,–
≠ iY

k̨,–
) + c.c.

"

=
ÿ

k̨,–

Õ
k̨

!
Ẋ

k̨,–
Y

k̨,–
≠ Ẏ

k̨,–
X

k̨,–

"
. (55.9)

We now have compact formulas for the energy and momentum of the electro-
magnetic field in terms of the harmonic-oscillator representation (Equation 55.7 and
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55.9). The interpretation is that every mode of the field, labeled by k̨ and –, makes
an independent contribution to E, and also to each component of P̨ . Note, however,
that the momentum gets mixed contributions from the X and Y oscillators. We will
soon remove this remaining inconvenience.

55.3 QUANTIZATION REPLACES FIELD VARIABLES BY OPERATORS

Finding the quantum-mechanical version of a harmonic oscillator is a standard prob-
lem which will be easy after we make a rather involved change of variables. To motivate
the required change, we will break it down into four steps. It is worthwhile to verify
each of the steps, which are straightforward if a bit tedious; ultimately the goal is to
replace the X and Y variables by a set of quantum operators called Q and their Her-
mitian conjugates (Equation 55.21). Note that this chapter uses di�erent typefaces to
distinguish quantum operators from their corresponding classical dynamical variables.

Step 1: Quantize
For brevity, at first consider only one pair of modes X and Y , that is, only a particular
k̨ , –. We introduce two Hermitian operators3 X and U, with the property that their
commutator is [X, U] = i~. In the energy function, Equation 55.7, we substitute X æ X
and Ẋ æ U to obtain the Hamiltonian operator for X:

HX = 1
2
!
U2 + (ck)2X2"

. (55.10)

This operator both represents the energy of a quantum state and also determines its
time evolution. For example, the time evolution of

--�(t)
,

is given by exp(≠iHXt/~)
--�

,
.

It implies that
d2

dt2
+
�1

--X
--�2

,
= d

dt

+
�1

-- i
~ [HX , X]

--�2
,

= d
dt

+
�1

--U
--�2

,
=

+
�1

-- i
~ [HX , U]

--�2
,

= ≠ (ck)2+
�1

--X
--�2

,
, (55.11)

which implements the classical equation of motion for the harmonic oscillator in
Equation 55.3.

We proceed in the same way with the other oscillator family, introducing oper-
ators Y and V analogous to X and U. Then the operator corresponding to A

k̨,–
in

Equation 55.4 is
A = (‘0L3/2)≠1/2(X + iY). (55.12)

Step 2: Diagonalize energy
We could now finish constructing the state space, for example, by writing and solving
a set of decoupled Schrödinger equations for each pair of operators (X, U) and (Y, V).
However, the harmonic oscillator problem has an elegant reformulation that simplifies
the math. Change variables once again by defining new operators

S = (2~ck)≠1/2(ckX + iU) and R = (2~ck)≠1/2(ckY + iV). (55.13)

3In the analogy to a harmonic oscillator, these represent the position and momentum respectively,
but in electrodynamics they have no direct connection to physical position r̨ or field momentum P̨ .
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Then it is straightforward to verify that

[S, S†] = 1, [R, R†] = 1, [S, R] = [S, R†] = 0, (55.14)

H = HX + HY = ~ck(S†S + R†R + 1), and (55.15)

P̨ = i~k̨
!
S†R ≠ h.c.

"
. (55.16)

In the last formula, “h.c.” denotes the Hermitian conjugate, that is, R†S.

Step 3: Diagonalize momentum
The Hamiltonian operator has the nice property that S and R make independent,
additive contributions to it. The momentum operator still mixes S and R, but we
can diagonalize it, without spoiling H, by a unitary transformation. Define two new
lowering operators by

Q = (S + iR)/
Ô

2, ÂQ = (S ≠ iR)/
Ô

2. (55.17)

Your Turn 55B
Show that

[Q, Q†] = 1, [ÂQ, ÂQ†] = 1, [Q, ÂQ] = [Q, ÂQ†] = 0, (55.18)

H = ~ck(Q†Q + ÂQ† ÂQ + 1), and (55.19)

P̨ = ~k̨ (Q†Q ≠ ÂQ† ÂQ). (55.20)

We now have new field operators Q and ÂQ that, unlike S and R, enter independently
into both the field energy and momentum.

Step 4: Relabel
We now reinstate the mode indices k̨ and –. Until now, all mode sums were over a
half-space of discrete k̨ values, but now we can simplify the notation: Define operators
for all nonzero k̨ by renaming ÂQ

k̨,–
as Q≠k̨ ,–

. Then

[Q
k̨1,–

, Q†
k̨2,—

] = ”–—”
k̨1 ,̨k2

, [Q
k̨1,–

, Q
k̨2,—

] = 0, for all nonzero k̨1 and k̨2. (55.21)

Our final formulas then become unrestricted sums:

H =
ÿ

k̨ ,–

~ck
!
Q†

k̨,–
Q

k̨,–
+ 1

2
"
, and (55.22)

P̨ =
ÿ

k̨ ,–

~k̨
!
Q†

k̨,–
Q

k̨,–

"
. (55.23)

We now have a set of operators in terms of which the energy and momentum of
light will have simple interpretations.
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55.4 PHOTON STATES

55.4.1 Basis states can be formed by applying creation operators to the vacuum
state

We have found a set of field-like operators that obey Maxwell-like equations, and
recast them in terms of the Q and Q† operators. Besides giving an elegant approach
to quantization, this formulation gives a basis of states that is readily interpretable.

Your Turn 55C
Show that

[H, Q
k̨,–

] = ≠~ckQ
k̨,–

and [P̨, Q
k̨,–

] = ≠~k̨ Q
k̨,–

. (55.24)

Equations 55.24 justify the term “lowering operator”:
Applying the lowering operator Q

k̨,–
to a state lowers its energy by ~ck,

and changes its momentum by ≠~k̨ . Conversely, applying the raising
operator Q†

k̨,–
has the opposite e�ects.

(55.25)

Next, note that both of the terms in the classical electromagnetic energy function
(Equation 55.6) are nonnegative. So it must not be possible to lower that energy
indefinitely; there must be a state for which any lowering operator yields zero. We’ll
denote that photon ground state by the symbol

--0
,
. Any other state is obtained from

this one by the actions of the various raising operators, each of which may be applied
any number of times, always raising the energy by ~ck and changing the momentum
by ~k̨ . The spectrum of allowed energy and momentum values suggests a description:
It is exactly the same as that of a gas of noninteracting particles, each carrying energy
~ck and momentum ~k̨ .

Your Turn 55D
Show that when a raising operator acts n times, we can obtain a normalized state
as follows:

--n
k̨,–

,
=

Ú
1
n!

!
Q†

k̨,–

"n
--0

,
. (55.26)

More generally, we can define
--n

k̨1,–1
; n

k̨2,–2
, . . .

,
as a state obtained by applying

several di�erent raising operators to the ground state, each multiple times, and then
normalizing. States of this form with di�erent sets of occupation numbers are all
linearly independent and orthogonal. In fact,

The quantum states of light form a linear space spanned by basis vectors
of this form, which act like states of noninteracting particles (“photons”). (55.27)

That is, each one-photon basis state is labeled by a wavevector and a polarization,
and carries energy and momentum related by Equation 55.24:

E
k̨,–

= ~ck; p̨
k̨ ,–

= ~k̨ ; so E
k̨,–

= cÎp̨
k̨ ,–

Î, (55.28)
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implying that photons are massless (Equation 30.15 (page 329)). For multiphoton
states, we add the corresponding quantities, just as we would do with any noninter-
acting particles.

The interpretation of the quantum basis states as containing particles motivates
another commonly used set of terms for the raising and lowering operators: Because
they can be interpreted as raising and lowering the number of photons in a state, they
are also called creation and destruction operators;

--0
,

is also called the vacuum state.
We may guess that these concepts will be key to understanding how a fluorescent
molecule in its excited state can create photons from “nothing” (and how other
processes can make photons disappear).

The fact that the collection of occupation numbers, {n
k̨,–

}, fully determines a
basis state is the key insight that leads to the famous spectrum of thermal (“black
body”) radiation. This aspect of light can alternatively be expressed by saying that the
particles of light with given k̨ , – are indistinguishable: they have no further attributes,
so all we need to state is how many are present. For example, it doesn’t matter in what
order we build a photon state by applying raising operators, because those operators
all commute with one another.4

55.4.2 Coherent states mimic classical states in the limit of large occupation
numbers

The states we have called “one-photon” are far from being classical. Indeed, no state
with a definite number of photons can be an eigenvector of the field operators cor-
responding to the classical electric and magnetic field, because Ą(r̨ ) involves both
raising and lowering operators:

Your Turn 55E
Use Equations 55.2, 55.12, 55.13, and 55.17 to show that

Ą(r̨ ) =
ÿ

k̨ ,–

Ú
~

2L3‘0ck
’̂(–,̨k )

!
Q

k̨,–
eįk ·r̨ + h.c.

"
. (55.29)

However, we can find eigenvectors of Q
k̨,–

, called coherent states: For any complex
number u, define

--u, k̨, –
,

= exp(≠ 1
2 |u|2)

Œÿ

n=0
(n!)≠1/2(u)n

--n
k̨,–

,
. (55.30)

4More precisely, a class of particles that are indistinguishable in this way is called “bosonic.” Another
possibility, called “fermionic” particles, has raising operators that mutually anticommute.

Contents Index Notation



542 Chapter 55 Field Quantization

Your Turn 55F

a. Show that the states
--u, k̨, –

,
just defined are all properly normalized for any

complex number u.
b. Show that Q

k̨,–

--u, k̨, –
,

= u
--u, k̨, –

,
, and hence also

+
u, k̨, –

--Q†
k̨,–

= uú+
u, k̨, –

--.
c. Then show that Equation 55.29 implies

+
u, k̨, –

--Ą(r̨ )
--u, k̨, –

,
= (2L3‘0ck/~)≠1/2’̂(–,̨k )ueįk ·r̨ + c.c.

Your results show that the coherent state based on a particular wavevector and po-
larization is the quantum analog of a classical single-mode state (Equation 55.2, page
536). Moreover, as the amplitude |u| becomes large (and hence also the expectation of
the photon number), the relative standard deviation of the electric field in this state
goes to zero, leading to classical behavior. In this limit, the coherent states correspond
to classical states of the electromagnetic field, for example the radiation emitted by a
radio broadcast antenna.5

Your Turn 55G
The coherent states are superpositions of states with di�erent numbers of photons.
Find the length-squared of the individual terms of Equation 55.30 to get the
probabilities of getting exactly ¸ photons in a measurement on that state. Is this
a distribution you have seen previously?

This section has established contact between the field quantization procedure in
this chapter, the particle picture from earlier chapters, and Maxwell’s original classical
fields.

55.5 INTERACTION WITH ELECTRONS

55.5.1 Classical interactions involve adding source terms to the field equations
If we wish to study the creation of light by a molecule, then we must acknowledge
that the light field interacts with that molecule’s electrons. In the presence of charged
matter, we can no longer find a gauge transformation that eliminates the scalar
potential Â, though we can still impose Ǫ̀ · Ą = 0. The electric Gauss law then says

Ǫ̀ · Ę = ≠Ò2Â = flq/‘0, [2.3, page 22]

where flq is the charge density. This formula looks just like the corresponding equation
in electrostatics, and it leads to the usual potential that binds the molecule’s electrons
to its nuclei.

Ampère’s law also involves charges, via the electric current density j̨(t, r̨ ):

Ǫ̀ ◊ B̨ = µ0j̨ + µ0‘0
ˆ

ˆt
Ę. [17.15, page 202]

5Books on quantum optics show that the light created by a single-mode laser, operated well above
threshold, is also a coherent state (Loudon, 2000, chapt. 7).
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Casting everything into plane wave mode expansions as before gives the full Maxwell
equations as

k2Â
k̨

= 1
‘0

flq,̨k
and (55.31)

d2

dt2 Ą
k̨

+ (ck)2Ą
k̨

= ≠įk
dÂ

k̨

dt
+ 1

‘0
j̨

k̨
, (55.32)

where c = (µ0‘0)≠1/2 and Â
k̨

, flq,̨k
, and j̨

k̨
are the plane-wave components of Â, flq,

and j̨ , respectively. We now take the dot product of both sides of Equation 55.32
with the two transverse basis vectors ’̂(–,̨k ) to find the desired generalization of
Equation 55.3:

d2

dt2 A
k̨,–

= ≠(ck)2A
k̨,–

+ 1
‘0

j̨
k̨

· ’̂(–,̨k ) for each k̨ , –. (55.33)

The scalar potential Â has dropped out of this equation of motion.

55.5.2 Electromagnetic interactions can be treated perturbatively
There is no need to quantize the scalar potential Â, because Equation 2.3 shows that
in Coulomb gauge, it is not an independent dynamical variable: It just tracks whatever
the charge density is doing.

The last term of Equation 55.33 describes the interaction of the vector potential
with charge flux. To discuss the radiation of a molecule, we treat this term as a
perturbation. That is, we set up an “unperturbed” Hamiltonian operator describing
the quantum mechanics of the electrons making up the molecule, with their Coulomb
attraction to the nuclei mediated by the scalar potential Â as usual. There is another
term describing the free electromagnetic field (Equation 55.22). To these terms we
then add the perturbation

≠
⁄

d3r j̨(r̨ ) · Ą(r̨ ), (55.34)

where j̨(r̨ ) is the operator version of the current density and Ą(r̨ ) is given by Equa-
tion 55.29. This term modifies the quantum equations of motion, introducing the last
part of Equation 55.33.

Each electron in the atom or molecule of interest contributes a delta function to
j̨ that is localized at the electron’s position r̨e, with strength equal to its charge, ≠e,
times its velocity, p̨e/me. Thus, each electron makes a contribution to the integral in
Equation 55.34 equal to

≠
ÿ

k̨ ,–

Ú
~

2L3‘0ck
’̂(–,̨k ) · (≠e)(̨pe/me)

!
Q

k̨,–
eįk ·̨re + h.c.

"
. (55.35)

The e�ect of this perturbation is to allow transitions between eigenstates of the
unperturbed Hamiltonian operator, that is, between states that would be stationary
were it not for the perturbation term. For example, the transitions that interest us
are those from a molecule with initially excited electron state and no photons present,
to a deexcited electron state and one photon present. To find the probability per
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unit time that this transition will occur, we need to compute the modulus squared
of Equation 55.35 sandwiched between the initial and final states.6 The Hermitian
conjugate term, involving Q†

k̨,–
, can create the photon, so we want the matrix element

of the remaining factors of this term sandwiched between the molecular states.
To make progress, notice that for transitions in the visible spectrum, k ¥

10≠2 nm≠1. But re cannot exceed the size of the atom or molecule, typically ¥ 1 nm,
so k̨ · r̨e is a small dimensionless number. Accordingly, we will approximate exp(įk · r̨e)
by its leading-order Taylor series term, which is 1—the electric dipole approximation.7

55.5.3 The dipole emission pattern
We now ask for the probability that the emitted photon will be observed to be traveling
in a particular direction with a particular energy and polarization. The preceding
section argued that dropping overall constant factors, the answer is proportional to

----
+
ground; k̨, –

--
ÿ

k̨ Õ,—

Q†
k̨ Õ,—

’̂(—,̨k Õ) · p̨e
--excited

,----
2

=
---
+
ground

--̨pe
--excited

,
· ’̂(–,̨k )

---
2

. (55.36)

One further transformation helps to clarify the meaning of this quantity. The electron
momentum operator, whose matrix element we need, can be rephrased in terms of
the electron position operator, as the commutator

[He, r̨e] = ≠i~
m

p̨e.

Sandwich this relation between the ground and excited states to find
+
ground

--(E0̨re ≠ r̨eEú)
--excited

,
= ≠i~

m

+
ground

--̨pe
--excited

,
.

The right-hand side of this formula is a constant times the quantity needed in Equa-
tion 55.36. The left-hand side is can be written in terms of the electric dipole moment
operator, D̨E = ≠ęre, so we find that the probability of photon emission involves the
matrix element of the dipole moment, a vector called the molecule’s transition dipole.
This is encouraging news: In classical electrodynamics the rate of energy radiation is
also proportional to the amplitude squared of the electric dipole moment.

If the molecular states are such that the transition dipole is nonzero, then we can
choose a coordinate system in which it points along the z axis:

+
ground

--D̨E

--excited
,

= DEẑ. (55.37)

Suppose that, as is the case in many experiments, we record every photon received
regardless of its polarization. The sum of Equation 55.36 over – includes the factor8

ÿ

–

ẑ · ’̂(–,̨k )’̂(–,̨k ) · ẑ. (55.38)

6Quantum mechanics textbooks call this scheme the “Golden Rule” of time-dependent perturbation
theory.
7See Chapter 42.
8We chose ’̂

(–,k̨ )
to be real vectors in Section 55.2.
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We can simplify this expression by realizing that it involves the projection of ẑ onto
the plane perpendicular to k̨ . Another expression for that projection operator is 1≠k̂k̂,
so we get

ẑ · (1 ≠ k̂k̂) · ẑ = ẑ · ẑ ≠ (ẑ · k̂)2 = 1 ≠ cos2 ◊ = sin2 ◊, (55.39)
where ◊ is the polar angle between the direction of observation, k̂, and the transition
dipole.

Equations 55.39 and 55.36 show that the probability density function for the
angles at which photons are emitted has a “dipole doughnut” pattern: No photons
are emitted along ±ẑ; instead, they are preferentially emitted in the equatorial belt
◊ ¥ fi/2.9 A similar argument shows that the probability to absorb light also follows
a dipole pattern.

The mean rate at which photons are emitted is determined by the transition
dipole DE defined by Equation 55.37, which itself is essentially the matrix element of
the molecule’s electric dipole moment operator.

If the matrix element of the dipole moment operator is nonzero, then the
dominant mechanism of energy loss by a molecule is the one just described,
with its characteristic angular distribution ˝(◊, Ï) Ã sin2 ◊.

(55.40)

This section has resolved the puzzle posed at the start of this chapter: The pattern
of photon emission observed in defocused orientation imaging (Figure 55.1) agrees with
the dipole radiation pattern in classical electrodynamics because the same angular
factors enter each calculation.

55.6 VISTAS

55.6.1 Some transitions are far more probable than others
Section 55.5 focused on the relative mean rates to emit photons in di�erent directions.
To find the absolute rates, we need various other factors provided by the “Golden
Rule” of time-dependent perturbation theory. The derivation of the rule also shows
why energy must be conserved in photon emission and absorption, or more precisely,
it must be conserved to within a tolerance set by the uncertainty relation.

For simplicity, Section 55.2 chose to expand the vector potential Ą in a basis
of linearly polarized, plane wave states. Other bases may be better adapted to the
problem at hand, for example, a basis of circularly polarized plane waves. Also, a
basis of outgoing spherical waves, centered on the emitting object, is better suited
to study light emitted by a very small object and traveling out to infinity. That
basis can be chosen such that each element carries definite angular momentum away
from the emitter. When we do this, we find that certain kinds of photons cannot
be emitted at all by certain kinds of transitions, because doing so would violate the
conservation of angular momentum. Other transitions appear impossible when we
make the approximation exp(įk · r̨e) ¥ 1, as was done in Section 55.5.2, but not when
we retain higher terms in the Taylor series. Such transitions are called “forbidden,”
but more precisely their rates are just suppressed by powers of the small factor (kre)2.

9See Section 37.2.2.
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The statement that some transitions are “forbidden” is an example of a selection
rule. Another class of selection rules arises from considerations of electron spin in
multi-electron atoms or molecules. It is possible for a molecule to get trapped in an
excited state, from which transitions to the ground state are suppressed by a spin
selection rule. Such an excited state can eventually make its transition, but with
mean rate far slower than most fluorescence transitions, leading to the phenomenon
of phosphorescence (ultra-slow fluorescence). Spin selection rules also ensure very
slow exit from the dark states of some fluorophores, which is useful for localization
microscopy.

55.6.2 Lasers exploit a preference for emission into an already occupied state
Sections 55.5.2–55.5.3 restricted attention to the case in which a photon is emitted
into a world originally containing no photons. Although photons do not interact in the
usual sense of colliding, nevertheless a very important new phenomenon arises when
we consider adding a photon to a state that is already occupied. If a mode initially
contains n photons, Equation 55.26 (page 540) implies

+
n + 1

--Q†--n
,

=
+
0
-- 1Ô

(n+1)!
Qn+1(Q†)n+1 1Ô

n!

--0
,

=
+
0
--
Ò

(n+1)!
n!

--0
,

=
Ô

n + 1.

This factor gets squared when it enters into the rate for photon emission into this
mode. Because this matrix element depends on n, we conclude that

When an atom or molecule emits a photon, it preferentially chooses a mode
that is already occupied. (55.41)

If we have a population of many excited atoms or molecules, then this result implies
that there can be an avalanche-type e�ect, in which one particular mode gets the vast
majority of all emitted photons. This mechanism for obtaining nearly single-mode
light is called light amplification by stimulated emission of radiation—the laser.

FURTHER READING
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Walmsley, 2015.
Intermediate:
Quantum mechanics and the radiation field: Feynman et al., 2010c, chapt. 9.
Specifically on the quantum theory of light: Lipson et al., 2011; Leonhardt, 2010;

Loudon, 2000; Nelson, 2017.
Radiation; forbidden transitions: van der Straten & Metcalf, 2016.
Technical:
General: Berman & Malinovsky, 2011; Mandel & Wolf, 1995.
Defocused orientation imaging: Toprak et al., 2006; Böhmer & Enderlein, 2003; Bartko

& Dickson, 1999a; Bartko & Dickson, 1999b.
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Epilogue
Above stands the marble smile of implacable Nature, which
has endowed us more with longing than with intellectual
capacity.

