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Abstract
Influenza A viruses pose a serious threat to public health, and seasonal circulation of influenza viruses causes
substantial morbidity and mortality. Influenza viruses continuously acquire substitutions in the surface
glycoproteins hemagglutinin (HA) and neuraminidase (NA). These substitutions prevent the binding of pre-
existing antibodies, allowing the virus to escape population immunity in a process known as antigenic drift.
Due to antigenic drift, individuals can be repeatedly infected by antigenically distinct influenza strains over the
course of their life. Antigenic drift undermines the effectiveness of our seasonal influenza vaccines and our
vaccine strains must be updated on an annual basis due to antigenic changes. In order to understand antigenic
drift it is essential to know the sites of antibody binding as well as the substitutions that facilitate viral escape
from immunity. In this dissertation, we explore both the epitopes targeted in human antibody responses and
how influenza viruses evade these responses. We first demonstrate that prior exposure shapes the sites
targeted in human antibody responses, and show that many middle-age adults mounted an antibody response
against H1N1 viruses that is focused against sites on HA conserved between contemporary strains and strains
that circulated in early childhood. In addition, we demonstrate that a viral substitution in this epitope allows
influenza viruses to evade neutralizing antibody responses. We next demonstrate that an H3N2 HA
substitution introducing a glycosylation site prevents the binding of neutralizing antibodies present in a large
number of individuals. Importantly, our egg-based vaccines lack this glycosylation due to culture-adaptive
substitutions, but a vaccine containing this glycosylation motif more potently induced antibody responses
against circulating strains. Finally, we identify and characterize antibodies that target conserved residues in the
receptor-binding site (RBS) of HA. We demonstrate that in some individuals RBS antibodies in sera
contribute to neutralization of antigenically distinct strains, even in the case of an antigenically mismatched
vaccine. Overall, the work presented here helps address the complex interaction of influenza viruses and
human immunity. Importantly, our work identifies shortcomings with our current process of vaccine strain
selection and production and investigates epitopes of interest for universal influenza vaccine efforts.
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ABSTRACT 
 

DISSECTING HUMAN ANTIBODY RESPONSES AGAINST INFLUENZA A VIRUSES AND 

ANTIGENIC CHANGES THAT FACILITATE IMMUNE ESCAPE 

Seth Julius Zost 

Scott E. Hensley 

Influenza A viruses pose a serious threat to public health, and seasonal circulation of influenza 

viruses causes substantial morbidity and mortality. Influenza viruses continuously acquire 

substitutions in the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). These 

substitutions prevent the binding of pre-existing antibodies, allowing the virus to escape 

population immunity in a process known as antigenic drift. Due to antigenic drift, individuals can 

be repeatedly infected by antigenically distinct influenza strains over the course of their life. 

Antigenic drift undermines the effectiveness of our seasonal influenza vaccines and our vaccine 

strains must be updated on an annual basis due to antigenic changes. In order to understand 

antigenic drift it is essential to know the sites of antibody binding as well as the substitutions that 

facilitate viral escape from immunity. In this dissertation, we explore both the epitopes targeted in 

human antibody responses and how influenza viruses evade these responses. We first 

demonstrate that prior exposure shapes the sites targeted in human antibody responses, and 

show that many middle-age adults mounted an antibody response against H1N1 viruses that is 

focused against sites on HA conserved between contemporary strains and strains that circulated 

in early childhood. In addition, we demonstrate that a viral substitution in this epitope allows 

influenza viruses to evade neutralizing antibody responses. We next demonstrate that an H3N2 

HA substitution introducing a glycosylation site prevents the binding of neutralizing antibodies 

present in a large number of individuals. Importantly, our egg-based vaccines lack this 

glycosylation due to culture-adaptive substitutions, but a vaccine containing this glycosylation 

motif more potently induced antibody responses against circulating strains. Finally, we identify 

and characterize antibodies that target conserved residues in the receptor-binding site (RBS) of 
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HA. We demonstrate that in some individuals RBS antibodies in sera contribute to neutralization 

of antigenically distinct strains, even in the case of an antigenically mismatched vaccine. Overall, 

the work presented here helps address the complex interaction of influenza viruses and human 

immunity. Importantly, our work identifies shortcomings with our current process of vaccine strain 

selection and production and investigates epitopes of interest for universal influenza vaccine 

efforts. 
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CHAPTER 1: INTRODUCTION 
 

Parts of this chapter have been submitted for publication: 

Seth J. Zost*, Nicholas C. Wu*, Scott E. Hensley+, and Ian A. Wilson+. Immunodominance and 

antigenic variation of influenza virus hemagglutinin: implications for design of universal vaccine 

immunogen 

(* = equal contribution) 

(+ = co-corresponding author) 

 
 
The 1918 Pandemic: one hundred years later 

One hundred years ago, as the First World War continued to rage, a novel influenza virus 

made the leap from an animal reservoir to human-to-human circulation. Two years later, after 

three pandemic waves, an estimated 20-50 million people worldwide had died following infection 

with this virus (Johnson and Mueller, 2002). Over the next century the descendants of this 

pandemic virus recombined with other influenza viruses, swapping gene segments and causing 

four other pandemics in addition to substantial morbidity and mortality from annual seasonal 

circulation. One hundred years later, both of the subtypes of influenza viruses that continue 

circulate in humans have genes that can be traced back to the virus that emerged with such 

devastating effect in 1918 (Taubenberger and Morens, 2006). The 1918 pandemic serves as a 

stark reminder of the dangers posed by infectious diseases and of the serious threat influenza 

viruses pose to public health. 

Since 1918, we have learned much about how influenza viruses enter cells, replicate, 

and evade host immunity. Despite these advances, our influenza vaccines are at best 60-70% 

effective, and in many years vaccine effectiveness is much lower (Lewnard and Cobey, 2018). As 

a result of viral escape from vaccine-induced immunity, annual vaccination does not provide long-

lived protection from influenza virus infection (Carrat and Flahault, 2007). In addition, novel 
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influenza subtypes pose constant pandemic threats. In this chapter, I will introduce influenza A 

viruses and the disease they cause, the response that the immune system makes upon infection 

or vaccination, how the virus evades pre-existing immunity, and the state of our current and future 

vaccines. 

Influenza A virus structure and tropism  
 
 

Although influenza viruses have likely circulated in humans since well before the 1918 

pandemic, influenza virus was first isolated from infected humans by Wilson Smith, Christopher 

Andrewes, and Patrick Laidlaw in 1933 (Smith et al., 1933). Influenza viruses are members of the 

family Orthomyxoviridae, composed of influenza A viruses, influenza B viruses, influenza C 

viruses, and influenza D viruses. Aquatic birds are the major natural reservoir for influenza A 

viruses as they harbor the greatest number of distinct influenza A strains (Olsen et al., 2006). 

However, influenza A viruses infect a wide range of non-human mammals. Two genetic lineages 

of influenza B viruses co-circulate in humans (Rota et al., 1990). Influenza C viruses circulate in 

humans as well, although human influenza C cases are generally much more mild (Matsuzaki et 

al., 2006). Influenza D viruses have recently been isolated from cattle and swine, although little is 

known about pathogenesis of these recently described viruses (Hause et al., 2014). Avian 

influenza A viruses infect epithelial cells lining the gastrointestinal tract of birds and the viruses 

are transmitted from bird to bird by fecal-oral transmission (Olsen et al., 2006). In humans 

however, influenza viruses are transmitted via the respiratory route and influenza viruses infect 

epithelial cells in the airway and lung (Krammer et al., 2018). In humans, influenza infection and 

immune cell infiltration as part of the immune response causes lung inflammation and serious 

respiratory distress that can sometimes be fatal. 

 Influenza A viruses are negative-sense, single-stranded RNA viruses with an 

approximately 14 kilobase genome. The influenza A genome is composed of eight different gene 

segments. Circulating influenza viruses are incredibly diverse, and this is due in large part to the 
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segmented genome of influenza viruses, which facilitates recombination between strains. Viruses 

from different lineages that co-infect the same cell can swap gene segments, resulting in the 

generation of new viral variants that can have altered virulence or antigenic properties (Steel and 

Lowen, 2014). Importantly, this can result in zoonotic spillover events where reassortant influenza 

strains make the jump from circulation in one species into another (Taubenberger and Kash, 

2010).  

 The number of proteins encoded by influenza A viruses varies, and smaller proteins that 

result from alternative ribosomal start sites are still being identified (Machkovech et al., 2018; 

Muramoto et al., 2013). However, all influenza A viruses encode nine proteins essential for 

replication and infection. The membrane-bound viral glycoproteins hemagglutinin (HA) and 

neuraminidase (NA) are present on the surface of the virion and function in attachment, cellular 

entry, and viral egress (Gamblin and Skehel, 2010). Influenza subtypes are denoted by the HA 

and NA proteins they encode. The M gene segment encodes two different proteins. Matrix protein 

1 (M1) is the major component of the viral capsid and matrix protein 2 (M2) is a transmembrane 

ion channel. Both of these proteins play roles in viral entry as well as virion assembly and 

budding (Gómez-Puertas et al., 2000; Manzoor et al., 2017; Pinto et al., 1992). Given that 

influenza viruses are negative-strand RNA viruses, viral RNA-dependent RNA polymerases are 

packaged into virions. The viral polymerase is composed of three subunits – polymerase basic 

protein 1 (PB1), polymerase basic protein 2 (PB2), and polymerase acidic protein 1 (PA), that 

form viral ribonucleoprotein complexes (vRNP) with the genome packaging protein nucleoprotein 

(NP) and the RNA genome (Eisfeld et al., 2015; Zheng and Tao, 2013). While all these proteins 

are present in influenza virions, influenza viruses also encode two nonstructural proteins that are 

produced within infected cells but are not packaged into virions. Nonstructural protein 1 (NS1) 

functions as an antagonist of the innate immune system in addition to performing other functions 

(Ayllon and García-Sastre, 2015), while nuclear export protein (NEP) mainly serves to facilitate 

the export of replication products from the nucleus (O'Neill et al., 1998). 
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Hemagglutinin structure and function 
	

	 As the viral attachment and entry factor, HA plays an essential role in the viral lifecycle. 

HA is a trimeric glycoprotein composed of a membrane-distal globular head domain and a 

membrane-proximal stalk domain (Gamblin and Skehel, 2010). After viral endocytosis, HA 

undergoes a conformational change that fuses the membrane of the virus and the membrane of 

the acidifying endosome (Skehel and Wiley, 2000). This conformational change requires the 

cleavage of the precursor protein HA0 by trypsin-like proteases into a fusion-competent form of 

HA composed of HA1 and HA2. This cleavage takes place during virion maturation (Skehel and 

Wiley, 2000). 18 different subtypes of HA have been described, and the globular head domains of 

these HA subtypes are highly divergent (Tong et al., 2012). These subtypes can be divided into 

two different phylogenetic groups, group 1 and group 2. Currently, two subtypes of influenza 

viruses, H1N1 (a group 1 HA) and H3N2 (a group 2 HA), circulate in humans. When circulating 

strains acquire novel HA or NA glycoproteins through genetic recombination, this dramatically 

changes the antigenic determinants of the strain. This particular type of reassortment in which the 

surface antigens change is known as antigenic shift. Due to the lack of population immunity 

against novel HA and NA proteins, antigenic shift variants pose a potential pandemic threat 

(Krammer et al., 2018; Taubenberger and Kash, 2010). 

The receptor-binding site (RBS), located in the HA globular head domain, mediates the 

interaction of HA with sialic acid, and some residues that interact with sialic acid are completely 

conserved across different HA subtypes. Sialic acid is the terminal sugar moiety of many 

glycoproteins and glycolipids present at the cellular surface, and the affinity of HA for different 

sialic acid linkages plays an important role in determining viral tropism. Viruses that circulate in 

humans generally have high affinity for the α2-6 linkage of sialic acid, which is the predominant 

sialic acid linkage on human airway epithelial cells. In contrast, viruses that circulate in birds have 

high affinity for the α2-3 linkage of sialic acid, which the major linkage on epithelial cells in the 

avian gut. Influenza viruses of avian origin that have entered human circulation generally acquire 



5	
		

changes near the RBS that shift the binding preference of HA from α2-3 to α2-6 (Taubenberger 

and Kash, 2010). Importantly, antigenic substitutions can also modulate receptor avidity (Hensley 

et al., 2009; Li et al., 2013a). Due to the importance of HA in both the viral lifecycle and the 

immune response to infection and vaccination, the rest of this introduction will focus on antibody 

responses against HA and the mechanisms by which influenza viruses evade these responses.  

Antibody responses and antigenic drift 
	

Humoral adaptive immune responses play an essential role in protection from reinfection 

with viruses. Adaptive immune responses must make specific and protective responses against a 

dizzying array of different pathogens, each with vastly different molecular structures. In 

vertebrates, antibody responses address this daunting challenge by combating diversity with 

diversity. Antibodies, which are expressed by B-cells, are composed of heavy and light chains 

that are randomly assembled by genomic recombination in a process called VDJ recombination, 

generating tremendous structural diversity (Murphy et al., 2012) These rearranged antibody 

genes are expressed on the surface of mature B-cells as a membrane bound B-cell receptor 

(BCR). In an immune response to influenza virus, B-cells specific for influenza antigens are 

activated by the interaction of the BCR with antigen and begin secreting antibody (predominantly 

IgM) and begin to undergo class-switching to IgG isotypes. In the case of antibody responses 

against viral proteins, B-cells encounter antigen and are activated in specialized lymphoid 

structures called germinal centers that are present in the lymph nodes and spleen (De Silva and 

Klein, 2015). In germinal centers, B-cells proliferate with CD4+ T-cell help and undergo somatic 

mutation of the antibody gene to generate variants. B-cells expressing these variants undergo 

clonal selection through competition for antigen binding (Victora and Wilson, 2015). The end 

result of this process of affinity maturation is a high-affinity polyclonal antibody response against 

viral antigens. B-cells expressing these high-affinity, class-switched antibody specificities can 

become committed to long-lived plasmabasts or memory B-cells. In the case of a secondary 

immune response, memory B-cells can be recalled, and these B-cells can re-enter the germinal 
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center for another round of somatic hypermuation and affinity maturation (Kurosaki et al., 2015). 

The existence of memory B-cell populations that can be recruited in secondary responses to 

influenza exposure has important ramifications for antibody-mediated immunity to influenza, and 

will be discussed in further detail in this introduction. 

Antibodies targeting epitopes in the HA globular head domain can protect animals and 

humans from influenza virus infections (Coudeville et al., 2010). The majority of these antibodies 

neutralize by blocking viral attachment, although other neutralization mechanisms can be at play 

for some of these antibodies, such as blocking the pH-induced conformational change of HA 

upon endosomal acidification or by inhibiting viral budding (Brandenburg et al., 2013; Krammer 

and Palese, 2015). Infection and vaccination typically elicit strain-specific HA-head antibodies that 

are often long-lived. In a particularly dramatic example, survivors of the 1918 pandemic had high 

levels of serum antibodies specific for the 1918 HA almost a century after being infected (Yu et 

al., 2008).  

For many viruses, infection elicits neutralizing antibody responses that confer lifelong 

immunity. For example, infection with measles protects against reinfection, and many of our 

inactivated or live-attenuated vaccines also provide protection for life. Although we have 

vaccinated against measles for decades, the vaccine remains highly effective against circulating 

viruses, indicating that viral escape from vaccine-induced immunity has not occurred (Marin et al., 

2006). This is not the case, however, for immunity to influenza viruses. Population immunity to 

influenza viruses selects for antigenic variants in HA and NA with substitutions that introduce 

substitutions abrogating the binding of pre-existing antibody responses. Due to the selective 

advantage of having escaped immunity, these variant viruses then dominate circulation, and 

these antigenic substitutions become fixed in circulating strains. This process of immune evasion 

through the acquisition of substitutions in antigenic sites is called antigenic drift. By allowing 

influenza viruses to escape population immunity, antigenic drift facilitates continuous circulation of 
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influenza viruses in the human population, resulting in considerable morbidity and mortality 

(Yewdell, 2011). 

 Antigenic drift requires pre-existing viral variants that can undergo positive selection, and 

these antigenic substitutions must also not compromise critical functions of HA required for the 

viral lifecycle, such as receptor binding or conformational change. The error-prone viral RNA 

polymerase plays an essential role in facilitating antigenic drift by generating antigenic variants 

that can be positively selected by immune pressure. However, other RNA viruses such as 

measles do not undergo antigenic drift, despite also having high mutation rates. This may be due, 

in part, to different functional constraints on viral glycoproteins that restrict possible substitutions. 

Supporting this hypothesis, influenza virus HA is much more tolerant of insertional mutagenesis 

than the glycoproteins of measles virus (Fulton et al., 2015). It is also important to note that 

genetic changes in HA do not necessarily correspond to antigenic change, as substitutions that 

become fixed in HA do not always result in substitutions that prevent the binding of antibodies. 

Teasing out the contribution of individual substitutions to antigenic drift is essential to 

understanding how influenza viruses evade host immune responses. 

HA immunodominance of primary antibody responses 
	

Given that antibody responses drive selection of antigenic drift variants, a better 

understanding of the process of antigenic drift requires understanding the sites targeted in human 

antibody responses. Studies in the 1980s began to define the relationship between genetic and 

antigenic change by demonstrating that substitutions that abrogate the binding of most antibodies 

are clustered in antigenic sites that cover much of the globular head of HA, and that antigenic drift 

substitutions accumulate in these same sites during viral circulation (Caton et al., 1982; Wiley et 

al., 1981; Yewdell et al., 1979). These antibodies against highly exposed epitopes on the HA 

head usually dominate primary responses against influenza viruses, and the immunodominance 

of HA antibody responses is not a phenomenon unique to human antibody responses. Primary 

H3N2 infections in ferrets elicit high levels of antibodies that are directed towards HA antigenic 
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sites A and B, which are located in close proximity to the HA RBS (Koel et al., 2013). In particular, 

a study of H3N2 antigenic evolution that relied on ferret sera suggested that H3N2 antibody 

responses are narrowly focused, and that substitutions in only two antigenic sites are responsible 

for H3N2 antigenic drift (Koel et al., 2013). Similarly, H1N1-infected young children tend to mount 

antibody responses to epitopes in antigenic sites near the HA RBS (Koel et al., 2015). The 

observation that antigenically distinct strains have changes in multiple antigenic sites originally 

led to the proposal that acquisition of antigenic substitutions in multiple antigenic sites was 

required for antigenically drifted variants to circulate (Wiley et al., 1981). However, it is becoming 

clear that single substitutions in the HA head domain can have major effects on antigenicity. Such 

an example occurred during the 2014-2015 season when antigenically drifted H3N2 strains 

possessed new substitutions in the HA head (Chambers et al., 2015). The circulation of strains 

possessing these novel substitutions coincided with dramatically reduced vaccine effectiveness 

(Zimmerman et al., 2016). 

In contrast to the immunodominant HA head, HA stalk antibody responses constitute a 

small fraction of total anti-influenza virus antibodies in most humans (Sui et al., 2011). While 

steric hindrance has been suggested to contribute to the immunosubdominance of HA stalk 

antibodies (Andrews et al., 2015), recombinant HA vaccines also fail to elicit high-titer HA stalk 

responses (Nachbagauer et al., 2016). In fact, cryoelectron tomography has shown that the 

majority of the HA on influenza virions are available to bind to stalk antibodies (Harris et al., 

2013). HA stalk antibodies can be polyreactive (Andrews et al., 2015), and it is possible that due 

to an intrinsic property of antibodies recognizing stalk epitopes, B-cells specific for HA stalk 

epitopes are under negative selection. This could contribute to HA stalk antibody 

immunosubdominance. More recent work suggests that the fine-specificity of influenza virus 

antibody responses in mice change over time (Angeletti et al., 2017). Angeletti and colleagues 

found that antibodies against epitopes near the top of the HA head dominate the early response, 

and antibodies against other epitopes increase later in the response (Angeletti et al., 2017). 
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Given that most studies have only examined a limited range of timepoints, it is likely that shifts in 

antibody immunodominance dynamics have yet to be fully explored. 

While there are likely antibody-intrinsic contributions to HA immunodominance, it is also 

possible that the observed immunodominance of HA is, in part, due to structural features of the 

HA protein itself. Almost all immunological studies of influenza virus have been carried out in 

organisms that make immunoglobulin-based humoral responses. To test whether some features 

of immunodominance are antigen-intrinsic, Altman and colleagues studied immune responses in 

lampreys that were immunized with influenza virus (Altman et al., 2015). Lampreys, a jawless 

fish, lack immunoglobulin genes but encode variable lymphocyte receptors (VLRs), which are an 

entirely different system of humoral adaptive immunity based on Leu-rich repeats (LRR) rather 

than immunoglobulin domains. Remarkably, lamprey VLR responses were found to be focused 

on the same HA epitopes as those that have been observed in mice (Altman et al., 2015). The 

similarity of antibody and VLR responses against HA in mice and lamprey suggest that properties 

of the HA protein itself, such as electrostatic or structural features, contribute to antibody 

immunodominance hierarchies. 

Immune history shapes secondary immune responses to influenza viruses 
	

It has been known since the 1950s that antibodies elicited by primary influenza virus 

exposures are highly strain-specific, whereas antibodies elicited by secondary exposures with 

antigenically distinct viral strains tend to be highly cross-reactive with the first strain (Davenport 

and Hennessy, 1956; Davenport et al., 1953; Francis, 1960). This observation was originally 

referred to as ‘original antigenic sin’ (Francis, 1960), as the recalled antibody response that cross-

reacted with the first strain appeared to come at the expense of a de novo response against the 

second strain. More recently, the effects of prior exposure have been referred to as ‘antigenic 

seniority’ (Lessler et al., 2012) or ‘immune imprinting’ (Gostic et al., 2016). Although the 

mechanisms behind ‘original antigenic sin’ have yet to be fully elucidated, it is thought that cross-
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reactive B cells elicited by previous influenza virus exposures are preferentially recalled upon 

exposure with an antigenically distinct viral strain. 

The HA head of the 2009 pandemic H1N1 strain was radically different compared with 

previously circulating seasonal H1N1 strains. Several studies suggest that prior seasonal H1N1 

exposures influenced the fine-specificity of antibodies elicited against this antigenically distinct 

2009 pandemic H1N1 virus in humans (Huang et al., 2015; Li et al., 2012; Li et al., 2013b; 

Wrammert et al., 2011; Xu et al., 2010). In many adults, the 2009 pandemic H1N1 strain 

preferentially boosted HA stalk antibodies (Li et al., 2012; Wrammert et al., 2011), likely because 

this strain possessed a radically different HA head but similar HA stalk compared to previously 

circulating seasonal H1N1 strains. Stalk antibodies, however, were not the only antibody type that 

was preferentially recalled in humans exposed to the 2009 pandemic H1N1. In some individuals, 

the 2009 pandemic H1N1 virus elicited antibody responses that were highly focused on rare HA 

head epitopes that were conserved in seasonal H1N1 strains that they were exposed to in 

childhood (Huang et al., 2015; Li et al., 2013b; Xu et al., 2010). Importantly, different aged 

individuals were found to mount antibodies of different specificities upon exposure to the 2009 

pandemic H1N1 virus, due to differences in seasonal H1N1 exposure histories. Furthermore, 

age-specific antibody responses could be recapitulated in the ferret animal model by sequential 

infection with a seasonal H1N1 strain and the pandemic H1N1 strain (Li et al., 2013b). These 

studies of antibodies against the 2009 pandemic H1N1 illustrate how the recall pre-existing 

immune memory can shape the antibody response to antigenically drifted strains. 

 Although for decades it was assumed that H1 and H3 subtypes were completely 

antigenically distinct, it is becoming increasingly clear that human antibodies can target epitopes 

conserved across HA subtypes (Joyce et al., 2016; Lee et al., 2016; McCarthy et al., 2018). The 

existence of sites of cross-reactivity on HAs of different subtypes also means that prior immunity 

to one HA subtype likely shapes the response against other subtypes. This is consistent with a 

recent study by Gostic and colleagues who used epidemiological data to demonstrate a 
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correlation between the probability of first exposure in early childhood to either a group 1 or group 

2 HA and susceptibility to avian H5N1 and H7N9 viral strains (Gostic et al., 2016). They found 

that individuals who were likely exposed to a virus with a group 1 HA in childhood appeared to be 

protected from H5N1 but susceptible to H7N9, while individuals who were likely exposed to a 

virus with a group 2 HA in childhood appeared to be protected from H7N9 but susceptible to 

H5N1. Given that all individuals were likely exposed to group 1 and group 2 strains through 

normal seasonal circulation, this finding suggests the first response to an influenza virus HA 

affects the immune response against different subtypes. While the mechanism mediating this 

heterosubtypic protection has not been determined, it is likely that stalk antibodies play a role. 

One possibility is that that individuals exposed in childhood to group 1 HAs are more likely to 

respond well to group 1 HA stalk antigens, whereas individuals exposed in childhood to group 2 

HAs are more likely to respond well to group 2 HA stalk antigens. The mechanism for this 

phenomenon of imprinting could in part be due to recall of pre-existing memory B-cells elicited by 

the first strain in the response to the second strain. These recalled B-cells could outcompete de 

novo anti-stalk responses in the response to the second strain, resulting in a lack of protective 

antibodies and increased susceptibility to infection with a pandemic strain. 

