
RELEVANCE ANALYSIS FOR DOCUMENT RETRIEVAL

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Eric LaBouve

March 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/219381619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2019

Eric LaBouve

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Relevance Analysis for Document Retrieval

AUTHOR: Eric LaBouve

DATE SUBMITTED: March 2019

COMMITTEE CHAIR: Lubomir Stanchev, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Alexander Dekhtyar, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Franz Kurfess, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Relevance Analysis for Document Retrieval

Eric LaBouve

Document retrieval systems recover documents from a dataset and order them

according to their perceived relevance to a user’s search query. This is a difficult task

for machines to accomplish because there exists a semantic gap between the meaning

of the terms in a query and a user’s true intentions. Even with this ambiguity that

arises with a lack of context, users still expect that the set of documents returned by

a search engine is both highly relevant to their query and properly ordered.

The focus of this thesis is on document retrieval systems that explore methods

of ordering documents from unstructured, textual corpora using text queries. The

main goal of this study is to enhance the Okapi BM25 document retrieval model. In

doing so, this research hypothesizes that the structure of text inside documents and

queries hold valuable semantic information that can be incorporated into the Okapi

BM25 model to increase its performance. Modifications that account for a term’s

part of speech, the proximity between a pair of related terms, the proximity of a

term with respect to its location in a document, and query expansion are used to

augment Okapi BM25 to increase the model’s performance. The study resulted in 87

modifications which were all validated using open source corpora. The top scoring

modification from the validation phase was then tested under the Lisa corpus and

the model performed 10.25% better than Okapi BM25 when evaluated under mean

average precision. When compared against two industry standard search engines,

Lucene and Solr, the top scoring modification largely outperforms these systems by

upwards to 21.78% and 23.01%, respectively.

iv

ACKNOWLEDGMENTS

Thank you to my parents who, with their unconditional love and support,

push me to greater heights, inspire me to achieve the best within myself, and afford

me the opportunity to lead a life filled with unlimited opportunities.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . xi

CHAPTER

1 Introduction . 1

2 Background . 6

2.1 Google Search . 6

2.2 Unstructured Search . 7

2.3 Document Retrieval Theory . 8

2.3.1 The Vector Space Model . 8

2.3.2 The Probabilistic Model . 11

2.3.3 The Inverted Index . 13

2.4 The Semantic Gap . 14

2.4.1 WordNet . 14

2.4.2 Word Embeddings . 16

3 Related Works . 19

3.1 Okapi BM25 Modifications . 19

3.1.1 Genetic Programming . 19

3.1.2 Semantic Analysis . 20

3.1.3 Spans . 22

3.1.4 Query Expansion . 23

3.1.5 BM25F . 26

3.2 Topic Models . 27

3.2.1 Latent Semantic Indexing . 27

vi

3.2.2 Latent Dirichlet Allocation . 29

3.3 Language Models . 30

3.3.1 The Probabilistic Language Model 31

3.3.2 Neural Language Models . 33

4 Implementation . 35

4.1 Building the Inverted Index . 35

4.2 Extending Okapi BM25 . 38

4.3 The Okapi BM25 Modifications . 40

4.3.1 Parts of Speech Modifications 40

4.3.2 Term to Term Modifications 41

4.3.3 Term to Document Modifications 43

4.3.4 Query Expansion Modifications 45

5 Experimental Setup . 52

5.1 Measures . 52

5.2 Benchmarks . 54

5.3 Hypotheses . 57

5.4 Experimental Procedure . 58

5.5 Evaluation . 59

6 Results . 61

6.1 Validation Round One . 61

6.2 Validation Round Two . 68

6.3 Validation Round Three . 73

6.4 Selecting and Testing a Modification 75

7 Conclusion and Future Work . 81

BIBLIOGRAPHY . 83

vii

LIST OF TABLES

Table Page

3.1 The 12 proximity measurements used as input into the genetic algo-
rithm. 20

4.1 Parts of speech themed modifications. I is short for Influence, where
the exact value for I is unique to each modification and determined
through training. For the Boost Up category modifications, I is set
to values greater than one and I is set to values less than one for the
Boost Down category modifications. 41

4.2 Term to term themed modifications. I is short for Influence and is
either a constant value or the result of a function. For the Modi-
fiers category, I is set to zero because a term’s influence is ignored
if the adjective/adverb is not found directly adjacent to its corre-
sponding subject. For the Bigrams category, I is a unique, constant
value greater than zero, which is determined through training. For
the Close Pairs category, I is the result of a distance function that
measures the separation between two query terms. 44

4.3 Term to document themed modifications. I is short for Influence and
is set to a distance function that measures the distance between the
start of a document and the current location of a term within that
document. 45

4.4 WordNet API modifications for the query expansion theme. IDF is
short for Inverse Document Frequency. I is short for Influence. . . . 47

4.5 WordNet probability graph modifications for the query expansion
theme. RWSS is short for Random Walk Similarity Score. I is short
for Influence and takes on the value from the result of the Random
Walk Similarity Score algorithm described in Section 4.3.4. 49

4.6 Word2Vec modifications for the query expansion theme. CSS is short
for Cosine Similarity Score. I is short for Influence and takes on the
value resulting from Equation 2.6, applied to the Word2Vec vectors. 51

5.1 Document metadata for each benchmark. 55

5.2 Document parts of speech metadata for each benchmark. 55

viii

5.3 Query metadata for each benchmark. 56

5.4 Query parts of speech metadata for each benchmark. 57

6.1 Expansion theme results. The values represent the percentage change
in mean average precision between Okapi BM25 and the modifica-
tions for query expansions. 62

6.2 WordNet API query expansion data. 63

6.3 WordNet Graph query expansion data. Expansion terms were cal-
culated with a minimum similarity score of 0.02. 63

6.4 Word2Vec query expansion data. Expansion terms were calculated
with a minimum similarity score of 0.5. 64

6.5 Term - Document theme results. The values represent the percent-
age change in mean average precision between Okapi BM25 and the
modifications for the position of a term within a document. 65

6.6 Part of Speech theme results. The values represent the percentage
change in mean average precision between Okapi BM25 and the mod-
ifications for a single term’s part of speech. 66

6.7 Term - Term theme results. The values represent the percentage
change in mean average precision between Okapi BM25 and the mod-
ifications for the proximity between a pair of terms. 67

6.8 Expansion theme results. The values represent the percentage change
in mean average precision between Okapi BM25 and the modifica-
tions for query expansions across multiple categories. WNG is short
for WordNet Graph. WNA is short for WordNet API. W2V is short
for Word2Vec. BIDF is short for Bottom Inverse Document Fre-
quency. A colon (:) means that the category on the left hand side
affects the part(s) of speech on the right hand side. 70

6.9 Term - Document theme results. The values represent the percent-
age change in mean average precision between Okapi BM25 and the
modifications for the position of a term within a document with re-
spect to the start of a document across multiple parts of speech. . . 71

ix

6.10 Part of Speech theme results. The values represent the percent-
age change in mean average precision between Okapi BM25 and the
modifications for a single term’s part of speech across multiple cat-
egories. ↑ symbolizes the Boost Up category, which contains mod-
ifications with Influence values greater than one. ↓ symbolizes the
Boost Down category, which contains modifications with Influence
values less than one. 72

6.11 Term - Term theme results. The values represent the percentage
change in mean average precision between Okapi BM25 and the mod-
ifications for the proximity between pairs of terms across multiple
categories. CP is short for Close Proximity. B is short for Bigram.
A colon (:) means that the category on the left hand side affects the
part(s) of speech on the right hand side. 73

6.12 The change in mean average precision for modifications across mul-
tiple themes. QE is short for Query Expansion. TDA is short for
Term - Document for Adjectives. TDNA is short for Term - Docu-
ment for Nouns and Adjectives. TDVA is short for Term - Document
for Verbs and Adverbs. TT is short for Term - Term. POS is short
for Parts of Speech. 76

6.13 The raw mean average precision (MAP) scores calculated against the
Lisa benchmark for the top scoring modification, the in-house built
Okapi BM25 and cosine similarity models, and the out-of-the-box
solutions for the Lucene and Solr search engines. 79

6.14 Percentage increases in performance when the top scoring modifica-
tion is compared to each of the other models. These percentages are
calculated using the values presented in Table 6.13. 79

x

LIST OF FIGURES

Figure Page

2.1 The similarity between a query and document in the vector space
model is computed as the cosine of the angle between the two vectors. 11

2.2 An example corpus containing three short documents. 13

2.3 An example inverted index derived from the corpus in Figure 2.2. . 13

2.4 Demonstrates how training samples are produced for the Word2Vec
neural network from a set of text with a window radius of two. . . . 18

3.1 High level algorithm for how LDA assigns topics and weights to words
in a corpus. 29

3.2 The CBOW architecture predicts the current word based on the con-
text, and the Skip-gram predicts surrounding words given the current
word. 34

4.1 The stop words that were used in all the experiments. 36

4.2 A summary of the inverted index used in this thesis. The arrow
represents a mapping function. The angle brackets represent a single
posting. The square brackets represent list notation. 38

4.3 JSON data structure format for accessing query expansion terms at
runtime. 46

6.1 Compares the precision and recall of Okapi BM25 and the top mod-
ification at recall bucket sizes 0.05. 80

xi

Chapter 1

INTRODUCTION

Document retrieval systems are useful tools that allow users to obtain a set of doc-

uments from a textual user query. In the field of information retrieval, a collection

of documents is called a corpus. When people discuss information retrieval systems,

most people think about Google’s search engine. At its core, Google’s search engine is

much like a simple document retrieval system, except the corpus it is analyzing is the

entire Internet. Their search engine works well because documents on the Internet

are highly structured. For example, web pages are structured using HTML, which

contain tags that provide context for the document. In addition to analyzing contex-

tual information derived through HTML tags, Google’s search engine is able to return

relevant web pages because it prioritizes “popular” web pages. Popularity is scored

using their page rank algorithm, which is outside the scope of this introduction. How-

ever, due to the technical nature of the page rank algorithm, Google’s search engine

fails when users are trying to search for documents that are unpopular. This is a

problem because documents can be both unpopular and relevant to the user’s search

query. As a result, some documents are circularly discovered by many individuals and

many other relevant and unpopular documents go undiscovered. This thesis focuses

on improving document retrieval by developing methods to rank unstructured doc-

uments based on their contents without relying on preexisting document structure,

corpus context, or popularity scores.

It is important to research alternative ways to rank documents for a handful

of reasons. First, systems that primarily rely on training data will not operate well if

the domain of the training data is disjoint from the domain of the deployment envi-

ronment. To generalize these models to many datasets, research has been conducted

to try to minimize overfitting on training data [3, 38]. Ideally, the subject of training

1

data should be broad enough to cover all possible domains, however such an idealized

set of data is difficult to gather. A system that heavily relies on training data will

need to be retrained if the system is deployed in an environment which has a context

that differs from the domain of the training data. Retraining or partially retraining

a document retrieval system can take a significant period of time and also requires

substantial effort from developers to collect and clean training data. On the other

hand, an ad-hoc document retrieval model that does not require any training data can

ideally be plugged into any corpus and operate effectively without any domain specific

knowledge. This would save developers valuable time that can be spent on other pri-

orities. A second reason to research alternative document ranking methods is that the

structure of a corpus cannot always be assumed. As alluded to earlier in this chapter,

Google’s page rank algorithm relies on structured content that exists in HTML web

pages, such as hyper links, to grade the popularity of web domains. However, not all

corpora contain structured content. Thus, the success of Google’s search engine is

limited to corpora that contain these key contextual items. In a similar methodology

to Google’s page rank algorithm, some researchers have experimented with clustering

documents based on bibliographic citations located in a paper’s bibliography [42].

Graphing documents based on their citations is a useful way to analyze the differ-

ences and similarities between documents, but this method is naturally limited to

corpora that only contain documents with extensive bibliographic information. This

is another example where the success of the document retrieval model is dependent

on the specific structure of its documents. Ideally, researchers would like to develop

a model that analyzes documents based just on their content and returns accurate

results without having to rely on structured data or metadata. Such a model would

perform efficiently on all corpora because the system’s performance would be agnostic

to any preexisting structure. Third, it is often the case in a classroom or an industry

setting where building a minimal viable product in a short amount of time is impor-

2

tant. In these time constrained environments, there simply isn’t enough time to train

a sophisticated model, build a bibliographic similarity network, or insert structure

into all documents inside a corpus. Instead, it might be better to use an ad-hoc

document retrieval system that is guaranteed to operate efficiently and effectively on

any corpus to speed up initial development and still maintaining high accuracy.

In addition to understanding the advantages of researching ad-hoc document

retrieval methods, it is also important to understand why ranking documents based

on their content is a difficult and unsolved problem. First, users are unpredictable.

Users may have different expectations for the acceptable degree of relevance and or-

dering for a list of documents for a particular search query. Second, there commonly

exists a mismatch between the meaning of the user’s literal search query and the true

meaning behind what the user intended to type. This mismatch between the user’s

query and the user’s desire is known as the semantic gap. Closing the semantic gap

is a fundamental area of research that directly affects how well a computer can differ-

entiate between the user’s literal search query and the user’s desire. If closed, search

engines would be able to return relevant documents with extremely high accuracy.

Third, languages are dynamic with respect to time and location. This commonly oc-

curs when a written language is shared across multiple cultures. For example, slang

is extremely difficult to interpret because its meaning is dependent on the user’s

culture. Text that reads, Eric likes chips, can be interpreted differently depending

on the user’s culture. A user from America might had intended the statement to

mean, Eric likes tortilla chips, whereas a user from Australia might had intended the

statement to mean, Eric likes French fries because French fries are called chips in

Australia. Fourth, as information grows at an exponential rate, search engines are

expected to return relevant documents in a timely manner. So, data structures and

algorithms must be built to perform efficiently. However, this becomes an issue for

modern computers when there are many millions, or billions, of documents that need

3

to be quickly searched. In this case, system designers must decide if it is reasonable

to search through every document in the corpus or a subset of documents.

As one might imagine, there are many more variables that can be considered

when designing a document retrieval system. In addition to the above complexity,

improving a document retrieval system is much like working with a black box. This

is true because in real-world circumstances, the true relevance rating for a document,

according to a search query, is not fully observable. Also, the many nuances of a

language makes it difficult to design relevance criteria that can be applied to all

corpora. As a result of these constraints, this thesis proposes hypotheses on corpus

content and then designs and runs experiments to validate or to invalidate these

hypotheses. If all experimental results pertaining to a particular hypothesis produce

a better ordering of predefined relevant documents, then this will be seen as evidence

that the hypothesis is correct.

This thesis will explore methods to improve a well known probabilistic doc-

ument retrieval model called Okapi BM25 [36]. The overarching hypothesis is that

the Okapi BM25 model is limited in quality of results because it is a bag of words

approach to document retrieval. For example, the model does not take into account

term proximity, query expansion, and term parts of speech. The model also lacks

the ability to recognize semantically similar terms. For example, the word “smart”

is treated completely differently than the word “intelligent. This thesis explores 42

different modifications to address the above issues. When the modifications are sys-

tematically combined together, 87 unique variations of the Okapi BM25 model are

produced. Each model is then validated against four difficult datasets and graded

according to their mean average precision scores. The very best model from the vali-

dation set is then tested against a separate, large dataset. The resulting model is able

to outperform the original Okapi BM25 model in mean average precision by 10.25%

and shows an increase in performance when evaluated over a precision recall curve.

4

The resulting model also outperforms two industry standard search engines, Lucene

and Solr, by over 20% when compared using mean average precision.

The rest of this thesis is structured as follows. Chapter two provides back-

ground on document retrieval models and relevant data structures. Chapter three

explores related research on term proximity, semantic analysis, topic modeling, and

language modeling. Chapter four provides implementation details for the various

modifications to Okapi BM25. Chapter five discusses methods of validation, the rel-

evant datasets, experimental protocols, and the results of the experiments. Lastly,

chapter six gives concluding remarks and avenues for future research.

5

Chapter 2

BACKGROUND

Chapter 2 begins by briefly describing how Google’s search engine uses structured

content and how the engine can fail. The section that follows describes unstructured

search and why unstructured search is valuable. Then, the mathematical foundation

for document retrieval systems will be presented. This theoretical section will describe

the vector space model, the probabilistic model, and how documents are stored in

information retrieval systems. Afterwards, the limitations of the vector space and

probabilistic models are discussed by recognizing a semantic gap that exists between

a user query and a set of documents. To help close the semantic gap, two open areas

of research are introduced: WordNet and word embeddings.

2.1 Google Search

When the topic of search is brought up in conversation, many people will first think

of Google’s search engine. But many are unaware of how it works and how it might

fail. Google’s search engine organizes the web into a massive index using software

programs called spiders [16]. Spiders take advantage of structured content inside

HTML elements to make sense of the web pages. Spiders use hyper links to jump

between web pages in order to discovered new web pages. The observable web is all

the websites that are discovered by the spiders.

When a user submits a search query, Google’s search engine queries its enor-

mous index and presents relevant links to the user [15]. The relevance for a web page

is highly influenced by the number and weight of hyper links that point to a web

page, as described in Google’s page rank algorithm [31].

Despite the successes of Google’s search engine, there exist situations where

Google’s search engine fails. Due to the very nature of Google’s page rank algorithm,

6

Google gives priority to web documents that are visited frequently and are cited by

popular websites. As a result, Google rarely orders documents with a small number

of visits first, even if the content of the document is relevant to the query. This is

a problem because unpopular documents can still contain credible and useful infor-

mation. For example, a peer-reviewed paper published in a small conference which

contains relevant information may never get returned first according to Google’s page

rank algorithm. As a result of Google’s page rank algorithm, the documents which

have the highest page rank are returned, which leads to a circular discovery of the

same information.

