
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Real-Time and Embedded Systems Lab (mLAB) School of Engineering and Applied Science

4-15-2019

Technical Report: Anytime Computation and Control for Technical Report: Anytime Computation and Control for

Autonomous Systems Autonomous Systems

Yash Vardhan Pant
University of Pennsylvania, yashpant@seas.upenn.edu

Houssam Abbas
Oregon State University, houssam.abbas@oregonstate.edu

Kartik Mohta
University of Pennsylvania, kmohta@seas.upenn.edu

Rhudii A. Quaye
University of Pennsylvania, quayerhu@seas.upenn.edu

Truong X. Nghiem
Northern Arizona University, truong.nghiem@nau.edu

See next page for additional authors

Follow this and additional works at: https://repository.upenn.edu/mlab_papers

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Yash Vardhan Pant, Houssam Abbas, Kartik Mohta, Rhudii A. Quaye, Truong X. Nghiem, Joseph Devietti,
and Rahul Mangharam, "Technical Report: Anytime Computation and Control for Autonomous Systems", .
April 2019.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mlab_papers/119
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/mlab_papers
https://repository.upenn.edu/seas
https://repository.upenn.edu/mlab_papers?utm_source=repository.upenn.edu%2Fmlab_papers%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fmlab_papers%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.upenn.edu%2Fmlab_papers%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/mlab_papers/119
mailto:repository@pobox.upenn.edu

Technical Report: Anytime Computation and Control for Autonomous Systems Technical Report: Anytime Computation and Control for Autonomous Systems

Abstract Abstract
The correct and timely completion of the sensing and action loop is of utmost importance in safety
critical autonomous systems. A crucial part of the performance of this feedback control loop are the
computation time and accuracy of the estimator which produces state estimates used by the controller.
These state estimators, especially those used for localization, often use computationally expensive
perception algorithms like visual object tracking. With on-board computers on autonomous robots being
computationally limited, the computation time of a perception-based estimation algorithm can at times
be high enough to result in poor control performance. In this work, we develop a framework for co-design
of anytime estimation and robust control algorithms while taking into account computation delays and
estimation inaccuracies. This is achieved by constructing a perception-based anytime estimator from an
off-the-shelf perception-based estimation algorithm, and in the process we obtain a trade-off curve for its
computation time versus estimation error. This information is used in the design of a robust predictive
control algorithm that at run-time decides a contract for the estimator, or the mode of operation of
estimator, in addition to trying to achieve its control objectives at a reduced computation energy cost. In
cases where the estimation delay can result in possibly degraded control performance, we provide an
optimal manner in which the controller can use this trade-off curve to reduce estimation delay at the cost
of higher inaccuracy, all the while guaranteeing that control objectives are robustly satisfied. Through
experiments on a hexrotor platform running a visual odometry algorithm for state estimation, we show
how our method results in upto a 10% improvement in control performance while saving 5-6% in
computation energy as compared to a method that does not leverage the co-design.

Keywords Keywords
Model Predictive Control, Perception, Co-design, Chance Constrained MPC

Disciplines Disciplines
Computer Engineering | Electrical and Computer Engineering

Author(s) Author(s)
Yash Vardhan Pant, Houssam Abbas, Kartik Mohta, Rhudii A. Quaye, Truong X. Nghiem, Joseph Devietti,
and Rahul Mangharam

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/mlab_papers/119

https://repository.upenn.edu/mlab_papers/119

Technical Report: Anytime Computation and
Control for Autonomous Systems

Yash Vardhan Pant∗, Houssam Abbas†, Kartik Mohta∗, Rhudii A. Quaye∗, Truong X. Nghiem‡,
Joseph Devietti§ and Rahul Mangharam∗§

∗Department of Electrical and Systems Engineering
University of Pennsylvania, Philadelphia, USA

Email: {yashpant, kmohta, quayerhu, rahulm}@seas.upenn.edu
† Electrical Engineering and Computer Science

Oregon State University, Corvallis, USA
Email: houssam.abbas@oregonstate.edu

‡ School of Informatics, Computing, and Cyber Systems
Northern Arizona University, Flagstaff, USA

Email: truong.nghiem@nau.edu
§Department of Computer Science

University of Pennsylvania, Philadelphia, USA
Email: devietti@cis.upenn.edu

Abstract—The correct and timely completion of the sensing and
action loop is of utmost importance in safety critical autonomous
systems. A crucial part of the performance of this feedback
control loop are the computation time and accuracy of the
estimator which produces state estimates used by the controller.
These state estimators, especially those used for localization,
often use computationally expensive perception algorithms like
visual object tracking. With on-board computers on autonomous
robots being computationally limited, the computation time of
a perception-based estimation algorithm can at times be high
enough to result in poor control performance. In this work,
we develop a framework for co-design of anytime estimation
and robust control algorithms while taking into account com-
putation delays and estimation inaccuracies. This is achieved
by constructing a perception-based anytime estimator from an
off-the-shelf perception-based estimation algorithm, and in the
process we obtain a trade-off curve for its computation time
versus estimation error. This information is used in the design of
a robust predictive control algorithm that at run-time decides a
contract for the estimator, or the mode of operation of estimator,
in addition to trying to achieve its control objectives at a
reduced computation energy cost. In cases where the estimation
delay can result in possibly degraded control performance, we
provide an optimal manner in which the controller can use this
trade-off curve to reduce estimation delay at the cost of higher
inaccuracy, all the while guaranteeing that control objectives are
robustly satisfied. Through experiments on a hexrotor platform
running a visual odometry algorithm for state estimation, we
show how our method results in upto a 10% improvement in
control performance while saving 5-6% in computation energy
as compared to a method that does not leverage the co-design.

This work was supported by the US Department of Transportation Univer-
sity Transportation Center (Mobility21).

This work was done when Houssam Abbas and Truong X. Nghiem were
at the University of Pennsylvania.

Perception-
based

Estimator

Controller

State
Estimate(Delay, Error)

Contract

Control Action
to Physical System

Measurement from Sensors

Physical System Estimation and Control

(e.g. Robot Position)

(e.g. Motor Speed)

(e.g. Autonomous Robot)

(e.g. Video Feed)

Fig. 1. Contract-driven controller and estimator. Add co-design here.

I. INTRODUCTION

The real-time control of many autonomous robots, e.g. self-
driving cars and Unmanned Aerial Systems (UASs), usually
includes closed loops between the controller that drives the
actuation, and the estimator that computes state estimates
which are used by the controller. Of particular importance in
this traditional feedback control architecture are: a) the delay
in the control action due to the time taken by estimator for
computing the state estimate and, b) the inaccuracy in the state
estimate. Either of these factors can result in control actions
that can drive the system into an unsafe state.

In most conventional feedback control designs, controllers
are tasked with realizing the functional goals of the system
under simplistic assumptions on the performance of the es-
timator, in particular, perfect state estimates and negligible
computation time. This design principle based on separation of

Fig. 2. Effect of delay, error values on control performance of a PID tracker.

concerns simplifies the control design process but often does
not accurately reflect real implementations. On the other hand,
most perception-based state estimation algorithms (e.g. SVO
[1] and ORB-SLAM [2]) do not take into account how their
output will be used to close the control loop. More specifically,
an estimator will more often than not run to completion: i.e.,
its termination criteria are designed to provide the best quality
output (estimate). This can result in large delays in the control
action, leading to degraded control performance. It can also
result in the computation platform consuming a significant
amount of energy, reducing the amount of time the system
can operate on a full charge. This is specially of concern in
mobile robotic systems like autonomous drones and cars, that
operate on batteries with limited capacity.

In this work we focus on these problems, that when the
real-time requirements on the closed-loop system become
more demanding, this disconnect between the estimator and
controller can lead to poor system performance. The following
example shows how this problem can manifest in even simple
settings.

Example 1. To illustrate the impact of estimation delay δ and
state estimation error ε on control performance, we show a
simple PID tracker controlling the motion of a point mass in
the (x, y) plane. The position of the point mass must follow
a reference constant trajectory, whose x dimension is shown
in Fig. 2 (the same plot can be obtained for the y position).
We simulate two cases of estimation (and therefore actuation)
delay and error, where a larger delay value δ implies a smaller
estimation error ε. As can be noted in Fig. 2, the effect of delay
can be non-negligible. In this example, it can be seen that the
increased delay causes the tracking performance to worsen.
Running an estimation task with a fixed smaller delay but
larger estimation error does not necessarily solve the problem
of degraded performance, as can be seen in Fig. 2. Therefore,
there is a need to rigorously quantify the trade-off between
computation time and estimation error, then exploit that trade-
off to achieve the best control performance under the problem
constraints. Rather than always running the estimation task

to completion, it is useful to have several delay/error run-time
modes for the estimator. These can then be used at run-time
to satisfy the control objectives. �

The goal of this paper is to develop a rigorous framework
for the co-design of the controller and estimation algorithms.
In this framework, the estimator has a range of computation
time/estimate quality operating modes, and in order to best
maintain control performance and reduce energy consumption,
the controller at run-time selects one of these modes for the
estimator to operate in. This is motivated by the following
observations:

1) The traditional engineering approach to account for the
estimator’s run-time is to gauge the Worst-Case Execution
Time (WCET) of the estimation task, and design the system to
meet deadlines under the WCET conditions. In practice how-
ever, the actual execution time of perception-based estimators
can be much less than the WCET and depends on the actual
data being processed. Hence, considering the WCET can
lead to a conservative design of the system. Additionally, the
classical timing analysis alone does not guarantee functional
correctness of the closed-loop system under control.

2) Moreover, in the context of closed loop control, we do not
always require the best quality state estimate: more often than
not, a lower quality estimate, computed using lesser energy
and time, is acceptable to achieve the control objectives.

3) In the case where obtaining a better quality state estimate
requires longer computation time, it can be detrimental to the
control performance to require a high quality state estimate
all the time. For example, when the on-board computer is
overloaded, there may be a need to spend less time computing
a state estimate so that not only the control action has
less delay, but also so that other processes can access the
computation resource as scheduled.

In this paper, we develop the observations above into a co-
design framework for a real-time control systems, where the
controller and estimator are interfaced via contracts. A con-
tract is an assurance requested by the controller, and provided
by the estimator, that the latter can give an estimate with a
certain accuracy ε, and within a predefined time deadline δ.
The computation time given to the estimator, as well as the
quality of the state estimate define the contract. This can be
interpreted as turning the estimator into a discretized version
of an anytime algorithm [3] where its computation can be
interrupted at runtime to get a state estimate, usually with a
trade-off between the computation time given to the algorithm
and the quality of output that it returns. Through this notion
of contracts, we show how the controller can vary the compu-
tation time of the estimation algorithm to maintain control
performance and to reduce energy consumption. The work
presented here is focused on estimation algorithms that rely on
computationally intensive Computer Vision (CV) algorithms in
order to get a state estimate of a dynamical system, e.g. those
in autonomous robot navigation with visual (camera, Lidar)
sensors. We refer to these as perception-based estimators.
Through experiments, we show that the computation time of

Fig. 3. Autonomous hexrotor with downward-facing camera flying over
synthetic features.

such algorithms can be significant (and much greater than that
of the control algorithm), resulting in an adverse impact on the
closed loop control performance.

The architecture for the co-design framework proposed in
this work is shown in Fig. 1. It resembles the conventional
closed loop control architecture involving the estimator, the
controller, and the system being controlled, but also incorpo-
rates the (delay, error) contract as an interface between the
controller and the estimation algorithm.

Summary of contributions. In this paper, we build upon
our results from [4] and present a framework for the co-design
of control and estimation algorithms for the real-time control
of dynamical systems. This approach consists of:

• a well-defined interface between control and estimation,
in the form of operating modes, or contracts, on the
accuracy and computation time of the estimator (Section
III),

• characterizing the estimator accuracy as either determin-
istic (worst-case) or stochastic through offline profiling
of the perception-based estimator (Section VII),

• a predictive control algorithm that can change the operat-
ing mode of the estimator at run-time to achieve control
objectives at a lower energy cost (Section IV), while
providing guarantees on satisfaction of constraints for
both deterministic (Section V) and probabilistic (Section
VI) characterizations of the estimation error, and,

• a straightforward, low-touch and low-effort approach to
design a contract-driven estimation algorithm starting
from an off-the-shelf, run-to-completion version of it
(Section VII).