Influenza vaccines, viral surveillance, and challenges with vaccine strain 
selection and production 
	

 Some influenza vaccines are prepared by growing the virus in cell culture, expressing the 

HA as a recombinant protein in insect cells, or by generating a live-attenuated virus. However, the 

vast majority of influenza vaccines are produced by growing the virus in embryonated chicken 

eggs and chemically inactivating the virus (Grohskopf et al., 2018). This basic process has been 

used to prepare vaccines since the 1940s. After replication, the HA and NA from the vaccine 

strain are purified for inclusion in the vaccine. Our current licensed influenza vaccines contain one 

H1N1 strain and one H3N2 strain, and either one or two influenza B strains (Grohskopf et al., 

2018). Due to antigenic drift however, circulating strains continuously acquire antigenic 
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substitutions that confer escape from antibody specificities boosted by vaccination. As a result, 

the strains included in the vaccine must be updated on a nearly annual basis in order for vaccines 

to be effective. As a part of this effort, the World Health Organization (WHO) has established the 

Global Influenza Surveillance and Response System (GISRIS), a global network for influenza 

viral surveillance composed of collaborating centers throughout the world (Zhang and Wood, 

2018). Through these centers circulating strains collected from infected individuals are isolated, 

sequenced, and antigenically characterized. As part of this effort, some of these isolated strains 

are passaged in embryonated chicken eggs or cell culture systems. The HA and NA genes from 

these isolates are recombined with the six internal gene segments of the culture-adapted virus 

A/Puerto Rico/8/1934 (PR8) in order to generate high-growth reassortant strains. Some of these 

high-growth reassortant strains are designated as candidate vaccine viruses (CVVs), and 

manufacturers are recommended to use these seed strains in their production of vaccine.  

In order to determine whether circulating strains have antigenic changes that confer 

escape from vaccine-induced immunity, ferrets are infected with the vaccine strain. After the 

ferrets recover from infection, serum from these infected ferrets is collected. This standardized 

antiserum is then used to screen circulating strains in hemagglutination-inhibition (HAI) assays. 

The HAI assay measures the ability of antibodies to prevent hemagglutinin-mediated 

agglutination of red blood cells, and is used as a proxy for the ability of sera to inhibit viral 

receptor binding (Francis, 1947; Hirst, 1942). Vaccine strains are generally updated when this 

ferret antiserum poorly inhibits agglutination by circulating strains. In recent years, micro-

neutralization (MN) assays, which measure the ability of serum antibodies to prevent viral 

infection and replication in cell culture, have also been used to measure the ability of serum 

antibodies to inhibit infection and human sera panels have also been incorporated into viral 

surveillance efforts (Beer et al., 2018).  

 Our current system of vaccine strain selection and production has several shortcomings. 

One weakness is the timeline of vaccine production. One dose of vaccine requires approximately 
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one embryonated chicken egg, and in the past five years, there have been approximately 140 

million doses of vaccine produced and distributed in the United States alone (Sah et al., 2018). 

Producing such a large number of doses in time for the influenza season requires a demanding 

production schedule. Vaccine doses are distributed in September and October prior to the start of 

the influenza season, but in order to meet this production deadline, manufacturers of the Northern 

Hemisphere vaccine begin production immediately after the vaccine strain choices are 

announced in February. As a result, seasonal influenza vaccines are produced almost nine 

months prior to their use. Antigenically distinct strains with novel substitutions can emerge after it 

is too late to update the strain included in the vaccine (Houser and Subbarao, 2015). When these 

antigenically drifted strains circulate during an influenza season, vaccine effectiveness can be 

poor. This was the case during the 2014-2015 influenza season, when there was an antigenic 

mismatch between the strain in the vaccine and the strains that actually circulated (Zimmerman et 

al., 2016). This vulnerability can be especially serious in the event of an influenza pandemic. For 

example, in the case of the 2009 H1N1 pandemic, the vaccine arrived too late to prevent most of 

the infections that occurred (CDC, 2010). 

In addition to the difficulties of producing so many vaccine doses, the process of 

adaptation to growth in chicken eggs often results in changes in the HA and NA glycoproteins. 

These changes often occur in or near antigenic sites around the RBS. The likely reason for many 

of these culture-adaptive changes is the selective pressure to improve receptor binding in chicken 

eggs. The end result of these adaptive substitutions is the introduction of potential antigenic 

mismatches between the vaccine strain and circulating strains, which has the potential to 

undermine vaccine effectiveness. Moreover, generation of CVVs is a labor-intensive and time-

consuming process. Occasionally there will not be a CVV prepared from a clade that is predicted 

to circulate. This was the case during the 2015-2016 Northern Hemisphere influenza season, 

when a strain from a different genetic subgroup was included in the vaccine because there were 

no CVVs available from the clade that dominated circulation (Beer et al., 2018; Zimmerman et al., 

2016).  
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Finally, the use of primary ferret antisera to determine antigenic mismatches is potentially 

problematic. As previously discussed for the 2009 pandemic H1N1, immune history can have a 

dramatic effect on the epitopes targeted by human antibody responses. However, reference 

antisera is prepared from ferrets that lack any prior influenza immunity. As a result, it is possible 

that viral substitutions that have antigenic effects in human populations might go undetected 

when relying solely on ferret sera to distinguish antigenic changes. Although human sera panels 

are used as part of viral surveillance efforts, the heavy reliance on ferret sera to distinguish 

antigenic changes could result in the vaccine strain not being updated, and could undermine 

vaccine effectiveness. 

New universal vaccine approaches 
	

While most antibodies against the HA head are directed against epitopes adjacent to the 

conserved HA RBS (Koel et al., 2013; Popova et al., 2012), some antibodies are able to partially 

mimic the sialic acid receptor and bind to conserved residues within the HA RBS (Ekiert et al., 

2012; McCarthy et al., 2018; Schmidt et al., 2015b; Whittle et al., 2011; Xu et al., 2013). While the 

HA RBS has been proposed as a universal vaccine target (Schmidt et al., 2015b), we know 

relatively little about how antibodies targeting the RBS are elicited and recalled.  

In contrast to most epitopes on the HA head, the HA stalk is less tolerant of change 

(Doud and Bloom, 2016; Heaton et al., 2013; Thyagarajan and Bloom, 2014; Wu et al., 2014) and 

is much more highly conserved across subtypes. While some anti-HA stalk mAbs can directly 

neutralize viruses through inhibiting the proteolytic processing of HA by extracellular trypsin-like 

proteases, pH-induced conformational changes, and viral egress (Brandenburg et al., 2013; 

Krammer and Palese, 2015), many of the HA stalk antibodies that have been described require 

Fc-mediated effector functions for in vivo protection (DiLillo et al., 2014). 

Several new universal vaccines are being developed to elicit antibodies against the 

immunosubdominant HA stalk. One approach is to generate stable “headless” HA constructs that 
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lack the head domain (Steel et al., 2010), and as a result, induce antibody responses exclusively 

directed against HA stalk epitopes. Historically, this has been a difficult task because the HA 

head domain serves to stabilize the HA stalk, and as a result, headless HA constructs were too 

unstable for use as immunogens. Recently, two groups have generated headless HAs by 

introducing stabilizing substitutions in the stalk domain (Impagliazzo et al., 2015; Yassine et al., 

2015). Another approach to elicit stalk antibody responses is sequential immunization with 

chimeric HAs that express divergent head domains with the goal of refocusing antibody 

responses towards the HA stalk domain (Krammer et al., 2013). This approach is promising 

because chimeric HAs selectively recall subdominant HA stalk-reactive B-cells in the absence of 

HA head-reactive immunity. Due to the high degree of conservation between stalk domains of HA 

within the group 1 and group 2 subgroups, stalk-directed immunity against group 1 and group 2 

HAs would have the additional benefit of protecting from infection by potential pandemic viruses 

(Ellebedy et al., 2014; Henry Dunand et al., 2015). Both of these approaches have shown 

protection in animal models, but their success in humans will likely depend on their ability to 

induce protective responses in the presence of different types of pre-existing immunity. 

Experimental Questions 
 
 In order to improve influenza vaccine strain selection and viral surveillance, we need a 

better understanding of how human antibody responses are shaped by prior exposure, how 

individual substitutions facilitate viral escape from antibody responses, and what factors might be 

undermining the effectiveness of our existing vaccines. Our work identifies several distinct sites 

on HAs of recent H3N2 and H1N1 viruses that are targeted by antibodies present in human 

individuals. Importantly, we also identify antigenic changes in HA that allow the virus to escape 

population immunity.  

In Chapter 2 we first demonstrate the effects of prior immunity on responses against 

antigenically novel influenza strains. In particular, we identify a subset of individuals who mount a 

highly focused antibody response against an epitope in the 2009 pandemic H1N1 HA. We 
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demonstrate that this antibody specificity is likely a result of prior exposure with seasonal H1N1 

strains that circulated during the early childhood of these individuals. Upon exposure to the 2009 

HA, antibodies specific for an epitope on the HA head were selectively recalled by the 2009 HA 

because these antibodies cross-reacted between the 2009 HA and previous seasonal H1N1 HAs. 

Importantly, a single amino acid change in this epitope became fixed in circulating H1N1 strains 

and resulted in the abrogation of neutralizing antibody responses in a large number of middle-

aged individuals. Due to this substitution, these middle-aged individuals were atypically 

susceptible to infection during the 2013-2014 influenza season. This case illustrates how prior 

exposure to influenza shapes subsequent responses and how influenza viruses can escape 

focused antibody responses. In addition, this work raises concerns with our reliance on ferret 

antisera to distinguish antigenic changes, as ferret antisera from primary infections does not 

recapitulate the full complexity of human immunity. 

In Chapter 3 we explore the effects that culture-adaptive substitutions in our vaccines 

have on the antigenicity of the HA and the quality of the vaccine-induced antibody response. We 

first identify an antigenic substitution in H3N2 viruses that facilitated escape from neutralizing 

antibody responses present in a large number of individuals. This substitution introduced a 

glycosylation in a major HA antigenic site. As a result, pre-existing antibodies in humans could no 

longer bind to HA. Importantly, our egg-adapted vaccine strains lost this glycosylation site during 

adaptation of the virus to growth in chicken eggs, resulting in an antigenic mismatch between the 

vaccine strain and circulating strains. We demonstrate that as a result of this loss of a 

glycosylation, egg-adapted vaccines induced poor neutralizing antibody responses against 

circulating H3N2 strains. However, a vaccine lacking egg-adaptive changes more effectively 

induces neutralizing antibody responses against circulating strains. This work highlights how 

changes that occur as part of the vaccine manufacturing process may compromise the 

effectiveness of our vaccines. Furthermore, our findings suggest that producing vaccines in 

systems that are able to more faithfully recapitulate the HA structure of circulating strains would 

likely result in improvements in vaccine effectiveness. 
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In Chapter 4 we explore the prevalence and abundance of human antibodies recognizing 

epitopes involving residues in the highly conserved HA RBS. We first map the epitopes of 

monoclonal antibodies specific for the H3 HA that were elicited by seasonal vaccination. We 

show that while antigenic substitutions near the RBS abrogate the binding of many monoclonal 

antibodies, a subset of antibodies are able to tolerate antigenic changes due to their contacts with 

conserved resides in the HA RBS. We show that in some of the individuals who elicited these 

RBS antibodies, these antibodies arose from distinct lineages, are detectable in bulk sera, and 

bind to antigenic distinct strains that began circulating several years later. In human vaccination 

cohorts, we quantified the contribution of these RBS antibodies to neutralizing antibody 

responses against circulating strains. Remarkably, some individuals mount a neutralizing 

response that is focused on epitopes involving residues in the highly conserved RBS. This work 

represents the first quantification of the frequency of RBS-directed antibody responses and 

highlights how these antibodies have the potential to protect against circulating strains that have 

major antigenic differences. 

Our work identifies shortcomings with our current process of vaccine strain selection and 

propagation and suggests steps we can take to improve the effectiveness of our current vaccines. 

In addition, this work helps address the feasibility of next-generation vaccines that might target 

more highly conserved epitopes such as the RBS.



18	
	

CHAPTER 2: POTENTIAL ANTIGENIC EXPLANATION FOR 
ATYPICAL H1N1 INFECTIONS AMONG MIDDLE-AGED 
ADULTS DURING THE 2013-2014 INFLUENZA SEASON 
 

This chapter was previously published as: 
 

Linderman, S.L.,* Chambers, B.S.,* Zost, S.J.,* Parkhouse, K., Li, Y., Herrmann, C., Ellebedy, 

A.H., Carter, D.M., Andrews, S.F., Zheng, N.Y., et al. (2014). Potential antigenic explanation for 

atypical H1N1 infections among middle-aged adults during the 2013-2014 influenza season. 

Proceedings of the National Academy of Sciences of the United States of America 111, 15798-

15803. 

(* = equal contribution) 

Contributions: I generated mutant viruses by reverse genetics, completed antigenic assays with 
ferret sera (Figure 2-8), and characterized the glycosylation status of HAs (Figures 2-5, 2-6). Co-
authors Benjamin Chambers and Susanne Linderman completed antigenic assays with human 
sera samples. Susanne Linderman completed all murine experiments. We wrote the manuscript 
together with Scott Hensley. 

 

Summary 
 

Influenza viruses typically cause the most severe disease in children and elderly individuals. 

However, H1N1 viruses disproportionately affected middle-aged adults during the 2013-2014 

influenza season. Although H1N1 viruses recently acquired several substitutions in the gene of 

the hemagglutinin (HA) glycoprotein, classical serological tests utilized by surveillance 

laboratories indicate that these substitutions do not change antigenic properties of the virus. 

Here, we show that one of these substitions is located in a region of HA targeted by antibodies 

elicited in many middle-aged adults. We find that over 42% of individuals born between 1965 and 

1979 possess antibodies that recognize this region of HA. Our findings offer a possible antigenic 

explanation of why middle-aged adults were highly susceptible to H1N1 viruses during the 2013-
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2014 influenza season. Our data further suggest that a drifted H1N1 strain should be included in 

future influenza vaccines to potentially reduce morbidity and mortality in this age group. 

Introduction 
 

Seasonal H1N1 (sH1N1) viruses circulated in the human population for much of the last 

century, and as of 2009, most humans had been exposed to sH1N1 strains. In 2009, an 

antigenically distinct H1N1 strain began infecting humans and caused a pandemic (Dawood et 

al., 2009; Garten et al., 2009; Smith et al., 2009a). Elderly individuals were less susceptible to 

2009 pandemic H1N1 (pH1N1) viruses due to cross-reactive Abs elicited by infections with older 

sH1N1 strains (Garten et al., 2009; Jacobs et al., 2012; Manicassamy et al., 2010; Skountzou et 

al., 2010; Xu et al., 2010). pH1N1 viruses have continued to circulate on a seasonal basis since 

2009. Influenza viruses typically cause a higher disease burden in children and elderly individuals 

(Mertz et al., 2013) but pH1N1 viruses caused unusually high levels of disease in middle-aged 

adults during the 2013-2014 influenza season (Arriola et al., 2014; Ayscue et al., 2014; Davila et 

al., 2014; Epperson et al., 2014). For example, a significantly higher proportion of individuals 

aged 30-59 years old were hospitalized in Mexico with laboratory-confirmed pH1N1 cases in 

2013-2014 relative to 2011-2012 (Davila et al., 2014).  

Most neutralizing influenza Abs are directed against the hemagglutinin (HA) glycoprotein. 

International surveillance laboratories rely primarily on ferret anti-influenza sera for detecting HA 

antigenic changes (Stohr et al., 2012). For these assays, sera are isolated from ferrets recovering 

from primary influenza infections. Seasonal vaccine strains are typically updated when human 

influenza viruses acquire HA substitutions that prevent the binding of primary ferret anti-influenza 

sera. Our laboratory and others have demonstrated that sera isolated from ferrets recovering 

from primary pH1N1 infections are dominated by Abs that recognize an epitope involving 

residues 156, 157, and 158 of the Sa HA antigenic site (Chen et al., 2010a; Li et al., 2013b). The 

pH1N1 component of the seasonal influenza vaccine has not been updated since 2009, because 

very few pH1N1 isolates possess substitutions in residues 156, 157, and 158. The majority of 
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isolates from the 2013-2014 season have been labeled as antigenically similar to the 

A/California/7/2009 vaccine strain (Arriola et al., 2014).  

It is potentially problematic that major antigenic changes of influenza viruses are mainly 

determined using anti-sera isolated from ferrets recovering from primary influenza infections. 

Unlike experimental ferrets, humans are typically re-infected with antigenically distinct influenza 

strains throughout their life (Miller et al., 2013). In the 1950s, it was noted that the human immune 

system preferentially mounts Ab responses that cross-react to previously circulating influenza 

strains, as opposed to new Ab responses that exclusively target newer viral strains (Davenport et 

al., 1953). This process, which Thomas Francis Jr. termed ‘original antigenic sin’, has been 

experimentally recapitulated in ferrets (Li et al., 2013b; Webster, 1966), mice (Kim et al., 2009; 

Virelizier et al., 1974a; Virelizier et al., 1974b), and rabbits (Fazekas de St and Webster, 1966b). 

Our group and others recently demonstrated that the specificity of pH1N1 Ab responses can be 

shaped by prior sH1N1 exposures (Carter et al., 2013; Li et al., 2012; Li et al., 2013b; Pica et al., 

2012; Wrammert et al., 2011). We found that ferrets sequentially infected with sH1N1 and pH1N1 

viruses mount Ab responses dominated against epitopes that are conserved between the viral 

strains (Li et al., 2013b). These studies indicate that primary ferret anti-sera may not be fully 

representative of human influenza immunity. 

It has been proposed that increased morbidity and mortality of middle-aged adults during the 

2013-2014 influenza season is primarily due to low vaccination rates within these populations 

(Catania et al., 2014). An alternative explanation is that recent pH1N1 strains have acquired a 

true antigenic substitution that has been mislabeled as ‘antigenically neutral’ by assays that rely 

on primary ferret anti-sera. Here we complete a series of experiments to determine if recent 

pH1N1 strains possess a substitution that prevents binding of Abs in middle-aged humans who 

have been previously exposed to different H1N1 strains.  

Results 
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Recent pH1N1 strains possess a substitution that prevents binding of human antibodies  
	

Anti-sera isolated from ferrets recovering from primary pH1N1 infections are highly specific for an 

epitope involving amino acids 156, 157, and 158 of the Sa HA antigenic site (Chen et al., 2010a; 

Li et al., 2013b). Very few pH1N1 isolates possess substitutions in these Sa residues (Figure 2-

1), however, pH1N1 viruses recently acquired a K166Q HA substitution, which is located at the 

interface of the Sa/Ca (Caton et al., 1982) antigenic sites (Figure 2-2A). The K166Q HA 

substitution first arose during the 2012-2013 season and is now present in over 99% of pH1N1 

isolates (Figure 2-2B, C). Based on experiments using primary anti-sera isolated from infected 

ferrets, surveillance laboratories have reported that pH1N1 viruses with the K166Q HA 

substitution are antigenically indistinguishable from the A/California/7/2009 pH1N1 vaccine strain 

(Arriola et al., 2014).  

To address if human Abs are capable of recognizing pH1N1 viruses with the K166Q HA 

substitution, we performed hemagglutination-inhibition (HAI) assays using sera from healthy 

humans collected during the 2013-2014 influenza season in the United States. Remarkably, 27% 

of sera from individuals born between 1940-1984 possessed Abs specific for an epitope involving 

K166 (Figure 2-3A, Table 2-1). Over 42% of individuals born from 1965-1979 had K166 HA-

specific Abs in their sera (n = 54 individuals). Sera isolated from individuals born between 1985-

1997 (n = 49 individuals) did not have detectable levels of K166 HA-specific Abs. Differences in 

K166 HA-specificity were statistically significant between sera isolated from individuals born 

between 1965-1979 and individuals born after 1985 (Fisher’s exact test; p < 0.0001). Similar 

results were obtained when we analyzed sera from healthy humans collected during the 2013-

2014 influenza season in Mexico (Figure 2-4 and Table 2-2).  

It is remarkable that HAI assays, which are relatively insensitive, were able to reproducibly 

detect K166-specific Abs in so many individuals in our experiments. Figure 2-3A and Figure 2-4 

show percentages of donors that had at least a 2-fold reduction in HAI titer using the K166Q HA 

mutant virus in 3 independent assays. It is worth pointing out that many sera samples had over 4-
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fold reduced HAI titers using a pH1N1 virus engineered to possess the single K166Q HA 

substitution compared to the pH1N1 vaccine strain (Table 2-1). Age-related differences in K166-

specificity among United States donors remained statistically significant using a 4-fold reduction 

in HAI titer as a cutoff (Fisher’s exact test; p < 0.05 comparing donors born between 1965-1979 

and individuals born after 1985). Sera that had K166 HA-specificity based on HAI assays failed to 

efficiently neutralize K166Q-possessing viruses in in vitro neutralization assays (Table 2-3). K166 

HA-specific sera were also unable to recognize a primary viral isolate collected in 2013 

(A/CHOP/1/2013) that possesses a K166Q HA substitution (Table 2-3). 

The K166 epitope is shielded by glycosylation sites present in sH1N1 viruses circulating 
after 1986 
 
‘Original antigenic sin’ Abs are originally primed by influenza strains that circulated in the past 

(Davenport et al., 1953; Fazekas de St and Webster, 1966a, b; Li et al., 2013b; Webster, 1966). 

We propose that K166-specific Ab responses were likely primed by sH1N1 viruses circulating in 

humans prior to 1985 and then boosted by the 2009 pH1N1 virus. Sera isolated from individuals 

born between 1965 and 1979 had the highest K166 HA-specificity (both in % and titer; Figure 2-

3A and Table 2-1). sH1N1 viruses that circulated in the late 1970s and early 1980s share 

extensive homology with pH1N1 viruses in the vicinity of K166 (Figure 2-3B). sH1N1 viruses were 

absent from the human population from 1957-1976 and began infecting humans again in 1977. 

Therefore, humans born between 1957-1976 likely had their first H1N1 encounter with a sH1N1 

virus that shared homology with pH1N1 viruses in the vicinity of K166.  

In 1986, sH1N1 viruses acquired a new glycosylation site at HA amino acid 129 that is 

predicted to shield the epitope involving K166 (Figure 2-5, 2-6A). The absence of K166 HA-

specific responses in individuals born after 1985 is likely because sH1N1 viruses glycosylated at 

HA amino acid 129 fail to prime K166-specific responses. The lower number of K166 HA-specific 

responders born in the 1950s might also be attributed to unique glycosylation sites in sH1N1 

viruses that circulated during this time period (Figure 2-5), although precise glycosylation statuses 

of viruses circulating prior to 1977 are uncertain due to limited numbers of sequenced viruses. 
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Although we did not examine sera from very elderly individuals, it is possible that they also have 

immunodominant K166 HA responses, since a recent study reported that a mAb isolated from a 

survivor of the 1918 H1N1 pandemic binds to pH1N1 in an epitope involving K166 (Xu et al., 

2010). There is considerable homology between the 1918 H1N1 and the 2009 H1N1 in the 

vicinity of K166 (Xu et al., 2010). 

To experimentally address if glycosylation sites present in previous sH1N1 strains shield the 

epitope involving K166, we used reverse-genetics to produce pH1N1 viruses that had 

glycosylation sites that were either present in sH1N1 strains from 1977-1985 (sites 131+163) or 

1986-2008 (sites 129+163). Western blot analysis revealed that residues 129 and 131, but not 

residue 163 were glycosylated in our reverse-genetics derived viruses (Figure 2-6B). Consistent 

with the hypothesis that the K166 epitope is shielded by glycosylation sites present in 1986-2008 

sH1N1 viruses, K166-specific human sera had reduced titers to pH1N1 viruses with the 129 

glycosylation site but normal titers to pH1N1 viruses with the 131 glycosylation site (Figure 2-6C). 

As a control, we also completed HAI assays with sera from donors that were born in the 1970s 

who did not have detectable levels of K166 sera Abs. As expected, these sera did not have 

reduced titers to pH1N1 viruses with the 129 glycosylation site, but interestingly, these sera did 

have reduced titers to pH1N1 viruses with the 131 glycosylation site (Figure 2-6C). We previously 

demonstrated that Ab responses focused on an epitope near the 131 glycosylation site can be 

elicited by sequential infections with a sH1N1 virus from the early 1990s and the pH1N1 virus (Li 

et al., 2013b). We speculate that donors in the ‘non-K166 HA-specific’ group were previously 

infected with antigenically distinct sH1N1 strains compared to donors in the ‘K166 HA-specific 

group’ (ie: A/Singapore/6/1986-like strain vs A/Chile/1/1983-like strain). Taken together, these 

data suggest that glycosylation sites on previously circulating sH1N1 viruses shield epitopes and 

influence the development of subsequent Ab responses against pH1N1 virus.  
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Vaccination with current pH1N1 vaccine strain elicits K166-specific Abs  
 
The pH1N1 vaccine strain has not been updated since 2009. We determined whether this 

vaccine strain, which possesses HA K166, elicits K166 HA-specific Abs in humans. First, we 

analyzed sera from individuals vaccinated in 2009. All of the individuals in this cohort were born 

prior to 1984 and most did not have pH1N1 Ab titers prior to vaccination (Table 2-4). Sera from 5 

of 17 individuals possessed detectable levels of K166 HA-specific Abs following vaccination 

(Figure 2-7A, Table 2-4). Sera from all five of these individuals had < 1:40 HAI titers against the 

K166Q HA mutant pH1N1 virus (Table 2-4). One K166 HA-specific individual (subject #1) 

possessed K166 HA-specific Abs prior to vaccination (Figure 2-7A, Table 2-4). It is possible that 

this individual was naturally infected with pH1N1 prior to vaccination. All of the K166 HA-specific 

donors had detectable pre-vaccination Ab titers against sH1N1 viruses from 1977 and 1983; 

however, we also found titers against these strains in some donors that did not have detectable 

levels of K166 HA serum Abs (Table 2-4). We also measured binding of 42 HA head-specific 

mAbs isolated from 12 adult donors (born 1949-1985) that were vaccinated against the pH1N1 

strain in 2009. Strikingly, 23% of these mAbs had reduced binding to pH1N1 engineered to have 

the K166Q substitution (Figure 2-7B). This is consistent with a previous report that identified 

several K166-specific mAbs derived from a donor that was born prior to 1977 (Krause et al., 

2011b). 