2.2 Unstructured Search

An alternative way to process queries and documents is to rank documents without

considering explicit inter and intra document structure. It is important to explore how

search engines can rank documents using unstructured methods because not every

corpus will contain structured content. In fact, there are many document collections

that have very little structure. An example of an unstructured corpus is a collection

of transcribed phone calls. If a user would like to search for conversations using the

query, “couples discussing their family vacation plans,” a search engine would have to

calculate the relevance of each document based on document and query text. These

types of datasets are popular amongst speech recognition researchers and developers

[45]. Another example of a document collection with no explicit structure is a set

of research paper abstracts. Digital libraries, such as ACM and IEEE, have search

engines that allow researchers to search papers based on a paper’s abstract. Hence,

researching new methods to rank unstructured text has the possibility to enhance

these search engines.

7

2.3 Document Retrieval Theory

A formalized mathematical understanding of document retrieval systems is now pre-

sented in order to build the foundation for introducing the Okapi BM25 model and

related works.

2.3.1 The Vector Space Model

The technical underpinnings of a document retrieval system can be formalized math-

ematically [23]. Allow the set of distinct terms in a vocabulary to be denoted by

V = {w1, w2, ...} and the corpus of documents to be denoted by D = {d1, d2, ...}.

Both documents and queries can be represented as vectors of length |V | and will

contain a subset of unique terms from V . Each index in a vector is the count for a

unique term in the document or query and each index represents the same term for

all vectors with the same vocabulary. The equations for document and query vectors

are shown here:

dj = (w1j, w2j, ..., w|V |j) (2.1)

q = (w1, w2, ..., w|V |) (2.2)

where dj is a document in the corpus D and wij is the count for a word in dj. Likewise,

q is a query and wi is the count for a word in q. When the ordering of words in a

representation is ignored, the representation is called a bag of words. It is important

to notice that document and query vectors are extremely sparse, meaning most of

the elements inside a vector will be equal to zero. This is true because queries and

documents will not contain a large proportion of the total vocabulary. For example,

if the vocabulary contains 10,000 distinct terms and the text of a query is “yellow

fluffy puppies,” then the vector representation of this query will contain three ones,

each located at the corresponding index for “yellow,” “fluffy” and “puppy,” and 9,997

zeros in every other index location.

8

The size of the vocabulary can grow extremely large, so it is important to only

store terms that have semantic meaning. It is very common for search engines to filter

out “stop words,” which are terms that hold very little semantic meaning, such as

{“a”, “of”, “is”, “the”}. In addition to filtering out stop words, many search engines

will reduce terms down to their roots in order to further compress the vocabulary

size, a process known as stemming. For example, “doggy” and “dogs” share the root

“dog,” so any derivation of “dog” found in a document or vector will be recorded

in the “dog” index. Filtering a corpus for stop words and stemming terms is very

common in information retrieval experiments [41, 12, 49, 34, 48, 40].

The vector space model slightly modifies the vector representation of docu-

ments and queries and uses a geometric distance function to compare the similarity

of vectors. The vector space model recognizes the limitations of only accounting for

the frequency of terms inside a document. For example, the term “dog” may appear

frequently inside a dog-themed corpus. So, the word “dog” holds less meaning than

other words found in the corpus. The vector space model fixes this issue by account-

ing for how rare terms are with respect to all other terms inside the corpus. This

property is known as the inverse document frequency of a term and is represented as

the logarithmic quantity below:

idfi = log
|D|
dfi

(2.3)

where idfi is the inverse document frequency for a term i, |D| is the number of

documents in the corpus and dfi is the number of documents in the corpus that

contain the term i. Notice that each term in a corpus is assigned an idf value that

does not change unless the corpus changes.

The vector space model also takes into account the frequency of a term in a

document. This is known as the term frequency and is represented as the quantity

9

below:

tfij =
fij

max{f1j , f2j , ..., f|V |j}
(2.4)

where tfij is the term frequency for a term i and a document j. fij is the number of

times a term i appears in document j and max{f1j, f2j, ..., f|V |j} is the highest term

frequency in document j. Notice that the tf value for a term changes with respect to

the document.

The the weight for a term inside a document or query vector is the product

between the term frequency and the inverse document frequency:

wij = tfij ∗ idfi (2.5)

This tf-idf equation allows a query vector to be compared against document vectors

with respect to a single corpus and a single vocabulary. Since documents and queries

are represented as vectors, the similarity between two vectors can be computed by

taking the cosine of the angle between the two vectors.

cosine(q, dj) =
< q • dj >
||q|| × ||dj||

(2.6)

The idea of the vector space model is that vectors that point in similar directions

will be related to each other. When restricting values to the first quadrant (since

documents and queries cannot have a negative number of terms), the cosine of the

angle between two vectors gives a value from zero to one. A score that is close to

zero indicates that two vectors are relevant because they point in similar directions.

A score that is close to 1 indicates that two vectors are irrelevant because they point

in different directions. Figure 2.1 shows a graphical representation of the cosine

similarity metric.

10

Figure 2.1: The similarity between a query and document in the vector
space model is computed as the cosine of the angle between the two vectors.

2.3.2 The Probabilistic Model

A well known information retrieval model is Okapi BM25 [36]. This model is rooted

in statistics and assumes a bag of words interpretation for documents and queries.

From statistics, the model assumes that an occurrence of a query term in a document

is an independent event. These events happen in a specified interval, the start and

end of a document. The probability that an event occurs is proportional to how rare a

term is in a document collection (inverse document frequency). These criteria satisfy

a Poisson distribution [17]. However, a Poisson distribution requires that the rate

of occurrences for an event (terms in a document) is known ahead of time. This is

problematic because there is no way of knowing the exact mean number of occurrences

for a term in a given document ahead of time. Therefore, Okapi BM25 was built as

an approximation of the Poisson distribution. The model’s equation bellow has been

broken down into multiple components to help with the model’s overall explanation:

okapi(dj , q) =
∑

ti∈q,dj

idfi × tfij × qtfi (2.7)

Equation 2.7 gives a high level overview of the model’s ranking function. The

model takes two inputs, a document dj and a query q and loops through each term ti

that appears in both the document and the query. The score for a term is the product

of three parts: the inverse document frequency (Equation 2.8), the term frequency

11

(Equation 2.9), and the query term frequency (Equation 2.10). The overall score for

a pair of vectors is the sum of all the values. It is important to notice that the output

value of the equation is unbounded, unlike the cosine metric used in the vector space

model. Higher scores indicate that two vectors are similar to each other and lower

scores indicate that two vectors are dissimilar to each other.

idfi = ln
|D| − dfi + 0.5

dfi + 0.5
(2.8)

The first component of the model is the inverse document frequency. The idf

for term ti (Equation 2.8) is a logarithmic function that gives a higher reward to

terms that occur infrequently in the document collection. Similar to Equation 2.3

from the vector space model, idfi is a function of the number of documents in the

corpus, |D|.

tfij =
(k1 + 1)fij

k1 (1 − b + b
dlj
avdl

) + fij
(2.9)

The second component of the model is the term frequency. The tf for a term

ti in a document dj (Equation 2.9) is a linear function that gives a higher reward

to terms that occur frequently in small documents. Term frequency punishes the

document dj if the length of a document dlj is longer than the average document

length avdl in the corpus. It is important to distinguish between longer and shorter

documents because longer documents have more opportunities to contain query terms.

b is a hyper parameter that adjusts how much a document is punished for its length

and k1 is another hyper parameter that adjusts the weight of the term frequency with

respect to the entire model.

qtfi =
(k2 + 1)fi

k2 + fi
(2.10)

12

d1 = “I heart APIs. You heart APIs”
d2 = “I use APIs at work”
d3 = “You work too much”

Figure 2.2: An example corpus containing three short documents.

I: [< d1, 1 >,< d2, 1 >] heart: [< d1, 2 >] APIs: [< d1, 2 >,< d2, 1 >]
You: [< d1, 1 >,< d2, 1 >] use: [< d2, 1 >] at: [< d2, 1 >]
work: [< d2, 1 >,< d3, 1 >] too: [< d3, 1 >] much: [< d3, 1 >]

Figure 2.3: An example inverted index derived from the corpus in Figure
2.2.

The third component of the model is the query term frequency. The qtf for a

term ti (Equation 2.10) is a linear function that gives higher rewards for terms that

appear multiple times in a query. fi is the frequency of a term ti in a query q. k2 is a

hyper parameter that adjust the influence of the query term frequency with respect

to the entire model.

2.3.3 The Inverted Index

An inverted index is an efficient data structure for digesting the information found

within corpora by mapping each term in the vocabulary to a list of postings. A

posting consists of a list of documents that contain the specified term and other

relevant information, such as the term frequency. For example, examine the small

corpus consisting of the three documents in Figure 2.2. The entries of the inverted

index that would be produced from the three documents is shown in Figure 2.3. For

each resulting entry in the inverted index, the key is the term on the left, the value is

the list on the right, and a posting is represented as the values inside a pair of angle

brackets. Within each posting, the first element is a reference to the document that

contains the key term and the second element is the term frequency of the key term

within the document. The inverted index is a helpful data structure in information

retrieval systems because it abstracts away all the needed information found within a

13

corpus. After the contents of a corpus is transformed into entries in an inverted index,

the corpus can usually be discarded from memory. Inverted indexes also dramatically

increase the lookup time to obtain a set of documents that contain a particular word.

Since the vector space model and the probabilistic model both rely on looking up

documents that contain query terms, it makes sense why document retrieval systems

utilize inverted indexes.

2.4 The Semantic Gap

One of the largest issues with the vector space and probabilistic retrieval models is

their inability to cope with terms that are semantically similar and do not stem to

the same root. For example, “smart” and “intelligent” are treated differently even

though they have high semantic similarity. Often, users are more interested in the

concepts that their queries represent rather than the exact phrasing of their queries.

A document retrieval model that evaluates the query “smart animals” should be able

to assign a high score to documents that contain the phrase “intelligent animals.”

This limitation is known as the semantic gap. The research conducted in this thesis

utilizes the following two tools to help close the semantic gap during experiments.

2.4.1 WordNet

To help close the semantic gap, researchers from Princeton University have attempted

to organize the semantic relationships between English terms into cognitive synonyms

in a project called WordNet [27]. A set of terms are considered to be cognitive

synonyms, or synsets, of one another if the meanings of the terms are so similar

to one another that they cannot be differentiated. From these synsets, conceptual,

semantic, and lexical relations are built. The WordNet database can be used to

extract valuable semantic information from terms, such as term definitions, various

parts of speech, synonyms, hypernyms, hyponyms, and links to other related terms.

14

Words in the English language can have multiple definitions and uses so it is

important to recognize these differences. A term inside WordNet subscribes to a set

of synsets, where each synset has a different meaning. For example, the word “dog”

belongs to eight different synsets. This is because dog can take on different meanings

depending on the context of its usage. Some of the synsets that dog subscribes to

are: a domestic dog of the Canis family, a smooth-textured sausage of minced beef or

pork usually smoked, an informal way to refer to someone, etc. So determining the

meaning of a word in a sentence is not as straightforward as looking up the definition

of a term inside WordNet. There needs to be a way to determine the correct synset

based on the term’s context. An area of research that aims to determine the correct

usage of a term inside its context is called word sense disambiguation and a classic

algorithm for determining the correct synset for a word is the Lesk Algorithm [22].

Given an ambiguous word and the context in which the word occurs, Lesk returns a

synset with the highest number of overlapping words between: the various definitions

from each synsets of each word in the context sentence and the different definitions

from each synset of the ambiguous word. Once the appropriate synset is selected,

semantically similar words can be chosen by selecting terms that subscribe to this

synset. An in depth example of the Lesk algorithm ran on WordNet can be found in

the footnote1.

Although WordNet shows that there exists a relationship between terms, such

as “car” and “automobile,” WordNet does not provide the strength of the relationship

between terms. Research has demonstrated that a graph can be extracted from the

WordNet database to represent the sematic similarity between English terms [43].

In this graph, each node is represented by a term or phrase and each edge holds a

weight that represents the probability that a user is interested in another term or

phrase when given the current node. In this graph representation of WordNet, the

1http://www.nltk.org/howto/wsd.html

15

sum of probabilities from all the out edges is equal to one. The similarity between

two terms is computed by performing a breadth-first traversal of the graph from each

node in parallel to discover a path between the two nodes and then computing the

product of the edges along this path [43]. In addition to computing the similarity

between two known terms, semantically similar terms can be discovered for a given

term by performing many random walks to discover neighboring nodes. A random

walk is performed by randomly selecting an out edge, according to the probability

distribution from the set of out edges, and traversing to the node pointed to by this

edge. This process repeats itself for a given number of intervals defined as a hyper

parameter. The nodes that are traversed most often represent the most semantically

similar nodes.

Unfortunately, WordNet is difficult to maintain. As language evolves, the

project demands continued effort in order to keep up with new additions and mod-

ifications to the English language. As a result, WordNet does not have thorough

entries for slang terms or figures of speech. For example, the phrase “down to Earth”

is semantically similar to the words “practical” or “humble,” and this is not provided

by WordNet. The best WordNet can do is analyze the above phrase through its parts,

so “down to Earth” is interpreted as something that is literally close to the Earth’s

surface.

2.4.2 Word Embeddings

Another method that can be used to help close the semantic gap is word embeddings.

The core concept behind word embeddings is the Distributional Hypothesis [37]. The

hypothesis states that words that appear in the same context share semantic meaning.

In this model, each word in a vocabulary is represented as a vector and semantically

similar words will have similar vectors. Just as how WordNet can be used to discover

semantically similar terms, as can word embeddings. Semantically similar terms can

16

be discovered by looking up a word’s vector representation and then using a distance

function, such as cosine similarity, to compute the distance between each word in the

vocabulary.

Researchers have been experimenting with word embeddings since the early

2000s. One of the first papers to describe and implement a neural language model to

produce word vectors was in [5]. The paper proposes a feed-forward neural network

with a linear projection layer and a non-linear hidden layer to learn word vector

representations and a neural probabilistic language model. This paper’s model took

three weeks to train across 40 CPUs and produced perplexity scores that were 10%

to 20% better than (at the time) state of the art smoothed trigram probabilistic

language models.

Since the early 2000s, generating word embeddings has become much more

efficient and accurate. In 2013, Google researchers published a technique called

Word2Vec to learn high quality word vectors from huge data sets with billions of

words and with millions of distinct vocabulary words [24]. Word2Vec is a semanti-

cally driven method for representing terms that encode many linguistic regularities

and patterns. The paper shows that word vectors could be built in less than a day

using a shallow neural network and perform better than other industry standard lan-

guage models. In a follow up paper by Google researchers [25], the researchers report

that the word vectors produced using the Word2Vec method can represent syntactic

analogies such as ”quick”:”quickly” and also semantic analogies, such as country to

capital city relationships. This relationship can surprisingly be extracted using simple

vector addition. For example,

vec(“Germany”) + vec(“capital”) ≈ vec(“Berlin”) (2.11)

17

Figure 2.4: Demonstrates how training samples are produced for the
Word2Vec neural network from a set of text with a window radius of
two.

Word vectors allow for precise analogical reasoning and representation of the

distributional context in which a word appears. To generate a word embedding using

Google’s Word2Vec model, a shallow neural network is used to build feature vectors

for each word in the vocabulary. These vectors encode the occurrence of prior and

subsequent terms. Visually, prior and subsequent terms are encapsulated by a win-

dow, where the size of the window is a hyper parameter. Shown in Figure 2.4, pairs

of data points are drawn from the window of words in order to create the training

samples for the neural network. For each training sample, the input to the neural

network is the center window word and the expected output is a non center window

word. Finally, the word vectors are extracted from the weights connecting the hidden

layer and the output layer [18].

18

Chapter 3

RELATED WORKS

Chapter 3 explores related research on unstructured search. The first section will

discuss previously established modifications to Okapi BM25 to increase the model’s

accuracy. The next section will discuss other related techniques to analyze unstruc-

tured text that do not utilize Okapi BM25.

3.1 Okapi BM25 Modifications

3.1.1 Genetic Programming

Ronan Cummins’ and Colm O’Riordan’s Learning in a Pairwise Term-Term Prox-

imity Framework for Information Retrieval [12] uses a genetic algorithm to modify

the Okapi BM25 model. This paper builds off their previous publication, where they

propose a genetic algorithm to improve the vector space model [11]. The fitness func-

tion for both papers rewards their system when an equation modification results in

an increase in the model’s mean average precision.

In order to derive a modified version of Okapi BM25, the researchers defines

12 different term proximity measures. These proximity measure were fed as input

into their genetic algorithm. The algorithm then tried different combinations and

weights for each proximity measure and output an equation that maximizes the mean

average precision on a set of 69,500 documents and 55 queries. The best three func-

tions produced using the genetic algorithm all resulted in equations that used the

minimum distance proximity measure and the average distance proximity measure.

This suggests that the minimum distance and the average distance between query

terms in a document is correlated to the relevance of a query and document. The

proximity measures used in this experiment are defined in Table 3.1.1.

