Penn

Libraries ) . University of Pennsylvania
O UNIMERSITY 0f PENNSYLVANIA 4 ScholarlyCommons

Publicly Accessible Penn Dissertations

2018

Characterizing The Energetic Landscape In
Solution Processable Solar Cells Via Frequency-
Dependent Impedance Measurements

Eric S. Wong

University of Pennsylvania, wongerics@gmail.com

Follow this and additional works at: https://repositoryupenn.edu/edissertations

b Part of the Condensed Matter Physics Commons, and the Nanoscience and Nanotechnology

Commons

Recommended Citation

Wong, Eric S., "Characterizing The Energetic Landscape In Solution Processable Solar Cells Via Frequency-Dependent Impedance
Measurements" (2018). Publicly Accessible Penn Dissertations. 3203.
https://repositoryupenn.edu/edissertations/3203

This paper is posted at ScholarlyCommons. https://repositoryupenn.edu/edissertations/3203

For more information, please contact repository@pobox.upenn.edu.


https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F3203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=repository.upenn.edu%2Fedissertations%2F3203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=repository.upenn.edu%2Fedissertations%2F3203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=repository.upenn.edu%2Fedissertations%2F3203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3203?utm_source=repository.upenn.edu%2Fedissertations%2F3203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3203
mailto:repository@pobox.upenn.edu

Characterizing The Energetic Landscape In Solution Processable Solar
Cells Via Frequency-Dependent Impedance Measurements

Abstract

This thesis presents measurements and analyses aimed at describing charge transport dynamics in quantum
dot (QD) photovoltaics (PVs). Due to their solution processability and unique size-dependent optoelectronic
properties, ensembles of electronically coupled QDs (QD solids) provide an exciting platform for next
generation PV devices. However, the structural disorder associated with the formation of conductive QD
solids gives rise to a complicated density of states (DOS) emerging from the distribution of mesoscale charge
dynamics occurring in these materials.

I present phenomological models to describe the DOS in the disordered energetic and spatial landscape of
QD solids that relies on a suite of frequency-domain measurements known as impedance spectroscopy (IS).
Though specific applications of IS such as thermal admittance spectroscopy (TAS) have been applied to the
capacitance characteristics of QD solids, a fuller picture of the DOS in these materials is afforded by analysis
of the time-scales evident in the full impedance characteristics of QD devices.

I heuristically propose extensions of charge transport models developed for capacitance-voltage (CV)
measurements of bulk semiconductors to describe the frequency-dependent capacitance and conductance
response of a variety of QD solar cell device architectures. In Chapter 3, I show how TAS and drive level
capacitance profiling (DLCP) characterization of a QD Schottky junction is linked to charge hopping
processes observed in AC conductance data. This allows me to map the time scales detected in these data to
the DOS in the QD solid. I then suggest how the observed DOS translates onto macroscale device properties
like the diode current. In Chapter 4, I apply these techniques to a QD heterojunction device. I use forward
biased IS characterization to suggest the presence of a defect state at the junction interface, and calculate the
associated distribution of carrier lifetimes. In Chapter 5, I attempt to extend this model to a QD p-i-n
heterojunction solar cell, and obtain a response consistent with interfacial trapping and carrier transport.
Though unambiguous identification of the origin of these responses proves beyond the scope of this thesis, I
use illuminated TAS and DLCP measurements to show the presence of an interfacial trap for photogenerated
electrons.
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ABSTRACT
CHARACTERIZING THE ENERGETIC LANDSCAPE IN SOLUTION PROCESSABLE

SOLAR CELLS VIA FREQUENCY DEPENDENT IMPEDANCE MEASUREMENTS

Eric S. Wong

Cherie R. Kagan

This thesis presents measurements and analyses aimed at describing charge transport dynamics
in quantum dot (QD) photovoltaics (PVs). Due to their solution processability and unique size-
dependent optoelectronic properties, ensembles of electronically coupled QDs (QD solids) provide
an exciting platform for next generation PV devices. However, the structural disorder associated
with the formation of conductive QD solids gives rise to a complicated density of states (DOS)
emerging from the distribution of mesoscale charge dynamics occurring in these materials.

I present phenomological models to describe the DOS in the disordered energetic and spa-
tial landscape of QD solids that relies on a suite of frequency-domain measurements known as
impedance spectroscopy (IS). Though specific applications of IS such as thermal admittance spec-
troscopy (TAS) have been applied to the capacitance characteristics of QD solids, a fuller picture of
the DOS in these materials is afforded by analysis of the time-scales evident in the full impedance
characteristics of QD devices.

I heuristically propose extensions of charge transport models developed for capacitance-voltage
(CV) measurements of bulk semiconductors to describe the frequency-dependent capacitance and
conductance response of a variety of QD solar cell device architectures. In Chapter [3] T show how
TAS and drive level capacitance profiling (DLCP) characterization of a QD Schottky junction is
linked to charge hopping processes observed in AC conductance data. This allows me to map the
time scales detected in these data to the DOS in the QD solid. I then suggest how the observed

DOS translates onto macroscale device properties like the diode current. In Chapter 4, I apply

v



these techniques to a QD heterojunction device. I use forward biased IS characterization to suggest
the presence of a defect state at the junction interface, and calculate the associated distribution of
carrier lifetimes. In Chapter [p| I attempt to extend this model to a QD p-i-n heterojunction solar
cell, and obtain a response consistent with interfacial trapping and carrier transport. Though
unambiguous identification of the origin of these responses proves beyond the scope of this thesis,
I use illuminated TAS and DLCP measurements to suggest the presence of an interfacial trap for

photogenerated electrons.
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Chapter 1

Mesoscale Properties of Quantum

Dot Solids

1.1 Introduction

Since the introduction of the germanium transistor in 1947, electronic devices based on semi-
conductors have ushered in the information age. The ability to produce semiconductor crystals
(typically made of silicon) with defect levels below one part per billion has enabled high quality
electronic materials that are used to make solar panels that deliver ~ 400 GW of solar power
worldwide or circuits that compute ~ 3 billion instructions per second in a single modern smart
phone. As the demand for ubiquitous electronics increases, research and commercial interest has
grown in low-cost, structurally flexible, and large area semiconductor materials to address the
modern technological challenges that prohibit the application of traditional crystalline materials,
which are typically rigid and expensive to produce for large-area applications.
Solution-processable nanoscale materials, such as organic semiconducting polymers and col-

loidal quantum dots (QDs), offer an attractive alternative for these emerging applications. These



materials may be patterned onto large area, flexible substrates via roll-to-roll processing. Further-
more, their low-temperature syntheses generally avoid costly high-vacuum processing, significantly
reducing manufacturing costs. Perhaps most importantly, the precise control offered by the chem-
ical methods used to synthesize these nanoscale materials offers routes for functionalization of
individual components, allowing for novel optical, magnetic, and electronic properties.

Despite these advantages, significant challenges are introduced when electronic devices are
fabricated from arrays of nanoscale components instead of a single bulk crystal. Many of the
requisites for high performance semiconductor electronics, such as precise control over doping and
purity levels and high charge carrier mobility, are not met by solution processable components
due to the lack of spatial and energetic order in ensembles of nanoscale components. As a result,
these materials have yet to be widely adopted as viable next-generation technologies aside from a
few niche applications.

This thesis uses QD assemblies as a platform to investigate charge dynamics in the complicated
energetic landscape exhibited by solution processable materials. Though exquisite control can be
exercised over the optical and electronic properties of QDs, making them attractive materials for
electronic and solar applications, ensembles of QDs (QD solids’) lack the structural perfection
necessary to match the charge transport properties of bulk crystalline alternatives. The goal of
this thesis is to understand how the structural complexity characteristic of QD solids maps onto
the ensemble density of states (DOS), and the implications of this energetic and spatial disorder
for device-scale electronic properties.

In this chapter, we introduce QDs, including a brief overview of their synthesis and a discussion
of their unique size-dependent physical properties (Section . We then discuss how assemblies
of QDs may be made into an electronic device, focusing on PV devices in Section In section
we go on to review the emergent properties of QD solids, and how these properties influence
both DC and AC conductivity. At the end of this chapter, we present an outline for the main part

of the thesis.



1.2 Colloidal QDs

The chemical synthesis methods used to make colloidal QDs has been the focus of intense research
for over two decades. As a result, a broad variety of QD materials can be synthesized, including
metal chalcogenides ("E’), metal oxides, and III-V semiconductors such as InP and InAs.[74]
107] Among the most well studied are the lead and cadmium chalcogenides. In this thesis, we
study PbS synthesized via the hot injection method first introduced for CdSe QDs by Murray,
Norris, and Bawendi, which we review briefly here.[108] A reaction flask containing a coordinating
solvent and metal precursor (Pb-oleate) is heated to ~ 300° C after which a second chalcogen
precursor (bis-trimethylsilylsulfide, (TMS)2S) is injected, resulting in a super-saturated solution
of precursors. Small crystallites of PbS begin nucleating, consuming precursors, and the final
size of these crystallites is determined by the reaction time and temperature. At the end of the
reaction, the QD crystallites undergo Ostwald ripening in which smaller QDs are dissolved and
redeposit onto larger crystals.

The reaction solution is washed to remove remaining precursors and growth medium. Washing
involves mixing the reaction dispersion with an ’anti-solvent’ that is typically miscible with the
reaction dispersion and solubilizes the growth solution such that the QDs are removed from solu-
tion. The total mixture is then centrifuged to separate the QDs from the solution, after which the
excess solution (’supernatant’) is discarded. Repeating this procedure many times results in highly
mono-disperse QD dispersion in which the size of constituent QDs exhibits a standard deviation

of ~ 5%.

1.2.1 Size-Dependent Physical Properties of QDs

QDs are prized for their size-dependent optical and electronic properties which result from the
confinement of charge carriers such as electrons, holes, and excitons within a volume smaller than

their coherence length. The essential physics of this effect, also known as ’‘quantum confinement’,



can be understood by considering the elementary example of the particle in a 1-D infinite square

well, in which an electron is confined in the following potential distribution:

oo ifz<a/2orz>al2
V(z)=

0 if-a/2<xz<a/2
This potential is illustrated in Figure [I.IJA. This simple physical example may be used as a
first order approximation to derive the spectra of a single QD with length a. Within the well,
the electron feels no binding potential, and the general solution to the 1-D time-independent
Schrodinger equation is:
Y(x) = Ae’t 1 Be't® (1.2.1)

where k; = 2}7{”5 and A and B are arbitrary constants. This solution describes free electron

plane waves traveling in both the +z and —x directions. These waves combine to form a single
standing wave, which we can incorporate into our model by letting A = B. The resulting wave

may be written:

/

w(x) — B(eika: +eikac) _ %(eikx +eikx) — B/COS(kCL') (1.2.2)

Since the coefficients A and B are arbitrary, we may also let —A = B, whence we obtain:

(z) = A’sin(kx) + B'cos(kx) (1.2.3)
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Figure 1.1: (A) Infinite square well potential (B) First three eigenfunctions of the infinite potential

well, drawn after [38].

The infinite potential outside the well implies that outside the well, ¥(z) = 0. Imposing this

boundary condition at both +a/2, we obtain (letting A’, B — A, B):

k k
W(a/2) = Asin(g) + Bcos(g)
k k
Y(—a/2) = —Asin(g) + Bcos(g)
= QBcos(k—;) = 0;
ka
2Asin(—
sin( 5 )

We can satisfy these equations by either setting A = 0 and cos(%) =0or B=0and sin(%) =0.

Considering the first option, we immediately see that only certain values of k; are allowed:

k:a_ﬂ 37 5w
2 2792797
— k= =1,3,5
a



Since k,, can only assume discrete values, E can only assume discrete values:

K2k m2h2n?