We passively transferred a K166 HA-specific mAb (SFV009-3F05) or a control mAb that 

binds equally to WT and K166Q-HA viruses (SFV015-1F02) to Balb/c mice 12 hours before 

infecting with a lethal dose of WT or K166Q-HA pH1N1 viruses. Control animals that did not 

receive a mAb prior to infection rapidly lost weight and died (Figure 2-7C). Mice receiving the 

control SFV015-1F02 mAb prior to infection with WT or K166Q-HA pH1N1 viruses all survived 

with minimal weight loss (Figure 2-7C). Mice receiving the K166 HA-specific SFV009-3F05 mAb 

survived following infection with WT pH1N1 but rapidly lost weight and died following infection 

with K166Q HA pH1N1 (Figure 2-7C). These data suggest that K166-specific Abs can be less 
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efficient at preventing disease in a mouse model following infection with a pH1N1 virus 

possessing K166Q HA.  

 

Can K166 HA-specific immunity be recapitulated in ferrets for surveillance purposes?   
 
Current surveillance efforts rely heavily on anti-sera isolated from ferrets recovering from primary 

influenza virus infections. Ferret anti-sera could potentially be more reflective of human immunity 

if isolated from animals sequentially infected with antigenically distinct viral strains. We attempted 

to elicit K166 HA-specific Abs in ferrets by sequentially infecting animals with older sH1N1 strains 

and then the A/California/07/2009 pH1N1 strain.  

We initially infected animals with a sH1N1 virus that circulated in 1977 

(A/USSR/90/1977), a sH1N1 virus that circulated in 1983 (A/Chile/1/1983), or a sH1N1 virus that 

circulated in 1986 (A/Singapore/6/1986). After 84 days, we re-infected animals with the 

A/California/7/2009 pH1N1 strain. As controls, we infected some animals twice with 

A/California/7/2009 and other animals only once with A/California/7/2009. Three of 8 of the ferrets 

sequentially infected with A/Chile/1/1983 and A/California/7/2009 mounted K166 HA-specific Abs 

detectable in HAI assays (Figure 2-8, Table 2-5). The 22 ferrets in the other experimental groups 

did not mount detectable levels of K166 HA-specific Abs. The difference in K166 HA-specificity is 

statistically significant comparing the A/Chile/1/1983-A/California/7/2009 group with the rest of the 

groups (3 of 8 vs 0 of 22; Fisher’s exact test p < 0.05). K166 HA-specific Abs were likely not 

elicited in the A/Singapore/6/1986-A/California/7/2009 group because the K166 HA epitope is 

predicted to be shielded by a glycosylation site at residue 129 of A/Singapore/6/1986 (Figure 2-

6). It is interesting that K166 HA-specific Abs were not elicited by A/USSR/90/1977-

A/California/7/2009 sequential infections. This is likely due to variation at residue 125, which is 

close to residue 166 (Figure 2-9). A/Chile/1/1983 and A/California/7/2009 both possess S125, 

whereas A/USSR/1/1977 possesses R125 (Figure 2-9).  
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Discussion 
 

Our studies show that recent pH1N1 viruses have acquired a significant antigenic substitution 

that prevents binding of Abs elicited in a large number of middle-aged humans. For this reason, 

we propose that the pH1N1 vaccine strain should be updated. Conventional serological 

techniques utilized by most surveillance laboratories have failed to recognize the K166Q HA 

substitution as antigenically important (Arriola et al., 2014). HAI assays are based on serial sera 

dilutions and can only detect large antigenic changes. Many surveillance-based laboratories 

ignore 2-fold reductions in HAI titer since these laboratories typically process thousands of 

samples, which prohibit the experimental precision that is required to reliably detect 2-fold 

differences in these assays. However, a true 2-fold reduction in HAI titer against a mutated strain 

indicates an extremely immunodominant Ab response. While we reproducibly detected as low as 

2-fold HAI differences using K166Q HA mutated viruses (Tables 1 and 2 show results from 3 

independent HAI experiments), our HAI assays likely underestimate the number of individuals 

that possess K166Q Abs. For example, we were able to isolate K166-specific mAbs from pH1N1-

vaccinated individuals whose sera yielded similar HAI titers using wild-type and K166Q mutated 

pH1N1 viruses. We also identified many human sera samples that had > 4-fold reductions in HAI 

titer using pH1N1 viruses with the K166Q HA substitution, and it is worth noting that these results 

would likely have been missed if we pooled human sera samples or simply compared overall 

geometric means of HAI data with mutant viruses. 

We attempted to recapitulate K166 HA-specific immunity in ferrets by sequentially infecting 

with sH1N1 strains and the A/California/7/2009 pH1N1 strain. Only 3 of 8 ferrets sequentially 

infected with A/Chile/1/1983 and A/California/7/2009 mounted levels of K166 HA-specific Abs that 

could be detected by HAI assays. Outbred ferrets were used in these experiments, and the 

overall % of ferrets with K166 HA-specificity (Figure 2-8) is similar to the overall % of humans 

born in the 1970s with K166 HA-specificity (Figure 2-3). We speculate that variation in K166 HA-

specificity in humans is due to variations in pre-exposure histories and genetic differences that 
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impact B cell repertoires. Studies are ongoing to determine if genetic differences in B cell 

repertoires among ferrets influence K166 HA-specificity. 

Our results offer a possible antigenic explanation for the increased disease burden in middle-

aged adults during the 2013-2014 influenza season. Given that the specificity of Ab responses is 

altered by pre-exposures, we propose that conventional serological techniques used to identify 

antigenically novel viruses should be re-evaluated. The usefulness of arbitrary HAI titer cutoffs 

and dependence on anti-sera generated in previously naïve ferrets (Koel et al., 2013; Smith et al., 

2004) should be reconsidered. Although we believe that the pH1N1 vaccine should be updated 

immediately, it is not clear if a pH1N1 vaccine strain with Q166 HA will be able to break the 

‘original antigenic sin’ that currently exists in some middle-aged individuals. Further studies 

should be designed to determine if an updated H1N1 vaccine strain with Q166 HA elicits more 

effective Ab responses in different aged humans with distinct sH1N1 exposure histories. 

Materials and Methods 
 
Human donors:  Studies involving human adults were approved by the Institutional Review 

Boards of Emory University, Vaccine and Gene Therapy Institute of Florida, the National Institute 

of Respiratory Diseases of Mexico, and the Wistar Institute. Informed consent was obtained. For 

all experiments, HAI and in-vitro neutralization assays were completed at the Wistar Institute 

using pre-existing and de-identified sera. We analyzed several sera panels in this study. We 

analyzed sera from healthy donors collected at the New York Blood Center in February of 2014. 

We analyzed sera from healthy donors collected at the Center for Research in Infectious 

Diseases at the National Institute of Respiratory Diseases in Mexico. We analyzed sera and 

mAbs derived from healthy donors vaccinated with a monovalent pH1N1 vaccine in 2009 as 

previously described (Li et al., 2012). 

Viruses:  Viruses possessing WT pH1N1 HA or K166Q pH1N1 HA were generated via reverse-

genetics using HA and NA genes from A/California/07/2009 and internal genes from A/Puerto 

Rico/8/1934. All of these viruses were engineered to possess the antigenically neutral D225G HA 



28	
	

substitution (Chen et al., 2010a) which facilitates viral growth in fertilized chicken eggs. Viruses 

were grown in fertilized chicken eggs and the HA genes of each virus stock were sequenced to 

verify that additional substitutions did not arise during propagation. sH1N1 strains 

(A/USSR/90/1977, A/Chile/1/1983, A/Singapore/6/1986, A/Texas/36/1991, New 

Caledonia/20/1999, and A/Solomon Islands/3/2006) were also grown in fertilized chicken eggs. 

We isolated a pH1N1 virus from respiratory secretions obtained from a patient from the Children’s 

Hospital of Philadelphia in 2013 (named A/CHOP/1/13 in this manuscript). For this, de-identified 

clinical material from the Children’s Hospital of Philadelphia Clinical Virology Laboratory was 

added to MDCK cells (originally obtained from the National Institute of Health) in serum-free 

media with TPCK-treated trypsin, HEPES, and gentamicin. Virus was isolated from the MDCK-

infected cells 3 days later. We extracted viral RNA and sequenced the HA gene of A/CHOP/1/13. 

We also used reverse-genetics to introduce glycosylation sites into A/California/7/2009 (pH1N1) 

HA. The consensus sequence for N-linked glycosylation (N-x-S/T) was added at HA residues 

129, 131, and 163 by making the substitutions D131T, D131N and N133T, and K163N, 

respectively. Similar results were obtained in HAI assays when we used glycosylation mutants 

grown in eggs or MDCK cells. Glycosylation at residues 129 and 131 was confirmed by treating 

concentrated virus with PNGase-F (New England Biolabs) under denaturing conditions. The 

CM1-4 anti-HA1 antibody was used as a primary antibody, and a donkey anti-mouse fluorescent 

secondary antibody (Licor) was used. Blots were imaged using the Licor Odyssey imaging 

system at 800nm (secondary antibody) and 700nm (molecular weight marker). 

Animal experiments:  Murine experiments were performed at the Wistar Institute according to 

protocols approved by the Wistar Institute Institutional Animal Care and Use Committee. Balb/c 

mice (Charles River Laboratories) were injected with 20ug of mAb i.p. and then infected i.n. with 

10,000 TCID50 of WT or K166Q-HA pH1N1 virus 12 hours later. As controls, some mice received 

an i.p. injection of PBS prior to infection. Weight loss and survival was recorded for 11 days. 

Ferret experiments were performed at the Vaccine and Gene Therapy Institute of Florida in 

accordance with the NRC Guide for the Care and Use of Laboratory Animals, the Animal Welfare 
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Act, and the CDC/NIH Biosafety in Microbiological and Biomedical Laboratories handbook. Fitch 

ferrets (Marshall Farms, Sayre, PA) were infected with 1x106 PFU of sH1N1 virus and bled 14 

and 84 days later. These ferrets were then infected with the A/California/7/2009 pH1N1 strain and 

bled 14 days later. Some ferrets were sequentially infected with A/California/7/2009 (84 days 

between infections) and other ferrets were infected with only A/California/7/2009 and bled 14 

days later. 

HAI assays:  Sera samples were pre-treated with receptor-destroying enzyme (Key Scientific 

Products Inc or Sigma-Aldrich) and HAI titrations were performed in 96 well round bottom plates 

(BD). Sera were serially diluted twofold and added to 4 agglutinating doses of virus in a total 

volume of 100 ul. Turkey erythrocytes (Lampire) were added (12.5ul of a 2% vol/vol solution). The 

erythrocytes were gently mixed with sera and virus and agglutination was read out after 

incubating for 60 min at room temperature. HAI titers were expressed as the inverse of the 

highest dilution that inhibited 4 agglutinating doses of turkey erythrocytes. Each HAI assay was 

performed independently on three different dates. Sera that had at least 2-fold reduced HAI titers 

using K166Q HA mutant viruses in 3 independent HAI assays were labeled as ‘K166 HA-specific’.  

ELISA assays:  Viruses for ELISAs were concentrated by centrifugation at 20,000 RPM for 1 

hour. Concentrated viruses were then inactivated by B-Propiolactone (BPL; Sigma Aldrich) 

treatment. Viruses were incubated with 0.1% BPL and 0.1M HEPES (Cellgro) overnight at 4C 

followed by a 90 min incubation at 37C. 96 well Immulon 4HBX flat bottom microtiter plates 

(Fisher Scientific) were coated with 20 HAU/well BPL-treated virus overnight at 4C. Each human 

mAb was serially diluted in PBS and added to the ELISA plates and allowed to incubate for 2 hr 

at room temperature. As a control, we added the 70-1C04 stalk-specific mAb to verify equal 

coating of WT and K166Q HA virus. Next, peroxidase conjugated goat anti-human IgG (Jackson 

Immunoresearch) was incubated for 1hr at room temperature. Finally, Sureblue TMB Peroxidase 

Substrate (KPL) was added to each well and the reaction was stopped with addition of 250mM 

HCl solution. Plates were extensively washed with water between each ELISA step. Affinities 
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were determined by nonlinear regression analysis of curves of 6 mAb dilutions (18ug/ml to 74 

ng/ml) using Graphpad Prism. mAbs were designated as K166-specific if they had a Kd at least 4 

times greater for the K166Q mutant than for the WT virus.  

In vitro neutralization assays:  Sera were serially diluted and then added to 100 TCID50 units of 

virus and incubated at room temperature for 30 mins. The virus-sera mixtures were then 

incubated with MDCK cells for 1 hr at 37C. Cells were washed and then serum-free media with 

TPCK-treated trypsin was added. Endpoints were determined visually 3 days later. Data are 

expressed as the inverse of the highest dilution that caused neutralization. All samples were 

repeated in quadruplicate and geometric mean titer is reported.  

Structural modeling of HA glycosylation sites: Glycans were modeled onto positions 129 and 131 

in the A/Solomon Islands/03/2006 HA crystal structure (PDB ID code 3SM5) using the GLYCAM-

Web Glycoprotein Builder (www.glycam.org). The particular glycan used for modeling was an N-

linked glycan with a trimannosyl core (DManpa1-6[DGlcpNAcb1-2DManpa1-3]DManpb1-

4DGlcpNAcb1-4DGlcpNAcb1-OH in Glycam notation), and default rotamer settings were used for 

modeling. To model the 131 glycosylation site, a T131N substitution was introduced using the 

PyMol structure viewer before the structure was uploaded to the GLYCAM-Web server. 

Computational and phylogenetic analyses of HA sequences: The occurrence of different amino 

acid identities at HA residues 166, 156, 157, and 158 (H3 numbering) was analyzed by 

downloading all full-length human pandemic H1N1 sequences present in the Influenza Virus 

Resource (1) as of February 23, 2014. After purging sequences that were less than full length, 

contained ambiguous nucleotide identities, lacked full (year, month, day) isolation 

 dates, or were otherwise anomalous, the sequences were aligned. Each calendar year was 

broken into four equal partitions beginning with January 1, and the frequencies of different amino 

 acids at each residue of interest for each partition was calculated and plotted. Only amino acids 

that reached a frequency of at least 1% in at least one of the year partitions are labeled in the 
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 legend to the plot. For construction of phylogenetic trees, the sequence set was randomly 

subsampled to 10 sequences per quarter-year partition. BEAST (2) was then used to sample 

 from the posterior distribution of phylogenetic trees with re-constructed sequences at the nodes, 

after date stamping the sequences, using a JTT (3) with a single rate category with an 

 exponential   prior,   a   strict   molecular   clock,   and   relatively   uninformative coalescent-

based prior over the tree. Figure 2-1C shows a maximum clade credibility summary of the 

posterior distribution with branches colored according to the reconstructed amino acid identity at 

site 166 with the highest posterior probability at their descendent nodes. The tree was visually 

rendered using FigTree. The input data and computer code used for this analysis   can  be  found  

on  GitHub   at   github.com/jbloom/pdmH1N1_HA_K166_mutations 

 

Statistical analyses:  For all sera experiments, we excluded samples that did not have positive 

pH1N1 HAI titers. All samples that were pH1N1 HA-WT HAI negative were also pH1N1 HA-

K166Q HAI negative. Samples were allocated to specific groups based on age of donor. The year 

of birth of each sample was available during the experiment, but this information was not 

assessed until each experiment was completed. Variance of raw HAI titers was similar between 

different age groups. Fisher’s exact tests were completed using SAS version 9.3 software.  
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Figures and Tables 
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Fig S1: Sequence variation of 
pH1N1 HA. The residues in the
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(a-c).  No variation greater than 1%
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158. For comparison, residue 166
(d; also shown in Fig 1b of manuscript) 
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Figure 2-1:  Sequence variation of pH1N1 HA  

The residues in the dominant antigenic site recognized by primary ferret anti-sera (residues 156, 

157, and 158 of the Sa antigenic site) are highly conserved in pH1N1 (A-C). No variation greater 

than 1% occurred at residue 156 and very little variation occurred at residues 157 and 158. For 

comparison, residue 166 (D; also shown in Fig 2-2B of manuscript) has undergone a complete 

change in the last year.  
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Figure 2-2 
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Figure 2-2:  pH1N1 viruses rapidly acquired HA substitution K166Q during the 2013-2014 
influenza season 
 
 (A) Residue K166 (red) is shown on the A/California/04/2009 HA trimer (PDB: 3UBN(Xu et al., 

2010)). (B) Plotted is the frequency of different amino-acid identities at HA residue 166 in pH1N1 

HA sequences as a function of time. Nearly all pH1N1 possessed K166 from 2009 to mid 2012, 

but most isolates possessed Q166 by the 2013-2014 season. (C) A phylogenetic tree of pH1N1 

viruses with branches colored according to amino acid identity at site 166 illustrates the rapid 

fixation of K166Q in recent pH1N1 isolates.  
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Figure 2-3 Linderman et al. PNAS (2014) Figure 2
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Figure 2-3:  Adult humans possess Abs that bind to a region of HA that was recently 
mutated in pH1N1  
 
(A) Sera were isolated from healthy donors (n=195) from the state of New York during the 2013-

2014 influenza season. HAI assays were performed using viruses with either wild-type 

A/California/07/2009 HA or A/California/07/2009 HA with a K166Q HA substitution. For each sera 
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sample, we completed 3 independent HAI assays. Raw HAI data are reported in Table 2-1. 

Percentages of samples that had at least a 2-fold reduction in HAI titer using the mutant virus in 3 

independent experiments are shown. K166-specificity of sera from individuals born between 

1965-1979 is statistically significant compared to K166-specificity of sera from individuals born 

after 1985 (Fisher’s exact test; p < 0.0001). (B) Homology between the A/Chile/01/1983 sH1 and 

the A/California/04/2009 pH1 are shown using the crystal structure of the A/California/04/2009 HA 

(PDB: 3UBN (Xu et al., 2010)). Residue K166 is colored green. Amino acids that differ between 

A/Chile/01/1983 and A/California/04/2009 are shown in red. The glycan receptor is shown in 

black. 
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Figure 2-4 
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Fig S2: Mexican donors born prior to 1984
possess Abs that bind to region of HA that
was recently mutated in pH1N1.
Sera were isolated from healthy donors (n=45)
at the Center for Research in Infectious Diseases
at the National Institute of Respiratory Diseases
in Mexico during the 2013-2014 influenza season.
HAI assays were performed using viruses with
either wild-type A/California/07/2009 HA or
A/California/07/2009 HA with a K166Q HA
mutation.  For each sera sample, we completed
3 independent HAI assays.  Raw HAI data are
reported in Supplemental Table 2.  Percentages
of samples that had at least a 2-fold reduction in
HAI titer using the mutant virus in 3 independent
experiments are shown.  K166-specificity of sera
from individuals born between 1970-1983 is
statistically significant compared to K166-specificity
of sera from individuals born after 1984 (Fisher’s
exact test; p < 0.0001).  

 

Figure 2-4: Mexican donors born prior to 1984 possess Abs that bind to region of HA that 
was recently mutated in pH1N1  
 
Sera were isolated from healthy donors (n=45) at the Center for Research in Infectious Diseases 

at the National Institute of Respiratory Diseases in Mexico during the 2013-2014 influenza 

season. HAI assays were performed using viruses with either wild-type A/California/07/2009 HA 

or A/California/07/2009 HA with a K166Q HA substitution. For each sera sample, we completed 3 

independent HAI assays. Raw HAI data are reported in Table 2-2. Percentages of samples that 

had at least a 2-fold reduction in HAI titer using the mutant virus in 3 independent experiments 

are shown. K166-specificity of sera from individuals born between 1970-1983 is statistically 

significant compared to K166-specificity of sera from individuals born after 1984 (Fisher’s exact 

test; p < 0.0001).  
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Figure 2-5 
Linderman et al. PNAS (2014) Supplemental Figure 4
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Figure S4:  Glycosylation status of H1N1 viruses.  The crystal structures of sH1N1 (A) and
pH1N1 (B) HAs are shown (PDB #: 3SM5 and 3UBN). Glycosylation sites that have appeared
from 1918-2008 in sH1N1 viruses are highlighted in orange and residue 166 is shown in green.
(C) Glycosylation status of H1N viruses circulating during different time periods is shown as
reported in Wei et al. Science Translational Medicine 2, 24ra21 (2010).  Very few viral sequences
are available for 1930-1950 viruses and variability of glycosylation sites in these viruses likely
relates to egg adaptations.  The majority of sH1N1 viruses circulating between 1977-1985 have
the 131 and 163 glycosylation sites and the majority of sH1N1 viruses circulating between
1986-2008 have the 129 and 163 glycosylation sites.  Of note, although residues 129 and 131
are very close in the linear sequence, they are located on opposite sides of the Sa/Sb ridge.
The 131 glycosylation site is not expected to cover the K166 epitope, whereas the 129
glycosylation site potentially shields the K166 epitope. 
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Figure 2-5: Glycosylation status of historical H1N1 viruses  

The crystal structures of sH1N1 (A) and pH1N1 (B) HAs are shown (PDB #: 3SM5 and 3UBN). 

Glycosylation sites that have appeared from 1918-2008 in sH1N1 viruses are highlighted in 

orange and residue 166 is shown in green. (C) Glycosylation status of H1N viruses circulating 

during different time periods is shown as reported in Wei et al. Science Translational Medicine 2, 

24ra21 (2010). Very few viral sequences are available for 1930-1950 viruses and variability of 

glycosylation sites in these viruses likely relates to egg adaptations. The majority of sH1N1 

viruses circulating between 1977-1985 have the 131 and 163 glycosylation sites and the majority 

of sH1N1 viruses circulating between 1986-2008 have the 129 and 163 glycosylation sites. Of 

note, although residues 129 and 131 are very close in the linear sequence, they are located on 

opposite sides of the Sa/Sb ridge. The 131 glycosylation site is not expected to cover the K166 

epitope, whereas the 129 glycosylation site potentially shields the K166 epitope.  
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Figure 2-6 
Linderman et al. PNAS (2014) Supplemental Figure 5

a

Figure S5:  Modeling 129 and 131 glycosylation sites.  (a) Modeling of the putative 
glycosylation sites at residues 129 and 131 on the HA of A/Solomon Islands/6/2006
(PDB # 3SM5) was completed using Glycam software (see methods). The 129 glycosylation
site present in most sH1N1 isolates circulating after 1985 is predicted to shield the antigenic
site involving residue 166.  The 131 glycosylation site is not predicted to shield the antigenic
site involving residue 166. (b) Viruses possessing A/California/07/2009 HA with different
putative glycosylation sites were created by reverse-genetics.  HA from viruses with putative
glycosylation sites introduced at residues 129+163 and 131+163 migrated slower compared
to unmodified HA and HA from viruses with a putative glycosylation site at only residue 163.
This indicates that residues 129 and 131, but not residue 163 was glycosylated in the
reverse-genetics derived viruses.  HA from all viruses migrates similarily following PNGase
treatment.  PNGase treatment was completed under reducing conditions, so HA migrated
faster compared to no PNGase treatment. (c) HAI assays were completed using the reverse-
genetics derived viruses possessing A/California/07/2009 with different glycosylation sites. Five
K166 HA-specific samples and five non-K166 HA-specific human samples were tested.
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K166 HA-specific samples
sample # WT K166Q 131+163-GLY 129+163-GLY WT/K166Q WT/131+163-GLY WT/129+163-GLY

70-23 160 <20 120 60 >8.0 1.3 2.7
70-36 240 40 160 80 6.0 1.5 3.0
70-52 120 <20 80 <20 >6.0 1.5 >6.0
70-84 160 40 160 80 4.0 1.0 2.0
70-86 160 <20 160 60 >8.0 1.0 2.7

non-K166HA-specific samples
sample # WT K166Q 131+163-GLY 129+163-GLY WT/K166Q WT/131+163-GLY WT/129+163-GLY

70-16 160 160 160 160 1 1 1
70-17 160 160 80 160 1 2 1
70-18 160 160 60 160 1 2.7 1
70-24 160 160 <20 160 1 >8 1
70-44 160 160 40 160 1 4 1

A B

C

 

Figure 2-6: Structural modeling of 129 and 131 glycosylation sites  

(A) Modeling of the putative glycosylation sites at residues 129 and 131 on the HA of A/Solomon 

Islands/6/2006 (PDB # 3SM5) was completed using Glycam software (see methods). The 129 

glycosylation site present in most sH1N1 isolates circulating after 1985 is predicted to shield the 

antigenic site involving residue 166. The 131 glycosylation site is not predicted to shield the 

antigenic site involving residue 166. (B) Viruses possessing A/California/07/2009 HA with 

different putative glycosylation sites were created by reverse-genetics. HA from viruses with 

putative glycosylation sites introduced at residues 129+163 and 131+163 migrated slower 

compared to unmodified HA and HA from viruses with a putative glycosylation site at only residue 

163. This indicates that residues 129 and 131, but not residue 163 was glycosylated in the 

reverse-genetics derived viruses. HA from all viruses migrates similarily following PNGase 

treatment. PNGase treatment was completed under reducing conditions, so HA migrated faster 

compared to no PNGase treatment. (C) HAI assays were completed using the reverse- genetics 

derived viruses possessing A/California/07/2009 with different glycosylation sites. Five K166 HA-

specific samples and five non-K166 HA-specific human samples were tested.  
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Figure 2-7 
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Linderman et al. PNAS (2014) Figure 3
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Figure 2-7:  Vaccination of middle-aged adults with the current pH1N1 vaccine strain elicits 
Abs that bind to a region of HA that is now mutated in most pH1N1 isolates  
 
(A) Healthy adult volunteers were vaccinated with a monovalent pH1N1 vaccine in 2009. Sera 

were isolated pre-vaccination and 30 days post-vaccination and HAI assays were performed 

using viruses with either wild-type A/California/07/2009 HA or A/California/07/2009 HA with a 

K166Q HA substitution. Shown are HAI titers for donors that possessed K166 HA-specific Abs 

following vaccination. Data are representative of 3 independent experiments. Raw HAI titers for 

all donors are shown in Table 4. (B) ELISA assays were completed using mAbs isolated from 

healthy adult volunteers that were vaccinated with a monovalent pH1N1 vaccine in 2009. ELISAs 

were coated either with A/California/07/2009 (WT) or A/California/07/2009 with a K166Q HA 

substitution. Shown are percentage of mAbs that bound to both viruses and percentage of mAbs 

that bound to the WT virus but not the mutant virus (n= 42 mAbs). Data are representative of 2 

independent experiments. (C) A K166 HA-specific mAb (SFV009-3F05) or a mAb that recognizes 

both WT and K166Q-HA pH1N1 (SFV015-1F02) were injected into Balb/c mice (n=4 per group). 

