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Abstract

Perturbation Based Decomposition of sEMG Signals

Rachel Huettinger

Surface electromyography records the motor unit action potential signals in the vicin-

ity of the electrode to reveal information on muscle activation. Decomposition of

sEMG signals for characterization of constituent motor unit action potentials in terms

of amplitude and firing times is useful for clinical research as well as diagnosis of

neurological disorders. Successful decomposition of sEMG signals would allow for

pertinent motor unit action potential information to be acquired without discomfort

to the subject or the need for a well-trained operator (compared with intramuscular

EMG). To determine amplitudes and firing times for motor unit action potentials

in an sEMG recording, Szlavik’s perturbation based decomposition may be applied.

The decomposition was initially applied to synthetic sEMG signals and then to ex-

perimental data collected from the biceps brachii. Szlavik’s decomposition estimator

yields satisfactory results for synthetic and experimental sEMG signals with reason-

able complexity.
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1 Introduction

A fundamental part of being human is movement; precise control over our physical

bodies allows for biking, dancing, playing catch, and other endless pursuits. It is

how our bodies interact with the physical world around us. The deterioration of

motor skills due to neuromuscular disorders drastically changes lives, such as difficulty

feeding of oneself due to hand tremors. Muscular health can be better understood

through study of the electrical activity of muscles, called electromyographic (EMG)

signals. The EMG signal records action potentials from muscle fibers, which are

organized into motor units (MUs) due to innervation by the same nerve. Many

neuromuscular disorders affect the firing rates and amplitudes of motor unit action

potentials (MUAPs), so being able to detect these changes would be useful. The

purpose of this thesis is to present a technique for decomposing EMG signals into the

firing times of constituent MUAPs to aid in the diagnosis of neuromuscular diseases.

1.1 Motivation

Electromyography is a common technique for evaluation of neuromuscular diseases in-

cluding amyotrophic lateral sclerosis (ALS), myasthenia gravis, and Isaac’s syndrome

[4]. For neuromuscular disorders, early diagnosis is essential for treatment and under-

standing of disease progression. The pathophysiology of neuromuscular diseases may

be myopathic, neurogenic, or affecting the neuromuscular junctions. Electromyog-

raphy provides insight into the health of these systems by recording the electrical

activity of skeletal muscles. In a clinical setting, electromyography recordings are

commonly analyzed qualitatively by an expert using visual and auditory pattern

recognition [4]. However in research there is movement toward quantitative analysis

1



Figure 1.1: Decomposition of EMG Signal (plot constructed using data
from [1])

and decomposition of EMG signals to provide details not apparent from the macro

level. Properties of decomposed EMG signals such as number of MUAPs present,

firing rate, and amplitude are critical for accurate diagnosis [5, 6]. Quantitative esti-

mates of the number of MUAPs present provide useful information about motor unit

recruitment [6]. Intramuscular EMG (iEMG) works relatively well but is invasive and

has limitations, so achieving successful decomposition of surface EMG (sEMG) would

be beneficial. sEMG decomposition allows for noninvasive characterization of motor

units and study of the morphological organization of muscle fibers within intact mus-

cle. This is useful for research on muscle activation as well as clinically for diagnosis

and understanding disease progression. Another benefit of sEMG is that it can be

used for investigation of motor control by nonclinical researchers [7].

2



The superposition of multiple signal constituents is one of many difficulties when

decomposing EMG signals [5]. By trying out a decomposition technique that is more

robust to non-orthogonal signals, decomposition of superimposed EMG signals may

be better handled than with other algorithms. The motivation behind this thesis

is to decompose EMG signals into the constituent motor unit action potentials to

aid in diagnosis of neuromuscular disorders and diseases using a perturbation based

decomposition.

1.2 Previous Work

The decomposition of sEMG signals has been investigated by numerous researchers

since 1985 [8] and was likely inspired by the high success of iEMG decomposition

[9]. Approaches for decomposition of sEMG into constitutive MUAPTs include non-

linear dynamic methods, Fourier transform, wavelet transform, other time-frequency

approaches, and the Wigner-Ville Distribution [6]. Many decomposition methods

[10, 11] use template-matching for recognition of MUAPs which requires prior iden-

tification of templates present in the sEMG signal and assumes that the MUAP

shape is stationary [12]. Decomposition of sEMG is usually performed for low-level

voluntary contraction signals, at less than 10% of maximal voluntary contraction.

Low-level signals support the assumption that the MUAP shapes are stationary, as

they are minimally affected by fatigue. The level of user interaction also varies be-

tween methods, with Kleine [10] using a highly user interactive multi-step technique,

Garcia [13] using a semiautomatic decomposition technique to extract average fir-

ing rates, and Gazzoni [14] using a technique that automatically decomposes two to

three real MUAPTs that are not superimposed. Between the various decomposition

techniques, there are common stages of analytical procedures. After preprocessing

the EMG signal to remove noise, the template or candidate MUAP waveforms are
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identified. Then, the EMG signal is decomposed into template MUAP waveforms

and classified [5].

Figure 1.2: Steps for Decomposition of EMG Signal

1.3 EMG Decomposition Challenges

There are challenges and limitations present within each stage of EMG decomposi-

tion. In the preprocessing stage, the main challenge is removal of noise due to external

interference, motion artifact, poor signal-to-noise ratio and baseline drift. Determin-

ing candidate MUAPs is also difficult due to variation in MUAP waveforms within

a motor unit, similarities in MUAP waveforms from different motor units, temporal

overlap of MUAPs, and/or dynamic ranges of MUAP amplitudes [15]. MUAP tem-

plates have more similarity of shape for sEMG than for iEMG due to the low pass

effects of the subcutaneous tissue and skin, which increases difficulty of decomposi-

tion. For sEMG, the shape changes have less impact as they average out between

the many muscle fibers composing the motor unit. The complexity of the signal

with regard to number of MUAPTs and duration of MUAPs affects temporal over-

lap and consequently the success of the decomposition. The large range of MUAP

amplitudes due to distance from the electrode and anatomical considerations affect
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decomposition; minimum amplitude thresholds are often utilized. Decomposition of

sEMG works best at low force levels with limited numbers of motor units [6]. The

superposition of MUAPs is the major limitation for decomposition of sEMG signals

accomplished by template-matching [7].

1.4 Outline

The organization of the paper is as follows: first, relevant background on the neuro-

muscular system and EMG recording techniques will be presented, then methods for

application of perturbation based decomposition to the synthetic and experimental

signals, and finally results including comparison with another decomposition method

for validation.
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2 Background

2.1 The Human Neuromuscular System

The neuromuscular system consists of the nervous system, muscular system, and

neuromuscular junctions that connect the two.