K,
2m 2m

(1.2.4)

The first few eigenfunctions with these energies are diagrammed in Figure [1.1]B.
A more accurate 1-D treatment of a single QD uses the finite potential well. Outside the well,

xX

() is an evanescent wave that decays as oc e where k =

Vo. The eigenfunctions for this potential are plotted in Figure [1.2
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Figure 1.2: Corrections for finite potential depth to eigenfunctions in Figure IB drawn after

138].

Despite the elementary nature of this example, it communicates the essential physics of quan-
tum confinement. As equation shows, changing the size of the well a changes the energy
spectrum of the well. Analogously, changing the radius of a QD changes its energy spectrum.
Quantum confinement in QDs therefore allows for precise control of optoelectronic properties like

optical absorption spectra via simple synthetic methods.



1.2.2 QD Assemblies

In QD synthesis, long organic ligands are used to mediate the growth of the QD crystallites. These
bulky, carbon-based ligands are insulators. In the language of the preceding section, these ligands
introduce a large potential barrier Vg for charge within the potential well of the QD. As a result,
the wavefunction in a QD with native ligands is highly localized.

A conductive QD assembly may therefore be obtained by a decrease in Vj or in barrier width,
requiring removal or exchange of these native ligands for smaller, more compact species. Carrier
mobilities in QD assemblies have been shown to systematically vary with ligand length for ligand
molecules such as alkanedithiols[91] and short chain acids.[I38] As will be discussed in the next
section, an increase in carrier mobility u can be expected for a decrease in the length of the barrier
R between QDs as:

< exp(—aR) (1.2.5)

where « is the decay constant.

The more compact ligands used to exchange native ligands—typically oleic acid (OA)- include
small molecules such as hydrazine, amines, or carboxylic acids[91] [78, [76, @7, 83]. Small chain
thiols such as 1,2-ethanedithiol (EDT)[97, [76] and 1,4-benzenedithiol[78] have been shown to be
effective at exchanging assemblies of PbE QDs. The first QD PV devices [97, [68] and field effect
transistors (FETSs) [I41] were demonstrated using these ligands.

Halide ions (X° = CI', Br, I') have also been shown to passivate QD surfaces and enhance
electronic coupling in QD arrays. Halide ions have the added benefit of being chemically inert
to oxidation due to their high electron affinity. Salts with a weak counterion, such as tetra-
butylammonium (TBA™ X-) have been effective at increasing the efficiency of QD PV devices to
~ 10%[32], 27, 62]

Recent studies of the mechanism by which these species displace native ligands have revealed

that removal of OA occurs through detachment of oleate from the QD surface.[4] This implies that



the the metal atoms on the QD surface to which the OA is bound may also be removed during
ligand exchange. Though necessary for electronic coupling, ligand exchange in QD solids may
also change the QD surface stoichiometry and inadvertently introduce dangling bonds and other
localized electronic traps[46] [60]

Ligand exchange may be accomplished either in solution (’solution-exchange’) or after a solu-
tion of QDs has been deposited (’solid-state exchange’). For the devices and QD solids studied in
this thesis, solid-state exchange procedures that use spincoating are used. As illustrated schemat-
ically in Figure spincoating involves first depositing a solution of QDs stabilized by native
organic ligands dispersed in a non-polar solvent onto a substrate. The spincoater is run, which
deposits a thin, dry film of ~ 20 nm of QDs depending on the spin-speed, QD concentration,
and solvent drying time. More compact ligands to increase electronic coupling in the QD array
are then introduced in the second step. This exchange solution is typically allowed to sit on the
substrate for ~ 60 s before being spun dry. In the third step, the QD film is rinsed with non-polar
solvent to remove excess compact ligand from the surface. This process is repeated until the
desired film thickness is achieved. For FETS, the desired thickness is typically ~ 50 nm, whereas
for PV devices, thicker films of ~ 100 — 200 nm are required. The charge transport mechanisms

exhibited in these QD solids will be discussed in detail in Section ([1.4))

\ 4 4
I. Deposition :» Il. Ligand Exchange Ill. Rinsing

Figure 1.3: Schematic of the spincoating process, showing (I) deposition of NC solution, (II) ligand

exchange, and (III) subsequent rinsing in polar solvent.



1.3 JV Characteristics of PV Devices

As mentioned, QD solids offer promising avenues for low cost PV devices. QD PV devices can be
constructed in p-n, Schottky, or p-i-n junction architectures. A schematic of a simple p-n junction
PV device is provided in Figure [I.4] with a depletion region W that extends over both the n-side
with length W, and the p-side with length W,,. When a positive voltage (forward bias) is applied
to the device, the minority carrier densities are changed from their equilibrium concentrations,
implying that the product of the carrier concentrations pn # n2. On the p-side of the junction far
from the depletion region, the holes are still in equilibrium with the valence band. Similarly, for
x >> W, the electrons are in equilibrium with the conduction band. As a result, we can define

the quasi-Fermi levels Ep,, and Ep,:[139)

Er, =FE; + kBTln(i)
i (1.3.1)

Ep, = E; — kpTin(L)
n;

where kp is Boltzmann’s constant, F; is the intrinsic energy level of the semiconductor, and n; is

the intrinsic carrier concentration. The pn product is:

EFn - EFp

) (1.3.2)

pn = n?exp(

Under forward bias, Fr, —FEr, > 0 and thus pn > nf This situation is illustrated schematically in
which displays the variation in Er, and Ef, with distance. The hole concentration on the p-
side (p,) drops dramatically across the junction, and equilibrates to the minority hole concentration
on the n-side (p,). The same dynamics are observed across the junction for electrons. An applied
electric field V' = @ drops across the depletion region which drives charge carrier drift
across the junction. This gives rise to an electron current J, = pu,nVEpr, and a hole current

Jp = pppV EFy,, where i, , are the electron and hole mobilities, respectively.
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Figure 1.4: (Energy band diagram with quasi Fermi levels Er,, and Ep, and carrier distributions

under forward bias, reproduced after [139].

In the dark, the total current density of a PV device device J at voltage V is given by the

Shockley diode equation:[139)

v
J=J,+J, = Jg[exp(nzBT) —1] (1.3.3)

where Jy is the saturation current density, n is the diode ideality fator, and 7" is the temperature.
Jo is the saturation current, which ideally depends only on the minority carrier diffusion lengths

on each side of the heterojunction:[I39]

D,p, D,n
Eq pD +q p

J
°= L, Ly,

(1.3.4)

where D,, , are the electron and hole diffusivities, respectively, and L,, , are the corresponding
carrier diffusion lengths. We note that the physical interpretation of parameters in equation ([1.3.3])

may not be obvious in systems where the current density exhibits large deviations from the ideal

diode equation (equation (1.3.3))).

10



The low forward bias region (V' < 0.3 V) captures the transport physics of the diode device
when the injected minority-carrier density on each side of the heterojunction is small compared
to the majority carrier concentration. The current density increases exponentially at a rate de-
termiend by n and Jy. In PbS QD PV devices, .Jy ranges from ~ 10~% — 10~7 mAcm™ for both
Schottky and pn device architectures.[29], 158] 28] The ideality n in a diode has been shown to
be linked to the dominant charge recombination mechanism in the PV device. In the ideal case,
n = 1, charge recombination occurs as excited electrons in the conduction band relax to the va-
lence band. Trap-assisted recombination, which will be discussed in some detail in Section [1.3]
is indicated when n = 2. We note that n may also describe other non-idealities, such as barrier
lowering in Schottky junctions due to large interfacial charge densities.[127]

The same diode equation governs the current density under illumination, only the
photocurrent J, increases as incident solar radiation excites excess carriers in the device. The

total current density is a summation of the dark and illuminated current, and may be written as:

J = Jo[exp(%) —-1]-Jg (1.3.5)

The open circuit voltage V,. of the PV device is the maximum attainable voltage in the cell due
the difference in Er, and Er, under solar irradiation, and therefore describes how much charge
may accumulate in the PV device under operating conditions. V,. may be obtained by setting
J=0:

Jr,

_ kel 2Ly (1.3.6)

Voe
q Jo

11



dark

J 4 illuminated
VOC
v’ * v
J mi
3 js_c """""""""

Figure 1.5: JV characteristics of a PV device under illumination with V. and Js. indicated, along

with FF and maximum voltage (V;,,) and current (J,,,) points.

V,e is marked in Figure Along with the illuminated short circuit current J,. it defines the
achievable power output P of the PV device. The fill factor (FF) describes the ratio %ﬂ, where
P,, is the ideal power output P, = J,V;,. The total power conversion efficiency (PCE) 7 of the

P

device is defined by n = B where P;, is the input power. The current PCE record in QD PVs

is ~ 11%.[82, 25]

1.3.1 Recombination Kinetics in Diodes

2
o

The excess charge carriers created under solar irradiation imply that pn > n;. Equilibrium is
restored as these excess carriers are eliminated via recombination processes.[I39] Recombination
encompasses several distinct charge relaxation processes within the semiconductor, including band-
to-band electron-hole recombination or trap-assisted recombination in which either an electron or

a hole are captured by a discrete energy state within the bandgap.

12
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Figure 1.6: (A) Band-band recombination (B) Trap assisted recombination in defect level Ep with

electron capture cross section o, and hole capture cross section oy,.

These two processes are diagrammed schematically in Figure[1.6] Figure shows band-to-
band recombination, in which an electron from the conduction band recombines directly with a hole
from the valence band. Band-to-band recombination events encompass a negligible proportion of
total recombination processes exhibited in QD solids used for PV devices. Recombination instead
is dominated by non-radiative events that take place in a defect DOS Np that lies within the
bandgap and are possibly localized on the surfaces of QDs in the assembly.[I39] These processes
are known as Shockley-Read-Hall (SRH) recombination, and are depicted schematically in Figure
[L.6B. To simplify the picture, we consider the effect of discrete trap levels with an energy Er inside
the bandgap. In general, these defects may be capable of capturing holes or electrons. Assuming
they are far enough from the band-edge to be non-degenerate (e.g., for an electron trap of Er,
E. — Er > 3kgT), their population may be calculated by using Boltzmann statistics. The net
transition rate U may be defined as:[139]

- 005V N7 (pr — n?) 1.3.7
- ] E—F; . Ei—E, ( o )
on[n + niexp( KT )]+ ap[p + niexp( k5T )l

where o,, and o, are the electron and hole capture cross sections in units of cm? and v, = 4/ %
is the root mean square of the velocity of the charge carriers. The terms in the denominator

describe the population of each carrier type weighted by the capture cross section for the defect.

2

The numerator is proportional to pn — n?, implying that whenever pn > n?, U > 0 and carriers

are eliminated via SRH processes. Note that U is maximized with F; = FE;, meaning that for a

13



continuous spectrum of defects throughout the bandgap, those with energies lying close to mid-

gap will be the most effective recombination centers. Using this approximation, we can re-write

equation ([1.3.7) as:

U= 0n0pVin Ny (pn — n?) (1.3.8)
on(n+n;) +op(p +ni)

Restricting our focus to the example of low level injection in n-type semiconductors, we can further

simplify equation (|1.3.8):

N —n? A
ooyl toIn =) o A = B2 (13.9)

opNn T

U:

where the lifetime 7, = Similarly, the electron lifetime in a p-type semiconductor may

opvthNT :

1

be deﬁned as T, = m
n

The carrier lifetimes in SRH recombination are thus inversely

proportional to trap density Nrp.

1.4 Charge Transport in Disorderd QD Arrays

1.4.1 Emergent DOS in Array of Potential Wells and DC Transport

As commented in Section , the diode equation generally provides adequate phenomological
description of macroscopic JV characterisitcs within QD PV devices. However, the microscopic
transport physics that gives rise to these ensemble properties is complex. In this section, we
discuss the physical models of charge transport in spatially and energetically disordered materials,
which rely on quantum mechanical arguments and classical statistical mechanics.