— Einstein

The course started slowly but in the end we covered a lot. What was it about?
As I said at the start, “organize/systematize/consolidate/integrate.” But there was
more than that.

Did you walk into this room in January thinking that classical electrodynamics
ended with Maxwell? My attitude has been that, besides enabling a lot of technology
(2d industrial revolution...), it is also the springboard to all of modern physics theories,
largely in ways you weren’t taught in undergrad. Let’s think where we’ve been.

We were always interested in, and guided by, real-world Electromagnetic Phenom-
ena, such as:

• The multipole expansion gave us a rough guide to the physical properties of
various substances (for example, boiling points) just based on the geometry of
their molecular constituents. Besides cleaning up (unifying) a lot of old ideas in
statics (and in mechanics), the multipole expansion came back to organize our
study of magnetostatics and then radiation.

• Not only multipoles, but also the geometrical description of the shapes of fluid
interfaces benefited from formulation in terms of tensors. Besides cleaning up
(unifying) a lot of old ideas, 3-tensors and their 4D big brothers helped us to see
new things about relativity.

• Electrostatics makes nontrivial testable predictions even in world of biomacro-
molecules.

• Magnetic tweezers exploit multipole forces to let us manipulate microscopic
objects.

• Multipole expansion gave the distance dependence of FRET, establishing a “spec-
troscopic ruler.”

• Electrostatics and magnetostatics predict the velocity of light.
• Fields can transport momentum and angular momentum, not just energy: Jump-

ing ring, radiation pressure, optical tweezers, comet tails, orbital angular momen-
tum “tractor beams,” . . .

• Mirages, rainbows, and other optical phenomena that are exotic enough to be
interesting, yet common enough to see without fancy instruments.

• Waves interfere, but with two independent polarizations.
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• A number of non-null experiments quantitatively distinguish Lorentz from
Galilean: Doppler, Fizeau, aberration, muon lifetime, breakdown of the cyclotron
principle, E = mc2, . . .

• Microwaves behave in many ways similarly to light.
• Cosmic microwave background radiation: Its dipole anisotropy, polarization pat-

terns, . . .
• IR absorption of greenhouse gases.
• Photonic bandgap materials, IR laser scalpel, . . .
• Optical rotatory power, even in isotropic media. Birefringence, dichroism, and

related optical e�ects in media.
• Synchrotron radiation, bremsstrahlung, transition radiation, with all their tech-

nological impact.
• Besides cleaning up (unifying) a lot of old ideas, the energy–momentum flux tensor

came back as fundamental in finding the appropriate quantum generalization of
electrodynamics. That gave us insight into the dipolar probability distribution
of individual photons from a single fluorescent molecule.

The basic epistemological miracle of science is that sometimes—more often than
one might have a right to expect—a good idea has a far greater range of validity than
what was envisioned when it was proposed (then we call it a “principle”). Physics looks
at those principles whose consequences are not visible to the naked eye, but become
visible when we bring the lens of mathematical analysis to bear on them. Then we get
a bigger miracle: Sitting in our armchair, a long chain of mathematical reasoning can
actually lead to new knowledge. It’s pointless for philosophers to quibble that that
new knowledge was really latent in the starting facts—it’s something not previously
known to any human being. (Of course it’s provisional until tested by experiment.)

This procedure doesn’t always work, but in physics it has sometimes worked in
the past. In the other sciences you essentially never get new knowledge in this way.
It’s a nontrivial synthetic step. It has happened a lot in electrodynamics:

• Maxwell... need the extra term in Ampère law... waves... radio technology...
• Einstein... no aether... no Galilean, but yet Lorentz invariance... sounded abstract,

but it led to specific experimental predictions.
• More generally, the systematic exploitation of overarching symmetry principles

(implemented with tensor methods), gave us “Einstein thinking,” which then led
us to many payo�s.

• A lot of vistas now open up. What if mu and epsilon are negative... the perfect
lens, maybe cloaking etc... What if we set up an evanescent wave; it could still
excite fluorescence etc... Polarization in CMBR tells us about mass distribution...
what if we could engineer a material that neither absorbs IR light nor allows it
to propagate...

Genius is helpful but not required; the tools we developed represent the distilled
genius of others. Maybe this is the first physics course where you didn’t learn how
to solve some new di�erential equation analytically. Instead we focused on multipole
expansion; group theory; tensor analysis. Other uses abound: SU(5) symmetry brings
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its own flavor of tensor analysis as does liquid crystal physics; general relativity takes
our tensor analysis as point of departure.

Of course you can make errors. Experiment is still the decisive step. Experience
and practice help you to make fewer errors, so you can do more relevant experiments
that test more promising ideas.

Finally, we have also been interested in how you get answers when analytic methods
are too di�cult. For this we have sometimes turned to numerical methods. Even if
the calculations are not too di�cult, the computer can give us a lot of insight via fast
accurate visualization of our formulas.

This is a solemn, poignant moment in your intellectual journey: The last moment
when you’ll all be in the same room, thinking about the same physics. But it needn’t
be so. Yes, you’re about to scatter to your respective research specialties. But you
can still keep talking to each other about each others’ projects. That has made me
happy, or at least happier than I would otherwise have been. Good luck with your
own search.
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A P P E N D I X A

Units and Dimensional Analysis
x.

— y

Some physical quantities are naturally integers, like the number of discrete clicks
made by a Geiger counter. But others are continuous, and most continuous quantities
must be expressed in terms of conventional units. This book uses the Système Inter-
nationale, or SI units, but you’ll need to be able to convert units when reading other
works. Units and their conversions in turn form part of a larger framework called
dimensional analysis.

Dimensional analysis gives a powerful method for catching algebraic errors, as
well as a way to organize and classify numbers and situations, and even to guess new
physical laws, as we’ll see in Section A.4.

To handle units systematically, remember that
A “unit” acts like a symbol representing an unknown quantity. Most
continuous physical quantities should be regarded as the product of a
pure number times one or more units.

(A few physical quantities, for example, those that are intrinsically integers, have no
units and are called dimensionless.) We carry the unit symbols along throughout our
calculations. They behave just like any other multiplicative factor; for example, a unit
can cancel if it appears in the numerator and denominator of an expression.1 We know
relations among certain units; for example, we know that 1 inch ¥ 2.54 cm. Dividing
both sides of this formula by the numeric part, we find 0.39 inch ¥ 1 cm, and so on.

A.1 BASE UNITS

The SI chooses “base” units for length, time, mass, and electric charge: Lengths are
measured in meters (abbreviated m), masses in kilograms (kg), time in seconds (s),
and electric charge in coulombs (which this book abbreviates as coul).2 The system
also creates related units via the prefixes giga (=109), mega (=106), kilo (=103), deci
(=10≠1), centi (=10≠2), milli (=10≠3), micro (=10≠6), nano (=10≠9), pico (=10≠12),
or femto (= 10≠15), abbreviated as G, M, k, d, c, m, µ, n, p, and f respectively. Thus,
1 nm is a nanometer (or 10≠9 m), 1 µg is a microgram, and so on.

A symbol like µm2 means (µm)2 = 10≠12 m2, not “µ(m2).”

1One exception involves temperatures expressed using the Celsius and Fahrenheit scales, each of
which di�er from the absolute (Kelvin) scale by an o�set.
2The standard abbreviation is C, but this risks confusion with the speed of light, a concentration or
capacitance variable, or a generic constant.
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A.2 DIMENSIONS VERSUS UNITS

Other quantities, such as electric current, derive their standard units from the base
units. But it is useful to think about current in a way that is less strictly tied to a
particular unit system. Thus, we define abstract dimensions, which tell us what kind
of quantity a variable represents. For example,

• The symbol L denotes the dimension of length. The SI assigns it a base unit
called “meters,” but other units exist with the same dimension (for example,
miles or centimeters). Once we have chosen a unit of length, we then also get
derived units for area (m2) and volume (m3), which have dimensions L2 and L3,
respectively.

• The symbol M denotes the dimension of mass. Its SI base unit is the kilogram.
• The symbol T denotes the dimension of time. Its SI base unit is the second.
• The symbol Q denotes the dimension of electric charge.3 Its SI base unit is the

coulomb.
• Electric current has dimensions QT≠1. The SI assigns it a standard unit coul/s,

also called “ampere” and abbreviated A.
• Energy has dimensions ML2T≠2. The SI assigns it a standard unit kg m2/s2, also

called “joule” and abbreviated J.
• Power (energy per unit time) has dimensions ML2T≠3. The SI assigns it a stan-

dard unit kg m2/s3, also called “watt” and abbreviated W.

Suppose that you are asked on an exam to compute an electric current. You
work hard and write down a formula made out of various given quantities. To check
your work, write down the dimensions of each of the quantities in your answer, cancel
whatever cancels, and make sure the result is QT≠1. If it’s not, you may have forgotten
to copy something from one step to the next. It’s easy, and it’s amazing how quickly
you can spot and fix errors in this way.

When you multiply or divide two quantities, the dimensions combine like numerical
factors: Photon flux irradiance (T≠1L≠2) times area (L2) has dimensions appropriate
for a rate (T≠1). On the other hand, you cannot add or subtract terms with di�erent
dimensions in a valid equation, any more than you can add rupees to centimeters.
Equivalently, an equation of the form X = Y cannot be valid if X and Y have di�erent
dimensions. (If either X or Y equals zero, however, then we may omit its units without
ambiguity.)

You can add dollars to yuan, with the appropriate conversion factor, and similarly
cubic centimeters to fluid ounces. Cubic centimeters and fluid ounces are di�erent
units that both have the same dimensions (L3). We can automate unit conversions,
and reduce errors, if we restate the conversion 1 US fluid ounce ¥ 29.6 cm3 in the form

1 ¥ US fluid ounce
29.6 cm3 .

Because we can freely insert a factor of 1 into any formula, we may introduce as
many factors of the above expression as we need to cancel all the ounce units in that

3Some authors use I = Q/T, a “current” dimension, instead of Q.
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expression. This simple prescription (“multiply or divide by 1 as needed to cancel
unwanted units”) eliminates confusion about whether to place the numeric factor 29.6
in the numerator or denominator.

Functions applied to dimensional quantities
If x = 1 m, then we understand expressions like 2fix (with dimensions L), and even
x3 (with dimensions L3). But what about sin(x) or log10 x? These expressions are
meaningless;4 more precisely, they don’t transform in any simple multiplicative way
when we change units, unlike say x/26 or x2.

Additional SI units
frequency: One hertz (Hz) equals one complete cycle per second, or 2fi rad/s.
temperature: One kelvin (K) can be defined by saying that the atoms of an

ideal monoatomic gas have mean kinetic energy (3/2)kBT , where kB = 1.38 ·
10≠23 J K≠1.

resistance and conductance: One ohm (�) equals one volt per ampere. One siemens
is an inverse ohm: 1 S = 1 �≠1.

electric potential: One volt (volt) equals 1 J/coul.

Traditional but non-SI units
mass: One dalton (also called “unified atomic mass unit,” and abbreviated u) is

1 Da = 931.5 MeV/c2.
time: One minute is 60 s, and so on.
length: One Ångstrom unit (Å) equals 0.1 nm.
volume: One liter (L) equals 10≠3 m3. Thus, 1 mL = 1 cm3.
number density: A 1 M solution has a number density of 1 mole/L = 1000 mole m≠3,

where “mole” represents the number ¥ 6.02 · 1023.
energy: An electron volt (eV) equals e ◊ (1 volt) = 1.60 · 10≠19 J = 96 kJ/mole.

Here e is the electric charge on a proton. An erg (erg) equals 10≠7 J. Thus,
1 kcal mole≠1 = 0.043 eV = 6.9 · 10≠21 J = 6.9 · 10≠14 erg = 4.2 kJ mole≠1.

A.3 ABOUT GRAPHS

When you make a graph involving a continuous quantity, state the units of that
quantity in the axis label. For example, if the axis label says waiting time [s], then
we understand that a point aligned with the tick mark labeled 2 represents a measured
waiting time that, when divided by 1 s, yields the pure number 2.

The same interpretation applies to logarithmic axes. If the axis label says flash
photon density [photons/µm2], and the tick marks are unequal, then we understand
that a point aligned with the first minor tick after the one labeled 10 represents a
quantity that, when divided by the stated unit, yields the pure number 20 (in this case,

4One way to see why such expressions are meaningless is to use the Taylor series expansion of sin(x),
and notice that it involves adding terms with incompatible units.
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20 photons /µm2). Alternatively, we can make an ordinary graph of the logarithm of
a quantity x, indicating this in the axis label, which says log10 x or ln x instead
of x. The disadvantage of the second system is that, if x carries units, then strictly
speaking we must instead write something like log10(x/(1 m2)) or log10(x [a.u.]),
because the logarithm of a quantity with dimensions has no meaning.

A.3.1 Arbitrary units
Sometimes a quantity is given in some unknown or unstated unit. It may not be
necessary to be more specific, but you should alert your reader by saying something
like emission spectrum [arbitrary units]. Many authors abbreviate this as “[a.u.]”

A.3.2 Angles
Angles are dimensionless: We get the angle between two intersecting rays, in the
dimensionless unit radians (abbrevated rad), by drawing a circular arc of any radius
r between them and centered on the intersection, then dividing the length of that
arc (with dimensions L) by r (with dimensions L). Another clue is that if ◊ carried
dimensions, then trigonometric functions like sine and cosine wouldn’t be defined (see
Section A.2). The angle corresponding to a complete circle is 2fi rad. An alternative
expression for this quantity is 360 deg.

Angular area (also called solid angle) is also dimensionless. Given a patch on
the surface of a sphere, we get its angular area, in the dimensionless unit steradians
(abbrevated sr), by finding the area of that patch and dividing by the sphere’s radius
squared.

A.4 PAYOFF
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Global List of Symbols
Good notation should serve you—not the other way round.

— Howard Georgi

Throughout these notes the word “vector” is used specifically to mean a set of
three numbers that points in space (or four numbers that point in spacetime). More
abstract notions of vector, like the state vector of quantum mechanics, exist but don’t
follow the particular transformation rules we use here.1

B.1 MATHEMATICAL NOTATION

We need a notational system that is precise enough to express intricate ideas unam-
biguously, yet flexible enough to not be a burden when we know what we’re doing. If
possible, we also want a system in which it’s harder to write down wrong formulas
than it is to write correct formulas.

Abbreviated words
c.c. Complex conjugate of the preceding term(s).
|ret Evaluated at “retarded time” (observation time minus R/c); see Section 23.4.1.

Operations

Į̂b Î Length of a real 3-vector, =


b̨ · b̨ . For a complex vector it means


b̨ ú · b̨ .
zú Complex conjugate of a complex number z.
|z| Absolute value of a complex number, =

Ô
zúz.

ÎX Î2 Invariant norm-squared of a 4-vector.
Ò2 Laplace operator.
2 D’Alembert operator.
ı Hodge dual operation.
ą b̨ dyad (tensor) product of two vectors (itself a rank-2 tensor). (Others may call

it “tensor product” or “outer product,” and denote it by the synmbol ¢.)
¡
T [S] and

¡
T [A] symmetric and antisymmetric parts of a rank-2 tensor (Equa-

tion 31.8, page 338).

1A mathematician might therefore say “rank-1 tensor” wherever I say “vector” below.
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Other modifiers
An overbar on a symbol can denote peak value (amplitude) of a sinusoidally varying
quantity with the same letter name, for example, f(t) = f̄ cos(Êt). More generally,
such quantities may be complex; then f(t) = 1

2 f̄e≠iÊt + c.c.
Sometimes an overbar can instead be used to indicate the nondimensionalized

version of some quantity.
A dot over a function name can mean a derivative with respect to time. A prime

following a function name can mean a derivative with respect to a spatial coordinate.
Primes have other uses, however; see below.

3-vectors and -tensors
Ǫ̀ Spatial gradient operator.
¡
11 Unit operator regarded as a 3-tensor. Its components

¡
11ij are usually written as

the “Kronecker delta” symbol: ”ij = 1 if i = j and 0 otherwise.
Most books use boldface type to denote 3-vectors and 3-tensors. I can’t draw that

on the blackboard, so I use an arrow above the variable’s name to denote a 3-vector
and a double arrow to denote a 3-tensor of rank two. Tensors of higher rank will always
appear with explicit indices indicating their components and no arrow, for example,
Áijk.

When a letter that is normally used for a vector appears without an overarrow
or index, that notation usually refers to the length of the corresponding vector; for
example, r indicates the length of r̨. However, d3r denotes dxdydz (which is not a
vector).

A di�erential element of surface has area denoted d2�. When multiplied by an
outward-pointing perpendicular unit vector, this becomes the vector d2�̨.

If a 3-vector is normalized to unit length, it gets a hat (circumflex) instead of an
arrow, for example, the coordinate basis vectors x̂, ŷ, and ẑ.2 These are constant unit
vectors, but the radial unit vector r̂ = r̨/r is a vector field.

Most books drop the boldface or arrow when referring to the components of a
vector or tensor, but I will retain it, to emphasize that these numbers have a particular
transformation rule under change of coordinate system, for example, V̨i. Latin letters
are used for 3D indices denoting components, especially i, j, . . . . 3D indices are always
written as subscripts.3

When we have a collection of related vectors, for example, the positions of many
particles, they may be distinguished by a subscript in parentheses, to avoid confusion
with a vector component index. Thus r̨(¸) is the position of particle ¸; its x component
is then r̨(¸)1 and so on.

A few “alternate” versions of vector quantities will even get an upside-down hat
(háček) instead of an arrow.

When a letter that is normally used for a rank-2 tensor appears without an
overarrow, that may indicate that in this instance, the tensor is assumed to be an

2Some authors use the symbols ı̂, �̂, k̂, or simply i, j, k, to represent the unit vectors that these
notes call x̂, ŷ, ẑ.
3We would need to be more careful expressing tensors in curvilinear coordinates or on curved space,
but these notes don’t do that.
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overall scalar times the identity tensor. For example, an isotropic polarizability may
be written as –, shorthand for –

¡
11.

Tilde versus prime
Sometimes each member of a collection of vectors will be related to a correspond-
ing member of another collection by a common operation, for example, a physical,
or “active,” rotation. We may use the same symbol for each set to emphasize the
correspondence, but distinguish the modified ones with a tilde: ÂV in place of V̨ , or
even Âr(¸) in place of r̨(i).

Primes will usually indicate a completely di�erent concept. Sometimes we will
express a single vector in terms of more than one coordinate system. Then the compo-
nents (ordinary numbers) used to represent that vector will have two di�erent forms,
which we will write as V̨i, i = 1, 2, 3 and V̨ Õ

a
, a = 1, 2, 3 respectively. In each case, we

are referring to the same vector V̨ . What’s being rotated is the coordinate system,
not V̨ , but this introduces a “passive” transformation on the components.

Occasionally, prime will instead be used to mean a derivative with respect to a
spatial coordinate.

Similar remarks apply to higher-rank 3-tensors.

4-vectors and -tensors
Many books use no typographical signal to indicate 4-vectors and 4-tensors; I use
an underbar, regardless of rank. As with 3-quantities, I’ll retain the bar even when
referring to specific components, to emphasize that they have particular transformation
rules under change of coordinate system, for example p µ. Greek letters are used for
4D indices denoting components, especially µ, ‹, . . . . Subscript indices are distinct
from superscript indices, as explained in Chapters 31–32.

Often, a 4D quantity has a name similar to that of the 3D quantity related to its
spatial components.

When the same letter of the alphabet is used for both a 3-vector and a 4-vector,
it is understood that the spatial part of the 4-vector is the same as the corresponding
3-vector in some coordinate system.

The usage of tilde (active) and prime (passive) is the same as for three-dimensional
objects.

ˆ Spacetime gradient operator.
!

p

q

"
Denotes the rank of a tensor with p upper and q lower indices.

Matrices
Matrices are set in sans-serif type, M. They are arrays of numbers that do not neces-
sarily transform in the specific manner of tensors upon coordinate change.

11 Unit matrix.
S 3D rotation matrix.
� 4D Lorentz transformation matrix.
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Relations
≥ Has the same dimensions as.
¥ Is approximately equal to.

Miscellaneous
The usual square root of minus one is indicated in roman type (i) to distinguish it

from say, an index. Some engineering texts instead use the letter j to represent
this quantity. Some computer math systems instead refer to this quantity as I
or as j. The other square root of minus one is then ≠i.

The base of natural logarithms is indicated in roman type (e) to distinguish it from
the charge on a proton (e), a constant of nature.

The di�erential symbol is indicated in roman type (d) to distinguish it from any
variable called d, which might denote a distance.

B.2 NAMED QUANTITIES

We have a lot of quantities, and only a limited number of letters of the alphabet, so
inevitably some symbols will be overloaded with more than one meaning. Sometimes
the meanings will be disambiguated by upper/lower case, or by tensor rank. In other
cases, you just have to determine the desired meaning by context.