2.1.1 The Nervous System

The nervous system includes the central nervous system (CNS) which is the brain and

spinal cord, and the peripheral nervous system (PNS) which is the communication

system between the CNS and body. Within the PNS is sensory division for sending

sensory information from the body to the CNS, and the motor division for sending

movement information from the CNS to the body. The motor division interfaces

with the muscular system, controlling both somatic (voluntary) and autonomic (in-

voluntary) movement through impulses delivered by motor neurons to muscle fibers.

[3].

2.1.2 The Muscular System

The human muscular system is composed of three types of muscular tissue: skeletal,

cardiac, and smooth. Muscle tissue is a specialized contractile tissue, and its primary

function is contraction to produce force for movement of the body. Other functions

include posture stability, heat generation, circulation, and aiding digestion. Skeletal

muscle attaches to bones for movement of limbs and other structures and is composed

of skeletal muscle fibers, nerve fibers, blood vessels, and other connective tissue.
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Contraction of skeletal muscle is controlled by the somatic division of the PNS, while

both cardiac muscle and smooth muscle are under autonomic control.

2.1.2.1 Gross Skeletal Muscle Organization

Skeletal muscle is organized into groupings of muscular tissue surrounded by connec-

tive tissue. At the macro level, the connective layer surrounding the entire muscle

is the epimysium. Within the epimysium are groupings of (up to 150) muscle fibers

called fascicles, each surrounded by a perimysium [3]. Each individual muscle fiber

is surrounded by a sarcolemma, and composed of myofibrils. Blood vessels are found

between fascicles, while blood capillaries are found within each sarcolemma. The mo-

toneurons attach to the surface of individual muscle fibers. The image below details

the anatomy of this highly organized organ.

Figure 2.1: Anatomy of Skeletal Muscle [3]
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2.1.2.2 Skeletal Muscle Fibers

Skeletal muscle fibers are the cell type composing skeletal muscle. Within a single

muscle fiber there are hundreds to thousands of myofibrils that contain the contractile

elements of skeletal muscle called sarcomeres. Sarcomeres contain myofilaments which

are the basis of contraction and pull together to create crosslinks. Each skeletal muscle

fiber is excited by a single motor neuron, causing it to release calcium and begin the

contraction process [3].

2.1.2.3 Motor Units

Each somatic motor neuron innervates a group muscle fibers, ranging from few to

hundreds [16] and activates them all simultaneously in an ‘all or none’ manner. The

number of muscle fibers per motoneuron is correlated with precision of motor control;

muscles with fine motor control have fewer muscle fibers innervated per motoneuron.

The grouping of an individual motor neuron with the muscle fibers it innervates are

a motor unit [4]. When a motor neuron fires, all muscle fibers within that motor unit

will contract synchronously.

2.1.3 The Neuromuscular Junction

The neuromuscular junction is the location of communication between a motor neuron

and a muscle fiber. It is the chemical synapse between the axon terminal of the motor

neuron and the sarcolemma of the muscle fiber, where the signal to initiate muscle

fiber contraction is transmitted. Communication between neuron and muscle fibers

occurs via neurotransmitters that diffuse across the gap [3].
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Figure 2.2: Motor unit is the motor neuron and the muscle fibers it in-
nervates at neuromuscular junctions [3].

2.2 Skeletal Muscle Activation

The movement of charged ions and neurotransmitters within the neuromuscular sys-

tem form a complex messaging system that initiates of contraction.The sEMG signal

is measured from the net electrical activity associated with ion flow, so it is important

to study the physiological pathways to understand the origin of the signal.

2.2.1 Physiology of Muscle Fiber Activation

Skeletal muscle contraction initiates as an impulse in the CNS, which travels down a

somatic motor neuron in the PNS as an action potential until it reaches the neuro-

muscular junction. At the neuromuscular junction, the impulse crosses the synapse

chemically as the neurotransmitter Ach. Ach activates the muscle fiber by binding
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with the Na+ receptors on the sarcolemma, opening sodium channels and causing

depolarization via an influx of Na+ into the muscle fiber. The depolarization spreads

down the length of the muscle fiber as a wave, causing the release of Ca2+ from the

sarcoplasmic reticulum and initiating excitation contraction coupling. Due to a de-

layed response to the depolarizing wave, K+ channels on the sarcolemma open and

K+ rushes out to repolarize the cell and return it to the resting potential. The prop-

agation of depolarization followed by repolarization down the length of the muscle

fiber is known as a muscle fiber action potential.

2.2.2 Muscle Fiber Action Potential (MFAP)

The muscle fiber action potential is due to the changes in membrane voltage as the

charged ions sodium and potassium cross the membrane. After the sodium chan-

nels are opened, sodium rushes into the cell due to a concentration gradient and the

membrane potential consequently increases in positivity. This depolarization (due

to sodium entering the muscle fiber) causes the upstroke of the muscle fiber action

potential, while potassium rushing out of the cell for repolarization causes the down-

stroke.

2.2.3 Motor Unit Action Potential (MUAP)

A MUAP is the summation of the MFAPs within a motor unit. Because muscle

fibers within a motor unit are all activated at once by the same neuron, the MFAPs

are temporally overlapped and are detected as a single unit known as a MUAP.

Anatomically, a MUAP is the combined action potential signal from all the muscle

fibers in the motor unit. In an EMG signal, the MUAP is defined slightly differently

as the action potential summation from the muscle fibers in the motor unit within
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Figure 2.3: Muscle fiber action potential [3]

recording proximity of the electrode (this paper will use this definition) [17, 5]. This

difference is due to electrode spatial recording limitations.

The MUAP characteristics are affected by the size, conduction velocity, and posi-

tioning of the detection electrode relative to the muscle fiber. The magnitude of the

MUAP is affected by the fiber diameters of its constituent muscle fibers, with larger

fiber diameters creating larger MFAPs and smaller fiber diameters creating smaller

MFAPs [18]. The magnitude is also affected by the electrode distance from each

muscle fiber, with muscle fibers positioned closer to the electrode recording a higher

value. The duration of the MFAP is affected by the conduction velocity of the muscle

fiber, which is the speed that the AP travels down the muscle fiber [18] which in turn

affects the MUAP. The shape of the MFAP waveform also varies with the distance

11



between the electrode recording side and the innervation zone [19].