Charge transport across disordered QD arrays may be expected to occur via the same con-
duction mechanisms exhibited by Fermi glasses, a broad class of non-crystalline materials that
lack long range spatial order[I05]. Much like in crystalline materials, solutions of the Schrodinger
equation in these non-crystalline media give rise to a DOS N(E) defined as the number of eigen-
states in a unit volume for the electron with a given spin and energy between E and E + dE to

occupy. The total number of electrons within the energy range F and E + dF is still given by the

14



Fermi function f(E).

As first shown by Anderson, Fermi glasses differ from crystalline solids in that the structural
disorder of in a Fermi glass yields solutions to the Schrodinger equation that are localized in
space.[5] To see this, consider a series of regularly spaced potential wells which produces a narrow
band of levels N(FE), as depicted in Figure . Assume that the wells be far apart enough such
that the overlap of the wavefunctions on individual wells ¢, is small. Let n denote the n-th well

and R, the n-th lattice site. The Bloch wavefunction 1, for an electron in this potential array is:

Gila,y,2) = 3 explik - Ra)é(r — Ry) (1.4.1)

Take ¢ to be a spherically symmetric (s) wavefunction. If wg is the energy of a single well, the

energy for the electron in the lattice in Figure is:
E = wy + wy (1.4.2)

where wy, = —2I(cos(kza) + cos(kya) + cos(k.a)). I is the transfer integral that describes the

overlap of single well wavefunctions ¢ between two adjacent sites, defined in the radial coordinate

r= /a2 +y? = 22 as:[105]

I'=(¢"(r = Rp)|H[§(r = Rnt1) (1.4.3)

Here, H is the Hamiltonian, and, in general, I may be written as Ipexp(—«R) as in the case for

the exponential decay of a wavefucntion outside of the simple, isolated potential well of QD.[I60]

a = Y2 s defined so that exp(—aR) is the rate at which the wavefunction falls off with
distance. The effective mass at the bottom of the band in this formulation is m* = =5 and

2Ia?

the bandwidth of the extended state transport levels in N(FE) is written B = 2zI, implying that
as the wavefunction overlap between adjacent sites increases, the bandwidth available for charge

transport across the crystal increases.
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Figure 1.7: (A) Crystalline array of wells with potential V4 that give rise to a band of extended
states with bandwidth B inside N(FE). (B) Disorder introduced into array by adding a random
potential with variance %Vg giving rise to an N(E) characterized by strong localization. Adapted

from Ref [105].

Now consider the case where the array of potentials becomes non-periodic, either by random
fluctuations in well separation a or by the addition of a random potential %V to each well (Figure
). Anderson originally supposed the perturbation potential V' assumes values at +V{, so that
the spread of energies is Vp;[5] however, other distributions, such as the Gaussian, can be considered
as well.[T05]

Considering only the second form (energetic disorder), Mott and Massey used the Born approx-

imation to calculate the mean free path L of an electron in a disordered energetic landscape: [106]

22211(1 )2a3N(E)
L h22° u

(1.4.4)
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where %‘/0 is the variance of the potential fluctuation and E and u are the energy and carrier
velocity defined at Fp. Assuming the 3D Fermi surface is spherical and that N(E) may be
written as a function of the free electron energy E = %, Mott goes on to show that equation

(1.4.4) may be simplified to a simple constant:

a 1 Voo
e _ 20 1.4.
L 327r( 1 ) (1.4:5)

In any solid material, Ioffe and Regel have shown that L may not exceed the lattice spacing
in any diffusive transport process.[I05] Stated another way, this fundamental limit implies that
the shortest mean free path for any charge transport process occurs when the wavefunction loses
phase coherence as it travels from site to site. With this criterion, the wavefunction ¢ in the

random potential lattice of Figure becomes: [105]

Ur(r) =Y Ang(r — Ry) (1.4.6)

n

where A,, has random phases and amplitudes, as depicted in Figure[I.8/A. Non-localized transport
in a non-crystalline potential landscape may then be defined as when L =~ a. From equation

(1.4.5)), the potential barrier V) can then be written:

? =321 ~ 10 (1.4.7)

For randomly close packed lattices with a coordination number z = 6, this becomes:[105]

Vo
2~ 083 (1.4.8)

implying that the variation in the potential distribution is directly proportional to the bandwidth
B that characterizes N(E). If the bandwidth (or wavefunction overlap I) is high, extended state
conduction mechanisms may occur for larger variation in the energetic landscape. For a smaller B
or I, the allowed range of Vj that can give rise to coherent charge transport across multiple wells is
smaller. For negligible B or I, all wavefunctions are localized, and a broad Gaussian distribution

of N(E) can be expected (Figure [L.7B).[105]
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Figure 1.8: Form of the ¢ in the Anderson model for (A) extended state conduction where L ~ a

and (B) localized conduction. Adapted from Ref [105].

Similarly, for large disorder Vj, all wavefunctions become localized, and equation (1.4.6) takes

on an exponential decay term:
Yr(r) = Ane(r — Ry)exp(—aR) (1.4.9)

The wavefunction described by equation (1.4.9)) is depicted schematically in [1.8B.
Charge motion in strongly localized states is characterized by overcoming the energy barrier
AE = FE,y1 — E, between the n-th site and the adjacent n + 1 site. Electron transmission

between sites thus requires an electron to "hop’ over AE by acquiring (or dissipating) sufficient
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energy, which is typically acquired thermally. The hopping rate I' between sites in disordered

materials may be written [100]:

E
I'(R,E4) = Tgexp(—aR — —2) (1.4.10)
kT

where a and R take on the definitions given above, kp is Boltzmann’s constant and E4 =
max(AF,0) is the activation energy of the charge hop given by AFE for hop upward in energy or
0 for a jump downwards in energy. Equation defines the Miller-Abrams hopping regime,
also known as the nearest neighbor hopping (NNH) regime, in which thermal activation of charge

hopping follows a simple Arrhenius law I' o %

N Extended
N(E) states

Localized
states

Figure 1.9: N(F) for amorphous bulk materials which exhibit extended and localized states sep-

arated by Fc (E¢). The onset of DC conduction occurs at the transport level Er,..

The DC conductivity in a disordered solid arises from many such charge hops, and therefore
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follows the same Arrhenius activation law:[105]

a(0) = croexp(—ki—'}) (1.4.11)

where g is a pre-term which may itself be thermally activated.

Since ¢(0) arises from an ensemble of many charge hopping processes, the value of E4 in
equation depends on the distribution of energy states N(F). An example N(FE) for the
case in which wavefunction overlap among potential wells creates a band of extended states with
bandwidth B (Figure ) is illustrated in Figure Thermally activated hopping transport
can occur within the band tails of N(E) (blue region) provided N(E) is sufficiently dense to allow
nearest neighbor sites to form a percolation network that extends across the solid.[105] B6] In this
case, the energetic onset of hopping conduction is the transport level Er,., and E4 = Ep,. — Ep
indicates the energetic barrier charge at the Fermi level must overcome to hop to adjacent sites.

As charge gains sufficient thermal energy to access regions of higher state density in N(E), the
conductivity can be expected to increase. In bulk amorphous materials, transport at sufficiently
high temperatures may also contain contributions from carriers thermally excited from localized
portions of N(FE) into extended states at E¢ that arises from the overlap of wavefunctions in the

potential well. In this case, F4 = EFc — Ep.
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Figure 1.10: (A) N(E) exhibiting broad distribution of transport levels from Er, to Ec and a
finite DOS at EF, all of which may contribute to charge hopping. (B) Temperature-dependence
of the conductivity based on N(E) in (A). Dashed line at E¢c — Er imply that these conduction

mechanisms are not typically observed in QD solids. Adapted from Ref[105].

For a finite density of states at the Fermi energy, there will be a contribution of carriers
hopping in localized states with energies near Er, as depicted schematically in Figure [.I0A. This

contribution will have a similar temperature-dependence a equation (1.4.11)) above:

o(0) = ooexp(—];j;—];,) (1.4.12)

where wy, is the hopping energy and is generally of order kT .

The form of equation implies a competition between the term that describes wave-
function overlap « exp(—aR) and the thermal activation term o exp(—%). At low enough
temperature, the activation term becomes negligible as electrons do not have sufficient energy to
hop to the adjacent site. As Mott and Austin first pointed out, charge hopping processes may then

occur via tunneling transmission between spatially distant sites.[6] In this case, the conductivity

can be expected to have a weaker thermal activation:
B
o(0) = opexp(——) (1.4.13)
Tz

21



with B = 2[,@1\}“785”]%.[105] This type of hopping, known as variable range hopping (VRH) can
be expected at all temperatures, yet usually does not appreciably contribute to the measured
conductivity at high temperature.

Equations , , and imply that the broad distribution of energy states
N(E) in a disordered solid may be interrogated experimentally be determining the temperature de-
pendence of the DC conductivity. This is depicted schematically in Figure [[.I0B, which illustrates
the temperature dependence of the conductivty expected for N(E) given in .

QD solids exhibit all the conduction mechanisms discussed above,[91], [49] [04] with two notable

exceptions:

1. Aside from notable examples of local 'mini-band’ transport in coupled QD systems that uti-
lize short-chain metal chalcogenide or thiocyanate ligands, [26] [85] extended state conduction
at E¢ has yet to be widely observed in QD arrays with quantum confined constituent (i.e.

non-fused) QDs typically used for PV devices, and

2. Quantum confinement in QD arrays results in a VRH temperature exponent T-% for highly
doped QDs and T~ 7* for lightly doped QDs due to an appreciable coulomb gap in highly

doped QDs [94].

The first exception implies that the DC conductivity at all temperatures in the QDs used for
PV applications is governed by NNH. While an extended state band level E~ may be observed
via optical absorption, the energy levels associated with typical DC conductivity in QD arrays
is known to be smaller than Eq.[I8] In QD solids, conduction occurs near the maximum of the
N(E), which is made up of localized states. For instance, the onset of DC conductivity in Pb-
chalcogenide QD solids treated with hydrazine has been shown to coincide with the band tail
level Ep, marked schematically in Figure [L.10A.[77] The second exception implies that VRH
conduction can be expected to exhibit a temperature exponent that depends on the specific form of

N(E).[94, 57, [130] Despite these discrepancies, experimental interrogation of the DC conductivity
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0(0) can be an extremely useful tool for determining N(E) in QD solids.

1.4.2 AC Conductance in Disordered Materials

QD solids, like amorphous semiconductors, conducting polymers, organic semiconductors, and
other disordered solids exhibit characteristic frequency dispersion in their conductivity.[36] At
low w, these materials display a constant total conductivity ¢’ that becomes strongly frequency-
dependent at high w, as exhibited in Figure[I.I1JA. Early attempts to measure the AC conduction
mechanisms in amorphous semiconductors adopted an approximate power law for the AC conduc-
tivity

o' (w) ox w® (1.4.14)
where the exponent s ~ 0.8 for a wide range of amorphous semiconductors.[I05] As discussed in
the preceding section, Mott and Austin developed a pair approximation model invoking quantum
mechanical tunneling between pairs of impurities to interpret this phenomena, in which s was
assumed to be derived from a random distribution of tunneling distances.[6]. Extensions to the
pair approximation model attempt to explain the smooth transition to frequency-independent

conductivity at low frequency by adding a term ¢ (0) due to DC conduction:

o' (w) =c(0) + o(w) (1.4.15)

The o(0) term is assumed to capture transport in extended states at the band edge. As a result,
this model fails to adequately describe the constant conductivity at low w for semiconductors

where hopping is known to dominate DC conduction. [95]
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Figure 1.11: (A) Schematic of frequency dispersion in o(w) observed in a typical AC conductance
measurement. (B) Probability P(t) for a charge to remain at a given site in a solid with a single
time constant 7 = 105 s1. (C) Distribution of P(t) resulting from a broad Gaussian distribution
51

n(7) centered at 1o = 10~ , with color bar indicating value of TT—O Test interrogation frequencies

w; =2.67x107* 57! and wy = 1.0 x 10° s are indicated by dashed red lines.