19

Proximity Measure Description

min dist(a, b, D) The minimum distance between terms a and b.
diff avg pos(a, b, D) Computes the difference between the average po-

sitions of terms a and b.
avg dist(a, b, D) The average distance between terms a and b for

all positions combinations in D.
avg min dist(a, b, D) The average of the shortest distance between each

occurrence of the least frequently occurring term
and any occurrence of the other term.

match dist(a, b, D) The smallest distance achievable when each occur-
rence of a term is uniquely matched to another
occurrence of a term.

max dist(a, b, D) The maximum distance between any two occur-
rences of terms a and b.

sum(tf(a), tf(b)) The sum of the term frequencies between terms a
and b.

prod(tf(a), tf(b)) The product of the term frequencies between terms
a and b.

fullcover(Q, D) The length of the document that covers all occur-
rences of query terms.

mincover(Q, D) The length of the document that covers all query
terms at least once.

dl(D) The length of the document.
qt(Q, D) The number of unique terms that match both the

document and query.

Table 3.1: The 12 proximity measurements used as input into the genetic
algorithm.

3.1.2 Semantic Analysis

Bhatia’s and Kumar’s Contextual paradigm for ad hoc retrieval of user-centric web

data [7] categorize the semantic relationship between pairs of terms in multi-term

queries. The two categories that were defined in the paper were labeled “topic mod-

ifying” and “topic collocating.” Topic modifying is where one query term represents

a subject and the other query term modifies the subject. For example, “Indian Cur-

rency” is a topic modifying query. On the other hand, topic collocating is where

multiple query terms represent a single topic. For example, “data mining” is a topic

20

collocating query. The researchers propose three different hypotheses to test the

properties of topic modifying and topic collocating queries:

1. Important terms always appear in the forefront of a document.

2. Related terms appear in close proximity to one another.

3. Important terms appear repeatedly in a document.

To test these hypotheses, an equation for each of the above hypotheses was

derived. Then, 20 topic modifying and 10 topic collocating queries were typed into

Google’s search engine to obtain the top 20 documents for each query. Each of the

documents was then labeled as relevant or irrelevant by a human. The aforementioned

equations were then used to reorder the returned documents and the precision was

recorded at 5, 10, and 15 documents.

The results show that the reordering of topic modifying queries saw the largest

increase in precision when ranking documents based on the smallest distance between

query terms. This makes sense because a modifying term is most useful when found

near its corresponding subject. Topic collocating queries saw the largest increase in

precision when reordering documents based on their term frequencies and based on

the smallest distance between query terms. These results make sense because the

appearance of individual topic collocating terms do not have much semantic meaning

if they are not found close together.

This thesis adopts the topic modifying and topic collocating principals laid

out by Bhatia and Kumar. Unfortunately, the researchers do not provide a mech-

anism for identifying topic modifying and topic collocating terms. As a result, this

thesis assumes that topic modifying and topic collocating terms can be identified by

evaluating the parts of speech of adjacent terms. In contrast to this research paper,

this thesis explores how these techniques fair with long queries, as the queries used

in this research paper were only two terms long. Lastly, this thesis takes inspiration

21

from Bhatia’s and Kumar’s first hypothesis, that important terms may appear at the

front of a document.

3.1.3 Spans

A well researched area in term proximity is the idea of “spans.” A span is a segment

of text from a document that incorporates all query terms, or a subset of the query

terms. Spans have been shown to increase document retrieval accuracy for a number

of cases. In Muhammad Rafique’s and Mehdi Hassan’s Utilizing Distinct Terms for

Proximity and Phrases in the Document for Better Information Retrieval [34], the

two researchers derive an equation that gives a greater reward if a large number of

query terms appear close together in a document. The researchers’ implementation is

unique because the system only accounts for the first occurrence of each query term.

This modification allows the researchers to compress the system’s inverted index by

only storing the location of the first occurrence of a term inside each posting. To

validate their system, the researchers designed 25 custom queries and ran them the

C50 dataset. The C50 dataset contains two repositories, one for testing and one for

training, each containing 2,500 text files. Each text file is a passage written by a

well known author and no information was provided on the custom queries. Their

results show an increase in precision when observing the first five and ten returned

documents by upwards to 20-30% and an increase to the mean average precision by

around 15%, which is evidence that spans are a useful machanism for increasing the

accuracy of document retrieval systems.

Researchers Ruihua Song, Ji-Rong Wen, and Wei-Ying Ma used spans to derive

contextual information from queries in their paper, Viewing Term Proximity from a

Different Perspective [41]. The paper introduces a technique to replace term frequency

with an algorithm that incorporate term proximity using spans. Their algorithm splits

a documents into non overlapping segments that contain one or more query terms

22

according to the rules of the algorithm. Intuitively, the relevance contribution is

proportional to the density of each non-overlapping span. Mathematically, the score

for an individual span is a function of the number of unique query terms divided

by the width of the span, multiplied by two other hyper parameters. Thus, the

total relevance contribution, rc, is the sum of scores from all the non-overlapping

spans. The new term frequency formula for Okapi BM25 is as shown in Equation

3.1. Experiments were conducted on TREC (Text Retrieval Conference) disks 9, 10,

and 11. Their results show an increase in precision when observing the first 5 and 10

returned documents by around 0.3% for disk 9, 10.4% for disk 10, and 4.4% for disk

11.

tfij =
(k1 + 1)rc

k1(1− b + b
dlj
avdl

) + rc
(3.1)

3.1.4 Query Expansion

Query expansion is the process of reformulating a query to improve retrieval perfor-

mance in information retrieval operations. The main motivation of query expansion

is to include additional terms to express the original query in a more detailed way in

order to increase the number of relevant documents identified [30]. As discussed in

[30], there are three major areas of query expansion: query expansion using corpus

dependent knowledge models, query expansion using relevance feedback, and query

expansion using language models. Query expansion using corpus dependent knowl-

edge models group similar words together in order to find suitable expansion terms.

Query expansion using relevance feedback expands the query by extracting terms

from either the first few returned documents or from known relevant document. Ex-

tracting terms from the first few returned documents is not very effective for ad-hoc

feedback systems because the first few returned documents are not guaranteed to be

relevant to the query and will result in query drift [1]. Last, query expansion using

23

language models selects new terms according to the highest probability that the new

term will appear in the context of the original query.

There are a number of researchers who have experimented with query expan-

sion. Edward Fox’s research Lexical Relations: Enhancing Effectiveness of Informa-

tion Retrieval Systems [14] explores a corpus dependent query expansion method.

His algorithm builds unique lexical relations for document collections and shows how

query expansion can affect the recall level of an information retrieval system. His

main contribution is that the recall level of information retrieval systems can be im-

proved if the knowledge model being used to expand the query is built from a corpus

that shares the same lexical relations as the test corpus.

Research done by Olga Vechtomova, Stephen Robertson, and Susan Jones

in their paper Query Expansion with Long Span Collocates [46] expounded on the

idea of collocates1. The researchers aimed to identify all terms that significantly

co-occur with query terms within a specified window size. Their algorithm builds

a list of possible expansion terms and weights these terms by their significance of

association using statistical methods, such as Z-score. The researchers built two

different knowledge models for query expansion. The first model was constructed

from a global point of view, which included the entire corpus (a corpus dependent

knowledge model) and the second model was built from a local point of view which

contained a subset of the corpus that contained known relevant documents (a corpus

dependent knowledge model with relevance feedback). To test their models, each

query was ran using Okapi BM25 to gather average precision and recall scores. Then

the query was expanded using one of the two models and was again run using Okapi

BM25 to gather average precision and recall scores. Their results show that Okapi

BM25 consistently performed worse when the query was expanded using the global

1Words which co-occur near each other with more than random probability are known as collo-
cates

24

model. When using the local model, the average change in precision both improved

and degraded for different sized queries. The researchers reason that their models fail

to consistently and correctly expand queries because query terms have a very high

level of dimensionality that can be derived from their contexts of occurrence.

A modern approach to query expansion uses language models. Language mod-

els take advantage of the high levels of the contextual dimensionality that a term can

exhibit within a document (language models are explored in detail in Section 3.3).

Some researchers, such as Saar Kuzi, Anna Shtok, and Oren Kurland, in their paper

Query Expansion Using Word Embeddings [19] have successfully been able to expand

queries and increase mean average precision using language models trained on the

same corpus that their document retrieval system is analyzing. Since training lan-

guage models from scratch require a lot of training data, their models were trained

on large TREC (Text Retrieval Conference) disks, which were also the same datasets

that their document retrieval system was analyzing. This type of local training is

consistent with the preceding corpus dependent models as it appears that query ex-

pansion is best conducted when a lexicon is built from the same domain as the target

corpus.

Despite some of the successes of the above researchers, other researchers doubt

the potential of query expansion for ad-hoc retrieval. Anton Bakhtin, Yury Usti-

novskiy, and Pavel Serdyukov in their work Predicting the Impact of Expansion Terms

Using Semantic and User Interaction Features [2] suggest that query expansion does

not improve query performance. The researchers examine query expansion via corpus

dependent knowledge models and claim that query expansions will more than likely

hurt the system’s recall due to vocabulary mismatch, or hurt the system’s precision

due to topic drift. The researchers sampled 35,000 unique queries from a Yandex

search engine query log and computed the difference between the F-score, precision,

and recall for documents being retrieved from a query without any expansions and

25

from a query with expansions. The results of their experiments show that in around

84% of cases, query expansion does not change the query’s overall performance, which

may imply that query expansions are not a very efficient mechanism for improving

ad-hoc document retrieval systems.

3.1.5 BM25F

Some researchers have proposed an extension of the Okapi BM25 model that assumes

that some parts of a document are more relevant to the query than other parts

of a document. This idea was first developed for web search and takes advantage

of explicit structure inside HTML tags and RDF triples. RDF is a Semantic Web

technology which stands for Resource Description Framework that was developed to

give semantic meaning to elements on web pages [26]. Metadata in the RDF model is

expressed as triples: subject, predicate, and object, which are encoded as URI’s. For

example, a web page on the movie Deadpool can contain a hyperlink to the movie’s

director, Tim Miller, which indicates that Deadpool was directed by Tim Miller.

This information can be expressed explicitly as a RDF triple: (Deadpool, directed

by, Tim Miller), where the movie Deadpool is the subject, directed by is the predicate,

and Tim Miller is the object. RDF triples allow humans to encode documents with

semantic meaning which computers can then use to better understand the content of

documents.

Researchers first took advantage of HTML tags and RDF triples to create the

BM25F probabilistic retrieval model [33]. BM25F is similar to Okapi BM25 with the

addition that for each term, a weight variable is used to either scale up or scale down

the relevance of the term depending on the context in which the term is discovered.

The weight variable is heuristically set. For example, terms discovered in a HTML

title element or a RDF triple subject may be given a positive boost to the term’s

score if these fields appear to be relevant to the query. Experiments have shown that

26

using BM25F can improve the Okapi BM25 model when evaluated over precision and

mean average precision. The downside to the model is that BM25F requires that

documents be structured with HTML and/or RDF triples.

With the growing popularity and success of BM25F, some researchers set out

to apply similar techniques to unstructured text. For example, Roi Blanco and Paolo

Boldi in their paper Extending BM25 with Multiple Query Operators [8] built a model

to generalize BM25F to unstructured text. The basic idea of their approach is that

a document is split into “virtual regions.” Much like Okapi BM25F, each region rep-

resents a different level of relevance to the query and will be weighted proportionally

to its statistical significance. These virtual regions are generated similar to the span

examples in Section 3.1.3, where a high density of query terms in a subsection of a

document may indicate greater importance than a less dense area of a document. In

a two pass procedure, Blanco’s and Boldi’s algorithm first partitions a document and

assigns weight values to each partition. Then, the document is scored in the same

way as BM25F. Their algorithm was tested against five large document collections

containing around 95 million documents and they report a consistent increase in mean

average precision over both Okapi BM25 and BM25F.

3.2 Topic Models

Topic models attempt to understand the semantic structure of text by assuming that

there is some hidden structure in a document that can be discovered and exploit it

in order to cluster similar documents.

3.2.1 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is an early topic model that uses singular-value de-

composition in order to expose semantic relationships between documents in a corpus

[39]. Singular-value decomposition is a mathematical procedure that attempts to re-

27

duce the rank of a matrix by approximating the matrix’s row (or column) vectors by

a smaller set of linearly independent vectors (vectors are linearly independent of each

other if two vectors are not scalar multiples of each other or a linear combination of

other vectors in the set) [28]. In LSI, the matrix that is to be approximated is the

corpus, where each row is a document and each column is a term in the vocabulary.

In an early paper that presents the LSI algorithm [39], the researchers pro-

posed that a document-term matrix can be approximated by a set of 100 linearly

independent features that can be linearly combined to approximate each document

in the corpus. Each document in the corpus can then be plotted in hyperspace ac-

cording to the document’s linear approximation formula. A document’s position in

space serves as a document’s identity and neighboring documents in this space should

have similar topics. Similarly, a query can be analyzed as a weighted combination of

terms and be plotted in the same hyperspace. From here, LSI borrows from the vector

space model by computing the angle between the query point and the surrounding

document points to compute similarity scores.

LSI takes into account the semantic similarities between words by nature of its

design because a query with terms that do not appear in a document may still end up

close to a document in hyperspace. As a result, a query can return documents with

terms that are semantically similar to query terms. However, LSI falls short because

it does not take into account words that have multiple definitions. For example, the

term “bark” can be used in two different contexts, “the dog barks” and “tree bark.”

Therefore, a document discussing how a dog barks and another document discussing

tree bark may appear close to each other in hyperspace. Since so many words have

multiple use cases, it makes sense to extend LSI to better accommodate words that

relate to multiple topics, or a set of high level ideas such as sports, music, education,

etc.

28

foreach document d ∈ D do
foreach word w ∈ d do

foreach topic t do
p1 = Proportion of words in d currently assigned to t ;
p2 = Proportion of assignments to t over all documents from w ;
p3 = p1 * p2 ;
w← (t, p3);

end

end

end

Figure 3.1: High level algorithm for how LDA assigns topics and weights
to words in a corpus.

3.2.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is similar to LSI, but it is more robust to word

ambiguity [13]. LDA is more powerful than LSI because each word in the vocabulary

can be expressed by a set of topics with a corresponding set of weights. For example,

the term “bark” can be expressed by a mixture of topics such as “dog” and “tree.”

The word “bark” can also relate to “dog” and “tree” in different proportions, such as

60% “dog” and 40% “tree.” These proportions will depend on the subject domain of

the corpus. In LDA, a document is a combination of words, where each word belongs

to a combination of topics. So a document can also be expressed as a combination of

topics and weights, much like a recipe. For example, a document may be 35% sports,

45% music, and 20% education. These topic proportions can then be used to compare

queries and documents. For LDA, queries and documents are relevant to one another

if they are composed of a similar combination of topics.

LDA must be trained using a corpus in order to determine the best com-

bination of topics and weights for a particular term. Initially, words are assigned

randomly to topics. Then, for each word in every document and every topic, a word

is reassigned to a topic according to the probability that a topic generates that word.

A rough overview of the pseudocode can be found in Figure 3.1. The disadvantage

29

to LDA is that the number of topics is chosen as a hyper parameter that must be

empirically determined. Another disadvantage is that LDA does not take into ac-

count the proximity and ordering of terms inside a document because it is a bag of

words model. Dispite these disadvantages, LDA is still an effective tool for clustering

documents. The next section will explore language models, which emphasize term

proximities in order to extract a term’s semantic meaning.

3.3 Language Models

A language model can be used to derive semantic meaning from terms using term

proximity. Language models represent the semantic meaning of terms as a probabil-

ity distribution that represents the likelihood that a term can be found near other

terms. This term probability distribution can then be used to predict the likelihood

that a term may appear near a set of different terms. As a result, language models

lend themselves well to solve problems in fields beyond document retrieval, such as

speech recognition [47, 45]. A common problem in speech to text programs is that a

sound recording can be represented in many different ways, most of which make no

grammatical sense. For example, the phrases “I saw a van” and “eyes awe of an” are

acoustically similar to one another, but “I saw a van” would be a more likely tran-

scription of the audio file because there is a higher probability that these terms would

appear in each other’s contexts. Language models solve this problem by calculating

the probability that a term will appear in a particular context rather than simply

returning terms based on their acoustics. This behavior is exploited by document re-

trieval engines to both derive query expansion terms that make sense according to the

term’s context and to directly score the similarity between documents and queries.

30

3.3.1 The Probabilistic Language Model

A probabilistic language model can be used to score the relevance between a document

and a query by computing the probability that a document will generate a query [20].

To perform this calculation, a probability distribution is first built for each document.

In unigram language models, terms are treated as independent events. Hence, the

probability that a word appears in a document is given as the conditional probability

between the word and the document [23], as shown in Equation 3.2,

P (wij|dj) =
fij
|dj|

(3.2)

where fij is the frequency of term i in document j and |dj| is the total number of

words in document j. Therefore, the probability that a document generates the terms

in a query, q = (w1, w2, ..., wm), of length m is the product of all the probabilities

that each query term appears in the document [20], as shown in Equation 3.3.

P (qi|dj) =
m∏
i=1

P (wij|dj) (3.3)

A unigram language model can be expanded to account for a term’s context in order

to gain more insight into a term’s semantic meaning. To do so, the probability of a

term will be modified to depend on previous terms in its context, as given by Equation

3.4,

P (wn) = P (wn|w1, w2, ..., wn−1) (3.4)

where P (A,B,C) is expanded to P (A)P (B|A)P (C|A,B) and n is the nth term in

a document. As one might suggest, accounting for all the preceding terms over

complicates the language model. In order to simplify training and to reduce the

combination of terms that can appear in another term’s context, the probability of

a term can be simplified to only depend on a few preceding terms. The number of

31

preceding terms will be indicated by the variable k. This is known as the Markov

Assumption [10]. Using the Markov Assumption, the probability of a term in a

document reduces to Equation 3.5.