2.2.4 Motor Unit Action Potential Train (MUAPT)

For sustained muscle contraction, motor units repeatedly fire action potentials to

create a train of motor unit action potentials, or a MUAPT [19]. To increase force of

contraction, the muscle must either activate muscle fibers more frequently or recruit

more units [18]. The frequency of MFAP activation is the firing rate (which is limited

by the absolute refractory period). Firing rate of normal muscle is 4-12Hz until

another motor unit is recruited. Recruitment typically follows a 5:1 pattern, which is

the ratio of frequency to number of MUAPs firing (at 10Hz a second MUAP recruited,

at 15Hz a third MUAP recruited) [7]. The firing rate of MUAPT ranges from 6 Hz

to 40 Hz [15, 16].

Numerous neuromuscular diseases affect the firing rates and interval variability of

motor units. For myopathic disorders, firing frequency of motor units has been shown

to be higher than control groups while variability in interval length is not significantly

different. It is believed the increased firing rates are compensation for low muscle

strength. For neuropathic disorders, there are significant increases in both firing

rates and MUAP interval variability. The cause for variability in the interval between

MUAPs is hypothesized to be due to irregularity in the threshold potential value [20].

2.3 Electromyography Signal and Recording Techniques

2.3.1 EMG Signal Description

Electromyography records the electrical activity produced by skeletal muscle as an

indication of neuromuscular activation [21]. At rest, each skeletal muscle fiber mem-

12



brane potential is negative due to differences in intracellular and extracellular ion

concentration and composition [19]. When the skeletal muscle fiber membrane po-

tential is depolarized to the activation threshold, a MFAP propagates down the length

of the muscle fiber as a depolarizing wave. For each muscle fiber, the propagating ac-

tion potential generates an electromagnetic field. The electric field in the muscle and

the electric potential on the surface of the skin exist whether or not they are recorded

[16]. The electrode will measure the net electric potential due to contributions from

all MUAPTs in the spatial recording vicinity. [18]. Bipolar electrodes are commonly

used with a differential amplifier to suppress noise; if monopolar electrodes are used,

the signal will have a different shape.

For EMG recording, there are two types of activation of the muscle: voluntary and

involuntary. For voluntary EMG, the muscle is activated natively by the neuron, and

for involuntary or evoked EMG, external electrical stimulation is applied to initiate

action potentials in the muscle.

2.3.2 Types of EMG Recordings

There are two main types of EMG recordings: surface EMG and intramuscular EMG.

For sEMG recordings, electrodes placed on the surface of the skin measure the induced

electric field as voltage [21]. The sEMG signal is the summation of the MUAPTs in

the vicinity of the electrode, as each motor unit in the vicinity of the electrode fires

intermittently to form MUAPTs [5].

For intramuscular/needle EMG recording, a needle electrode is inserted into the mus-

cle to record the action potential of a single muscle fiber. Small movements and

damage to the muscle due to insertion of indwelling electrodes influence the shapes

of action potentials [7]. Compared with needle EMG, the application of sEMG elec-

13



trodes is simpler, the subject feels less discomfort, and medical supervision is not

required. There is higher repeatability for sEMG measurements as the variations in

individual MUAP waveforms are averaged [6]. However, for this same reason MUAP

shapes of different motor units may be overly similar and have inadequate temporal

differences [6].
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3 Methods

The perturbation based decomposition method was applied to sEMG signals to de-

termine firing times and amplitudes of the MUAP waveform constituents. These

characteristics are useful for understanding neuromuscular disease progression and di-

agnosis. In sEMG signals, MUAP waveforms are often superimposed which increases

difficulty of decomposition. The application of the perturbation based decomposition

to sEMG signals will be discussed and evaluated in this paper.

Prior to applying the perturbation decomposition technique, the MUAP waveform

shapes present in the sEMG signal must be known. The MUAP templates used for

construction of the synthetic sEMG signal are based on Hermite-Rodriguez functions

from literature. In the experimental section of this paper, the MUAP templates are

derived from the sEMG signal by the EMGLAB algorithm [22].

3.1 Synthetic sEMG Signal

As proof of concept for the application of the perturbation based decomposition to

real sEMG signals, it was tested on synthetic sEMG signals. The compound synthetic

sEMG signal was created as the summation of template MUAP waveforms firing at

fixed rates over the duration of the signal. Then, the decomposition technique was

applied using the template MUAP waveforms shifted over the length of the sEMG as

the component functions.
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3.1.1 General Information on MUAP Waveform Models

The shape and amplitude of each MUAP waveform will vary due to fiber geometry,

conduction velocity, and electrode location. Each MUAP waveform shape can be

assumed to remain constant if the electrode positioning is constant, the firing rate is

constant, and there are no significant biochemical changes in the muscle tissue such

as fatigue [19, 6]. Because the decomposition returns an amplitude for each MUAP

template, it is unnecessary to incorporate amplitude into the component functions

used during decomposition.

In sEMG signal recordings, differences between motor units become less pronounced

due to low pass filtering effects of the skin and subcutaneous tissues and a farther

recording distance (as compared with iEMG). It is theoretically possible to use a

small set of MUAP template waveforms to represent a larger number of motor units,

allowing for representation of multiple motor units with the same template [6]. This

would require the perturbation based decomposition results to be further decomposed

into MUAPTs by analyzing varying amplitudes and firing rates. For simplicity in this

paper, the main template shapes will each only represent only one motor unit to avoid

further decomposition of the results.

3.1.2 MUAP Waveform Model

Hermite-Rodriguez functions are commonly used for representation of differentially

derived MUAP waveforms to promote simplicity of sEMG simulations. In Homomor-

phic Deconvolution [15], a model for the MUAP based on the Hermite Rodriquez

series expansion was developed, with the basis functions defined as
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ωn(α, t) =
1√
2nn!

Hn(t/α)
1√
πα

e(−t/α)
2

(3.1)

where Hn is the Hermite polynomial of order n. After the time scaling is removed,

the basis functions become

vn(ζ) = ω(1, ζ) =
1√
π2nn!

Hn(ζ)e−ζ
2

(3.2)

and each MUAP is modelled as a series of the above basis functions

f(ζ) =
N∑
n=1

anvn(ζ) (3.3)

In this paper, normalized basis functions up to the second order were linearly com-

bined and the coefficients a1 and a2 represented in terms of φ.

f(ζ) = sin(φ)
v1(ζ)

||v1||
] + cos(φ)

v2(ζ)

||v2||
(3.4)

where φ is the angle between vectors v1 and v2. For φ = π/2, the first order vector

is returned f = v1 with a biphasic shape, while for φ = 0, the second order vector

is returned f = v2 with a triphasic shape. While the first order vector and second

order vector are orthogonal with v1 · v2 = 0, intermediate values of φ will create

nonorthogonal MUAP shapes [15].