12 hours later, mice were then infected with 10,000 TCID50 of WT or K166Q-HA virus and weight 

loss and survival were recorded for 11 days. Data are representative of 2 independent 

experiments.  
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Figure 2-8 Linderman et al. PNAS (2014) Figure 4
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Figure 2-8:  Ferrets sequentially infected with A/Chile/1/1983 and A/California/7/2009 
develop K166 HA-specific Abs  
 
Ferrets were infected with a sH1N1 virus and then re-infected 84 days later with the 

A/California/7/2009 pH1N1 virus. Sera were collected 14 days after the 2nd infection and HAI 

assays were completed using WT and K166Q-HA pH1N1 viruses. Shown are % of samples that 

had at least a 2-fold reduction in HAI titer using the K166Q HA mutant virus in 3 independent 

experiments. Raw HAI titers are shown in Table 2-5. The difference in K166 HA-specificity is 

statistically significant comparing the A/Chile/1/1983-A/California/7/2009 group with the rest of the 

groups (3 of 8 vs 0 of 22; Fisher’s exact test p < 0.05). 
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Figure 2-9 Linderman et al. PNAS (2014) Supplemental Figure 6

Figure S6:  Homology betwen A/USSR/90/1977, A/Chile/1/1983, and A/California/7/2009.
HA residues that differ between A/Chile/01/1983 and the A/California/7/2009 are shown in red.
A few additional HA residues differ between the HAs of A/USSR/90/1977 and A/California/7/2009,
and these are colored yellow.  Of note, A/Chile/01/1983 and A/California/7/2009 both possess
S125 whereas A/USSR/90/1977 possess R125.  Residues 129 and 166 are next to each other
in the structure.  PDB file 3UBN (A/California/04/2009 HA) was used to make this figure.

166129

 

Figure 2-9: Homology between A/USSR/90/1977, A/Chile/1/1983, and A/California/7/2009  

HA residues that differ between A/Chile/01/1983 and the A/California/7/2009 are shown in red. A 

few additional HA residues differ between the HAs of A/USSR/90/1977 and A/California/7/2009, 

and these are colored yellow. Of note, A/Chile/01/1983 and A/California/7/2009 both possess 

S125 whereas A/USSR/90/1977 possess R125. Residues 129 and 166 are next to each other in 

the structure. PDB file 3UBN (A/California/04/2009 HA) was used to make this figure.  
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Table 2-1 Supplemental Table 1 
 

  
experiment #1 experiment #2 experiment #3 

  
HAI titers ratio HAI titers ratio HAI titers ratio 

sample 
ID YOB WT K166Q WT/K166Q WT K166Q WT/K166Q WT K166Q WT/K166Q 

40-60 1940 160 80 2.00 160 80 2.00 160 60 2.67 
40-49 1943 80 <20 >4.00 60 <20 >3.00 80 <20 >4.00 
40-05 1948 160 80 2.00 160 80 2.00 160 80 2.00 
40-02 1948 120 60 2.00 60 30 2.00 80 30 2.67 
40-44 1948 320 80 4.00 320 80 4.00 320 80 4.00 
40-14 1949 240 80 3.00 240 80 3.00 240 80 3.00 
40-16 1949 240 <20 >12.00 160 <20 >8.00 160 <20 >8.00 
50-55 1952 160 80 2.00 160 60 2.67 160 80 2.00 
50-11 1952 120 40 3.00 80 30 2.67 80 30 2.67 
50-43 1953 80 40 2.00 80 40 2.00 80 40 2.00 
50-06 1959 120 60 2.00 80 40 2.00 80 30 2.67 
60-04 1963 80 40 2.00 80 40 2.00 80 40 2.00 
60-10 1963 160 80 2.00 240 80 3.00 160 60 2.67 
60-13 1964 240 120 2.00 320 120 2.67 240 120 2.00 
60-25 1964 60 20 3.00 80 30 2.67 60 20 3.00 
60-14 1967 160 80 2.00 120 60 2.00 120 60 2.00 
60-23 1967 320 120 2.67 320 160 2.00 320 160 2.00 
60-44 1968 160 80 2.00 160 80 2.00 160 80 2.00 
60-28 1969 320 160 2.00 320 160 2.00 320 160 2.00 
60-41 1969 120 60 2.00 160 80 2.00 160 80 2.00 
60-63 1969 120 60 2.00 120 60 2.00 120 60 2.00 
60-35 1969 80 40 2.00 80 30 2.67 80 30 2.67 
70-56 1971 80 40 2.00 80 30 2.67 80 40 2.00 
70-52 1971 160 <20 >8.00 120 <20 >6.00 80 <20 >4.00 
70-60 1972 160 80 2.00 160 80 2.00 160 80 2.00 
70-74 1972 160 80 2.00 240 80 3.00 240 80 3.00 
70-36 1972 240 60 4.00 240 30 8.00 320 30 10.67 
70-84 1973 120 40 3.00 160 30 5.33 160 40 4.00 
70-86 1973 160 40 4.00 160 30 5.33 160 40 4.00 
70-13 1975 640 320 2.00 640 320 2.00 640 320 2.00 
70-54 1975 160 80 2.00 80 30 2.67 120 60 2.00 
70-25 1975 160 80 2.00 80 30 2.67 120 40 3.00 
70-10 1975 160 30 5.33 80 30 2.67 80 30 2.67 
70-23 1975 160 <20 >8.00 120 <20 >6.00 160 <20 >8.00 
70-82 1976 160 80 2.00 160 60 2.67 160 80 2.00 
70-50 1976 240 80 3.00 160 60 2.67 120 60 2.00 
70-80 1978 320 160 2.00 320 160 2.00 320 160 2.00 
70-19 1978 80 <20 >4.00 80 <20 >4.00 80 <20 >4.00 
80-16 1980 80 30 2.67 60 20 3.00 80 40 2.00 
80-48 1983 640 120 5.33 640 80 8.00 640 80 8.00 

 

Table 2-1: HAI titers using sera from healthy donors from the United States  
 
Sera were isolated from 195 healthy donors from the state of New York during the 2013-2014 

influenza season. HAI assays were performed using viruses with either wild-type 

A/California/07/2009 HA or A/California/07/2009 HA with a K166Q HA substitution. For each sera 

sample, we completed 3 independent HAI assays. Shown are samples that had at least a 2-fold 

reduction in HAI titer using the mutant virus in 3 independent experiments.  
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Table 2-2 Supplemental Table 2 
 

 
 
Supplemental Table 2:  HAI titers using sera from healthy donors from Mexico.  
Sera were isolated from 45 healthy donors from Mexico during the 2013-2014 influenza 
season.  HAI assays were performed using viruses with either wild-type 
A/California/07/2009 HA or A/California/07/2009 HA with a K166Q HA mutation.  For 
each sera sample, we completed 3 independent HAI assays.  Shown are samples that had 
at least a 2-fold reduction in HAI titer using the mutant virus in 3 independent 
experiments.   
 

  
experiment #1 experiment #2 experiment #3 

  
HAI titers ratio HAI titers ratio HAI titers ratio 

sample 
ID YOB WT K166Q WT/K166Q WT K166Q WT/K166Q WT K166Q WT/K166Q 

N-33 1973 160 60 2.67 120 40 3.00 80 30 2.67 
N-42 1975 40 <10 >4.00 30 <10 >3.00 30 <10 >3.00 
N-93 1977 120 30 4.00 60 30 2.00 60 20 3.00 
N-72 1979 30 <10 >3.00 30 <10 >3.00 20 <10 >2.00 
N-70 1980 160 80 2.00 120 60 2.00 120 40 3.00 

 

Table 2-2: HAI titers using sera from healthy donors from Mexico  
 
Sera were isolated from 45 healthy donors from Mexico during the 2013-2014 influenza season. 

HAI assays were performed using viruses with either wild-type A/California/07/2009 HA or 

A/California/07/2009 HA with a K166Q HA substitution. For each sera sample, we completed 3 

independent HAI assays. Shown are samples that had at least a 2-fold reduction in HAI titer using 

the mutant virus in 3 independent experiments.  
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Table 2-3 Table 1 
 

 
Table 1: Characterization of K166 HA-specific sera.  We further characterized several sera 
samples that had immunodominant K166 HA-specific Abs (light grey = K166 HA-specific sera 
from individuals born prior to 1985; darker grey = sera from individuals born after 1985). HAI 
assays were completed using viruses with the A/California/07/2009 HA engineered to have the 
K166Q HA mutation, as well as a primary pH1N1 virus isolated from the Children’s Hospital of 
Philadelphia (CHOP) in 2013. Additional in vitro neutralization assays were completed using the 
reverse-genetics derived viruses.  Data are representative of 2 independent experiments. For each 
neutralization assay, each sample was titered 4 times, and geometric mean of these quadruplicate 
samples is reported.   
 
!

  
HAI titers 

 
in vitro neutralization titers 

sample 
# YOB 

A/CAL/07/09-
WT HA 

A/CAL/07/09-
K166Q HA A/CHOP/1/2013 

 

A/CAL/07/09-
WT HA 

A/CAL/07/09-
K166Q HA 

40-49 1943 20 <10 <10   24 12 
40-44 1948 160 60 30   453 95 
40-16 1949 80 <10 <10   160 20 
70-52 1971 40 <10 <10   190 28 
70-36 1972 120 40 10   381 95 
70-84 1973 40 20 <10   160 57 
70-86 1973 60 20 20   190 67 
70-23 1975 80 <10 <10   226 20 
70-19 1978 30 <10 <10   95 10 
80-48 1983 320 60 30   1076 80 
80-10 1986 160 320 160   761 1810 
80-26 1986 80 160 80   113 160 
80-74 1986 40 60 40   135 113 
80-30 1987 20 40 10   67 113 
80-34 1987 160 240 160   381 538 
80-56 1988 20 20 <10   17 34 
90-01 1990 40 40 10   48 80 
90-24 1991 60 80 20   34 95 
90-12 1992 160 320 60   190 226 
90-13 1992 80 160 80   190 320 

 

Table 2-3: Characterization of K166 HA-specific sera  
 
We further characterized samples that had immunodominant K166 HA-specific Abs (light grey = 

K166 HA-specific sera from individuals born prior to 1985; darker grey = sera from individuals 

born after 1985). HAI assays were completed using viruses with the A/California/07/2009 HA 

engineered to have the K166Q HA substitution, as well as a primary pH1N1 virus isolated from 

the Children’s Hospital of Philadelphia (CHOP) in 2013. Additional in vitro neutralization assays 

were completed using the reverse-genetics derived viruses. Data are representative of 2 

independent experiments. For each neutralization assay, each sample was titered 4 times, and 

geometric mean of these quadruplicate samples is reported.  
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Table 2-4 Supplemental Table 3 
 

K166-specific donors 
         

 
visit 1 (pre-vaccine) 

  
visit 2 (post-vaccine) 

I.D. YOB USSR/77 Chile/83 Texas/91 NC/99 SI/06 CAL/09 
CAL/09-
K166Q 

 

CAL/09-
WT 

CAL/09-
K166Q 

1 1979 240 160 320 60 80 120 20 
 

160 20 
6 1966 160 120 240 120 240 <10 <10 

 
40 10 

7 1966 40 60 30 10 60 <10 <10 
 

120 <10 
13 1982 80 40 80 40 60 10 <10 

 
160 10 

21 1958 60 30 80 40 80 <10 <10 
 

60 20 

            other donors 
         

 
visit 1 (pre-vaccine) 

  
visit 2 (post-vaccine) 

I.D. YOB USSR/77 Chile/83 Texas/91 NC/99 SI/06 CAL/09 
CAL/09-
K166Q 

 

CAL/09-
WT 

CAL/09-
K166Q 

2 1976 80 80 120 <10 <10 60 60 
 

80 60 
5 1949 10 <10 <10 10 40 10 <10 

 
40 40 

8 1961 40 <10 30 80 120 <10 <10 
 

80 80 
9 1977 80 80 80 <10 <10 <10 <10 

 
120 80 

10 1983 80 <10 320 240 320 <10 <10 
 

240 320 
15 1961 <10 <10 <10 <10 <10 <10 <10 

 
80 80 

17 1956 40 <10 30 80 120 10 <10 
 

20 20 
19 1961 80 40 160 80 80 <10 <10 

 
20 20 

20 1945 40 <10 <10 <10 <10 <10 <10 
 

240 320 
22 1956 30 30 60 <10 <10 <10 <10 

 
240 240 

23 1975 40 <10 240 80 120 <10 <10 
 

160 160 
24 1968 <10 <10 30 <10 <10 <10 <10 

 
60 60 

 
 
 
 
 
Supplemental Table 3:  Vaccination elicits K166 HA-specific responses.  HAI assays were completed using sera 
isolated from healthy donors before and after vaccination with the monovalent pH1N1 virus in 2009.  Post-
vaccination sera were collected 30 days after vaccination.  HAI assays using post-vaccine sera were completed 3 
independent times and assays using pre-vaccine sera were completed two independent times. 
 

 

Table 2-4: Vaccination elicits K166 HA-specific responses  
 
HAI assays were completed using sera isolated from healthy donors before and after vaccination 

with the monovalent pH1N1 virus in 2009. Post- vaccination sera were collected 30 days after 

vaccination. HAI assays using post-vaccine sera were completed 3 independent times and 

assays using pre-vaccine sera were completed two independent times.  
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Table 2-5 
Supplemental Table 4 

    

day 
14   

day 
84   

day 98 (14 days 
post 2nd 
infection) 

 first infection second infection group animal # WT K166Q WT K166Q WT K166Q 
 USSR/90/77 A/California/07/09 Group 1 7982 <10 <10 <10 <10 800 800 
     Group 1 7983 <10 <10 <10 <10 800 800 
     Group 1 7984 <10 <10 <10 <10 300 300 
     Group 1 7985 <10 <10 <10 <10 800 600 
     Group 1 7991 <10 <10 <10 <10 2400 2400 
     Group 1 7993 <10 <10 <10 <10 800 1200 
     Group 1 7994 <10 <10 <10 <10 600 600 
     Group 1 7995 <10 <10 <10 <10 400 600 
 A/Chile/1/1983 A/California/07/09 Group 2 7987 <10 <10 <10 <10 1200 800 
     Group 2 7988 <10 <10 <10 <10 800 400 
     Group 2 7989 <10 <10 <10 <10 800 400 
     Group 2 7990 <10 <10 <10 <10 1600 1600 
     Group 2 7996 <10 <10 <10 <10 1200 400 
     Group 2 7997 <10 <10 <10 <10 240 160 
     Group 2 8000 <10 <10 <10 <10 600 800 
     Group 2 8001 <10 <10 <10 <10 800 800 
 A/Singapore/06/86 A/California/07/09 Group 3 1487 <10 <10 80 120 6400 6400 
     Group 3 1488 <10 <10 <10 <10 3200 3200 
     Group 3 1481 <10 <10 <10 <10 2400 3200 
     Group 3 1504 <10 <10 60 80 4800 6400 
     Group 3 8002 <10 <10 <10 <10 1600 2400 
     Group 3 8009 <10 <10 <10 <10 1600 2400 
     Group 3 8010 <10 <10 <10 <10 4800 6400 
     Group 3 8012 <10 <10 <10 <10 1600 2400 
 A/California/07/09 A/California/07/09 Group 4 8013 400 400 200 200 160 160 
     Group 4 8014 800 800 400 400 2400 2400 
     Group 4 8015 800 800 300 200 2400 1600 
 none A/California/07/09 Group 5 1486 1600 2400 n.d. n.d. n.d. n.d. 
     Group 5 1497 1600 1600 n.d. n.d. n.d. n.d. 
     Group 5 1492 1200 1600 n.d. n.d. n.d. n.d. 
  

 
 
Supplemental Table 4:  Sera from ferrets sequentially infected with sH1N1 viruses and pH1N1.  Ferrets were 
infected with a sH1N1 virus and bled 14 and 84 days later.  Animals were then infected with a pH1N1 strain and bled 
14 days later (98 days post-first infection).  Sera were isolated and HAI assays were completed using WT and 
K166Q-HA pH1N1 viruses.  Data are representative of 3 independent HAI assays.  The 3 ferrets with K166 HA-
specific Ab responses had > 2 fold changes in HAI titer using the K166Q virus in 3 independent experiments. 
 

 

Table 2-5: Sera from ferrets sequentially infected with sH1N1 viruses and pH1N1  
 
Ferrets were infected with a sH1N1 virus and bled 14 and 84 days later. Animals were then 

infected with a pH1N1 strain and bled 14 days later (98 days post-first infection). Sera were 

isolated and HAI assays were completed using WT and K166Q-HA pH1N1 viruses. Data are 

representative of 3 independent HAI assays. The 3 ferrets with K166 HA- specific Ab responses 

had > 2 fold changes in HAI titer using the K166Q virus in 3 independent experiments.  
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CHAPTER 3: CONTEMPORARY H3N2 VIRUS HAVE A 
GLYCOSYLATION SITE IN ANTIGENIC SITE B THAT 

ALTERS THE BINDING OF ANTIBODIES ELICITED BY 
EGG-ADAPTED VACCINE STRAINS 

 

 
This chapter was previously published as: 

 
Zost, S.J., Parkhouse, K., Gumina, M.E., Kim, K., Diaz Perez, S., Wilson, P.C., Treanor, J.J., 

Sant, A.J., Cobey, S., and Hensley, S.E. (2017). Contemporary H3N2 influenza viruses have a 

glycosylation site that alters binding of antibodies elicited by egg-adapted vaccine strains. 

Proceedings of the National Academy of Sciences of the United States of America 114, 12578-

12583. 

 
Contributions: I generated mutant viruses by reverse genetics and completed all antigenic 
assays. Co-authors Kaela Parkhouse and Megan Gumina helped complete neutralization assays 
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Summary 
 
H3N2 viruses continuously acquire substitutions in the hemagglutinin (HA) glycoprotein that 

abrogate binding of human antibodies. During the 2014-2015 influenza season, clade 3C.2a 

H3N2 viruses possessing a new predicted glycosylation site in antigenic site B of HA emerged, 

and these viruses remain prevalent today. The 2016-2017 seasonal influenza vaccine was 

updated to include a clade 3C.2a H3N2 strain; however, the egg-adapted version of this viral 

strain lacks the new putative glycosylation site. Here, we biochemically demonstrate that the HA 

antigenic site B of circulating clade 3C.2a viruses is glycosylated. We show that antibodies 

elicited in ferrets and humans exposed to the egg-adapted 2016-2017 H3N2 vaccine strain poorly 

neutralize a glycosylated clade 3C.2a H3N2 virus. Importantly, antibodies elicited in ferrets 
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infected with the current circulating H3N2 viral strain (that possesses the glycosylation site) and 

humans vaccinated with baculovirus-expressed H3 antigens (that possesses the glycosylation 

site motif) were able to efficiently recognize a glycosylated clade 3C.2a H3N2 virus. We propose 

that differences in glycosylation between H3N2 egg-adapted vaccines and circulating strains 

likely contributed to reduced vaccine effectiveness during the 2016-2017 influenza season. 

Further, our data suggest that influenza virus antigens prepared via systems not reliant on egg-

adaptations are more likely to elicit protective antibody responses that are not affected by 

glycosylation of antigenic site B of H3N2 HA. 

Introduction 
 

Influenza viruses continuously acquire substitutions in exposed epitopes of the 

hemagglutinin (HA) and neuraminidase (NA) proteins through a process called ‘antigenic drift’ 

(Yewdell, 2011). Influenza vaccine effectiveness can be low when there is a mismatch between 

vaccine strains and circulating strains (Belongia et al., 2016). Viral antigens included in influenza 

vaccines are routinely updated in an attempt to avoid antigenic mismatches (Carrat and Flahault, 

2007; Schultz-Cherry and Jones, 2010). Current seasonal influenza vaccines possess antigens 

from 1 H1N1 strain, 1 H3N2 strain, and 1 or 2 influenza B strains. 

H3N2 viruses began circulating in humans in 1968. Most neutralizing antibodies (Abs) 

recognize antigenic sites on the globular head of H3 (designated sites A-E), while rare Abs bind 

to the more conserved HA stalk or sialic acid binding domains (Krammer et al., 2015). Most H3N2 

vaccine mismatches from 1968-2013 have been attributed to substitutions in antigenic site B of 

HA (Koel et al., 2013). None of the site B substitutions that emerged during this time period have 

led to new glycosylation sites on HA (Koel et al., 2013; Smith et al., 2004). This is surprising, 

given that the addition of glycans on HA can dramatically affect Ab binding (Abe et al., 2004; Das 

et al., 2011; Medina et al., 2013; Skehel et al., 1984; Wei et al., 2010; Wrigley et al., 1983). 

Instead, new glycosylation sites have repeatedly emerged and fixed in other antigenically 

important regions of H3 (Cherry et al., 2009).  
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Vaccine effectiveness was extremely low during the 2014-2015 influenza season 

(Zimmerman et al., 2016). During that season, influenza vaccines possessed antigens from a 

2012 H3N2 virus that belonged to the 3C.1 HA genetic clade, while the majority of circulating 

H3N2 strains belonged to the 3C.2a and 3C.3a genetic clades (D'Mello et al., 2015). Both the 

3C.2a and 3C.3a viruses differed at residues in HA antigenic site B compared to the 2014-2015 

H3N2 vaccine strain (Chambers et al., 2015). Notably, 3C.2a viruses that circulated during the 

2014-2015 season possessed a new predicted glycosylation site in HA antigenic site B 

(Chambers et al., 2015), and the 2014-2015 influenza vaccine exhibited especially low 

effectiveness against this clade (Flannery et al., 2016). In an effort to avoid an antigenic 

mismatch, the 2016-2017 influenza vaccine was updated to contain antigens from a 3C.2a H3N2 

virus isolated in 2014 (2016). The majority of H3N2 viruses that circulated in the Northern 

Hemisphere during the 2016-2017 influenza season were 3C.2a viruses, however an interim 

estimate of vaccine effectiveness was only 43% against medically attended H3N2 infections 

(Flannery et al., 2017). Vaccine effectiveness was especially low in individuals that were 18-49 

years old (Flannery et al., 2017). It is unclear why there was variable vaccine effectiveness during 

the 2016-2017 influenza season, given that the vaccine strain appeared to be well-matched to 

most circulating strains.  

The majority of antigens for influenza vaccines are prepared in fertilized chicken eggs, 

and the 2016-2017 egg-adapted 3C.2a vaccine strain lacks the site B glycosylation site that is 

present on circulating 3C.2a H3N2 strains (Lin et al., 2017). Here, we completed a series of 

studies to determine if the difference in glycosylation of HA antigenic site B of H3N2 vaccine 

strains and circulating strains contributed to a previously unrecognized vaccine mismatch during 

the 2016-2017 influenza season.  
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Results 
 

Recent H3N2 viruses possess a glycosylation site in antigenic site B of HA 
 
 A K160T HA substitution rapidly rose to fixation during the 2014-2015 influenza season, and 

nearly all currently circulating H3N2 viruses possess threonine (T) at HA residue 160 (Figure 3-

1A). The K160T HA substitution is predicted to introduce an N-linked glycosylation site in 

antigenic site B of HA (Figure 3-1B, Table 3-1). H3N2 viruses with the K160T HA substitution 

grow poorly in chicken eggs (Lin et al., 2017), and the 2016-2017 egg-adapted H3N2 vaccine 

strain possesses a T160K HA reversion substitution (reference: GISAID isolate ID 

EPI_ISL_189811). We used reverse-genetics to create H3N2 viruses possessing HAs with T160 

and K160, and we completed Western blot analyses to determine if the T160 and K160 HAs 

migrate differently in SDS-PAGE gels. HAs with T160 migrated with a higher molecular weight 

compared to HAs with K160 (Figure 3-1C, left). The HAs migrated similarly after PNGase 

treatment (Figure 3-1C, right), indicating that the difference in HA mobility in the absence of 

PNGase is due to differences in N-linked glycosylation. 