P (wn) = P (wn|wn−k..., wn−1) (3.5)

When k = 1, or P (wn) = P (wn|wn−1), the system is called a bigram language model.

When k = 2, or P (wn) = P (wn|wn−2, wn−1) the system is called a trigram language

model. The probability that a term appears in a document for small values of k now

depends on the frequency of phrases that appear before a term and including that

term. The probability that a term appears in a document for a bigram model is

shown in Equation 3.6,

P (wi|wi−1)j =
count(wi−1, wi)j
count(wi−1)j

(3.6)

where count(wi−1, wi)j is the number of times the 2-tuple (wi−1, wi) appears in docu-

ment j and count(wi−1)j is the number of times the word wi−1 appears in document

j. For example, if a document contains the text “My dog makes him happy and her

happy” then P (“and”|“happy”) = count(“happy and”)
count(“happy”)

= 1
2

Language models compute the similarity between a query and a document by

determining the probability that a document’s probability distribution generates a

query. For example, the probability that a query qi = (w1, w2, ..., wm) is generated

from a document in a bigram language model is the product of each conditional

probability for each pair of terms, as shown in Equation 3.7.

P (qi) = P (w1|s)× P (w2|w1)× P (w3|w2)× ...× P (s′|wm) (3.7)

32

In Equation 3.7, s and s′ are special symbols reserved for the start and end of queries

and document. When k is generalized to any number, the model is called an N-gram

language model.

The N-gram language model has a few disadvantages. The number of different

possible phrases grows exponentially with respect to the vocabulary size, especially

when k is large. Also, it is not likely that a training set will contain every combination

of phrases for high values of k. Thus, the discrete probability distribution that is

created most likely has missing values and it is not clear what exactly to do when a

query contains a word that is not contained in a document. This is a problem because

missing words will result in zero valued probabilities. To fix this problem, language

models are usually smoothed to mimic continuous distributions. The main purpose

of smoothing is to assign a non-zero probability to unseen words and phrases. One of

the simplest smoothing techniques is called Laplace smoothing [50], where an extra

count is added to each term. Another popular way to smooth a language model is by

using linear interpolation with a background collection model, or by using word sense

information from semantic databases (such as WordNet) [21]. Many more techniques

are outlined in [50].

3.3.2 Neural Language Models

The absence of a continuous distribution in the probabilistic language model motivates

a language model that utilizes neural networks. By the nature of their design, neural

networks lend themselves well to generating continuous distributions because the

training process will adjust the weights and biases for groups of neurons. Similar to

a statistical language model, a neural language model computes the similarity score

between a document and a query as the probability that a query is generated by a

document. Neural language models are used to generate the high quality Word2Vec

word embeddings as described in Section 2.4.2. Unlike statistical language models,

33

Figure 3.2: The CBOW architecture predicts the current word based on
the context, and the Skip-gram predicts surrounding words given the cur-
rent word.

neural language models are trained using both previous and subsequent terms. In

the case of Word2Vec, two interesting architectures are derived. The Continuous

Bag-of-Words (CBOW) model is able to predict a term according to the terms in

the current term’s context [24]. This behavior is similar to that of the behavior for

probabilistic language models. The other Word2Vec architecture is the Continuous

Skip-gram model, which tries to classify a word based on another word in the sentence

[24]. More precisely, this model is used to predict words within a certain range before

and after the current word. The Skip-gram model can hypothetically be used for

query expansion because it allows search engines to recognize terms that are likely to

appear to each other’s contexts. For example, the term “Hong” is commonly found

right before the term “Kong.” So if a user leaves out “Kong” when searching for the

country Hong Kong, the Skip-gram model can be used to infer the user’s intension.

Figure 3.2 provides a visual summary of the CBOW and Skip-gram models.

34

Chapter 4

IMPLEMENTATION

This chapter explains the implementation details of relevant system architecture and

Okapi BM25 modifications. To make the explanation easier, this chapter has been

split into three parts. The first section discusses how information from the datasets

is extracted and stored in an inverted index. The second section describes how Okapi

BM25 is extended so that sets of modifications can be easily enabled. The third

section lists all the modifications that were created and how a term’s score is boosted

depending on the outcome of these modifications.

4.1 Building the Inverted Index

The goal of this section is to describe how the inverted index for a dataset is built

and what information can be found in a term’s posting. A lot of data cleaning, data

reshaping, and data analysis must be performed before any queries can be executed

on a set of documents. As previously presented, a basic inverted index maps terms

found inside a corpus to a list of postings, where a posting contains a reference to

the original document and a count for how many times that term appears in that

document. In this thesis, the original definition of an inverted index is expanded to

incorporate more contextual information about a term inside a document.

The first step in building an inverted index is to gather a set of terms to be

used as keys for the data structure. As discussed in Section 2.3.1, evidence from prior

research shows that removing stop words can increase a document retrieval system’s

performance. This thesis pays close attention to minimizing the number of keys in

the inverted index so that the search engine can perform experiments quickly. Figure

4.1 shows the set of stop words used in all the experiments. It is worth noting that

there is no universal set of stop words used by natural language processing tools.

35

{a, about, above, all, along, also, although, am, an, and, any, are, aren’t, as, at, be,
because, been, but, by, can, cannot, could, couldn’t, did, didn’t, do, does, doesn’t,

e.g., either, etc, etc., even, ever, enough, for, from, further, get, gets, got, had, have,
hardly, has, hasn’t, having, he, hence, her, here, hereby, herein, hereof, hereon,

hereto, herewith, him, his, how, however, i, i.e., if, in, into, it, it’s, its, me, more,
most, mr, my, near, nor, now, no, not, or, on, of, onto, other, our, out, over, really,

said, same, she, should, shouldn’t, since, so, some, such, than, that, the, their, them,
then, there, thereby, therefore, therefrom, therein, thereof, thereon, thereto,

therewith, these, they, this, those, through, thus, to, too, under, until, unto, upon,
us, very, was, wasn’t, we, were, what, when, where, whereby, wherein, whether,

which, while, who, whom, whose, why, with, without, would, you, your, yours, yes}

Figure 4.1: The stop words that were used in all the experiments.

Additional research presented in Section 2.3.1 shows that the key set for an

inverted index can be further reduced without compromising accuracy if inflectional

endings from terms are removed. Term inflections can be removed either by stemming

or lemmatization. A stemmer crudely removes the ending of a word based on patterns

in a particular language, whereas a lemmatizer uses a dictionary to reduce a term

down to it’s lemma, or the version of that term that appears in the dictionary. For

all experiments, a rule based stemmer called the Porter Stemmer was used due to

speed advantages over a lemmatizer. The Porter Stemmer appears to be a standard

tool from related information retrieval research from Section 2.3.1. In addition to

excluding stop words and using a Porter Stemmer, other minor checks are conducted

across all documents to further compress the inverted index. For example, terms that

are less than or equal to two characters long are ignored, all terms are converted to

lower case, and all punctuation is removed before terms are added to the inverted

index.

Now that the procedure for collecting and cleaning keys for the inverted index

has been discussed, the contents of a posting can be unraveled. The first two items

in a posting are the same from the previous definition of a posting. The first item is

a reference to the document containing the term. In the code, document references

36

are represented by a unique identification number. Documents are accessed through

a dictionary that maps document id’s to document vectors. Second, the posting

contains the number of times a key term appears in the document. In addition to

these two previously discussed elements, this thesis expands the definition of a posting

by adding three new elements. As the program reads through the corpus, the absolute

position of the term and the sentence number within the document are recorded. The

absolute position for a term represents the number of terms that precede this term

in the document. Both of these values are stored in lists whose sizes are equal to the

number of times the key term appears in the document. Last, a posting also stores a

term’s part of speech. Including a term’s part of speech is a new modification that is

not proposed in any of the related research. Determining the part of speech for a term

is not a straightforward procedure because a term’s part of speech heavily relies on the

context in which the word appears. As a result, a term can take on multiple parts of

speech. The English language is especially tricky because there are a countless number

of exceptions to standard grammatical rules. To ultimately determine a term’s part

of speech, a part of speech tagger tool from python’s natural language processing tool

kit is used. To simplify later contextual analysis, the output of the tool was modified

to only include nouns, verbs, adjectives, adverbs, and all other parts of speech are

considered to be “other.” These parts of speech values are abstracted as enumerations

inside the code and the posting contains a list of these enumerations corresponding

to each time the term is used in a document. The length of this list is also equal to

the total number of occurrences of this term in the document. Finally, since the same

term can appear in multiple documents, each key from the inverted index points to

a list of postings, where each posting holds data from a different document. Figure

4.2 provides a summary of this thesis’s inverted index.

37

Key Term → [<Document ID, Term Frequency, [Sentence Indices], [Absolute
Indices], [Parts of Speech]>, ...]

Figure 4.2: A summary of the inverted index used in this thesis. The
arrow represents a mapping function. The angle brackets represent a
single posting. The square brackets represent list notation.

4.2 Extending Okapi BM25

This section covers the implementation details for a generic Okapi BM25 function

used in all the modifications as described in Section 4.3. With the construction of

a more intimate inverted index, a more sophisticated Okapi BM25 algorithm can

be designed. The goal is to create a customized version of the Okapi BM25 model

that allows for extensibility, meaning a developer should not have to create a new

Okapi BM25 function for each modification. Ideally, a researcher should be able to

quickly toggle different modifications during the instantiation of the model so that

experiments can be quickly developed and ran.

Although the exact details of each modification is described in Section 4.3,

the overarching idea is that the score generated for a single term is a function of

the term’s term frequency, inverse document frequency, query term frequency, and a

collection of boosts that get applied to that term. The final score for a document

is then the sum of all the scores calculated from each matching query term. When

designing the system, the modification’s influence over a term’s individual score is

important to consider. In most cases, it is not sufficient to simply add a constant

value to the term’s score if a term satisfied a particular modification. This is because

a term’s significance may very depending on context. Adding a constant value could

even negatively harm the system’s performance. This is because adding constant

values will affect short queries more than long queries because the constant’s value

will represent be a higher proportion of the short query’s score while the long query

will hardly feel the affect.

38

Boosting sets of terms based on their perceived importance is an expansion

of Bhatia’s and Kumar’s experiments involving topic modifying and topic collacating

terms [7]. Thus, this thesis boosts a term’s score proportionally to the term’s unmod-

ified Okapi BM25 score. When boosting proportionally to a term’s unmodified Okapi

BM25 score, an important edge case arises. As defined in Equation 2.8, the function

for the inverse document frequency is logarithmic and can become negative when the

quantity is less than one. This can occur when a term commonly appears throughout

the corpus (dfi approaches the value |D|). Although this edge case does not appear

very often, boosts are defined to be strictly positive values and are calculated as a

proportion of the absolute value of the term’s original score. Equation 4.1 shows the

exact boosting function used in many of the experiments, where OkapiScore is the

original score calculated from Okapi BM25 and Influence is a variable determined

from a modification that is responsible for scaling a term’s score based on the term’s

positive, Okapi BM25 value.

BoostValue = (|OkapiScore| ∗ Influence)− |OkapiScore| (4.1)

In order to toggle modifications, the constructor for the model contains a set of op-

tional parameters that turn on and off modifications. The Influence of a modification

can also be specified in the constructor as an optional parameter during construc-

tion for modifications that either require user defined hyper parameters. Next, at

runtime, the model checks which modifications are enabled and computes the appro-

priate boosts for each term.

The extensible model also contains checks to determine values that can be

precomputed. For example, one modification attempts to perform query expansion

on terms that score the highest inverse document frequency. The idea behind this

modification is that terms that have a high inverse document frequencies are rare and

39

may have higher significance to the query. This requires that all the inverse document

frequency values for each term be known ahead of time so that to only expand terms

that have high inverse document frequency scores. Additionally, other modifications

require knowledge about the previous term in the query, such as the previous term’s

part of speech. As a result, the extensible model always traverses the query in the

order in which the terms are appear in the query. This restriction technically breaks

the bag of words definition of Okapi BM25 since the order in which query terms are

evaluated affect the final score.

4.3 The Okapi BM25 Modifications

This section describes relevant algorithms and equations that are used to derive a

modification’s Influence score. The modifications have been categorized into four

themes to help clarify the overall explanation. The first theme analyzes a term’s

part of speech in isolation. The second theme includes modifications that analyze the

distance between pairs of query terms found within a document. The third theme

analyzes the position of a single query term with respect to its location within a

document. Finally, the fourth theme explores methods for query expansion.

4.3.1 Parts of Speech Modifications

The simplest set of modifications introduced in this research is to scale the Influence

of an individual term according to its part of speech. Influence values for this suite of

modifications are set after training the modifications on the Cranfield corpus until a

local maximum mean average precision value is reached. Since it is unknown whether

or not the Influence value should be greater than one or less than one for a particular

part of speech, each part of speech is paired with two modifications. The first modi-

fication has an Influence value that is greater than one and the second modification

has an Influence value that is less than one. These two sets of modifications are

40

categorized as “Boost Up” and “Boost Down” respectively. Table 4.1 summarizes all

of the part of speech modifications.

Category Affects Parameters Summary

Boost Up Nouns I > 1 Nouns have higher Influence

Boost Up Adjectives I > 1 Adjectives have higher Influence

Boost Up Verbs I > 1 Verbs have higher Influence

Boost Up Adverbs I > 1 Adverbs have higher Influence

Boost Down Nouns I < 1 Nouns have lower Influence

Boost Down Adjectives I < 1 Adjectives have lower Influence

Boost Down Verbs I < 1 Verbs have lower Influence

Boost Down Adverbs I < 1 Adverbs have lower Influence

Table 4.1: Parts of speech themed modifications. I is short for Influence,
where the exact value for I is unique to each modification and determined
through training. For the Boost Up category modifications, I is set to
values greater than one and I is set to values less than one for the Boost
Down category modifications.

4.3.2 Term to Term Modifications

Refining the idea of topic modifying and topic collocating terms from [7], this thesis

assumes that pairs of terms are considered related when the first term is either an

adjective or adverb and the second term is either a noun or a verb. The idea behind

this assumption is that a modifying term, such as an adjective or adverb, contains

the most semantic meaning if found next to or near its corresponding subject. For

example, in the query “Red cars for sale,” the term “red” is semantically insignificant

if it is found in a document that does not also contain the word “car.”

Three different categories of modifications are built to evaluate pairs of seman-

tically related terms. Shown in Table 4.2 under “Modifiers”, the first two modifica-

tions exclude the score from adjective and adverb query terms unless the term that

immediately follows in the document is the query’s subject. These two modifications

41

do not require Influence values because they are simply removing the scores from

adjectives and adverbs that are not found next to their corresponding subjects.

The second set of modifications can be found under the “Bigrams” category

of Table 4.2. This set of modifications considers the possibility that completely re-

moving a term’s impact from a document’s score might have a negative consequence

on a system’s overall accuracy. Instead, the “Bigrams” category rewards a document

for containing pairs of adjacent query terms. Unlike the “Modifiers” category, the

“Bigrams” category does not exclude any term scores. The bigrams are constructed

from one of three ways: all adjacent query terms, only adjacent adjective and noun

query terms, or only adjacent adverb and verb query terms. Since the significance

of a bigram is unknown, the Influence values for bigram modifications are computed

by training the modifications on the Cranfield dataset until local maximum mean

average precision values between one and two are discovered. The boost value is then

applied to the subject.

The third set of modifications are located under the “Close Pairs” category

in Table 4.2 and are designed to boost modifiers and subjects that may not appear

directly adjacent to each other. For example, in the query “Red and blue cars for

sale,” the term “red” does not appear right next to the term “car.” However, the

term “red” still modifies the term “car.” When there exists a separation between the

modifier and the subject, Equation 4.2 is used to determine the appropriate Influence

value between the two query terms. As with the “Bigrams” category, the boost is

applied to the subject.

Influence = max (m ∗ x + (b −m), 1) (4.2)

In Equation 4.2, x is an integer value that represents the minimum distance between

a pair of query terms found within a document. The minimum value of x is equal to

42

one because if two terms are found right next to each other, the difference between

their absolute locations is equal to one. m is a negative value that represents the

rate at which the reward for two terms should diminish. Equation 4.2 does not apply

to modifiers and subjects that span across multiple sentences to avoid situations

where related query terms may appear near each other but in unrelated contexts.

For example, if the modification is searching for instances where the terms “red” and

“car” appear close to one another, the sentence “She has red hair. Her car is blue”

would not be considered by the modification. Finally, (b −m) is the y intercept for

the function. The y intercept is adjusted for the fact that when x is equal to one, the

value of the function is equal to b. For the experiments ran in this thesis, m is set to

-0.25 and (b−m) is set to two.

4.3.3 Term to Document Modifications

When scoring documents, it is not only important to gather documents that relate to

the query somewhere within the document. It is also important to gather documents

that relate to the query at the front of the document. The proposition is that if

users expect relevant information to appear at the start of documents, then a term’s

score should be positively rewarded for occurring earlier in a document. Table 4.3

contains modifications that reflect this proposition. Each modification in Table 4.3

uses Equation 4.3 to reward terms based on a term’s first occurrence in a document.