3.1.3 sEMG Signal Model

The sEMG signal may be modelled as the summation of MUAPTs which are in turn

the summation of delayed versions of a MUAP. For the jth MUAPT composed of
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MUAP f(ζ) with amplitude κj and firing times tij

MUAPTj = uj(t) =
∑
i

κjf(t− tij) (3.5)

where tij is the time-shift for the ith MUAP in the jth MUAPT Thus, the sEMG

signal ψ(t) may be represented as

ψ(t) =
∑∑

j

MUAPTj(t) =
∑∑

i

κjf(t− tij) (3.6)

3.2 Experimental sEMG Signal Data Collection

In a study by J-Y Hogrel, EMG signals were recorded from the biceps brachii during

sustained low level contractions using laplacian surface electrodes. The contractions

aimed to be isometric and isotonic. In the study, the constituent MUAPs parameters

were analyzed for stability over time to investigate the assumption they are constant

for non-fatiguing contractions. The sampling rate was 10kHz and bandpass filtering

was applied from 10Hz to 1kHz. An EMGLAB algorithm [22] was applied to the

signal to determine the constituent waveforms, then considerable manual editing was

performed for decomposition. The filtered sEMG signal, constituent MUAP wave-

forms, and firing times considered to be the ”gold standard” of sEMG decomposition

were provided [1].

3.3 Fourier Series Method

The Fourier series is a technique for decomposition of a compound signal into con-

stituent signals, but has a major limitation of the requirement of orthogonality for the
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constituent signals. Due to MUAPs often being nonorthogonal and temporally over-

lapped within the sEMG signal, the Fourier series cannot provide a precise estimation

of the templates present due to nonorthogonality.

3.4 General Perturbative Approximate Series Expansion

The perturbative approximate series expansion, also termed perturbation based de-

composition, was developed by Szlavik as a technique to estimate the distribution

of nerve fiber diameter sizes contributing to a compound-evoked potential [23]. The

technique has since been applied to the characterization of neurotransmitter receptor

activation [24]. Additional inverse problems in electrophysiology are currently being

pursued, including the topic of this paper [25].

For the compound function ψ(t), the contributions β̃n from component functions

λ(t)mn=1 may be approximated using the perturbative approximate series expansion.

The component functions are not required to satisfy the orthogonality condition or

form a basis for the function space. The contribution β̃n from each component func-

tion λn is assumed to be perturbed by the contributions of the other component

functions in the set.

ψ(t) =
m∑
n=1

β̃nλn(t) (3.7)

In the frequency domain, the compound signal Ψ(f) = F [ψ(t)] is composed of fre-

quency components from each of the component functions Λn(f) = F [λn(t)] perturbed

by one another by a estimable degree εi,j. This can be written as
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Ψ(f) =



Λ1(f) ε2,1Λ1(f) εm,1Λ1(f)

+ + +

ε1,2Λ2(f) Λ2(f) εm,2Λ2(f)

+ + + + . . .+ +

...
...

...

+ + +

ε1,mΛm(f) ε2,mΛm(f) Λm(f)



(3.8)

where εij represents the perturbation of the ith component function by the jth com-

ponent function. Equation 3.8 can be rewritten as

Ψ(f) =
m∑
n=1

B̃nΛn(f) (3.9)

B̃n = εi,n + . . .+ εn−1,n + 1 + . . .+ εm,n (3.10)

Rearranging the above expression and evaluating at specific frequencies fk for k =

1. . .l yields

Ψ(fk)−
m∑
i=1

Λi(fk) =
m∑
i=1

m∑
j=1

εi,jΛj(fk) (3.11)

i 6=j

The linear system of equations may be solved in the least squares sense for εi,j as

long as the number of specific frequencies l creates an overdetermined system with

l > m2 − m. Using Equation 3.10 with εi,j, the estimator in the frequency domain

may be solved for. Then, the real-valued estimator β̃n which scales each constituent

function as per Equation 3.7 can be found using Equation 3.12 below.
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β̃n = |B̃n| =
√

(B̃n) · (B̃n

∗
) (3.12)

3.5 Pseudocode for Perturbative Approximate Series Expansion

Szlavik provided a MATLAB function for estimation of the distribution of component

functions present in the compound function using the perturbation approximate series

expansion. The compound function and component functions are used as inputs to

the function, and the estimation of the contribution from each constituent function

is computed.

Algorithm 1 Perturbation Based Decomposition

1: procedure Perturbation(ψ, [λ1, λ2, . . . , λn])

2: Ψ = DiscreteFourierTransform(ψ)

3: Λi = DiscreteFourierTransform(λi)

4: Check system is overdetermined. If so, solve linear system in Equation 3.11

in least-squares sense for [εij].

for i = 1, . . . , n do

Solve for B̃i as in Equation 3.10

end

Solve for β̃i as in Equation 3.12

5: return [β̃1 , β̃2, . . . , β̃n]
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3.6 Perturbative Approximate Series Expansion for Decomposition of

sEMG Signal

The perturbative decomposition method developed by Szlavik can be applied to

sEMG signals, either synthetic or experimental, to return the firing times and ampli-

tudes of the constituent MUAPs. For a sEMG signal composed of p motor units, the

compound potential ψ(t) can be reconstructed as the summation of MUAPTs uj for

j = 1. . .p

ψ(t) ≈ u1(t) + u2(t) + . . .+ up(t) (3.13)

uj(t) ≈ ˜β1,jfj(t− t1,j) + ˜β2,jfj(t− t2,j) + . . .+ β̃i,jfj(t− ti,j) (3.14)

where fj(t) is the MUAP waveform shape associated with the jth motor unit, tij

is the time-shift for the ith MUAP in the jth MUAPT, and βij is the estimated

contribution from the ith MUAP in the jth MUAPT.

Assumptions necessary for decomposition and reconstruction:

• MUAP shape within a MUAPT remains relatively constant

• Component functions are the only MUAP shapes present

• Linear summation of MUAPTs

3.7 Statistical Analysis

Assessment of accuracy is non-trivial due to errors such as imprecision in firing time

identification, inability to distinguish MUAP waveforms, and superposition between
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waveforms. For synthetic data, the correct decomposition is precisely and accurately

known, but this is not the case for experimental data. In the experimental sEMG

data provided by EMGLAB, the annotated decomposition displays approximates fir-

ing times and MUAP waveform shapes but cannot be considered 100% accurate.

Quantification of decomposition error is challenging due to imprecision in the firing

times and amplitudes of MUAP estimates.
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4 Results

The ability of the algorithm to identify the amplitude and firing times of constituent

MUAP waveforms was investigated. First, the amplitudes for four superimposed

nonorthogonal MUAP waveform models were decomposed from a compound signal.