More recent developments relying on continuous time random walks (CTRW) have posited
that the that the probability of a charge hop P is constant in time so that P(t + At) = P(t) =
Poexp(—f), where 7 is a characteristic relaxation time for the charge hop. The probability for a
charge to occupy a given site therefore decreases exponentially.[36] This is illustrated in Figure
, which plots the P(t) for a single charge at a given site within the semiconductor for 7 = 107°
S.

In amorphous semiconductors, 7 itself is characterized by a distribution n(7) resulting from
the structural and energetic disorder in the material.[41] Figure exhibits P(t) for a range
of 7 values drawn randomly from a broad Gaussian distribution centered at 7o = 107° s. As the
value of 7 increases (yellow lines), the decay of P(t) slows, indicating that the charge is more likely
to remain at its initial location. Conversely, for small 7 (purple lines), P(t) decays faster and the
charge hops to the next available site quickly.

Measurements of ¢’(w) at a given test frequency w; = T% act as an experimental limit for the
interrogation of these charge hops. All hops with a time constant 7 < 73 will be recorded by a

measurement made at wy. Figure exhibits the time limits interrogated by test frequencies
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w; = 2.67 x 10* Hz and wy = 1 x 10° Hz (dashed red lines). Measurements made at w; will be
able to probe a broader set of charge hops, whereas hops associated with larger 7 are invisible to
wy. As a result, we expect differences in the total conductivity as the applied frequency of the
measurement changes.

The observed frequency dispersion in o’(w) is therefore a result of the distribution of 7.[36]
Amorphous materials generally exhibit a very broad n(r), since the number of available paths
for charge hopping and the distribution of activation energies for these processes scale with the
structural and energetic disorder in the material. To obtain the total conductivity ¢’(w), we can
integrate the product of n(7) with a Drude-type conductivity expression:[105] 4]

w27'

_ 1.4.16
1+ w?r? T ( )

e [ " a(r)

Obtaining the approximately linear dispersion relation w = w?®, s =~ 0.8 displayed in Figure

requires n(7) oc 771, [4I] Assuming this value, we obtain:

o' (w) o< /000 wdlwr) X w (1.4.17)

1+ w?r?
The required form of n(7) implies that 7 itself is an exponential function. For hopping conduction
in amorphous semiconductors, 7 is assumed to be exponentially dependent on the energy barrier
E separating two charge sites.[41] [36] Large hopping times are associated with overcoming large
energetic barriers, whereas smaller hopping times result from barriers easily surmounted by the

charge. T is therefore given by:[4]

E

) (1.4.18)

T = 1oexp(

where 7¢ is a constant characteristic relaxation time.

Equation is of fundamental importance for interpreting AC conductivity data, as it
implies that the distribution of relaxation times n(7) acts as a reporter for the density of states
N(E) available for charge hopping in an amorphous semiconductor. Energetically distant sites

from a charge’s initial position are associated with longer 7 = %, whereas sites much closer in
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energy that are available for charge hops have a much smaller 7 (longer w). This illustrated
schematically in Figure for the specific case of a broad Gaussian N(E) centered at Ep
(Figure [L.12]A). Charge hops to sites around Er require small energies and thus 7 is small. The
shape of N(FE) implies that n(7) in this region should be large. Hops further away in energy
correspond to the tail of N(E), implying that n(7) at large 7 is much smaller. The corresponding
distribution of hop frequencies n(w) can be made by inverting the abcissa of n(7) vs. 7. Equation
allows us to reconstruct the Gaussian DOS in Figure[I.12A. Different distributions of N(E)
should give analogously different distributions in n(7) and result in slightly different frequency-

dispersion in ¢’(w).

N(E)
A
B n(t) n(w)‘ / N(E) \
T E
C
_________________ E.
_________________ E P ",'"»"1“
N(E) N(E)

Figure 1.12: (A) Gaussian N(F) in an amorphous semiconductor give rise to (B) n(7) and n(w)
swept out by measurement. These distributions may be converted into an picture of N(FE) via
equation (1.4.18). (C) Spatial and energetic radius probed by low measurement energies E,,. (D)

Spatial and energetic radius probed by high measurement energies E,,.

The availability of greater portions of N(F) for charge hopping at low applied frequency

implies that larger volumes of the amorphous semiconductor may be probed in measurements
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of ¢/(w). This is illustrated in Figure , which shows a measurement radius that includes
an entire array of sites (schematically illustrated as a QD array). The energetic difference from
Er is also highlighted. At sufficiently low applied frequencies, a nearly infinite percolation path
in the material is formed, allowing charge to hop across the entire array of sites. The constant
o'(w) at low frequency (Figure [[.ITJA) is therefore an indication that the DC limit of the hopping
conductivity is reached.[36] In general, the inclusion of all parts of N(FE) implies that the DC
hopping conductivity is dominated by overcoming the energetic barriers in the solid to form a
continual percolation path.

At higher frequencies, smaller energetic distances from Er are available for charge to hop into.
This results in a narrowing of the hopping radius available for each electron, as illustrated in
Figure[[.12D. As a result, transport is dominated by hopping in finite clusters where the energetic
barrier for a hop is low. The pronounced enhancement in o’(w) as frequency increases is thus a
result of more hops occurring in energetic and spatial regions with large jump probability. [36]

CTRW models are thus able to explain the approximate power law in terms of a
distribution of relaxation times which is intimately related to N(E) and thus to the disorder in
the material. Depending on the specific model invoked, the exponent s is interpreted differently,
but generally is related to the energetic barrier between hopping sites. Among the most widely
accepted models is the random free energy barrier model, which assumes a distribution of energy

barriers and an exponent s given by:[306]

I 1.4.19
=11 (L1.19)

where kgTy = %E 4, characterizes the activation energy of DC conduction.

Despite their differences, these models allow for the inclusion of loss peaks in ¢’(w) at low
and high frequency. Loss peaks occur at applied frequencies wg = % that are resonant with the
charge hopping time 7.[IT1] These peaks therefore indicate sub-regions of favorable charge hopping

paths, which may be super-imposed on the broad distributions of n(7) [4I]. This is illustrated
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schematically in Figure. A Gaussian N (FE) with a shoulder due to a sub-distribution of states
centered around energy Ep gives rise to a corresponding small peak in n(7). Experimentally, the
convolution of these two regions of high N(F) may be probed with the use of equation
(Figure ) In dielectric spectroscopy of high mobility semiconductors such as CIGS, these loss
peaks indicate SRH recombination between band-edge states and localized defect state.[I50, 112]
This will be discussed in Chapter In low mobility, disordered materials, these features in N(FE)

indicate states important for forming percolation pathways for DC transport.[36]

A N(E)
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B nl) \ ‘ N(E) |
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Figure 1.13: (A) Gaussian N(FE) with small shoulder due to a sub DOS centered at Er which

gives rise to (B) a corresponding peak in n(7). The sub-peak may be experimentally resolved with

the aid of equation (|1.4.18|).

1.5 Thesis Outline

This thesis uses AC and DC techniques to characterize the distribution of energy states in QD

solids in functional device geometries. In Chapter [2, we describe in detail the physical models
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used to interpret frequency-domain measurements in terms of charge dynamics in semiconductors.
We then discuss the particulars of the thermal admittance spectroscopy (TAS), drive level capac-
itance spectroscopy (DLCP), and impedance spectroscopy (IS), which we use to characterize the
time constant dispersion resulting from charge recombination and transport in fully functional QD
PVs. In Chapter [3] we apply these techniques to a Schottky junction PV device. The simplicity
of this single carrier device structure allows us to build a full picture of ensemble charge dynam-
ics from a combination of temperature- and frequency-dependent conductance and capacitance
measurements. Chapter [4] details the application of these techniques to PbS QD heterojunction
PV devices. Using IS and TAS, we show how interfacial defects provide effective centers for both
electron and hole recombination, limiting V,.. In Chapter [5| we apply these techniques to p-i-n
device architectures with a halide-capped PbS QD absorber layer. Though the complexity of this
device structure limits the firm conclusions that can be drawn, we posit the presence of two elec-
tron transport barriers within the device, and use illumination in TAS and DLCP to corroborate

the presence of a recombination center for photogenerated charge.
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Chapter 2

Frequency Domain
Characterization of the Density of

States in Disordered Materials

2.1 Introduction

As discussed in Chapter 1, the energetic and spatial disorder inherent in QD solids results in a
range of carrier transport phenomena. To a good approximation, these transport processes may be
modeled by considering charge hopping over a distribution of energy barriers. We further discussed
how these energetic scales translate into spatial lengths and a broad distribution of characteristic

charge hopping times.
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Figure 2.1: Characteristic time and frequency scales associated with charge transport measure-

ments. Credit to references |26, [40] [67].

In this chapter, we discuss spectroscopic techniques that access different regions of the time
domain wia the application of an AC bias with frequency w. The AC frequencies used in these
techniques allow for the experimental interrogation of sub-domains of charge dynamics. Figure
[2.] exhibits a few examples of the spectroscopic techniques used to interrogate charge dynamics
in solution processable materials like QD solids, along with the time and frequency scales involved
with the measurement. At the highest frequencies and shortest time scales, measurements such as
transient absorption (TA) have been used to probe carrier dynamics in QDs within 107!2 s after
optical excitation.[99, [67] Microwave conductivity measurements have also been applied to QD
solids[137, [I16], 7] and perovskite materials[40] to probe charge diffusion lengths on time scales

of ~ 1076 —107%s. Atw =0 (1= % — 0), DC conductivity measurements are used to probe

charge transport in QD solids in the steady state[26] [85] 159, [49] [OT), 1T7) 1T5]
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The main frequency-domain technique used in this thesis is impedance spectroscopy (IS), which
probes timescales between ~ 1072 —107% s (w &~ 10% — 107 rad/s). Because IS techniques probe an
intermediate time scale between the steady state limit and higher frequency measurements such as
microwave conductivity, it provides crucial information that bridges the physical models of charge
dynamics at the DC limit and within individual QDs. This implies that IS is capable of probing
mesoscopic scales involving both entire QD solids and small clusters of QDs.

In the next section, we discuss the physical models that underlie IS in semiconductor materials
by discussing the capacitance-voltage (C'V) measurement. We then go over the salient details
needed to understand the IS technique. Afterward, we examine thermal admittance spectroscopy
(TAS) and drive level capacitance profiling (DLCP), two important IS techniques used to study
majority carrier charge dynamics in metal semiconductor and pn junctions under reverse bias.

Finally, we discuss the instrumentation used to make these measurements.

2.2 Capacitance-Voltage

Though IS is a powerful experimental technique capable of providing useful information on charge
relaxation processes in complex systems, the interpretation of IS spectra is not unambiguous.
In semiconductors, the theory of the frequency- and voltage-dependence of the capacitance in a
diode device can be used to guide interpretation of IS spectra. At an ideal semiconductor-metal
junction, the depletion region behaves in many respects like a parallel plate capacitor. Using this
model as a basis, measurements of the junction capacitance at zero or reverse bias can be used to
gain information about barrier height and energy levels within the semiconductor.