Influence =
K ∗ dlj − idxi

dlj
(4.3)

Equation 4.3 is a linear function where the variable dlj is the length of document j,

measured as the sum of all the terms in the document. idxi is the absolute index

location of term i, where the first term in the document has an idxi value of zero. K is

an integer hyper parameter which dictates the upper bound for the function. During

43

Category Affects Parameters Summary

Modifiers Adjectives I = 0 Ignore adjectives not found
next to nouns

Modifiers Adverbs I = 0 Ignore adverbs not found
next to verbs

Bigrams All I > 1 Reward a document for con-
taining any adjacent bi-
grams from the query

Bigrams Adjectives
and Nouns

I > 1 Reward a document for con-
taining adjacent adjective,
noun bigrams

Bigrams Adverbs
and Verbs

I > 1 Reward a document for
containing adjacent adverb,
verb bigrams

Close Pairs All I = max(−0.25x + 2, 1) Reward a document for con-
taining terms that are close
together

Close Pairs Adjectives
and Nouns

I = max(−0.25x + 2, 1) Reward a document for
containing adjectives and
nouns that are close to-
gether

Close Pairs Adverbs
and Verbs

I = max(−0.25x + 2, 1) Reward a document for con-
taining adverbs and verbs
that are close together

Table 4.2: Term to term themed modifications. I is short for Influence
and is either a constant value or the result of a function. For the Modifiers
category, I is set to zero because a term’s influence is ignored if the ad-
jective/adverb is not found directly adjacent to its corresponding subject.
For the Bigrams category, I is a unique, constant value greater than zero,
which is determined through training. For the Close Pairs category, I is
the result of a distance function that measures the separation between two
query terms.

44

experiments, K is heuristically set to two because terms at the front of a document

might be twice as important as terms that appear at the end of a document. Notice

that the function never penalizes for a term’s position. At the very worst case, a

term’s score is unmodified if it is located at the very end of a document.

Category Affects Parameters Summary

Is Early All I =
2×dlj−idxi

dlj
Rewards terms that appear
early in a document

Is Early Nouns I =
2×dlj−idxi

dlj
Rewards nouns that appear
early in a document

Is Early Adjectives I =
2×dlj−idxi

dlj
Rewards adjectives that appear
early in a document

Is Early Verbs I =
2×dlj−idxi

dlj
Rewards verbs that appear early
in a document

Is Early Adverbs I =
2×dlj−idxi

dlj
Rewards adverbs that appear
early in a document

Table 4.3: Term to document themed modifications. I is short for
Influence and is set to a distance function that measures the distance
between the start of a document and the current location of a term within
that document.

4.3.4 Query Expansion Modifications

This research explores global query expansion methods so that the resulting model

can be portable to any corpus. Three methods for query expansion are implemented,

the first uses the WordNet API, the second uses a graph generated through WordNet,

and the third uses word embeddings generated from Word2Vec.

The first method for query expansion uses the APIs exposed by WordNet.

WordNet is a project by Princeton University that organizes the semantic relation-

ships between English terms into cognitive synonyms [27]. Using the APIs is non-

trivial because words may have multiple definitions and parts of speech. In order

to look up the correct word in WordNet, the Lesk algorithm [22] is implemented to

perform word sense disambiguation. For example, given the query from the Cranfield

45

{CorpusName : {QueryID : {QueryTerm : [ExpansionTerms]}}}

Figure 4.3: JSON data structure format for accessing query expansion
terms at runtime.

dataset with ID of one, “What chemical kinetic system is applicable to hypersonic

aerodynamic problems,” the Lesk algorithm determines that “aerodynamic” can be

expanded to the terms [“streamlined”, “flowing”, “sleek”] and that “problems” can be

expanded to the term [“trouble”]. To help limit runtime computation in experiments,

query expansion terms are precomputed for each corpus and stored in a large JSON

object that is loaded at runtime. The structure of this JSON object is described in

Figure 4.3. To get the expansion terms for “aerodynamic” in the previous query, the

JSON object is indexed as follows: jsonObject[“Cranfield”][1][“aerodynamic”].

With a logical guess of the proper definition and part of speech of a term,

cognitive synonyms can then be extracted from WordNet. Unfortunately, WordNet

does not provide the strength of similarity between a term and its cognitive synonyms,

so we set the Influence value for all WordNet API expansion terms to 0.9. The

assumption is that expansion terms have a slightly lower probability of being relevant

than the original query term, but still maintain a high Influence value because they are

cognitive synonyms. With the Influence value set, a query term’s score is computed

as the sum of the term’s original Okapi BM25 score, plus a collection of boost values

for each expansion term. In order to generate the boost values for each expansion

term, Equation 4.1 is modified so that the OkapiScore variable is the score generated

by Okapi BM25 applied to each expansion term. Table 4.4 provides a summary of

the WordNet API modifications. All three query expansion categories will contain

modifications that not only target all available query terms, but will also target nouns,

verbs, adjectives, adverbs, low inverse document frequency terms, and high inverse

document frequency terms. Both low and high inverse document frequency terms are

46

expanded in separate categories in order to determine if a performance increase will

consistently occur for one of the two categories.

Category Affects Parameters Summary

WordNet API All I = 0.9 Expand all query terms

WordNet API Nouns I = 0.9 Expand query terms that are
nouns

WordNet API Verb I = 0.9 Expand query terms that are
verbs

WordNet API Adjectives I = 0.9 Expand query terms that are
adjectives

WordNet API Adverbs I = 0.9 Expand query terms that are
adverbs

WordNet API Low IDF I = 0.9 Expand query terms that
score a low inverse document
frequency value

WordNet API High IDF I = 0.9 Expand query terms that
score a high inverse document
frequency value

Table 4.4: WordNet API modifications for the query expansion theme.
IDF is short for Inverse Document Frequency. I is short for Influence.

Although WordNet does not quantify the similarity between terms, recent

research shows that similarity scores can be calculated if the WordNet corpus is ar-

ranged in a probability graph [43]. The directed graph stores data about the strength

of the relationship between words, expressed as decimal numbers, and is created using

probability theory that corresponds to a simplified version of a Bayesian network [32].

A node in the graph is created for every word form1 and every sense in the WordNet

corpus. The weight of an edge is the approximation of the probability that a user is

interested in the concept that is described by the destination node of the edge given

that they are interested in the concept that is described by the source node.

Semantically similar terms can then be discovered from the probability graph

by computing random walks from the node that represents the unexpanded query

1WordNet uses the term word form to refer to both the words and the phrases in the corpus

47

term. A random walk is performed by first selecting all the unmarked outgoing edges

from the unexpanded term’s node. The weights are then normalized so that their

sum is equal to one. From here, the weights are ordered in a discrete probability

distribution and a random number is generated to determine which edge is to be

selected. For example, suppose a node has three outgoing edges whose weights have

already been normalized to one: {e1 = 0.5, e2 = 0.3, e3 = 0.2} then the set of edges

will be sorted on a domain from zero to one such that e1 ∈ [0, 0.5], e2 ∈ (0.5, 0.8],

and e3 ∈ (0.8, 1]. If a random number, say r = 0.65, is generated, then edge e2 will

be selected because 0.5 < r < 0.8. The selected edge is then used to traverse to the

new node and the outgoing edge pointing from the new node to the original node

is marked so that the algorithm does not revisit the source node. The current node

is then marked as visited and a frequency dictionary that maps node names to the

number of times this node has been visited is updated. This process is repeated once

more to reach a depth of two.

The nodes that are traversed the most often after running the random walk

algorithm 1,000 times on the unexpanded term’s node are the semantically similar

terms. The algorithm is ran 1,000 times in order to generate enough sample data

to construct a proper probability distribution. At a high level, the similarity score

between the unexpanded term and an expansion term is calculated as the proportion

of times the expansion term’s node was visited after 1,000 random walks. At a lower

level, the frequency dictionary is used in the following way to calculate the similarity

score between the original term and each key in the map. First, all multi word

senses are filtered out. Then the values in the frequency dictionary are summed

together (this sum will be less than iterations×depth because some senses have been

removed). Next, this quantity is then used to normalize the map’s values so that the

sum is equal to one. Then the keys to the frequency dictionary are stemmed using

a Porter Stemmer and a descending list of (term, similarity score) pairs is returned.

48

For example, if the algorithm runs 1,000 times for a depth of two and multi-term

senses were visited 500 times, then a single-term sense that is visited 90 times will

have a similarity score of 90
(1000∗2)−500 = 0.06, or in other terms, this word sense is 6%

similar to the original term. Since nodes in the probability graph can have a high

branching factor, a minimum acceptable similarity score between the query term and

the expanded terms is heuristically set in order to avoid query drift.

The similarity score calculated in the above algorithm represents the probabil-

ity that a user is interested in a particular term, given the original query term. This

score is then used as the expansion term’s Influence value when calculating the set of

boosts to be applied to the original query term. Table 4.5 summarizes the WordNet

Graph query expansion modifications. Notice that the modifications target various

parts of speech and high and low inverse document frequency terms.

Category Affects Parameters Summary

WordNet Graph All I =RWSS Expand all query terms

WordNet Graph Nouns I = RWSS Expand query terms that are
nouns

WordNet Graph Verb I = RWSS Expand query terms that are
verbs

WordNet Graph Adjectives I = RWSS Expand query terms that are
adjectives

WordNet Graph Adverbs I = RWSS Expand query terms that are
adverbs

WordNet Graph Low IDF I = RWSS Expand query terms that
score a low inverse document
frequency value

WordNet Graph High IDF I = RWSS Expand query terms that
score a high inverse document
frequency value

Table 4.5: WordNet probability graph modifications for the query expan-
sion theme. RWSS is short for Random Walk Similarity Score. I is short
for Influence and takes on the value from the result of the Random Walk
Similarity Score algorithm described in Section 4.3.4.

49

The last query expansion category that is implemented uses English word

vectors generated using the Word2Vec algorithm [24, 25] described in Section 2.4.2.

The vectors are 300 dimensions large and were generated from the Google News

corpus2, which is a large database of text containing three billion running words

and about three million unique words. The main advantage to using word vectors for

query expansion is that the similarity between any two word vectors can be computed

using the cosine similarity function, as described in Equation 2.6. The resulting cosine

similarity score is then used as the Influence value.

In order to find the top similar word vectors for a given term, the cosine

similarity is computed between the query term and all other word vectors. Since

the binary file containing all the word vectors is too large to hold in memory for the

machine running all the experiments (3.64 gigabytes), the python gensim3 library is

used to only load the top one million word vectors. Although this dramatically reduces

the number of word vectors used in experiments, calculating the similarity between

a single word and a million other word vectors is a time consuming procedure. As

a result, query expansion terms are computed ahead of time and the highest scoring

terms and their cosine similarity scores are stored in a JSON object, which is loaded

during runtime. To prevent query drift, a lower bound similarity score of 0.5 is

heuristically set so that expansion terms that have a lower similarity score than 0.5

are ignored. Unlike the JSON structure presented in Figure 4.3, the structure of the

Word2Vec JSON is simply a mapping from a query term to a list of related term-

score pairs. The simplified structure of this JSON object is due to Word2Vec’s main

disadvantage. Unlike the expansion terms derived from the WordNet API category,

Word2Vec expansion terms for a particular query term are the same no matter the

context in which the term appears in the query because word vectors are agnostic

2GoogleNews corpus: https://github.com/mmihaltz/word2vec-GoogleNews-vectors

3The gensim library is an open source vector space modeling and topic modeling toolkit.

50

to queries. A summary of the Word2Vec modifications can be found in Table 4.6.

Table 4.6 has a similar structure to the WordNet API and WordNet Graph tables

with respect to the terms affected.

Category Affects Parameters Summary

Word2Vec All I = CSS Expand all query terms

Word2Vec Nouns I = CSS Expand query terms that are
nouns

Word2Vec Verb I = CSS Expand query terms that are
verbs

Word2Vec Adjectives I = CSS Expand query terms that are
adjectives

Word2Vec Adverbs I = CSS Expand query terms that are
adverbs

Word2Vec Low IDF I = CSS Expand query terms that
score a low inverse document
frequency value

Word2Vec High IDF I = CSS Expand query terms that
score a high inverse document
frequency value

Table 4.6: Word2Vec modifications for the query expansion theme. CSS
is short for Cosine Similarity Score. I is short for Influence and takes on
the value resulting from Equation 2.6, applied to the Word2Vec vectors.

51

Chapter 5

EXPERIMENTAL SETUP

The main goal of this chapter is to explore the measures, benchmarks, hypotheses,

and experimental procedures. The measures section lays the mathematical founda-

tion for judging the accuracy of all the modifications and document retrieval systems.

Afterwards, the publicly available benchmarks that were used to validate and test the

modifications will then be presented. Next the hypotheses that this research investi-

gates will be state. Lastly, the experimental procedure for applying and combining

modifications will be described in detail.

5.1 Measures

The validation metrics that are used for measuring modification improvements on

individual queries are precision and recall, which are explained here. For the following

equations, let s be the number of relevant documents in a document collection D for

query q, i be the number of documents that the system returns, and si be the number

of relevant documents the system returns after returning i number of documents.

Thus, precision is the fraction of how many relevant documents were returned over

how many documents the systems returned [23], as shown in Equation 5.1. Similarly,

recall is the fraction of how many relevant documents the system returned over how

many relevant documents are available to be returned [23], as shown in Equation 5.2.

p(i) =
si
i

(5.1)

r(i) =
si
s

(5.2)

52

The validation metrics that are used for measuring modification improvements

on a set of queries are mean average precision and weighted average recall. Mean

average precision (MAP) is a measurement of document ordering. The mean average

precision for a single query is the sum of precisions for each recall level l ∈ L at

which a relevant document is returned. In other words, the precision is calculated

once every time a known relevant document is returned. This sum is then divided by

the number of relevant documents Rq for the query q. To obtain the average MAP

score over a set of queries, all MAP scores for each query are summed together and

then the total is divided by the total number of queries, |Q|. The average MAP score

over a set of queries and a corpus is shown in Equation 5.3.

MAP =
1

|Q |
∑
q∈Q

1

|Rq |
∑
l∈L

p(l) (5.3)

Weighted average recall can be viewed as the average number of relevant doc-

uments the system returns for a query q ∈ Q within a given number of returned

documents i. Each query is weighted proportionally to its total number of relevant

documents in the document collection D. Let the total number of relevant documents

over all queries be |R|. Equation 5.4 is the weighted average recall formula, where

the sum of all the recall contributions adds to one, as shown in Equation 5.5.

ravg(i) =
∑
q∈Q

r(i)× s

|R|
(5.4)

∑
q∈Q

s

|R|
= 1. (5.5)

The performance of document retrieval systems can also be compared graph-

ically using a precision-recall curve [23]. The graph’s x-axis is the average recall and

the graph’s y-axis is the average precision. The curve is commonly plotted against

11 recall levels rl = 0%, 10%, 20%, ..., 100%, where a percentage indicates that X%

53

of relevant documents have been returned. Since each recall level may not be exactly

obtained, interpolation is performed by computing the precision at at each recall level

by computing the maximum precision value between the current recall level and all

the following recall levels (Equation 5.6).

p(rl) = maxrl≤r≤r100%p(r) (5.6)

Comparing two document retrieval systems using the metrics listed in this section is

straightforward. The system that scores the highest metric values and who’s precision-

recall curve has the highest y-values for each recall level is the more accurate system.

5.2 Benchmarks

During validation, Okapi BM25 modifications were ran against four publicly available

information retrieval benchmarks1: Cranfield, Adi, Medline, and Time. Each bench-

mark contains a set of documents, a set of queries, and a list of relevance scores for

all query-document pairs. During testing, the best modification is ran against the

largest publicly available information retrieval benchmark in the group, Lisa. which

stands for Library and Information Science Abstracts. It is important to emphasize

that no document retrieval systems were ran against Lisa until all the validation was

completed. Table 5.1 holds document meta data for each benchmark in the valida-

tion and test sets. Cranfield and Adi benchmarks contain research paper abstracts on

aerospace and information management and Medline and Time benchmarks contain

articles written by a medical journal and the magazine named Time. An important

feature to notice is that the average number of terms inside each document is low,

less than 100 words, with the exception of the Time benchmark. Since there are

very few words inside each document, there are fewer opportunities for there to be

1Available at http://ir.dcs.gla.ac.uk/resources/test collections

54

an exact matching between query terms and document terms. This means that the

benchmarks are very challenging. In total, there are just under 3,000 documents in

the validation set. Lisa, the test benchmark, contains 5,872 documents with an av-

erage number of 86.3 terms per document. As with Cranfield and Medline, there are

a small number of terms per document, which indicates that Lisa is a challenging

benchmark.

Benchmarks Theme Documents Average Number of
Document Terms

Cranfield Abstracts 1,400 86.6

Adi Abstracts 82 30.9

Medline Articles 1,033 90.3

Time Articles 423 346.3

Lisa Abstracts 5,872 86.3

Table 5.1: Document metadata for each benchmark.

Table 5.2 provides document parts of speech meta data for each benchmark.

The data was gathered using the python nltk library, which sometimes makes mis-

takes. So these numbers serve as an approximation and not the ground truth. From

these approximations, it appears that benchmarks are nearly 50% composed of nouns,

20% composed of verbs, 20% composed of adjectives, 5% composed of adverbs, and

5% composed of other miscellaneous parts of speech.

Benchmarks Nouns Verbs Adjectives Adverbs Other

Cranfield 46.8 16.85 17.64 2.59 2.69

Adi 17.96 6.05 5.26 0.66 1

Medline 48.02 14.83 20.64 3 3.79

Time 169.19 72.8 64.6 18.23 21.45

Lisa 30.36 9.38 10.63 1.00 1.33

Table 5.2: Document parts of speech metadata for each benchmark.