 To determine if the addition of this new antigenic site B glycan in HA affects antigenicity, 

we tested the binding of a panel of 26 human monoclonal antibodies that were elicited against an 

H3 virus from 2009, which lacks the new glycosylation site in antigenic site B of HA. All of these 

monoclonal antibodies bound to the HA of a 2009 virus (Figure 3-2). The majority of these 

monoclonal antibodies (77%) bound to a 2014 virus with the egg-adaptive K160 HA (which lacks 

the glycosylation site), while only a few (23%) bound to a 2014 virus with T160 (which possesses 

the glycosylation site) (Figure 3-2A). Raw binding data of a monoclonal antibody (024-10128-

3C04) that binds efficiently to virus with K160 HA but not T160 HA is shown in Figure 3-2B. As a 

control, we also measured binding of an HA stalk-reactive monoclonal antibody that efficiently 

recognizes virus with either T160 HA or K160 HA (Figure 3-2C). Together, these data 

demonstrate that current circulating H3N2 influenza viruses possess a new glycosylation site in 
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antigenic site B of HA that affects antigenicity, and that this glycosylation site is not present in 

current egg-adapted H3N2 vaccine strains. 

Antibodies elicited in ferrets exposed to the 2016-2017 egg-adapted H3N2 vaccine strain 
poorly neutralize a circulating H3N2 viral strain 
 
We next completed a series of experiments to determine if the current egg-adapted H3N2 

vaccine strain (that possesses K160) elicits different types of antibodies compared to the current 

circulating H3N2 viral strain (that possesses T160). We infected ferrets with viruses possessing 

either K160 HA or T160 HA, and we completed foci reduction neutralization tests (FRNTs) using 

sera collected from these animals 28 days after infection. We completed FRNT assays rather 

than conventional hemagglutination-inhibition assays since 3C2.a H3N2 viruses inefficiently 

agglutinate red blood cells. Antibodies elicited by the egg-adapted vaccine strain possessing 

K160 HA recognized the egg-adapted vaccine strain 4-8 fold more efficiently than the currently 

circulating H3N2 strain that possesses T160 HA (Figure 3-3A). This indicates that a large 

proportion of ferret antibodies elicited by the current egg-adapted H3N2 vaccine strain recognize 

the unglycosylated antigenic site B of HA. Interestingly, antibodies elicited by infection with the 

current circulating H3N2 viral strain possessing T160 HA recognized viruses with T160 HA and 

K160 HA equally Figure 3-3B). This is consistent with the hypothesis that the new HA 

glycosylation site effectively ‘shields’ antigenic site B of HA, and that antibodies elicited by the 

viral strain possessing the new HA glycosylation site recognize epitopes not involving antigenic 

site B of HA. 

Antibodies elicited in humans vaccinated with the egg-adapted H3N2 strain poorly 
neutralize a circulating H3N2 viral strain 
 
We completed additional antigenic tests using sera isolated from humans (18-49 years old) 

before and after vaccination during the 2016-2017 influenza season. Although the majority of 

influenza vaccine antigens are prepared in fertilized chicken eggs, a small fraction of vaccine 

antigens are produced in insect cells or canine kidney cells. To account for this, we measured 

human antibody responses elicited by vaccine antigens prepared in eggs (Fluzone; n=22 donors), 
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MDCK cells (Flucelvax; n=26 donors), and insect cells (Flublok; n=22 donors). Importantly, the 

H3 antigens in the Fluzone and Flucelvax vaccines possess the egg-adapted K160 HA, while the 

recombinant H3 antigen in the Flublok vaccine possesses T160 HA.    

Vaccine effectiveness was lower in younger adults compared to older adults during the 

2016-2017 season (Flannery et al., 2017). Interestingly, we found that younger adults had higher 

pre-vaccination titers to the egg-adapted K160 HA compared to older individuals (Spearman’s rho 

= 0.3, p<0.01; raw data from 3 independent experiments are shown in Table 3-2). Following 

vaccination, K160 HA titers were also higher in younger adults compared to older individuals 

(Spearman’s rho=0.4), even after adjusting for higher pre-vaccination titers to K160 HA (Table 3-

3). We speculate that the observed age-related differences in antibody titers to K160 HA might be 

due to birth year-related differences in H3N2 exposure history. Antibody titers to T160 HA were 

lower than antibody titers to K160 HA both before and after vaccination (p<10-10 for each, Wilcox 

rank-sum test), but there were no birth year-related effects on antibody titers to T160 HA (p=0.23 

pre-vaccination, p=0.33 post-vaccination; Table 3-3).  

Some individuals in our study mounted strong antibody responses against T160 HA 

following vaccination (Table 3-2). Importantly, the majority of these individuals received the 

Flublok vaccine that possesses T160 HA (Figure 3-4A). Antibody titers against T160 HA 

increased ~4-fold following vaccination with Flublok, whereas there were only minimal increases 

in T160 HA antibody reactivity in most individuals following vaccination with Fluzone and 

Flucelvax (Figure 3-4A). Conversely, antibody increases against the K160 HA were similar 

following vaccination with the 3 different vaccine antigens (Figure 3-4B). These differential effects 

of the vaccines remained statistically significant after adjusting for age, pre-vaccination titer, and 

vaccination history (Table 3-3). These data indicate that H3N2 vaccine antigens produced during 

the 2016-2017 influenza season in eggs and MDCK cells (that possess K160 HA) elicit antibody 

responses that react poorly to current circulating H3N2 virus strains, whereas H3N2 vaccine 
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antigens produced in insect cells (that possess T160 HA) elicit antibody responses that react 

efficiently to current circulating H3N2 viral strains.  

The effect of repeat vaccination on anti-H3 antibody responses during the 2016-2017 
influenza season  
 
Many individuals receive influenza vaccines every year, however recent data suggest that 

repetitive vaccinations may be associated with reduced antibody responses (Huang et al., 2017; 

Leung et al., 2017; Thompson et al., 2016) and reduced vaccine effectiveness (McLean et al., 

2014; Ohmit et al., 2013; Skowronski et al., 2016) during some influenza seasons. To determine if 

prior vaccinations impacted the development of H3 antibodies following vaccination of donors in 

our study, we examined neutralizing antibody data in relation to vaccine history. Donors in our 

study self-reported vaccination history in the previous two seasons (2014-2015 and 2015-2016). 

We excluded individuals who reported having received the live attenuated vaccine in previous 

seasons (n=1) and individuals who did not remember their vaccination status in either season 

(n=7), and then we grouped individuals into three categories: unvaccinated both seasons, 

vaccinated in only one season, and vaccinated in both seasons. Interestingly, vaccination history 

was uncorrelated with pre-vaccine titers to T160 HA and K160 HA, but it was the strongest 

independent predictor of final antibody titers and fold changes to both viral strains following 

vaccination (Table 3-3). Individuals that had been vaccinated in the previous two years exhibited 

overall lower antibody boosts (Figure 3-5), after adjusting for age and pre-vaccination antibody 

titers (Table 3-3). 

Discussion 
 

It is unclear why there was only moderate vaccine effectiveness during the 2016-2017 

influenza season, given that the 2016-2017 vaccine strains appeared to be well-matched to most 

circulating viral strains (Flannery et al., 2017). Our data suggest that a mismatch in antigenic site 

B of H3N2 viruses, caused by the propagation of the vaccine strain in eggs, likely contributed to 

this low vaccine effectiveness. When influenza viruses are passaged in new hosts, antigenic 
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properties of hemagglutinin can change since many residues of this protein are involved with both 

receptor binding and antibody recognition (Gambaryan et al., 1998; Gambaryan et al., 1999; 

Hensley et al., 2009; Li et al., 2013a). This is not the first example of antigenic properties of 

influenza viruses being altered by egg-adaptations. In 1978, Kilbourne showed that there were 

two antigenically distinct viruses in the 1976 X-53 swine influenza vaccine, and that these viruses 

had different growth properties in chicken embryos and canine kidney cells (Kilbourne, 1978). In 

1983, Webster and colleagues demonstrated that influenza B viruses acquire substitutions that 

alter antigenicity when propagated in chicken eggs (Schild et al., 1983). Egg-adaptations resulting 

in antigenic changes have also been reported for H3N2 viruses (Chen et al., 2010b; Katz and 

Webster, 1989; Kilbourne et al., 1993; Meyer et al., 1993). It has been proposed that H3N2 egg-

adaptations contributed to low vaccine effectiveness during the 2012-2013 influenza season 

(Skowronski et al., 2014), although this remains controversial (Cobey, 2017).  

Nonetheless, the majority of influenza vaccine antigens continue to be prepared in eggs 

(Schultz-Cherry and Jones, 2010). One solution to the problem of egg-adaptations is to simply 

produce influenza antigens via a baculovirus system or in cell culture. The baculovirus system 

seems particularly well suited to avoid adaptive substitutions, however there are also potential 

problems with this approach. HA antigens prepared in insect cells are glycosylated with less 

complex sugars compared to mammalian cells (An et al., 2013), and it is possible that this affects 

antigenicity. In our study, some individuals vaccinated with baculovirus-prepared Flublok (that 

possessed T160 HA) mounted strong antibody responses that effectively neutralized a virus 

possessing an HA with a glycosylated antigenic site B; however, some Flublok-vaccinated 

individuals mounted antibody responses that reacted poorly to viruses with T160 HA.  

It is important to note that there is more HA antigen in Flublok vaccine formulations 

compared to conventional egg-based vaccine formulations. It is possible that the increased 

amount of antigen in Flublok contributed to higher antibody responses against viruses that 

possess T160 HA, however, this is likely not the case since compared to the other vaccines 
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tested, Flublok did not induce a significantly greater response to K160 HA. Therefore, Flublok did 

not generate an overall higher antibody response in our study, but rather an antibody response 

that was better able to recognize viruses possessing T160 HA. This is interesting in light of a 

recent study demonstrating that the Flublok vaccine elicited more protective antibody responses 

in older adults compared to egg-based vaccines during the 2014-2015 season (Dunkle et al., 

2017). This warrants further investigation because there was a large H3 antigenic mismatch 

during this season (Chambers et al., 2015). It is possible that the Flublok vaccine elicited 

antibodies of different specificities compared to egg-based vaccines during the 2014-2015 

influenza season, perhaps to epitopes involving conserved residues of the HA receptor binding 

pocket. 

Cell culture-expressed HA antigen might also avoid problems associated with egg-

adaptations. The 2017-2018 recommended H3N2 component is the same as the 2016-2017 

recommended H3N2 component, but starting this year, vaccine manufacturers that prepare 

antigens via cell culture systems will be allowed to use viral strains that have not been previously 

adapted to grow in eggs (https://www.cdc.gov/flu/protect/vaccine/cell-based.htm). H3N2 vaccine 

strains grown in this new system may possess HAs with a glycosylated antigenic site B, although 

substitutions that abrogate this glycosylation site have been previously reported upon serial 

passage of clade 3C.2a H3N2 viruses in MDCK cells (Lin et al., 2017). 

Interim reports indicate that the 2016-2017 vaccine protected younger individuals from 

H3N2 infection less effectively compared to older individuals (Flannery et al., 2017). In our study, 

we found that younger adults were more likely to produce antibodies that efficiently neutralized 

K160 HA but weakly neutralized T160 HA after vaccination. These age-related differences may 

be due to differences in prior exposure histories. It is clear that prior influenza exposures can 

affect how an individual responds to new antigenically distinct viral strains (Cobey and Hensley, 

2017). For example, individuals exposed to the 2009 pandemic H1N1 strain produce antibodies 

that target epitopes that are conserved in previously circulating seasonal H1N1 viral strains (Li et 
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al., 2012; Li et al., 2013b; Linderman et al., 2014; Wrammert et al., 2011), particularly viral strains 

that they were likely exposed to in childhood. Early childhood infections also likely impact 

susceptibility to pandemic influenza virus strains. Gostic and colleagues recently demonstrated 

that early childhood infections with either H1N1 or H3N2 influenza viruses are associated with 

protection from H5N1 and H7N9 viruses later in life, presumably through induction of cross-

reactive antibodies against epitopes that are conserved between these different viruses (Gostic et 

al., 2016). Further studies should explore if early childhood antigenic ‘imprinting’ with different 

H3N2 viral strains affects the specificity of antibodies elicited by seasonal influenza vaccination.  

Vaccine effectiveness against H3N2 is often low (Belongia et al., 2016), especially 

among repeat vaccinees (McLean et al., 2014; Ohmit et al., 2013; Skowronski et al., 2016). 

Antigenic mismatch due to incorrect strain selection is an established cause of low vaccine 

effectiveness (Belongia et al., 2016). Future studies should address if egg-adapted substitutions 

constitute another form of antigenic mismatch that alters vaccine effectiveness in other influenza 

virus seasons. Antigens with egg-adapted mismatches might recall preexisting immune 

responses, including responses to previous vaccines. A major effort should be made to develop 

and utilize new systems that produce influenza antigens that are not dependent on egg or cell 

culture-adaptive substitutions. Antigens that do not possess adaptive substitutions will likely offer 

better protection against influenza virus strains that circulate in the human population. 

Materials and Methods 
	

Viruses: The HA gene of a representative clade 3C.2a H3N2 virus (A/Colorado/15/2014) was 

cloned into the vector pHW2000 and the T160K substitution was introduced to remove the 

predicted glycosylation motif. Viruses containing H3 and N2 genes with A/Puerto Rico/8/1934 

internal genes were rescued using the influenza reverse genetics system by transfecting a co-

culture of 293T and MDCK-SIAT1 cells. Transfection supernatants were collected 3 d after 

transfection and stored at -80°C for use in neutralization assays. HA and NA genes of virus 
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expansions grown on MDCK-SIAT1 cells were sequenced to confirm that no additional 

substitutions arose during transfection. 

Glycosylation Western Blotting and Glycan Modeling: Viruses possessing T160 and K160 HA 

were expanded on MDCK-SIAT1 cells and then concentrated at 20,000 rpm for 1 hr at 4°C using 

a SW-28 rotor. The amount of HA in each sample was normalized by ELISA with a human anti-

HA monoclonal antibody for subsequent SDS-PAGE and Western blotting. To cleave N-linked 

glycans, samples were treated with PNGase-F (New England Biolabs) under reducing conditions. 

PNGase-treated and untreated samples were run on SDS-PAGE gels (Thermo Fisher Scientific) 

and transferred to a nitrocellulose membrane (Thermo Fisher Scientific). Blots were probed using 

anti-HA tag primary antibody clone HA-7 (Sigma-Aldrich, product number 59658) and an anti-

mouse secondary antibody (Licor, product number 926-32212). In order to structurally model the 

N158 glycosylation introduced by T160, a K160T substitution was introduced into the crystal 

structure (PDB ID code 4O5I) using the program PyMol. Basic N-linked glycans were added to 

predicted N-linked glycosylation sites in the crystal structure using the GlyProt web server: 

http://www.glycosciences.de/modeling/glyprot/php/main.php. 

Human monoclonal antibody binding: Human monoclonal antibodies were previously isolated 

from donor peripheral blood mononuclear cells following vaccination with the 2010-2011 influenza 

vaccine (Henry Dunand et al., 2015). ELISA plates were coated overnight at 4°C with a 2009 

virus (A/Victoria/210/2009; the H3N2 component of the 2010-2011 influenza vaccine), a 

glycosylated 2014 clade 3C2.a virus with T160 HA, or an unglycosylated 2014 clade 3C2.a virus 

with K160 HA. ELISA plates were blocked with a 3% (w/vol) bovine serum albumin (BSA) solution 

in phosphate-buffered saline (PBS) for 2 hrs. Plates were washed 3 times with PBS containing 

0.1% Tween20 and serial dilutions of each monoclonal antibody in ELISA buffer (1% BSA w/vol in 

PBS) were added to plates in 1% BSA in PBS. After 2 hrs of incubation, plates were again 

washed and a peroxidase-conjugated anti-human secondary antibody (Jackson 

ImmunoResearch, product number 109-036-098) diluted in ELISA buffer was added. After a 1 hr 
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incubation, plates were washed and a 3,3’,5,5’-tetramethylbenzidine (TMB) substrate (Seracare, 

product number 50-00-03) was added. The TMB reaction was stopped by adding HCl, and 

absorbance was measured using a plate reader. One-site specific binding curves were fitted in 

Prism software and the maximal binding against the 2009 vaccine strain was calculated for each 

monoclonal antibody. After background subtraction (from ELISA plates that did not have coated 

virus), binding of each monoclonal antibody relative to the vaccine strain was determined using 

the absorbance values at the lowest concentration of antibody that gave greater than 90% of 

maximal binding against the vaccine strain. Equivalent coating of each virus was checked using 

the stalk-reactive DY-2F04 monoclonal antibody. 

Ferret sera: Ferret antisera were prepared at the AAALAC-accredited company Noble Life 

Sciences using protocols approved by the Nobel Life Sciences Institutional Animal Care and Use 

Committee. Naïve Fitch ferrets were intranasally infected with 2 x 105 PFU of virus expressing 

either K160 HA or T160 HA. Serum samples were collected prior to infection and 28 days 

following infection. Sera used in antigenic assays were treated with receptor-destroying enzyme 

(Denka Seiken) for 2 hrs at 37°C, and the enzyme was then heat-inactivated at 55°C for 30 min. 

Human Sera: Experiments using human sera were conducted with the approval of the University 

of Rochester and University of Pennsylvania Institutional Review Boards. Informed consent was 

obtained for all individuals enrolled. Serum samples were collected at the University of Rochester 

prior to and 28 days following vaccination. Serological experiments were completed at the 

University of Pennsylvania using de-identified samples. Prior to assays, sera samples were 

treated with receptor-destroying enzyme (Denka Seiken) for 2 hrs at 37°C, and the enzyme was 

then heat-inactivated at 55°C for 30 min. 

Foci Reduction Neutralization Test (FRNT) Assays: Serum samples were serially diluted in 96-

well round-bottom plates containing serum-free media. Approximately 200 focus-forming units 

(FFU) of reverse-genetics transfection supernatant of each virus were added to each diluted sera 

sample and the virus-sera mixtures were incubated at room temperature for 1 hr. The virus-sera 
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mixtures were then added to confluent monolayers of MDCK-SIAT1 cells and incubated at 37°C 

for 1 hr. After incubation, cells were washed with serum-free media and an overlay medium of 

serum-free media containing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 

(Thermo Fisher Scientific), gentamycin (Thermo Fisher Scientific), and 0.5% methylcellulose 

(Sigma Aldrich) (w/vol), was added to cells. Infected monolayers were incubated for 18 hours, 

after which the overlay medium was aspirated and the cells were fixed and permeabilized with 

ice-cold methanol-acetone (1:1 vol/vol). Infected monolayers were stained with anti-NP 

monoclonal antibody IC5-1B7 (BEI Reagent Resources, product number NR-43899) and an anti-

mouse peroxidase-conjugated secondary antibody (MP Biomedicals, product number 855563). A 

3,3’,5,5’-tetramethylbenzidine (TMB) substrate (Seracare, product number 5510-0030) was 

added to visualize foci. Following staining, plates were imaged and foci were quantified using an 

ELISPOT reader (Cellular Technologies Limited). FRNT90 titers were reported as the reciprocal of 

the highest dilution of sera that reduced the number of foci by at least 90%, relative to control 

wells that had no serum or monoclonal antibody added. Undetectable titers were assigned a 

value of 10. All FRNT assays were repeated three times on separate days. 

Models of initial and final antibody titers and fold responses: Three replicate measurements of 

pre- and post-vaccination antibody titers from each serum sample (see Table 3-2) were 

geometrically averaged, and the geometric mean titers were used for model fitting. Linear models 

that included age and vaccination history (receipt of trivalent inactivated vaccine in neither, only 

one, or both of the last two years) were fitted to log2 pre-vaccination titers as continuous and 

factor variables, respectively. Models were similarly fitted to log2 post-vaccination antibody titers, 

also including log2 pre-vaccination titers and vaccine group (Flublok, Flucelvax, and Fluzone) as 

continuous and factor variables, respectively. Likelihood maximization was performed with the lm 

package in R v. 3.3.1. Code for the analysis is available at: 

https://cobeylab.github.io/H3N2_glycosylation/ 

 



60	
	

Figures and Tables 
 

Figure 3-1 
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Figure 3-1: Contemporary H3N2 viruses possess a new substitution that introduces a 
glycosylation site in antigenic site B of HA   
 
(A) The K160T HA substitution rapidly rose to fixation during the 2014-2015 influenza season. 

Shown are frequencies estimated from viral samples (from GISAID database) collected from 

December 2011 to March 2017 and divided into two-month windows. (B) Putative glycosylated 

sites on contemporary HAs are shown on the A/Victoria/361/2011 HA trimer (PDB ID code 4O5I). 
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The new putative site introduced by the K160T substitution is shown in blue, while the other 

putative sites are shown in black. (C) H3 viruses possessing either K160 HA or T160 HA were 

created by reverse-genetics. The molecular weights of the HAs of these viruses were determined 

using Western blots with an anti-HA antibody, either with or without prior PNGase treatment. 

PNGase treatment was completed under reducing conditions. On the –PNGase gel, the upper 

bands correspond to HA trimers and the lower bands correspond to HA monomers. 
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Figure 3-2 

2009 HA
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2014 HA (K160)

No Virus
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019-10117 1B02 100 0 0
017-10116 5G02 100 1 1
017-10116 5D02 100 1 1
013-10078 3G01 100 2 2
011-10069 5C01 100 0 9
009-10061 2A05 100 0 18
011-10069 3E06 100 0 36
034-10040 4E01 100 0 51
009-10061 2C06 100 0 38
011-10069 5D01 100 0 89
011-10069 2C01 100 0 79
008-10053 5E04 100 0 80
008-10053 5G01 100 0 77
019-10117 3F01 100 0 88
024-10128 3F04 100 3 90
019-10117 3A06 100 4 93
034-10040 4C01 100 4 72
024-10128 3C04 100 4 98
037-10036 5A01 100 5 91
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Figure 3-2:  Contemporary H3N2 viruses with T160 HA are antigenically distinct compared 
to H3N2 viruses with K160 HA 
 
(A) ELISA assays were completed to test the binding of 26 anti-H3 human monoclonal antibodies 

(mAbs) to a 2009 HA, a 2014 HA with T160, and a 2014 HA with K160. All antibodies in this 

panel were elicited by a 2009 HA following vaccination prior to the 2010-2011 season. Shown is 

% binding of antibodies to the 2014 viruses relative to binding to the 2009 virus. (B) ELISA 

binding data for an antibody that binds efficiently to virus with K160 HA but not T160 HA is 

shown. (C) ELISA binding data for an antibody that recognizes a conserved epitope on the HA 

stalk is shown to verify that ELISA plates were coated with similar amounts of HA antigen.  
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Figure 3-3 
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Figure 3-3:  Ferrets elicit different types of antibody responses when exposed to H3 
viruses with K160 HA and T160 HA  
 
Ferrets (n=3 animals per group) were infected with viruses possessing (A) K160 HA or (B) T160 

HA and sera were collected 28 days later. FRNTs were completed using viruses that possessed 

K160 HA or T160 HA. Neutralization titers are expressed as inverse dilution of sera that reduced 

foci by 90%. We completed 3 independent experiments with each sera. Shown are geometric 

means from the 3 independent experiments. Statistical significance was determined using a 

paired Student’s t-test. 
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Figure 3-4 
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Figure 3-4:  Vaccine antigens possessing K160 HA and T160 HA elicit different responses 
in humans 
 
Donors were vaccinated with seasonal influenza vaccines, and sera were collected prior to and 

28 days after vaccination. FRNTs were completed using viruses that possessed T160 HA or 

K160 HA. (A) Flublok induced higher fold changes to T160 HA than did Flucelvax and Fluzone 

(p=0.01 and p=0.04 in adjusted analysis, respectively; Table 3-3; ns, non-significant). (B) The 

vaccine types did not differ in their ability to induce responses to K160 HA (p>0.1 in adjusted 

analysis; Table 3-3). Thick horizontal lines show the median fold changes of the geometric mean 

titers. Colored rectangles indicate the interquartile range and whiskers the 150% interquartile 

ranges. Individual data points are superimposed. See Table 3-2 for raw titer data.  
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Figure 3-5 
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Figure 3-5: The effect of prior vaccine history on neutralizing antibody titers  
 
Vaccination history did not affect initial pre-vaccine titers to K160 HA or T160 HA (A,D), but 

previous vaccinations progressively reduced titers after vaccination (B,E).  Fold change is shown 

in panels C and F. Shown are the geometric means from the 3 independent experiments.  Each 

circle represents the geometric mean titer of an individual sample.  Darker intensity indicates 

overlapping data points. 
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Table 3-1 

A predicted glycosylation site at residue 158 arose in 2014 

                             H3 residues 
	

year 158 159 160 
1968 G S T 
1977 E S T 
1979 E S K 
1986 E Y K 
1993 K Y K 
2004 K F K 
2009 N F K 

2014-present N Y T 
predicted gly site N X (not P) T 

 

Table 3-1: Historical status of the 158 glycosylation sequence motif 
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Table 3-2 
Table S1: Raw antibody titer data used for Figs. 4 and S2 
FB = Flublok, FCV=Flucelvax, FZ=Fluzone

Donor # Group Age T160 HA K160 HA T160 HA K160 HAT160 HA K160 HA T160 HA K160 HA T160 HA K160 HA T160 HA K160 HA 2014 2015
1 FB 49 10 20 20 20 10 20 20 40 10 20 20 80 Inactivated Inactivated
2 FCV 38 10 10 20 40 10 10 20 80 10 10 40 80 Inactivated Inactivated
3 FZ 26 80 320 160 320 80 320 160 640 80 320 320 640 Inactivated Inactivated
4 FCV 37 160 320 160 640 160 640 160 640 160 640 160 1280 None Inactivated
5 FCV 30 40 160 40 160 40 160 40 160 40 160 40 160 Inactivated Inactivated
6 FB 26 10 80 80 640 10 160 80 640 20 160 160 640 Inactivated Unknown
7 FCV 32 80 80 320 640 40 80 640 640 80 160 1280 1280 None Inactivated
8 FCV 19 40 80 320 640 40 160 320 1280 20 80 320 1280 Inactivated Inactivated
9 FCV 48 10 10 10 10 10 10 10 80 10 10 10 80 None None