An ideal n-type Schottky contact is depicted in Figure 2:2]A, with the corresponding charge
density profile in Figure [127]. Under zeros bias, the bands assume the form of the solid lines;
as reverse bias Vg is applied, electrons shift further away from the interface and the depletion

region width increases from w to w + Aw. The bands shift and assume the form of the dashed
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lines. The change in the depletion region charge density gives rise to a change in capacitance. The
application of Vi may also give rise to a reverse bias current. To aid in the analysis of the charge
dynamics under reverse bias, an equivalent circuit of the junction can be used which consists of a

parallel conductance (specified by resistance R) and capacitor C, as depicted in Figure .
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Figure 2.2: (A) Schematic of Schottky barrier under reverse bias. Band positions under applied
bias Vg are shown with solid line, and shift in band bending induced by applied AC signal depicted
by dashed line. Reproduced from Reference [127]. (B) Charge density n due to mobile charge
carriers outside depletion region (blue) [127] with ionized depletion density in in gray. (C) General

equivalent circuit describing junction charge dynamics.

When the applied bias changes with the application of Vg, the resulting current contains two

contributions:

e a displacement current Jy; = Es%—f, where £ is the value of the electric field in the depletion

region
e a conduction current J. that itself is made up of two components:
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— a drift and diffusion current J.; resulting from electrons injected over the barrier and

into the semiconductor

— a current J.o that charges (or discharges) regions of the semiconductor where the de-

pletion region charge density changes as bias is applied.

If the bias Vi modulates sinusoidally with time, J.; will always be in phase with Vg, and is thus
responsible for the parallel conductance in the equivalent circuit of Figure [2.2/C. The components
Jeo and Jy are in phase-quadrature with Vi. Since they are 90° out of phase with the input signal,
these currents make up the parallel capacitance in Figure 2:2|C.

We will now describe how the capacitance changes with Vx in the ideal situation depicted in the
band diagram of Figure and charge density profile in Figure 2.2B. For @ > x;, Ef — By (s,) >

&+ kaT, where E7 is the Fermi level of the metal and £ is the energy difference between EJ

and the bottom of Ey . As a result, though there may be a significant concentration of minority
carrier holes at the interface due to the band offset, the density of holes in the bulk remains

negligible. For x < x4, Ec(zy) — Ec(00) > , and the mobile electron density between x,,

3kpT
q
and the interface is tiny. As a result, for x; < z < z, the total charge density is given by the
charge of ionized donors within the depletion region (gray box) and is independent of time. As
reverse bias increases (decreases), electrons leave (enter) the depletion region from the bulk of the
semiconductor. In this scenario, J.o = 0 in the region between z; and z,,, and J; is the only part

of the capacitance.

Between z; and z,, (depicted in Figure ,B), the capacitance is J; = eg 28 = C%. Since

ot
£ is a function of Vg, we can write, generally, % = % X %, and obtain:
o0&
C=¢cs— 2.2.1
s (22.)

£ is evaluated between z; and x,, where the total charge density is independent of time,

allowing us to calculate £ by applying Gauss’s theorem to a surface bounded by one plane in the
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region z; < x < x,, and another plane far into the bulk of the semiconductor where the bands are
flat. Varying the bias changes the depletion width and thus also modulates the charge enclosed
by this surface. The resulting change in charge density is given by the change in donor charge

density @4, such that e,AE = AQy. Thus, from (2.2.1)), we obtain:

_ 9@

¢= Vg

(2.2.2)

This result implies that the capacitance can be calculated by considering only the charge due
to uncompensated donors within the depletion region. Assuming that the effects of holes at the

interface can be neglected, the electric field at the barrier can be expressed as:

2 keT. ksTNp  —qV
€2 = AINp(vy - BBy 4 2B I

- . . exp( T )] (2.2.3)

where V; = V;; + Vg is the diffusion voltage corresponding to the sum of the reverse bias voltage
Vi and the built in voltage of the barrier Vp;, and Np is the density of ionized donors. For

qVyq > 3kgT, the last term is zero and we obtain:

£? = Q—q[ND(V - kBTT)] (2.2.4)

s

and thus Qg = ¢,& = (2q€sND)%(Vd — M)%. We can now solve for the differential junction

Q4 __ 0Qa
oV, — oVy>’

capacitance C' = obtaining:

)2 (Vg — =2=)73 (2.2.5)

Equation 1) implies that a graph of C~2 vs. Vj should give a straight line with slope quND and

kT
7

intercept Vi + The same result can also be derived starting from the depletion approximation,
which assumes that Np decays to zero at the edge of the depletion region (z = w).

This simple analysis serves as the basis for traditional capacitance-voltage (C'V') experiments
in which a small AC perturbation of amplitude 6V is super-imposed onto Vr. The resulting

capacitance is measured as Vg is varied. However, in obtaining this result, we explicitly assumed

that charge accumulates only at the edge of the depletion region. In non-ideal semiconductor
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junctions, in which defects at the interface and within the depletion region can trap charge, more
detailed models are needed to account for the charging of these states in response to the change

in bias.

2.2.1 Effect of Defects on Capacitance Response

Both interfacial and depletion-region defects alter the voltage-dependence of the charge within the
semiconductor-metal junction. The capacitance of these non-idealities is in series or parallel with
the capacitance of the depletion region, depending on the density and nature of the defects.[127]
Since the depletion capacitance is non-linear with respect to voltage, the resulting total capacitance
can be rather complicated.

Consider the effect of an interfacial defect layer with denisty Dg and sufficient thickness such
that the population of interface states is determined by electron exchange with the E. and E,
in the semiconductor, implying that the interface layer provides an effective pathway for SRH
recombination. The interface states introduce a capacitance C's = gDg in parallel with the
depletion capacitance Cp, resulting in the equivalent circuit depicted in Figure 2.:3A. The resistor
Rg is the SRH recombination resistance that gives rise to the recombination current. If Rg is
large, recombination is less likely to occur and the capacitance C's charges slowly. For small values
of Rg, recombination occurs more readily and thus Cg fills quickly. The series connection of Rg

and Cg gives rise to the SRH time constant 79 = CsRg.
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Figure 2.3: (A) Addition of interface capacitance to equivalent circuit (parallel conductance not

shown) (B) Equivalent circuit network for multiple trapping level, after reference [63].

As first proposed by Sah and coworkers[I28] and later summarized by Jansen, et. al.[63],
multiple trapping levels can be modeled with the equivalent circuit depicted in Figure 2.3B. We
will now solve for the total impedance of the network in Figure [2.3B. For a given RC branch 1,

the impedance Z; is:

1 . 1+ jwC;R; . 1+ jwr;

Z;=R; : — - - 2.2.6
* JwC; JwC; JwC; ( )
The corresponding admittance Y; = % = 1]_:;% To simplify our analysis, we will work with

admittance instead of impedance, since admittances in parallel add in series. The total admittance

Y; is thus:

. jw01 jOJCQ ]wC’
Y: = jwC = jwC 2.2.7
¢ = I d+1+jw71+1+jw7'2 = Jjw dJer_i_]le ( )

Ensuring that the denominators are real, we obtain our result:

w2017'1 +ij’1 CUQCQTQ —|—ij2
1+ w?r? 1+ w?7r?

Y = jwCy +

. " w2C'1;7'7; +ij'1

The conductance, G is the real part of Y;:

w?Cimy w?Cyro w?Cyr;
G = + +. Z Trot?

2.2.9
1+w?r? 1+ w27 ( )
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The capacitance of the network, C, is given by the imaginary part of Y; divided by the frequency:

o Cy e
c=cC =0t Y 2.2.10
d+1+w2712+1—|—w2722+ at - 1+ w?7r? ( )

Thus, G contains information about the branches of the equivalent circuit due to traps, whereas
C contains these terms in addition to the effect of the depletion capacitance C4. Referring to
the equivalent circuit for the ideal junction in Figure 2.2]C, the conductance G corresponds to the

out-of phase components J; and J.o of the total junction conductance.

Equations (2.2.9) and (2.2.10]) imply that information about trapping levels within the junction

can be obtained by generalizing the simple C'V' analysis that culminates in equation and
measuring the total admittance of the junction as a function of frequency. The response of each
branch is determined by the time constant 7;: for w < 7;, the branch can respond and serve as
an effective SRH recombination center, whereas for w > 7;, the branch ceases responding and the
overall measured value of G (or C') decreases. Typically, these measurements are made by LCR
meters that assume the simple equivalent circuit in Figure 2.4A. In this geometry, the measured
capacitance C’ corresponds to the capacitance terms in equation , whereas R = & gives
the terms in . As pointed out by Nicollian and Goetzberger,[112, [IT1] the conductance
contains information on defect levels, whereas the capacitance branch summarizes both defect
capacitance and depletion region capacitance. A plot of a simulated % measurement containing 2

trap levels based on the equivalent circuit in Figure is provided in Figure 2.4C, and exhibits

two peaks for a deep trap (responsive at low w) and a shallower trap (responsive at higher w).
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Figure 2.4: (A) Equivalent circuit assumed by LCR measurement meters. (B) Equivalent circuit
representing 2 defect levels ¢; and ¢y simulated in (C) corresponding % spectra showing 2 loss

peaks corresponding to ¢ and t».

2.3 Impedance Spectroscopy

IS generalizes the capacitance analysis in Section and applies the equivalent circuit formalism
developed for C'V to a diverse array of materials systems, including Schottky junctions,[63] bio-
logical tissues, [56, B0, [14] and electrochemical systems.[119] 110, 08, [13] IS measures macroscopic
quantities such as current I (or current density J) and potential V' that represent the spatial
and temporal average of many microscopic events, and attempts to map them onto a consistent

physical picture of system-scale properties such as diffusivity and relaxation constants.
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Figure 2.5: Schematic illustrating operating principle of IS in semiconductor devices, wherein fre-
quency domain measurements allow for the interrogation of charge dynamics at a specific operating

point in the JV characteristics.

This can be most easily visualized for a semiconductor system via the schematic in Figure
which depicts the diffusion of electrons as described by the Shockley diode equation (equation
1.3.3). In bulk-crystalline semiconductor systems in which individual charge dynamics occur
in band states, JV parameters may be readily linked to models of electron transport through
the solid. In disordered semiconductors where the DC transport is governed by hopping, the
steady state limit gives only a partial physical picture of the charge dynamics. IS adds frequency-
dependence to the macroscopic measurement of J, which significantly expands the information
that may be extracted from a measurement. Sweeping the frequency at a given operating point
along the diode curve in Figure [2.5 allows one to interrogate different sub-domains of the charge
relaxation times that contribute to the measured J at that voltage. This also allows one to probe
the different energetic states responsible for the transport current.