Then a compound function composed of MUAPTs was decomposed to determine

firing times and amplitudes for each MUAP waveform. Component functions that

fired over the length were used as inputs to the decomposition algorithm for each

MUAP waveform type. The sEMG was decomposed into MUAPs and these results

compared with the Fourier series decomposition. The decomposition was then applied

to sEMG experimental data for verification.

4.1 Decomposition of Superimposed MUAPs

A compound sEMG potential was arbitrarily created as the superposition of four non-

orthogonal MUAP waveform templates. The MUAP waveform model from equation

3.4 was used with the value of φ determining the biphasic, triphasic, or intermediate

shape.

ψ(t) = 2fφ=π/2(t) + 7fφ=π/4(t) + 4fφ=π/8(t) + 10fφ=π/16(t) (4.1)

Each component function represents the MUAP shape for a different motor unit, with

all motor units firing synchronously. It is important for the decomposition to identify

the amplitude of each MUAP accurately, as the amplitude has the potential to vary

throughout a MUAPT due to biochemical changes in the muscle. While it is unlikely

for all four MUAPs to fire synchronously, this simulation shows the effectiveness of
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the decomposition.

Figure 4.1: Component functions for four MUAPs synchronously firing
with shape determined by φ

The compound signal which is the sum of the four constituent functions as seen in

equation 4.1 is below.
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Figure 4.2: Compound function. ψ(t)

The estimates of the contribution from each component function were calculated using

the Fourier series method and the perturbative approximate series expansion method.

The plot comparing the estimates with the actual distribution is in Figure 4.3 below.
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Figure 4.3: Contribution estimates from perturbation and Fourier series
compared with actual distribution.

4.2 Decomposition of MUAPTs

A synthetic EMG compound signal was arbitrarily created that was composed of

three MUAPTs incorporating dynamic range and fixed firing rates. The MUAPTs

were formed from the MUAP templates (Figure 4.4) and modeled using equation 3.5.

The compound signal can be written as the summation of these MUAPTs as

ψ(t) = u1(t) + u2(t) + u3(t)
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Figure 4.4: MUAP templates f1, f2, f3 used to create compound EMG sig-
nal composed of MUAPTs u1, u2, u3, respectively

Table 4.1: Parameters describing MUAPTs present in the synthetic sEMG
signal.

MUAPT φ Firing Time Spacing (ms) Scale, κ

u1 0 20 3

u2 π/2 24 6

u3 −π/5 28 4

where the MUAPTs can be represented in terms of shifted component MUAPs as

u1(t) = κ1[f1(t− t5) + f1(t− t10) + . . .+ f1(t− t45)]

u2(t) = κ2[f2(t− t6) + f2(t− t12) + . . .+ f2(t− t48)]

u3(t) = κ3[f3(t− t7) + f3(t− t14)] + . . .+ f3(t− t49)]

where tn = (n− 1) ∗ 4ms due to component functions spaced at 250Hz.

The compound signal is plotted in Figure 4.5 below, with the three constituent

MUAPTs plotted as blue, red, and green.
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Figure 4.5: Compound synthetic sEMG signal with the three MUAPTs
composing it shown below. u1 is blue, u2 is red, and u3 is green.

The component functions are each of the MUAP templates time-shifted over the

length of the EMG signal with spacing of 4ms.

Figure 4.6: Component functions.
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The perturbation based decomposition was run on the compound sEMG function for

the given MUAP component functions. Thresholding was performed separately for

each MUAPT due to the dynamic range of template scaling. In Figure 4.7 below, the

decomposition results before thresholding and after thresholding are displayed next

to the actual constituent functions for motor unit 1.

Figure 4.7: Estimated constituent functions, estimated constituent func-
tions after thresholding β, and actual constituent functions for motor unit
1.

In Figure 4.8 below, the decomposition results before thresholding and after thresh-

olding are displayed next to the actual constituent functions for motor unit 2.
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Figure 4.8: Estimated constituent functions, estimated constituent func-
tions after thresholding β, and actual constituent functions for motor unit
2.

In Figure 4.9 below, the decomposition results before thresholding and after thresh-

olding are displayed next to the actual constituent functions for motor unit 3.
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Figure 4.9: Estimated constituent functions, estimated constituent func-
tions after thresholding β, and actual constituent functions for motor unit
3.

Figure 4.10 below displays the contribution from each component function to the

compound function for the actual distribution compared with the perturbation based

decomposition estimates.
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Figure 4.10: Frequency distribution of component functions after thresh-
olding for synthetic sEMG signal.

The synthetic sEMG signal was reconstructed using the perturbation based decompo-

sition contribution estimates after thresholding. The comparison of the sEMG signal

and the reconstruction is below in Figure 4.11.

Figure 4.11: Comparison of the synthetic sEMG signal with the pertur-
bation estimates reconstruction post-threshold.
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Table 4.2: Error table comparing actual and estimated firing rates for the
MUAPTs present in the synthetic sEMG signal.

MUAPT Actual Firing Rate (Hz) Estimated Firing Rate (Hz) % Error

u1 50 50 0

u2 41.6 41.6 0

u3 35.7 35.7 0

4.3 Decomposition of Experimental Data

The decomposition was tested on sEMG experimental data collected from the biceps

brachii that contained six MUAPTs [1]. The MUAP template waveforms associated

with each MUAPT were determined by EMGLAB and are shown in Figure 4.13. The

compound sEMG function after bandpass filtering from 10Hz to 1kHz is shown in

Figure 4.12.

Figure 4.12: sEMG signal from biceps brachii.
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Figure 4.13: Templates for MUAP shapes present in sEMG signal.

EMGLAB decomposed the MUAPTs using an algorithm followed by considerable

manual editing. The EMGLAB decomposition results for one of the MUAP template

shapes over the length of the entire sEMG (1000ms) is displayed in Figure 4.14. The

results of the perturbation based decomposition will be compared with EMGLAB’s

decomposition for the six MUAP template shapes.
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Figure 4.14: EMGLAB decomposition results shown for a single MUAP
template shape present in the sEMG in Figure 4.12 .

The component functions used for the perturbative approximate series expansion were

the six MUAP template shapes time-shifted over the length of the decomposition

region of the sEMG signal with a spacing of 2.5ms. Due to system constraints, only

small sections of the sEMG signal could be decomposed at a time, with the success of

the decomposition highly dependent on the selection of the section of sEMG signal.

Usually there were zero to two firings of each MUAP template per decomposition

section.

Figure 4.15: Representative component functions for a single MUAP tem-
plate shape with shifts of 2.5ms.