Table 5.3 contains query meta data for each benchmark. An important feature

to notice about the set of queries in the validation set is that the average number

55

of related documents per query is relatively low, with the exception of the Medline

benchmark. Since there are only a few related documents per query, small changes

in the mean average precision are expected because there are fewer opportunities to

return a related document. Another feature to notice is that the average length of

each query is large, around ten terms after stop word removal. As a comparison, the

average length of a query submitted to a web search engine is around two to three

terms [4]. Cranfield is used as the training set for a handful of modifications that

require trained parameters because Cranfield contains the most queries. In total,

there are 370 queries in the validation set. In the testing set, Lisa contains an average

of 10.8 related documents per query and each query contains around 34.7 terms after

stop word removal.

Benchmarks Queries Average Number of
Related Documents

Average Number of
Query Terms

Cranfield 222 5.6 10.6

Adi 35 4.9 9.1

Medline 30 23.2 12.9

Time 83 3.9 9.5

Lisa 35 10.8 34.7

Table 5.3: Query metadata for each benchmark.

Table 5.4 provides query parts of speech meta data for each benchmark. Just

as how Table 5.2 is an approximation of the parts of speech identified using the

nltk library, as is this table. From the approximations in Table 5.4, it appears that

queries are nearly 60% composed of nouns, 15% composed of verbs, 20% composed

of adjectives, 2.5% composed of adverbs, and 2.5% composed of other miscellaneous

parts of speech.

56

Benchmarks Nouns Verbs Adjectives Adverbs Other

Cranfield 5.78 1.66 2.75 0.27 0.2

Adi 5.86 1.4 1.29 0.26 0.26

Medline 9 1.17 2.2 0.4 0.13

Time 5.71 1.31 1.88 0.11 0.45

Lisa 20.31 5.40 7.54 0.86 0.89

Table 5.4: Query parts of speech metadata for each benchmark.

5.3 Hypotheses

This thesis hypothesizes that Okapi BM25’s performance can be improved if it is

modified to take advantage of semantic information located in documents and queries.

This hypothesis is explored by designing four themes, where each theme is further

divided into a suite of modifications. If many of the modifications corresponding to

a specific theme perform well on the validation benchmarks, then the theme is con-

sidered to contain valuable semantic information. If the final model incorporates one

or more modifications that span across different themes and outperforms the original

Okapi BM25 during testing, then this will be considered as evidence in support of

the hypothesis. The assumptions for each theme is as follows:

1. Okapi BM25 can be improved if terms are weighted differently depending on

their part of speech.

2. Okapi BM25 can be improved if terms are weighted differently according to

their proximity to other terms.

3. Okapi BM25 can be improved if terms are weighted differently according to

their initial location in a document.

4. Okapi BM25 can be improved if query terms are expanded.

57

5.4 Experimental Procedure

At a high level, the experiment is split up into one training round, three validation

rounds, and one testing round. During the training round, hyper parameter values for

relevant modifications are discovered. Modifications that require training for hyper

parameters include the parts of speech themed modifications and the term to term

themed modifications for the Bigrams category. Hyper parameters are chosen by

slowly incrementing or decrementing an initial value with a small delta value of 0.1.

The resulting value will either be between 0.1 and 0.9 or 1.1 and 3.0, which depends

on the specific modification. During training, the modifications are ran against the

Cranfield corpus and the hyper parameter value that results in the greatest mean

average precision is used for the rest of the experiments. Hyper parameters are not

recalculated if multiple modifications are combined. For example, if a modification is

set to boost nouns and bigrams, the hyper parameters used in both of these modifi-

cations are the values discovered during their isolated training periods.

Once all modification hyper parameters are discovered, the first validation

round starts. During the first validation round, all 41 individual modifications are

ran independently on the four validation corpora: Cranfield, Adi, Medline, and Time.

The modifications that result in a lower mean average precision score than the original

Okapi BM25 model on at least two datasets will be eliminated. Those modifications

that result in a higher mean average precision scores than the original Okapi BM25

model will move on to validation rounds two and three.

The second validation round combines the successful, intra-themed modifica-

tions from the first validation round. In other words, validation round two combines

modifications within the same theme. An example modification that can be tested in

this round could be a query expansion modification that uses WordNet API, Word-

Net Graph, and Word2Vec. Once all intra-themed modifications are created, they are

58

scored using mean average precision in the same way as validation round one. This is

done by running each modifications against Cranfield, Adi, Medline, and Time, and

then eliminating modifications that do not improve the Okapi BM25 model in at least

half of the benchmarks.

The third validation round combines successful, inter-themed modifications

from rounds one and two. In other words, round three combines modifications across

separate themes. An example modification might use query expansion on WordNet

API, WordNet Graph, and Word2Vec, boost terms based on their proximity within a

document, boost terms based on their part of speech, and boost query bigrams that

appear within a document. These modifications are then validated against Cranfield,

Adi, Medline, and Time using the same procedure as validation rounds one and two.

Once all three validation rounds are completed, a single modification across all

three rounds must be selected for testing. The best performing modification is taken

to be the largest sum of mean average precision scores across Cranfield, Adi, Medline,

and Time subtracted by the sum of mean average precision scores accumulated by

the unmodified Okapi BM25 model. The best performing modification will then go

through a testing round where it will be ran against the Lisa benchmark and be

compared against other document retrieval systems.

5.5 Evaluation

It is difficult to compare our new model to systems that were presented in Chapter 3

because these systems are not publicly available. Additionally, it would be too much

work to replicate many of the solutions presented in these papers. As a result, we

establish a baseline comparison to publicly available industry standard search engines

including Lucene2 and Solr3. These Apache search engines are extremely popular and

2http://lucene.apache.org/

3http://lucene.apache.org/solr/

59

power the search platforms for many established companies such as Netflix, EBay,

Instagram, Disney, Adobe, and DuckDuckGo. In addition to comparing our new

model to the out-of-the-box configurations for Lucene and Solr, we will also be com-

paring our new model to our own custom built Okapi BM25 and cosine similarity

models, both of which will use the same preprocessing techniques used by our new

model. All the models will be ran against the Lisa benchmark and be comparing

using their resulting mean average precision scores. The model that results in the

highest mean average precision will be declared as the best model from the group and

will be presented as the result of the study.

60

Chapter 6

RESULTS

This chapter details the results after conducting the experimental procedure as de-

scribed in Section 5.4. The results are divided into four sections. Sections 6.1, 6.2,

and 6.3 list and analyze the results from validation rounds one, two, and three. Then

Section 6.4 selects the best performing modification and tests it against the Lisa

benchmark. For all the following tables, ∆MAP% stands for the percentage change

in mean average precision between the modification and Okapi BM25.

6.1 Validation Round One

Validation round one contains 41 modifications where 14 outperformed Okapi BM25

on Cranfield, 14 outperformed on Adi, 12 outperformed on Medline, and 12 out-

performed on Time. Of these 41 modifications, 13 of them performed better than

Okapi BM25 on at least half of the validation benchmarks, 8 performed better on

at least three validation benchmarks, and 1 performed better on all of the validation

benchmarks.

Table 6.1 shows the results for modifications that involve query expansions.

From the table, it is easy to see that most percentage differences in mean average

precision are negligible. In fact, no query expansion modification improved the mean

average precision score on at least two benchmarks, except for the Word2Vec-noun

modification. However, the benefits of the Word2Vec-noun modification are out-

weighed by the negative impact it had on the Adi and Medline benchmarks. What

is interesting about these results is that the only time a modification actually im-

proved over Okapi BM25 in at least one benchmark and across WordNet Graph,

WordNet APIs, and Word2Vec was when the terms affected include either nouns or

bottom inverse document frequency terms (excluding the “All” modification since

61

Category Terms Affected ∆MAP%
Cranfield

∆MAP%
Adi

∆MAP%
Medline

∆MAP%
Time

WordNet Graph All -0.12% 0.41% -0.39% -0.23%
WordNet Graph Noun -0.07% 0.47% -0.01% -0.08%
WordNet Graph Verb 0.00% 0.00% 0.07% -0.16%
WordNet Graph Adj -0.01% -0.02% -0.23% -0.16%
WordNet Graph Adv 0.00% 0.00% 0.02% 0.00%
WordNet Graph Bottom IDF 0.02% 0.49% -0.03% 0.00%
WordNet Graph Top IDF 0.12% -0.11% -0.11% -0.16%
WordNet APIs All 0.00% 0.02% 0.19% -0.50%
WordNet APIs Noun 0.05% 0.00% 0.19% -0.50%
WordNet APIs Verb 0.00% 0.02% 0.00% -0.01%
WordNet APIs Adj 0.00% 0.00% 0.00% -0.01%
WordNet APIs Adv 0.00% 0.00% 0.00% -0.01%
WordNet APIs Bottom IDF -0.01% -0.12% 0.39% -0.45%
WordNet APIs Top IDF 0.05% 0.00% -0.03% -0.06%

Word2Vec All -0.50% -1.34% -1.55% 0.16%
Word2Vec Noun 0.17% -1.49% -2.21% 0.23%
Word2Vec Verb -0.09% 0.00% 0.38% -0.08%
Word2Vec Adj -0.59% -0.63% 0.10% 0.00%
Word2Vec Adv 0.00% 0.00% 0.00% 0.00%
Word2Vec Bottom IDF 0.09% -1.11% -0.40% 0.31%
Word2Vec Top IDF -0.59% -1.15% -0.83% -0.23%

Table 6.1: Expansion theme results. The values represent the percentage
change in mean average precision between Okapi BM25 and the modifica-
tions for query expansions.

62

this modification covers nouns and bottom IDF). The WordNet Graph modification

that targets low inverse document frequency terms has a net positive affect on the

system’s accuracy because it improves the system’s score for the Adi benchmark and

hardly changes the results for the other benchmarks. However, since most of these

modifications have a negligible effect on most of the datasets, it is worth investi-

gating ways of combining these modifications in round 2 in order to produce more

pronounced results.

Upon further analysis, query expansion has minor effects on a model’s mean

average precision because there were only a few expansion terms discovered for each

query. To support this claim, the average number of expansion terms were calculated

for each category on each benchmark. For simplicity in later calculations, assume that

the average number of query terms across all four validation benchmarks is equal to

ten (the actual average is 10.525). Individual averages for each benchmark can be

found in Table 5.3.

Benchmark Terms Found for
Expansion

Total Expansion
Terms

Average Expansion
Terms Per Query

Cranfield 1277 2416 1.89
Adi 160 298 1.86

Medline 164 302 1.84
Time 367 725 1.97

Table 6.2: WordNet API query expansion data.

Benchmark Terms Found for
Expansion

Total Expansion
Terms

Average Expansion
Terms Per Query

Cranfield 555 835 1.50
Adi 179 142 0.79

Medline 70 28 0.4
Time 195 45 0.23

Table 6.3: WordNet Graph query expansion data. Expansion terms were
calculated with a minimum similarity score of 0.02.

63

Benchmark Terms Found for
Expansion

Total Expansion
Terms

Average Expansion
Terms Per Query

Cranfield 2,644 10,345 3.91
Adi 337 1,503 4.45

Medline 365 1362 3.73
Time 825 3,678 4.45

Table 6.4: Word2Vec query expansion data. Expansion terms were calcu-
lated with a minimum similarity score of 0.5.

For WordNet API modifications, it turns out that there are about two expan-

sion terms being added for each query, as shown in Table 6.2. Adding two terms to

each query equates to an approximate 20% expansion of terms for each query. For

WordNet Graph modifications, there are far fewer terms being expanded, as seen in

Table 6.3. Across all four validation datasets, only about 0.7 expansion terms are

added to each query, which only equates to an approximate 7% expansion of terms

for each query. In Table 6.3, the total number of expansion terms are actually lower

than the number of terms found for expansion because many of the expansion terms

did not meet the minimum similarity threshold. Lastly, Word2Vec modifications dis-

covers the most number of expansion terms per query, as shown in Table 6.4. On

average, Word2Vec adds around four terms per query, which equates to an approxi-

mate 40% expansion of terms for each query. Although these percentages may sound

high when compared to the average length of each query, the number of added ex-

panded terms is evidently not high enough to significantly affect the scores of each

modification because we observe small changes in mean average precision. In reality,

there is a very low probability that an expanded query term will actually appear

within a document because the documents do not contain many words. Therefor,

the majority of expansion terms have no affect on a document’s score. So, validation

round two will increase the probability of discovering an expansion term within a

document by enabling multiple query expansion modifications.

64

The next theme, labeled Term-Document, contains the modifications that re-

ward terms that appear closer to the start of a document, as shown in Table 6.5.

Each Term-Document modification successfully increases the mean average precision

for at least three of the benchmarks. The modifications always increased the accu-

racy against the Cranfield and the Medline benchmarks and increased the accuracy

against the Adi and the Time benchmarks in three out of five cases. The modifica-

tion that targeted only adjectives consistently increased the model’s accuracy across

all benchmarks and performed surprisingly well on the Time benchmark, despite the

fact that the documents in the Time dataset are composed of the same proportion of

adjectives as the other validation corpora (around 20%). On average, modifications

that targeted parts of speech that compose a larger majority of a corpus gave rise to

larger swings in the accuracy of the system, and vice versa. For example, adverbs

make up a small minority of the terms inside a document, so the observed changes

for the modification that targeted adverbs are small. On the other hand, the mod-

ification that targets all parts of speech resulted in the largest swings in accuracy

for each benchmark (with the exception of the adjective modification on the Time

benchmark).

Category Terms Affected ∆MAP%
Cranfield

∆MAP%
Adi

∆MAP%
Medline

∆MAP%
Time

Is Early All 3.18% 1.80% 3.21% -4.20%
Is Early Noun 2.73% 0.70% 2.86% -3.81%
Is Early Adj 1.48% 0.16% 0.73% 6.14%
Is Early Verb 0.65% -0.60% 0.15% 1.17%
Is Early Adv 0.71% -0.16% 0.01% 0.31%

Table 6.5: Term - Document theme results. The values represent the
percentage change in mean average precision between Okapi BM25 and
the modifications for the position of a term within a document.

Since the mean average precision increased in the vast majority of cases, there

appears to be a positive correlation between the relevance of a document and how

early the query terms appear in that document. Additionally, because all modifica-

65

Category Terms Affected ∆MAP%
Cranfield

∆MAP%
Adi

∆MAP%
Medline

∆MAP%
Time

Boost Up Noun 2.57% 0.25% -0.70% 1.48%
Boost Up Adj 1.20% -2.26% -0.47% -1.79%
Boost Up Verb -0.82% 1.05% 0.47% -1.71%
Boost Up Adv -0.02% -1.13% -0.88% 0.54%

Boost Down Noun -1.10% -3.46% -0.33% -2.56%
Boost Down Adj -0.12% 1.13% 0.41% 0.23%
Boost Down Verb 0.57% 1.77% -1.29% -0.93%
Boost Down Adv 0.35% 0.74% 0.12% -0.70%

Table 6.6: Part of Speech theme results. The values represent the per-
centage change in mean average precision between Okapi BM25 and the
modifications for a single term’s part of speech.

tions positively increased the mean average precision on at least half of the datasets,

validation round two will explore combinations of Term-Document modifications in

order to potentially produce an even better system.

The following theme, labeled Part of Speech, is split into two categories. The

first category, Boost Up, contains Influence scores that are greater than one and the

second category, Boost Down, contains Influence scores that are less than one. A

trend that can be observed in Table 6.6 is that the scores of the modifications that

target the same part of speech, but are located in opposite categories, are somewhat

inversely related. For example, the Boost Up and Boost Down modifications that

affect only adjectives are good examples of this relationship. Notice in Table 6.6

that when the Boost Up adjective modification decreases the mean average precision

score for a particular benchmark, the Boost Down adjective modification increases the

system’s accuracy. The same trend is observed by the adverb modifications and the

noun modifications, with the exception of the results from the Medline benchmark.

Some of the modifications from Table 6.6 performed better when the Influence

of a particular part of speech was decreased, such as the Boost Down adjective and

adverb modifications. Conversely, other modifications performed better when the

Influence of a particular part of speech was increased, such as the Boost Up noun

66

Category Terms Affected ∆MAP%
Cranfield

∆MAP%
Adi

∆MAP%
Medline

∆MAP%
Time

Modifier and Subject Adj -15.22% -8.91% -6.73% 7.30%
Modifier and Subject Adv -0.11% 1.66% 0.09% -1.09%

Bigrams All 0.93% -0.70% 0.21% -2.10%
Bigrams Adj and Noun 0.43% 0.26% -0.01% -0.85%
Bigrams Adv and Verb 0.21% 0.00% 0.00% 0.00%

Close Pairs All -2.79% -2.37% -0.10% -6.76%
Close Pairs Adj and Noun 0.08% 1.33% -0.47% 1.01%
Close Pairs Adv and Verb 0.08% 0.01% 0.09% 1.01%

Table 6.7: Term - Term theme results. The values represent the per-
centage change in mean average precision between Okapi BM25 and the
modifications for the proximity between a pair of terms.

modifications. Validation round two will explore different part of speech ratios to

determine if there exists a combination that produces better results.

The final theme, labeled Term-Term, places a strong emphasis on the distances

between terms and the results can be found in Table 6.7. There are three categories:

Modifier and Subject, Bigrams, and Close Pairs. In all three categories, the change

in mean average precision is small when the modification specifically targets adverbs

because adverbs consist of a small proportion of each benchmark. For modifications

that target more common parts of speeches, the changes in performance are larger,

but in many cases, still relatively small. This is most likely because the probability

of two terms with specific parts of speech appearing chronologically near each other

in a relatively small document is a rare event. As a result, there may not be many

opportunities for a Term-Term modification to change the system’s behavior.