Latin alphabet
a Size of a finite distribution of charge and/or current; thickness of a layer.
Ą Three-dimensional magnetic vector potential.
A Four-vector potential.
b Generic name for a constant. b̄, generic name for the amplitude of a sinusoidally-

varying quantity.
Bij Shape operator for a 2D surface in 3-space.
B̨ Magnetic induction (often called “magnetic field”) (a pseudovector); B̌, modified

form, = cB̨ (same units as electric field).
c Speed of light in vacuum. cs, speed of vibrations in a medium, e.g. a spring.
ce, cion, etc. Number density of electrons, ions, etc. [dimensions L≠3].
C Capacitance.
C Areal density of capacitance.
Dion Di�usion constant for some species of ions in solution.
Dr Retarded green function for the D’Alembert operator.
D̨ Electric displacement (analog of ‘0Ę in a medium).
D̨E Electric dipole moment. D̨E, its quantum version.
D̨M Magnetic dipole moment (a pseudovector); ĎM = D̨M/c, modified form (with

same units as electric dipole moment).
ê(i) Basis of three mutually perpendicular, unit 3-vectors defined by a cartesian

coordinate system.
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e Charge on a proton.
Ę Electric field.
E Energy. Ě, specifically the relativistic energy when it is necessary to distinguish

it from the newtonian quantity.
F Linear tension, for example in a spring or along a 1D interface [dimensions of

force] (Chapters 6,26).
F Helmholtz free energy.
F Faraday 4-tensor.
g Conductance per area.
G Conductance.
G Gauss curvature of a surface in space.
GN Newton gravitation constant.
g Metric 4-tensor. In special relativity, this is a rank-

! 0
2
"

tensor whose 16 compo-
nents in any E-inertial coordinate system, g µ‹ , are always the same numerical
constants. The same letter g can also be used to refer to the dual metric tensor, a
rank-

! 2
0
"

tensor whose 16 components in any E-inertial coordinate system, g µ‹ ,
are the same numerical constants as those of g µ‹ . The notation is unambiguous
because applying the index-raising operation to the first version does yield the
second one.

h̨ Generic symbol for a distance, or specifically displacement (position) of an object
relative to the origin of coordinates or other reference point.

H Mean curvature of a surface in space.
H̨ Magnetic intensity (analogous to B̨/µ0 but includes a medium) (a pseudovec-

tor).
H Hamiltonian operator (Chapter 55) [dimensions ML2T≠2].
I Electric current.
¡
I Moment of inertia tensor of a rigid body.
j̨ Electric charge flux (sometimes called “current density”); j(1D), one-dimensional

version. j̨, its quantum version.
j̨E Flux of energy.
jion Number flux of ions of some species [dimensions L≠2T≠1].
J Electric charge 4-flux (sometimes called “4-current”); J , scalar analog sometimes

used in simplified formulas.
k Generic name for a Hooke-law spring constant.
kB Boltzmann constant; kBT , thermal energy; kBTr, at room temperature.
K Temporary name for relativistic energy/c, later named p 0.
j̨ (2D) Surface charge flux (sometimes called “surface current density”); j̨ (2D)

f , free
surface charge flux.

¡
K Hooke-law spring constant tensor.
Kµ‹

⁄‡
Susceptibility operator (Section 49.6Õb (page 510)).

¸ Generic index for enumeration, for example, a set of particles or elements of
a continuous source. Can also indicate which of several ion species is under
consideration.
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¸B Bjerrum length.
˛̧ Parametric representation of curve in space; d˛̧ , small element.
L Inductance.
L̨ Angular momentum (a pseudovector).
m Mass.
m Generic 3-space index.
M̨ Volume density of magnetic dipole moment (a pseudovector); M̌ = M̨ /c,

modified form (same units as P̨ ).
n Index of refraction.
p Order of a multipole (called a “2p-pole”), equal to the rank of the 3-tensor that

specifies its moment. Rank of a generic 3-tensor.
p Pressure.
p̨ A particle’s 3-momentum. ˛̌p , specifically the relativistic momentum when it is

necessary to distinguish it from the newtonian quantity.
p A particle’s 4-momentum.
P̨ volume density of electric dipole moment (“polarization density”).
P̨ momentum of electromagnetic field (Equation 55.8, page 537) [dimensions

MLT≠1]. P̨, corresponding quantum operator.
P Power.
Prob Probability (a real, dimensionless quantity between 0 and 1). ˝, probability

density (a nonnegative real function).
p̨e electron momentum operator (Section 55.5.2, page 543) [dimensions MLT≠1].
q Electric charge.
Q, Q† lowering (destruction) and raising (creation) operators, respectively, for

electromagnetic field (Equation 55.17, page 539) [dimensionless].
¡
QE Electric quadrupole 3-tensor.
rc classical electron radius.
r̨ Three-dimensional position vector, with cartesian components r̨i = (x, y, z)t.
r̨e Electron position [dimensions L]; r̨e, corresponding quantum operator (Equa-

tion 55.35, page 543).
s Arclength parameter along a curve in 3-space.
S A 3D rotation, or the 3 ◊ 3 matrix representing it; Sij , its explicit components.
t Time, as measured in an inertial coordinate system (either G-inertial in newtonian

physics or E-inertial in relativistic physics).
T Interfacial surface tension (Chapter 6).
¡
T Stress tensor.
¡
T Generic name for a 3-tensor.
T Energy-momentum flux tensor (sometimes called “stress-energy tensor”).
u, v Light-cone coordinates.
u Energy density of electromagnetic field.
u Displacement of a continuous spring.
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U Potential energy of a particle.
U Four-velocity. Its three spatial components are not equal to the components of

ordinary velocity v̨.
v Velocity; that is, the time derivative of the position of a particle in an inertial

coordinate system (either G-inertial in newtonian physics or E-inertial in rela-
tivistic physics). vú, velocity of a Galilean or Lorentz boost. vm, velocity of a
material medium that supports waves (spring, water, æther, . . . ).

V A region in 3-space, or its volume; ˆV , the boundary of V , that is a closed
surface. An area element d2�̨ of that surface is conventionally taken to point
outward. B̌ = cB̨ modified magnetic induction (same units as Ę ).

x, y, z Right-handed cartesian coordinates of 3-space, or spatial components of a
right-handed E-inertial coordinate system on spacetime.

Greek alphabet
– Electric polarizability of a molecule or other small object; –m, magnetic polariz-

ability. ¡
– , polarizability tensor of an anisotropic object.

— Cross-polarizability of a single chiral molecule.
—̨ Velocity of a particle divided by c.
“ Abbreviation for 1/


1 ≠ —2.

� (›) Parametric representation of a trajectory (curve in spacetime).
¡
� Alternate representation of the magnetic dipole moment as an antisymmetric

rank-2 3-tensor.
‘ Dielectric permittivity of a medium; ‘0, permittivity of vacuum. The dimension-

less ratio ‘/‘0 is called the “dielectric constant,” but we don’t assign any symbol
to it.

Áijk Components of the 3D Levi-Civita tensor in a particular cartesian coordinate
system (a pseudotensor).

‘multi Multipole parameter (Equation 42.5) [dimensionless].
’̨ Polarization 3-vector for a plane EM wave; ’̂(1), ’̂(2), linear polarization basis

(real); ’̂(+), ’̂(≠), circular polarization basis (complex). ’̂(–,̨k ) basis of unit
polarization vectors (– = 1, 2) for plane waves traveling along k̨ (Equation 55.2,
page 536) [dimensionless].

’ Polarization 4-vector.
÷ Viscous drag coe�cient for a particle in fluid.
÷ Bulk cross-polarizability of a chiral material.
÷i integers specifying a mode in a cavity (Section 55.2) [dimensionless].
◊ Polar angle in spherical polar coordinates [dimensionless].
Ë Angle between an incoming wave’s linear polarization and the line of sight to

an observer.
Ë Velocity of neural action potential.
Ÿ Electric conductivity of a medium.
Ÿ Elastic stretch modulus of a continuous spring.
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⁄ Wavelength of a plane or spherical wave.
⁄D Debye length.
⁄cable Space constant of a nerve axon or other cable.
� A Lorentz transformation linking two E-inertial coordinate systems, or the 4 ◊ 4

matrix representing it; �µ

‹
, its explicit components.

µ Magnetic permeability of a medium; µ0, permeability of vacuum.
‹ Frequency of a sinusoidally varying quantity (cycles per unit time) [dimensions

T≠1].
› Generic parameter for a curve in space (not necessarily arclength) or spacetime

(not necessarily proper time). ›̨, constant 3-vector used when constructing a
dipole spherical wave.

� Gauge-transformation parameter.
fl Radial coordinate in cylindrical coordinates.
fl Generic symbol for volume density of a continuous scalar quantity; flq, electric

charge density [dimensions QL≠3]; flE, energy density; flm, mass density.
fl(1D)

q , linear electric charge density (coul/m); fl(1D)

E , linear energy density; fl(1D)

m ,
linear mass density (kg/m).

‡ Generic symbol for surface density of a scalar quantity; ‡q, surface charge density;
‡f , free surface charge density; ‡b, bound surface charge density.

‡ Scattering cross section.
� A 2D surface, or its area; d�̨, infinitesimal surface element, including a choice

of perpendicular vector, that is, di�erential of area times the chosen unit vector.
ˆ�, boundary of a surface �, that is, a closed curve with a direction chosen by
applying the right-hand rule to the chosen perpendicular.

· A particle’s proper time; equivalently, proper time parameter along a trajectory
in spacetime; equivalently, the time recorded by an imagined clock carried along
with the particle. If the particle’s trajectory is accelerating, then proper time
will not agree with time t in any fixed E-inertial coordinate system.

·cable Time constant of a nerve axon or other cable.
� Rapidity parameter of a Lorentz boost.
Ï Azimuthal angle in either cylindrical or spherical polar coordinates.
„ Phase shift of one sine function relative to another.
„N Newtonian gravitational potential.
�

k̨,Ê
The complex function ei(k̨·r̨≠Êt) (dimensionless).

�B Magnetic flux. �̌B = �B/c, modified version.
‰e Dielectric susceptibility (polarizability of an isotropic medium); ‰m, magnetic

susceptibility (polarizability of an isotropic medium); ‰̃m, modified form. For
anisotropic media, these are replaced by tensors.

Â Scalar potential field, also called electric potential. In electrostatics, also called
the electrostatic potential. Â̄, its dimensionless form (in static or quasistatic sit-
uations), Â̄, amplitude of a potential varying sinusoidally in time. Â[p], standard
2p-pole potentials. Âin, potential inside a neuron; Âout, potential inside. ÂNernst,
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Nernst potential; Â0, quasisteady resting potential; v, membrane potential rela-
tive to Â0.

Ê Angular frequency (radians per unit time).
ÊP Plasma frequency.
Ę̂ Angular frequency of rigid body rotation, with direction corresponding to its

axis of rotation via the right-hand rule (a pseudovector).
¡
Ê Alternate representation of B̨ as an antisymmetric, rank-2 3-tensor.
� Solid angle (sometimes called angular area).
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Numerical Values
If the model explains all the facts, then there’s something
wrong—because always some of the facts are wrong.

— Aharon Katchalsky

For salt solution at concentration 100 mM, Ÿ ¥ 0.1 �≠1m≠1.
Liquid water: ‘ ¥ 80‘0 at low frequency.

C.1 FUNDAMENTAL CONSTANTS

Newtonian gravitation constant, GN ¥ 6.7 · 10≠11 m3kg≠1s≠2.
Planck constant (reduced), ~ ¥ 1.05 · 10≠34J s.
Proton charge, e ¥ 1.6 · 10≠19 coul. Electron charge is ≠e.
Electron mass, me ¥ 9.1 · 10≠31kg.
Speed of light, c ¥ 3.0 · 108 m/s.
Avogadro number, Nmole ¥ 6.02 · 1023.
Boltzmann constant, kB ¥ 1.38 · 10≠23 J K≠1. Typical thermal energy at room tem-

perature kBTr ¥ 4.1 pN nm ¥ 4.1 · 10≠21J ¥ 2.5 kJ mole≠1 ¥ 0.59 kcal mole≠1 ¥
0.025 eV.

Permittivity of vacuum, ‘0 ¥ 8.85 · 10≠12 coul2N ≠1m≠2. Permeability of vacuum,
µ0 ¥ 4fi · 10≠7m kg coul≠2.

C.2 OPTICS

C.2.1 Index of refraction for visible light
These approximate values neglect dispersion (dependence on wavelength).

Air at standard temperature and pressure: nair ¥ 1.0003. This book uses the
approximate value 1, except when studying the mirage phenomenon; there, we
use more precise values for light of wavelength 633 nm. At 30¶C : nair ¥ 1.00026;
at 50¶C : nair ¥ 1.00024.

Water: nw ¥ 1.33.
Glass: 1.5–1.7. This book uses the illustrative value 1.52.

C.2.2 Miscellaneous
Earth’s magnetic field strength at surface, approx 5 · 10≠5 T.
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Earth radius 6.4 · 106 m.
Maximum energy of solar radiation per area at Earth surface: 1.4 kW/m2.
Mass of Sun 2.0 · 1030 kg.
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Formulas

Here are the bare bones of our topic. When you can derive all the formulas in this
document, know the meanings of the symbols they contain, and know when they are
applicable, then you’ll know a lot of electrodynamics.

D.0 PROLOGUE

D.0.1 Vector calculus
See Section 0.2.

D.0.2 The Maxwell equations

Ǫ̀ · Ę = flq/‘0 Gauss (D.1)
Ǫ̀ · B̨ = 0 Gauss (D.2)

Ǫ̀ ◊ Ę + ˙̨
B = 0 Faraday (D.3)

Ǫ̀ ◊ B̨ ≠ µ0‘0
˙̨
E = µ0j̨ Ampère. (D.4)

The dots represent ˆ/ˆt. The constants have numerical values µ0 ¥ 4fi·10≠7 m kg coul≠2

(the magnetic permeability of vacuum), and ‘0 ¥ 8.85·10≠12 coul2N≠1m≠2 (the electric
permittivity of vacuum). (For info about the units, see Chapter 15.)

See Section D.14.2 for definitions of the charge density flq and charge flux j̨.1
The o�cial name for Ę is “electric field intensity”; B̨ is the “magnetic induction.”

We’ll just call them the electric and magnetic fields. Some formulas are neater when
expressed in terms of a quantity I’ll call B̌ © cB̨,2 because this quantity has the same
dimensions as Ę.

D.0.3 Lorentz force law
The Lorentz force law is the equation of motion of a point charge:3

d
dt

p̨ = q
1

Ę + v̨ ◊ B̨
2

+ f̨other. (D.5)

1Some authors call this quantity “current density.”
2We won’t give this quantity any particular identifying phrase. (Confusingly, gaussian people call it
“the magnetic induction,” even though it’s defined as the magnetic induction times c.)
3A “point charge” is an idealization, having no (or negligible) multipole moments other than its total
charge. Thus for some purposes even an electron cannot be regarded as a point charge, because it has
a magnetic dipole moment! In classical electrodynamics, we assume that any charged macroscopic
body can be regarded as a collection of point charges.
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This time, the dot represents d/dt. The fields Ę, B̨ are to be evaluated at some
time t and at the position r̨(t) of the particle at that time; v̨ = dr̨/dt at that time.
q and m are constants completely characterizing the point charge. f̨other represents
any non-electromagnetic force acting on the charged bodies in the system.4 And the
momentum p̨ = mv̨, for velocities much smaller than 108 m/s. (See Equation D.43
later.)

A test body refers to a limiting case of a point object with charge and mass
infinitesimally small, but q/m a finite constant. In practice, a test body is a point
charge so small that it measures, but does not significantly perturb, surrounding fields
set up by other charges.

D.1 NEWTONIAN GRAVITY

See Chapter 1.

D.2 ELECTROSTATICS

If all charges are at rest, then we may set time derivatives equal to zero and also the
charge flux j̨ = 0. Then the magnetic field is zero and Ę can be expressed as the
gradient of an electric potential: Ę = ≠Ǫ̀Â. Warning: this useful trick doesn’t work in
the nonstatic case, where Ǫ̀ ◊ E ”= 0. But in the static case it’s very helpful: Instead
of solving three PDEs for the electric field, we only need to solve one PDE for the
potential.

Confusing standard terminology: The electrostatic potential is not the potential
energy of a test body. Instead, Â determines each particle’s potential energy by U(r̨ ) =
qÂ(r̨ ). That’s consistent with the Lorentz force law, which in electrostatics says
f̨ = ≠Ǫ̀(qÂ).5 Thus Ò2Â = ≠flq/‘0 in vacuum (the Poisson equation).6
Boundary conditions: Ę Î = 0 just outside a perfect conductor.
E‹ = n̂ · Ę jumps from zero inside a perfect conductor to a value just outside that is
related to the surface charge density ‡.

D.3 ELECTROSTATIC MULTIPOLE EXPANSION

The field outside an arbitrary static charge distribution is complicated, but frequently
we are in a special case where the answer can be simplified. Consider a charge distribu-
tion localized to a region of size a, viewed at a distance r ∫ a from a reference point
located inside the distribution. We’d like an expression for the field that is organized
as a power series expansion in a/r. Moreover, we’d like to display each term as the
product of a factor characterizing the charge distribution (but independent of the

4Sometimes it’s appropriate to instead introduce a constraint. For example, we may say “suppose
that charge is fixed onto on a spinning disk.”
5Warning: Later on, when we consider time-dependent fields we’ll again introduce a scalar potential,
but it will no longer have a simple interpretation as potential energy per charge.
6The special case flq = 0 is sometimes called the Laplace equation.
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observer’s location), times a generic spatial dependence (i.e. one that is independent
of the details of the charge distribution). The former factors are called the multipole
moments of the distribution; the latter ones are the multipole potentials.

Place the origin of the coordinates at the chosen reference point. The field point
(observer location) is r̨ , and we are assuming that the charge distribution flq(r̨ú) is
nonzero only for (r̨ú)2 < a2, for some a π r. Then the leading terms of the expansion
of Â(r̨ ) in powers of a/r can be written as

Â(r̨ ) = qtotÂ
[0](r̨ ) + D̨E · Ą̂ [1](r̨ ) + Tr

Ë¡
QE ·

¡
Â [2](r̨ )

È
+ O(a3/r4). (D.6)

In this formula,:7

Â[0](r̨ ) = 1
4fi‘0r

; Ą̂ [1](r̨ ) = 1
4fi‘0r2 r̂;

¡
Â [2](r̨ ) = 1

8fi‘0r3 (r̂r̂ ≠ 1
3

¡
11). (D.7)

These formulas define a single monopole field, a set of three dipole fields, and a set
of five independent quadrupole fields. (

¡
QE and

¡
Â [2] are both symmetric and traceless,

and hence each only has five independent entries.)
The corresponding moments are sets of numbers, not functions of r̨ :8

qtot =
⁄

d3rú flq(r̨ú), D̨E =
⁄

d3rú flq(r̨ú)r̨ú,
¡
QE = 3

⁄
d3rú flq(r̨ú)

!
r̨úr̨ú≠ 1

3 (rú)2¡
11

"
.

(D.8)
Corresponding to the multipole potentials, these formulas define a single monopole

moment qtot, three components of the dipole moment D̨E, and five independent com-
ponents of the quadrupole moment

¡
QE.

If the reference point is not at the origin of coordinates, but instead is at h̨ , then
substitute r̨ ≠ h̨ for r̨ in Equation D.6. Notice that if we change our choice of the
reference point inside the object, then in general all the multipole moments except
qtot will change, even though we did nothing to the charge distribution.9

Sometimes we know in advance that some moments must equal zero. For example,
a spherically-symmetric charge distribution has all its multipole moments (other than
qtot) equal to zero (Birkho�’s theorem). You should prove this for the special case of
the dipole moment and quadrupole tensor (see Section D.12.1).

Consider the operation that reflects the location of every charge through the
reference point. If this operation leaves our charge distribution unchanged, then all
the 2p moments with p odd (dipole, octupole, . . . ) equal zero. If this operation, followed
by also reversing the sign of every charge, leaves our charge distribution unchanged,
then all the even moments (monopole, quadrupole, . . . ) equal zero.

7See Section D.12 for more about the tensor notation in the last formula. The
¡
11 terms in Equations D.7

and D.8 are redundant. You can omit either (but not both) without changing Â. I included both to
emphasize that: (a) The potential at order r

≠3 has a traceless character, no matter what the charge
distribution (Equation D.6); and (b) the trace of the second moment of charge cannot contribute at
all to the parts of the field that are of order r

≠3 or less (Equation D.8).
8Some authors move the factor 1

2
into the definition of

¡
QE; others instead use the convention given

here.
9More precisely, suppose that the first few moments are all zero. Then they, and the first nonzero
moment, don’t change when we change our choice of reference point. Higher moments do change,
but in simple ways.
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Equation D.6 gives the dipole part of the field strength as the gradient:

Ę dipole = ≠Ǫ̀(Ą̂ [1] · D̨E) = 1
4fi‘0r3

1
3(r̂ · D̨E)r̂ ≠ D̨E

2
.

Notice that it falls o� with distance like r≠3, faster than the Coulomb field from a
single point charge. You should do a similar derivation to find the quadrupole part of
the electric field outside a static distribution of charge.

Sometimes we will use a mathematical limit called “pure electric dipole,” which
is two charges ±q, separated by a, in the limit a æ 0, q æ Œ holding DE = qa fixed.
In this limit, the distribution’s higher moments all approach zero, leaving only the
dipole moment.

D.3.1 Electrostatic force and torque on a charge distribution
Consider a charge distribution, free to rotate or translate, but otherwise rigid. This
charge distribution is placed, with its reference point at h̨ , in an externally generated
potential Âext. It is confined to a spatial region of size much smaller than the charac-
teristic length scale of variation of Âext. Then its potential energy due to the external
field is:

U (̨h ) = const. + qtotÂext(̨h ) ≠ D̨E · Ę ext(̨h ) + · · ·

where D̨E is the distribution’s dipole moment. The constant depends on the details
of the distribution, but not on the orientation nor the position h̨ . We can find the
force and torque on the dipole by di�erentiating this expression with respect to rigid
translations and rotations, respectively.