The below example of the decomposition of 40ms of sEMG signal is representative

of the overall accuracy of the technique. In the 40ms section of sEMG signal, four of

the MUAP templates each fired one time while the other two MUAP temples did not

fire at all (according to EMGLAB decomposition).

In Figure 4.16 below, the contribution estimates for the MUAP 2 component func-
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tions improve greatly with thresholding. After thresholding, there are two MUAPs

identified instead of one.

Figure 4.16: Estimated constituent functions, estimated constituent func-
tions after thresholding, and actual constituent functions for motor unit
2.

In Figure 4.17 below, the contribution estimates for the MUAP 3 component func-

tions improve greatly with thresholding. After thresholding, there are two MUAPs

identified instead of one.
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Figure 4.17: Estimated constituent functions, estimated constituent func-
tions after thresholding, and actual constituent functions for motor unit
3.

In Figure 4.18 below, the contribution estimates for the MUAP 5 component func-

tions improve greatly with thresholding. After thresholding, there are two MUAPs

identified instead of one.
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Figure 4.18: Estimated constituent functions, estimated constituent func-
tions after thresholding, and actual constituent functions for motor unit
5.

In Figure 4.19 below, the contribution estimates for the MUAP 6 component func-

tions improve greatly with thresholding. After thresholding, there are three MUAPs

identified instead of one.
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Figure 4.19: Estimated constituent functions, estimated constituent func-
tions after thresholding, and actual constituent functions for motor unit
6.
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5 Discussion

This work explored the feasibility of using Szlavik’s perturbative approximate series

expansion method for analysis of sEMG signals. While successful for synthetic sig-

nals, the decomposition worked inconsistently for experimental EMG signals for the

following reasons:

• Spacing of component functions:

For experimental sEMG signals, the firing times of MUAPs are analog, while

the component functions used as inputs to the perturbation based decomposi-

tion have discrete firing times. This causes issues when the experimental MUAP

has a firing time in between two component MUAPs firing times. The decom-

position commonly estimates the presence of two MUAPs instead of one, as in

Figure 4.18.

• Similarity of MUAP waveforms:

Similar MUAP shapes between different motor units causes difficulty for the

algorithm as may it misidentify an action potential, or estimate both of the

similar MUAP component functions as contributors.

• Complexity of sEMG signal:

Signals with larger numbers of motor units, larger ranges in amplitude sizes

between MUAPs, and more similar MUAP shapes increase complexity of sEMG

signal and the difficulty of decomposition.
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5.1 Implications

Successful decomposition of sEMG signals, especially for firing times of MUAPs, is

useful for evaluation of neuromuscular diseases as well as in clinical research. There

is a need for fast, accurate, and easy-to-use EMG signal decomposition for better

understanding of normal muscle activation, as well as muscle activation affected by

disease states, fatigue, aging, space, and pharmaceuticals [9]. The noninvasive nature

of sEMG allows for less experienced operators to record signals with less pain and

risk to subjects, but it comes with increased decomposition challenges. The perturba-

tive expansion series method’s ability to handle nonorthogonal component functions

with limited user intervention (only manual thresholding) makes it a good candidate

for sEMG signal decomposition. The success of the decomposition with both syn-

thetic and experimental signals shows promise for improved ease of decomposition

for diagnosis as well as research. The decomposition occasionally missed MUAPs or

misidentified MUAPs present in the signal. The decomposition was more accurate at

identifying the timing of MUAPs than at determining amplitude of MUAPs.

5.2 Limitations and Future Work

The major limitations affecting success of sEMG decomposition were similarity in

shape of action potential waveforms from the different motor units composing the

EMG signal and the high degrees of variability and complexity between sEMG sig-

nals. Future work may involve setting the component functions as the main MUAP

template shapes present throughout sEMG signals, with a further decomposition al-

gorithm applied after the perturbation based decomposition to determine MUAPTs

of each template type (using the assumptions of constant firing rates and constant am-

plitudes within a MUAPT). Additionally, incorporating knowledge of the refractory
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period into the sEMG perturbation based decomposition technique would improve

the technique for cases in which adjacent component functions within a motor unit

template are both estimated to fire.

Other important limitations were computing power and memory. Variables affecting

the required computing power and memory for decomposition were the length of the

EMG signal, number of component functions (smaller spacing between component

functions increases accuracy of the decomposition while requiring significantly more

memory), and the sampling rate of the EMG signal.

An additional limitation was the requirement for the system of component functions

used in decomposition of the compound function to remain overdetermined. For the

system to be overdetermined, the number of time points in the compound signal must

be greater than the component functions squared minus the number of component

functions. As the number of MUAP templates used as inputs to the decomposition

increases, and thus the number of component functions increases, the number of time-

points in the compound signal must be increased to satisfy the inequality. For the

experimental data sampled at 10kHz, the compound EMG signal time-points had to

be interpolated by a factor of up to thirty (depending on the length of the sEMG

segment and component function spacing) to solve the decomposition which further

increased the required computing power and memory.

5.3 Conclusion

The ability to detect small changes in muscle activation without insertion of nee-

dle electrodes or requirement for a well-trained operator would greatly increase the

applications for EMG in nonclinical research, clinical research, and diagnosis of neu-

romuscular disorders. Accessible, convenient, and easy-to-use sEMG decomposition
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(with minimal user intervention) would allow for more research into muscle activation

and a better understanding of neurodegenerative disorders.
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APPENDIX A Synthetic MUAP Model

% Author: Rachel Huettinger

% Script: muap_model

%

% Description: Synthetic MUAP Model from "Homomorphic

% Deconvolution for MUAP Estimation from surface EMG

% signals."