• We demonstrate our method on an autonomous flying
robot (shown in Fig. 3) and show its performance and
energy gains over a classical controller (Section VIII).

Compared to our previous work [4], which only allows for
characterizing the contracts in terms of worst case estimation
error, in this work we extend the framework to also allow
for a probabilistic representation for estimation error. We also
provide guarantees on satisfaction of constraints and recursive
feasibility of the new control predictive algorithm resulting
from this probabilistic setup. In addition, we also extend the
experimental setup and incorporate a real-time implementation
of the new control algorithm and evaluate our approaches with

two sets of new experiments on a hex-rotor autonomous robot.

II. RELATED WORK

Algorithms, that can be interrupted at any point at run-
time and still return an acceptable solution, are called Anytime
Algorithms [3]. Such algorithms generally return solutions
with improving quality of output the longer they run for. A
subset of these are Contract Algorithms [5] which can be
interrupted only at a finite number of pre-agreed upon times. In
this paper we design a Contract-driven perception-based state
estimator, but significantly expand the notion of a contract to
now include the quality of the solution (estimation error in our
case) as well as the computation time.

Anytime algorithms have found particular importance in the
field of graph search [6], evaluation of belief networks [7] and
GPU architectures [8], [9]. With autonomous systems gaining
popularity, computationally overloaded systems with real-time
requirements are becoming the norm. This has generated
interest in the development of anytime algorithms in the field
of control theory, with Quevedo and Gupta [10], Bhattacharya
and Balas [11], and Fontanelli et al. [12] exploring this line
of research. Anytime algorithms have also found widespread
use in the field of motion planning [13], [14], [15], [16].

The work presented in this paper contrasts considerably with
these efforts as the assumption of anytime computation is not
on the controller or planning side but on the perception-based
state estimation component of the feedback control loop. The
loop is closed by the control algorithm presented here that
decides the contract for the anytime state estimator at run-time.
Also differing from the works discussed above, which require
instantaneous and perfect full state access for the controller,
our control algorithm takes into account the computation time
and the estimation error of the perception-based estimators
that are common in autonomous systems. The recent work of
Falanga et al. [17] also tackles the problem of co-designing the
perception and the control, but does so as a joint optimization
that takes into account both the perception and the control.
Our work differs from this significantly as we introduce the
notion of contracts to decouple the perception-based estima-
tor’s performance and the control optimization. Our method
also explicitly incorporates the timing and the estimation
performance of the perception-based estimator in the control
design, and can be used for the off-the-shelf perception-based
estimators (for an example, see section VII-C).

In the domain of real-time systems, Worst Case Analysis,
along with Logical Execution Time semantics are used in
[18] to imbue a controller with information of the timing
characteristics of the closed loop implementation. On the
other hand, our approach involves profiling the estimation
algorithm in a direct manner to get timing and estimation error
characteristics. While [18] involves formally verifying a given
controller, we design a control algorithm that is correct by
construction and takes advantage of delay/accuracy trade-offs
in real-time. In the context of autonomous multi-rotor UAVs,
the effect of increasing the computation time of task on the
overall performance of the system has been analyzed in [19] by

State
Estimate (Delay, Error)

Contract
Physical System

Control Action uu

Contract-based Estimator

Controller

xxx
x xx

x
xx

x x x x x

Sensor Measurement

�

" Delay-error Curve
for Estimator

Offline Profiling

Pixel Classifier

Perception Toolchain

Connected
Components

Shape Classifier

Delay-error Curve

Timing and Accuracy
of Execution Paths PC1 PC2 PC3

SC1 SC2

CC1 CC2

(�, ") (�0, "0)

Fig. 4. Contract-driven estimator and controller. With knowledge of the estimator’s performance through offline profiling, the controller both actuates the
dynamical system and sets contracts for the estimator at run-time in order to maximize control performance while guaranteeing that constraints on the system
are always satisfied.

using a resource allocation algorithm similar to QRAM [20].
Our approach contrasts with this as we focus on the execution
time of a particular task, the perception-based state estimator,
which directly impacts the closed loop control performance.
In addition to this, we also formulate a controller that provides
mathematical guarantees on the system’s performance.

Finally, in the area of computer architecture, approximate
computing approaches [21], [22], [23] have been explored to
get savings in time or energy through performing a com-
putation in an approximate manner, rather than precisely.
While anytime algorithms and approximate computing have a
common high-level goal, approximate computing methods are
run-to-completion and lack a feedback mechanism to permit
computation and resources to be balanced dynamically. It is
also worth noting that time and energy scale that our approach
deals with are much greater than those which concern approx-
imate computing.

III. CO-DESIGN OF ESTIMATION AND CONTROL

Conventional closed loop control systems are generally
designed in a manner where the controller is incognizant of the
implementation details of the state estimation module, while
the estimation module is designed independent of the require-
ments of the controller. For example, a feedback controller,
that gets state estimates from a camera based visual odometry
algorithm, might not be designed to take into account the non-
negligible time taken to process the video frames to get a state
estimate. We refer to this computation time as the estimation
delay. On the other hand, the design of most perception-based
estimators does not take into account the varying real-time
constraints that the controlled closed-loop system must satisfy.
Also of importance, especially in autonomous systems de-
ployed in the field, is the power consumed by the computation

platform which can have a significant impact on the duration
the system can operate between charging.

Taking these factors into account, we propose the co-design
of estimation and control to improve the closed loop perfor-
mance of real-time control on systems with computationally
and power limited platforms. This is done through a contract-
driven framework for both estimator and controller in which
the controller asks for a state estimate within a certain deadline
δ seconds, with an associated bound on the inaccuracy of the
estimation. This inaccuracy can either be in the form of a
hard bound ε, e.g. an infinite-norm bound on the estimation
error vector, or have a probabilistic characterization Σ, e.g.
the covariance of the estimation error vector, depending on
the application. For the sake of simplicity, we use ε for the
characterization of the estimation error in the following text.

In our framework, the tuple (δ, ε) forms the contract be-
tween controller and estimator. The estimator is tasked with
providing a state estimate that respects the contract. Aware of
these contracts, the controller can set the appropriate contract
in a time varying manner to adapt the closed-loop system
performance in real-time to take into account the control
requirements of the physical system. For example, it can
decide when an estimate is needed fast (but usually with
higher error), and when a more accurate estimate is needed
(but with greater delay). Note, the (δ, ε) contract can also be
thought of as setting an operating mode for the perception-
based estimator. A high-level view of this setup is shown in
Fig. 1.

In order to make sure that the contracts are such that the
estimator can indeed fulfill them, the estimator is profiled off-
line. To do this, the estimator’s internal parameters are varied,
and for each parameter setting, it is run on a profiling data set
(with a known ground-truth baseline). This results in a set of
(δ, ε) values, each one corresponding to a particular setting of

the parameters. These values can be plotted on a curve, which
we call the error-delay curve made up of discrete points, (δ, ε),
Examples of such a curve are shown in Figs. 7 and 9. Section
VII provides the detailed procedure for obtaining this curve
for a perception-based estimator.

During run-time execution, upon receiving a (δ, ε) contract
request from the controller, the estimator can adapt its pa-
rameter settings to fulfil the contract, i.e. to provide a state
estimate within the requested deadline δ that also respects the
requested error bound ε.

The controller, in the co-design framework, is designed with
the awareness of the error-delay curve of the estimation algo-
rithm, and requests contracts from that curve. The error-delay
curve, thus constitutes the interface between the controller and
state estimator. The controller leverages the flexible nature of
the estimation algorithm to maximize some measure of control
performance.

The closed loop architecture in a system with co-design
of the estimator and controller is shown in Fig. 4. In this
co-designed system, the controller can make the estimation
algorithm switch to lower or higher time (and/or energy)
consuming modes based on the control objective at the current
time step. The main components of the co-design architecture
presented in this paper are: a) a contract perception-based
estimator, b) a robust control algorithm that computes an input
to be sent to the physical system being controlled as well as
the contract for the estimator, and c) the interface between
them. More details on these components are in the following
sections.

IV. CONTROL WITH CONTRACT-DRIVEN ESTIMATION

In this section, we formalize how the error-delay curve
of the estimator can be utilized by the control algorithm
to optimize the control performance while minimizing the
power consumed by the computations for the perception-based
estimator.

A. System Model

In order to model the co-design process, consider the closed-
loop control of an autonomous hex-rotor robot (more details in
VIII), shown in Fig. 3. The state x of the hexrotor consists of
its 3D position and 3D velocity, while the input u to the robot
consists of the desired pitch and roll angles, and the desired
thrust. The hexrotor’s task is to fly a pre-defined trajectory
given by xref , where xref (t) gives the desired position at
each time t. The dynamics of the hexrotor, relating the time-
evolution of its state to the current state and input, can be
linearized around hover and approximated by the following
Linear Time-Invariant (LTI) ODE:

ẋ(t) = Acx(t) +Bcu(t) + wc(t) (1)

Here, the state vector x ∈ Rn is constrained to be within set
X ⊂ Rn, the control input u ∈ Rm is constrained within set
U ⊂ Rm, and wc ∈ Rn is the process noise assumed to lie in
a (bounded) set Wc ⊂ Rn. Ac ∈ Rn×n and Bc ∈ Rn×m are
matrices. LTI ODEs can model a wide range of systems, and

SENSE SENSE

t

SENSE

ACTUATE

ACTUATE ACTUATE

ts,k ts,k+1

t
k2

ts,k+δk+τk ts,k+1+δk+1+τk+1

Fig. 5. Time-triggered sensing and actuation. The figure shows the varying
execution time for the estimator and the blue area shows the execution time
for the controller, which is small.

our results apply to arbitrary LTI systems of the form given
in (1) with compact and convex constraint sets X,U and Wc.
The sets X and U are determined by the control designer or by
physical constraints on the system. For example, X captures
limits on the state to define the region which the hexrotor can
fly and the velocity limits on it. The set U restricts the inputs
to values that can be supported by the rotors, as well as within
which the linearized system provides a good approximation to
the true nonlinear dynamics.

B. Time-Triggered Sensing and Actuation

For feedback control of the hexrotor, the controller needs
to be aware of the hexrotor’s current position and speed, i.e.
requires an estimate of its current state x. This is done via
a perception-based estimator, that process video frames (at
a fixed rate) obtained through a downward facing camera
mounted on the hexrotor. The estimator detects and tracks
features across frames, and deduces its own position through
the relative motion of these features.

A new frame is captured by the camera every T > 0
seconds, which results in periodic measurements at instants
ts,k = kT , where k ∈ N. This measurement is used by the
estimator to compute the state estimate x̂k := x̂(ts,k) with
the desired accuracy εk determined by the contract set by the
controller in the previous time step. The controller then acts on
this state estimate to compute the control input uk as well as
decide on the perception-based estimator’s delay and accuracy
contract (δk+1, εk+1) for the next time step. The control is
then applied to the physical system according to (1) at instant
ta,k = ts,k + δk + τk, where τk is the time it takes to compute
the input. See Fig. 5 for the timing diagram of this process.

The controller has access to the delay-error curve, or oper-
ating modes ∆ of the estimator, and at each time step selects
contracts from that curve. This curve is obtained offline as
explained in Section III, and illustrated in Section VII. Note
that at each step k ≥ 0, the estimation accuracy εk, and hence
the delay δk are already decided in the previous time step and
known to the controller. For the very first step k = 0, the
initial estimation mode δ0, ε0, as well as the the initial control
input u−1 are chosen by the designer.