The first category in Table 6.7, Modifier and Subject, does not include the

score from the modifying term unless the corresponding subject appears immediately

afterwards. As evident in Table 6.7, removing a modifier altogether resulted in very

negative scores, with the exception of the Time benchmark that actually saw an

increase in accuracy for the adjective modification. Rather than removing an adjective

or adverb for not appearing next to its corresponding subject, the Bigram category

67

rewards a document for containing pairs of adjacent terms constructed from the query.

Although the bigram modifications performed better than the Modifier and Subject

modifications, none of the three Bigram modifications improved the mean average

precision score on more than two benchmarks. The last category, Close Pairs, linearly

rewards a document for containing a higher density of adjacent query terms. As

evident from the modification that targets all parts of speech, rewarding a document

for containing a high density of all adjacent query terms actually lowers the accuracy

of the system across all benchmarks. This may be because the modification is placing

too much emphasis on pairs of term which do not represent the main subject of the

query. For example, in this query from the Time dataset, “India fears of another

communist China invasion,” the emphasis of the query should be placed between the

terms “India” and “China” because these terms are the two subjects of the query.

But the modification may disproportionately place emphasis on the terms “fears” and

“communist,” which can result in unrelated articles. On the other hand, focusing

on specific terms, such as adjectives and nouns, appear to have a positive affect

on the system’s accuracy. From all the Term-Term results, it is unclear if simply

measuring the closeness between terms will result in a more accurate system. In half

the cases, the system’s performance drops and in the other half of cases, the system’s

performance slightly increases. These results contrast the results from related research

in Sections 3.1.1 and 3.1.3, where researchers observed a consistent increase in their

system’s performance when proximity measures were introduced into Okapi BM25.

6.2 Validation Round Two

Validation round two contains 20 modifications that were created by combining suc-

cessful modifications within the same theme from validation round one. Of these 20

modifications, 12 outperformed Okapi BM25 on Cranfield, 13 outperformed on Adi,

7 outperformed on Medline, and 8 outperformed on Time. Of these 20 modifications,

68

14 of them performed better than Okapi BM25 on at least half of the validation

benchmarks and 7 performed better on at least three validation benchmarks. For the

following tables, the Category column has been combined with the Terms Affected

column to specify which category affects which terms.

The first theme in validation round two combines query expansion modifi-

cations, as shown in Table 6.8. Although the query expansion modifications from

validation round one did not satisfy the criteria for moving on to validation round

two, the analysis from validation round one concluded that there were not enough

terms affected by any one expansion category to significantly affect the system’s accu-

racy. So in order to increase the total number of expanded terms, each modification in

validation round two takes advantage of all categories: WordNet Graph, the Word-

Net API’s, and Word2Vec. It is clear from looking at Table 6.8 that using query

expansion from all the globally built models results in a decrease in the system’s per-

formance. The decreases in the system’s performance is evidence against the potential

advantages of using global query expansion methods. Validation round three will not

include any multi-query expansion modifications. However, validation round three

will include the bottom inverse document frequency modification from the WordNet

Graph category from round one because this modification slightly improved the sys-

tem’s precision on the Adi benchmark and only resulted in minor changes to the other

benchmarks.

The second theme in validation round two combines modifications that boost a

term’s score proportionally to how close that term appears at the front of a document,

as shown in Table 6.9. All of the modifications improve the system’s performance on

exactly three benchmarks and decrease the system’s performance on the Time bench-

mark, with the exception of modification with ID 4. A good performing modification

is ID 4 because it has the most consistent increase in the system’s mean average

precision and the lowest decrease in precision for the benchmark that it negatively

69

ID Terms
Affected

∆MAP%
Cranfield

∆MAP%
Adi

∆MAP%
Medline

∆MAP%
Time

1 WNG:All,
WNA:All,
W2V:All

-0.67% -1.20% -1.80% -0.42%

2 WNG:BIDF,
WNA:BIDF,
W2V:BIDF

0.12% -1.09% -0.38% -0.17%

3 WNG:Noun,
WNA:Noun,
W2V:Noun

0.19% -1.20% -2.04% -0.24%

4 WNG:Noun,
WNA:Noun,
W2V:Verb

-0.11% 0.41% 0.27% -0.56%

Table 6.8: Expansion theme results. The values represent the percentage
change in mean average precision between Okapi BM25 and the modifi-
cations for query expansions across multiple categories. WNG is short
for WordNet Graph. WNA is short for WordNet API. W2V is short for
Word2Vec. BIDF is short for Bottom Inverse Document Frequency. A
colon (:) means that the category on the left hand side affects the part(s)
of speech on the right hand side.

impacted. Another modification that performed well is ID 3 because it had the least

negative impact on the Time benchmark and improvements in the other benchmarks.

Although, combining Term - Document modifications did not expose a ratio that out-

performed the very best Term - Document modifications from validation round one,

many modifications resulted in improvements on the validation benchmarks. This is

evidence in favor for measuring how early a term appears in a document as a way to

increase a system’s performance. The two best modifications from this round and the

best modification from validation round one will proceed to validation round three.

The third theme in validation round two combines modifications that either

boosts the weight of a term up or down based solely on the term’s part of speech. The

best performing modification that takes into account all parts of speech: nouns, verbs,

adjectives, and adverbs, is modification with ID 3 because it increased the system’s

performance on the most benchmarks. This particular modification positively boosts

70

ID Terms Affected ∆MAP%
Cranfield

∆MAP%
Adi

∆MAP%
Medline

∆MAP%
Time

1 Noun, Adj, Verb, Adv, 0.53% 2.51% 3.57% -5.45%
2 Noun, Verb 1.65% 0.17% 3.22% -5.11%
3 Noun, Adj 0.48% 3.31% 3.11% -4.18%
4 Verb, Adv 1.22% -0.75% 0.11% 1.93%

Table 6.9: Term - Document theme results. The values represent the
percentage change in mean average precision between Okapi BM25 and the
modifications for the position of a term within a document with respect
to the start of a document across multiple parts of speech.

the weights of nouns and adjectives while negatively boosting the weights of verbs

and adverbs. The best performing modifications that took into account two parts of

speech were modifications with ID’s 5, 6, and 7 because each modification increased

the system’s performance on at least three benchmarks. Since there were so many Part

of Speech modifications that improved Okapi BM25’s performance across validation

rounds one and two, only one modification is chosen to be used in validation round

three to decrease the number of possible modification combinations. Modification

with ID 7 is a good candidate because it resulted in relatively high increases to

precision for three of the benchmarks and only a relatively small decrease in precision

for the other benchmark. Since there were a vast number of successful Part of Speech

modifications that increased Okapi BM25’s performance, this is taken as evidence

that boosting according a term’s part of speech is an effective way to increase the

system’s performance.

The last and final theme of modifications for round 2 determines if there is

a combination of Term - Term modifications that will increase a system’s accuracy.

As evident from Table 6.11, combining the Close Proximity and Bigrams categories

resulted in an overall negative change to the system’s mean average precision. Neither

of the two modifications improved more than one validation benchmark so these

modifications will not appear in validation round three. So, the best performing

modification from the Term-Term theme across validation rounds one and two is the

71

ID Terms
Affected

∆MAP%
Cranfield

∆MAP%
Adi

∆MAP%
Medline

∆MAP%
Time

1 Noun:↑,
Adj:↑,
Verb:↑,
Adv:↓

2.91% -0.27% 0.11% -1.28%

2 Noun:↑,
Adj:↓,
Verb:↑,
Adv:↓

-1.62% -0.14% -0.41% 1.37%

3 Noun:↑,
Adj:↑,
Verb:↓,
Adv:↓

2.92% 3.09% -2.31% 0.89%

4 Noun:↑,
Adj:↓,
Verb:↓,
Adv:↓

-1.07% 2.65% -2.87% 3.35%

5 Noun:↑,
Verb:↑

1.93% -0.37% 0.05% 0.40%

6 Noun:↑,
Verb:↓

1.93% 1.54% -2.64% 2.30%

7 Noun:↑,
Adj:↑

2.95% 0.39% -0.53% 2.07%

8 Noun:↑,
Adj:↓

-0.74% 0.18% -1.15% 3.45%

9 Verb:↑,
Adv:↓

-0.62% 1.90% 0.54% -2.29%

10 Verb:↓,
Adv:↓

0.73% 2.90% -1.04% -1.39%

Table 6.10: Part of Speech theme results. The values represent the per-
centage change in mean average precision between Okapi BM25 and the
modifications for a single term’s part of speech across multiple categories.
↑ symbolizes the Boost Up category, which contains modifications with
Influence values greater than one. ↓ symbolizes the Boost Down category,
which contains modifications with Influence values less than one.

72

ID Terms Affected ∆MAP%
Cranfield

∆MAP%
Adi

∆MAP%
Medline

∆MAP%
Time

1 CP:Adj-Noun
B:All

-0.04% 1.32% -0.43% -1.29%

2 CP:Adj-Noun
B:Adj-Noun

-0.04% 1.32% -0.43% -1.29%

Table 6.11: Term - Term theme results. The values represent the per-
centage change in mean average precision between Okapi BM25 and the
modifications for the proximity between pairs of terms across multiple cat-
egories. CP is short for Close Proximity. B is short for Bigram. A colon
(:) means that the category on the left hand side affects the part(s) of
speech on the right hand side.

Close Pairs modification which boosted according to the close proximity of adjectives

and nouns.

6.3 Validation Round Three

Validation round three contains 25 modifications that combine aspect between dif-

ferent categories. From the list of modifications, 24 outperformed Okapi BM25 on

Cranfield, 22 outperformed on Adi, 7 outperformed on Medline, and 11 outperformed

on Time. In terms of overall performance, 23 outperformed Okapi BM25 on at least

half of the validation benchmarks and 16 outperformed on at least three of the vali-

dation benchmarks.

Since there are many modifications from validation rounds one and two that

improved the accuracy of Okapi BM25 on at least half of the validation benchmarks,

a subset of modifications were selected to decrease the total number of combinations.

At least one modification from each theme is included in validation round three in

order to experiment with models that take advantage of a diverse set of properties.

From the query expansion theme, the modification that expands the bottom

inverse document frequency terms from the WordNet Graph was chosen because it did

not negatively impact any validation benchmark and displayed slight improvements

73

on the Adi benchmark. Recall from Sections 6.1 and 6.2, all other expansion mod-

ifications from validation rounds one and two negatively impacted multiple datasets

and only showed marginal improvements on the datasets that were improved. From

the Term-Document theme, three different modifications are selected. The first is

chosen from round one boosts adjectives that appear towards the front of the docu-

ment. This modification is an obvious candidate for validation round three because it

increases the model’s accuracy on all four validation benchmarks. Two more modifi-

cations were selected from validation round two: the modification that boosts nouns

and adjectives (ID 3) and the modification that boosts verbs and adverbs (ID 4). The

noun - adjective modification was chosen because it displayed the highest, percentage

increase in overall performance across each validation benchmark. The verb-adverb

modification was chosen because it had the smallest negative impact on the bench-

mark that decreased in its mean average precision. From the Term-Term theme,

the modification from the Close Pairs category that measures the density of adja-

cent adjective and noun query terms from validation round one was chosen. This

modification was chosen because it displayed the highest percentage increase in the

model’s performance across Term - Term modifications that increased the model’s

performance on at least half of the validation benchmarks. Most of the other modifi-

cations within this theme performed very poorly, especially when these modifications

were combined in validation round two. Finally from the Parts of Speech theme, the

modification with ID 7 was chosen.

Table 6.12 displays the results from round three. In order to limit the size

of the graph, abbreviations are used for each modification. The query expansion

modification is aliased as QE, which stands for “Query Expansion.” The Term -

Document modification from round one is aliased as TDA, which stands for “Term

- Document for Adjectives” and the modifications from round two are aliased as

TDNA and TDVA, which stand for “Term - Document for Nouns and Adjectives”

74

and “Term - Document for Verbs and Adverbs” respectively. The Term - Term

modification is aliased as TT, which stands for “Term - Term.” Lastly, the Parts of

Speech modification is aliased as POS, which stands for “Parts of Speech.”

6.4 Selecting and Testing a Modification

Validation rounds one, two, and three exposed 87 different modifications to Okapi

BM25. The procedure to select a single modification to test is now detailed. In

the validation rounds, the percentage change in a modification’s precision from the

unmodified Okapi BM25 model is used as a general heuristic to guide the creation

of new modifications. However, in order to determine which modification improved

Okapi BM25 the most, the numerical mean average precision scores are used instead

of the percentage values. The modification which resulted in the greatest sum of the

differences between the modification’s mean average precision and the unmodified

Okapi BM25’s mean average precision across each validation benchmark is the highest

scoring modification. Equation 6.1 is the precise definition for how a score is calculated

for each modification. Allow B to be the set of validation benchmarks {Cranfield,

Adi, Medline, Time}, mod represent a modification, and MAP(m, b) be the mean

average precision value of model m applied to benchmark b.

Score(mod) =
∑
b∈B

MAP(mod , b)−
∑
b∈B

MAP(Okapi BM25 , b) (6.1)

The implication of using this procedure, as opposed to comparing the raw percentages,

is that some benchmarks will be weighted more than others. The goal is to minimize

the affect of a random ordering of documents that may had lead to a high percentage

impact for benchmarks that result in low mean average precision scores. For example,

the Time benchmark generally resulted in very low precision values for both the

unmodified and modified version of Okapi BM25. So the percent change for the Time

75

ID Modifications ∆MAP%
Cranfield

∆MAP%
Adi

∆MAP%
Medline

∆MAP%
Time

1 QE, TDA 0.71% 0.45% 0.00% 0.32%
2 QE, TDNA 0.47% 3.96% 3.12% -4.19%
3 QE, TDVA 1.19% 0.82% 0.09% 1.93%
4 QE, TT -0.02% 1.05% -0.43% -1.30%
5 QE, POS 2.85% 0.32% -0.51% 2.10%
6 TDA, TT 0.34% 1.17% -0.40% -0.96%
7 TDNA, TT 0.96% 4.24% 3.08% -2.74%
8 TDVA, TT 0.36% 0.58% -0.23% -1.48%
9 TDVA, POS 3.61% -0.63% -0.26% 1.86%
10 TDA, POS 3.09% 0.36% -0.30% 2.22%
11 TDNA, POS 2.60% 4.08% 1.47% -0.41%
12 TT, POS 1.55% 1.04% -0.40% 0.11%
13 QE, TDA, TT 0.36% 1.02% -0.42% 0.00%
14 QE, TDNA, TT 0.60% 4.74% 3.05% -2.82%
15 QE, TDVA, TT 0.34% 1.39% -0.25% -1.47%
16 QE, TT, POS 1.56% 1.03% -0.38% 0.14%
17 QE, TDA, POS 3.00% 0.29% -0.29% 2.25%
18 QE, TDNA, POS 2.60% 4.69% 1.37% -0.41%
19 QE, TDVA, POS 3.48% -0.46% -0.25% 1.88%
20 TDA, TT, POS 1.78% 1.01% -0.35% 0.26%
21 TDNA, TT, POS 1.97% 4.27% 1.51% -0.51%
22 TDVA, TT, POS 1.73% 0.02% -0.31% -1.29%
23 QE, TDA, TT, POS 1.81% 1.00% -0.33% 0.29%
24 QE, TDNA, TT, POS 1.97% 4.63% 1.49% -0.51%
25 QE, TDVA, TT, POS 1.72% 0.26% -0.30% -1.27%

Table 6.12: The change in mean average precision for modifications across
multiple themes. QE is short for Query Expansion. TDA is short for
Term - Document for Adjectives. TDNA is short for Term - Document
for Nouns and Adjectives. TDVA is short for Term - Document for Verbs
and Adverbs. TT is short for Term - Term. POS is short for Parts of
Speech.

76

benchmark should be weighted less than other benchmarks. On the other hand, the

Medline benchmark scored high mean average precision values for both the unmodified

and modified versions of Okapi BM25. Higher percentage changes from the Medline

benchmark will therefor have a larger impact on the modification’s score because the

percentage change represents a more significant change in the underlying precision.

Using Equation 6.1, a score for each of the 87 modifications is computed1.

The modification that resulted in the highest score is ID 14 from validation round

3. This modification combines three different themes of modifications. From the

Query Expansion theme, the modification uses the WordNet Graph to expand the

bottom inverse document frequency query terms. From the Term - Document theme,

the modification rewards nouns and adjectives for appearing closer to the start of a

document. Lastly from the Term - Term theme, the modification rewards adjacent

adjectives and nouns found in the query for having a close proximity to each other in

a document.

As a result of obtaining the highest score, this modification is tested against

the Lisa benchmark. Recall that Lisa is the largest benchmark used in this thesis,

containing 5,872 documents and 35 queries. Since the best modification includes

query expansion from the WordNet Graph, it is worth mentioning how this benchmark

compares to the query expansion information provided in Tables 6.2, 6.3, and 6.4. In

Lisa, the ratio for the total number of expansion terms for each query to the number

of terms that can be expanded is about 2.17 terms per query, which is slightly higher

than the WordNet Graph ratios in Table 6.3. Around two expansion terms per query

is similar to the WordNet API ratios from Table 6.2 and half as large as the ratios

calculated using the Word2Vec model in Table 6.4.

The final results from testing and comparing the top scoring modification

against other established models is presented in Tables 6.13 and 6.14 and discussed

1The results of the calculations will be presented upon request.