Instead of measuring the total impedance, IS measures changes in current density AJ due to

the application of a time varying voltage AV. The response can be expressed as a frequency-
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dependent impedance Z(w) = ﬁ—‘;ﬁ = Z.(w) + iZ;(w), where the real (Z,) and imaginary (Z;)
components of the total impedance correspond to currents in and 90 © out of phase with the input
voltage AV respectively. Following the discussion in section this corresponds to a resistance
and a capacitance, which can be modeled using series and parallel connections of resistors and
capacitors in circuits similar to those used in C'V analysis. IS further extends these circuits
to include phenomenological elements such as the Warburg impedance, which models the mass
transfer in electrochemical systems[I19] and electron diffusion in semiconductors[9dl 1]

Graphical methods provide the first step towards interpreting IS data in terms of a physically
valid model. Phase-angle, Bode-plots, and plots of Z,.(w) vs. w and —Z;(w) vs. w are commonly
used to visualize the output of an IS experiment.[I19, 18] The information in these plots is
typically condensed into a complex-plane impedance (Nyquist) plot —Z; vs. Z,, in which the
frequency scale is implicit and runs from the right side of the plot to the left side. The shape
of the points in the complex-plane hints at possible mechanisms giving rise to the spectrum; for
example, a perfect semi-circle of points indicates that the impedance response results from a single

process with one activation energy.[I18] An example of a Nyquist plot is shown in grey Figure

[2:6]A, which corresponds to the simple parallel equivalent circuit in Figure [2.6B.
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Figure 2.6: (A). Impedance arcs indicating charge relaxation that may be described by RQ circuit
with @ = 1 (grey arc) and o < 1 (dashed yellow arc). Reproduced from reference [20]. (B)

Equivalent RC circuit for grey arc (C) Equivalent RQ circuit for yellow arc.
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In QD solids and other materials that exhibit significant time constant dispersion, the assump-
tion that each physical process has a single-valued time constant is not valid. The impedance
response of these systems may be modeled via the use of a constant phase element (CPE), which
assumes a specific distribution of time constants in the system. CPE models generalize impedance

response of a pure capacitor, and the impedance due to a CPE may be written:|[TT9] 1T§]

1
(iw)*@Q

Z(w)(jpE = (231)

where () is the CPE coefficient and o parameterizes how imperfect the capacitor is. For o« = 1,
equation describes an ideal capacitor, and the expected impedance response given by the
grey line in Figure 2.6]A. For o < 1, the capacitor is imperfect, which corresponds to a depression
of the semicircle due to a lower phase angle, as depicted by the yellow dashed line in Figure 2.6A.
This impedance response may be modeled by the R(Q circuit in Figure [2.6B.

IS thus provides a means of quantifying the deviations from ideality due to a distribution of
charge relaxation times. G(71), the distribution function of 7, is assumed to be a normal distribution

of In(Z):[119} 20]

2sin(am)
exp[(1 — a) %] + exp[—(1 — )

U
7o To

TG(T) = (2.3.2)

] — 2cos(ar)
From equation (|1.4.18)), ln(%O x F, so equation |i reflects that the distribution of available

energy states for electron occupation N(FE) is itself a Gaussian.

2.4 Thermal Admittance Spectroscopy

Thermal admittance spectroscopy (TAS) is a powerful device-level spectroscopy technique that
characterizes the distribution of defect states by observing how the junction capacitance of a pn or
metal-semiconductor junction changes with the frequency of an applied AC perturbation. Unlike
traditional C'V profiling, TAS is able to interrogate a broad distribution of states by continuously

varying the frequency of the applied perturbation. The ability of TAS to probe manifolds of
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states in a pn junction is particularly useful for polycrstalline films, [T50] 39} [6T], 90} [89] [R8] organic
semiconductors, [75, 22] T2] and QD solids[I6, [I5, [66] in which energetic and spatial disorder give
rise to broad distributions of states in the bandgap that can act as effective recombination centers
and low mobility transport states.

The small AC signals used in TAS affect both free carriers and trapped carriers. The response

of these respective carrier populations to an applied AC perturbation can be written:
n=n" +ne! p=p- + pet nr = ng + npe™! (2.4.1)

where n= corresponds to the steady state population of electrons and n corresponds to the electrons
moving with the AC oscillation. This same formulation is applied to both the hole population,

p, and the population of trapped electrons, ny. The change in occupation of defect states is

dnT
dT

= jwiet.
In general, the changes in the occupation of these defects can be written as a sum of electron
and hole carrier populations in equation (2.4.1) weighted by the respective capture coefficients

of electrons or holes, 3, ,. Walter and colleagues have shown that the AC component of defect

occupation may be written as:[150]

L

nr = -
1w + wo

[Bnt = f(E)(Bnn + BpD)|Nr (2.42)
where f(F) is the Fermi function and wy is defined as:

Ep—E E-Ep

wo=PBan=(L+e 5T )+ Bp~(L+e 57 ) (2:4.3)
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Figure 2.7: (A) Schematic of exchange between holes at Er exchanging with a bulk defect Er
within the depletion region with a time constant 7 determined by the AC signal. (B) Schematic

of junction equivalent circuit.

An analogous expression to equation can be written for the current of holes flowing
into defect states. TAS considers these currents under bias conditions in which majority carriers
from both the p and the n side of the junction are injected into the depletion region under an
applied AC bias, and subsequently captured and re-emitted from defects, as depicted in Figure
for a one-sided junction with a depletion capacitance. A simple equivalent circuit model of
the junction admittance is also included, consisting of a capacitor C; and a resistor R; in parallel.
As discussed in section the junction capacitance is the imaginary part of the current divided
by the external AC frequency. Only the defect density n; will posses an imaginary part, since the
free carrier densities should be in phase with any applied perturbation. The total capacitance due

to the charging and discharging of a single defect state n; at energy F is:

C' = iy P+ TB)Bari+ BNy (24.4)

where V¢ is the amplitude of the applied AC signal and w; describes the re-emission of captured

charge out of defects.[I50] By inspection of equations (2.4.4)) and (2.4.2), the last bracketed term
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1S n.
The capacitance of a single defect is therefore proportional to the occupation of the defect

modified by its ability to respond to the frequency w. This suggests 2 separate regimes:[75]

1. For w < wy, the occupation can follow the AC perturbation and thus contributes to the

junction capacitance by charging and discharging.
2. For w > wy, the occupation of the defect cannot follow the oscillation and will not contribute.

The regime in which w = wq thus represents a critical frequency above which the occupied defect
state will not contribute to the capacitance.

Each occupied defect level will contribute to the junction capacitance with a frequency depen-
dence given by equation . In order to determine the efficiency of an ensemble of defects to
contribute to the total junction capacitance, Cy,:, equation must be integrated in energy
and space. The explicit energy dependence of wy, wy, and f(E) will weight the resulting integra-
tion towards Ep.[I50, [I7] As a result, the integration of equation over all energies will be

sharply peaked around Ep, yielding:

" = / C'dE = qQ%Nt(EF) (2.4.5)

-0
where v, stands for the small potential that arises from the incremental change in the hole Fermi-
level in response to Vaco. This implies that the TAS measurement is sensitive primarily to the
charging and discharging of defect states at the point where the trap band Er crosses Ep, as
depicted in the cartoon in Figure 2.8l Note that if E7 never crosses Ep, states at Ep cannot be
probed by TAS.

Equation (2.4.3) allows us to define an energetic window E,, centered around Er in which TAS
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may detect defects:

_ _Bw
w=wy =206,N,e *5T

= 2upe FBT (2.4.6)

2
— B, = kpTin(2)
w

where we have introduced the thermal emission pre-factor vy = 3,N,, commonly known as the
attempt-to-escape frequency. FE, represents the limiting energy of a TAS measurement. Defects
at energies greater than F, cannot be detected via TAS. This limiting energy, along with the

spatial limitation discussed above, is depicted schematically in Figure [2.8
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Figure 2.8: Schematic illustrating energetic range Er to Er + E, and spatial range z7 to Wp

probed by TAS measurement on one-sided pn junction.

Ciot can then be derived by integrating equation (2.4.5) from Er to E,. From Figure this
operation is akin to integrating in space from < x > to the edge of the depletion region in the

bulk of the p-type semiconductor, W,,. The total capacitance is:

E
. e i
o= ——1 E))Ny(E
Cuot =~ | on(a(E) N2 () -

dE (2.4.7)
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where V3; is the built-in potential of the junction. The constant terms in the integral act on the
total density of trap states Ny and ensure that integration is performed on occupied states. Upon

integration, the total defect distribution N7 can be calculated as:
Wy dC dE,
- gWdE, dw

_ Vi dC w
W(qgVei — (Er — E,)] dw kT

Nr(E,)

(2.4.8)

where the bending of the bands in the depletion region is taken into account in the last step by

assuming the shift in the bands towards the junction can be approximated by the linear drop of

W—x
w

the applied bias: Vi; = Vac

A
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Figure 2.9: Cartoon illustrating temperature-induced shifts to (A) capacitance-frequency and (B)

: ac
peaks in —wo=..
By determining how the differential capacitance w% evolves with frequency, the total defect
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distribution can be calculated according to equation . The relation in equation also
implies that the energetic depth Er of the defect can be obtained. At the resonance frequency
w = wy, the differential capacitance —w% will be at a maximum since the junction capacitance
C' decreases rapidly as the charges in occupied defect states stop responding. This scenario is
depicted in Figure If the temperature is then increased, a different resonance condition w2
will appear as a maximum in the differential spectra. By observing multiple resonances as the
temperature changes, both the Ep and v0 can be determined in an Arrhenius plot:

__Br_ E
wo = 2wpe BT = In(wy) = In(2wp) — k?TT (2.4.9)

The slope of the Arrhenius plot gives E7, while the intercept of the plot gives 1. These parameters
are then folded into the calculation of the N7 in equation in both the % term and the E,
term in the denominator.

Though the above analysis has been used to interpret thermal admittance spectra obtained
from QD devices, the assumption that carriers diffuse sufficiently fast prior to trapping and after
subsequent de-trapping so that wy depends only on the emission rate of charge out of traps e, may
not be met in QD assemblies and other low mobility semiconductors.[I25] [I51] In these materials,
the small mobility u of charge carriers implies that the transport times of diffusion 7455 o % and
drift 7gpife %L cannot be ignored with respect to the frequencies used in TAS. As a result, the

dielectric loss peaks in the differential capacitance plot reflect the dielectric relaxation frequency

wo = e,(T) + =1~ + —2—_[125]. The physical implications of this subtlety will be discussed at

Tdiff Tdrift

length in Chapter [3]

2.5 Drive Level Capacitance Profiling

Drive level capacitance profiling (DLCP) is a dynamic junction capacitance technique that, like
TAS, measures the junction capacitance as a function of applied AC frequency. Unlike the small

AC signals used in TAS, DLCP utilizes a range of large AC amplitudes to generate a spatial profile
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of the density akin to traditional C'V techniques. The dynamic nature of the applied bias in DLCP

means that the charge density data obtained by DLCP is not greatly confounded by the presence

of interface states, which can undermine the interpretation of conventional C'V measurements.[33]

E
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Figure 2.10: (A) Band diagram showing crossing between Er and Ep resulting in (B) correspond-

ing charge density profile, showing significant charge density at z7 as well as W),

The shortcomings of C'V' to probe charge densities in polycrystalline or amorphous materials

is illustrated schematically in Figure [2.10] which depicts an energetically continuous bulk trap

band Ep crossing Er at a position x7 from the junction on the p-side of a p-n junction. To

first approximation, the response of the junction capacitance to an applied bias can be written as

parallel plate capacitance:[52]

- cA
o<z >

(2.5.1)
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where ¢ is the semiconductor dielectric, A is the device area, and < x > is treated generally as

the first moment of the charge response:

Sy wép(ax)da

<z >= 20
Jo dp(z)dz

(2.5.2)

where z is the distance from the barrier and p(x) is the differential charge density induced in the
semiconductor due to the applied bias. In Figure 2.10B, the junction contains a significant charge
density within the depletion region at 7. As a result, a CV measurement applied to this junction
at low frequencies will induce a response at x7 in addition to W, and < x > will be shifted from
the edge of the depletion region. As a result, standard C'V profiling analysis, which explicitly
assumes that free charge is built up at the edge of the depletion region, will yield an inaccurate
carrier profile result skewed towards the barrier.

DLCP presents an alternative method by which to profile the charge density in bulk states.
By modulating the amplitude of the AC perturbation in addition to the frequency and DC bias,
DLCP is able to parse the contributions to the junction capacitance due to defects and those from
free carriers. The use of large AC biases implies that the charge response cannot be assumed to be

linear; instead, the capacitance due to the dynamic voltage can be written as a power series:[52]

C= % =Cy+ C1dV + 02(dv)2 + ... (2.5.3)

The higher order terms contain information specifically about the defect response depicted in
Figure 2.10] By shifting the frequency of the AC perturbation, different energies within the band-
gap can be probed. The energetic range probed by an AC perturbation in a DLCP measurement
is again given by equation .