You should work out the potential energy of one rigid dipole in the presence of
another rigid dipole (to leading order in 1/r).

A charge distribution need not be rigid. For example, if the dipole moment of a
charge distribution equals zero, nevertheless it may be polarizable by an external field.
In this case our object will again feel a force when placed in a nonuniform electrostatic
field, proportional to Ǫ̀(Ę 2) and also to the object’s polarizability.

D.4 CURVILINEAR COORDINATES

D.4.1 Laplace operator
Useful formulas for the Laplace operator: In plane polar coordinates,

Ò2Â = r≠1 ˆ

ˆr

!
r

ˆÂ

ˆr

"
+ r≠2 ˆ2Â

ˆÏ2 .

For cylindrical coordinates, we add ˆ
2
Â

ˆz2 and rename r as fl.
In spherical coordinates, you should work out

Ò2Â = r≠2 ˆ

ˆr

!
r2 ˆÂ

ˆr

"
+ 1

r2 sin ◊

ˆ

ˆ◊

!
sin ◊

ˆÂ

ˆ◊

"
+ 1

r2 sin2 ◊

ˆ2Â

ˆÏ2 .
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To derive these and other useful formulas, we introduced a general trick. Suppose
f , g are two functions on the plane. The gradient of f in cartesian components can
be written as

Ǫ̀f = J
3

ˆf/ˆr
ˆf/ˆÏ

4
where J =

3
ˆr/ˆx ˆÏ/ˆx
ˆr/ˆy ˆÏ/ˆy

4
.

Then ⁄
dxdy Ǫ̀f · Ǫ̀g =

⁄
(rdrdÏ) (ˆf/ˆr, ˆf/ˆÏ)JtJ

3
ˆg/ˆr
ˆg/ˆÏ

4
.

Integrating both sides by parts gave us the formula for Ò2 in plane polar coordinates,
and a similar method works for other separable coordinate systems too.

D.5 CAPACITOR

The capacitance is C = q/�Â. The energy stored in a capacitor is then Q2/(2C) or
(�Â)2C/2. Think about why C appears in the numerator of one of these expressions,
but in the denominator of the other one.

Consider two parallel conducting plates separated by vacuum. Neglecting edge
e�ects, in the region between the plates Ę = n̂flq/‘0, where n̂ is perpendicular to the
plates and flq is the charge per area. Thus C = �‘0/a where � is the plate area and
a is the separation.

Many insulating media can be modeled as linear dielectrics: we can forget
about the medium if we just replace ‘0 by some other constant ‘ in the Gauss law (the
electric permittivity of the medium). The ratio ‘/‘0 is usually > 1 and is called the
dielectric constant of the material. Thus adding a dielectric to a capacitor typically
increases its capacitance.

Consider a spherical shell of charge, for example the distribution of excess charge
on a conducting sphere. You can find its potential energy by starting with zero charge,
then incrementally adding little bits dq until you arrive at the desired total. Please
work out this formula, even if you already know it.

D.5.1
A solid sphere of dielectric, of volume V , uniformly polarized, creates a pure dipole
electrostatic field outside it of strength p̨ = P̨ V . Inside the sphere the field is uniform,
Ę in = ≠P̨ /(3‘0). Note that the latter formula is independent of the size of the sphere.

A spherical cavity inside an infinite, uniformly polarized medium again has uniform
Ę in = Ę Œ + P̨ /(3‘0).

Consider a medium consisting of “molecules” with density N and polarizability
–. Some external free charges polarize the medium uniformly, creating an average
field E inside it. We suppose that each “molecule” sits at the center of a roughly
spherical cavity (true on average for a fluid), and responds to a local mean field
Ein created by the external free charge plus all the other “molecules,” regarded as a
continuous dielectric medium. Then that medium’s polarization is P̨ = N–

1≠N–/(3‘0) Ę
(the Clausius–Mossotti formula).
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D.6 ELECTROHYDROSTATICS

To first order in perpendicular displacement f , the total area change is the integral
over the surface of ≠2Hf , where H is the mean curvature, a scalar function on the
surface.
The volume occupied by one side grows, and the other side shrinks, by an amount
proportional to the integral of f without any factor of curvature.

D.7

D.7.1 Continuity equation
We assume that the quantities q¸ are constants characterizing each particle, and that
they are locally conserved even if a particle splits into two, merges with another, etc.
Then Equations D.16–D.17) imply the continuity equation:

Ǫ̀ · j̨ + ˆ

ˆt
flq = 0. (D.9)

This equation is kinematic, not dynamic: It reflects only the definitions of flq and j̨ ,
and the assumption of local charge conservation. It’s true regardless of whether the
charged particle trajectories obey any equation of motion.

The Maxwell equations may appear to be overdetermined (eight di�erential equa-
tions in six unknown functions), but when we compute the divergence of Equations 0.3
and 0.4 we find that two of these six equations are redundant with Equations 0.1, 0.2,
and D.9.

D.7.2 Quasi-static
In a resistive conducting material, like salt water, the charge flux can sometimes be
taken to be ohmic: j̨ = ŸĘ .10 The constant Ÿ is called the conductivity; its units
are �≠1m≠1.

The power dissipation density (watts per cubic meter) is j2/Ÿ or E2Ÿ. (Compare
the freshman-physics formulas I2R and (�Â)2/R.)

The characteristic time scale for net charge density to dissipate (the relaxation
time) is ‘/Ÿ where ‘ is the permittivity of the material.11 For fields varying on much
longer time scales than the relaxation time (the quasistatic case), flq ¥ 0 and so
we have Ǫ̀ · j̨ = 0. Generally on such time scales the magnetic fields created by
the currents are weak and may be neglected in Faraday’s law; then we may usefully
introduce the potential function, and Ò2Â = 0, even though strictly speaking we’re
not static.

D.8 CELL MEMBRANE CAPACITANCE

[Not covered this year.]

10Here we assume that the conductivity is isotropic and spatially uniform in the medium.
11For water at standard conditions and at zero frequency, the dielectric constant ‘/‘0 is about 80.
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D.9 AQUEOUS SOLUTIONS

[Not covered this year.]

D.10 CABLE EQUATION

[Not covered this year.]

D.11 NERVE IMPULSES

[Not covered this year.]

D.12 3-TENSORS

The dyad product r̨ r̨ is a 3 ◊ 3 matrix of entries;12 the entry in row i and column
j is the product r̨ir̨j .13 Contrast the scalar product r̨ · r̨ , which is a single number;
omitting the dot means we instead intend the dyad product. Note that ą b̨ ”= b̨ ą (each
of these is the other’s transpose).

More generally, a “three-tensor of rank two” can be defined by stating its compo-
nents in a cartesian coordinate system, that is, via an indexed set of nine quantities
¡
Tij .14

The dot product
¡
T ·̨b is the vector with ith component equal to

¡
Tij b̨j etc. The trace

of a tensor is defined in a cartesian coordinate system by Tr
¡
T =

¡
Tii. If it’s zero, we say

the tensor is traceless. A second rank tensor may also be symmetric, antisymmetric,
or neither. For example, r̨ r̨ is symmetric, but ą b̨ ≠ b̨ ą is antisymmetric. These are
invariant properties: If the components satisfy any of them in one cartesian coordinate
system, then the same is also true in any other such system.

The unit tensor (or “identity tensor”)
¡
11 is defined in any cartesian coordinate

system to have components
¡
11ij = ”ij . Thus

¡
11 · v̨ = v̨ for any vector v̨ .

D.12.1 Tensors and spherical symmetry
The moment of inertia involves the “second moment of mass” tensor:

¡
I ij = ”ij

¡
µ [2, m]

kk
≠ ¡

µ [2, m]
ij

where ¡
µ [2, m]

ij
=

⁄
d3rú flm(r̨ú)r̨úir̨új . (D.10)

[Note that the electric quadrupole tensor can be expressed as
¡
QE = 3¡

µ [2,q] ≠
¡
11(Tr ¡

µ [2,q]), (D.11)

12Some authors write r̨ ¢ r̨ for the dyad product and call it the “tensor product” or “outer product.”
13Most authors write the components of a vector r̨ as ri (i.e., without the arrow). In these notes we
are being ultra-explicit, so we keep the arrow to emphasize the vector status of r̨ .
14Later we’ll also require that these quantities have the same transformations under rotation or
inversion of the spatial axes as r̨ r̨ .
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where ¡
µ [2,q] is the second moment of charge, analogous to Equation D.10.]

Suppose that the mass density flm depends only on r. Carry out the angular
integrals ti show that the moment of inertia tensor for a spherically symmetric body
equals a constant times the unit tensor; in this case, the angular momentum L̨ really
is always parallel to the angular velocity Ę̂ .

D.13 3-TENSORS FROM HEAVEN

Higher-order tensors have more than two indices. No over-arrow convention is used
to denote them. A particularly useful one is the 3D Levi-Civita tensor. In any
right-handed cartesian coordinate system, we define the tensor whose components Áijk

are the 27 quantities defined in Section 0.3 (page 7). Note the useful identities

ÁijkÁijk = 6, ÁijkÁijl = 2”kl, ÁijkÁilm = ”jl”km ≠ ”jm”kl. (D.12)

Please show that these are consistent with each other, and that the last one implies the
triple cross product formula. Then derive the formula Equation D.10 for the moment
of inertia tensor, starting from the relation between the angular frequency vector and
the velocity of an element of a rigid body.

Any second-rank 3-tensor
¡
T can be separated into its symmetric and antisymmetric

parts. There is a useful decomposition:
¡
Tij =

¡
Sij +

¡
�ij , where

¡
Sij = 1

2 (
¡
Tij +

¡
Tji) and

¡
�ij = 1

2 (
¡
Tij ≠

¡
Tji) = 1

2 Áijk(Ák¸m

¡
Tlm).

Suppose that
¡
T is symmetric; that is,

¡
Tij =

¡
Tji. Then the last expression above is

zero, because the contraction of
¡
T on both its indices with any antisymmetric tensor

must equal zero.

D.14 MAGNETOSTATICS

In this case we allow nonzero but steady currents. That is, we don’t require static
sources (invariant under both time translation and time reflection), but we do require
that they be stationary (invariant under time translation only). In this case B̨ is
divergenceless, but does not have vanishing curl in regions where there is current.
Nevertheless we can usefully introduce a potential: The Poincaré lemma says that if
a three-dimensional vector field is divergence free, then locally it can be written as a
curl: B̨ = Ǫ̀ ◊ Ą .

D.14.1 Poincaré lemma
If ¡

Êjk is an antisymmetric tensor field, on a contractible region of space, satisfying

Ǫ̀i

¡
Êjk ± (all permutations of i, j, k) = 0, (D.13)

then there’s a vector field Ąi such that
¡
Êij = Ǫ̀iĄj ± (all permutations of i, j). (D.14)
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Formulated in this way, the Poincaré Lemma is valid in any number D of dimensions,
and analogous statements also hold for antisymmetric tensors of any rank p:
a. In electrostatics, we choose D = 3, p = 1. In this case there’s only one index in

Equation D.14, so the lemma says that any curl-free Ę is the gradient of some
scalar function (which we have named ≠Â).

b. In magnetostatics, we choose D = 3, p = 2: The tensor field

¡
Êij = 1

2 ÁijkB̨k magnetic field tensor (D.15)

satisfies Equation D.13, because the left side equals Ǫ̀i

¡
Êjk + Ǫ̀j

¡
Êki + Ǫ̀k

¡
Êij ,

and this is essentially Ǫ̀ · B̨ . So the lemma says that ¡
Ê may be written as the

antisymmetrized derivative of some vector field (which we call Ą ). This in turn
implies that B̨ is the curl of Ą.

c. Coming up: In time-dependent situations Ę is not curl-free, but nevertheless
we’ll find we can apply the Poincaré lemma with D = 4, p = 2 to construct a
4-vector potential.

D.14.1.1 For theory enthusiasts only a. Try rephrasing the Lorentz force law using ¡
Ê, not

B̨ . What Good Thing happens?
b. The Poincaré lemma is valid even in curved space, so it will remain a useful tool when
you study General Relativity.
c. It’s also valid for totally antisymmetric tensors of any rank (not just 1 or 2). Mathemati-
cians refer to totally antisymmetric tensors as di�erential forms or p-forms where p is the
rank. The antisymmetrized derivative is called the exterior derivative; if it equals zero, the
form is called closed. If the form can itself be written as the exterior derivative of something,
it’s called exact. The Poincaré lemma states that

If a form is closed over some contractible region of space, then it is exact

on that region.

In D dimensions there is always a special Levi-Civita tensor of rank D. Using it, we can
convert back and forth between a p-form and a corresponding (D ≠ p)-form. The two forms
are called each others’ Hodge duals, and the transformation is the Hodge dual (or “Hodge
star”) operation.15 For example, the 1-form B̨ is dual to the 2-form ¡

Ê via Equation D.15.
Reexpressing a set of physics formulas in terms of a Hodge dual quantity sometimes

clarifies its symmetry. For example, the parity invariance of the Maxwell/Lorentz system is
obscured when we express it in terms of B̨ , but manifest when we use ¡

Ê instead.
d. Quantum mechanics attributes a more fundamental role to the vector potential than
does classical physics. Classical electrodynamics regards the vector potential as merely a
convenient way to solve certain problems involving the “real” electric and magnetic fields,
and gauge invariance as merely a redundancy of this description. But in quantum mechan-
ics, the interaction of a charged particle with EM fields can only be formulated using the
vector potential. Experimental signatures such as the Bohm–Aharonov e�ect, quantization
of magnetic flux, etc. attest to the reality of the vector potential.

15The Levi-Civita tensor, and the Hodge dual operation, are rotation-invariant but not invariant
under spatial inversions (“parity” transformations). Thus strictly speaking they are not defined until
we specify an “handedness” convention on space (or spacetime).
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D.14.2 Charge and flux
If the field sources consist of point particles with charges {q¸}, moving along known
trajectories r̨ ¸(t), then the charge density is the function

flq(t, r̨ ) =
ÿ

¸

q¸”
(3)!r̨ ≠ r̨(¸)(t)

"
(D.16)

and the charge flux is the vector field16

j̨ (t, r̨ ) =
ÿ

¸

q¸
˙̨r(¸)(t)”(3)!r̨ ≠ r̨(¸)(t)

"
. (D.17)

The delta function ”(x) has the property that it equals one when integrated over any
region of x that contains x = 0. The symbol ”(3)(r̨ ) means the product of three delta
functions, one for each component of r̨ . So the integral of flq over a region of space, at
a fixed time, is the total charge in that region at that time. And the integral of

s
d�̨ · j̨

over a surface in space, at fixed time, is the net electric current passing through that
surface at that time in the direction specified by the perpendicular direction we chose
for d�.

The Lorentz force law has a di�erential form for the force acting on a small volume
d3r of a continuous charge distribution:

df̨ = (flqĘ + j̨ ◊ B̨ )d3r.

Somewhere between the realistic case of a spread-out distribution and the ideal-
ization of a point charge there lies an intermediate idealization called the “thin wire.”
Here we imagine a total current I (units A) to be trapped on a mathematical curve in
space, ˛̧(s). The steady-current condition implies that I is uniform along that curve.
Then the charge flux is

j̨ (r̨ ) = I

j
d˛̧ ”(3)(r̨ ≠ ˛̧). (D.18)

You should check how the units work in this formula.

D.14.3 Gauge freedom; fundamental solutions
There is still an ambiguity (gauge invariance) in this description of the fields: The
magnetic field is unchanged after a gauge transformation Ą̂

A = Ą + Ǫ̀�, where �(r̨ ) is
any function. The freedom to transform Ą in this way allows us to impose a subsidiary
condition called Coulomb gauge:17 Ǫ̀ · Ą = 0. In Coulomb gauge, for a stationary
current distribution, Ampère’s law becomes three independent copies of the Poisson
equation, which we’ve already solved:

Ą (r̨ ) = µ0
4fi

⁄
j̨ (r̨ú) d3rú
Îr̨ ≠ r̨úÎ . (D.19)

16Some authors call this quantity “current density,” but that name might lead us to think that it’s a
quantity with units like A/m

3. Instead Equation D.16 shows that its units are A/m
2. Its relation to

ordinary current I is that you get the current passing through a surface by integrating j̨ over that
surface.
17Other “gauge choices” are possible, but this one is the standard choice for magnetostatic problems.
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Suppose that a current I is confined to a thin wire following a closed curve ˛̧(s), where
s is a parameter. Then Equations D.19 and D.18 yield the Biot-Savart formula:

B̨ (r̨ ) = µ0I

4fi

j
d˛̧ ◊ r̨ ≠ ˛̧

Îr̨ ≠ ˛̧ Î3
.

In this formula,
i

d˛̧ is short for
s

stot
0 ds (d˛̧/ds) around the loop; ˛̧ is short for ˛̧(s).

If we parameterize the curve by arclength, then d˛̧ can also be regarded as t̂(s)ds,
where t̂(s) is the unit tangent vector to the curve at s.

D.15 UNITS

See Chapter 15.

D.16 MAGNETIC MULTIPOLE EXPANSION

Consider a current distribution localized to a region of size d, viewed at a distance
r ∫ d from a reference point inside the distribution. We take the reference point to
be at the origin of coordinates; then the 3-vector potential created by the current
distribution is

Ą (r̨ ) = µ0
4fir3 r̨ ·

¡
� + O(r≠3), (D.20)

where the magnetic dipole moment tensor is defined by
¡
� =

⁄
d3rú r̨új̨ (r̨ú). (D.21)

Section 16.1 proved that
¡
� is antisymmetric, so it contains the same information as

the more traditional magnetic dipole moment vector, defined as

D̨M = 1
2

⁄
d3rú

!
r̨ú ◊ j̨ (r̨ú)

"
. (D.22)

Similarly to Section D.3, the magnetic dipole moment doesn’t depend on our choice
of a reference point.18 In terms of this, Equation D.20 becomes

Ą (r̨ ) = µ0
4fi

D̨M ◊ r̂

Îr̨ Î2 + O(r≠3). (D.23)

Either formulation (Equations D.20 or D.23)) accomplishes the same sort of goal
as the electrostatic multipole expansion: The far potential is expressed as a linear
combination of three universal dipole vector potentials (functions of observer position
r̨ , independent of the character of the source). The coe�cients of the linear combination
(the components of D̨M or

¡
� ) summarize the source; they don’t depend on the observer.

Had we kept the higher terms in the Taylor expansion, we’d have found that they
involve other moments of the current distribution (magnetic quadrupole and so on).

18Also similarly to the electrostatic case, higher moments may depend on this choice; more precisely,
only the first nonzero moment is unambiguously defined.
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D.16.1 More about magnetic dipoles
For example, for a circular current loop spanning area � we find D̨M = In̂�. Here n̂
is the unit vector perpendicular to the surface spanning the loop, with its sign chosen
by applying the right-hand rule to the direction of the current.

Sometimes we will use a mathematical limit called “pure magnetic dipole,” which
imagines a circular loop of area �, carrying current I, in the limit � æ 0, I æ Œ
holding D̨M = I�̨ fixed. In this limit, Equation D.23 is exact.

Some formulas will look nicer when expressed in terms of the quantity ĎM © D̨M/c,
because this quantity has the same units as the electric dipole moment.

Consider a current distribution, free to rotate or translate, but otherwise rigid.19

This current distribution is placed in an externally generated field B̨ ext. It is much
smaller than the characteristic length scale of variation of B̨ ext. Then the net force
on the distribution is Ǫ̀(D̨M · B̨ ext) (plus subleading terms). The net torque, taken
about the chosen reference point, is ·̨ = D̨M ◊ B̨ ext (plus subleading terms). These
quantities can be expressed as derivatives of an “e�ective potential energy”20

Ue� = const. ≠ D̨M · B̨ ext + · · · . (D.24)

[Theory enthusiasts should find a formula equivalent to Equation D.24 but expressed
in terms of ¡

Êext (Equation D.15) and
¡
� (Equation D.21) instead of B̨ ext and D̨M. No

Levi-Civita tensors will appear.]

D.16.2 Magnetic polarizability
If an object does not have a permanent magnetic dipole moment, it may nevertheless
be magnetically polarizable. That is, it develops an induced moment D̨M Ã B̨ , so
the translational force is a constant times Ǫ̀ÎB̨ Î2. A bulk material consisting of such
objects develops a magnetic dipole moment density M̨ (r̨ ). If it’s directed parallel to
B̨ we call the material paramagnetic. If M̨ points opposite to B̨ the material is
called diamagnetic. (Anisotropic response is also possible, in which M̨ is neither
parallel nor antiparallel to B̨ .) E.g. a paramagnetic bead will be pulled toward a
region of strong magnetic field.

A ferromagnetic material has nonzero net magnetic polarization even in the
absence of external field.

D.17 NONSTATIC FIELDS

We now consider fields and sources that are time-dependent. One warmup problem
concerned a helical coil of wire (solenoid). Faraday’s law implies an induced electric
field that opposes changes in current through the coil. To raise the current from
zero to I requires that we do work to overcome this induced field, storing energy

19In particular, some fixed-current source maintains the magnitude of the current constant, regardless
how we move the distribution.
20But the sense in which Ue� is “really” a potential energy is subtle; see P+S p. 290 or Feynman II
§§15-1–15-2.
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E/volume = 1
2µ0

ÎB̨Î2. That result seems to attribute energy to the empty space inside
the coil, because it’s proportional to the volume of that space. It’s reminiscent of the
energy of a charged capacitor, which was also proportional to volume and to field
strength squared.