77

for the remainder of this chapter. When the unmodified version of Okapi BM25

is ran against Lisa, the resulting mean average precision value is 0.357 and when

the top modification is ran against Lisa, the resulting mean average precision value

is 0.393. The difference between these results represents a 10.25% improvement in

mean average precision. A 10.25% improvement is larger than expected so sources of

bias were checked for in the Lisa benchmark. A potential avenue for bias may exist

in each document because the start of each document begins with a title. After the

titles were removed, the unmodified version of Okapi BM25 scored a mean average

precision value of 0.304 and the modification scored a mean average precision value

of 0.326. This difference between these new results represents a 7.31% improvement

in mean average precision. The performance of the top scoring modification was also

compared to cosine similarity across each version of Lisa. As shown in Table 6.14, the

top scoring modification outperforms cosine similarity by slightly over 20% on each

version of Lisa.

The results of running the industry standard search engines, Lucene and Solr,

are also shown in Tables 6.13 and 6.14. The out-of-the-box solution for Lucene uti-

lizes a cosine similarity metric and results in similar mean average precision scores to

that of the in-house built cosine similarity model. On the other hand, the out-of-the-

box solution for Solr uses a Okapi BM25 metric and performs much worse than the

in-house solution for Okapi BM25. This discrepancy can be attributed to differences

between this study’s preprocessing techniques compared to Solr’s preprocessing tech-

niques, such as stop word removal and stemming. Additionally, Solr’s Okapi BM25

implementation does not account for the query term frequency, as shown in Equation

2.10, which further justifies the differences between the scores. When compared to the

top scoring modification, the modification outperforms Lucene and Solr by at most

21.78% and 23.01%, respectively. These large margins of improvement against both

the industry standard search engines and the in-house built Okapi BM25 and cosine

78

Modification Okapi BM25 Cosine Lucene Solr

With Titles MAP 0.393 0.357 0.313 0.328 0.324
Without Titles MAP 0.326 0.304 0.258 0.255 0.251

Table 6.13: The raw mean average precision (MAP) scores calculated
against the Lisa benchmark for the top scoring modification, the in-house
built Okapi BM25 and cosine similarity models, and the out-of-the-box
solutions for the Lucene and Solr search engines.

Modification Okapi BM25 Cosine Lucene Solr

With Titles MAP 0% 10.25% 20.36% 16.54% 17.56%
Without Titles MAP 0% 7.31% 20.86% 21.78% 23.01%

Table 6.14: Percentage increases in performance when the top scoring
modification is compared to each of the other models. These percentages
are calculated using the values presented in Table 6.13.

similarity models, is evidence that the top scoring modification is more accurate than

all the presented models.

The performance of the top modification to the unmodified Okapi BM25 model

can also be compared using weighted average recall, where the recall scores are

weighted proportionally to the number of relevant documents in each query, as shown

in Equation 5.4. When ran against Lisa, Okapi BM25 returned recall scores of 0.145,

0.237, and 0.332 on the first 5, 10, and 20 documents returned for each query. Com-

pared to the top modification, the top modification returned recall scores of 0.155,

0.224, and 0.343 on the first 5, 10, and 20 documents returned for each query. From

the first 5 document returned, the top modification obtained a recall that is 7.27%

better than Okapi BM25. Then the recall score for the modification dipped bellow

Okapi BM25 once 10 documents were returned by around -5.56%. However in the

long term, after 20 documents are returned, the modification returns a recall score

that is 3.17% better than Okapi BM25. The results from the weighted average recall

scores indicate that the modification was able to return more relevant documents

earlier in the list of returned documents than Okapi BM25.

79

Figure 6.1: Compares the precision and recall of Okapi BM25 and the top
modification at recall bucket sizes 0.05.

The performance of both Okapi BM25 and the top modification can be dis-

played on a precision-recall curve to gain more granular insight into the performance

of each system with respect to both precision and recall. In Figure 6.1, the blue line

with circle markers is the Okapi BM25 curve and the red line with triangle markers

is the top modification’s curve. In the graph, the recall levels are split into buckets of

0.05, which is similar to saying that each tick on the x-axis represents a point where

an additional 5% of the relevant documents are returned for each query. From the

graph, it is clear that the modified system scores a higher mean average precision

value than Okapi BM25 at all recall levels, except the small recall range between 0.08

and 0.12. Since the final modification combines multiple themes and improves Okapi

BM25’s mean average precision and recall over the test set in a large majority of

cases, this is taken as strong evidence in favor of this thesis’ hypothesis.

80

Chapter 7

CONCLUSION AND FUTURE WORK

By modifying Okapi BM25 to take advantage of semantic information located in

documents and queries, the model performed upwards to 10.25% better in mean

average precision and also scored higher recall values for most recall levels when

compared against our unmodified Okapi BM25 system. When compared against

industry standard solutions, the top performing model performed upwards to 21.78%

and 23.01% higher in mean average precision when compared to Lucene and Solr,

respectively. The new model has three modifications. First, the model uses query

expansion on query terms that score low inverse document frequency values. Second,

the model measures how close noun and adjective query terms appear from the start

of a document. Third, the model measures the closeness between adjacent adjectives

and nouns query terms in a document.

There are plenty of avenues for future work. We do not claim that the hyper

parameters used in this study are optimal, so there is a lot of room for improvement.

In this study, parameters were either heuristically set or discovered through training

on the Cranfield benchmark. However much larger benchmarks, or combinations of

benchmarks, can be used to discover more accurate hyper parameters.

Apart from adjusting hyper parameters, research can be done to take more

advantage of language models. A language model can be used to split a query into

sections based on the probability that one term follows the next. These sections can

then be combined into N-grams to identify multi-term ideas such as city names like

San Jose, San Francisco, San Luis Obispo, etc. This is in contrast to creating bigrams

according to parts of speech. The discovered N-grams can then be queried for in a

corpus. Furthermore, various Skip-gram language models can be used to make more

educated guesses for query expansion. For example, a Skip-gram language model

81

may predict that the most likely words to come after “San” would be “Jose” and

“Francisco.”

This thesis used Wordnet APIs, Wordnet Graph, and Word2Vec in order to

obtain appropriate query expansion terms. However, we noted that these models are

not efficient at identifying slang terms. One website that specializes in slang is Urban

Dictionary1. In order to obtain slang terms for query expansion, Urban dictionary

can be scraped and built into a probability graph, much like the WordNet Graph The

random walk algorithm can then be used in order to discover related, neighboring

nodes. In addition to using Urban dictionary to identify slang terms, RDF triples

can be used to identify conjunction of ideas. DBPedia2 contains RDF datasets created

from Wikipedia for this exact purpose.

Although this research made significant progress on breaking a query down

into its parts of speech, more natural language processing can be conducted. For

example, a long query can be broken down into phrases by identifying conjunction

words. These phrases can then be ran independently and the results can then be

combined.

In addition to trying to improve Okapi BM25, another interesting avenue for

future research would be to repeat this experiment for another document retrieval

model, such as for cosine similarity. Ranking with cosine similarity would be more

resistant to variable query sizes because values can be normalizes before plotting a

document in hyperspace.

1https://www.urbandictionary.com/

2https://wiki.dbpedia.org/

82

BIBLIOGRAPHY

[1] B. Al-Shboul and S. H. Myaeng. Analyzing topic drift in query expansion for

information retrieval from a large-scale patent database. In 2014

International Conference on Big Data and Smart Computing (BIGCOMP),

pages 177–182, Jan 2014.

[2] A. Bakhtin, Y. Ustinovskiy, and P. Serdyukov. Predicting the impact of

expansion terms using semantic and user interaction features. In

Proceedings of the 22Nd ACM International Conference on Information &

Knowledge Management, CIKM ’13, pages 1825–1828, New York, NY,

USA, 2013. ACM.

[3] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard. A study of the

behavior of several methods for balancing machine learning training data.

SIGKDD Explor. Newsl., 6(1):20–29, June 2004.

[4] M. Bendersky and W. B. Croft. Analysis of long queries in a large scale search

log. In Proceedings of the 2009 Workshop on Web Search Click Data,

WSCD ’09, pages 8–14, New York, NY, USA, 2009. ACM.

[5] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic

language model. J. Mach. Learn. Res., 3:1137–1155, Mar. 2003.

[6] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic

language model. J. Mach. Learn. Res., 3:1137–1155, Mar. 2003.

[7] M. P. S. Bhatia and A. Kumar. Contextual paradigm for ad hoc retrieval of

user-centric web data. IET Software, 3(4):264–275, August 2009.

[8] R. Blanco and P. Boldi. Extending bm25 with multiple query operators. In

Proceedings of the 35th International ACM SIGIR Conference on Research

83

and Development in Information Retrieval, SIGIR ’12, pages 921–930, New

York, NY, USA, 2012. ACM.

[9] S. Büttcher, C. L. A. Clarke, and B. Lushman. Term proximity scoring for

ad-hoc retrieval on very large text collections. In Proceedings of the 29th

Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’06, pages 621–622, New

York, NY, USA, 2006. ACM.

[10] M. Collins. Language modeling.

[11] R. Cummins and C. O’Riordan. Evolving local and global weighting schemes in

information retrieval. Inf. Retr., 9(3):311–330, June 2006.

[12] R. Cummins and C. O’Riordan. Learning in a pairwise term-term proximity

framework for information retrieval. In Proceedings of the 32Nd

International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’09, pages 251–258, New York, NY, USA,

2009. ACM.

[13] M. I. J. David M. Blei, Andrew Y. Ng. Latent dirichlet allocation. Technical

report, January 2003.

[14] E. A. Fox. Lexical relations: Enhancing effectiveness of information retrieval

systems. SIGIR Forum, 15(3):5–36, Dec. 1980.

[15] Google. How search algorithms work.

[16] Google. How search organizes information.

[17] D. Griffiths. Head first statistics. OReilly, 2009.

[18] K. Jain, A. Jain, T. Srivastava, and NSS. Intuitive understanding of word

embeddings: Count vectors to word2vec, Jun 2017.

84

[19] S. Kuzi, A. Shtok, and O. Kurland. Query expansion using word embeddings.

In Proceedings of the 25th ACM International on Conference on

Information and Knowledge Management, CIKM ’16, pages 1929–1932,

New York, NY, USA, 2016. ACM.

[20] J. Lafferty and C. Zhai. Document language models, query models, and risk

minimization for information retrieval. In Proceedings of the 24th Annual

International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’01, pages 111–119, New York, NY, USA,

2001. ACM.

[21] J. Lafferty and C. Zhai. Document language models, query models, and risk

minimization for information retrieval. SIGIR Forum, 51(2):251–259, Aug.

2017.

[22] M. Lesk. Automatic sense disambiguation using machine readable dictionaries:

How to tell a pine cone from an ice cream cone. In Proceedings of the 5th

Annual International Conference on Systems Documentation, SIGDOC ’86,

pages 24–26, New York, NY, USA, 1986. ACM.

[23] B. Liu. Web data mining exploring hyperlinks, contents, and usage data.

Springer, 2011.

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word

representations in vector space. CoRR, abs/1301.3781, 2013.

[25] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed

representations of words and phrases and their compositionality. In C. J. C.

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger,

editors, Advances in Neural Information Processing Systems 26, pages

3111–3119. Curran Associates, Inc., 2013.

85

[26] E. Miller. An introduction to the resource description framework. Bulletin of

the American Society for Information Science and Technology, 25(1):15–19,

11 1998.

[27] G. A. Miller. Wordnet: A lexical database for english, 1995.

[28] P. Mills. Singular value decomposition (svd) tutorial: Applications, examples,

exercises, Oct 2017.

[29] M. Mitra, C. Buckley, A. Singhal, and C. Cardie. An analysis of statistical and

syntactic phrases. In Computer-Assisted Information Searching on Internet,

RIAO ’97, pages 200–214, Paris, France, France, 1997. LE CENTRE DE

HAUTES ETUDES INTERNATIONALES D’INFORMATIQUE

DOCUMENTAIRE.

[30] J. Ooi, X. Ma, H. Qin, and S. C. Liew. A survey of query expansion, query

suggestion and query refinement techniques. In 2015 4th International

Conference on Software Engineering and Computer Systems (ICSECS),

pages 112–117, Aug 2015.

[31] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation

ranking: Bringing order to the web. Technical Report 1999-66, Stanford

InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.

[32] J. Pearl. Bayesian networks: A model of self-activated memory for evidential

reasoning. In Proc. of Cognitive Science Society (CSS-7), 1985.

[33] J. R. Pérez-Agüera, J. Arroyo, J. Greenberg, J. P. Iglesias, and V. Fresno.

Using bm25f for semantic search. In Proceedings of the 3rd International

Semantic Search Workshop, SEMSEARCH ’10, pages 2:1–2:8, New York,

NY, USA, 2010. ACM.

86

[34] M. I. Rafique and M. Hassan. Utilizing distinct terms for proximity and phrases

in the document for better information retrieval. In 2014 International

Conference on Emerging Technologies (ICET), pages 100–105, Dec 2014.

[35] Y. Rasolofo and J. Savoy. Term proximity scoring for keyword-based retrieval

systems. In Proceedings of the 25th European Conference on IR Research,

ECIR’03, pages 207–218, Berlin, Heidelberg, 2003. Springer-Verlag.

[36] S. Robertson and S. Walker. Okapi/keenbow at trec8. In The Eighth Text

REtrieval Conference (TREC8), page 151162. Gaithersburg, MD: NIST,

January 2000.

[37] M. Sahlgren. The distributional hypothesis. pages 20 (1) 33–53, 2008.

[38] H. Sanders and J. Saxe. Garbage in, garbage out: How purportedly great ml

models can be screwed up by bad data. Technical report, July 2017.

[39] G. W. F. T. K. L. R. H. Scott Deerwester, Susan T. Dumais. Indexing by

latent semantic analysis. Technical report, September 1990. Previous

number = SIDL-WP-1999-0120.

[40] R. T. Selvi and E. G. D. P. Raj. An approach to improve precision and recall

for ad-hoc information retrieval using sbir algorithm. In 2014 World

Congress on Computing and Communication Technologies, pages 137–141,

Feb 2014.

[41] R. Song, J.-R. Wen, and W.-Y. Ma. Viewing term proximity from a different

perspective. Technical report, May 2005.

[42] L. Soulier, L. Ben Jabeur, L. Tamine, and W. Bahsoun. Bibrank: A

language-based model for co-ranking entities in bibliographic networks. In

87

Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital

Libraries, JCDL ’12, pages 61–70, New York, NY, USA, 2012. ACM.

[43] L. Stanchev. Creating a similarity graph from wordnet. In Proceedings of the

4th International Conference on Web Intelligence, Mining and Semantics

(WIMS14), WIMS ’14, pages 36:1–36:11, New York, NY, USA, 2014. ACM.

[44] K. M. Svore, P. H. Kanani, and N. Khan. How good is a span of terms?:

Exploiting proximity to improve web retrieval. In Proceedings of the 33rd

International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’10, pages 154–161, New York, NY, USA,

2010. ACM.

[45] D. Vazhenina, I. Kipyatkova, K. Markov, and A. Karpov. State-of-the-art

speech recognition technologies for russian language. In Proceedings of the

2012 Joint International Conference on Human-Centered Computer

Environments, HCCE ’12, pages 59–63, New York, NY, USA, 2012. ACM.

[46] O. Vechtomova, S. Robertson, and S. Jones. Query expansion with long-span

collocates. Inf. Retr., 6(2):251–273, Apr. 2003.

[47] H.-m. Wang and B. Chen. Content-based language models for spoken

document retrieval. In Proceedings of the Fifth International Workshop on

on Information Retrieval with Asian Languages, IRAL ’00, pages 149–155,

New York, NY, USA, 2000. ACM.

[48] Z. Ye, J. X. Huang, and J. Miao. A hybrid model for ad-hoc information

retrieval. In Proceedings of the 35th International ACM SIGIR Conference

on Research and Development in Information Retrieval, SIGIR ’12, pages

1025–1026, New York, NY, USA, 2012. ACM.

88

[49] C. Zhai and J. Lafferty. A study of smoothing methods for language models

applied to ad hoc information retrieval. In Proceedings of the 24th Annual

International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’01, pages 334–342, New York, NY, USA,

2001. ACM.

[50] C. Zhai and J. Lafferty. A study of smoothing methods for language models

applied to ad hoc information retrieval. SIGIR Forum, 51(2):268–276, Aug.

2017.

89

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 Google Search
	2.2 Unstructured Search
	2.3 Document Retrieval Theory
	2.3.1 The Vector Space Model
	2.3.2 The Probabilistic Model
	2.3.3 The Inverted Index

	2.4 The Semantic Gap
	2.4.1 WordNet
	2.4.2 Word Embeddings

	3 Related Works
	3.1 Okapi BM25 Modifications
	3.1.1 Genetic Programming
	3.1.2 Semantic Analysis
	3.1.3 Spans
	3.1.4 Query Expansion
	3.1.5 BM25F

	3.2 Topic Models
	3.2.1 Latent Semantic Indexing
	3.2.2 Latent Dirichlet Allocation

	3.3 Language Models
	3.3.1 The Probabilistic Language Model
	3.3.2 Neural Language Models

	4 Implementation
	4.1 Building the Inverted Index
	4.2 Extending Okapi BM25
	4.3 The Okapi BM25 Modifications
	4.3.1 Parts of Speech Modifications
	4.3.2 Term to Term Modifications
	4.3.3 Term to Document Modifications
	4.3.4 Query Expansion Modifications

	5 Experimental Setup
	5.1 Measures
	5.2 Benchmarks
	5.3 Hypotheses
	5.4 Experimental Procedure
	5.5 Evaluation

	6 Results
	6.1 Validation Round One
	6.2 Validation Round Two
	6.3 Validation Round Three
	6.4 Selecting and Testing a Modification

	7 Conclusion and Future Work
	BIBLIOGRAPHY