10 FB 29 10 320 40 640 10 320 80 1280 10 320 160 1280 None Inactivated
11 FCV 31 40 10 10 80 10 10 10 160 10 10 10 160 None Inactivated
12 FCV 30 10 40 10 80 10 80 10 80 10 80 10 80 Inactivated Inactivated
13 FZ 48 10 20 10 40 10 20 10 40 10 20 10 80 Inactivated Inactivated
14 FZ 49 10 160 10 80 10 160 10 160 10 160 10 160 Inactivated Inactivated
15 FB 37 80 80 80 80 40 80 40 80 80 80 80 80 Inactivated Inactivated
16 FZ 19 40 640 40 320 40 640 40 640 40 640 80 640 Inactivated Inactivated
17 FCV 18 10 20 40 320 10 20 40 320 20 20 40 320 Unknown None
18 FB 33 10 40 10 80 10 160 40 160 10 80 40 160 Inactivated Inactivated
19 FCV 27 10 160 40 320 20 320 20 320 20 320 40 320 Unknown Inactivated
20 FCV 22 40 160 40 320 20 160 80 640 80 320 80 640 Inactivated None
21 FB 32 40 80 40 160 40 80 40 160 40 160 80 320 Inactivated Inactivated
22 FZ 44 10 20 20 40 10 20 40 80 20 20 40 80 Inactivated Inactivated
23 FZ 20 10 40 10 40 10 40 10 40 10 80 10 80 Inactivated Inactivated
24 FZ 22 40 320 80 640 40 640 80 1280 40 640 80 2560 Inactivated Inactivated
25 FCV 24 10 40 10 80 10 80 10 80 10 80 10 80 None Inactivated
26 FCV 21 10 320 10 320 10 320 10 640 20 320 10 320 Unknown Inactivated
27 FCV 20 10 40 10 160 10 80 10 160 10 80 20 160 Inactivated Inactivated
28 FCV 35 10 80 20 160 10 80 20 320 20 160 20 320 Inactivated Inactivated
29 FZ 25 40 160 40 80 20 160 20 160 40 160 20 160 None Inactivated
30 FZ 32 10 40 10 40 10 40 10 80 10 80 10 80 Inactivated Inactivated
31 FB 33 40 160 40 320 20 160 40 320 20 320 80 640 None Inactivated
32 FB 19 20 80 160 320 20 80 160 320 40 80 320 320 Inactivated Inactivated
33 FCV 27 10 80 20 160 20 80 20 160 20 80 20 160 Inactivated Inactivated
34 FCV 21 10 10 80 160 10 10 80 160 10 10 80 160 None None
35 FCV 26 10 10 40 160 10 10 80 320 10 10 80 320 None None
36 FB 24 40 640 40 640 40 640 80 640 80 640 80 640 None None
37 FZ 47 20 40 20 80 20 40 20 80 40 80 40 160 Inactivated Inactivated
38 FZ 46 10 10 10 20 10 10 10 20 10 20 10 40 Live Inactivated
39 FB 22 10 320 1280 5120 20 320 1280 5120 40 320 2560 10240 None None
40 FZ 19 10 320 10 640 20 640 80 640 40 640 40 1280 Unknown Unknown
41 FB 42 40 40 320 320 40 40 640 640 40 40 640 640 Inactivated Inactivated
42 FZ 21 20 160 40 320 20 320 80 320 40 320 80 640 Inactivated Inactivated
43 FCV 31 10 10 80 160 10 10 40 160 10 10 40 160 Inactivated None
44 FZ 26 20 160 20 320 20 160 20 320 20 160 20 320 Inactivated Inactivated
45 FZ 30 40 640 40 80 40 640 80 640 80 640 40 640 Inactivated Inactivated
46 FZ 26 40 320 80 640 80 640 160 1280 80 640 160 640 Inactivated Inactivated
47 FB 45 10 10 80 40 10 10 80 80 10 10 80 80 None Inactivated
48 FB 23 80 40 80 80 40 80 80 320 40 80 80 160 None Inactivated
49 FCV 24 10 40 10 40 10 40 10 20 10 40 10 40 Inactivated Inactivated
50 FZ 20 40 160 160 320 40 160 160 640 80 160 160 640 Inactivated None
51 FB 20 40 160 40 160 40 320 40 320 40 320 40 320 Inactivated Inactivated
52 FB 19 40 160 40 160 40 320 80 320 80 320 80 320 Inactivated Inactivated
53 FCV 34 80 160 80 160 80 320 80 320 80 320 80 320 Inactivated Inactivated
54 FZ 21 80 160 80 320 80 320 160 640 80 320 80 640 Inactivated Inactivated
55 FCV 21 40 160 640 2560 40 160 640 2560 40 160 1280 2560 None None
56 FZ 42 160 320 320 640 160 640 320 1280 160 640 320 640 None Inactivated
57 FCV 24 80 320 80 320 80 320 80 320 80 640 80 320 Inactivated Inactivated
58 FB 31 80 40 40 40 40 40 80 80 40 40 80 80 None Inactivated
59 FB 19 40 320 1280 1280 80 320 640 1280 40 320 1280 1280 Inactivated None
60 FB 20 40 160 160 640 40 320 320 640 40 320 160 640 None None
61 FZ 21 20 160 80 320 40 160 80 320 40 160 80 320 Inactivated Unknown
62 FCV 37 160 320 160 320 160 320 160 320 80 320 160 320 None Inactivated
63 FZ 20 10 10 20 320 10 10 40 640 10 10 20 640 Inactivated Inactivated
64 FCV 20 10 80 40 160 10 80 20 160 10 80 20 160 Inactivated None
65 FB 40 20 40 640 640 10 40 1280 1280 10 40 640 1280 None None
66 FB 30 10 20 80 320 10 20 80 640 10 10 80 640 Inactivated Inactivated
67 FB 20 20 160 40 160 40 160 40 320 40 160 40 320 Inactivated Inactivated
68 FB 22 10 160 40 640 10 160 80 640 10 160 80 1280 Inactivated Inactivated
69 FCV 19 40 160 80 320 40 320 160 320 40 320 160 640 Unknown None
70 FZ 26 40 80 320 1280 40 80 640 2560 40 160 640 2560 None None

post-vaccination
experiment 2 experiment 3

vaccine historypre-vaccination post-vaccination
experiment 1

pre-vaccination post-vaccination pre-vaccination

 

Table 3-2: Summary of neutralization titers 
 

Shown are the prevaccination and postvaccination neutralization titers and prior vaccine history 

for individuals in Figure 3-4 and Figure 3-5. FB: Flublok, FCV: Flucelvax, FZ: Fluzone. 
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Table 3-3 

Estimate Std. err. Sig. Adj. R2 Log lik.
Prevaccination titers to K160 0.10 -119.74

Age -0.07 0.02 **
Vaccinated once 0.70 0.71
Vaccinated twice 0.66 0.64

Prevaccination titers to T160 0.02 -97.20
Age -0.02 0.02
Vaccinated once 0.69 0.50
Vaccinated twice 0.17 0.45

Postvaccination titers to K160 0.48 -94.13
Age -0.04 0.02 *
Vaccinated once -1.38 0.49 **
Vaccinated twice -1.85 0.45 ***
Flucelvax receipt -0.37 0.36
Fluzone receipt -0.09 0.38
Prevacc. titer 0.46 0.09 ***

Postvaccination titers to T160 0.51 -101.40
Age -0.02 0.02
Vaccinated once -1.67 0.55 **
Vaccinated twice -2.21 0.51 ***
Flucelvax receipt -1.04 0.40 *
Fluzone receipt -0.89 0.43 *
Prevacc. titer 0.84 0.15 ***

*	p<0.05,	**	p<0.01,	***	p<0.001

Table S2. Summary of model fits

 

Table 3-3: Summary of model fits  
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CHAPTER 4: ANTIBODIES TARGETING THE H3 
HEMAGGLUTININ RECEPTOR-BINDING SITE PLAY AN 
UNEXPECTED ROLE IN NEUTRALIZATION OF RECENT 

H3N2 VIRUSES 
 

Contributions: Megan Gumina and Kaela Parkhouse helped complete neutralization assays, and 
Megan Gumina helped complete absorption-neutralization and absorption-ELISA experiments 
shown in Figures 4-6 and 4-8. Patrick Wilson contributed mAbs, and Andrea Sant and John 
Treanor designed the human vaccination study (data shown in Figure 4-8). 

Summary 
 

Influenza viruses escape neutralizing antibodies by acquiring substitutions in antibody 

epitopes in hemagglutinin (HA), a process known as antigenic drift. We mapped the binding 

footprints of a panel of H3-specific monoclonal antibodies isolated from humans vaccinated with 

the 2010-2011 seasonal influenza vaccine. Over a third of neutralizing antibodies were sensitive 

to substitutions at highly conserved positions in the HA receptor-binding site (RBS), and some 

neutralized contemporary H3N2 viruses with major antigenic changes. We measured the levels of 

a subset of RBS antibodies in serum of humans before and after vaccination. We found these 

RBS antibodies in frequencies ranging from 10-20% of individuals, with some neutralizing 

antibody responses focused against epitopes involving HA RBS residues. This suggests that in 

some individuals RBS-directed antibodies are present at levels that would likely provide 

protection, highlighting the need to better understand how these antibodies are elicited. 

Introduction 
 

Influenza A viruses pose a serious public health threat, in large part due to their ability to 

rapidly escape human immunity (Yewdell, 2011). The viral attachment and entry factor 

hemagglutinin (HA) is the major target of neutralizing antibody responses against influenza 

viruses, and the presence of antibodies that bind the immunodominant globular head domain of 

HA and block attachment to cells is an established correlate of protection from infection 

(Coudeville et al., 2010). However, circulating influenza viruses continuously accumulate 

substitutions in antibody epitopes in HA, which may abrogate the binding of pre-existing antibody 
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responses. This process of immune evasion, known as antigenic drift, allows influenza viruses to 

escape population immunity. As a result, seasonal infection or vaccination provides limited 

protection from re-infection with antigenically drifted strains. Antigenic drift also undermines 

vaccine effectiveness because vaccines that are mismatched with circulating strains provide poor 

protection from infection. In order to combat antigenic drift, developing a “universal” influenza 

vaccine is a major priority. A universal influenza vaccine would protect individuals from 

antigenically drifted strains through longer-lasting and more broadly cross-reactive antibody 

responses (Erbelding et al., 2018). While specific approaches vary, a common strategy of 

universal influenza vaccine efforts is to elicit antibody responses that recognize functionally 

conserved sites on HA in order to limit the potential for viral escape. The highly conserved stalk 

domain of HA is a promising vaccine target, and several strategies have been pursued to elicit 

stalk-reactive immunity (Impagliazzo et al., 2015; Krammer et al., 2013; Yassine et al., 2015). 

However, as stalk antibodies generally neutralize poorly in vitro and require Fc-mediated effector 

functions in order to protect in vivo (DiLillo et al., 2014), it is important to also consider targeting 

functionally conserved sites in the HA head domain, such as the receptor-binding site (RBS). 

 In the 1980s, the crystal structure of H3 HA was used in combination with sequence data 

to define antigenic sites on the H3 head domain (Wiley et al., 1981; Wilson et al., 1981). Human 

antibodies that bind each site have been described (Okada et al., 2011), but there is evidence 

that sites A and B, which are adjacent to the RBS, are immunodominant in human antibody 

responses. As a result, substitutions in these sites play an especially important role in H3N2 

antigenic drift. In a ferret model of influenza virus antigenic evolution, substitutions at a handful of 

positions in H3 antigenic sites A and B have been associated with large antigenic changes (Koel 

et al., 2013; Popova et al., 2012). In addition, antigenic site B has been a major site of antigenic 

escape in H3N2 viruses. Substitutions in site B that arose in 2014-2015 had a dramatic effect on 

the ability of pre-existing human antibodies to bind and neutralize H3N2 viruses (Beer et al., 

2018; Chambers et al., 2015; Zost et al., 2017), and the acquisition of these substitutions was 
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also associated with drastically reduced vaccine effectiveness. In a recent example, the fixation of 

a new glycosylation site in site B abrogated pre-existing neutralizing antibody titers in a large 

number of individuals (Zost et al., 2017), illustrating the dramatic consequences of antigenic 

substitutions near the RBS.  

Given that the surface area of the HA RBS is much smaller than the paratope of a single 

antibody, substitutions on the rim of the RBS have the potential to greatly impact antibody 

binding. However, despite the antigenic variation surrounding the RBS, some highly cross-

reactive antibodies make contacts in the HA RBS. These RBS antibodies achieve this cross-

reactivity through mimicry of the same contacts made by sialic acid, in some cases using 

strikingly similar mechanisms of recognition. Some antibodies make contacts with conserved 

RBS residues through a shared dipeptide motif (Krause et al., 2011a; Schmidt et al., 2015b; 

Whittle et al., 2011), while other antibodies insert a hydrophobic residue into the RBS (Xu et al., 

2013). Broadly reactive RBS antibodies also generally make minimal contacts or tolerate 

substitutions at RBS-adjacent residues, in some cases due to atypically long HCDRs. However, 

unlike HIV RBS antibodies such VRC01, HA RBS antibodies do not originate only from a handful 

of germline precursors or require extensive framework substitutions or germline polymorphisms. 

Rather, antibodies that recognize the H1 RBS have been shown to arise from a number of VH 

gene segments (Schmidt et al., 2015b). While there is some evidence that antibodies targeting 

the RBS are more common than previously thought (McCarthy et al., 2018), the RBS antibodies 

that have been described structurally come from a comparatively small number of individuals. 

Despite the potential of RBS antibodies to contribute to more cross-reactive and antigenic drift-

resistant neutralizing antibody responses, the frequency and relative abundance of these 

antibodies in individual repertoires and the human population remains unknown. 

 In order to better understand recent antigenic drift in H3N2 viruses, we have mapped the 

binding sites of a large panel of H3 mAbs isolated from donors vaccinated in 2010-2011. 

Substitutions in site B abrogate the binding of most neutralizing mAbs, consistent with recent 
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major changes in antigenic site B. However, some mAbs were able to tolerate large antigenic 

changes due to contacts in the RBS, and substitutions in the RBS abrogated the binding of a third 

of neutralizing antibodies. Using our antigenic mutant panel, we identified a subset of RBS 

antibodies that appear to make contact with Y98, an RBS residue that binds sialic acid and is 

completely conserved across HA subtypes. In serum from one individual, antibody contacts with 

Y98 mediated cross-reactivity with an antigenically drifted H3N2 strain, suggesting this individual 

mounted a convergent antibody response targeting the RBS. In order to answer the question of 

whether these RBS antibodies contribute to neutralization of currently circulating H3N2 strains, 

we designed an absorption-based approach to quantify the prevalence and abundance of RBS 

antibodies in bulk sera from humans before and after vaccination with recent seasonal influenza 

A vaccines. We found that in the case of an antigenically mismatched vaccine, some vaccine-

induced neutralizing antibody responses were focused against epitopes involving Y98. 

Additionally, we discovered that RBS antibody titers were boosted by vaccination with vaccines 

that lack egg-adaptive substitutions in the RBS. We suggest that, in some individuals, RBS 

antibodies play an unappreciated role in protection from infection with antigenically drifted strains, 

and that vaccine regimens or immunogens designed to selectively recall these RBS antibodies 

would be a valuable component of universal vaccine strategies. 

Results 

Characterization of mAbs  
 

We began by characterizing a panel of 33 anti-H3 human mAbs that were elicited by 

vaccination with the 2010/2011 trivalent influenza vaccine. (Henry Dunand et al., 2015). These 

antibodies originated from 13 different individuals. We first completed hemagglutination-inhibition 

(HAI) and micro-neutralization (MN) assays with the H3 component of the 2010/2011 vaccine, 

A/Victoria/210/2009 (Vic/09) to assess the ability of mAbs to prevent receptor binding and block 

virus infection respectively. Of the mAbs in the panel, 26 out of 33 inhibited agglutination of the 

vaccine strain (Figure 4-1A), indicating that they bound close enough to the HA globular head 
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domain to block sialic acid binding. Two mAbs that did not inhibit agglutination neutralized 

infection (Figure 4-1B), indicating that these HAI- mAbs likely neutralized by a different 

mechanism than preventing attachment. 5 mAbs did not give HAI or MN titers. In order to test the 

breadth of binding for these mAbs, we measured binding to a panel of different H3 viruses by 

ELISA (Figure 4-2). While most HAI+ mAbs bound to a relatively narrow range of viruses from 

2005-2012, the HAI- mAbs bound a much wider range of viruses, with some mAbs binding strains 

from 1968-present. Surprisingly, two of these non-neutralizing mAbs cross-reacted with an H1 

HA, indicating they bound an epitope conserved between group 1 and group 2 HAs. Taken 

together, these data demonstrated that most of the mAbs bound to the globular head domain and 

neutralized by blocking attachment to sialic acid, while a subset of more cross-reactive mAbs 

bound lower on the HA. 

Fine-mapping of mAb Footprints 
 

In order to better understand the effects of individual substitutions on antigenic drift, we 

next sought to better define the epitopes of each mAb. To map the binding footprints of the mAbs, 

we introduced substitutions that had recently become fixed into the Vic/09 vaccine strain HA, as 

these were likely to have an antigenic effect. In parallel, we grew the Vic/09 strain in the presence 

of a subset of mAbs to select escape substitutions that abrogated mAb binding. We also used 

seasonal strain binding data (Figure 4-2) in combination with sequence comparisons to select 

substitutions that were likely to be responsible for the loss of binding to HA. The substitutions in 

our panel were predominantly located in antigenic sites A and B near the RBS, as these antigenic 

sites are immunodominant in human antibody responses. Our panel included substitutions at all 

the amino acid positions previously shown to be essential for antigenic escape from ferret sera 

(Koel et al., 2013). To map the epitopes of potential RBS antibodies in our panel, we also 

introduced substitutions at conserved positions in the RBS. In order to express HA substitutions 

that would likely have dramatic functional consequences, we generated virus-like particles (VLPs) 

bearing point-mutant HAs and tested binding of each mAb to VLPs in our panel using ELISA. We 
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then generated antigenic maps with mAb binding to each mutant normalized to the WT vaccine 

strain (Figure 4-3A). The majority of mAbs mapped to residues in antigenic site B. In particular, 

substitutions at positions 159 and 160 abrogated the binding of many mAbs, consistent with these 

substitutions having large antigenic effects in recent H3N2 evolution (Beer et al., 2018; Chambers 

et al., 2015; Zost et al., 2017). Some mAbs also mapped to sites lower on HA, away from the 

RBS. The two mAbs that neutralized but did not block attachment in HAI competed with a mouse 

H3 stalk mAb for binding in ELISA (Figure 4-4). Taken together, these data confirm that antigenic 

site B is the major target of neutralizing antibodies in human repertoires and demonstrate that 

single substitutions near the RBS can abrogate the binding of most human mAbs. 

Identification of RBS Antibodies 
 

Surprisingly, substitutions at conserved positions in the RBS affected the binding of 

approximately a third of HAI+ mAbs (Figure 4-3A). Some mAbs that were sensitive to RBS 

substitutions were also abrogated by site B changes, likely because they make contacts with both 

the conserved RBS as well as highly variable positions in site B. Other RBS mAbs, however, 

were more tolerant of site B substitutions (Figure 4-3A). We chose to focus on a subset of these 

RBS mAbs that were sensitive to a Y98F substitution. Y98 is located at the base of the RBS, 

interacts with sialic acid, and is completely conserved in circulating strains from both group 1 and 

group 2 HAs. The Y98F substitution has been reported to dramatically decrease receptor binding 

(Martín et al., 1998) and impair viral replication in vivo (Bradley et al., 2011). We introduced the 

essentially isosteric tyrosine to phenylalanine substitution in order to produce a limited effect on 

the overall structure of the HA yet disrupt the binding of RBS antibodies.  

A Subset of RBS Antibodies Reveals Convergent Targeting of the RBS 
 

While RBS that contact Y98 have been described (McCarthy et al., 2018) these 

antibodies have been thought to be rare. The five Y98-specific RBS mAbs were isolated from two 

different donors, and interestingly, all five mAbs arose from distinct heavy-chain rearrangements, 

indicating that multiple germline rearrangements converged on the RBS in each donor. Four of 
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the five Y98-specific mAbs utilized a JH6 gene segment, which has been previously reported as a 

common feature of mAbs recognizing the H1 RBS (Schmidt et al., 2015b). To test whether some 

of these Y98F-specific mAbs were able to tolerate site B substitutions due to their RBS contacts, 

we measured the binding of these mAbs against VLPs bearing WT and Y98F HAs. We also 

tested binding to HAs with a glycan introduced by a K160T substitution, and the double mutant 

Y98F K160T. As expected, while most Y98-specific mAbs were able to bind to the glycosylated 

HA, binding was greatly reduced against the double mutant (Figure 4-5A). This indicated that 

some of the RBS antibodies in our panel were able to use their contact with Y98 to maintain 

binding in the presence of large antigenic changes on the rim of the RBS. One of these Y98-

specific mAbs, 019-10117 3C06, was able to neutralize an antigenically drifted strain, A/Hong 

Kong/4801/2014 (HK/14), which contains this site B glycosylation. This indicated that despite 

several years of antigenic drift, RBS contacts enabled continued binding and neutralization, and 

that antibodies like 019-10117 3C06 are capable of contributing to protection against strains 

circulating today.  

Cross-Reactivity of RBS Antibodies in Donor Serum 
 
 While the isolation of these RBS mAbs from plasmablasts indicated that they were 

recalled by vaccination, little is known about the levels of RBS antibodies in human sera. Some 

studies have demonstrated competition for binding between RBS antibodies and sera from 

autologous donors, however these experiments do not directly measure RBS antibody levels, as 

other antibodies that bind near the RBS could also compete with RBS antibodies for binding 

(Schmidt et al., 2015b). To test whether RBS antibodies targeting Y98 were present at detectable 

levels in donor sera, we completed ELISAs testing the binding of prevaccination and 

postvaccination donor sera against HAs from the Vic/09 vaccine strain, the antigenically drifted 

HK/14 strain, and Y98F mutants of Vic/09 and HK/14. We tested sera from 28 vaccinated 

individuals, representing 10 of the 13 donors in our panel. While most individuals showed no 

reduction in binding against the Y98F mutants, one individual, 019-10117, showed reduced 
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binding to both Vic/09 Y98F and HK/14 Y98F HAs (Figure 4-5B). This result indicated that 

antibodies targeting Y98 were prevalent in the sera of this individual, and that some of these 

serum antibodies were able to cross-react with an antigenically drifted strain that arose five years 

later. Interestingly, both the prevaccination (D0) and postvaccination (D21) antibody responses 

from 019-10117 were focused on Y98, indicating that while vaccination recalled RBS antibodies 

as part of the plasmablast response, the vaccine itself was not responsible for establishment of 

the Y98-specific repertoire.  

RBS Antibodies Contribute to Neutralizing Titers Against an Antigenically-Mismatched 
Strain 
	

The presence of RBS specificity prior to vaccination and the distinct antibody lineages 

targeting Y98 suggested that the prior exposure history of 019-10117 resulted in an RBS-

dominated antibody repertoire. This finding raised the question of how frequent similar RBS-

directed antibody responses are in the human population and whether they can contribute to 

neutralization of contemporary circulating strains. We hypothesized that in some individuals, a 

fraction of neutralizing antibodies present in serum might be composed of RBS-directed 

antibodies. In order to dissect the contribution of RBS antibodies to neutralization in the sera of 

human donors, we developed an absorption-based approach to fractionate human serum 

samples. By incubating sera with 293F cells expressing either WT or Y98F HA, we could deplete 

antibodies that bound in the presence of Y98, while enriching for antibodies that failed to bind in 

the context of Y98F. Using mAbs of known specificity (019-10117 3C06 and 041-10047 1C04), 

we demonstrated that depletion of antibodies not specific for Y98 was robust and that Y98-

specific antibodies would be pulled down following absorption with WT HA but left in solution 

following absorption with Y98F HA (Figure 4-6A). We first examined the antibody responses of 21 

donors who were vaccinated during the 2015-2016 season. The H3 component of this vaccine, 

A/Switzerland/9715293/2013 (Switz/13), differs by 11 substitutions in a number of different 

epitopes compared with strains that circulated that season (Figure 4-6B). Given these potential 



77	
	

antigenic differences, we expected the vaccine to be antigenically mismatched with HK/14, a 

member of the clade that dominated circulation. As expected, we observed lower neutralization 

titers to HK/14 than Switz/13 after vaccination (Figure 4-6C), indicating that the vaccine was not 

antigenically matched with circulating strains. We used our absorption assay to fractionate 

prevaccination and postvaccination serum samples from each individual and measured the ability 

of the absorbed sera to neutralize HK/14 WT virus. In all cases, we were able to completely 

deplete the neutralization titer by absorbing with the HK/14 WT HA. While the neutralization titer 

of most individuals was completely depleted by HK/14 Y98F HA absorption, four individuals had 

neutralization titers following HK/14 Y98F HA absorption (Figure 4-6D). This indicated that after 

vaccination, these individuals possessed Y98-specific antibodies that cross-reacted with the 

HK/14 strain. We further confirmed that sera from these individuals contained antibodies specific 

for Y98 by absorbing with HK/14 WT and HK/14 Y98F HAs and measuring the binding of the 

absorbed sera in ELISA against HK/14 WT and HK/14 Y98F HAs (Figure 4E). These absorption-

ELISA experiments revealed the presence of Y98-specific antibodies in the prevaccination sera of 

subjects 557 and 591. In contrast, subjects 574 and 595 had no detectable Y98-specific 

antibodies prior to vaccination. Taken together, these data demonstrate that antigenically 

mismatched vaccines are capable of recalling RBS antibodies and that in some individuals these 

RBS antibodies contribute to the neutralization titer against antigenically mismatched strains. 