D.17.1 Potentials, nonstatic case
Again we may always write the magnetic field as B̨ = Ǫ̀◊Ą . But now Ę = ≠ ˙̨

A≠Ǫ̀Â.
We call Â the scalar potential, no longer the “electrostatic potential”; it no longer
has a direct relationship to any potential energy of a test particle. For example, in
a changing magnetic field there can be a net “electromotive force” around a loop; if
such a force is present, it is clearly not conservative.

There is again a redundancy in the description of the fields by potentials: The
electric and magnetic fields are unchanged after a gauge transformation

Ą̂
A = Ą + Ǫ̀�, ÂÂ = Â ≠ �̇,

where now �(t, r̨ ) is any function of space and time. The freedom to transform Ą , Â
in this way allows us again to insist on Coulomb gauge, Ǫ̀ · Ą © 0.

In a region with no charges, we can go further, supplementing Coulomb gauge by
the extra condition Â © 0. With these conditions, the Maxwell equations in vacuum
reduce to a single vector equation: As always working in cartesian coordinates, it’s
just three independent copies of the wave equation:

!
Ò2 ≠ 1

c2
ˆ2

ˆt2
"
X = 0, (D.25)

where X represents Ą1, Ą2, or Ą3.

D.17.2 Plane wave solutions
We studied Maxwell in vacuum. We considered the Coulomb-gauge potentials

Â © 0; Ą (t, r̨ ) = 1
2
#
’̨ e≠i(Êt≠k̨ ·r̨ ) + c.c.

$
(D.26)

where k̨ (the wavevector), Ê (the angular frequency) and ’̨ (the polarization
vector) are constants.21 In particular, ’̨ is in general a vector with complex entries. If
it satisfies ’̨ · k̨ = 0, and if Ê = cÎk̨ Î, then these potentials are in Coulomb gauge and
satisfy Maxwell’s equations in vacuum. Physically, this represents a wave traveling
along k̨, with Ę and B̨ both perpendicular to k̨, and to each other. More precisely,
Ę ◊ B̨ points along k̨, the direction of wave propagation.

D.17.3 Polarization of waves
For each k̨, Equation D.26 gives two independent modes (polarizations), which can
be expressed in various bases, e.g. via linearly or circularly polarized mode expansions.

21So the wavelength is ⁄ = 2fi/Îk̨ Î; the frequency is ‹ = Ê/2fi; the phase velocity is Ê/Îk̨ Î,
which equals c in vacuum.
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The wave is linearly polarized if ’̨ is real (or an overall complex constant times a real
vector). Otherwise the wave is circularly or elliptically polarized.

Starting from a particular k̨ , choose a pair of real unit vectors ’̂(1), ’̂(2) perpen-
dicular to k̨ and forming a right-handed triad with it. That is, ’̂(1) ◊ ’̂(2) = k̂. Then
let ’̂(±) = (’̂(1) ± i’̂(2))/

Ô
2 (the helicity basis). Any polarization vector ’̨ can be

written as a (complex) linear combination of ’̂(1,2), or of ’̂(±). If the polarization
vector is purely along ’̂(+), then the wave is said to be circularly polarized with
positive helicity, and similarly for a pure ’̂(≠) wave (which is negative helicity).22

If we choose a di�erent pair of unit vectors ’̂ Õ
(1), ’̂ Õ

(2), then we get essentially the
same helicity basis. That is, ’̂ Õ

(+) is a complex constant times ’̂(+) and similarly for
’̂ Õ

(≠). Note that k̂ ◊ ’̂(±) = ûi’̂(±); the helicity basis vectors are eigenvectors of this
operation, which represents infinitesimal rotation about k̂. Also ’̂(±) · ’̂ú

(±) = 1 and
’̂(±) · ’̂ú

(û) = 0.

D.18 ENERGY AND MOMENTUM TRANSPORT BY WAVES

Electromagnetic waves can carry energy and momentum across empty space. We are
not ready to discuss this in full generality yet, but I at least showed that a plane
wave carries energy and momentum directed along its propagation vector, and that
the corresponding fluxes are proportional to the field amplitudes squared. (Compare
water or sound waves, which transport energy but not momentum.) We didn’t find the
constant of proportionality yet, because all I did was to study the absorption of energy
and momentum by a single test particle. However, I did show a relation between the
fluxes: (energy flux) = (momentum flux) ◊ c.

Quantum mechanics reinterprets light as a stream of packets called photons. In
order to have Maxwell electrodynamics as its classical limit, each of those photons
must have the same relation: (energy of a packet) = (momentum of a packet) ◊ c.
Interestingly, this formula disagrees with what newtonian physics would have said by
a factor of two: the newtonian answer is E = 1

2 mv2 = ( 1
2 )(mv)(v).

D.19 RAY OPTICS

[Not covered this year.]

D.20 DIFFRACTION

[Not covered this year.]

22Sadly there is little agreement among authors about which helicity is which. You must read closely
to find what convention is being used (and write clearly which one you are using).
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D.21 RAINBOWS

[Not covered this year.]

D.22 PARTIAL POLARIZATION

[Not covered this year.]

D.23 GENERATION OF RADIATION

When currents are present, but the net charge density is zero, then each component
of the vector potential in Coulomb gauge obeys a modified form of Equation D.25
(the inhomogeneous wave equation), in which the right hand side is replaced by
≠µ0j̨. We found that, for any “source function” J(t, r̨ ), the expression

„(t, r̨ ) =
⁄

d3rú
1

Îr̨ ≠ r̨úÎJ(t ≠ Îr̨ ≠ r̨úÎ/c, r̨ú) (D.27)

is a solution to a simplified form of the wave equation.

D.24 GALILEAN RELATIVITY

D.24.1 Rotations
A trajectory is a chain of events in spacetime. A rotation leaves time unchanged but
moves to a new point in space (active viewpoint), or alternatively leaves the time
axis unchanged but changes the coordinate system by altering the space axes (passive
viewpoint).

D.24.2 Active viewpoint
A point P with coordinates r̨ moves to a new point Q with coordinates Ą̂r related to
the others via Ą̂ri = S≠1

ij
r̨j .

Given a trajectory r̨ (t) we construct a new, di�erent trajectory by subjecting
r̨ at every instant to a rotation. Suppose that Sij is an orthogonal matrix (that
is, StS =

¡
11). Then the new trajectory Ą̂ri(t) solves Newton’s laws i� r̨j(t) does. We

say newtonian physics has a symmetry under this active transformation.23 The
particular property of symmetry under rotations is called isotropy.

D.24.3 Passive viewpoint
Equivalently, we can take a trajectory r̨ (t) and reexpress the same trajectory in a
new coordinate system on space. In the new system the coordinates of a point P are
related to the coordinates of the same point via r̨ Õ(P )a = Saj r̨j(P ). Applying this

23If there are many particles, we must apply the same rotation to each one’s trajectory.
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coordinate transformation point by point to a trajectory, specified by three functions
of time r̨i(t), yields three new functions r̨ Õ

a
(t).

We can also reexpress the equations of motion obeyed by the original three
functions in terms of the new coordinates. Suppose that S is an orthogonal matrix.
Then we find that the new equations have exactly the same form as the old ones,
including the numerical values of any constants of Nature (e.g. Newton’s gravitational
constant). We say that newtonian physics has an invariance (or “is form-invariant”)
under this passive transformation.

Symmetry and invariance are two viewpoints for saying the same thing.
The orthogonal 3 ◊ 3 matrices form a group named O(3). They include rotations

and reflections. They don’t include squashing (rescaling just one coordinate), nor even
dilatation (rescaling all coordinates by the same amount).

D.24.4 Boosts
In fact, newtonian physics has symmetries (or equivalently invariances) corresponding
to space rotation, space translation, time translation, and galilean boosts (plus some
reflections); its full symmetry group is the galilean group, which has 10 continuous
parameters. In the passive language, a galilean boost is a relabeling of the points of
spacetime (called events) by four new numbers related to (t, r̨ ) by

tÕ = t, r̨ Õ = r̨ ≠ v̨út,

where v̨ú is a constant vector. More general galilean transformations take the form

tÕ = t + B, r̨ Õ
a

= Saj r̨j + Ąa ≠ v̨úat.

Here B, Ą, and v̨ú are constants, and S is an orthogonal matrix.
When we perform one galilean transformation (B1, S1, Ą1, v̨ú1), then follow it

by another (B2, S2, Ą2, v̨ú2), the net result is again of the same form, with:

Btot = B1 + B2, Stot = S2S1, Ątot = Ą2 ≠ v̨ú1B1 + S2Ą1, v̨ú,tot = v̨ú2 + S2v̨ú1.

In the special case of pure boosts, this reduces to v̨ú,tot = v̨ú2 + v̨ú1, an unsurprising
result (“galilean velocity addition formula”).

D.25 STRINGS/SPRINGS

Consider the dynamics of a 1-dimensional continuum elastic object (a coiled spring
or “slinky”), allowed to move in one dimension. It’s characterized by two material
parameters: the linear mass density fl(1D)

m ≥ kg/m, and an elastic constant Ÿ ≥ N.
Thus a segment of length L has mass fl(1D)

m L and spring constant Ÿ/L. We let u(t, x)
denote the longitudinal displacement at time t of an element that in equilibrium would
have been at position x. Then the equation of motion is

ˆ2u

ˆt2 ≠ (cs)2 ˆ2u

ˆx2 = 0. (D.28)

Contents Index Notation



D.28 Full Lorentz Transformations 585

In this formula the constant cs =
Ò

Ÿ/fl(1D)

m is the speed of waves in the spring.
Essentially the same equation also describes transverse waves of small amplitude
along a tense string. Generalizing to 2 or 3 dimensions gives waves in a network of
springs.

One can find local expressions for the kinetic and potential energy densities, and
their sum fl(1D)

E (t, x). There is also a 1D flux of energy j(1D)

E (t, x), which is the net rate
at which the region to the left of x is doing work on the region to the right. The local
quantities fl(1D)

E (t, x) and j(1D)

E (t, x) obey a continuity equation, so we say that energy
is locally conserved.

The slinky wave equation doesn’t appear to be galilean invariant, but that’s
because we implicitly assumed that the undisturbed slinky is at rest with respect to
the observer. Really, the slinky system has another dynamical variable, the velocity
of the medium w.r.t. the observer. When we generalize to let this velocity be nonzero,
and then transform all the dynamical variables (including the new one), then we find
that the wave equation really is galilean-invariant. But for light, which has no material
medium,we cannot rescue galilean invariance in this (or any other) way.

D.26

D.27 PROVISIONAL LORENTZ TRANSFORMATIONS

The incompletely-specified transformations discussed here got superseded by the full
Lorentz transformations (below).

D.27.1 Addition of velocities

—tot = —1 + —2
1 + —1—2

.

This result di�ers from the galilean velocity addition formula. That fact let us dis-
tinguish the alternatives by analyzing Fizeau’s experiment on the speed of light in
flowing water.

D.28 FULL LORENTZ TRANSFORMATIONS

Lorentz transformations
I observed that the wave equation, if not extended to include any medium velocity,
does not have galilean invariance. But it does have a di�erent invariance, which also
relates coordinate systems in uniform motion w.r.t. each other:

Ë
ct

Õ

xÕ

È
= “

Ë
1 ≠—

≠— 1

È Ë
ct

x

È
where “2 = (1 ≠ —2)≠1. (D.29)

We can see that two coordinate systems related by a transformation of the above form
will disagree on whether or not two events 1 and 2 are simultaneous. For example, if
t(1) = t(2), we generally won’t have tÕ

(1) = tÕ
(2) (unless x(1) = x(2) as well).
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In contrast, two coordinate systems related by the transformation in Equation D.29
will agree on whether a given trajectory is moving at speed c or not, despite the fact
that the two systems are moving relative to each other! For example, if one trajectory
obeys x = ct, then you can easily show that the other one obeys xÕ = ctÕ with the
same numerical value of c.

Invariant interval
(�·)2 = c≠2!

(c�t)2 ≠ (�x)2"
. (D.30)

Another form of Lorentz transformations
Another way to characterize the Lorentz transformations is as the linear transforma-
tions that preserve the form of the invariant interval (Equation D.30). That viewpoint
inspired the guess that, almost exactly like rotations,

Ë
ct

Õ

xÕ

È
=

Ë
cosh � sinh �
sinh � cosh �

È Ë
ct

x

È
(D.31)

does the job. This really is the same as Equation D.29, with “ = cosh �, “— = sinh �,
two expressions that obey Equation D.29 for any value of the rapidity �. The
composition (matrix product) of two of these boosts has the same overall form as
Equation D.31 with parameter �tot = �(1) + �(2). Translating back to velocities
recovers the formula for —tot in terms of —1, —2.

D.29 RELATIVISTIC PARTICLE ENERGY AND MOMENTUM

We regard the trajectory of a moving particle as a curve in spacetime parameterized
by proper time · . Then we define relativistic momentum as p̨ = m(dr̨ )/d· = m“v̨
and relativistic energy as E = mc(d(ct)/d·) = mc2“. Here m is a constant, invariant
property of the particle with dimensions of mass; it’s called “the mass” of the particle.
Our proposed form of the conservation laws is then simply that the sum of any of
these four quantities over all particles is the same before and after a collision.

The virtue of these definitions is that then the four-momentum
#
E/c

p̨

$
trans-

forms in the same way under Lorentz boosts as
#

ct

r̨

$
, namely, it undergoes a linear

transformation. That makes it easy to show that the proposed conservation of four-
momentum is Lorentz invariant.

For particles moving at close to the speed of light, E ¥ pc.

D.29.1 Some experimentally testable consequences

1. If a radioactive nucleus at rest decays into products with total mass smaller
than the original, then the missing mass goes into kinetic energy of the products.
Or when two nuclei react and rearrange to make two (or more) products, same
prediction.

2. When a photon in the x ray part of the spectrum smacks an electron, it scatters
into a new direction with a new wavelength. The observed change in wavelength
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(Compton scattering formula) agrees with that predicted from the conservation
of relativistic, not newtonian, momentum.

D.30 FOUR-VECTORS AND -TENSORS

D.30.1 More about 3-vectors and 3-tensors
We continue to restrict attention to non-accelerating, cartesian coordinate systems.
Di�erent cartesian coordinate systems, at rest with respect to one another, are related
by the transformations

r̨ Õ
a

= Saj r̨j , and tÕ = t, for a, j = 1, 2, 3 (D.32)

where the 3 ◊ 3 matrix [S] satisfies

[S]t[S] = 11. Defining condition for a rotation or reflection (D.33)

That is, it’s an orthogonal matrix. This condition ensures that the pythagorean
theorem takes the same form in both the old and new coordinate systems, that is, the
length-squared of a vector is

(r̨ Õ
1)2 + (r̨ Õ

2)2 + (r̨ Õ
3)2 = (r̨1)2 + (r̨2)2 + (r̨3)2.

About primes: We will usually reserve the prime modifier specifically for represen-
tations of the same geometrical object in two di�erent coordinate systems.24 As an
additional visual cue, we’ll use indices i, j, k, . . . for one set of coordinates and a, b, . . .
for a new set. For example, Equation D.32 says that {r̨ Õ

a
} are the components of the

vector “in the primed coordinate system.”
When two quantities are closely related, in some other way (not by a coordinate

transformation), we’ll sometimes use a tilde or check (háček) instead of a prime to
distinguish them.25

A 3-scalar is a representation of a physical quantity by a single number that is
the same when expressed in any of the coordinate systems in Equation D.32. Examples
include the mass or charge of a point particle, etc. Ordinary numbers, with or without
units, are also 3-scalars, for example the constants fi, ‘0, µ0, ~, etc. A 3-vector is a
representation of a physical quantity by three numbers (components) that depend
on our choice of coordinate system in the same way as the components of r̨ . Thus, if
the components of a 3-vector are given in one cartesian coordinate system, then we
find them in any other one by using Equation D.32.

We define tensors of higher rank similarly. For example, a 3-tensor of rank two
has entries that transform the same way as those of the dyad product r̨ r̨ :

b̨ Õ
a

= Saįb i,
¡
Q Õ

ab
= SaiSbj

¡
Q ij . (D.34)

24One exception: Sometimes we also use the traditional prime notation for a derivative of a function
with respect to a spatial variable.
25When we have an indexed collection of related objects, but the index is not specifically a coordinate
index, we sometimes emphasize that by putting parentheses around the index (e.g. see Section D.17.3).
Later we’ll introduce yet another way to distinguish related quantities (index raising/lowering).
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Again: The same vector will have numerically di�erent components b̨i or b̨ Õ
a

when
viewed in a di�erent coordinate system, and similarly for higher tensors.26

The sum of two tensors of the same rank, for example
¡
T +

¡
S , is an indexed

collection of numbers, each of whose entries is the sum of the corresponding entries
of

¡
T and

¡
S :

(
¡
T +

¡
S )ij =

¡
T ij +

¡
S ij for each i and j.

Because coordinate transformations are linear (e.g. Equation D.34), this sum is again
a tensor of the same rank as its constituents.

If the components of a tensor are specified a priori in more than one of these
coordinate systems, then those definitions must be related by Equation D.34. For
example, although the components of

¡
11 are fixed constants in any coordinate system

(namely ”ij , each of which equals 1 or 0), nevertheless the unit tensor really is a tensor:
Its components do satisfy the second of Equation D.34, i.e., they transform the same
way as those of r̨ r̨ under rotations.

D.30.1.1 For theory enthusiasts only A mathematician would call a 3-tensor a “linear
representation of the rotation group SO(3).”

All our notations r̨i, r̨, r̨
Õ
a, r̨

Õ
, . . . refer to coordinate representations of a vector. We

have introduced no symbol to represent the “actual” geometrical vector itself.27 We rely on
consistent use of the same letter of the alphabet (here “r”) to remind us that these are all
representations of the same thing.

Although the components of the Levi-Civita tensor are fixed constants, nevertheless they
transform the same way as those of r̨ir̨j r̨k under rotations. But under reflections, we find
that Á

Õ
123 = ≠1 etc. So the L-C tensor is not quite invariant under O(3).

Equivalently, if we define a tensor ÷ in the new (left-handed) coordinates by using the
usual rule, ÷

Õ
123 = +1, etc., then ÷ is not the same tensor as Á. And if we were then to define

the magnetic field by throwing test particles and interpreting their motions by a Lorentz
force law defined using ÷, then we’d infer a magnetic field that di�ers from our B̨ by an
overall minus sign in each component. This is what some authors mean when they call B̨ a
pseudovector (and similarly for angular momentum): Its definition contains an odd number
of Á’s, and so depends on which coordinate choice we make when defining Á. (Similarly for
pseudoscalars, such as the helicity of a circularly polarized plane wave.) We’ll just say that
Á is always defined as in Section 0.2.2, starting from a right-handed coordinate system.28

Finally, in quantum theory we must make a small extension to the Tensor Principle: If a
theory is invariant under rotations, then actually we also must allow some physical quantities
that transform according to representations of the “covering group” of SO(3).29 Some of
these cannot be written as tensors. Such “spinor representations” correspond to half-odd
spin particles like electrons in nonrelativistic quantum theory.

26
Saj is not itself a tensor because it carries mixed indices (j is in the old system; a is in the new

system).
27When we draw an arrow on a diagram, that refers to the actual geometric object.
28We can physically select RH systems by weak interaction physics, which (unlike classical electro-
dynamics) makes an absolute distinction between left- and right-handed systems.
29The covering group of SO(3) turns out to be SU(2).

Contents Index Notation



D.30 Four-vectors and -tensors 589

D.30.2 3-scalar, 3-vector, and 3-tensor fields
A 3-scalar field is a function of position, for example, energy density or electrostatic
potential. Its value at a point P is the same regardless of coordinate system choice.
However, when regarded as a function of three variables r̨i, then that function does
depend on what coordinates we choose to represent points in space:

ÂÕ(r̨ Õ
1, r̨ Õ

2, r̨ Õ
3) = Â(r̨1, r̨2, r̨3) where r̨i = (S≠1)iar̨ Õ

a
. (D.35)

This formula defines its left side (a function of the three variables r̨ Õ
p
) by setting it

equal to the right size (also a function of r̨ Õ
a
, once we use the definitions of r̨i as

functions of r̨ Õ
a
).

A 3-vector field is a vector depending on position, for example the electric
charge flux, j̨ (r̨ ). Its value at a point P can be represented in the usual way relative
to some coordinate system by a triple of numbers, each of which depends on the three
coordinates of P . That is, we represent the field by three functions of three variables.
In a di�erent system we represent the same vector field b̨ by the new functions

b̨ Õ
a
(r̨ Õ

1, r̨ Õ
2, r̨ Õ

3) = Saįb i(r̨1, r̨2, r̨3) where r̨i = (S≠1)iar̨ Õ
a
. (D.36)

The above formula defines its left side (three functions of the three variables r̨ Õ
a
) by

setting it equal to its right side (also three functions of the three variables r̨ Õ
a
). It

is often written in the terse abbreviation b̨ Õ
a
(r̨ Õ) = Saįb i(r̨ ), with the understanding

that the three variables {r̨i} are to be regarded as functions of the {r̨ Õ
a
}.