% Inputs: phi = Angle between v1 and v2

% scale = Scaling factor of MUAP

% shift = Time-shift of MUAP

% span = Total time (ms)

% tstep = Time-step (ms)

% Internal: count = Number of points in vector

% Returns: f = Synthetic MUAP waveform

function f = muap_model(phi, scale, span, shift, tstep)

t = 0:tstep:span;

z = t-shift;

H1 = hermiteH(1,z);

H2 = hermiteH(2,z);

v1 = H1.*(exp(-z.ˆ2))/sqrt(2*pi);

v2 = H2.*(exp(-z.ˆ2))/sqrt(8*pi);

f = scale*((sin(phi)*v1)/norm(v1) + (cos(phi)*v2)/norm(v2));

end
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B Synchronous MUAP Decomposition

% Author: Rachel Huettinger

% Script: synchronous_decomposition

%

% Description: Decomposes synchronoous synthetic sEMG signals into constituent

% MUAPs using Perturbation.m by R. Szlavik

%% Establish intrinsic MUAP functions

phi_mat = [pi/2 pi/4 pi/8 pi/16]; %Hermite shape determined by phi

tstep = 0.01; %time-step

emg_time = 10; %emg signal length (ms)

t = 0:tstep:emg_time; %time-vector

num_steps = length(t); %number of time points

shift_comp_hz =600; %shift of intrinsic templates [Hz]

shift_comp_ms = 1000/shift_comp_hz; %shift [ms]

shift_comp_vector = shift_comp_ms:shift_comp_ms:(emg_time-shift_comp_ms);

num_shifted = 1;

num_templates = length(phi_mat); %number of templates

num_comp = num_templates*num_shifted; %total intrinsic functions

%% Will decomposition error due to system being underdefined?

minimum_un = num_comp*num_comp - num_comp;

assert(num_steps > minimum_un)

%% Create component functions using MUAP model

scale = 1;

comp_1= muap_model(phi_mat(1), scale, emg_time, 2*shift_comp_ms, tstep);

comp_2= muap_model(phi_mat(2), scale, emg_time, 2*shift_comp_ms, tstep);

comp_3= muap_model(phi_mat(3), scale, emg_time, 2*shift_comp_ms, tstep);

comp_4= muap_model(phi_mat(4), scale, emg_time, 2*shift_comp_ms, tstep);

orthog = [comp_1; comp_2; comp_3; comp_4];

orthog = transpose(orthog);
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beta = [2 7 4 10]; %amount of each muap shape present in compound

%% Create compound from constituents

psi = zeros(num_steps,1);

constituents=zeros(num_steps,num_comp);

for i = 1:num_comp

for j = 1:num_steps

psi(j) = psi(j) + beta(i)*orthog(j,i); %compound function

end

constituents(:,i)=orthog(:,i)*beta(i);

end

%% Decompositions

psi_estimate = zeros(num_steps,1);

beta_norm_estimate = zeros(num_comp,1);

order = zeros(num_comp,1);

error_fourier = zeros(num_comp,1);

error_estimate = zeros(num_comp,1);

linearity_matrix = zeros(num_comp,num_comp);

coef_matrix = zeros(num_comp,num_comp);

phase_matrix = zeros(num_comp,num_comp);

% Fourier

for i = 1:num_comp

numerator = tstep*trapz(orthog(:,i).*psi(:));

denominator = tstep*trapz(orthog(:,i).*orthog(:,i));

beta_norm_estimate(i) = numerator/denominator;

end

% Perturbation

scale=1;

[estimates, coef_matrix] = Perturbation(tstep, scale, psi, orthog);

for k = 1:num_comp
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for jk = 1:num_steps

psi_estimate(jk) = psi_estimate(jk) + estimates(k)*orthog(jk,k);

end

end

compound_store = [t’ psi psi_estimate];

save compound.dat compound_store -ASCII -double

for i = 1:num_comp

order(i,1) = (i-1);

end

frequency_store = [order beta’ estimates];

save frequency.dat frequency_store -ASCII -double

for i = 1:num_comp

error_fourier(i) = abs(beta(i)-beta_norm_estimate(i));

error_estimate(i) = abs(beta(i)-estimates(i));

end

error_store = [order error_fourier error_estimate];

save error.dat error_store -ASCII -double

for i = 1:num_comp

for j = 1:num_comp

linearity_matrix(i,j) = sqrt(coef_matrix(i,j)*conj(coef_matrix(i,j)));

end

end

phase_matrix = angle(coef_matrix)*(180/pi);
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C Synthetic sEMG MUAP Decomposition

% Author: Rachel Huettinger

% Script: synthetic_semg_decomposition

%

% Description: Decomposes synthetic sEMG signals into constituent

% MUAPs using Perturbation.m by R. Szlavik

%% Establish component MUAP functions

phi_mat = [0 pi/2 -pi/5]; %Hermite shape determined by phi

tstep = 0.009; %time-step

emg_time = 200; %EMG signal length (ms)

t = 0:tstep:emg_time; %time-vector

num_steps = length(t); %number of time points

shift_comp_ms = 4; %spacing between component functions

shift_comp_vector = shift_comp_ms:shift_comp_ms:(emg_time-shift_comp_ms);

num_shifted = length(shift_comp_vector);

num_templates = length(phi_mat); %number of templates

num_comp = num_templates*num_shifted; %total component functions

%% Will decomposition error due to system being underdefined?

minimum_un = num_comp*num_comp - num_comp;

assert(num_steps > minimum_un)

%% Establish component functions

scale = 1;

comp_1= muap_model(phi_mat(1), scale, emg_time, shift_comp_ms, tstep);

comp_2= muap_model(phi_mat(2), scale, emg_time, shift_comp_ms, tstep);

comp_3= muap_model(phi_mat(3), scale, emg_time, shift_comp_ms, tstep);

orthog1 = zeros(num_shifted,num_steps);

orthog2 = zeros(num_shifted,num_steps);

orthog3 = zeros(num_shifted,num_steps);

for k = 1:num_shifted
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n=round(shift_comp_vector(k)/tstep);

orthog1(k,(n+1:end)) = comp_1(1:end-n);

orthog2(k,(n+1:end)) = comp_2(1:end-n);

orthog3(k,(n+1:end)) = comp_3(1:end-n);

end

orthog = [orthog1 ; orthog2; orthog3]’;

%% Establish constituent MUAPT functions

% Using component functions, create constituent MUAPTs

shift_constituents = [20 24 28]; %ms

num_constituents = length(shift_constituents);

scale = [3 6 4]; %dynamic range

beta = zeros(1,length(num_comp));

shift_b = single(shift_comp_vector);

shift_c = single(shift_constituents);

for j = 1:num_constituents

fin = ˜rem(shift_b,shift_c(j));

if j == 1

beta = fin*scale(j);

else

beta = [beta fin*scale(j)]; %incorporate scale into beta

end

end

%% Compound function is sum of constituent MUAPTs

psi = zeros(num_steps,1);

constituents=zeros(num_steps,num_comp);

%j is time-steps, i is total muaps

for i = 1:num_comp

for j = 1:num_steps

psi(j) = psi(j) + beta(i)*orthog(j,i);

end

constituents(:,i)=orthog(:,i)*beta(i);

end
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%% Decompositions

psi_estimate = zeros(num_steps,1);

beta_norm_estimate = zeros(num_comp,1);

order = zeros(num_comp,1);

error_fourier = zeros(num_comp,1);

error_estimate = zeros(num_comp,1);

linearity_matrix = zeros(num_comp,num_comp);

coef_matrix = zeros(num_comp,num_comp);

phase_matrix = zeros(num_comp,num_comp);