Are RBS Antibodies Better Boosted by a Vaccine Lacking Egg-adaptive RBS 
Substitutions? 
	

 It should be noted that while some RBS residues are completely conserved in circulating 

influenza A strains, there is considerable variation near the RBS in vaccine strains as a result of 

culture-adaptive substitutions, and these substitutions can vary from year to year depending on 

the vaccine strain. There is increasing evidence that these changes in the RBS can affect vaccine 

responses. In the case of H1N1 viruses, an egg-adaptive RBS substitution has been shown to be 

the target of vaccine-induced neutralizing antibodies that fail to cross-react with circulating strains 
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(Garretson et al., 2018; Raymond et al., 2016). In the case of H3N2 viruses, we have previously 

demonstrated that an egg-adaptive H3 substitution, L194P, dramatically affects antibody binding 

and alters the conformational flexibility of antigenic sites surrounding the RBS (Wu et al., 2017). 

Consistent with this, the L194P substitution had a large antigenic effect on many of the antigenic 

site B and RBS mAbs. (Figure 4-7) This L194P substitution has been present in the H3N2 

component of the vaccine since 2016 and will be present in the 2018-2019 Northern Hemisphere 

vaccine. However, vaccines produced in mammalian or insect cells can lack egg-adaptive 

substitutions. As a result, these vaccines might be able to more efficiently recall antibodies 

targeting the RBS. We previously reported that Flublok, a recombinant HA vaccine produced in a 

baculovirus expression system and lacking egg-adaptive substitutions, was able to better induce 

neutralizing antibody responses against circulating H3N2 strains compared with egg-adapted 

vaccine strains (Chapter 3). We hypothesized that due to a better-matched RBS, Flublok might 

more effectively recall RBS-directed antibodies. To test this hypothesis, we completed 

absorption-neutralization and absorption-ELISA assays using HK/14 WT and Y98F antigens with 

prevaccination and postvaccination serum samples from individuals vaccinated with either the 

baculovirus-produced vaccine Flublok or an egg-adapted vaccine strain (Fluzone) (Figure 4-8). 

Three individuals who were vaccinated with Flublok had neutralizing titers of RBS antibodies 

following vaccination. In comparison, one individual who was vaccinated with an egg-based 

vaccine had RBS antibodies contributing to neutralization following vaccination. We detected 

prevaccination RBS antibodies by absorption-ELISA in one Flublok subject and one Fluzone 

subject who went on to develop neutralization responses. Surprisingly, one of the individuals 

vaccinated with Flublok had nearly half of their neutralizing titer directed against Y98, indicating 

an extremely focused response. Due to the low frequency of Y98 specificity in both groups our 

study was not sufficiently powered to reject the null hypothesis that Flublok and Fluzone are 

equivalent in their ability to boost antibody responses targeting Y98. However, it is worth noting 

that the magnitude of the RBS antibody titers induced by Flublok is higher than that of Fluzone, 

and the role of culture-adaptive substitutions in vaccine responses warrants further investigation. 
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Discussion 
	

 Here we have identified and characterized antibodies targeting the H3 RBS that were 

isolated from several individuals following vaccination. In one of these individuals, these RBS 

arose from at least three distinct lineages and were sensitive to a substitution at a single RBS 

residue, suggesting that the exposure history of that individual resulted in convergent targeting of 

the RBS by distinct germline rearrangements. Using an absorption-based approach we extended 

our findings to the polyclonal response against contemporary H3N2 strains by identifying 

antibodies specific for a single RBS reside in the sera of several individuals. In two separate 

cohorts, we found RBS-focused antibodies contributing to neutralization titers in ~10% of 

postvaccination samples. Importantly, in the case of a mismatched vaccine some individuals 

mounted an RBS response that cross-reacted with the circulating strain, indicating that these 

RBS antibodies were recalled by vaccination and would likely contribute to protection from 

infection. 

Our work likely underestimates the prevalence of antibodies targeting the RBS in the 

human population for several reasons. Given that we only quantified Y98-specific antibodies in 

bulk sera, any RBS antibodies making critical contacts with other RBS residues were not 

measured by our absorption experiments. Additionally, RBS antibodies that maintained some 

level of binding in the presence of Y98 would have likely been at least partially depleted by 

absorption. It is worth noting that the Y98F substitution is used to ablate sialic acid binding in HA 

probes used to identify HA-specific B-cells by flow cytometry, in large part because the 

substitution does not have a major structural effect (Whittle et al., 2014). As a result, studies 

using these probes to select B-cells for characterization may underestimate the prevalence of 

Y98-specific antibodies. 

Our absorption experiments reveal that some individuals mount a neutralizing response 

that is highly focused on RBS residues, in some cases constituting half of the total neutralizing 

antibody titer. However, how easy is it for the virus to escape this type of immunity? Deep 
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mutational scanning experiments have demonstrated that even a broadly-reactive RBS antibody 

can readily select substitutions that confer escape (Doud et al., 2018). On the other hand, other 

studies have demonstrated that RBS antibodies approaching the RBS from different angles select 

different escape substitutions, and as a result, some have suggested that complementary 

targeting of the RBS by different classes of RBS antibody could restrict the ability of the virus to 

completely escape immunity (Schmidt et al., 2015b). In addition, recent work has demonstrated 

that mutational reversion at an position in the RBS involves a complex network of epistatic 

substitutions within both RBS residues and residues in antigenic sites adjacent to the RBS (Wu et 

al., 2018). Together, this raises the important question whether some individuals with an RBS-

dominated response might be more resistant to antigenic drift. There is emerging evidence that 

the neutralizing response of some individuals is functionally monoclonal. For example, the recent 

fixation of a glycosylation site in site B of H3N2 viruses had major antigenic consequences, 

resulting in the complete abrogation of pre-existing neutralizing antibody titers in a large number 

of individuals (Zost et al., 2017). In light of this glycosylation’s dramatic antigenic effect, it is 

interesting that individual 019-10117 had detectable levels of RBS-directed antibodies present in 

serum both before and after vaccination in 2010. These serum RBS antibodies were able to 

cross-react with contemporary strains that contained this site B glycosylation and still circulate 

nearly eight years later. We suggest that individuals with RBS-focused responses might be less 

susceptible to antigenically drifted variants. While it is possible that escape from RBS immunity 

could occur through acquisition of multiple substitutions in or adjacent to the RBS, it is possible 

that this sequential escape might occur more slowly, and as a result, RBS-directed immunity 

might provide longer-lasting protection. An alternative possibility is that single substitutions on the 

rim of the RBS would be sufficient to confer escape from the RBS-directed antibody responses 

that we measure in human sera. Further studies will need to examine the ability of influenza virus 

to escape from RBS-directed immunity present in polyclonal sera. 

While our study demonstrates that vaccination can sometimes recall antibodies targeting 

the RBS, do particular exposure histories favor the elicitation of RBS antibodies? While our 
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measurement of Y98-specific antibody frequency suggests ~10% of individuals have detectable 

levels of RBS antibodies contributing to neutralization in polyclonal sera, it has been speculated 

that germline rearrangements encoding antibodies that recognize the RBS should be common in 

naïve human repertoires (Schmidt et al., 2015b). While some studies have generated unmutated 

common ancestors and inferred the immunogenic stimuli for broadly-reactive antibody lineages 

targeting the RBS (McCarthy et al., 2018; Schmidt et al., 2015a), we know little about how prior 

immune history and repeated exposures influence the development of RBS antibodies. In 

addition, it has been speculated that the RBS of some HAs, such as H2, might be more 

intrinsically immunogenic (Krause and Crowe, 2014). In the field of HIV, major efforts have been 

made to study antibody-virus co-evolution and the development of broadly neutralizing antibody 

specificities in chronically infected individuals, with the goal of identifying Envs that favor the 

development of neutralizing breadth (Bonsignori et al., 2017; Landais et al., 2017; Rantalainen et 

al., 2018). Longitudinal studies in human cohorts could address similar questions for influenza, 

with the potential to fill in gaps in our understanding of how antibody responses are elicited, 

recalled, and altered by infection and vaccination (Erbelding et al., 2018). Studying the 

development of antibody responses targeting the HA RBS in these cohorts would provide 

valuable insights into the development of RBS-directed immunity, and could suggest possible 

immunogens or sequential vaccination regimens that would more effectively boost RBS 

antibodies compared with our current vaccines. In addition, it might be possible to alter 

immunogen structure in a way that favors the development of antibodies that bind the HA RBS. 

Glycan masking of irrelevant epitopes has recently been employed to focus the antibody 

response against the RBS of an Env immunogen (Duan et al., 2018), and a similar strategy could 

be employed in an influenza virus immunogen to selectively stimulate naïve B-cells capable of 

generating RBS-targeted antibodies. 

Despite the complete conservation of some RBS residues in circulating strains, our 

existing process of vaccine production often results in changes at RBS residues or in RBS-

proximal antigenic sites due to adaptive substitutions during vaccine strain propagation. 
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Importantly, these substitutions vary from year to year depending on the strain included in the 

vaccine. As an ironic result of adaptation to culture systems, many HA RBS residues are less 

conserved in our vaccines than they are in nature. Our work demonstrates that many antibodies 

elicited by vaccination make contacts in antigenic sites also contact RBS residues. In order to 

design next-generation vaccines that effectively elicit and boost RBS-targeted responses, our 

vaccines will need to be produced in systems where we can precisely control the structure of the 

RBS and adjacent residues. 

 

Materials and Methods 
	

Monoclonal Antibody Isolation and Purification: mAbs were isolated from human donors as 

previously described (Smith et al., 2009b). Briefly, plasmablasts were single-cell sorted from 

peripheral blood mononuclear cells collected from donors seven days after vaccination with the 

2010-2011 vaccine containing the H3N2 vaccine strain A/Victoria/210/2009. Single-cell RT-PCR 

was used to amplify VH and VL chains, which were cloned into human IgG expression vectors. 

mAbs were produced by transfecting 293T cells with plasmids encoding heavy and light chains 

and mAbs were purified using protein A/G affinity purification. 

Hemagglutination-inhibition (HAI) Assays: mAbs were serially diluted twofold in a 96-well round-

bottom plate in 50µL total volume of phosphate-buffered saline (PBS). After serial dilution, four 

agglutinating doses of virus in a total volume of 50µL PBS were added to each well. Turkey 

erythrocytes (12.5µL of a 2.5% [vol/vol] solution) were added and the sera, virus, and 

erythrocytes were gently mixed. After 1 hr at room temperature, plates were scanned and titers 

were determined as the lowest concentration of monoclonal antibody that fully inhibited 

agglutination. HAI assays were performed in duplicate on separate days. 

Microneutralization (MN) Assays: mAbs were serially diluted twofold in a round-bottom 96-well 

plate in 50µL serum-free Minimal Essential Medium (MEM). 50µL of MEM containing 100 TCID50 
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of virus was added to serially diluted mAbs and the mAb-virus mixtures were incubated for 30 min 

at room temperature. Following incubation, the mAb-virus mixtures were added to confluent 

monolayers of Madin-Darby canine kidney (MDCK) cells in 96-well plates and incubated for 1 hr 

at 37°C. After incubation, the virus-antibody mixture was removed and cells were washed with 

180µL MEM. After washing, serial dilutions of each mAb were added back to cell monolayers in 

infection media (MEM containing HEPES buffer, gentamycin, and TPCK-treated trypsin). The 

cells were incubated for 3 days and neutralization titers were determined as the lowest 

concentration of mAb that prevented cell death. MN assays were completed in duplicate on 

separate days. 

Seasonal H3N2 strain ELISAs: A panel of seasonal H3N2 viruses spanning 1968 to 2013 was 

expanded by propagation in embryonated chicken eggs. Allantoic fluid was clarified centrifugation 

and concentrated by ultracentrifugation at 20,000 rpm in an SW-28 rotor. Viral pellets were 

resuspended overnight in PBS and chemically inactivated using B-Propiolactone (BPL; Sigma 

Aldrich). To measure mAb binding to the seasonal panel, ELISA plates were coated overnight at 

4°C with concentrated virus in PBS or just PBS as a background control. The following day, 

plates were blocked with a 3% w/vol solution of bovine-serum albumin (BSA) in PBS for 2 hrs. 

After blocking, plates were washed five times with distilled water and twofold serial dilutions of 

each mAb were added to plates in a 1% w/vol solution of BSA in PBS. After 2 hrs of incubation, 

plates were washed and a peroxidase-conjugated goat anti-human secondary antibody was 

added in a 1% w/vol solution of BSA in PBS. After incubation for 1 hr, plates were washed and 

50µL of TMB substrate was added to each well. The TMB reaction was quenched by addition of 

25µL 250mM HCl and absorbance at 450nm was measured using a plate reader. In order to 

generate antigenic maps, one-site specific binding curves were fit to the data in GraphPad Prism 

software and the maximal binding (Bmax) was determined for each mAb. To generate antigenic 

maps from the ELISA data, we first selected the lowest mAb concentration that still gave at least 

90% of the Bmax signal. At this dilution, background signal was substracted and signal for each 

point mutant was normalized to the Vic/09 WT HA VLP signal. Antigenic mapping ELISAs were 
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conducted for each mAb in duplicate on separate days, and the resulting values were averaged 

and represented as a heatmap. 

VLP Antigenic Mapping ELISAs: Point mutants of A/Victoria/210/2009 HA were generated in a 

codon-optimized HA gene by site directed mutagenesis. Virus-like particles (VLPs) were 

generated by transfecting 293T cells with each point mutant along with plasmids encoding HIV 

gag, the NA from A/Puerto Rico/8/1934, and a human-airway trypsin-like protease (HAT). 

Supernatants from transfected 293T cells were collected 3 days following transfection and were 

concentrated by centrifugation at 19,000 rpm in an SW-28 rotor using a 20% sucrose cushion. 

VLP pellets were resuspended in PBS and stored at 4°C. ELISA plates were coated with HA-

normalized point-mutant VLPs diluted in PBS or just PBS as a background control and stored 

overnight at 4°C. ELISAs and antigenic map generation were conducted as described for the 

H3N2 seasonal panel above. 

Competition ELISAs: Plates were coated overnight at 4°C with the strain A/Hong Kong/1/1968 or 

with PBS. The following day, plates were blocked with 3% BSA in PBS (w/vol). Following 2 hrs of 

blocking, plates were washed three times with distilled water and serial dilutions of the mouse H3-

stalk mAb F49 (Takara) were added to plates at a starting concentration of 32 µg/mL in 1% BSA 

in PBS. After 2 hrs, a fixed concentration of each human mAb was added. For each human mAb, 

a competition control was done using the H1-stalk mAb C179 at a starting concentration of 32 

µg/mL to verify that competition was specific to F49. After 1 hr of incubation, plates were washed 

five times with distilled water and a peroxidase-conjugated goat anti-human IgG secondary was 

added in 1% BSA in PBS. After 1 hr, plates were washed five times with distilled water and 

developed with TMB as described previously. The binding of each human mAb in the presence of 

F49 was normalized to the binding of C179 at the same dilution. 

Recombinant HA Production: Codon optimized HA genes for A/Hong Kong/4801/2014 WT and 

Y98F were cloned into expression vectors and the transmembrane domain was removed and 

replaced with the FoldOn trimerization domain from T4 fibritin, an AviTag site-specific biotinylation 
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sequence, and a His tag, as previously described (Whittle et al., 2014). Recominant HAs were 

produced by transfecting 293F suspension cells with plasmids encoding the recombinant HA and 

the NA from A/Puerto Rico/8/1934. After four days, the supernatant was clarified by centrifugation 

and the HA proteins were purified by Ni-NTA affinity chromatography. 

Human Subjects and Serum Collection: Experiments using deidentified human sera were 

conducted at the University of Pennsylvania with the approval of the institutional review boards of 

the University of Pennsylvania, the University of Rochester, and the University of Chicago. 

Informed consent was obtained for all individuals. In the case of individuals from whom mAbs 

were isolated, serum was collected at the time of vaccination and 21 days postvaccination. For 

individuals from the other vaccination cohorts, serum samples were collected at the time of 

vaccination and four weeks postvaccination. For assays using foci-reduction neutralization tests, 

serum were treated with receptor-destroying enzyme (RDE) for 2 hrs at 37°C. Following 

treatment, the enzyme was heat-inactivated by incubation at 55°C. 

Human Sera ELISAs: ELISA plates were coated the day prior with 0.5µg/mL recombinant HAs 

(HK/14 WT, HK/14 Y98F, or a PBS background control) and blocked for 2 hrs on the day of the 

experiment with a solution addition of 3% BSA in PBS. After washing the plates three times with 

wash buffer containing 0.5% Tween20 (vol/vol) in PBS (PBS-T), serially diluted serum samples 

were added to the ELISA plates and incubated for 2 hrs. After incubation, plates were washed 

three times with PBS-T and a peroxidase-conjugated goat anti-human secondary antibody diluted 

in 1% BSA in PBS was added. After 1 hr of incubation with the secondary antibody, plates were 

washed three times with PBS-T and 50µL of a TMB substrate was added to each well. 25µL of 

250mM HCl was used to quench the reaction and the absorbance at 450nm was measured using 

a plate reader. Background signal at each dilution was subtracted for each serum sample and 

one-site specific binding curves were fit to the data using GraphPad Prism. Human sera ELISAs 

were performed in triplicate on separate days. 
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Foci-Reduction Neutralization Tests: RDE-treated serum samples were serially diluted in 96-well 

plates in a total volume of 50µL. Approximately 200 focus-forming units of HK/14 WT virus in 

50µL were added to each well and the virus-absorbed sera mixture was incubated for 1 hr at 

room temperature. After incubation, the virus-sera mixture was added to confluent monolayers of 

MDCK-SIAT1 cells and incubated for 1 hr at 37°C. After incubation, cell monolayers were washed 

with 180µL serum-free MEM and an overlay medium containing HEPES, gentamycin, and 0.5% 

methylcellulose was added. The cell monolayers were incubated for 18 hrs, after which the 

overlay was removed and the cells were fixed at 4°C for 2 hrs using an aqueous solution of 4% 

paraformaldehyde (vol/vol). After fixation, cell monolayers were permeabilized using 0.5% Triton-

X100 in PBS (vol/vol). After fixation and permeabilization, monolayers were blocked with a 

solution of 5% fat-free milk in PBS for 1 hr. After blocking, a mouse anti-nucleoprotein antibody 

was added in 5% milk/PBS for 1 hr. After the primary incubation, a peroxidase-conjugated goat 

anti-mouse secondary antibody in 5% milk/PBS was added for 1 hr. After incubation with the 

secondary antibody, monolayers were stained using a TMB substrate and foci were imaged and 

quantified using an ELISpot reader. For staining, plates were washed with distilled water between 

each step. Percentage of infection was determined relative to wells that did receive any serum or 

antibody. Values reported are the concentration of serum or mAb that reduced the numbers of 

foci by at least 90%. 

Absorption-Neutralization and Absorption-ELISA Assays: Two days prior to experiments, 293F 

suspension cells were transfected using 293fectin with plasmids expressing HK/14 WT HA, HK 

14 Y98F HA, or a mock transfection control containing no plasmid or transfection reagent. On the 

day of the experiment, transfected cells were pelleted by centrifugation, washed twice with 293F 

media, and resuspended at the desired volume.  

In the case of absorption-neutralization assays, RDE-treated serum samples were diluted 

in 293F media at an initial dilution of 1:10 and split into three fractions for the three absorption 

conditions. An equivalent volume of 293F media containing approximately 8x106 transfected 
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cells/absorption reaction were added to each diluted serum sample and the samples were mixed 

by shaking for 1 hr at room temperature. After incubation, the cells were pelleted by centrifugation 

and the supernatant was transferred and re-centrifuged to clarify. Absorbed supernatant 

containing the sera was then serially diluted in 96-well round-bottom plates in serum-free MEM 

and FRNT assays were conducted as described. Absorption-neutralization experiments were 

completed in triplicate on separate days. 

In the case of absorption-ELISA assays, serum samples were diluted in 293F media at 

an initial dilution of 1:50 and split into three fractions for the three absorption conditions. 

Transfected cells were added and absorption of serum antibodies was carried out as described 

above. Following absorption, absorbed serum samples were serially diluted at a starting dilution 

of 1:500 (factoring in absorption volume) in 1% BSA w/vol in PBS and human sera ELISAs were 

performed as described. Background binding for each sample at each dilution was subtracted 

and one-site specific binding curves were fit to the data using GraphPad Prism software. The 

area under the curve (AUC) was calculated for each curve. Absorption-ELISA experiments were 

done in triplicate on separate days. 

For both absorption-neutralization and absorption-ELISA experiments, RBS mAb 019-

10117 3C06 and lower HA head mAb 041-10047 1C04 were initially diluted to a concentration of 

32µg/mL in 293F media prior to the addition of cells. For absorption-neutralization experiments, 

the starting concentration for each mAb absorption condition in the FRNT was 16µg/mL 

(assuming no absorption). For absorption-ELISA experiments, the starting concentration for each 

mAb absorption condition in the ELISA was 3.2µg/mL (assuming no absorption). 

Quantification and Statistical Analysis: Titer values for neutralization and ELISA experiments are 

reported as geometric mean +/- SD or geometric mean +/- 95% CI as noted. Comparisons 

between groups for the 2015-2016 vaccinees were performed using either the nonparametric 

Krushal-Wallis test. Comparisons of ELISA titers against WT or Y98F HA following Y98F HA 
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absorption were performed using an unpaired Student’s t-test. Statistical significance is indicated 

for the following thresholds: * = p < 0.05; ** = p < 0.01; *** = p < 0.001; ns = non-significant. 
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Figures and Tables 
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Figure 4-1: Hemagglutination-Inhibition and micro-neutralization activities of mAbs 
 
(A) Hemagglutination inhibition titers of mAbs against the vaccine strain A/Victoria/210/2009. (B) 

Micro-neutralization titers against the vaccine strain A/Victoria/210/2009. Two mAbs, 008-10053 

6C05 and 017-10116 5B03, neutralized infection but did not block viral attachment in HAI. Titers 

are representative of two independent experiments. 
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Figure 4-2 
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Figure 4-2: mAb binding to seasonal viruses  
 
mAb binding to a panel of seasonal H3N2 viruses spanning a wide range of H3N2 circulation 

(1968-2012). Numbers in squares are fraction of binding relative to Vic/09 WT. Colors of each 

square range from white (0% of WT binding) to black (100% of WT binding). H1: 

A/California/07/2009 H1N1 strain 
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Figure 4-3 
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Figure 4-3: Antigenic fine-mapping of mAb binding footprints  
 
(A) An antigenic map of residues affecting the binding of mAbs as measured by ELISAs using 

VLPs bearing WT and point mutant HAs. Numbers in squares are fraction of binding relative to 

Vic/09 WT. Colors of each square range from white (0% of WT binding) to black (100% of WT 

binding). Binding values are the average of two independent experiments. (B) Locations of 

substitutions in HA point mutant panel shown on the H3 structure. K160T results in the addition of 

a glycan at N158 (shown in red), while N285Y results in the loss of a glycan (shown in orange). 
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Figure 4-4 
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Figure 4-4: Some mAbs compete with H3-stalk mAb for binding  
 

Competition ELISA measuring binding of human mAbs in the presence of increasing 

concentrations of F49, a mouse mAb that recognizes the H3 stalk. Binding is normalized to an 

isotype control (C179, an H1-specific mouse mAb that binds the H1 stalk but does not bind the 

H3 stalk). Antibodies that compete with DY-2F04 are 008-10053 6C05 (green) and 017-10116 

5B03 (blue). DY-2F04, a previously described H3-stalk mAb, serves as a positive control (red). 
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Figure 4-5 
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Figure 4-5: RBS mAbs reveal convergent targeting of the RBS in two Individuals 
 

(A) RBS mAb reactivity to Vic/09 HA VLPs with Y98F, K160T, or the double mutant Y98F K160T. 

ELISA binding curves from experimental triplicates are shown. Dashed lines represent the 95% 

confidence interval for each curve. mAbs were derived from two different donors, 011-10069 and 

019-10117. (B) Serum antibody binding from donors 011-10069 and 019-10117 at day 0 or day 

21 following vaccination. Serum antibodies from 019-10117 exhibit reduced binding to Vic/09 

Y98F HA and HK/14Y98F HA both before and after vaccination. 
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Figure 4-6 
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Figure 4-6: RBS antibodies contribute to neutralizing titers against an antigenically-
mismatched strain  
 

(A) Absorption with HK/14 WT HA depletes both RBS mAb 019-10117 3C06 and lower HA head 
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mAb 041-10047 1C04, while absorption with HK/14 Y98F HA does not deplete 019-10117 3C06. 

Titers shown are the geometric mean +/- geometric SD of three independent experiments. (B) 

Residue differences between 2015-2016 vaccine strain Switz/13 and circulating strain HK/14 

shown in blue on the H3 structure. (C) Prevaccination and postvaccination serum neutralization 

titers against Switz/13 and HK/14 from individuals vaccinated with the 2015-2016 vaccine. Titers 

shown are the geometric mean of three independent experiments. Black lines indicate geometric 

mean +/- 95% CI for each group. (D) Neutralization titers against HK/14 WT and (E) ELISA titers 

against HK/14 WT and HK/14 Y98F of serum samples from individuals after absorption with 

HK/14 WT, HK/14 Y98F, or cells only (mock). Titers shown in each instance are the geometric 

mean +/- the geometric SD from three independent experiments. ELISA data is area under the 

curve (AUC) for each condition normalized to postvaccination binding to HK/14 WT HA. 