The transformation rules for the components of higher 3-tensor fields are similar
to Equation D.36.30

D.30.3 4-vector notation
I’ll use underscore to denote 4-vectors and other 4-tensor objects.31

Einstein agrees with Newton that: Trajectories are chains of “events,” and it takes
four numbers to specify an event. But those giants disagree on what exactly are the
transformations that are invariances of Nature.

In this course we are exploring the hypothesis that there’s at least one “good” (or
“E-inertial”) coordinate system (one in which particles and fields obey the Maxwell
equations and Lorentz force law in their usual form). Choosing such a system, we let32

Xµ =
#

ct

r̨

$µ =
5

ct
x
y
z

6µ

. (D.37)

30An ordinary tensor may be regarded as a tensor field each of whose components is a constant.
Equation D.36 shows that if the entries are constant in one cartesian coordinate system, they’ll also
be constant in any rotated system.
31Sometimes the symbol’s name will also be a clue: Ǫ̀i are components of a three-vector operator,
whereas we’ll soon define ˆ µ to be components of a four-covector operator. Sometimes a 4-vector
quantity will be given a name with a capital letter to distinguish it from the corresponding 3-vector.
32Comparing Equation D.37 to Equation 0.6 gives the bizarre-looking, but correct, formula X

i = r̨i

for i = 1, 2, 3. This clash of 3-space and 4-space conventions is one reason why we keep the arrows
and bars on all quantities in this document, to make clear which is which. Luckily, in E-inertial
coordinates we have g ij = ”ij , so if we stick to such systems then we also have the saner-looking
formula Xi = r̨i.
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Greek indices run through 0,1,2,3. Thus X0 = ct etc. [X ] is an abbreviation for Xµ in
which we abbreviate by omitting the index and using the rules of matrix multiplication
to imply summations. [X ] is a column vector.

Write a general linear transformation of coordinates as

X Õ– = �–

‹
X‹ . transformation of a 4-vector (D.38)

As in 3-space, we distinguish old and new coordinate systems by using one part of the
alphabet µ, ‹, . . . for the old and another part –, —, . . . for the new.

We can usefully think of the Lorentz transformations as those linear transforma-
tions on Xµ that preserve the form of the following quantity:

ÎXÎ2 = ≠(ct)2 + (r̨ )2 = Xµg µ‹X‹ = [X]t[g][X].

Here the metric tensor33 g µ‹ refers to a matrix of constants:

gµ‹ =
5

≠1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

6

µ‹

. (D.39)

That is, g00 = ≠1, and so on. The condition for form-invariance of ÎXÎ2 is

�–

µ
�—

‹
g–— = gµ‹ , Defining condition for a Lorentz transformation (D.40)

where g–— is the same set of 16 constants as in Equation D.39.
For example, Equation D.29 amounts to

�–

‹
=

5
“

≠“—
0
0

≠“—
“
0
0

0
0
1
0

0
0
0
1

6–

‹

for a boost along the +x̂ axis

(where “ is defined by Equation D.29).
[�] is an abbreviation for �–

‹
regarded as a 4 ◊ 4 matrix. Thus we can abbreviate

Equation D.38 as [X Õ] = [�][X ]. (As soon as a formula starts to have more than
a couple of indices, however, this level of abbreviation may become too confusing.)
And Equation D.40 says [�t][g][�] = [g]. Notice that this does not say that [�] is an
orthogonal matrix (unlike the case in 3D). That is, the group of all matrices satisfying
this condition is not O(4); it’s a new group, the Lorentz group also called O(3,1).

Note that despite the fact that we write it as a square, the quantity ÎV Î2 need
not be a positive number. For example, we can have ÎV Î2 = 0 even if V itself is
not zero. Any 4-vector with this property is called lightlike, or null. If �X is the
spacetime separation between two events, then we call the three cases Î�X Î2 < 0
and > 0 by the names timelike and spacelike separation respectively. A material
particle always moves slower than c, so it will always move to a new spacetime point
that is separated by a timelike displacement 4-vector from its original point.

We now ask, if the wave equation takes its usual form in one coordinate system,
are there any other systems in which it also takes its usual form? To answer, we first

33Warning: Some authors use a convention where they take the metric tensor to be minus our metric
tensor.
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consider the wave equation for a scalar field34:
1

≠ ˆ
2

ˆ(ct)2 + Ǫ̀2
2

� = 0. This can be
elegantly written as35

gµ‹ˆ µˆ ‹� = 0. (D.41)

Here gµ‹ is numerically the same set of constants as the ones appearing in Equa-
tion D.39. (We will soon explain why we introduce two slightly di�erent names for
the same set of constants!)

Lorentz transformations leave the form of Equation D.41 unchanged.36 The proof
is not as simple as in the 3D case, but it follows from Equation D.40.

Equation D.41 has plane-wave solutions, which can be compactly expressed as

exp(ikµgµ‹X ‹) (D.42)

Here k is a lightlike 4-vector consisting of k0 (previously called Ê/c) and ki (previously
called k̨i).

D.30.4 Relativistic particles
D.30.4.1 Massive We describe a trajectory � as a sequence of events depending on
some parameter, i.e. � (›). Because any massive particle must travel slower than c,
we must have Îd� /d›Î2 < 0. We can make a unique choice of parameterization by
requiring that Îd� /d›Î2 = ≠c2; with this choice, we call › the particle’s proper time
and rename it · .37 Then we define the 4-velocity as38

U = d�
d·

.

Because · is defined by an invariant equation, it’s a scalar. The derivative of a 4-vector
with respect to a scalar is a 4-vector, so Uµ deserves its name. (Note that all four of
its components have the units of velocity.)

Equivalently, for any parameterization we can define

U = c
≠Îd� /d›Î2

d�
d›

which again shows that U really is a 4-vector. (The choice of parameterization › drops
out of this formula.)

Note that
U µ = “

5
c

vx
vy
vz

6µ

.

34This is a simplification of the electromagnetic wave equation, which actually involves the vector
potential. But physics does make use of the scalar wave equation, e.g. for describing spinless particles
like the pion. (To be ultraprecise, the pion field is a “pseudoscalar.”)
35The Laplace-type operator appearing in Equation D.41 is called the wave operator or D’Alembert
operator (sometimes written 2).
36Actually, we get an invariance even if �

–
µ�

—
‹g

µ‹ is a constant times g
–— . As before, we are

eliminating the spurious dilatation transformations because we know they can’t be invariances of all
of Nature.
37Thus · is analogous to contour length (also called arclength), along a curve in ordinary euclidean
geometry.
38P+S use the letter ÷ instead of U for this set of quantities.
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In particular, lab time along the trajectory is related to proper time by dt/d· = “.
We define the 4-momentum of a particle with this trajectory by the formula

p = mU , (D.43)

where m is a scalar constant characterizing the particle. We also give special names
to its components, namely p0 = E/c and pi = p i. To justify these formulas, which
di�er from Newton’s, we first note that the conservation law

p µ

initial ≠ p µ

final = 0

is Lorentz invariant (and hence a candidate for a law of Nature). In contrast, Newton’s
versions of energy and momentum conservation rules are not Lorentz-invariant.

From its definition we see that Îp Î2 = ≠(mc)2. Thus the relativistic energy and
momentum obey the relation

E
2 ≠ (cp̨ )2 = m2c4. (D.44)

In an E-inertial coordinate system where |v̨ | π c, the spatial components of
momentum reduce to p̨ ¥ mv̨ + · · · . Also, E ¥ mc2 + 1

2 m|v̨ |2 + · · · ; for collisions
in which particle masses don’t change, we can ignore the first term and recover the
newtonian formula for kinetic energy conservation.

D.30.4.2 Massless To see what a “massless particle” could possibly mean, notice that
setting m æ 0 in Equation D.44 yields Îp̨ Î2 = (E/c)2 or

pµ =
Ë

p

p̨

Èµ

where p = Îp̨ Î. (D.45)

The corresponding trajectories are null lines in spacetime. Although such a trajectory
has no proper-time parameter, and hence U is undefined, nevertheless Equation D.45
defines a legitimate momentum 4-vector; the corresponding particle does carry nonzero
momentum and energy. Moreover, these quantities are related by E = pc, just like the
energy and momentum fluxes of light (sect. D.18).

In quantum theory, p = ~k where k is the wave vector from Equation D.42. This
relation encompasses both deBroglie’s p̨ = ~k̨ and Einstein’s E = ~Ê.

D.31 THE FARADAY TENSOR

D.31.1 Manifestly invariant form of Lorentz force law
The Faraday tensor unifies electric and magnetic fields:

F µ‹ = c≠1

S

WWWU

0 Ę1 Ę2 Ę3
≠Ę1 0 B̌3 ≠B̌2
≠Ę2 ≠B̌3 0 B̌1
≠Ę3 B̌2 ≠B̌1 0

T

XXXV

µ‹

(D.46)
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where B̌i = cB̨i. This big formula can be summarized compactly by F 0i = ≠F i0 =
Ęi/c and F ij = ÁijkB̨k.39

The Lorentz force law says that a particle’s trajectory � (·) obeys the four ordinary
di�erential equations

d
d·

P µ = qF µ‹(�(·))U ‹(·). Lorentz force law (D.47)

Suppose that we have a region of uniform B̨. A charged particle launched perpen-
dicular to B̨ will move in a circular orbit. The period of the orbit is independent of
the initial particle speed, as long as that speed is much smaller than c. At relativistic
speed, however, the period begins to change in a readily measurable way that agrees
with the prediction from Equation D.47.

D.32 MANIFESTLY INVARIANT FORM OF MAXWELL

D.32.1 4-covectors et al.
Any set of four physical quantities whose values change in the same way as Xµ when
remeasured in another E-inertial coordinate system (see Equation D.38) is called a
four-vector, or 4-tensor of rank

! 1
0
"
.40 For example, the energy/c and momentum

of a point particle together form a 4-vector pµ.
A 4-tensor of rank

! 2
0
"

is a set of 16 quantities that transform under change of
E-inertial coordinate system like the products XµX‹ .

If we try to contract a 4-vector with another 4-vector, we know that the resultq3
µ=0 AµBµ is not invariant, because Lorentz transformations are not orthogonal

matrices. Asking what sort of quantity will be invariant when contracted with a 4-
vector leads us to define a 4-covector, or 4-tensor of rank

! 0
1
"
, as a set of four

measurable quantities b µ that transform under change of E-inertial coordinate system
according to

b Õ
–

= b µ(�≠1)µ

–
. Lorentz transformation of a 4-covector (D.48)

In matrix notation, we can say [bÕ] = [�]≠1t[b]. Since [�] is not orthogonal, this
transformation is not the same as Equation D.38. So we must distinguish 4-vectors
from 4-covectors; we do this via index placement.

A 4-tensor of rank
!

p

q

"
has components of the form Aµ1...µp

‹1...‹q
, which undergo

a mixed transformation, with p copies of [�] and q copies of [�]≠1 t.
Another way of expressing the form-invariance of the invariant interval is to say

that g µ‹ is an invariant constant tensor of rank
! 0

2
"

(a “4-tensor from Heaven,”
just as ”ij is a rotationally invariant constant tensor of rank 2 in 3D). Similarly gµ‹ is

39Section D.14 called this 3 ◊ 3 block 2¡
Êij .

40P+S use the term contravariant vector, but I can never remember which is co- and which is
contra-variant. The notation

!
1

0

"
says just what it means, namely “one index up, none down.”
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also an invariant constant tensor of rank
! 2

0
"
. The Kronecker symbol ”‹

µ
, whose entries

are 1 if µ = ‹ or 0 otherwise, is an invariant constant tensor of rank
! 1

1
"
.

When we multiply the components of a
!

p

q

"
tensor by those of a

!
p

Õ

qÕ

"
tensor, we

obtain the components of a
!

p+p
Õ

q+qÕ

"
tensor. When we add the components of a

!
p

q

"

tensor to the corresponding components of another tensor of the same rank, we again
get a

!
p

q

"
tensor.

It may seem burdensome to keep track of two di�erent transformation laws, but
in practice it’s easy because we can easily convert a covector to a vector and vice
versa: Given a 4-covector k µ, the four quantities g‹µk µ form a 4-vector. We name
these quantities k‹ , that is, we use the same letter of the alphabet but di�erent index
placement, to emphasize that they are closely related to k µ, and we call the conversion
index raising.

Similarly, given a 4-vector Aµ, the four quantities g ‹µAµ form a 4-covector. We
name these quantities A ‹ , that is, we use the same letter of the alphabet but di�erent
index placement, to emphasize that they are closely related to Aµ, and we call the
conversion index lowering.

Index raising and lowering are invariantly defined operations, because gµ‹ and g µ‹

are invariant constant tensors and contraction is invariant. These operations invert
each other, because gµ‹g ‹⁄ = ” µ

⁄
.

So really, we only need to remember one transformation law. If we want to find
the transformation of k ‹ , we can raise its index, apply Equation D.38 to kµ, then
lower the index.

Let Aµ1...µp
‹1...‹q

be a 4-tensor of rank
!

p

q

"
. Then:

. If A is antisymmetric on some or all of its upper indices in one coordinate system,
it will have that same property in any other E-inertial system (and similarly for
lower indices, and similarly for symmetry). That is, the statement that a tensor
is (anti)symmetric is a Lorentz-invariant property.

. Also the operation of antisymmetrizing (or symmetrizing) a tensor on some or
all of its upper (or lower) indices is invariantly defined.

. But warning: There is no invariant sense to (anti)symmetry between an upper
and a lower index. We must lower one index, or raise the other, before we can
speak invariantly of (anti)symmetry.

D.32.2 4-tensor fields
A 4-vector field is a 4-vector defined throughout a region of spacetime, with trans-
formation law analogous to the one for a 3-tensor field:

AÕ–(X Õ) = �–

µ
Aµ(X ), where [X ] = [�≠1X Õ]. (D.49)

Similarly we define other 4-tensor fields. (A 4-scalar field is just a fancy name for
an ordinary function of Xµ.)

We can take derivatives by using the 4-gradient operator ˆ µ = ˆ/ˆXµ. Notice
the notation: An upper index in the denominator counts as a lower index. You should
confirm that indeed the derivative of a 4-scalar field ˆ µ� is a covector field (Equa-
tion D.48), as implied by the lower index. Thus also the directional derivative of �
along a 4-vector field V is a scalar field (namely V µˆ µ�).
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We fuse the charge density and charge flux to make a single 4-vector field41

Jµ(X ) =
Ë

cflq(t,r̨ )
j̨ (t,r̨ )

Èµ

. (D.50)

One way to prove that these four quantities indeed form a 4-vector is to note that
the continuity equation, which is valid in any coordinate system (invariant), can be
written as ˆJµ/ˆXµ = 0. Making the useful abbreviation

ˆ µ = ˆ/ˆXµ

lets us rephrase compactly as ˆ µJµ = 0. Since we know the transformation rule of
ˆ µ, we infer that of Jµ.42

An ordinary constant may be regarded as a scalar field that happens to be inde-
pendent of X. Similarly, an ordinary 4-vector can be regarded as a 4-vector field with
constant components, as long as we stick to E-inertial (cartesian) coordinates.

D.32.3 Invariants and invariant equations
The metric tensor can be used to create a scalar given two 4-vectors, via AµB‹g µ‹ ,
or equivalently its abbreviation AµB µ. The quantity ÎX Î2 is just the special case
where both A and B are taken to be the separation �X:

c≠2Î�XÎ2 = c≠2(�Xµ)(�X
µ
).

More generally, we can contract any upper index with any lower index to convert a!
p

q

"
tensor to a

!
p≠1
q≠1

"
tensor. If we reduce the rank all the way to zero, we’ve got a

scalar (invariant quantity).
Here are a few simple Rules analogous to the ones in 3D:

1. A formula will be invariant if it takes the form (4-tensor) = 0.
2. The left side will be guaranteed to be a tensor if all dynamical quantities appearing

in it are themselves 4-tensors, and. . .
3. . . . all constants are either 4-scalars (for example, mass m, charge q, c, ‘0, µ0), or

the special 4-tensors gµ‹ , g µ‹ , ”µ

‹
.43

4. Indices may be contracted in up/down pairs.
5. You can get an ordinary tensor starting from a tensor field by integrating over

all spacetime using d4X.44 In particular, you can integrate a scalar field to get a
scalar. But note that integrating over all space, at a fixed value of time, does not
necessarily give a scalar.

When an equation is Lorentz-invariant because it obeys these rules, some authors call
it covariant or manifestly invariant.

41Section D.32.6 gives another formulation for J .
42Section D.32.6 gives another form of the definition of J .
43There is also a 4-dimensional Levi-Civita tensor (invariant under those Lorentz transformations
that are not reflections), but we won’t need it.
44As in 3D, we must introduce a jacobian factor if we wish to use curvilinear coordinates.
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D.32.3.1 For theory enthusiasts only Again there is an extension to the Tensor Principle
in relativistic quantum theory, analogous to the one in nonrelativistic theory: To write a
classical field theory that when quantized will yield fermions, we must generalize to allow
representations of the covering group Spin(3,1).

D.32.4
Equation D.50 combined the electric charge density and electric charge flux into a
4-component object. Then the following equations are manifestly Lorentz-invariant:

ˆ ‹F µ‹ = µ0Jµ and ˆ µF ‹⁄ + ˆ ‹F ⁄µ + ˆ ⁄F µ‹ = 0. Maxwell equations

(D.51)
Notice that no Levi-Civita tensor appears; thus, these equations are also manifestly
invariant under inversions.

The first Maxwell equation, involving J , is really four equations, because each side
has one loose index. The second one appears to be 43 = 64 equations, because it has
three loose indices. Really, however, most of these equations are redundant, because
the left side is totally antisymmetric on its three indices. A totally antisymmetric
4-tensor of rank

! 0
3
"

has only four independent components.
So in all there are eight distinct equations, and indeed, substituting Equations D.46

and D.50 shows that Equation D.51 are precisely the Maxwell equations.
It may seem that eight equations in six unknown functions is too many, but two

combinations of the equations are tautologies, vacuously satisfied regardless of what
the fields and particles are doing. To see this,
. Take the divergence of the first set of equations and recall that ˆ µJ µ = 0

identically. So one combination of these four equations does not constrain F µ‹ .
. Apply Á µ‹⁄Ÿˆ Ÿ to the second set of equations and recall that partial derivatives

commute. Here Á is the 4D analog of the Levi-Civita tensor, with Á 0123 = +1.
Again, you find that one combination of these four equations is always automati-
cally satisfied.

(Compare the discussion in Section D.7.1.)

D.32.4.1 For theory enthusiasts only We can rewrite Maxwell’s equations even more com-
pactly as

d F = 0 and d(úF ) = µ0(úJ ). (D.52)

Here d is the exterior derivative operator (Section D.14.1.1) and the dual Faraday tensor

is:

ú F
µ‹ = 1

2
Á

µ‹–—
F –— = c

≠1

C
0

B̌x
B̌y

B̌z

≠B̌x
0

≠Ez
Ey

≠B̌y
Ez

0
≠Ex

≠B̌z
≠Ey
Ex

0

Dµ‹

. (D.53)

P+S call this tensor ≠G
µ‹ (their Levi-Civita tensor di�ers from mine by an overall mi-

nus sign). The other star appearing in Equation D.52 is defined by a formula similar to
Equation D.53: (úJ )µ‹⁄ = J

‡
Á ‡µ‹⁄.

In fact both the exterior derivative and the Hodge dual operation defined above can
be defined in any coordinate system (not just E-inertial coordinates), using the metric tensor.
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So Equation D.52 shows that Maxwell’s equations can be written in a completely coordinate
invariant way. And that is valuable when it comes time to introduce gravitation, for example
to find the gravitational bending and redshifting of light as it passes by a massive object: All
we need to do is to replace the flat spacetime metric we’ve been using so far by the curved
metric appropriate to this situation.

D.32.5 Four-vector potential
The Poincaré Lemma (Section D.14), together with the second Maxwell equation in
Equation D.51, says that on a contractible region we can always write the Faraday
tensor in terms of a four-vector potential:45

F µ‹ = ˆ µA‹ ≠ ˆ ‹A µ, where Aµ =
Ë

Â/c

Ą

Èµ

. (D.54)

Thus typical units of A are kg m coul≠1 s≠1. The known transformation properties of
ˆ and F imply that A is a four-vector field.

When we write Maxwell’s equations in terms of A , one set is automatically solved;
the other becomes the 4-vector wave equation

≠ ˆ µˆ µA‹ + ˆ µˆ ‹Aµ = µ0J‹ . (D.55)

This is four equations in four unknowns. However, one combination of the potentials is
a fake: Gauge invariance is the observation that the Faraday tensor doesn’t change
when we replace A µ by ÂA µ = A µ + ˆ µ�. Luckily, one combination of Equations D.55
is still vacuously satisfied, as we see by taking the 4-divergence of both sides. So we
have e�ectively reduced to 3 equations in 3 unknowns.

D.32.6 More about the charge–flux 4-vector field
We can reexpress J in a way that makes its 4-vector character more explicit.46 Suppose
that we have a lot of charged particles labeled by ¸. The charges are q¸ and the
trajectories are � (¸)(·) where · is proper time. Then

J (X ) = c
ÿ

¸

q¸

⁄
d· U ¸(·) ”(4)(X ≠ � (¸)(·)). (D.56)

As before, X is the observation point, whereas � (¸)(·) is the location of particle ¸ at its
proper time · . In this formula, the separate ingredients q¸,

s
d· , and ”(4)(X ≠� (¸)(·))

are all Lorentz scalars. And U ¸ is a 4-vector, so the whole thing is a 4-vector.