The mechanism of the DLCP measurement for a given E,, is shown in Figure 2.11] for SRH
recombination due to depletion region defect states. Figure depicts a trap band in the p-
type part of a p-n junction crossing Fr at a spatial location xy within the depletion region (x,,).
The corresponding charge density diagram is shown in Figure [2.11|B, with a contribution due to

the trapped charge overlaid onto the charge density resulting from free carriers with density N4.
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Upon application of a small reverse bias 6V, the bands shift as shown in Figure 2.TT|C provided the
applied frequency w < wp, and the resulting charge density diagram is shown in Figure 2.11D. The
difference between the two charge density diagrams, shown in Figure 2.I1E, is the total change
in the depletion region charge distribution measured by DLCP in response to an applied voltage

0V = Vgrumes and, in general, contains contributions from both N4 and trapped carriers (n:).

At B 1
’O,O_o-oo-o—o-o-o-o—o—oET
O E
: E, X
Sy
D
0:0-0=0-0-0-0-0-0-0 E;
Er
E, z|
Ql
X

x,+6x  Wpy+bx ﬁ x +6x  Wptbx

Ap(x) ™

Figure 2.11: (A) Band diagram of p-type semiconductor with a bulk trap Er crossing Er at a
distance xr within a junction of depletion width extending to W,. (B) Approximation of charge
density of ionized acceptor density in traps (blue) and in depletion region (gray). (C) Application
of a bias perturbation 6V shifts the bands down by a corresponding amount g6V and extends the
depletion region dx. (D) Charge density within junction during application of perturbation. (E)

Difference in charge density distributions in (B) and (D).
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Figure 2.I0E highlights that DLCP is a technique that is primarily sensitive to bulk states
where Ep crosses EFp. At high w DLCP gives an estimate of the charge density around Ep, as
explained in equation . Typically, the values obtained at high frequency are interpreted as
ionized acceptor concentrations, and thus estimate the free carrier density in the bulk.[52]

To perform a DLCP measurement, frequencies in discrete steps are applied to the device
junction, and the capacitance response to the AC signal is measured at various AC amplitudes
Vras- A variable DC bias is simultaneously applied to the sample so that the device is kept under
a constant maximum reverse bias |Viaz| = |Veams + Vpe| for a given measurement. The DC bias
ensures that the band bending is held constant throughout the measurement, and only dynamic
changes in majority occupation due to the applied AC signal are measured as Vs changes, as

described in DLCP work on polycrystalline semiconductors. [52]

52



A A Py Pt e t1
(——\,/'\J ,—O -
T Er
o oo
W o gR gﬁ |
_ I
i | | <>
Xeg + ‘I"rms,.? Xe +i Vims3 Xg* Vimsa 3
B = -
g l | | |8
© [ o
- I | | £
z : \ I
| 1 |
A :
C I | |
c|© 11
Q ‘ | |

Viaws (V)

Figure 2.12: (A) Band diagram showing crossing of Er and trap band E}; at various total applied
DLCP voltages Vims,1—4. (B) Spatial crossing point x5+ Vg s schematically diagrammed within
the device (C) Schematic of C' vs. Vgars, showing non-linear decay of C' as spatial location of

capacitance response extends further from junction.

Figure 2.12] presents a cartoon of how an increase in applied AC amplitude Vg shifts the
crossing point of Er and a discrete trap state Ep progressively further from the junction. Since
the total band bending in a given DLCP scan remains constant (e.g. Vinq. remains constant), the
application of Vijss only affects the sub-population concentration of carriers that can respond to
the applied frequency. The resulting capacitance, drawn schematically in Figure [2.12|C, exhibits a
nonlinear decrease, which follows the general form given by equation . The coefficients Cy,

C1, and Cs may be extracted by fitting the capacitance data, and the resulting drive level density
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can then be calculated as:[52]

cs _ ol

Npp=——————+— =
bL 2(]56014201 q

(2.5.4)

where A is the area of the device and ¢ is the dielectric constant of the material. Specifically, p
is a measure of the charge occupancy of the DOS N(E) at a given w. A distance profile can be

generated by plotting Npr against the distance < x >.

2.6 Instrumentation

The IS, TAS, and DLCP measurements on QD diodes presented in this thesis are achieved using
a custom set-up that mates frequency-dependent impedance characterization with simultaneous
DC transport measurements. These measurements are performed within a cryogenic vacuum
probestation to allow for temperature-dependent interrogation of transport and recombination
phenomena with the QD device. The total set-up is represented schematically in Figure [2.13

discussed in detail below.

pCContrdl
LiF/Al
PC
ITO
Glass
Cryostage

Figure 2.13: Schematic of setup used to collect dark IS data. The IS setu-up consists of an HP-

4192A impedance analyzer and the JV setup consists of an Agilent 4156C parameter analyzer.
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2.6.1 Cryostage

Electrical characterization is performed within a LakeShore Cryotronics CPX-VF cryogenic probesta-
tion, capable of reaching high vacuum levels of ~ 1 x 10~% torr and temperatures from T' = 4 — 350
K. The probestation allows for temperature control over heating elements embedded in three sepa-
rate heating stages and a superconducting magnet located within the chamber. The magnet itself
is not used in the electronic measurements discussed in this thesis. Control over these heating
elements is achieved using LakeShore model 332 and model 340 temperature controllers with 2
inputs each. The model 340 contains an additional sensor input. The temperature controllers are

wired as follows:

e Model 340

— Loop 1 senses the temperature of the sample stage via a Cernox resistance temperature
detector (RTD) that uses a vendor supplied calibration curve (X40711) to output the

correct temperature. Heat is supplied via a 50 W resistive heater

— Loop 2 senses the temperature of the magnet stage via a Cernox RTD with a second
vendor-suppied calibration curve (X50126). Heat is supplied via a 100 W resistive

heater

— Sensor 3 reads the temperature of the probe arm via a platinum resistive heater (PT-

100). This temperature cannot be directly manipulated
e Model 332

— Loop 1 uses a Si diode (DT-470) to sense the temperature at the radiation shield, which

can be subsequently controlled with a 100 W heater

— Sensor 2 uses the a second Si diode (DT-470) to sense the temperature at another point

on the radiation shield. The temperature at this location is controlled by an analog
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voltage output by the 332 to an external amplifier (LakeShore model 142B), which

controls the current through a second 100 W heater.

To cool the system, liquid Ny is introduced into the coldhead of the cryostat via a vacuum
transfer line. An Edwards nEXPT turbopumping station, consisting of an nEXT85 turbomolecular

pump and a nXDS scroll pump, is used to pump the system to pressures of ~ 1 x 1076 torr.

2.6.2 Electrical Measurements

Variable temperature TAS, DLCP, AC conductance, and JV measurements can be performed
within the vacuum probestation discussed above. Two probe admittance and JV measurements
are carried out using a Hewlett Packard HP4192A impedance analyzer and an Agilent 4156C
parameter analyzer, respectively. A computer-controlled relay switch is used to toggle between
AC impedance measurements and DC JV characterization at each temperature or time-step as
depicted in the schematic in Figure [2.13] For TAS measurements, the capacitance response of a
solar cell device to small (10-100) mV AC perturbation is collected for 200 frequencies that are
equally logarithmically spaced from 20 Hz to 1.3 MHz at DC biases of 0, -100, and -200 mV. IS
data is collected at large forward biases of 400, 500, and 600 mV. The same DC and AC biases
are applied for AC conductivity measurements. DLCP measurements are performed immediately
afterward using the same setup, with AC signals at frequencies of 100 Hz - 500 kHz, and maximum
applied biases Viae = Vems + Ve from —50 mV to —300 mV in small (~ 50) mV steps. To
obtain the non-linear capacitance response, Vrasrs was varied from 10 mV - 300 mV, and Vp¢ is

automatically modulated to keep V4, constant using custom LabView software.

2.7 Conclusion

This chapter has summarized the frequency-domain characterization techniques used to character-

ize the charge transport dynamics in QD solar cell devices featured in Chapters[3} [ and[5} Section
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discussed the physical models to describe the frequency dependence of the capacitance-
voltage characteristics in bulk semiconductors. Section extended these physical models used
to describe the total electronic impedance of a macroscopioc system in terms of micrososcopic pa-
rameters. Sections and describe the 0 and reverse applications of IS, commonly known
as TAS and DLCP, to study majority carrier dynamics within semiconductor junctions. Finally,

section (2.6| describes the physical instrumentation used to make these measurements.
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Chapter 3

In-Situ Characterization of the
Density of States in QD Schottky

Junction Photovoltaic Devices

3.1 Introduction

Organic semiconductors, [146}, [87, [50] lead halide perovskites, [155], 113} [132] and quantum dot (QD)
solids[69), 140} 62] have attracted considerable attention in the last decade as demand grows for
solution processable materials that enable flexible, low-cost, large-area photovoltaic (PV) devices.
Like their bulk semiconductor counterparts, the carrier mobility and lifetime that define the power
conversion efficiency (PCE) of these emerging PV platforms are governed by the density of states
N(E) available for charge occupation. N(E) in bulk single- or poly-crystalline semiconductors is
characterized by extended states at the conduction or valence band edge, with mid-gap trap states
created by atomic defects within and at the surface of crystalline grains. In contrast, the greater

structural and energetic disorder in amorphous and many solution-processable semiconductors
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leads to a more dispersive N(FE) with localized states that tail into the bandgap.[49, [94] 911 159,
72, [105] Despite this significant difference in N(F), efforts to characterize trap states that limit the
carrier mobility-lifetime product in low mobility PV materials often rely on the same techniques
developed for higher mobility bulk crystalline materials.

Impedance spectroscopy (IS) is one of the most widely used techniques to characterize elec-
tronic defects in PV devices. IS is a suite of frequency domain measurements that link macroscopic
current density-voltage (JV') characteristics to microscopic transport dynamics within a semicon-
ductor device.[IT9] The time-varying AC biases used in IS studies of semiconductors are typically
applied with frequencies w = 10?2 — 10° rad/s, allowing for the interrogation of charge dynam-

1

ics characterized by relaxation times 7 = = = 1076 — 1072 s. The interrogation of these time

scales enables the investigation of charge dynamics between states separated by an energy barrier

AE:[A1]
AE

) (3.1.1)

T = 1pexp(

where 7 is a characteristic relaxation time. Thermal admittance spectroscopy (TAS) is a specific
variant of IS that decouples the capacitance contribution of trapped charge from the depletion
capacitance of a PV device at zero or reverse bias by measuring the frequency- and temperature-
dependent junction capacitance response. TAS is commonly used to probe carrier recombination
through discrete defect levels, and in addition to PV devices containing Cu(In,Ga)Ses (CIGS) thin
film materials for which the method was initially developed[I50, [39, [61], TAS has been applied to
PV devices made of CdTe,[90} 89 B8] amorphous silicon,[53] organic semiconductors,|[75] 22] [12]
lead halide perovskites,[35, 65] and QD solids.[16], 15, 66] In bulk crystalline materials, these
relaxation times are typically associated with Shockley-Read-Hall (SRH) recombination through
traps with energy FEp such that AE = Ec — Er or Epr — Ey and 19 = 710 where ’the attempt
to escape frequency’ vy = Bpvs, is the frequency with which a charge in a defect state with
capture cross section (3, and thermal velocity vy, attempts to escape into the band.[150} 90 [39]

In disordered materials, low charge carrier mobility associated with hopping in localized energy
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states implies that a broader range of both charge transport and recombination phenomena may
be probed by IS.[125] [129] 151]