C. Control Performance

The controller has a goal that is twofold: it needs to ensure
that the reference trajectory is tracked as closely as possible,
and that the computation energy consumed to do so is mini-
mized. To capture this, we define two (stage) cost functions:
first, `(x, u) = (x − xref)TQ(x − xref) + uTRu defines a

weighted sum of the tracking error (first summand) and the
input power (second summand). Here, Q and R are positive
semidefinite and positive definite matrices respectively. Sec-
ond, π(δ) captures the average power consumed to perform
a perception-based estimation computation duration δ. This
power information is collected offline during the estimator
profiling phase.

The total cost function for the controller to minimize is J =∑M
k=0 (`(xk, uk) + απ(δk)), where M ≥ 0 is the duration of

the system’s operation.

D. Discretized Dynamics

Due to the time-triggered sensing and actuation of the
system (see Sec. IV-B), from time ts,k to ta,k, the previous
control input uk−1 is still being applied. Then at ta,k the new
control input uk is computed and applied by the controller (see
Fig. 5). For the sake of simplicity, we assume the computation
time for the controller (τ) is small and constant, and so
lump it with the time for the estimator (δ). This is justified
experimentally for our problem (in Sec.VIII) where the time
for the controller is negligible compared to the time taken by
the estimation algorithm. The discrete time dynamics for this
setup, with a periodic sensing time of T , are given by

xk+1 = Axk +B1(δk)uk−1 +B2(δk)uk + wk, k ≥ 0 (2)

in which

A = eAcT , wk =
∫ T

0
eAc(T−t)wc(ts,k + t)dt

B1(δ)=
∫ δ

0
eAc(T−t)Bcdt, B2(δ)=

∫ T
δ

eAc(T−t)Bcdt.

Here, wk is the process noise accumulated during the interval.
It is constrained to lie in a compact convex set W since
wc(t) lies in the compact convex set Wc and T is finite. As
explained above, both the current control uk and the previous
control uk−1 appear in (2). In addition, the input matrices
B1(δk) and B2(δk) depend on the delay δk. The estimation
accuracy εk, indirectly affects the dynamics via the control
input, which is computed using the state estimate x̂k. These
discrete time dynamics therefore show how the operation mode
of the estimator (δ, ε) affects the dynamics of the system.

V. ROBUST MODEL PREDICTIVE CONTROL SOLUTION

In this section we give an overview of the Robust Adaptive
Model Predictive Controller (RAMPC) that we use in the
contract-driven setup of Fig. 4. Here, we consider the esti-
mation errors to be bounded, and use these worst-case bounds
in the controller formulation. The mathematical details and
derivations are available in the appendix. Experiments confirm
that the following controller can be run in real-time, and its
computation uses a negligible amount of time relative to the
estimation delay.

A. Solution overview

Recall the operation of the contract-driven control and
estimation framework as presented in Section III and Fig. 4.
First, the estimator is profiled offline to obtain its delay-
error curve, which we denote by ∆. The curve ∆ represents

a finite number of (δ, ε) contracts that the estimator can
satisfy. At every time step k, the controller receives a state
estimate x̂k and uses it to compute the control input uk to be
applied to the physical system at time ta,k and the contract
(δk+1, εk+1) ∈ ∆ that will be requested from the estimator at
the next step. At k+1, the estimator provides an estimate with
error at most εk+1 and within delay δk+1. Finally, recall that
J =

∑M
k=0 (`(xk, uk) + απ(δk)) combines tracking error and

input power in the ` terms, and estimation power consumption
in the π terms. The scalar α quantifies the importance of power
consumption to the overall performance of the system.

The contract-driven controller’s task is to find a sequence
of inputs uk ∈ U and of contracts (δk, εk) ∈ ∆ such that
the cost J is minimized, and the state xk is always in the
set X . The challenge in finding the control inputs is that the
controller does not have access to the real state xk, but only
to an estimate x̂k. The norm of the error ek = x̂k − xk is
bounded by the contractual εk, which varies at each time step.

Let us fix the prediction horizon N ≥ 1. Assume that the
current contract (under which the current estimate x̂k was
obtained) is (δk, εk), and that the previously applied input is
uk−1. To compute the new input value uk and next contract
(δk+1, εk+1), the proposed Robust Adaptive Model Predic-
tive Controller (RAMPC) seeks to solve the following opti-
mization problem which we denote by P∆(x̂k, δk, εk, uk−1):

J∗[0 :N] = min
u,x,δ,ε

N∑
j=0

(`(xk+j , uk+j) + απ(δk)) (3)

s.t. ∀j ∈ {0, . . . , N}
xk+j+1 =Axk+j +B1(δk)uk+j−1 +B2(δk)uk+j

[xk+j+1, uk+j]
′ ∈ X × U

Here, RAMPC needs to find the optimal length-N input
sequence u∗ = (u∗k, . . . , u

∗
k+N) ∈ UN , corresponding state

sequence x = (xk, . . . , xk+N) ∈ XN , delay sequence δ =
(δk, . . . , δk+N) and error sequence ε = (εk, . . . , εk+N) such
that (δk, εk) ∈ ∆, which minimize the N -step cost J [0 : N].
The matrices that make up the system dynamics are defined in
Section IV-D. As in regular MPC [24], once a solution u∗ is
found, only the first input value u∗k is applied to the physical
system, thus yielding the next state xk+1 as per (2). At the
next time step k + 1, RAMPC sets up the new optimization
P∆(x̂k+1, δk+1, εk+1, uk+1−1) and solves it again.

To make this problem tractable, we first assume that
the mode is fixed throughout the N -step horizon, i.e.
(δk+j , εk+j) = (δ, ε) for all 1 ≤ j ≤ N . Thus for every value
(δ, ε) in ∆, we can setup a different problem (3) and solve it.
Let J∗(δ,ε) be the corresponding optimum. The solution with
the smallest objective function value yields the input value u∗k
to be applied and the next contract (δ∗, ε∗).

Because RAMPC only has access to the state estimate,
we extend the RMPC approach in [25], [26]. Namely, the
problem is solved for the nominal dynamics which assume
zero process and observation noise (wk+j = 0) and zero
estimation error (x̂k+j = xk+j) over the prediction horizon.

Let x be the state of the system under nominal conditions.
To compensate for the use of nominal dynamics, RMPC
replaces the constraint (xk+j , uk−1+j) ∈ X × U := Z by
(xk+j , uk+j) ∈ Zj(εk, ε), where Zj(εk, ε) ⊂ Z is Z ‘shrunk’
by an amount corresponding to ε, as explained in the appendix.
Intuitively, by forcing (xk+j , uk−1+j) to lie in the reduced
set Zj(εk, ε), the bounded estimation error and process noise
are guaranteed not to cause the true state and input to exit
the constraint sets X and U . The tractable optimization for a
given (δ, ε), denoted by P(δ,ε)(x̂k, δk, εk, uk−1), is then

J∗(δ,ε) = min
u,x

N∑
j=0

(`(xk+j , uk+j) + απ(δ)) (4)

s.t. ∀j ∈ {0, . . . , N}
xk+j+1 = Axk+j +B1(δ)uk+j−1 +B2(δ)uk+j

(xk+j , uk+j) ∈ Zj(εk, ε)

Algorithm 1 summarizes the RAMPC algorithm.

Algorithm 1 Robust Adaptive MPC algorithm with Anytime
Estimation.

1: (δ0, ε0) and u−1 specified by designer
2: Apply u−1

3: for k = 0, 1, . . . ,M do
4: Estimate x̂k with guarantee (δk, εk)
5: for each (δ, ε) ∈ ∆ do
6: (u∗k, J

∗
(δ,ε))← Solve P(δ,ε)(x̂k, δk, εk, uk−1)

7: end for
8: (δ∗, ε∗, u∗k)← argmin(δ,ε)J

∗
(δ,ε)

9: Apply control input uk = u∗k and estimation mode
(δk+1, εk+1) = (δ∗, ε∗)

10: end for

We prove the following result in the appendix:

Theorem V.1. If at the initial time step there exists a contract
value (δ, ε) ∈ ∆, an initial state estimate x̂0 ∈ X , and an
input value u−1 ∈ U , such that P(δ,ε)(x̂0, δ0, ε0, u0−1) is
feasible then the system (2) controlled by Alg. 1 and subjected
to disturbances constrained by wk ∈ W robustly satisfies the
state constraint x ∈ X and the control input constraint u ∈ U ,
and all subsequent iterations of the algorithm are feasible.

VI. STOCHASTIC MODEL PREDICTIVE CONTROL
SOLUTION

The control algorithm developed in section V assumes that
the state-estimation error e lies in a bounded set, E. In
practice, this can result in a very conservative approximation.
Assuming instead that the error arises from a random distri-
bution allows us to develop a chance constrained formulation
for the controller, outlined in this section. We call this control
algorithm the Stochastic Adaptive Model Predictive Controller
(SAMPC). Here, the constraints on the state have to be satis-
fied with some probability 1−ζ, rather than in a deterministic
manner as in the RAMPC formulation.

A. Solution overview

Starting from the contract-driven control and estimation
framework of Sec. III, we denote the profiled delay-error
curve of the estimator by ∆. This curve ∆ consists of a
finite number of contract options (δ,Σ) that the estimator can
satisfy at run-time. Here, Σ ∈ Rn×n is the positive semi-
definite co-variance matrix associated with the now stochastic
state-estimation error e. It can be obtained through profiling
the performance of the estimator as outlined in Sec. VII. We
assume that the mean of the estimation errors is zero in all the
contracts, but the formulation and analysis that follows also
extends to distributions with non-zero means. δ is again the
computation time the estimator takes in a particular mode of
operation.

The SAMPC works in a manner similar to the RAMPC. At
each time step k, the controller receives a state estimate x̂k and
uses it to compute: a) the control signal uk, as well as b) the
contract (δk+1,Σk+1) ∈ ∆ that will be met by the estimator
at the following time step. Following this, at time step k + 1
the estimator give a state estimate x̂k+1 with error ek+1 =
x̂k+1−xk+1 drawn from a distribution with co-variance Σk+1

and within time δk+1.
The cost function to be minimized is J =

∑M
k=0(l(xk, uk)+

απ(δk)) that combines the tracking error and input power
through the l term and the estimator power consumption
through the π terms. The SAMPC control algorithm then finds
a sequence of control signals uk and the contracts at each time
step (δk,Σk) ∈ ∆ such that J is minimized and the state xk
and input uk respect chance constraints of the form:

P ([xk, uk] ∈ X × U) ≥ 1− ζ ∀k (5)

Here, 0 < ζ ≤ 1 is a design parameter that decides the lower
bound on the constraint satisfaction probability. To achieve
these objectives, the Stochastic Adaptive Model Predictive
Controller (SAMPC) aims to solve the following optimiza-
tion (with horizon N ≥ 1), denoted by P̃∆(x̂k, δk,Σk, uk−1),
at each time step k:

J∗[0 : N] = min
u,x,δ,Σ

N∑
j=0

(`(xk+j , uk+j) + απ(δk)) (6)

s.t. ∀j ∈ {0, . . . , N}
xk+j+1 = Axk+j +B1(δk)uk+j−1 +B2(δk)uk+j

P ([xk, uk] ∈ X × U) ≥ 1− ζ

Similar to the RAMPC, the SAMPC needs to find the
optimal length-N input sequence u = (u∗k, . . . , u

∗
k+N), the cor-

responding state sequence x = (xk+1, . . . , xk+N+1), the delay
sequence δ = (δk, . . . , δk+N) and associated error co-variance
sequence Σ = (Σk, . . . ,Σk+1) (such that (δk,Σk) ∈ ∆) which
minimize the the N-step cost J [0 : N] and ensuring the chance
constraint of (5) is satisfied.

Consistent with regular MPC framework, once a solution
u is found, only the first input uk is applied to the system,
resulting in state xk+1. At the next time step, after receiving

the state estimate x̂k+1 from the estimator based on the
contract of step k, the SAMPC sets up the new optimization
P̃∆(x̂k+1, δk+1,Σk+1, uk+1−1) and solves it, repeating the
process at each subsequent time step.