% Fourier

for i = 1:num_comp

numerator = tstep*trapz(orthog(:,i).*psi(:));

denominator = tstep*trapz(orthog(:,i).*orthog(:,i));

beta_norm_estimate(i) = numerator/denominator; %fourier estimates

end

% Perturbation

scale=1;

[estimates, coef_matrix] = Perturbation(tstep, scale, psi, orthog);

for k = 1:num_comp

for jk = 1:num_steps

psi_estimate(jk) = psi_estimate(jk) + estimates(k)*orthog(jk,k);

end

end

compound_store = [t’ psi psi_estimate];

save compound.dat compound_store -ASCII -double

for i = 1:num_comp

order(i,1) = (i-1);

end

frequency_store = [order beta’ estimates];

save frequency.dat frequency_store -ASCII -double
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for i = 1:num_comp

error_fourier(i) = abs(beta(i)-beta_norm_estimate(i));

error_estimate(i) = abs(beta(i)-estimates(i));

end

error_store = [order error_fourier error_estimate];

save error.dat error_store -ASCII -double

for i = 1:num_comp

for j = 1:num_comp

linearity_matrix(i,j) = sqrt(coef_matrix(i,j)*conj(coef_matrix(i,j)));

end

end

phase_matrix = angle(coef_matrix)*(180/pi);

%% Threshold for each MUAP template shape

% Estimates below threshold value set to 0

thresh1 = 1.5; %threshold MUAP 1

thresh2 = 2; %threshold MUAP 2

thresh3 = 2; %threshold MUAP 3

s_emg_estimate_th = zeros(num_steps,1);

b_estimates_th = zeros(num_comp,num_steps);

estimates_th = estimates;

for i = 1:num_shifted

if estimates_th(i) < thresh1

estimates_th(i) = 0;

end

end

for i = num_shifted+1:(2*num_shifted)

if estimates_th(i) < thresh2

estimates_th(i) = 0;

end

end
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for i = (2*num_shifted+1):(3*num_shifted)

if estimates_th(i) < thresh3

estimates_th(i) = 0;

end

end

% sEMG signal estimate after thresholding

for k = 1:num_comp

for jk = 1:num_steps

b_estimates_th(k,jk) = estimates_th(k)*orthog(jk,k);

s_emg_estimate_th(jk) = s_emg_estimate_th(jk) + estimates_th(k)*orthog(jk,k);

end

end
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D Real sEMG MUAP Decomposition

% Author: Rachel Huettinger

% Script: real_semg_decomposition

%

% Description: Decomposes real sEMG signals into constituent

% MUAPs using Perturbation.m by R. Szlavik

% Dataset: R01102a (EMGLAB)

clc

clear

%% Set Time Variables

emg_start = 1.31;

emg_end = 1.39;

%% Load EMG signal and Templates

load(’s_2a_ch1’); % choose ch1, ch2, or ch3

load(’muaps_2a_ch1_short’);

load(’patterns’);

s_emg = s.sig;

dt = s.dt; %time-step

templates = muaps;

firing_t1 = [patterns{:,1}];

firing_t2 = [patterns{:,2}];

firing_t3 = [patterns{:,3}];

firing_t4 = [patterns{:,4}];

firing_t5 = [patterns{:,5}];

firing_t6 = [patterns{:,6}];

%% Establish time vectors

t_complete_emg = 0:dt:((length(s_emg)-1)*dt); %Time vector for complete EMG signal
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[minValue,startIndex] = min(abs(t_complete_emg-emg_start));

[minValue,endIndex] = min(abs(t_complete_emg-emg_end));

emg_time = emg_end - emg_start; %length of EMG signal (s)

t_emg = t_complete_emg(startIndex:endIndex);

s_emg = s_emg(startIndex:endIndex); %EMG signal to decompose WHEN I CHANGE THIS I HAVE TO CHANGE FIRING TIMES TO MATCH

template_time = 0.009; %Length of Template (s)

t_template = 0:dt:template_time; %Time vector for template

%% Interpolation to increase number of data points

dt1 = dt/12;

t_emg1 = t_emg(1):dt1:t_emg(end);

s_emg1 = interp1(t_emg, s_emg, t_emg1);

t_template1 = 0:dt1:template_time;

templates1 = interp1(t_template, templates, t_template1);

%% Set previous variable names

s_emg = s_emg1;

t_emg = t_emg1;

dt = dt1;

t_template = t_template1;

templates = templates1;

num_steps = length(t_emg);

%% Create component functions by shifting MUAP templates

shift_comp_hz =250; %shift of component templates [Hz]

shift_comp_s = 1/shift_comp_hz; %shift [s]

shift_comp_vector = 0:shift_comp_s:(emg_time-shift_comp_s); %vector of time-shifts

num_shifted = length(shift_comp_vector); %number of shifted component functions

[r_temp, c_temp] = size(templates);

num_templates = c_temp; %number of templates

num_comp = num_templates*num_shifted; %total component functions (templates*shifts)

%% Will it error due to system underdefined?

thing = num_comp*num_comp - num_comp;

assert(num_steps > thing)
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%% Create ’orthog’ (vector filled with all component functions)

components = zeros(num_shifted,num_steps,num_templates);

for i = 1:num_templates

for k = 1:num_shifted

n=round(shift_comp_vector(k)/dt);

components(k,(n+1:n+r_temp),i) = templates(:,i);

end

end

components = components(:,1:num_steps,:);

orthog = [components(:,:,1);components(:,:,2);components(:,:,3);components(:,:,4);components(:,:,5);components(:,:,6)]’;

%% Apply Decomposition

scale=1;

[estimates, coef_matrix] = Perturbation(dt, scale, s_emg, orthog);

%% EMG signal estimate from decomposition

s_emg_estimate = zeros(num_steps,1);

b_estimates = zeros(num_comp,num_steps);

for k = 1:num_comp

for jk = 1:num_steps

b_estimates(k,jk) = estimates(k)*orthog(jk,k);

s_emg_estimate(jk) = s_emg_estimate(jk) + estimates(k)*orthog(jk,k);

end

end

%% Beta approx for error calculation

beta_approx = real_data_beta(num_comp, shift_comp_vector, r_neg, dt, emg_start, f_t1, f_t2, f_t3, f_t4, f_t5, f_t6);

figure(6)

plot(1:num_comp,beta_approx, ’bo’) %beta is actual distribution included

hold on

plot(1:num_comp,estimates,’rx’) %estimates is predicted amount
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