D.32.6.1 For theory enthusiasts only In Minkowski spacetime, the delta function appearing
in Equation D.56 is just the product of four ordinary delta functions. In curved spacetime,
it needs an additional factor related to the metric.

Actually, it is more geometrically natural to think of charge flux in terms of the Hodge
dual to J (Section D.32.4.1). This 3-form úJ takes a signed 3-volume element and spits out
the net charge of all particle trajectories that pierce it; it is defined without any recourse to
the metric. And then the continuity equation takes the elegant, and fully coordinate-invariant,
form d ú J = 0.

45So we’ve more elegantly rederived a result in Section D.14.1.
46Compare Equations D.16–D.17.
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D.33 ENERGY AND MOMENTUM OF FIELDS, GENERAL

D.33.1
We define a set of four 4-vector fields analogous to J in Equation D.56, but replacing
each particle’s charge q¸ by the components of its momentum p µ

(¸)(·). We assemble
these four 4-vectors into a single tensor T µ‹

part, the energy-momentum flux tensor47

of the particles. You should make sure you understand these identifications of the
blocks of T :

T 00 = c · (density of energy/c)
T i0 = c · (density of pi)
T 0j = (flux of energy/c along j)
T ij = (flux of pi along j).

Thus typical units of T are kg m≠1 s≠2.
Unlike charge, momentum can change along each particle’s trajectory. So

ˆ µT µ‹

part ”= 0. But the energy-momentum flux tensor for the electromagnetic fields:

T µ‹

field = ≠µ0
≠1

1
F µ⁄F ‹

⁄
+ 1

4 gµ‹(F ⁄‡F ⁄‡)
2

(D.57)

has the property that
ˆ µ

!
T µ‹

part + T µ‹

field
"

= 0.

This formula is a continuity equation expressing local conservation of total energy and
momentum.48 For example, the density of field energy is u = T 00

field = (2µ0)≠1!
Ę 2/c2 +

B̨ 2"
. The flux of field energy (Poynting vector) is S̨i = cT i0 = cT 0i = µ≠1

0 (Ę ◊B̨ )i.
And 1

3 T ii

field is the pressure exerted by EM fields (averaged over directions). You should
work it out in terms of the components of Ę and B̨ .

D.33.1.1 For theory enthusiasts only: Angular momentum of fields Define

M
⁄µ‹ = X

µ
T

‹⁄ ≠ X
‹
T

µ⁄
.

Then ˆ ⁄M
⁄µ‹ = 0, so the six quantities

J
µ‹ =

⁄
d3

r M
0µ‹

,

where the integral is over any fixed time, are conserved. The spatial components J
ij are

total angular momenta of fields and particles.

D.34

D.35 PLANE WAVES IN 4D LANGUAGE

47Usually abbreviated “energy-momentum tensor.” Some authors instead say “stress-energy tensor.”
48So it’s a generalization of Poynting’s theorem.
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D.35.1 Scalar waves
The scalar wave equation has plane-wave solutions of the form �(X ) = 1

2
!
exp(ik µXµ)+

c.c.
"
, characterized by a 4-vector k µ =

Ë
Ê/c

k̨

Èµ

(the 4-wavevector). Such a solution
solves the scalar wave equation if Îk Î2 = 0 (“k is a null 4-vector”).

We could use gauge freedom to insist on Coulomb gauge as before. But it’s nicer
to insist on a Lorentz-invariant condition,

ˆ µAµ = 0. Lorenz gauge condition (D.58)

This condition simplifies Equation D.55, which becomes four uncoupled copies of the
scalar wave equation:

≠2A = µ0J. (D.59)

In particular, this equation is still manifestly Lorentz-invariant, because we imposed
a manifestly Lorentz-invariant condition on A. These equations are valid regardless
whether the charge density is zero or not.

D.35.1.1 For theory enthusiasts only Although Ę and B̨ have messy transformation laws,
remarkably two quadratic combinations of their entries are Lorentz-invariant. This becomes
obvious, not remarkable, when we apply “Einstein thinking”: note that

F µ‹F
µ‹ = 2(B̨ 2 ≠ Ę

2
/c

2) (D.60)

and (less obviously)

F
01

F
23 ± (all permutations of 0123) = 8

c
Ę · B̨ . (D.61)

Suppose that we are asked to find the orbit of a particle moving in imposed Ę and B̨ fields.
The first of these invariants can be used to figure out whether we can simplify the problem
by passing to an E-inertial coordinate system in which Ę = 0 or B̨ = 0.

Equation D.60 is also suitable as a Lagrangian density functional for a variational
formulation of the Maxwell equations.

Equation D.61 isn’t, because it’s a total derivative. To see this, and also to see that
this term really invariant under rotations and boosts (but not under inversions), it can be
expressed as F

µ‹
F

⁄‡
Á µ‹⁄‡.

D.35.2
Vacuum solutions include the plane waves. Similarly to the scalar wave equation
(Section D.35.1), each is characterized by a null wavevector k . Unlike the scalar field
case, each wave is also characterized by a polarization 4-vector ’ :

A µ(X ) = 1
2
!
’ µ exp(ik ‹X‹) + c.c.

"
.

This 4-vector field will be in Lorenz gauge if k µ’ µ = 0. It also satisfies the Maxwell
equations if in addition k µk µ = 0.

Additionally, gauge invariance implies that we may add any multiple of k to ’
without changing the field strengths; note that this gauge transformation does not
spoil Equation D.58. We can use this freedom to insist that also ’ 0 = 0. With that
choice, ’̨ is parallel to the electric field and perpendicular to k̨ .
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D.35.2.1 For theory enthusiasts only Maxwell’s equations may be valid only on a region of
spacetime that’s not contractible. For example, Grand Unified theories predict the existence
of small regions where the electroweak and strong-interaction fields have nonzero values;
Maxwell’s equations are not valid inside such a region. In such a situation, even in the
exterior region it may not be possible to find a four-vector potential that’s everywhere
smoothly defined, because the Poincaré lemma only guarantees this in a contractible region.

This loophole is what makes it possible to have magnetic monopole solutions in Grand
Unified field theories, despite the absence of any magnetic-monopole source terms in Maxwell.

D.36 SPHERICAL WAVES

Lorenz gauge makes it easy to guess a spherical wave solution:

Ą (t, r̨ ) = 1
2
#˛̨
› r≠1e≠iÊt±ikr + c.c.

$
. (D.62)

You should find the scalar potential corresponding to this solution.

D.37 BEAMS

[Not covered this year.]

D.38 VARIATIONAL FORMULATION

[Not covered this year.]

D.39 RADIATION GREEN FUNCTION

D.39.1
The retarded (causal) Green function for the wave equation (Equation D.55) is

Dr(�X ) = 1
2fi

�(�t)”(Î�X Î2). (D.63)

= 1
4ficÎ�r̨ Î”(�t ≠ c≠1Î�r̨ Î). (D.64)

In the first formulation, � is the step function and Î�X Î2 is the invariant length-
squared. This formulation makes it clear that Dr is Lorentz invariant. To see this,
note that ”(ÎX Î2) is a function of an invariant expression, and hence invariant. The
step function by itself would not be invariant, because the 0-component of a 4-vector
can change sign under a Lorentz transformation (relativity of simultaneity). But this
ambiguity does not arise if X is a null vector (as it must be for the delta function to
be nonzero).

The second formulation is often more convenient, as its delta-function is simpler.
Here Îr̨ Î2 is the ordinary length-squared.
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What the Green function does for you: Introducing abbreviations R̨ = �r̨ =
r̨ ≠ r̨ú, R = ÎR̨ Î, R̂ = R̨ /R, and flq|ret = flq(t ≠ R/c, r̨ú), we showed that for any
“source function” J(X ), the expression

„(X) =
⁄

d4Xú Dr(X ≠ Xú)J(Xú)

reduces to the expression Equation D.27 and hence is a solution to ˆ µˆ µ„ = ≠J.
Check that these formulas imply that Dr must have the dimensions L≠2; show that
it does have those dimensions by using Equations D.63–D.64.

Taking J to be µ0 times any component of Jµ, we get the corresponding component
of Aµ (the retarded potentials), in Lorenz gauge.

D.40

[Not covered this year.]

D.41 ELECTRIC DIPOLE RADIATION

D.41.1 Far fields of an oscillating electric dipole
Chapter 42 develops a double power-series expansion for the fields from a specified
distribution of charges and currents. The first expansion (far field) is in powers of
a/r, where a is the size of a region outside of which there are no charges or currents.
The second expansion (multipole) is in powers of aÊ/c, where we assume a harmonic
source with angular frequency Ê.

Far-field expansion is always valid if we stand far enough away, for example if
we only want to know how much radiation escapes to infinity.49 Multipole expansion
is useful for radiation by single atoms and molecules50 and for many kinds of radio
antennas etc.

The lowest term of the multipole expansion is called electric dipole approxima-
tion. In ED approximation we got an extremely simple result: A time-varying electric
dipole moment D̨E(t) yields far fields

Ą[ED](t, r̨ ) = µ0
4fir

d
dt

D̨E|ret, (D.65)

B̨ [ED](t, r̨ ) = ≠ µ0
4firc

r̂ ◊ d2

dt2 D̨E|ret, Ę [ED](t, r̨ ) = ≠cr̂ ◊ B̨ (t, r̨ ).

In the special case of linear polarization, D̨E = n̂DE. Then the Poynting vector is

S̨ [ED] = r̂
µ0

16(fir)2c
(sin2 Ë)

.. d2

dt2 D̨E|ret
..2

, (D.66)

49However, to analyze “near-field scanning optical microscopy” we need the exact fields.
50Actually we need its quantum-mechanical generalization for that purpose.
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where Ë is the angle between the observer’s position r̂ and the direction n̂ of the dipole
moment. This is the dipole doughnut pattern.51

The energy flux per solid angle is then dP/d� = r2r̂ · S̨ , and the total power sent
out to infinity is

P
[ED] = µ0

6fic

.. d2

dt2 D̨E|ret
..2

. (D.67)

It’s often appropriate to assume the source is harmonic at a single frequency; for
example, if it points along a constant direction n̂ then D̨E(t) = 1

2 [n̂D̄Ee≠iÊt + c.c.].
Here |D̄E| is the peak value of the magnitude of the electric dipole moment vector. In
this situation, Equation D.65 agrees with the long-distance limit of the exact spherical
wave solution, but now we can connect the outgoing wave to its cause (the oscillating
dipole):

˛̨
› = µ0

4fi
(≠iÊ)D̄En̂.

We get another famous formula when we specialize the power-output formula
(Equation D.67) to the harmonic case: Then the time average is ÈÎD̨EÎ2Í = |D̄E|2/2,
and

ÈP[ED]Í = µ0
12fic

Ê4|D̄E|2.

More complicated sources can be obtained with a more complicated constant
vector ˛̄

DE. For example, a rotating dipole has a complex ˛̄
DE.

D.42 HIGHER MULTIPOLE RADIATION

If a time-varying source has electric dipole moment always equal to zero (or constant
in time), then its radiation in the ED approximation will be zero. Nevertheless, it may
still radiate. The next terms in the multipole expansion are called magnetic dipole
(MD) and electric quadrupole (EQ), because they involve time derivatives of those
quantities (Equations D.8, D.22). The MD term is of particular interest:

B̨ [MD](t, r̨ ) = µ0
4fic2r

r̂ ◊
3

r̂ ◊ d2

dt2 D̨M|ret

4
Ę [MD](t, r̨ ) = µ0

4ficr
r̂ ◊ d2

dt2 D̨M|ret.

These formulas look like the ED formulas with Ę and cB̨ exchanged, so we can
recycle our e�ort and just copy down the formula for energy flux per solid angle
(Equations D.66 and D.67): for linear polarization,

dP[MD]/d� = µ0
16fi2c3 sin2 Ë

=.. d2

dt2 D̨M|ret
..2

>
or total power P

[MD] = µ0
6fic3

=.. d2

dt2 D̨M|ret
..2

>
.

D.43

[Not covered this year.]

51So called because a polar plot of the surface r = sin2
◊ looks like a doughnut. (Maybe it looks more

like a bialy, or a red blood cell.)
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D.44

D.45

[Not covered this year.]

D.46

[Not covered this year.]

D.47

D.47.1 Isotropic, Linear Media
We discussed an approximation in which
a. We assume that the medium consists of polarizable objects (or permanently

polarized, unoriented objects which can become oriented by an external field).
We only consider the dipole fields created by those objects.

b. We assume that external fields vary over length scales much longer than the
spacing between the dipoles. That is, we suppose them to be finely enough
divided (compared to the length scales of the disturbances we’re studying) that
they can be regarded as a continuously varying distribution of dipole moment
density.52

Let P̨ denote the dipole moment density. If P̨ is nonuniform, it gives rise to a
bound charge density flq,b = ≠Ǫ̀ · P̨ . At a boundary between dielectric and vacuum,
we get a bound surface charge density ‡b = n̂ · P̨ , where n̂ is the normal directed
outward (toward the vacuum).

If the polarization is time-dependent, then the bound charge density will also give
rise to a bound current, via the continuity equation; see Section D.47.2.

The “electric displacement” is defined by D̨ = ‘0Ę + P̨ . (We’ll just call it the
D̨ field.) With these definitions, the electric Gauss law takes a simple form:

Ǫ̀ · D̨ = flq,f . (D.68)

The only source appearing explicitly in this formula is the free charge density.
Many media are approximately linear:53 That is, P̨ is a linear function of Ę ,

described by the dielectric susceptibility ¡
‰e via P̨ = ‘0

¡
‰e · Ę . For simplicity,

52Or equivalently, we average the e�ects of finite-size molecules over a length scale smaller than the
one of interest, but much bigger than the molecular spacing. The quantities Ę , P̨ , B̨ , M̨ below are
all averages of this sort.
53Exceptions include piezoelectric crystals under stress, or ferroelectrics (“electrets”), which have
nonzero P̨ in zero applied field. Also, any medium will be linear only in some regime of weak enough
applied fields. For example, the orientational ordering of water molecules must eventually saturate
(100% alignment) at high applied fields.
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assume the medium is isotropic (‰e is a scalar constant). Then we can define the
permittivity ‘ = ‘0(1 + ‰e), so:

D̨ = ‘Ę constitutive relation for homogeneous, linear, isotropic, lossless, nonchiral
dielectric

(D.69)
Note that in general ‘ is a function of frequency: ‘(Ê).

Thus, we can forget about the medium if it’s linear; the Gauss law Equation D.68
retains its vacuum form, but with a modified value of the permittivity. All we need to
keep track of is the free charge density. And the Faraday law, which has no sources
anyway, remains completely unchanged.

More general forms of the constitutive relation include dissipation (complex ‘),
anisotropy (¡

‘ with tensor structure), and chirality (see later).

D.47.2 Magnetic materials
In an approximation scheme similar to Section D.47.1, let M̨ denote the magnetic
dipole density created by the motions of bound charges on individual polarizable
objects. The “magnetic field intensity” is then defined by H̨ = µ0

≠1B̨ ≠ M̨ . (We’ll
just call it the H̨ field.)

If M̨ is nonuniform, it gives rise to a contribution to the bound charge flux (in
addition to ˆP̨ /ˆt) equal to Ǫ̀ ◊ M̨ . A special case is the boundary between medium
and vacuum; here we get a bound surface current density K̨b = M̨ ◊ n̂, where n̂
is the normal directed outward (toward the vacuum).

Many media are linear54; that is M̨ is a linear function of B̨ , described by the
magnetic susceptibility ‰m via M̨ = µ0

≠1‰̃mB̨. Then we can define the perme-
ability µ = µ0/(1 ≠ ‰̃m), so

H̨ = µ≠1B̨ constitutive relation for homogeneous, linear, isotropic, lossless nonchi-
ral magnetic material

(D.70)
Note that in general µ is a function of frequency: µ(Ê).

More general forms of the constitutive relation include dissipation (complex µ),
anisotropy (¡

µ with tensor structure), and chirality (see later).

D.47.3 Maxwell equations in media
We wish to eliminate explicit mention of the bound charges and currents. The re-
maining charges and currents are called “free”: flq,f , j̨f . For example, excess (static)
charges, which macroscopically violate charge neutrality, are considered free, as are
currents that transport net charge over macroscopic lengths. Using the above formulas

54Exceptions include ferromagnets, which have nonzero M̨ at zero applied field. Also, again any
medium is only linear for su�ciently weak applied fields. Much of optics deals with media in their
linear regime, but there is also a big field of “nonlinear optics.”
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for bound charge and charge flux, we get

Ǫ̀ · D̨ = flq,f Gauss (D.71)
Ǫ̀ · B̨ = 0 Gauss (D.72)

Ǫ̀ ◊ Ę + ˆB̨

ˆt
= 0 Faraday (D.73)

Ǫ̀ ◊ H̨ ≠ ˆD̨

ˆt
= j̨f . Ampère (D.74)

These equations are general. For the special case of linear media, they can be combined
with Equations D.69–D.70, to form a closed system that can be solved to give all
fields in terms of free charges and currents. Then just as we saw for the first Gauss
law, we can forget about the medium, incorporating all bound currents and charges
into the material parameters ‘ and µ; for example, all we see in Equation D.74 is the
free charge flux.

The boundary conditions at the interface between media can also be expressed
entirely in terms of free surface charge density and current:

�(D‹) = ‡f ; �(B‹) = 0; �(ĘÎ) = 0; �(H̨Î) = j̨ (2D)
f ◊ n̂.

Here �D‹ = (D̨ [2]≠D̨ [1])·n̂, where n̂ is the unit normal vector pointing from medium
1 to medium 2; similarly for �H̨Î.

D.47.4 Cross-susceptibility
The constitutive relations Equations D.69 and D.70 are not the most general possible,
even if we restrict to homogeneous, linear, isotropic, lossless materials. We may in
addition have cross-susceptibility:

C
P̨

M̌

D
=

5
‘0‰e ≠÷ ˆ

ˆt

÷Õ ˆ

ˆt
(µ0c2)≠1‰̃m

6 C
Ę

B̌

D
. (D.75)

Recall M̌ = M̨ /c and B̌ = cB̨ . These definitions simplify our formulas by giving all
the entries in the matrix the same dimensions.

Generally the constants ‰e, ÷, ÷Õ, and ‰̃m are tensors, but in isotropic solution they
get replaced by their averages over orientation, which are all 3-scalars. I argued from
a macroscopic model (a helical wire) that ÷ and ÷Õ have the same sign, which reflects
the geometry (handedness) of the polarizable objects constituting the medium.55

Replacing the helices by their mirror images changes the signs of both ÷ and ÷Õ.
As mentioned before, ‰e and ‰̃m may be frequency-dependent. Similarly, for

disturbances at a specific frequency Ê the cross-terms may be functions of frequency.
(By time-reversal invariance they must be odd functions, so these terms vanish at zero
frequency.)

D.47.4.1 For theory enthusiasts only Equation D.75 has not been written in a manifestly
Lorentz-invariant way: It involves a 6 ◊ 6 matrix of susceptibilities, which is not obviously a

55In fact, ÷ = ÷
Õ by Onsager reciprocity.
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Lorentz tensor. But in fact, we can define a “response” tensor as

R
µ‹ =

S

WWU

0 P̨x P̨y P̨z

≠P̨x 0 ≠M̌z M̌y

≠P̨y M̌z 0 ≠M̌x

≠P̨z ≠M̌y M̌x 0

T

XXV

µ‹

(D.76)

where M̌i = c
≠1

M̨i. This big formula can be summarized compactly by R
0i = ≠R

i0 = P̨i

and R
ij = ≠ÁijkM̨k/c.

The above definitions let us formulate four of the Maxwell’s equations as

ˆ µH
‹µ = c

≠1
J

‹
f where H

‹µ = c‘0F
‹µ + R

‹µ
.

The four homogeneous equations are unchanged from Section D.32.4.
Linear response means that R is a linear function of F :

R
µ‹ = K

µ‹
⁄‡F

⁄‡
,

where the susceptibility operator K is antisymmetric on its first two indices, and also on
the last two.

Even an isotropic medium breaks Lorentz symmetry—unlike the vacuum, it can have
states of rigid motion. But isotropy does imply that K may only be constructed from one
extrinsic quantity, the 4-velocity of the medium U . Apart from that, it can only involve
invariant tensors and scalar constants. Playing around shows that the only possible forms
are dictated by the symmetries:

K
µ‹

⁄‡ =–

2
!
”

µ
⁄”

‹
‡ ≠ ”

‹
⁄”

µ
‡

"
+ ·

2
!
U

µ
U ‡”

‹
⁄ ≠ U

‹
U ‡”

µ
⁄ ≠ U

µ
U ⁄”

‹
‡ + U

‹
U ⁄”

µ
‡

"

+ “

2
!
Á

µ‹
·⁄U

·
U ‡ ≠ Á

µ‹
·‡U

·
U ⁄ ≠ Á

µ
⁄‡· U

·
U

‹ + Á
‹

⁄‡· U
·
U

µ
"
U

fl
ˆ fl. (D.77)

Here the 4-dimensional Levi-Civita tensor has Á 0123 = +1 etc. You can specialize this formula
to a coordinate system in which the medium is at rest, and find that the constants –, —, and
“ can be chosen so that it reproduces Equation D.75. Then substituting arbitrary 4-velocity
at once tells us the appropriate form of the susceptibility tensor in a moving medium.