Similar to RAMPC, the SAMPC only has access to the state
estimate, we extend the Stochastic MPC (SMPC) approach in
[27]. Namely, the problem is solved for the nominal dynamics
which assume zero process and observation noise (wk+j = 0)
and zero estimation error (x̂k+j = xk+j) over the prediction
horizon. Let x be the state of the system under nominal condi-
tions. To compensate for the use of nominal dynamics, SMPC
replaces the constraint of (5) by (xk+j , uk+j) ∈ Z̃j(Σk,Σ),
where Z̃j(Σk,Σ) ⊂ Z is Z = X ×U ‘shrunk’ by an amount
corresponding to Σ, as explained in the appendix.Intuitively,
by forcing (xk+j , uk−1+j) to lie in the reduced set Z̃j(Σk,Σ),
the stochastic estimation error and process noise are guaran-
teed to be such that that the state and the input respect the
joint chance constraint of (5).

The tractable optimization for a given (δ,Σ), denoted by
P̃(δ,Σ)(x̂k, δk,Σk, uk−1), is then

J∗(δ,Σ) = min
u,x

N∑
j=0

(`(xk+j , uk+j) + απ(δk)) (7)

s.t. ∀j ∈ {0, . . . , N}
xk+j+1 = Axk+j +B1(δk)uk+j−1 +B2(δk)uk+j

(xk+j , uk+j) ∈ Z̃j(Σk,Σ)

Construction of the shrunk constraint sets Z̃j is covered
in the appendix. In practice, we solve the optimization for
each (δ,Σ) ∈ ∆ in parallel and pick the optimal contract and
the corresponding control signal as outlined in Algorithm 1
(solving J∗(δ,Σ) instead of J∗(δ,ε) in this case). The following
theorem (proven in the appendix) states the guarantees of this
control algorithm:

Theorem VI.1. For any estimation mode (δ,Σ), if
P̃(δ,Σ)(x̂k, δk,Σk, uk−1) is feasible then the system (2) con-
trolled by the SAMPC and subjected to disturbances con-
strained by wk ∈ W satisfies, with probability at least
1 − ζ, the state constraint xk ∈ X and control in-
put constraint uk ∈ U , and the subsequent optimization
P̃(δ,Σ)(x̂(, δ(,Σ(, u(−1)x̂k+1, δ[k],Σ[k], uk), are feasible with
Probability 1.

VII. CONTRACT BASED PERCEPTION ALGORITHMS

We presupposed, in Section III, the existence of an Esti-
mation Error vs Computation Delay curve ∆ for the state
estimator. The controller uses this curve at each discrete time
step to select the operating mode (δ, ε) for the estimator at the
next time step, as seen in Sec. V. In this section, we show
how this curve can be obtained for particular applications, as
well as ways for the contract based estimation algorithm to
realize the points on the curve at runtime.

PC1 PC2 PC3

SC1 SC2

CC1 CC2

�1 �2

�1�2

Pixel
Classifier

Connected
Components

Shape
Classifier

(�, ") (�0, "0)

⌧1 ⌧2 ⌧3 t

t

t

tt

⌧1 + �1 + �1

�

⌧3 + �1 + �2

�0

Fig. 6. Illustration of the building blocks used to compose the Contract Object
Detector and their representation as real-time tasks. For a given (δ, ε) contract,
knob settings are chosen at run-time resulting in a schedule to execute these
sequential components, or tasks, to respect the contract.

A. Profiling And Creating an Anytime Contract Based
Perception-and-Estimation Algorithm

In order to profile a contract estimator, we first need to
identify the distinct building blocks (or tasks) of the perception
algorithm. Next, we need to find the relevant parameters used
in each task, such that varying these parameters results in
corresponding changes in the computation time and the quality
of the overall output of the estimation algorithm. This can
be done, e.g. by varying the number of iterations of a loop
[21] such that the resulting computation time δ and estimation
quality ε are different. We refer to these parameters as knobs
of the components of the estimation algorithm.

This procedure is tested through implementation on a
Computer Vision (CV)-based object detection tool chain, an
overview of which is shown in Fig. 6. This object recognition
tool chain is tasked with tracking an Object of Interest (OOI)
across the frames of a video stream. The first level of this is a
pixel classifier that assigns a probability for each pixel being
a part of the OOI. After thresholding over some minimum
probability, a we obtain a binary image with the pixels of
interest taking a value 1, others being 0. The second level
involves denoising the binary image, and then finding the
Connected Components (CC), i.e. collecting adjacent pixels
of interest into (possibly disconnected) objects. The third and
final level is a shape classifier that is run on the output of the
connected components to determine whether each object from
it is of interest or not.

Our implementation uses a Gaussian Mixture Model
(GMM) classifier as the pixel classifier. The knob here is the
number of Gaussian distributions in the GMM. A smaller
number of Gaussians will result in a faster, but possibly
inaccurate classifier. On the other hand, more Gaussians can
result in improved performance, but at the cost of higher

computation time. As is typically done, knob values that result
in an overfit are identified and rejected via cross-validation
during the training process.

The filtering for denoising the binary image, and the Con-
nected Components algorithm form the second level of the
object recognition tool chain and the knob here consists of
selecting either a 4-connected or 8-connected implementation.

We use a GMM for the shape classifier, but unlike the
first level, the knob here is the number of features used to
define the shape of the object of interest (e.g.eccentricity, linear
eccentricity and major and minor axis lengths for ellipsoidal
objects). In this implementation, the number of knob settings
for the object recognition tool chain is K = (#Gaussians for
pixel classifier × #neighbors for CC × #features for shape
classifier), and has a total of 3× 2× 2 = 12 values.

The trade-off curve for the entire toolchain is obtained by
profiling all 12 knob settings by running it on a data set
for profiling. Through this process we obtain, for each of
the different knob values: a) the output quality error ε, and
b) the computation times δ for the entire tool chain. This
offline gathering of information gives us the information to
be used at run-time in the co-design framework. The profiled
performance of the CV-based object recognition toolchain
considered here is shown in Fig. 7.

It should be noted that for each block of the tool chain,
the relation between knob value and quality of output is not
necessarily monotonic. The GMM based classifiers must be
trained on a data set before deployment and like all machine
learning algorithms, their output quality for a given knob
setting will depend on the specific data set. This also holds
for the output quality of the entire chain, and is reflected in
Fig. 7 which shows the mean perception error1 and the 90th

percentile execution time for the different knob settings. While
the trend is that perception error decreases with increasing
execution time, there are some knob settings leading to both
larger perception error and larger execution time, which is seen
in the non-monotonic behavior seen in Fig. 7.

B. Run-time execution of the contract-driven perception algo-
rithm

After profiling the contract-driven estimator, we can use
the information at run-time to choose which knob settings are
needed to respect a given (δ, ε) contract. This is tantamount
to choosing altered versions of tasks and scheduling them
to execute one after the other in a pre-defined manner to
optimally perform the job of detecting an object of interest.
Fig. 6 shows the various tasks and their different versions for
every knob setting and the resulting task schedules.

C. Visual Odometry

An example of a vision based state estimation algorithm
is Semi-Direct Monocular Visual Odometry (SVO) [1], which
we will use in Sec. VIII to get state estimates for control
of the hexrotor robot. SVO detects corners in an image, and

1Error is the distance between the true centroid and the estimated centroid
of the OOI

90th percentile execution time (s)
0 0.1 0.2 0.3 0.4 0.5

E
[p

er
ce

pt
io

n
er

ro
r]

 (
pi

xe
ls

)

200

400

600

800

1000

Fig. 7. Profiled delay-error curve for the object detection tool chain run at
different parameter settings.

tracks them across consecutive frames of a video feed in order
to localize the moving robot and generate a state estimate.
Since this state estimate is used for closed loop control of
the hexrotor, SVO has to run in real-time at a frame rate that
is fast enough for the purpose of controlling a flying robot.
The number of corners #C (as well as their quality) being
tracked from frame to frame affects the computation time of
the localization algorithm and the resulting quality of the state
estimate. In general, assuming that the camera is looking at
a feature rich environment, detecting and tracking a higher
number of corners results in better localization accuracy but
also takes larger computation time. For the profiling of SVO,
the number of corners #C is the only knob and is varied to
obtain an error-delay curve of the localization performance.

1) Profiling SVO performance: Fig. 8 outlines the profiling
process for SVO. We start with the hexrotor, running ROS,
flying (either manually or autonomously) in an environment
with a Vicon motion-capture system [28]. Throughout the
flight, the downward facing monocular camera captures frames
at the desired rate of 20 HZ. We also log the IMU data, as well
as the high-accuracy 6-DOF pose estimate generated by the
motion capture system, which we will use as the ground truth
for the hexrotor positions and velocities. We collected data,
recorded as rosbags, over 15 minutes of flights with randomly
chosen paths, flown both manually and autonomously.

After collecting the data from our flights, in order to profile
the estimation performance of SVO for a particular setting
of the number of corners used, we playback this recorded
rosbag, accurately recreating the in-flight environment that is
present for the visual odometry algorithm. We process the
camera frames with SVO running at the desired setting of #C,
and use the SVO generated position estimate along with the
corresponding time-stamped IMU data to generate an estimate
of the hexrotor’s position and velocity (the hexrotor’s state,
see fig. 10) at that time instant. By comparing this the state
estimate to the VICON measurement at that time instant,
we get the state estimation error of SVO. By doing so for
the entire recorded data set, we can get the estimation error
characteristics of SVO operating at this knob setting. We repeat
this process for all knob settings of SVO, going from 50 to 350

// time here

begin_ct = ros::Time::now();

const FrameHandlerBase::AddImageResult res =

vo_->addImage(img, msg->header.stamp.toSec());

end_ct = ros::Time::now();

duration_ct = end_ct-begin_ct;

time_taken = duration_ct.toNSec();

fprintf(logFile,"%lu \n",time_taken);

fflush(logFile);

// end

Hex-rotor flights

SVO Estimation error SVO power consumption

Er
ro

r-
de

la
y

cu
rv

e
fo

r S
VO

Odroid U3

Power meter

Re
co

rd
ed

 d
at

a

(r
os

ba
gs

)

Offline profiling of SVO

Data collection

Pr
of

ile
d

in
fo

rm
at

io
n

+ +

SVO computation time

// end

Fig. 8. The profiling process to characterize the performance of SVO in terms of estimation error, computation time and power consumption. Sensor and
ground truth data is logged from flights of the hexrotor, and then played back and processed offline to generate the error-delay curve (shown in Fig. 9) for
SVO. The code snippet shows how little modification is needed to the SVO code base to be able to profile its timing characteristics. Through this offline
profiling process, we avoid the need of performing separate flights for each knob setting of SVO.

corners, and through this get the estimation error profile for
SVO across all its operating modes. Fig. 8 shows an overlay
of the position estimates from SVO (in green) and those from
VICON (in red) for a segment of the profiling data set. It also
shows a frame captured from the downward facing camera on
the hexrotor, and the corners (green dots) that SVO is tracking
in that particular frame.

We also need to measure the timing and power consumption
of SVO for each knob setting. For the former, we insert C++
code for timing how long SVO takes to process each frame, i.e.
the time from receiving a frame from the camera to generating
a position estimate. We do this for each frame in the profiling
data set, log this data, and repeat the process for each knob
setting of SVO. Fig. 17 shows the cumulative distribution
function for this computation time across the entire profiling
data set, for each knob setting of SVO.

For the power consumption of SVO at different values of
the knob #C, we record power measurements made using the
Odroid Smart Power meter [29], which measures consumption
to milliwatt precision. By playing back the logged data and
running SVO offline for profiling, we avoid the physical chal-
lenges of fitting the power meter onto our hexrotor platform
and can measure the power consumption of the Odroid board
on the ground, while running the workloads as it does during
flight. We measure the power consumption of the entire Odroid
board, including CPU and DRAM power consumption. Since
the profiling of power is done offline with other peripherals
plugged into the odroid (e.g. a monitor and keyboard), we
measure the idle power of the Odroid and subtract that from
the power measurements when the SVO algorithm is running
on it in different modes. This gives us a more accurate measure
of the workload due to the visual odometry task.