Comparisons between WT and Y98F binding for the Y98F absorption condition were done using 

an unpaired Student’s t-test (* = p < 0.05; ** = p < 0.01; *** = p < 0.001; ns = non-significant). 
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Figure 4-7 
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Figure 4-7: The egg-adaptive H3 RBS substitution L194P affects the binding of a large 
number of mAbs  
 
mAb binding to Vic/09 WT or L194P VLPs. Binding is normalized to Vic/09 WT, and the value in 

each square denotes fraction of binding relative to Vic/09 WT. Colors of each square range from 

white (0% of WT binding) to black (100% of WT binding).  

 

 



97	
	

Figure 4-8 
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Figure 4-8: RBS antibody levels in individuals who received different types of vaccines  
 
(A) Neutralization titers against HK/14 WT and (B) ELISA titers against HK/14 WT and HK/14 

Y98F of prevaccination and postvaccination serum samples from three Flublok vaccinees and 

one Fluzone vaccinee following absorption with HK/14 WT, HK/14 Y98F, or cells only (mock). 

Titers shown in each instance are the geometric mean +/- the geometric SD from three 

independent experiments. ELISA data is area under the curve (AUC) for each condition 

normalized to postvaccination binding to HK/14 WT HA. Comparisons between WT and Y98F 

binding for the Y98F absorption condition were done using an unpaired Student’s t-test (* = p < 

0.05; ** = p < 0.01; *** = p < 0.001; ns = non-significant). 
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CHAPTER 5: FUTURE DIRECTIONS AND CONCLUDING 
REMARKS 

 

Parts of this chapter have been submitted for publication: 

Seth J. Zost*, Nicholas C. Wu*, Scott E. Hensley#, and Ian A. Wilson#. Immunodominance and 

antigenic variation of influenza virus hemagglutinin: implications for design of universal vaccine 

immunogens 

(* = equal contribution) 

(# = co-corresponding author) 

 

Improving influenza vaccine strain selection and viral surveillance requires a better 

understanding of how human antibody responses are shaped by prior exposure, how these 

antibody responses exert a selective pressure on influenza viruses, and the process by which 

influenza viruses escape human immunity. In the work presented here, I have explored the 

epitopes targeted in antibody responses of human individuals to influenza viruses and have 

defined the antigenic consequences of recent influenza HA substitutions that facilitate viral 

immune evasion. In this section, I will describe immediate implications of our work for improving 

viral surveillance and vaccine production as well as outline unresolved questions in the field that 

present a challenge to our efforts to understand the complex interplay of human immunity and 

influenza virus evolution. Addressing these questions will be an essential component of efforts to 

develop more effective universal influenza vaccines. 

Practical ramifications 
 
 In Chapter 2, we identified and characterized neutralizing antibody responses against a 

pandemic H1N1 HA epitope that mutated during the 2013-2014 influenza season. Importantly, we 

showed that many middle-aged individuals had an antibody response focused against this 

epitope, and that the K166Q substitution that arose during the 2013-2014 influenza season 

dramatically affected the ability of antibodies in these individuals to bind and neutralize 
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antigenically drifted viruses containing this substitution. In subsequent work, our lab has 

demonstrated that individuals with this K166 antibody specificity were more susceptible to 

infection during the 2013-2014 influenza season (Petrie et al., 2016), indicating that the K166Q 

substitution rendered some individuals susceptible to infection during this season. 

 Our findings in this study raise issues with our current “one size fits all” approach to 

influenza vaccination. For some individuals during the 2013-2014 influenza season, the vaccine 

strain elicited protective antibody responses against circulating H1N1 strains. However, for 

individuals with an antibody response focused against K166Q, the antibodies recalled by 

vaccination targeted this epitope that was mutated in circulating strains. As a result, the 

consequences of the antigenic mismatch between the H1N1 vaccine strain and circulating H1N1 

strains depended on prior exposure history. Viral surveillance using primary ferret antisera 

missed this antigenic change. In addition, pooling human serum samples for the purposes of 

standardizing reference serum would also have likely missed this antigenic change. Fortunately, 

in 2016 the WHO updated the H1N1 strain in the vaccine, citing the reduced ability of sera from 

some middle-aged adults to inhibit agglutination of circulating strains. Our work and the work of 

others suggest public health agencies conducting viral surveillance should rely less heavily on 

ferret reference antisera and incorporate more human serological studies to identify escape from 

population immunity. In addition, identifying the epitopes targeted by individuals in the human 

population may allow us to identify sites of immune pressure that might be the site of a future 

antigenic substitution before substitutions in those sites begin to circulate. 

 In Chapter 3, we characterized the antigenic consequences of egg-adaptive substitutions 

in H3N2 HA that occurred during the process of vaccine strain propagation. One of these 

substitutions resulted in the loss of a glycosylation site that arose in circulating H3N2 strains 

during the 2014-2015 influenza season. We showed that while this glycosylation abrogated the 

binding of pre-existing antibodies in a large number of individuals, the HA in our egg-based 

vaccines lacked this glycosylation due to culture-adaptive substitutions. A vaccine produced in a 
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baculovirus system that lacked egg-adaptive substitutions and had this glycosylation motif more 

effectively induced neutralizing antibody responses against glycosylated circulating strains.  

In addition, we demonstrated with collaborators that a L194P egg-adaptive substitution 

present in many of our vaccine strains has a large antigenic effect on the H3 RBS and antigenic 

site B. This is due to this substitution altering the conformational flexibility of sites near the RBS 

(Wu et al., 2017). These findings highlight shortcomings with our current process of vaccine 

production, and add to a growing body of evidence that egg-adaptive substitutions alter the 

antigenicity of our vaccines in key epitopes that mediate protection. Antigenic mismatches due to 

egg-adaptation likely compromise the effectiveness of our vaccines. Importantly, we now have 

licensed vaccine platforms that use MDCK cell culture and baculovirus recombinant protein 

expression. These platforms can produce HAs that are better matched with circulating influenza 

strains. Importantly, genetic vaccines that deliver DNA or RNA into cells are able to generate HA 

proteins that would more faithfully recapitulate circulating strains by avoiding egg-adaptive 

substitutions (Pardi et al., 2018). While the development of more effective universal vaccine 

immunogens is an important goal, existing vaccines that lack culture-adaptive substitutions could 

boost vaccine effectiveness if they were more widely implemented. 

 In Chapter 4, we identified and characterized antibody responses targeting conserved 

residues of the H3 RBS, and demonstrated that in some individuals these antibodies constitute a 

large fraction of the neutralizing antibody response against circulating strains. Importantly, RBS 

antibodies elicited by vaccination with an antigenically mismatched vaccine strain were capable of 

neutralizing strains with major antigenic differences. Importantly, these RBS antibody responses 

were relatively rare, occurring in approximately 10% of individuals. However, the ability of RBS-

directed responses to cross-neutralize antigenically drifted strains suggests that for some 

individuals, RBS antibodies make a valuable contribution to protection. 
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The role of functional monoclonality of antibody responses in influenza 
virus evolution 
 

A common theme across our work presented here is that the neutralizing antibody 

responses of some individuals are highly focused against single epitopes, and that single 

antigenic substitutions can almost completely abrogate the neutralizing antibody titers of a large 

number of individuals. In essence, the neutralizing antibody responses of some individuals are 

not that different from a monoclonal antibody. In the case of responses against the 2009 

pandemic H1N1, we have demonstrated that prior immunity shapes the response to infection and 

can lead to antibody responses that are highly monoclonal. We have also show that this 

functional monoclonality has consequences, as individuals who made a focused antibody 

response against H1N1 HA were more likely to be infected when an antigenic drift variant 

dominated circulation (Linderman et al., 2014; Petrie et al., 2016). In the case of responses 

against H3N2 viruses, we have demonstrated that the neutralizing antibody response of most 

humans is directed against antigenic site B. As a result, substitutions near this antigenic site 

render many individuals susceptible to infection with antigenically drifted strains. However, we 

have also identified individuals who make a more cross-reactive antibody response to H3N2 

viruses that is primarily directed against a single residue in the H3 RBS.  

 The degree to which human antibody repertoires are functionally monoclonal has 

important ramifications for how antigenic drift variants might be selected during evolution of 

circulating viruses. We have known since the 1970s that while it is fairly easy for influenza viruses 

to escape a single monoclonal antibody in vitro, it is much harder for the virus to escape mixtures 

of monoclonal antibodies targeting different antigenic sites, as this would require viral antigenic 

variants to have simultaneous substitutions in more than one antigenic site, which is highly 

improbable (Yewdell et al., 1979). Based on this observation, polyclonal neutralizing antibody 

responses that contain high levels of antibodies specific for different antigenic sites should pose a 

daunting challenge for viral escape. it has been demonstrated in a mouse model that sub-

saturating polyclonal neutralizing antibody responses present in sera select for HA substitutions 
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that increase receptor-binding avidity, allowing the virus to escape a neutralizing antibody 

response (Hensley et al., 2009). This also supports previous observations that influenza escape 

from antibody pressure is context dependent – while single antibodies can readily select for 

antigenic changes in vitro (Yewdell et al., 1979), mixtures of monoclonal antibodies select for 

absorptive substitutions that increase receptor-binding avidity, permitting viral infection in the 

presence of subsaturating concentrations of neutralizing antibodies (Yewdell et al., 1986). While 

this modulation of receptor avidity may be a mechanism that drives the acquisition of antigenic 

drift substitutions, it is clear that polyclonal sera from many individuals is sufficiently monoclonal 

to select antigenic drift variants in vitro (Davis et al., 2018; DeDiego et al., 2016; Li et al., 2016). 

Given that single antigenic substitutions can have large antigenic effects for many individuals, 

functional monoclonality may considerably simplify the problem of evading polyclonal antibody 

responses, as acquisition of a single antigenic substitution may render a large number of 

individuals susceptible to reinfection with circulating strains. In addition, these individuals with 

highly monoclonal responses may serve to select antigenic drift variants. It is possible to imagine 

these individuals playing a major role in facilitating escape from population immunity as a whole 

through sequential selection of antigenic substitutions. 

 What are possible explanations for this observed functional monoclonality? Our work with 

antibody responses against 2009 H1N1 demonstrates that prior immune history can focus 

antibody responses against epitopes conserved between strains seen in early childhood. On the 

other hand, primary antibody responses in both animal models and humans also exhibit 

functional monoclonality (Koel et al., 2013; Koel et al., 2015). In addition, antigenic site B of H3N2 

HA seems to be the major target of neutralizing antibodies across a wider age range. One reason 

for observed monoclonality in H3N2 antibody responses may be the glycosylation status of the 

HA. Unlike the recently introduced HA of pandemic H1N1, H3N2 HA has progressively acquired 

multiple glycosylation sites since entering human circulation in 1968 (Tate et al., 2014). As a 

result, less surface area is available for antibody recognition on the H3 head domain, which may 

focus antibody responses to sites adjacent to the RBS. This may in part explain why the antigenic 
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site B glycosylation had such a dramatic effect on the binding and neutralization of pre-existing 

antibodies. Changes in glycosylation status may also shift immunodominance to other epitopes, 

and the effects of the N158 glycosylation on the immunodominance of antigenic site B in recent 

H3N2 viruses is under further investigation by members of our lab. Another potential factor may 

be the location of epitopes on the HA – if an antibody binds the top of HA, it might more potently 

inhibit attachment than an antibody that recognizes a site lower on HA. As a result, antibodies 

that bind residues near the RBS may play an outsize role in preventing viral attachment, and this 

may help explain the dramatic impact that substitutions near the RBS have on pre-existing 

neutralizing antibody titers. 

The role of non-neutralizing antibody specificities in protection 
 
 Our work has demonstrated that many individuals mount functionally monoclonal 

antibody responses against influenza virus HA at the level of neutralization. However, not all anti-

HA antibodies are neutralizing in vitro. Although non-neutralizing antibody specificities are not 

explored in great detail in this work, in Chapter 4 we do describe monoclonal antibodies that have 

no neutralizing activity in vitro, yet are highly cross-reactive. For the most part, the role of non-

neutralizing antibodies in protection from influenza virus infection remains unexplored. Some 

groups have described non-neutralizing antibodies that cross-react between group 1 and group 2 

HAs. Cryo-electron microscopy reveals that some of these antibodies bind an epitope that 

requires an HA monomer to be displaced from the other monomers, suggesting that these 

antibodies recognize an alternative conformation of HA and bind to a cryptic epitope that may 

only be transiently exposed (Raymond et al., 2016). These antibodies appear to be common in 

human antibody repertoires. Although antibodies protected mice by passive transfer, the 

mechanism of protection is not immediately clear, and could be Fc-mediated. It is worth noting 

that despite their prevalence, these non-neutralizing antibody specificities are not measured by 

any of our existing assays used to select vaccine strains. 
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 It is especially important to define the role of prior exposure in the development of non-

neutralizing antibody specificities. Our work here has defined particular exposure histories that 

lead to antibody repertoires directed against sites conserved between strains. While the epitopes 

we describe are neutralizing, it is also possible to imagine prior exposure shifting the response to 

non-neutralizing epitopes lower on the HA. If these non-neutralizing antibodies are not protective 

or are less protective than antibodies that block viral attachment and neutralize in vitro, it is 

possible to imagine that some individuals may have a considerable fraction of their antibody 

response directed against non-neutralizing epitopes. If antibody responses become skewed 

towards non-neutralizing epitopes with repeated exposure, this could undermine protection in 

older individuals who have been repeatedly exposed to influenza virus, and could complicate 

efforts to use constructs such as chimeric HAs to refocus immunity towards protective epitopes in 

the HA stalk. Addressing the levels of non-neutralizing antibodies in human cohorts will answer 

important questions about the role, if any, that these antibodies play in protection. 

The role of compensatory substitutions in influenza virus evolution 
 
 Our work identifies HA substitutions that have major antigenic consequences. The impact 

of these substitutions on viral fitness, however, is less clear. Given that fitness costs associated 

with fixation of antigenic substitutions is a major constraint on influenza A viral evolution, it is 

likely that other HA substitutions play critical roles in viral evolution by offsetting these fitness 

costs. Although an antigenic change may allow the virus to escape antibody responses, HA 

antigenic changes are known to often alter avidity for sialic acid, which can adversely affect viral 

replication and the mutant virus’s ability to spread. For example, the new glycosylation site in 

H3N2 HA results in the loss of the ability to agglutinate red blood cells, indicating that the 

introduction of this glycosylation motif close to the RBS impacts receptor binding avidity 

(Chambers et al., 2015).This alteration in receptor binding likely affects viral fitness because 

introducing this glycosylation into a previous vaccine strain resulted in a virus that could not be 

rescued, indicating that other substitutions likely played a compensatory role in the fixation of this 
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substitution in circulating strains (Chambers et al., 2015). These compensatory substitutions can 

facilitate antigenic drift by rescuing fitness defects (Hensley et al., 2009). In a striking example, 

compensatory substitutions offset the fitness cost of a substitution that confers resistance to 

oseltamivir, a commonly used antiviral (Bloom et al., 2010). This phenomenon of combinations of 

substitutions having a greater effect on fitness than each individual substitution is known as 

epistasis. In recent work, substitutions near the H3 RBS were demonstrated to be involved in 

complex epistatic networks, limiting the possible substitutions at key positions in the RBS (Wu et 

al., 2018). 

Epistatic substitutions can also be antigenic substitutions themselves – work from others 

in our group using an H1N1 strain demonstrated that an HA substitution abrogated antibody 

binding but drastically reduced receptor avidity and viral fitness, while substitutions in a different 

antigenic site rescued the fitness defect and also prevented the binding of antibodies specific for 

the antigenic site in which they were located (Myers et al., 2013). In another example, 

Kryazhimskiy and colleagues used historical sequence data from viral surveillance to determine 

which substitutions were tightly associated, because epistatic substitutions undergoing positive 

selection are likely to be chronologically linked (Kryazhimskiy et al., 2011). The authors identified 

many pairs of possible epistatic substitutions in HA. many of these epistatic pairs were located in 

different antigenic sites, supporting the hypothesis that compensatory substitutions may also alter 

antigenic properties of influenza viruses.  It is possible that many of these putative compensatory 

substitutions also abrogate the binding of antibodies. 

 While computational analysis is a powerful tool to identify possible compensatory 

substitutions, there are few experimentally characterized examples of epistasis in influenza virus 

evolution in the literature. Part of the difficulty in defining the role of compensatory substitutions in 

influenza virus evolution is the staggering scale of potential epistatic partners. For example, if 

there are ten substitutions that become fixed in HA, one of them might have an antigenic effect, 

but which of the other nine may play some compensatory role? Experimentally validating all 
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potential pairs of epistatic interactions by mutagenesis would be costly and time-consuming. In 

addition, which functional assays would be able to detect and quantify a change in viral fitness? 

In addition, NA substitutions can compensate for functional changes in HA, and vice versa 

(Hensley et al., 2011). While information on epistatic interactions would be valuable for predicting 

viral evolution, the practical challenge of conducting systematic and comprehensive experiments 

has proven daunting.  

Fortunately, advances in molecular biology techniques and the advent of deep 

sequencing have enabled the study of the effects of individual substitutions en masse. These 

experiments, known as deep mutational scans, can measure the effect of essentially every 

possible HA amino acid substitution on viral replication, and deep mutational scanning of HA has 

shed light on the mutational tolerance of different sites on HA (Doud and Bloom, 2016; 

Thyagarajan and Bloom, 2014; Wu et al., 2014). Comparing these deep mutational scanning 

datasets can provide valuable insights into epistatic relationships; recent work has demonstrated 

different degrees of mutational tolerance at different sites in H1 and H3 HAs, including differences 

in the highly conserved stalk domains of these HAs (Lee et al., 2018). Interestingly, some 

residues had strong differences in the preference of amino acids at particular sites, suggesting 

that the mutational constraints differ between H1 and H3 HAs. This finding demonstrates that the 

evolutionary divergence between H1 and H3 HAs has resulted in different constraints on the 

evolution of these two HA subtypes. This information can be used to help predict the evolutionary 

fates of circulating strains (Lee et al., 2018). In parallel, other researchers are developing the 

theoretical frameworks and computational tools to infer epistatic interactions from the burgeoning 

sets of deep mutational scanning data (Otwinowski, 2018; Otwinowski et al., 2018). While in this 

work we have helped define selective pressures the human antibody response imposes on H3N2 

viruses and have identified several antigenic substitutions that facilitate viral escape, further work 

on epistasis in influenza virus antigenic drift using the new approaches discussed here will better 

illuminate the sequence of mutational steps that influenza viruses need to undergo in order to 

successfully evade human immunity. 
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Towards a deeper understanding of human immune responses and 
antibody breadth 
 

A central challenge of universal vaccine efforts is to steer human antibody responses 

away from immunodominant, variable epitopes and towards subdominant, functionally conserved 

sites. Overcoming this challenge will require further understanding of the structural basis of 

broadly neutralizing HA and NA antibody binding epitopes and factors that influence 

immunodominance hierarchies of human antibody responses. Our work here and the work of 

others has shown that there are many similarities and many differences in the antibody 

responses to influenza virus from individual to individual, but we are by no means close to a 

comprehensive understanding of the complexities of human antibody responses against influenza 

viruses, and we will need fundamentally different approaches, study cohorts, and immunological 

tools to fill in the gaps in our knowledge. 

In the case of HIV, a great deal has been learned about the development of broadly 

neutralizing antibody responses by studying antibody-virus co-evolution from the time of infection 

(Bonsignori et al., 2017; Landais et al., 2017; Rantalainen et al., 2018). The analogous situation 

in influenza is more challenging, as it requires following individuals from birth in longitudinal 

studies and defining how immunodominance changes over the course of a response and from 

response to response. These longitudinal cohort studies have the potential to answer 

fundamental questions about what antibody specificities dominate the plasmablast response 

versus B-cell memory and which lineages are recalled in the response to an antigenically drifted 

strain. Recent work in mice with a model antigen suggests that the responses of some individuals 

may skew towards a particular memory B-cell population as a result of high-avidity interactions of 

naïve B-cells with antigen (Pape et al., 2018). Studying the development of RBS-targeted 

antibody responses in these cohorts could give insight into strategies to selectively elicit these 

types of antibody responses in a larger number of individuals. 
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Importantly, these cohort studies will also allow us to explore differences in responses 

elicited by infection and vaccination. Some studies suggest that B-cells recalled in response to 

vaccination have a reduced ability to undergo somatic mutation relative to those recalled by an 

infection (Ellebedy et al., 2016). While titers elicited by vaccination in adults exhibit modest 

waning (Petrie et al., 2015), we know very little about the longevity of responses elicited in 

children. Cohorts that enroll individuals at birth will allow us to document the first exposures to 

influenza viruses in unprecedented detail. These studies will provide invaluable insight into 

immune imprinting, and can address important questions regarding the differences in the 

responses to infection and vaccination. Although the focus of the work presented here has been 

antibodies targeting HA, there is increasing evidence that NA antibodies can also play roles in 

protection from infection (Memoli et al., 2016). In some individuals, NA antibodies outnumber HA 

antibodies in the response to influenza virus infection, but our existing vaccines poorly elicit NA 

antibodies (Chen et al., 2018). Studying responses against multiple viral antigens in these cohorts 

will allow us to assemble a more holistic picture of influenza virus immunity, and could point the 

way towards using multiple immunogens to elicit protective titers against more than one viral 

antigen. 

Defining new correlates of protection from infection 
 

Another major challenge will be to develop standardized assays to detect antibodies 

against different HA and NA epitopes. The standard assays used by global public health and viral 

surveillance agencies to select vaccine strains, HAI and microneutralization, almost exclusively 

detect antibodies that bind the HA head and block viral attachment. While these antibodies 

undoubtedly contribute to protection, antibodies against the stalk domain or other epitopes will not 

be detected using these assays. As a result, new assays to measure antibody functions such as 

NA inhibition and Fc-mediated effector engagement need to be developed and standardized. 

Dissecting the contribution of different epitopes to protection in universal vaccine trials will allow 

us to precisely determine which epitopes are targeted in different individuals and whether viral 
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escape is occurring at particular epitopes. It is worth noting that defining the role of immune 

correlates in protection from infection will require large cohorts, as teasing out the role of different 

antibody specificities targeting different sites will require considerable statistical power.  

In addition, we should expand our understanding of protective correlates beyond simply 

studying serum antibody titers. Analyzing the antibody repertoire present at the anatomic sites 

relevant to influenza virus infection is challenging. While antibody titers present at mucosal 

surfaces in the nose, throat, and lung likely determine protection, these sites are difficult to study 

due to the need for invasive procedures to collect samples. As a result, the concentration and 

functionality of serum antibodies is the only antibody-mediated correlate of protection that has 

been rigorously investigated, and in particular, the IgG isotype has been the focus of most 

studies. IgG does play an important role in protection from infection and serum IgG likely reflects 

the levels of IgG present at mucosal surfaces in the lung, but it is highly likely that there are 

understudied aspects of antibody-mediated mucosal immunity and nuances of isotype specificity 

that remain to be explored (Chiu and Openshaw, 2015). For example, antibody isotypes such as 

multimeric IgA are predominantly localized to mucosal surfaces in the nose and lung, and anti-

stalk IgA antibodies have been shown to be significantly more potent neutralizing antibodies in 

vitro (He et al., 2015). In addition, secondary lymphoid structures referred to as bronchus-

associated lymphoid tissue can contain B-cells and other immune cells, and have been shown to 

protect mice from infection in the absence of peripheral lymphoid organs (Moyron-Quiroz et al., 

2004). It is likely that our existing vaccines, particularly our live-attenuated versus inactivated 

vaccines, differ in their ability to induce mucosal immunity (Chiu and Openshaw, 2015). It is also 

important to note that mucosal immunity may be greatly influenced by immune imprinting, as the 

first infection likely influences the establishing of long-lived tissue-resident memory responses. 

Successful universal vaccine candidates may need to induce potent mucosal immune responses 

for protective responses. Recent work in herpes virus immunity used chemokines to establish 

protective tissue-resident T-cell memory, highlighting that manipulation of mucosal-resident 

immunity can pave the way to more protective vaccines (Shin and Iwasaki, 2012). Due to the 
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challenges of studying these mucosal responses in humans, some of these questions will be best 

addressed using animal models such as mice or ferrets. 

Concluding remarks 
 

In the one hundred years since the 1918 pandemic, we have made great strides in our 

understanding of influenza virus biology and antibody-mediated immunity, and we have built a 

robust public health system to monitor influenza virus circulation and update the strains included 

in our vaccines. Despite these efforts, eliciting more protective antibody responses in humans 

with diverse prior exposure histories is still a daunting challenge. As highlighted in this work, this 

challenge is compounded by shortcomings with our current system of vaccine strain selection and 

vaccine production. Our current universal vaccine candidates are the product of decades of work 

across multiple disciplines, and represent the first attempt to control influenza virus 

immunodominance in order to elicit long-lived, protective responses against conserved sites. 

Although our current HA stalk-based universal vaccine candidates are promising, the 

development of a universal vaccine will likely be an iterative process, and a better understanding 

of the dynamics of immunodominance in humans will be essential for improving our vaccines. 

Understanding and manipulating the epitopes targeted by human antibody responses will be the 

crux of continued progress towards universal influenza immunity. 
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