Every term in Equation D.77 must be time-reversal invariant, because a static collection
of molecules does not break time-reversal invariance.56 (This is why the “ term needed to
have a derivative.) The – and — terms also are invariant to spatial inversions—but not the
“ term. K must also be a symmetric operator in the sense that exchanging µ‹ with ⁄‡, and
ˆ æ ≠ˆ , must leave it unchanged. This fixes the above form as the complete list of allowed
terms, to leading order in powers of derivatives.

D.47.5 Waves in media
In a simple, nonchiral medium the Maxwell equations with no free charges or currents
have plane wave solutions with dispersion relation |̨k|2 = Ê2µ‘. Note that although the
right hand side of this formula is positive, still one component of k̨ could be imaginary
(as long as the other two components are real and large enough). This could occur,
for example, at the interface between media, giving rise to total internal reflection.

Another interesting situation is if the free charge flux is not zero, but instead
satisfies Ohm’s law. Then we get wave propagation with attenuation.

56Ferromagnetism was not allowed.
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D.47.6 Optical activity
We found that when linearly polarized light passes through an isotropic but chiral
medium, its polarization vector in general rotates by an amount proportional to the
path length in the medium.57

When circularly polarized light passes through such a medium, it emerges with
the same circular polarization. However, the two helicity states propagate at di�erent
phase velocities. That is, they have di�erent dispersion relations:

Ê2 = k2

µ(‘ ± 2÷ck)

Equivalently, dividing the phase velocity by c yields two di�erent refractive indices.
This phenomenon is called optical activity (or “optical rotatory power” or “circular
birefringence”).

A distinct but related phenomenon arises when we allow for the dissipation (energy
conversion to heat) present in real materials: An isotropic chiral material can display
circular dichroism, that is, it can have di�erent energy absorption coe�cients for
the two circular polarizations of light.

D.48 ANISOTROPIC MEDIA

D.48.1 Ordinary birefringence
A homogeneous, lossless, achiral, but anisotropic medium, in its linear regime, is
characterized by susceptibility tensors. Let’s suppose it’s nonmagnetic, µ = µ0. The
electric susceptibility tensor is a symmetric, rank-2 3-tensor, so (like the moment
of inertia) it has three real, orthogonal, eigenvectors (whose directions are called
principal directions). Such a medium has simple plane wave solutions propagating
along one of the three principal directions and polarized along another one. But
the two possible polarizations of such a wave travel with di�erent phase velocities,
a phenomenon called (ordinary) birefringence.58 Similarly, a lossy medium may
have di�erent absorption coe�cients in each of two principal directions, leading to
(ordinary) dichroism.59

57Sorry, but “linear” is used in two di�erent senses: “linear polarization” means that Ę oscillates
in a straight line, as opposed to circular or elliptical polarization. “Linear medium” means that the
response of the medium is approximately linear in the strength of the applied fields.
58As opposed to circular birefringence. Most people drop the qualifier “ordinary.”
59As opposed to circular dichroism. Most people drop the qualifier “ordinary.”
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Bold references indicate the main or defining instance of a key term. Symbol names and mathematical notation
are defined in Appendix B.

aberration
spherical, 229, 236, 240

absolute temperature scale, 554
absolute value of, 245
achiral object, 502
action, 414
action functional, 414
action potential, 124, 135

mechanical analog, 132
speed, 135

æther, 288
ampere (unit), 555
ampere (unit), 179
Ampère’s law, 542
angle, 557
Ångstrom (unit), 556
angular area, 8
angular frequency, 203, 244
angular velocity, 141
anion, 101
antenna

dipole, electric, 441
arbitrary units, 557
arclength, 240, 241
area, angular, 557
Avogadro number, 567
axon, 85, 123

giant, 136
axoplasm, 65

back-EMF, 199
beauty, 359
biaxial symmetry, 39, 78
bilayer membrane, 62
birefringence, 487, 501

circular, see circular birefringence
ordinary, 514

Birkho�’s theorem, 34
Bjerrum length, 105
Boltzmann constant, 567
boost

galilean, 276
Born self-energy, 62, 100
bremsstrahlung, 435

cable equation
linear, 123
nonlinear, 134, 135

capacitance, 55, 107
capacitor, 107
cation, 101
CD, see circular dichroism
Celsius temperature scale, 554
charge

density, 2
bound, 497, 497, 603

surface, 103
surface, bound, 57, 603
surface, free, 57

density, surface
bound, 496

flux
4-vector, 369
bound, 497, 497, 498

charge flux, 2
charge renormalization, 113
chiral medium, see medium
chirality, 502
circular birefringence, 502, 505–506
circular dichroism, 507
classical electron radius, 472
Clausius–Mossotti formula, 61, 573
closed di�erential form, 577
clumping catastrophe, 102
CMBR, see cosmic microwave background

radiation
coherent states, 541
coion, 104, 112
colloidal suspension, 102
complex amplitude, 206
complex conjugate, 245
complex numbers, 245
compliance, 142
components of a tensor, 149
Compton scattering, 329
Compton wavelength, 475
conductance, 84

resting, 133
conductivity, 83

electrical, 100, 121
constitutive relation, 58

electric, 500
magnetic, 500

continuity equation, 82, 83, 166, 168, 201,
260, 286, 369, 371, 382–385, 393,
426, 451, 497, 585, 595, 597, 598,
603, 608

charge, 417
energy of a spring, 286
momentum of a spring, 286

coordinate system
cartesian, 150
curvilinear, 47
separable, see separable coordinate

system
cosmic microwave background radiation,

280, 402, 473
dipole anisotropy, 315

Coulomb
attraction, 543
gauge, 536, 543

coulomb (unit), 178, 554, 555

Coulomb gauge, 406, 578
Coulomb gauge condition, see gauge
counterion, 101–111, 116, 117

cloud, 104
release, 111

counterion release, 111
covector, 4D, 362
creation and destruction operators, 541,

563
cross-section

scattering
di�erential, 471
Thomson, 472

cross-susceptibilities, 503
curl, 7

-free vector field, 8
current

density, 542, 543
surface, see flux, charge, 2D

density (term not used in this book), see
flux

electric, 555
through ion channel, 125

curvature, 233
curve in plane, 68
surface

Gauss, 68, 72, 73, 77
mean, 68, 72, 72–74, 76, 79, 80
principal, 72

cuto�, 214

d’Alembert operator, see wave operator
dalembertian, see wave operator
debye (unit), 180
Debye screening length, 112, 113
defocused orientation imaging, 535, 545
degree (temperature unit), 554
delta function, 9, 14, see Dirac delta

function
dendrites, 85
depletion layer, 25
depolarization, 86
deRham cohomology, 172
dialectical materialism, 496
diamagnetism, 191
dielectric, 56
dielectric constant, 58
dielectric susceptibility, see susceptibility
di�erential forms, 172, 577
di�raction pattern, 406
di�use charge layer, 101, 108
di�usion equation, 134
dimensional analysis, 554, 555–557
dimensionless quantities, 554, 557
dimensions, 555
dipole
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anisotropy of CMBR, 315
approximation

electric, 544
doughnut, 405, 545
electric

moment, 544, 545
pure, 572

radiation pattern, 535, 545, see dipole
doughnut

transition, 544, 545
Dirac equation, 379
dispersion, 501, 567
dispersion interaction, 38
dispersion relation, 207, 210, 214
displacement, 58
displacement, electric, 497
dissociation, 117
divergence operator, 4
divergence theorem, 7, 16, 48, 416
DNA

dissociation, 101
Z form, 507

Doppler shift
longitudinal, 312
transverse, 312

dot product, 4, 153
drag force, 142
dyad product, 141, 141, 558, 575

eikonal
equation

in medium, 233
vacuum, 232

function, 231
eikonal trial solution, 231
Einstein ring, 242
Einstein thinking, 325, 328, 346, 352, 374,

379, 382, 385, 421, 423, 424, 510,
599

Einstein, Albert, 17
electret, 500
electric

charge, 555
field, 535, 542

electric double layer, 25, 101
electrocardiogram, 88
electrodynamics

classical, 545
quantum, 538–546

electroencephalography, 87
electrolyte, 108, 113
electromotive force, 198
electron, 542, 543

charge, 567
mass, 567
spin, 546
volt (unit), 556

electrophoretic flux, 97
electrostatic potential, 104
electrostatics, 542
EMF, 198
enantiomers, 502, 506, 507, 510
endoscopy, 230
energy

alternative units, 556
dimensions, 555
particle

newtonian, 325
relativistic, 327

photon, 281, 540
potential

of capacitor, 107

electrostatic, 100, 114
solar, 235
thermal, room temperature, 567

energy-momentum flux tensor, 383
entropic force, 114
entropy

counterions, 101, 104, 107, 110, 111
erg (unit), 556
esu (unit), 182
event, 273
exact di�erential form, 577
exterior derivative, 577
eye

fish, 240

Fahrenheit temperature scale, 554
far fields, 263
far-field approximation, 437
farad (unit), 180
Faraday tensor, see tensor, 4D

plane wave, 398
Faraday, Michael, 198
feedback, 131, 133
ferroelectric, 57
ferromagnetism, 191
Fick’s law, 97
field

electric, 2
intensity, 2

magnetic, 2
field lines, 393
field point, 25
field quantization, 535–546
first fundamental form, see tensor, 2D

metric
fixed point, 134
flagellum

bacterial, 142
flux, 83

1D, 81
charge, 81, 82

2D, 170
4D, free, 510
surface (bound), 498

electrophoretic, 97
focus, 229, 229, 236
forbidden transition, 545
form, di�erential, 377
forms, p, see di�erential forms
Foucault pendulum, 320
frame of reference, 18, see coordinate

system on spacetime
Franklin, Benjamin, 74, 281
free energy

counterions, 107, 108, 111, 114–115
frequency, 203
friction

coe�cient, viscous, 97

galilean boost, see boost
galilean invariance„ 273
gauge choice

Coulomb, 165, 166, 167, 208–210, 260,
261, 397, 425, 536, 578, 581, 583,
599

gauge condition
Lorenz, see Lorenz gauge

gauge fixing, 165
gauge invariance, 164, 370, 578
gauge transformation, 164, 578
gauss (unit), 181
Gauss Law

at a surface, 103
Gauss law, 103, 105, 106

electric, 57, 103, 542
in bulk, 103

gaussian units, 180–182
general relativity, xxxvi, 49, 76, 292, 335,

342, 357, 359, 362, 381, 551
generator

rotation, 446
generator of rotation, 37
Golden Rule, 544, 545
Gouy–Chapman layer, 107, 108
gradient-index (GRIN) lens, 240
gravitation, 22

force due to, 97
potential, see potential

Green function, 17
causal, 425
Laplace operator, 25
laplace operator, 261
retarded, 425

group, 337, 342
galilean, 276, 277

Hamiltonian operator, 538, 539, 543, 562
harmonic oscillator, 537–539
Heaviside, Oliver, xxxi, 199, 200, 202, 385,

524, 620
helicity

negative, 211
positive, 211

helicity basis, 211, 505
henry (unit), 180
hertz (unit), 556
Hodge dual, 577
Hodgkin, Alan, 131
homonuclear molecule, 442
Huxley, Andrew, 131

index
dummy, 7
loose, 7

index lowering, 362
index of refraction, 227, 567

e�ective gravitational, 237, 241
graded, 236, 240

index raising, 362
indistinguishable particles, 541
induced dipole, 38
induction

magnetic, 2
gaussian units, 569

inductor, 213
inertial coordinate system

Einstein (E-), 308
galilean (G-), 275

inertial frame
Einstein (E-), 308, 310, 312, 314, 315,

318, 322, 323, 325, 329, 330, 336,
341, 343, 349, 363, 367, 368, 421,
457, 562–565, 589, 592–596, 599

galilean (G-), 275, 308, 421, 563, 564
integrability lemma, 23
interference, 249
invariance, 274
invariant inner product, 344
invariant interval, 308, 317, 326, 343

(1+1)D, 308
(3+1)D, 310

ion, 97
ion channel, 63

voltage-gated, 132
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ion channels, 86, 125
isotropic medium, see medium

joule (unit), 555
Joule heating, see ohmic heating

Keesom interaction, 38
kelvin (unit), 556
Kelvin temperature scale, 554
kink, 132
Kirchho� laws, 121
Kronecker symbol, 7

lagrangian density, 414, 414–416, 418, 419
Laplace equation, 22, 570
Laplace operator, see laplacian
laplacian, 4, 25, 42, 47–49, 51–53, 89, 90,

166, 261, 308, 411, 558, 572
laser, 542, 546
law of refraction

generalized, 234
Legendre

equation, 50, 75
function, 80
function, fractional order, 75
polynomial, 75

Levi–Civita symbol
3D, 6

light
speed of, 281, 567
unpolarized, 258

light-cone coordinates, 317
lightlike separation, 344, 344, 422–424,

590, 591
linear cable equation, 122
liter (unit), 556
localization microscopy, 546
London force, 38
Lorentz boost, 307
Lorentz force law, 3, 569
Lorentz group, 300, 311
Lorentz transformation

provisional, 297
Lorenz gauge, 397, 397, 398, 401, 402, 404,

406, 407, 410, 412, 423, 425, 426,
429, 437, 454, 455, 599–601

lowering operator, 539, 540

macroion, 101–102
magnetar, 216
magnetic field, 535

intensity (H), 498
magnetic flux, 197
magnetic susceptibility, see susceptibility
mass

relativistic (deprecated term), 326
rest (deprecated term), 326

mass defect, 328
matrix

orthogonal, 150, 337
rotation, 72

Maxwell’s equations, 536, 537, 543
mean

rate, 545
mean-field approximation, 104, 105
medium

chiral, 502
isotropic, 500

metric, 342
mho (unit), 180
mirage, 235
molar (unit), 556

mole (unit), 556
moment

dipole, 571
electric

dipole, induced, 143
magnetic dipole

tensor form, see tensor
vector form, 188, 579

monopole, 571
multipole, 571
quadrupole, 571

moment of inertia tensor, 141
moments

seemultipole moments, 623
zeroth and first, 32

momentum
4D, 345
electromagnetic, 537, 539, 563
particle

newtonian, 324
relativistic, 326

monochromatic light, 256
monovalent ion, 104
Mössbauer e�ect, 332
multipole approximation

radiation, 438
ED (electric dipole), 438, 440, 441,

443, 444, 452
EQ (electric quadrupole), 451
MD (magnetic dipole), 450, 451

multipole moments, 571
electric dipole, 31
electric monopole, 31
electric quadrupole, 31

multipole potentials, 571

Nernst–Planck formula, 98, 99
Nernst potential, 125
Nernst relation, 98, 99
neuron, 85
Newton

constant, 567
Newton, Isaac, 281
newtonian potential, 14
Noether theorem, 414, 417
nonchiral object, see achiral
nonlinear optics, 500
normal coordinates, 72
normal vector, 7
normalization

of a vector, 4
null

experiment, 300, 302, 305
separation, 344, 590, 592, 600
wavevector, 398, 599

O(3) (group), 337, 340, 510, 584, 588
O(3,1) (Lorentz group), 364, 378, 590
observer, 18, see coordinate system on

spacetime
occupation numbers, 540
oersted (unit), 181
ohm (unit), 84, 180, 556
Ohm’s law, see ohmic material
ohmic

heating, 84
hypothesis (neuron), 125, 129, 131
material, 83, 83, 112, 143, 466, 606

one-shot action potential model, 132–136
optical activity, see circular birefringence
optical rotatory power, 505, see circular

birefringence

optical tweezers, 38, 228
osmotic pressure, 108
outer product, see dyad product

p-forms, 577
paramagnetism, 191
passive-spread solution, 123
patch-clamp, 91
period, 204
permeability

magnetic, 500
vacuum, 2, 178

permeability of vacuum, 567
permittivity, 58, 500

vacuum, 2, 178
permittivity of vacuum, 567
phosphorescence, 546
photon

ground state, 540
indistinguishability of, 541
momentum, 540

photonic bandgap materials, 527
piezoelectricity, 57, 500
Planck

constant, 567
plane wave, 203
plasma membrane, 91
Poincaré lemma, 164
Poincaré sphere, 257
point dipole, 35
Poisson equation, 22, 105, 570
Poisson–Boltzmann equation, 105, 107,

109, 112–114, 117
boundary condition, 106, 107

polarizability
anisotropic, 501
bulk, 57
molecular, 38

polarizable medium, 572
polarization

circular, 211
elliptical, 211
of light, 536, 540, 542, 544, 545

basis vectors, 536, 564
linear, 210
magnetic, 191
partial, degree, 258

polarization vector, 210
polaroid filter, 516
positron emission tomography, 24
potential

4D, 370
electric, 535, 542, 543, 556, 570
electrostatic, 22
multipole, 571
newtonian (gravitational), 14

power, 555
Poynting

theorem, 385, 598
vector, 387, 451, 461, 525, 532, 598, 601,

608
Poynting vector, 537
pressure, 143

radiation, 220, 224, 387
isotropic, 399

Principle of Relativity:, 272
probability

density function, 535, 545
probability distribution

Boltzmann
and Nernst relation, 99
and Poisson equation, 104, 105, 112
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product
dyad, 141, see dyad product
tensor, see tensor product

propagator, see Green function
proper time, 343
pseudotensor, 152
pure dipole, 35

quadrupole
magnetic, 189

racemic mixture, 507
radian (unit), 557
radiation

anapole, 452
rainbow, 254
raising operator, 540
rank

4-tensor, 353
rapidity parameter, 309
ray

equation, 234, 240, 241
of light, 229, 255

ray of light, 231
ray optics, 232
Rayleigh cross-section, 473
real part, 245
refraction

law of, 229, 240, 241
Relativity Strategy, 278, 298, 300, 311, 314
residue, 102
resistance, 84

electrical, 100
resistivity, 84
response function, 57, 500
rest frame, 314
retarded time, 262
rotation matrix, 37

scalar
3D, 337
4D (4-scalar), 343, 351

scalar product
3D, 4

second fundamental form, see tensor, 2D
curvature

selection rule, 546
self-inductance, 197
separable coordinate system, 47
short circuit, 84
siemens (unit), 84, 121, 180
simultaneity, relativity of, 422
SL(2,C) (group), 378, 379
SO(3) (group), 337, 377–379, 488, 510, 588
solenoid, 196
solid angle, 8
soliton, 138
source point, 24
space constant, of axon, 122
spacelike separation, 344, 422, 424, 590
spacetime, 273
spherical aberration, 229
spherical harmonics, 39
spherical wave, 404
Spin(3) (group), 378
Spin(3,1) (group), 378, 596
spinor, 141
spring constant tensor, 142

standard deviation, also called
root-mean-square deviation
(RMSD)

relative (RSD), 542
static system, 165
stationarity, 165
stationary-phase

path, 240, 241
steady state, 133
steradian (unit), 557
stereospecific binding, 102
Stokes parameters, 257
Stokes Theorem, 7
streamline, 230
stress tensor, 143
stress-energy tensor, 383
SU(2) (group), 359, 378, 588
SU(3) (group), 359
SU(5) (group), 550
subgroup, 306
summation convention, 7
surface attraction, electrostatic, 111
surface repulsion, electrostatic, 108
susceptibility

4-tensor operator, 510
dielectric, 57

susceptibility, dielectric, 500
susceptibility, magnetic, 500
symmetry, 273

Taylor cone, 75
Taylor’s theorem, 556
tension

interfacial or surface, 67, 68, 70, 70, 71,
73, 75, 80

line, 70, 70, 71
tensor

antisymmetric, 575
4D, 330, 351, 353, 363

Faraday, 353
product, 141, 378, 379, 575
Riemann, 77
symmetric, 142, 145, 575
3D, 140, 336

compliance, 142
Levi-Civita, 145
magnetic dipole moment, 187, 579
metric, 143
mobility, 143, see mobility tensor
moment of inertia, 141, see moment

of inertia tensor
polarizability, 143, see polarizability

tensor
rank 2, 141, 338
rank 3, 145
spring constant, 142, see spring

constant tensor
stress, see stress tensor
totally antisymmetric, 145
viscous drag, 142, see viscous drag

tensor
2D, 140

curvature, 76, 78
metric, 78

Tensor Principle, 359
3D, 340
4D, 351

tesla (unit), 180

test body, 3, 570
threshold stimulus, 134, 136
time

proper, 326
retarded, 439

time constant, of axon, 122
timelike separation, 344, 422, 590
TIR, see total internal reflection
TIRF microscopy, 230
total internal reflection, 227, 229
trace, 575
trajectory, 273
transfer matrix, 529
transformation

active, 273
galilean, 276
Lorentz, see Lorentz transformation
passive, 274

traveling wave, 123, 136
twinlead cable, 56

uncertainty relation, 545
uniaxial symmetry, 39, 78
uniform transparent medium, 240
units, 554–557

base, 176, 554
Système Internationale (SI), 554

vacuum state, 541
van der Waals, 38
vector

3D, 4, 336
4D, 327

null, see null
4D (4-vector), 342, 351

vector potential, 535, 536, 545
velocity

4D, 344
velocity addition

galilean, 276
vesicle, 108
viscous drag tensor, 142
viscous stresses, 143
volt (unit), 180
voltage-gating hypothesis, 132, 134, 136

simplified, 131

watt (unit), 555
wave equation, 283

inhomogeneous, 260
wave operator, 261, 261, 317, 363, 427,

558, 561, 591
wavelength, 204
wavenumber, 203, 244

spectroscopic (alternate definition not
used in this book), 203

wavevector, 536
4D, 345, 398

weak interaction, 318
weber (unit), 180
Weyl equation, 379

Young–Laplace formula, 73, 76, 80
Yukawa equation, 416

Zeeman
e�ect, 215, 454
experiment on light velocity, 300
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