Through this offline profiling process, we avoid having to
fly separate flights to get profiling information for every knob
setting (#C), and the result of this profiling is used in the
formulation of the controller and used at run-time by it to
generate contracts for the contract-driven estimator (Fig.4).

20 30 40 50 60 70
90 th percentile execution time (ms)

0.01

0.02

0.03

0.04

0.05

0.06

Es
tim

at
io

n
er

ro
r(

m
) #C=50

#C=100
#C=150
#C=200
#C=250
#C=350
#C=550(e y)

(e z)

(e x)

Fig. 9. (Color online) Error-delay curve for the SVO algorithm running on
the Odroid-U3 with different settings of maximum number of features (#C)
to detect and track. The vertical line shows the cut-off for maximum delay
and the SVO settings that are allowable (upto #C = 200) for closed loop
control of a hexrotor at 20Hz. No value of #C is used above this as it results
in the delay approaching the sampling period of the controller.

2) The error-delay curve for SVO: Obtained from the
profiling process outlined above, Fig. 9 shows the error-
delay curve(s) of the localization error (in positions) of the
hexrotor with SVO running on an Odroid-U3 [30], the on-
board computation platform of the hexrotor robot. The curve,
obtained through data collected over multiple flights in a fixed
environment, shows the worst case error ε (over all flights and
all components of the 3D position, used in Sec. V), as well
the the standard deviation of the error for all components of
the 3D position (used in the stochastic control formulation of
Sec. VI) versus the computation time δ for varying number of
corners being tracked #C. δ is obtained by considering the
90th percentile of computation times, while ε is obtained by
computing the infinite norm of the 90th percentile error over
the 3 components (x, y, z) of the position. Note that as the
number of corners being tracked increases, the computation

Semi-Direct
Visual Odometry

(SVO)
20 HzCamera

Position Control

Sensor
Fusion IMU

Attitude
Control

20 Hz

Position
estimate 20 Hz

6-DOF Pose
Estimate 20 Hz

100 Hz

100 Hz

Delay/Error
Contract

Odroid

TRPY

20 Hz

Reference
Trajectory

Fig. 10. The control and computational components on-board the hex-rotor.

time increases and the estimation error decreases as expected,
but only up to a point. At #C = 250, the estimation error
increases. We hypothesize this is due to the decreasing quality
of the corners in the environment now being tracked. This is
because if the scene is not particularly feature rich, and a
sizable fraction of the #C corners are of poor quality (i.e.,
unstable or hard to track across frames), and we can expect
the localization error to increase as the poor quality of the
corners detected adds noise to the visual odometry estimates.

VIII. CASE STUDY: FEEDBACK CONTROL OF A
HEX-ROTOR ROBOT

To evaluate the performance of our proposed methods,
we implemented the contract-driven estimator and control
scheme on a KMel robotics hex-rotor robot [31]. The hex-
rotor is equipped with a downward facing camera, allowing
us to use SVO for localization. The on-board computation
platform is an Odroid U-3 [30] computer running Ubuntu as
the operating system. The computer also runs Robot Operating
System (ROS) [32] which is responsible for executing the
estimation and control algorithm at a fixed rate, as well as
the communication between them.

A. Experimental Setup

Fig. 10 shows the feedback control loop and flow of infor-
mation on-board the hex-rotor. Camera images are processed
via SVO to generate position estimates, which are used along
with IMU information to generate a 6-Degree of Freedom
(linear and angular positions and velocities) pose estimate
via Unscented Kalman Filtering. The linear components of
this state estimate are used by the position control algorithm
(RAMPC). The position controller, tasked with tracking a
given reference trajectory, generates desired thrust, roll and
pitch to be tracked by the low level attitude controller running
at a high-rate. The RAMPC also generates the Delay/Error
(δ, ε) contract for the Contract SVO algorithm to respect at
the next discrete time step. More details on the experimental
setup are in the appendix.

B. Experiment design

To compare the performance of the RAMPC and SAMPC
algorithms developed in this work with that of a MPC that does

TABLE I
SVO MODES USED IN THE EXPERIMENTS

Mode #C δ (ms) ε (m) σ(ex) σ(ey) σ(ez) P (mW)
0 50 24 0.054 0.021 0.033 0.038 778
1 100 30 0.049 0.019 0.027 0.033 862
2 150 34 0.041 0.019 0.024 0.030 870
3 200 38 0.035 0.018 0.022 0.024 951

0.5
2

1

-2

z

1.5

yx

00
-22 -2 0 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

Fig. 11. The two reference trajectories, the spiral is in dashed red and the
hourglass is in solid black (color in online version). The figure on the right
shows the trajectories projected on the x,y plane. Note, the spiral starts on
the outside and ends inwards while the hourglass trajectory starts and ends at
(0, 0, 1).

not leverage co-design, we task the controllers with following
two pre-defined reference trajectories, shown in Fig. 11. The
reference trajectories are generated using the jerk minimizing
trajectory generator of [33].

1) The hourglass trajectory: This trajectory involves fly-
ing straight lines between the desired waypoints, as
shown in Fig. 11. In order to get the straight lines, the
waypoints are associated with desired velocities of zero
(in each axis). The duration of this trajectory is around
14s. The entire trajectory is flown at a constant height
of 1m. A video of the hex-rotor flying this trajectory
can be found at https://youtu.be/-ltJO2gVxWs

2) Spiral in x, y with sinusoidal variations in z: This
trajectory consists of smooth curves between waypoints,
with the waypoints such that in the x,y plane the trajec-
tory looks like a spiral converging towards the origin,
while in the z-axis it consists of sinusoidal variations
along a reference height of 1m. The duration of this
trajectory is 17s. A video of the hex-rotor flying this
trajectory is at https://youtu.be/hmTRxrq4NJg

These trajectories are flown with: a) the baseline, a Robust
MPC formulation that does not leverage the co-design of
computation and control, with all four chosen modes of SVO
used for the state feedback, b) the RAMPC algorithm with
varying values of α, the weight for the computation power in
the optimization, c) the SAMPC (with ζ = 0.82) with varying

150 160 170 180 190 200
Computation Energy for perception based estimator (J)

1.45

1.5

1.55

1.6

1.65

1.7

J tru
e

RAMPC
SAMPC
Baseline

Mode 0
Mode 1 Mode 2

Mode 3

α=0

α=0.001
α=0.01

α=0.1
α=1

Fig. 12. Performance, hourglass trajectory. The vertical axis has the average
control performance (eq. 8) over the flights for the labeled settings,with lower
values implying better control performance. The horizontal axis shows the
computation power (in Joules) consumed by SVO to perform the state estima-
tion task. The figure shows how our methods (RAMPC/SAMPC) leveraging
the co-design have both better control performance while consuming less
computation power than the baseline method.

values of α. Each trajectory is flown twice for each one of
these settings to get a comparison of control performance and
computation energy consumption. This lead to a total of 56
flights to gather the data presented in this case study.

C. Experimental Results

To measure the performance of the controllers in a stan-
dardized manner, we used the following measure of control
performance:

Jtrue =
1

Tmax

Tmax/h∑
k=0

(xk − xref
k)TQ(xk − xref

k) + uTkRuk (8)

Here, xref is the desired trajectory, and Q and R are the
matrices used in the cost of MPC/RAMPC/SAMPC, h is the
sampling time (50ms) and Tmax is the duration of the particular
trajectory flown. Jtrue can be accurately evaluated as we have
access to the true state, xk, of the hex-rotor from the Vicon
system.

1) Comparison to the baseline: Fig. 12 shows the control
performance and the SVO energy consumption for the hour-
glass trajectory for the baseline RMPC, RAMPC, and SAMPC
for different settings. The SAMPC and RAMPC result in
lower (average across flights) values of Jtrue than the baseline
controller, i.e. better control performance. As the value of α
increases, the power consumption decreases and the control
performance degrades for the RAMPC and SAMPC. This is
expected as α is the weight for the computation power in the
overall optimization cost of (3) (and (6)) and increasing it
would make computation power more important relative to
the control performance. Fig. 13 shows a similar behavior
for the spiral trajectory. The notable exception is in the
baseline performance, where the most accurate mode (mode

260 280 300 320 340
Computation Energy for perception based estimator (J)

1.55

1.6

1.65

1.7

1.75

1.8

1.85

J tru
e RAMPC

SAMPC
Baseline

Mode 0
Mode 1

Mode 2

Mode 3

α=0

α=0.001

α=0.01
α=0.1

α=1

Fig. 13. Performance, spiral trajectory. The vertical axis has the average
control performance (eq. (8)) over the flights for the labeled settings,with
lower values implying better control performance. The horizontal axis shows
the computation power (in Joules) consumed by SVO to perform the state
estimation task. Similar to the case for the hourglass trajectory, our methods
outperform the baseline.

3) of SVO does not result in the best control performance of
the fixed mode RMPC controller. This is possibly because
the spiral trajectory is more aggressive than the hourglass
trajectory, which involves stopping at each corner waypoint of
the trajectory, and spending time in mode 3 comes with a com-
putation delay that degrades the control performance despite
the increases accuracy of the state estimate. It should be noted
that for either trajectory, SAMPC and RAMPC give a better
control performance than the baseline for the corresponding
computation energy consumption. For both cases, the control
performance of SAMPC and RAMPC are close to each other,
with the SAMPC slightly outperforming the RAMPC for the
spiral trajectory.

Summary: Across both the trajectories, the best case con-
trol performance of our methods results in about a 10%
improvement compared to that of the baseline. To achieve
this performance, our methods result in SVO using about
5−6% and less computation energy compared to the baseline
(at the setting resulting in best control performance). This
clearly demonstrates the benefit of the co-design between the
perception-based estimation and the control algorithms.

2) Impact of the weight for computation power (α): As
α takes on a high value, the control performance of RAMPC
and SAMPC for the hourglass trajectory approaches that of the
baseline RAMPC with SVO mode fixed to 0. This is backed
up the observation of tables II, III which show that for α = 1,
the RAMPC and SAMPC select mode 0, the low-power but
high estimation error mode, of SVO all the time. The tables
II, III show the fraction of time spent in each mode of SVO
as α changes. Note that as α, the weight for the computation
power, increases the time spent in the low power mode 0 also
increases while the time spent in the more accurate but higher
power modes accordingly decreases. Similar behavior is noted

0 5 10 15
Time (s)

-1
0
1

x

0 5 10 15
Time (s)

-2
0
2

y

0 5 10 15
Time (s)

0.9

1

z

Fig. 14. (Color online) Reference positions (dashed red) and actual positions
(blue) of the hex-rotor flying the hourglass trajectory while being controlled
by the SAMPC (α = 0).

TABLE II
FRACTION OF TIME SPENT IN MODES: HOURGLASS TRAJECTORY, RAMPC

Mode 0 Mode 1 Mode 2 Mode 3
α = 0 0.398 0.008 0.024 0.570

α = 0.001 0.523 0.004 0.024 0.440
α = 0.01 0.557 0.000 0.067 0.374
α = 0.1 0.820 0.000 0.055 0.123
α = 1 1.000 0.000 0.000 0.000

for the spiral trajectory, and tables IV and V show the fraction
of time spent in the different SVO modes as α changes for
RAMPC and SAMPC flying the spiral trajectory respectively.

3) Snapshots of the control performance of RAMPC and
SAMPC: Fig. 14 shows the reference and actual positions
of the hex-rotor (in x,y and z co-ordiantes) as function of
time for the hourglass trajectory controlled by the SAMPC
(α = 0). Note the near perfect tracking in x and y. The
small dip in the height (z co-ordinate) is due to combination of
model error (due to inaccuracy of the mass) as well the effect
of linearization around hover. Fig. 15 shows the reference
and actual positions versus time for the RAMPC (α = 0.1)
flying the spiral trajectory, showing similarly good tracking
performance as in the hourglass trajectory.

Finally, Fig. 16 shows the selected mode of the SVO (with
SAMPC, for the spiral trajectory flown by the SAMPC (α =
0.001) changing over the discrete time steps, as well as the
evolution of the tracking cost at each time step.

TABLE III
FRACTION OF TIME SPENT IN MODES: HOURGLASS TRAJECTORY, SAMPC

Mode 0 Mode 1 Mode 2 Mode 3
α = 0 0.374 0.000 0.004 0.621

α = 0.001 0.514 0.016 0.051 0.418
α = 0.01 0.617 0.000 0.032 0.351
α = 0.1 0.793 0.000 0.076 0.131
α = 1 1.000 0.000 0.000 0.000

0 5 10 15
Time (s)

-2
0
2

x

0 5 10 15
Time (s)

-2
0
2

y

0 5 10 15
Time (s)

0.5

1z

Fig. 15. (Color online) Reference positions (dashed red) and actual positions
(blue) of the hex-rotor flying the spiral trajectory while being controlled by
the RAMPC (α = 0.1).

340 360 380 400 420 440 460
Time steps, k (at 20 Hz)

0

1

2

3

S
V

O
 M

od
e

1

1.5

2

2.5

3

(x
[k

]-
x

re
f[k

])
T
Q

(x
[k

]-
x

re
f[k

])
+

u[
k]

T
R

u[
k]

Fig. 16. SVO Mode and control cost over time for the spiral trajectory flown
with SAMPC at α = 0.001.

IX. CONCLUSION

In this paper we presented a contract-driven methodology
for co-design of estimation and control for autonomous sys-
tems. The basic idea is that the control algorithm requests a
delay and estimation error (δ, ε) contract that the perception-
and-estimation algorithm realizes. The control algorithm we
designed aims to set time-varying contracts to maximise a per-

TABLE IV
FRACTION OF TIME SPENT IN MODES: SPIRAL TRAJECTORY, RAMPC

Mode 0 Mode 1 Mode 2 Mode 3
α = 0 0.381 0.015 0.015 0.589

α = 0.001 0.422 0.012 0.018 0.548
α = 0.01 0.504 0.000 0.041 0.455
α = 0.1 0.680 0.000 0.082 0.238
α = 1 0.995 0.000 0.015 0.000

TABLE V
FRACTION OF TIME SPENT IN MODES: SPIRAL TRAJECTORY, SAMPC

Mode 0 Mode 1 Mode 2 Mode 3
α = 0 0.396 0.003 0.018 0.584

α = 0.001 0.434 0.009 0.018 0.540
α = 0.01 0.531 0.000 0.038 0.431
α = 0.1 0.695 0.000 0.073 0.232
α = 1 0.971 0.000 0.029 0.000

formance function while respecting feasibility constraints and
stability under the time varying execution delay and estimation
error from the estimator. We also illustrate how the contract-
driven perception-and-estimation algorithm is designed offline
and used at run-time to best meet the (δ, ε) contracts set for
it. Through a case study on a flying hexrotor, we showed the
applicability of our scheme to real-time closed loop system.
The experimental results show the good performance of our
scheme and how it outperforms regular Model Predictive
Control which does not leverage co-design. A key result
showed how our closed loop solution is more energy efficient
than MPC while achieving better tracking performance. A
focus of ongoing research is to overcome the necessity of the
contracts always being met by the estimator. Another focus is
on an automated tool chain to profile perception algorithms
commonly used in autonomous systems.

ACKNOWLEDGEMENTS

We would like to thank Kuk Jang for his help in creating
several of the diagrams in this paper.

REFERENCES

[1] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast Semi-Direct
Monocular Visual Odometry,” in Robotics and Automation (ICRA), 2014
IEEE Intl. Conf. on. IEEE, 2014.

[2] R. Mur-Artal, J. M. M. Montiel, and J. D. Tards, “Orb-slam: A versatile
and accurate monocular slam system,” IEEE Transactions on Robotics,
vol. 31, no. 5, pp. 1147–1163, Oct 2015.

[3] M. Boddy and T. Dean, “Solving Time-dependent Planning Problems,”
Joint Conf. on AI, pp. 979–984, 1989.

[4] Y. V. Pant, H. Abbas, K. Mohta, T. X. Nghiem, J. Devietti, and
R. Mangharam, “Co-design of anytime computation and robust control,”
in 2015 IEEE Real-Time Systems Symposium, Dec 2015, pp. 43–52.

[5] S. Zilberstein, “Using anytime algorithms in intelligent systems,” AI
Magazine, vol. 17, no. 3, 1996.

[6] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime Search in Dynamic Graphs,” Artif. Intell., vol. 172, no. 14,
pp. 1613–1643, 2008.

[7] M. Wellman and C. L. Liu, “State-Space Abstraction for Anytime
Evaluation of Probabilistic Networks,” Conf. on Uncertainty in AI, 1994.

[8] R. Mangharam and A. Saba, “Anytime Algorithms for GPU Architec-
tures,” in Proc. of the IEEE Real-Time Systems Symposium, 2011.

[9] Y. V. Pant, H. Abbas, K. N. Nischal, P. Kelkar, D. Kumar, J. Devietti, and
R. Mangharam, “Power-efficient algorithms for autonomous navigation,”
in International Conference on Complex Systems Engineering, 2015.

[10] D. Quevedo and V. Gupta, “Sequence-based anytime control,” IEEE
Trans. Autom. Control, vol. 58, no. 2, pp. 377–390, Feb 2013.

[11] R. Bhattacharya and G. J. Balas, “Anytime control algorithm: Model
reduction approach,” Journal of Guidance and Control, vol. 27, no. 5,
pp. 767–776, 2004.

[12] D. Fontanelli, L. Greco, and A. Bicchi, “Anytime control algorithms
for embedded real-time systems,” in Hybrid Systems: Computation and
Control. Springer, 2008, pp. 158–171.

[13] V. Narayanan, M. Phillips, and M. Likhachev, “Anytime safe interval
path planning for dynamic environments,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012.

[14] D. K. Jha, M. Zhu, Y. Wang, and A. Ray, “Data-driven anytime
algorithms for motion planning with safety guarantees,” in American
Control Conference, 2016.

[15] S. Choudhury, “Anytime geometric motion planning on large dense
roadmaps,” Master’s thesis, Carnegie Mellon University, Pittsburgh, PA,
July 2017.

[16] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. J. Teller,
“Anytime motion planning using the rrt*,” 2011.

[17] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “Pampc: Perception-
aware model predictive control for quadrotors,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2018.

[18] G. Frehse, A. Hamann, S. Quinton, and M. Woehrle, “Formal analysis
of timing effects on closed-loop properties of control software,” in Real-
Time Systems Symposium (RTSS), 2014 IEEE, Dec 2014, pp. 53–62.

[19] D. de Niz, L. Wrage, N. Storer, A. Rowe, and R. Rajukar, “On
Resource Overbooking in an Unmanned Aerial Vehicle,” IEEE/ACM
Third International Conference on Cyber-Physical Systems, 2012.

[20] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A Resource
Allocation Model for QoS Mgmt.” IEEE RTSS, 1997.

[21] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ser.
ESEC/FSE ’11, 2011.

[22] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative
reliability for programs that execute on unreliable hardware,” in Pro-
ceedings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages and Applications, 2013.

[23] R. St. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh,
A. Hassibi, L. Ceze, and D. Burger, “General-purpose code acceleration
with limited-precision analog computation,” in Proc. of the 41st Annual
International Symposium on Computer Architecuture, ser. ISCA ’14,
2014.

[24] E. Camacho and C. Bordons, Model predictive control. Springer Verlag,
2004.

[25] A. Richards and J. How, “Robust model predictive control with imperfect
information,” in American Control Conference, 2005, pp. 268–273.

[26] L. Chisci, J. A. Rossiter, and G. Zappa, “Systems with persistent
disturbances: predictive control with restricted constraints,” Automatica,
vol. 37, no. 7, pp. 1019–1028, 2001.

[27] B. Kouvaritakis, M. Cannon, and S. V. Rakovic, “Explicit use of
probabilistic distributions in linear predictive control,” in UKACC In-
ternational Conference on Control, 2010.

[28] “Motion capture systems — vicon,” https://www.vicon.com, accessed:
2018-10-30.

[29] “ODROID Smart Power,” http://odroid.com/, accessed: 2015-05-13.
[30] “ODROID-U3,” http://odroid.com/, accessed: 2015-05-13.
[31] “Kmel (qualcomm),” https://www.grasp.upenn.edu/startups/

kmel-qualcomm, accessed: 2018-08-13.
[32] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[33] M. W. Mueller, M. Hehn, and R. DÁndrea, “A computationally effi-
cient motion primitive for quadrocopter trajectory generation,” in IEEE
Transactions on Robotics, 2015.

[34] E. C. Kerrigan, “Robust constraint satisfaction: Invariant sets and pre-
dictive control,” Ph.D. dissertation, University of Cambridge, 2000.

[35] S. Boucheron, G. Lugosi, and P. Massart, Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

[36] J. Mattingley and S. Boyd, “Cvxgen: a code generator for embedded
convex optimization,” Optimization and Engineering, 2012.

APPENDIX

X. THE ROBUST CASE

In this appendix we give the detailed mathematical deriva-
tion of the results of Section III. The controller is designed
using a Robust Model Predictive Control (RMPC) approach
via constraint restriction [25], [26], and augments it by an
adaptation to the error-delay curve of the estimator. In order to
ensure robust safety and feasibility, the key idea of the RMPC
approach is to tighten the constraint sets iteratively to account

for possible effect of the disturbances. As time progresses,
this “robustness margin” is used in the MPC optimization
with the nominal dynamics, i.e., the original dynamics where
the disturbances are either removed or replaced by nominal
disturbances. Because only the nominal dynamics are used, the
complexity of the optimization is the same as for the nominal
problem.

Since the controller only has access to the estimated state
x̂, we need to rewrite the plant’s dynamics with respect to x̂.
The error between xk and x̂k is ek = xk − x̂k. At time step
k + 1 we have

x̂k+1 = xk+1 − ek+1

= Axk +B1(δk)uk−1 +B2(δk)uk + wk − ek+1,

then, by writing xk = x̂k + ek, we obtain the dynamics

x̂k+1 = Ax̂k +B1(δk)uk−1 +B2(δk)uk + ŵk (9)

where ŵk = wk + Aek − ek+1. The set of possi-
ble values of ŵk depends on the estimation accuracy at
steps k and k + 1 and is denoted by Ŵ(εk, εk+1), i.e.,
Ŵ(ε, ε′) := {w +Ae− e′ | w ∈ W, e ∈ E(ε), e′ ∈ E(ε′)}.
Note that Ŵ(εk, εk+1) is independent of the time step k. It
can be computed as Ŵ(ε, ε′) =W⊕AE(ε)⊕ (−E(ε′)) where
the symbol ⊕ denotes the Minkowski sum of two sets.

The dynamics in (9) has a non-standard form where it
depends on both the current and the previous control inputs.
However we can expand the state variable to store the previous
control input as

ẑk =

[
x̂k
uk−1

]
∈ Rn+m

and rewrite the dynamics as, for all k ≥ 0,

ẑk+1 = Â(δk)ẑk + B̂(δk)uk + F̂ ŵk. (10)

Here, the system matrices are

Â(δk) =

[
A B1(δk)

0m×n 0m×m

]
,

B̂(δk) =

[
B2(δk)
Im

]
, F̂ =

[
In

0m×n

]
.

(11)

Let the actual expanded state be zk =
[
xTk , u

T
k−1

]T
. Be-

cause the expanded state consists of both the plant’s state and
the previous control input, the state constraint xk ∈ X and the
control constraint uk ∈ U are equivalent to the joint constraint
zk ∈ X×U . We can now describe the RAMPC algorithm for
the dynamics in (10).

A. Tractable RAMPC Algorithm

Let N ≥ 1 be the horizon length of the RMPC optimization.
Because the system matrices in the state equation (10) depend
nonlinearly on the variables δk, the RMPC optimization is
generally a mixed-integer nonlinear program, which is very
hard to solve. To simplify the RMPC optimization to make
it tractable, we fix the estimation mode for the entire RMPC
horizon.

Let P(δ,ε)(x̂k, δk, εk, uk−1) denote the RMPC optimization
problem at step k ≥ 0 where the current state estimate is
x̂k, the current estimation mode is (δk, εk) ∈ ∆, the previous
control input is uk−1, and the estimation mode for the entire
horizon (after step k) is fixed at (δ, ε) ∈ ∆. Since the system
matrices become constant now, if the stage cost `(·) is linear
or positive semidefinite quadratic, each optimization problem
P(δ,ε)(x̂·, δ·, ε·, u·−1) is tractable and can be solved efficiently
as we will show later. The RAMPC algorithm with Anytime
Estimation is stated in Alg. 1 .
B. RMPC Formulation

We formulate the RMPC optimization
P(δ,ε)(x̂k, δk, εk, uk−1) with respect to the nominal dynamics,
which is the original dynamics in Eq. (10) but the disturbances
are either removed or replaced by nominal disturbances. To
ensure robust feasibility and safety, the state constraint set is
tightened after each step using a candidate stabilizing state
feedback control, and a terminal constraint is derived. In this
RMPC formulation, we extend the approach in [25], [26]. At
time step k, given (x̂k, δk, εk, uk−1) and for a fixed (δ, ε), we
solve the following optimization

J∗δ,ε (x̂k, δk, εk, uk−1) = min
u,x

N∑
j=0

`(xk+j|k, uk+j|k) (12a)

subject to, ∀j ∈ {0, . . . , N}

zk+j+1|k = Â(δk+j|k)zk+j|k + B̂(δk+j|k)uk+j|k (12b)

(δk+j+1|k, εk+j+1|k)=(δ, ε)

(δk|k, εk|k)=(δk, εk) (12c)

xk+j|k =
[
In 0n×m

]
zk+j|k (12d)

zk|k =
[
x̂Tk , u

T
k−1

]T
(12e)

zk+j|k ∈ Zj (εk, ε) (12f)

zk+N+1|k ∈ Zf (εk, ε) (12g)

in which z and x are the variables of the nominal dynamics.
The constraints of the optimization are explained below.

• (12b) is the nominal dynamics.
• (12c) states that the estimation mode is fixed at (δ, ε)

except for the first time step when it is (δk, εk).
• (12d) extracts the nominal state x of the plant from the

nominal expanded state z.
• (12e) initializes the nominal expanded state at time step
k by stacking the current state estimate and the previous
control input.

• (12f) tightens the admissible set of the nominal expanded
states by a sequence of shrinking sets.

• (12g) constrains the terminal expanded state to the termi-
nal constraint set Zf .

The state constraint Zj: The tightened state constraint sets
Zj (εk, ε) are parameterized with two parameters εk and ε.
They are defined as follows, for all j ∈ {0, . . . , N}

Z0(εk, ε) = Z 	 F̂E(εk) (13a)

Zj+1(εk, ε) = Zj(ε, ε)	 LjF̂Ŵ(εk, ε) (13b)

in which the symbol 	 denotes the Pontryagin difference
between two sets. The set Z combines the constraints for both
the plant’s state and the control input: Z = X×U . The matrix
Lj is the state transition matrix for the nominal dynamics
in (12b) under a candidate state feedback gain Kj(δ), for
j ∈ {0, . . . , N}

L0 = I (14)

Lj+1 = (Â(δ) + B̂(δ)Kj(δ))Lj (15)

Note that the possibly time-varying sequence Kj(δ) is de-
signed for each choice of δ (i.e., the system matrices Â(δ)
and B̂(δ)), hence Lj depends on δ; however we write Lj for
brevity. The candidate control Kj(δ) is designed to stabilize
the nominal system (12b), desirably as fast as possible so that
the sets Zj are shrunk as little as possible. In particular, if
Kj(δ) renders the nominal system nilpotent after M < N
steps then Lj = 0 for all j ≥ M , therefore Zj (εk, ε) =
ZM (εk, ε) for all j > M .
The terminal constraint Zf : Zf is given by

Zf (εk, ε) = C(δ, ε)	 LN F̂Ŵ(εk, ε) (16)

where C(δ, ε) is a robust control invariant admissible set for δ
[34], i.e., there exists a feedback control law u = κ(z) such
that ∀z ∈ C(δ, ε) and ∀w ∈ Ŵ(ε, ε)

Â(δ)z+B̂(δ)κ(z)+LN F̂w ∈ C(δ, ε) (17)
z ∈ ZN (ε, ε) (18)

We remark that C(δ, ε) does not depend on (δk, εk), therefore
it can be computed offline for each mode (δ, ε).
C. Proofs of Feasibility

The RMPC formulation of the previous section, with a fixed
estimation mode (δ, ε) ∈ ∆, is designed to ensure that the
control problem is robustly feasible, as stated in the following
theorem.

Theorem X.1 (Robust Feasibility of RAMPC). For any esti-
mation mode (δ, ε), if P(δ,ε)(x̂k, δk, εk, uk−1) is feasible then
the system (2) controlled by the RAMPC and subjected to
disturbances constrained by wk ∈ W robustly satisfies the
state constraint xk ∈ X and the control input constraint uk ∈
U , and all subsequent optimizations P(δ,ε)(x̂k, δk, εk, uk−1)
∀k > k0, are feasible.

Proof. We will prove the theorem by recursion. We will
show that if at any time step k the RAMPC problem
P(δ,ε)(x̂k, δk, εk, uk−1) is feasible and feasible control input
uk = u?k|k is applied with estimation mode (δk+1, εk+1) =
(δ, ε) then uk is admissible and at the next time step k + 1,

the actual plant’s state xk+1 is inside X and the optimiza-
tion Pδ,ε(x̂k+1, δk+1, εk+1, uk) is feasible for all disturbances.
Then we can conclude the theorem because, by recursion,
feasibility at time step k0 implies robust constraint satisfaction
and feasibility at time step k0 + 1, and so on at all subsequent
time steps.

Suppose P(δ,ε)(x̂k, δk, εk, uk−1) is feasible. Then it has
a feasible solution

(
{z?k+j|k}

N+1
j=0 , {u?k+j|k}

N
j=0

)
that sat-

isfies all the constraints in (12). Now we will construct
a feasible candidate solution for Pδ,ε(x̂k+1, δk+1, εk+1, uk)
at the next time step by shifting the above solution by
one step. Consider the following candidate solution for
Pδ,ε(x̂k+1, δk+1, εk+1, uk):

zk+j+1|k+1 = z?k+j+1|k + LjF̂ ŵk (19a)

zk+N+2|k+1 = Â (δ) zk+N+1|k+1 + B̂ (δ)uk+N+1|k+1

(19b)

uk+i+1|k+1 = u?k+i+1|k +Ki (δ)LiF̂ ŵk (19c)

uk+N+1|k+1 = κ
(
zk+N+1|k+1

)
(19d)

in which j ∈ {0, . . . , N}, i ∈ {0, . . . , N − 1}, and κ (·)
is the feedback control law for the invariant set C(δ, ε) that
is used in the terminal set. We first show that the input
and state constraints are satisfied for uk and xk+1, then we
will prove the feasibility of the above candidate solution for
Pδ,ε(x̂k+1, δk+1, εk+1, uk).
Validity of the applied input and the next state: The next plant’s
state is

xk+1 = Axk +B1 (δk)uk−1 +B2 (δk)uk + wk

= A (x̂k + ek) +B1 (δk)uk−1 +B2 (δk)u?k|k + wk

=
[
A B1 (δk)

] [x̂k
uk−1

]
+B2 (δk)u?k|k

+ ek+1 + (wk +Aek − ek+1)

in which ek+1 ∈ E (ε) and (wk +Aek − ek+1) ∈ Ŵ (εk, ε).
Note that z?k|k =

[
x̂Tk , u

T
k−1

]T
. Hence we have[

xk+1

uk

]
= Â(δk)z?k|k + B̂(δk)u?k|k

+ F̂ ek+1 + F̂ (wk +Aek − ek+1)

= z?k+1|k + F̂ ek+1 + F̂ (wk +Aek − ek+1)

where we use the dynamics in (12b). From (12f) and (13),
z?k+1|k satisfies z?k+1|k ∈ Z1 (εk, ε) = Z 	 F̂E (ε) 	
F̂Ŵ (εk, ε). It follows that

[
xTk+1, u

T
k

]T ∈ Z = X × U ,
therefore xk+1 ∈ X and uk ∈ U .
Initial condition: We have from (10) that ẑk+1 = Â(δk)ẑk +
B̂(δk)uk + F̂ ŵk. On the other hand, by (19a),

zk+1|k+1 = z?k+1|k + L0F̂ ŵk

= Â(δk)z?k|k + B̂(δk)u?k|k + L0F̂ ŵk.

Note that z?k|k = ẑk, uk = u?k|k, and L0 = I. Therefore
zk+1|k+1 = ẑk+1, hence the initial condition is satisfied.

Dynamics: We show that the candidate solution satisfies the
dynamics constraint in Eq. (12b). For 0 ≤ j < N we have

zk+j+2|k+1

= z?k+j+2|k + Lj+1F̂ ŵk

= Â (δ) z?k+j+1|k + B̂(δ)u?k+j+1|k + Lj+1F̂ ŵk

= Â (δ)
(
zk+j+1|k+1 − LjF̂ ŵk

)
+ B̂(δ)

(
uk+j+1|k+1 −Kj (δ)LjF̂ ŵk

)
+ Lj+1F̂ ŵk

= Â (δ) zk+j+1|k+1 + B̂(δ)uk+j+1|k+1

−
(
Â (δ) + B̂(δ)Kj (δ)

)
LjF̂ ŵk + Lj+1F̂ ŵk

= Â (δ) zk+j+1|k+1 + B̂(δ)uk+j+1|k+1

where the equality in (15) is used to derive the last equality.
Therefore the dynamics constraint is satisfied for all 0 ≤ j <
N . For j = N , the constraint is satisfied by construction (19b).
State constraints: We need to show that z(k+1)+j|k+1 ∈
Zj(ε, ε) for all j ∈ {0, . . . , N}. Consider any 0 ≤ j < N .
(13b) states that Zj+1 (εk, ε) = Zj (ε, ε) 	 LjF̂Ŵ (εk, ε).
From the construction of the candidate solution we have
zk+j+1|k+1 = z?k+j+1|k + LjF̂ ŵk, where ŵk ∈ Ŵ (εk, ε)
and z?k+j+1|k ∈ Zj+1 (εk, ε). By definition of the Pontryagin
difference, we conclude that zk+j+1|k+1 ∈ Zj (ε, ε) for all
j ∈ {0, . . . , N − 1}.

At j = N the candidate solution in (19a) gives us
z(k+1)+N |k+1 = z?k+N+1|k + LN F̂ ŵk. Because z?k+N+1|k ∈
Zf (εk, ε) = C (δ, ε) 	 LN F̂Ŵ (εk, ε) and ŵk ∈ Ŵ (εk, ε),
we have z(k+1)+N |k+1 ∈ C (δ, ε). The definition of C (δ, ε) in
(17) implies C (δ, ε) ⊆ ZN (ε, ε). Therefore z(k+1)+N |k+1 ∈
ZN (ε, ε).
Terminal constraint: We need to show that zk+N+2|k+1 ∈
Zf (ε, ε) = C (δ, ε)	LN F̂Ŵ (ε, ε). Add LN F̂ ŵ, for any ŵ ∈
Ŵ (ε, ε), to both sides of (19b) and note that uk+N+1|k+1 =
κ
(
zk+N+1|k+1

)
, we have

zk+N+2|k+1 + LN F̂ ŵ = Â (δ) zk+N+1|k+1

+ B̂ (δ)κ
(
zk+N+1|k+1

)
+ LN F̂ ŵ.

It follows from zk+N+1|k+1 ∈ C (δ, ε) and from the
definition of the invariant control invariant admissible set
C (δ, ε) (Eq.(17)) that zk+N+2|k+1 + LN F̂ ŵ ∈ C (δ, ε) for all
w ∈ Ŵ (ε, ε). Then by definition of the Pontryagin difference,
we conclude that zk+N+2|k+1 ∈ C (δ, ε) 	 LN F̂Ŵ (ε, ε) =
Zf (ε, ε).

The control algorithm in Alg. 1 , in each time step k, solves
P(δ,ε)(x̂k, δk, εk, uk−1) for each estimation mode (δ, ε) ∈ ∆
and selects the control input uk and the next estimation
mode (δk+1, εk+1) corresponding to the best total cost J(δ,ε).
Therefore, during the course of control, the algorithm may
switch between the estimation modes in ∆ depending on the
system’s state. Thm. X.2 states that if the control algorithm
Alg. 1 is feasible in its first time step then it will be robustly

feasible and the state and control input constraints are also
robustly satisfied.

Theorem X.2. If at the initial time step there exists (δ, ε) ∈ ∆
such that P(δ,ε)(x̂0, δ0, ε0, u0−1) is feasible then the system
Eq. 9 controlled by Alg. 1 and subjected to disturbances
constrained s.t. wk ∈ W,∀k ≥ 0 robustly satisfies the state
constraint xk ∈ X,∀k ≥ 0 and the control input constraint
uk ∈ U,∀k ≥ 0, and all subsequent iterations of the algorithm
are feasible.

Proof. The Theorem can be proved by recursively applying
Thm. X.1. Indeed, suppose at time step k the algorithm is
feasible and results in control input uk and next estimation
mode (δk+1, εk+1), then P(δk+1,εk+1)(x̂k, δk, εk, uk−1) is fea-
sible. By Thm. X.1, uk ∈ U and at the next time step
k + 1, xk+1 ∈ X and P(δk+1,εk+1)(x̂k+1, δk+1, εk+1, uk+1−1)
is also feasible, hence the algorithm is feasible. Therefore, the
Theorem holds by induction.

XI. THE STOCHASTIC CASE

When the estimation errors are drawn from a distribution,
the contracts for the perception algorithm are of the form
(δ,Σ) (computation time and estimation error covariance
respectively, assume 0 mean distributions w.l.o.g). In the
following section we consider the case where the estimation
errors come from a general distribution (with bounded second
moment) and have bounded support.

The main results are summarized in the following theorem
(restated here):

Theorem XI.1 (Robust Feasibility of SAMPC). For any
estimation mode (δ,Σ), if P̃δ,Σ(x̂k, δk,Σk, uk−1) is feasible
then the system (2) controlled by the RAMPC and subjected to
disturbances constrained by wk ∈ W satisfies, with probability
at least 1 − ζ, the state constraint xk ∈ X and the control
input constraint uk ∈ U , and the subsequent optimization
P̃δ,Σ(x̂k+1, δk+1,Σk+1, uk+1−1), are feasible with Probability
1.

We begin with a candidate solution similar to the one from
the robust (worst case) Anytime MPC case, i.e. (19). Since
the proofs are very similar in nature to those in the robust
case, we will build on top of those existing proofs, dropping
subscripts for mode, time step, and constraint number where
necessary for ease of notation.

A. Constraint tightening

Here, we assume that the estimation error e comes from
a distribution with a known bounded variance and a known
mean (set to 0 w.l.o.g) for each mode of the perception-based
estimator (δ,Σ).For the sake of simplicity, we assume that the
process noise w is also such a distribution and has a bounded
support.

Starting from a chance constraint of the form P (Hzk+j|k ≤
g) ≥ 1− ζ with g ∈ Rp, constraint separation tells us that this
constraint is satisfied when ∀i = 1, . . . , p:

P (HT
i zk+j|k ≤ gi) ≥ 1− ζi (20)

where ζi|ζi ≥ 0 ∀i,
∑p
i=1 ζi = ζ. This is satisfied by the

candidate solution when:

P (HT
i (z̄k+j|k +

j−1∑
l=0

LlF̂ ŵk+(j−l) − F̂ ek+j) ≤ gi) ≥ 1− ζi

(21)
Let

λi,k+j|k = HT
i

∑j−1
l=0 LlF̂ ŵk+(j−l) − F̂ ek+j (22)

then for the optimization formulation we need (21) in a form:

HT
i z̄k+j|k ≤ gi − γi,k+j|k (23a)

where γi,k+j|k is s.t. P (λi,k+j|k ≤ γi,k+j|k) ≥ 1− ζi (23b)

Assume λi,k+j|k has variance σ2
i,k+j|k, which can be com-

puted as w and e are independent and have bounded variances.
Now in order to compute such a γi,k+j|k, we have the option
of using one of multiple concentration inequalities:

Case A: e has unbounded support: In this case, we can use
the very commonly used [27], [35] Chebyschev inequality:

P (λi,k+j|k ≥ γi,k+j|k) ≤ ζi
= σ2

i,k+j|k/(σ
2
i,k+j|k + γ2

i,k+j|k)
(24)

This gives us

γcheb
i,k+j|k ≥ σi,k+j|k

√
(1− ζi)/ζi (25)

We can use this γcheb
i,k+j|k in (23a) to be used for the

constraints of the optimization. In this paper, we do not
develop the formulation for this further as strong guarantees
on recursive feasibility cannot be achieved when the error
distribution does not have a finite support.

Case B: e has bounded support: In this case, we have
the option of using either the Hoeffding or the Bernstein
concentration inequalities [35] (based on the form of the bound
available). We know that λi,k+j|k is formed by a sum of
multiple independent random variables (22). Let this sum be
λi,k+j|k =

∑
v λv , with λv generally referring to elements

of the sum in (22). Since e and w have bounded support, so
do the λv’s, let their bounds be av ≤ λ ≤ bv ∀v. Also, let
their variances be σ2

v . In this case, we can use the Hoeffding
concentration inequality:

P (λi,k+j|k ≥ γi,k+j|k) ≤ ζi
= exp(−2γ2

i,k+j|k/
∑
v(bv − av)2) (26)

Solving this gives us a value of γi,k+j|k to be used in the
constraints for the optimization:

γhoeff
i,k+j|k ≥ (1/

√
2)
√∑

v(bv − av)2 log(1/ζi) (27)

Another option is to use the Bernstein concentration in-
equality. In order to use this, define M = maxv bv (therefore
λv ≤M ∀v). With this

P (λi,k+j|k ≥ γi,k+j|k) ≤ ζi
= exp{−γ2

i,k+j|k/((2/3)Mγi,k+j|k + 2
∑
v σ

2
v)}

(28)

Define c1 = (−2/3) log(1/ζi) and c2 = −2 log(1/ζi)
∑
v σ

2
v .

We can compute a γi,k+j|k that can be used in the optimization
formulation from the above equation as follows:

γbernst
i,k+j|k ≥ (1/2)(−c1 ±

√
c21 − 4c2) (29)

Combining these with (23a) results in linear constraints on
the optimization variables of the SAMPC such that the chance
constraints P (Hzk+j|k ≤ g) ≥ 1− ζ are satisfied for all j in
the optimization horizon.

The rest of this section will focus on the recursive feasibility
of the candidate solution of (19) (as constructed for the robust
case) for the case where the estimation error (and process
noise) distributions have bounded support.

B. Sketch of proof for recursive feasibility

1) Validity of the applied input and next state, initial
condition, dynamics: Again, via construction (as shown in
the robust case), these conditions are met by the candidate
solution.

2) State Constraints: Similar to the case when e came from
a normal distribution, the condition for recursive feasibility
takes on the form:

HT
i LjF̂ ŵk+1 ≤ γi,(k+1)+j|k+1 − γi,k+j+1|k (30)

This quantity can be computed offline since
γi,(k+1)+j|k+1, γi,k+j+1|k are computed apriori (in both
cases where the mode remains the same from time k to
k + 1, or changes). With this, and given the samples that
form the distribution of e (through the profiling step), the
probability can be computed via brute force by summing
over all combinations of the elements that make up the sum
HT
i LjF̂ ŵk+1.
Recall that we assume bounded support of the distributions

of e and w. In this case, we also know that ŵk+1 ∈ Ŵ . For
such cases, we can prove recursive feasibility with probability
1 by using the approach presented in [27]. A sketch of this
proof follows.

For simplicity of notation, denote γi,l+j|l = γi,j , and
similarly for other variables with the same indexing that
follow. First, using the bounded support of the uncertainties,
we can compute:

κi,j = maxŵk+1∈ŴH
T
i LjF̂ ŵk+1 (31)

Now let γ̃i,j be the maximum element of the jth column
of the following matrix:

γi,1 γi,2 γi,3 . . .
0 γi,1 + κi,1 γi,2 + κi,2 . . .
... 0 γi,1 + κi,1 + κi,2 . . .
...

...
...

. . .

 (32)

Replacing γ in (23a) by this new γ̃ gives us the constraints:

HT
i z̄k+j|k ≤ gi − γ̃i,k+j|k (33)

This added conservativeness turns the recursive feasibility
probability to 1. This can be observed by rewriting (30):

P (HT
i LjF̂ ŵk+1 ≤ γ̃i,j − γ̃i,j+1)

= P (HT
i LjF̂ ŵk+1 ≤ κi,j) (by definition of γ̃i,j)

= 1 (by definition of κi,j)

3) Terminal Constraint: The terminal constraint is recur-
sively feasible by the definition of the invariant set (same
formulation as for the robust case) and using the fact that
ŵk+1 ∈ Ŵ , where W can be computed because of the
bounded support of the disturbances. The proof follows from
the deterministic (robust) case.

This concludes the proof sketch to show that the SAMPC
of (7) formulated using the set shrinking of Sec. XI-A both
satisfies the chance constraints and is recursively feasible with
probability 1 (i.e. proves Theorem XI.1).

XII. MORE DETAILS ON THE EXPERIMENTAL SETUP

To evaluate our methodology on a real platform, we applied
it to a hexrotor with the Odroid-U3 as a computation platform,
running the Robot Operating System (ROS) [32] in Ubuntu.
For the evaluations, the hexrotor is tasked with following the
two trajectories shown in Fig. 11. As can be seen in Fig. 17,
the visual odometry algorithm can occcasionaly take a long
time to give a pose estimate.

execution time (ms)
0 20 40 60 80

cd
f:

F
(e

xe
cu

tio
n

tim
e)

0

0.2

0.4

0.6

0.8

1

#C=50
#C=100
#C=150
#C=200
#C=250
#C=350
#C=550

Fig. 17. Cumulative distribution of profiled execution times for visual
odometry running on the Odroid-U3 for varying maximum number of corners
from the SVO algorithm.

In our formulation we have assumed that the estimator
satisfies the (δ, ε) contract requested by the controller. Thus,
to ensure that the estimator fulfils the contract and that the
mathematical guarantees provided by our RAMPC formulation
hold, instead of using the visual odometry algorithm to fly the
robot, we injected delays and errors into the measurements
from Vicon, which is a high accuracy localization system.
These delays and errors were selected from the ∆ curve
obtained by profiling the SVO algorithm (Fig 9). The hexrotor
flies using these pose estimates and our control algorithms for
both the position/velocity control and setting the time deadline
for the next estimate. The RAMPC has the positions and
velocities in the 3-axes as its references, xrefk , to track, and

generates control inputs in the form of desired thrust, roll and
pitch for a low-level attitude controller to track. The RAMPC
and SAMPC are coded in CVXGEN [36] and the generated
C Code is integrated in the ROS module for control of the
hexrotor, running at 20Hz. The constraint sets for the RAMPC
and SAMPC are computed offline in MATLAB and then used
in CVXGEN as polyhedron type constraints. The constraint set
X defines a safe set of positions and velocities in the flying
area. The constraint set U of inputs keeps desired pitch and
roll magnitudes less than 30 degrees and desired thrust within
limits of the hex-rotor abilities.

	Technical Report: Anytime Computation and Control for Autonomous Systems
	Recommended Citation

	Technical Report: Anytime Computation and Control for Autonomous Systems
	Abstract
	Keywords
	Disciplines
	Author(s)

	tmp.1574909425.pdf.96lBj