Recent experimental studies[I25] [00] and PV capacitance simulations[I5}, [156] have pointed
out that low carrier mobilities in materials such as QD solids or organic semiconductors can
complicate standard TAS analysis, leading to the mis-identification of hopping transport signatures
as evidence of discrete defect levels. More extensive characterization of hopping transport in
low mobility materials has been provided by IS studies of AC conduction in disordered dielectric
materials such as conductive glasses[I48] and electronic polymers.[42] The structural and energetic
disorder that characterizes these materials can be correlated to a relaxation time that corresponds
to the hopping time 7 wvia the random free energy barrier model (RFEB). The RFEB model
assumes charge carrier hopping is subject to spatially random energetic barriers, and has been
shown to describe the frequency-dependence of Miller-Abrams or nearest neighbor hopping (NNH)
transport.[36] As depicted in Figure , the model assumes transport over larger distances (blue
circle) involves more site-to-site hops and is thus more likely to require a carrier to surmount a
large energy barrier, limiting the response to lower frequencies (longer times). By contrast, closer
hops are more likely to involve smaller energetic barriers and can be probed with higher applied
frequencies. The distribution of energy barriers in a low mobility semiconductor such as a QD
solid can be thus be probed by frequency-dependent conductivity measurements and analyzed via
equation , where AFE now represents the difference between the majority carrier band edge
and localized energy states at a characteristic transport energy Er, such that AE = Ec — Ep,

or Er, — By .[A1], 136, [77]
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Figure 3.1: Schematic of (A) a disordered QD array, with varying conduction and valence band
states (black lines), capped by short organic ligands integrated in (B) a Schottky junction PV
device. Devices are mounted in a cryostat and probed in an AC and DC electronic measurement
apparatus. In (A), the red circle shows the radius of charge hopping in the QD array under
low frequency conditions and the blue circle shows the radius of charge hops in high frequency

conditions.

Here, we correlate the thermal admittance spectra of a PV device with an active layer of
1,2 ethanedithiol (EDT)-capped PbS QDs with temperature-dependent AC and DC conductivity
measurements (Figure . PbS QD devices offer a model system for studying the contribution of
hopping transport in IS measurements since QD solids are known to exhibit limited carrier mobil-
ities ~ 1074 — 1073 cm?(Vs) 1 [160} (1, 157, [136] yet have been optimized to achieve ~ 11% power
conversion efficiency (PCE).[25] [82] We show that the spectroscopic signatures detected in our
TAS data arise from hopping conduction and not from trap kinetics. We use TAS measurements
to identify the energy of states through which charges hop, and in combination with drive level
capacitance profiling (DLCP), we quantify the occupation of these states, showing that hopping
transport occurs in a broad tail of states extending from the valence band (Ey ) to a transport level

Er, below the band edge. By relating these measurements to optical absorption and JV data, we
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show how the frequency dispersion exhibited by charge hopping processes may be mapped onto
the energetic landscape in QD solids, and examine the implications of charge hopping dynamics
for PV device performance. Using this physical picture, we are able to deduce the effect of Oy on

N(E) in our devices by observing the evolution of the admittance response under high vacuum.

3.2 Optical Absorption and JV

A 15

1.25 1.5
E (eV) V (volt)

Figure 3.2: (A) Normalized absorption spectrum for an EDT-capped PbS QD film (gray circles)

with fit of the low-energy side of the absorption spectrum to a Gaussian distribution (dashed red

line). Positions of Ep, Er,, and Ey and energy differences Ex and E,, highlighted schematically.

(B) Dark (black) and illuminated (gray) JV curve for PbS QD PV device device, with red star

indicating V,. = 0.37 V.

QD PV devices are fabricated by spincoating 3 nm diameter, oleic acid capped, PbS QDs, syn-
thesized according to literature methods, onto ITO/glass substrates. The native oleic acid ligands
are exchanged by depositing a solution of the EDT ligand in acentonitrile onto the film for 30 s.

The film is then rinsed with fresh acetonitrile to remove excess ligand. This process is repeated to
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deposit 5 layers of EDT-capped PbS QDs to yield a ~ 90 nm film. The device is capped with a
LiF /Al top contact as depicted in Figure The normalized optical absorption spectrum of an
EDT-exchanged PbS QD film at energies near the first exciton peak is shown in Figure 3:2A. An
exponentially modified Gaussian distribution is fit to the peak, from which we deduce an optical
bandgap Fg = 1.22+0.01 eV given by the peak of the distribution and a total width in first ab-
sorption energy given by ~ 30,4, = 0.15 €V where 0,4, = 0.051 £ 0.002 eV is the variance of the
Gaussian fit. The width of the first exciton peak has been previously shown to parameterize the
inhomogeneous distribution of electronic states in the QD film and therefore provides a measure
of the width of the density of valence band states Ny .[153]

Figure displays the dark and illuminated JV characteristics of the completed PV device.
Under AM 1.5G illumination, the device exhibits an open circuit voltage (V,.) of ~ 0.37 V and a
PCE of n = 3.7%, in good agreement with PCE figures previously obtained for PbS QD Schottky
PV devices.[145], [123] Since the maximum theoretical observed V. of our Schottky cell Ve paz =~
£e = 0.61 eV[97], our data indicate a V,. deficit of ~ 0.24 eV, which may either result from

defects within the PbS QD layer.[I5] 28] or pinning of Er at the interface. [37, (58, [73] 02 [93]
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3.3 TAS Measurements
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Figure 3.3: (A) TAS spectrum of a PbS-EDT QD PV device measured from T' = 190 — 290 K. Res-
onant frequencies (triangles) determined from (B) the derivative plot. Temperature-dependence
of (C) the frequency wy = wp of the capacitance derivative fit to an Arrhenius function to yield
activation energy F 4, and of the (D) amplitude of the capacitance derivative with fit to a Fermi-

function to yield the activation of the carrier density E, respectively.

To understand the mechanism behind V. losses in our QD PV devices, we perform TAS measure-
ments by mounting the devices in a cryostat kept under vacuum (~ 10~ torr) and measuring the
frequency-dependent capacitance response to 20 mV AC signals at 0 V DC bias from 7' = 190—290
K. The capacitance displayed in Figure|3.3]A shows a large plateau at low frequencies followed by
a temperature dependent decay to ~ 300 nFem™? at high frequency. The low w plateau reflects
charge dynamics within the PbS QD Schottky junction. For sufficiently low temperature or high
w, the charge can no longer respond to the applied AC signal. As a result, the measured capaci-
tance decays to the capacitance of the depletion width, Cp, at high w. For w >~ 2 x 10°¢ rad/s,
a second capacitance drop off can be observed in the TAS data due to parasitic series resistance
effects reported in both experiment and simulation.[75]

The high and low w regions in Figure are separated by the resonance frequency wgy. Ex-
perimentally, wq is obtained from loss peaks in a plot of the frequency-scaled derivative fw% VS.

w, provided in Figure [3.3B. The peaks in Figure[3.3B display a temperature-dependent shift in wy
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and increase in amplitude. The thermal activation of wy in higher-mobility thin film semiconduc-
tors for which TAS was developed is related to SRH recombination through a predominant trap
with energy Epr. However, in low mobility semiconductors, the assumption that carriers diffuse
sufficiently fast prior to trapping and after subsequent de-trapping so that wy depends only on the
charge emission rate e, from a trap may not be met.[125] [I51] In these materials, the low mobility
p of charge carriers implies that the transport times of diffusion 74 o i and drift 74 ¢ o i can-

not be ignored at the frequencies applied in the TAS measurement. As a result, the dielectric loss

peaks measured in plots of the differential capacitance occur at wy = e, (T)+ Td,lff + 1_ft 125, 151].

Carriers can thus follow the AC signal up to a limiting frequency given by wp, the dielectric re-

laxation frequency, which approximates the carrier travel time Tdvlff + = 1‘ft .[125] Since wp is the

frequency associated with transport time, it depends on the conductivity ¢ = quiN4 of charge

carriers in the semiconductor according to:[90] [151]

o w
= — 3.3.1
b cogs d ( )

where w is the depletion width, d is the film thickness, and e, is the dielectric constant. Room tem-
perature electrical characterization of FETs made of 3 nm PbS QDs capped with EDT, provided
in Appendix give a mobility u ~ 1 x 1074 cm?(Vs)™!, consistent with literature reports. [64].
Assuming that ¢ = 11.5 (Appendix , the EDT-capped PbS QD active layer is fully depleted
such that % = 1[16} 133] and N4 ~ 10'7 ¢cm™,[133] we obtain wp ~ 1.6 x 10° rad/s. At T = 290
K, we measure wy = 8.8 x 10° rad/s. Similar wy frequencies are observed in EDT-capped PbS
QD/Au junction devices (Appendix , providing evidence that the loss peaks in Figure
results from majority carrier mobility freeze out and not charge trapping in the depletion region
of the device.

Within the temperature range of our TAS measurement, hopping transport in QD solids follows

Arrhenius behavior consistent with NNH, implying the thermal activation of o is given by:[91], [105]
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AE 4
kgT

). (3.3.2)

o = opexp(—

where oy is a pre-factor that may depend on temperature and E4 is the activation energy of
the conductivity. Combining (3.3.1) and (3.3.2) gives a thermally activated expression for the

dielectric relaxation peak:

_ OO W e~ LA
p=_— dexp( k:BT) (3.3.3)

E 4 can therefore be determined by applying a linear fit to In(wp) vs. %, shown in Figure .
The slope of the fit yields F4 = 0.230 + 0.001 eV, where the error reported is obtained from the
fit.

The growth in amplitude of the differential capacitance in Figure has been previously
ascribed to a 'de-tuning’ energy that corresponds to the thermal activation energy of the carrier
density Ey = Ep, — Erp where Erp, is the predominant hopping level above Er as depicted in
Figure .[16, 15] A Fermi fit to W%L.u:wo vs. T is provided in Figure , allowing us to
estimate that Ex = 0.08 £ 0.01 eV. Since 0 « nu, where n is the carrier density, the thermal
activation of the conductivity E4 similarly contains contributions from Ep,. and the activation
energy of the mobility FE,.[105], 125] We obtain E, = E4 — Ex = 0.15 £ 0.01 eV, in excellent

agreement with the band tail width deduced from the absorption spectrum.

G
3.4 = Measurements

The energetic landscape probed by TAS measurements may also be visualized by plotting the
frequency-normalized conductance %[150, 127]. In analogy with plots of —w%, the frequency-
dependence of % directly probes the loss tangent (tan(d)) in metal-semiconductor junctions. [111]
At low w, charge in the semiconductor may follow the AC signal resulting in no energy loss and

small values of %

. G, - . .
. As w increases, - increases since the phase lag between the carrier response

and the AC signal produces energy loss. % continues to increase with w until it reaches a peak at
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the resonance frequency wp. As w increases further and larger portions of N(E) cease responding
to w, the energy loss drops and % — 0.

Figure shows % vs. w at 0 bias from T = 220 — 290 K, calculated from normalizing
the real part of the admittance response to the applied frequency of the measurement. The data
show 2 peaks—a large feature at w < 10% rad/s and a set of smaller features at w ~ 10° rad/s.
As temperature increases, the amplitude of the high w features grows from low shoulders into a
distinct set of peaks. The two different relaxation processes in Figure may be interpreted
using an equivalent circuit model containing two RC branches (Figure ) Similar equivalent
circuit models have been used to model charge emission from deep states in n-GaAs Schottky
junctions[63] and CIGS thin film PV devices.[124] Fits to the two peaks are obtained using the

equivalent circuit in Figure [3.4B, for which we have derived the following conductance-frequency

relations:
20, 2c,
G=tulh | Y el (3.4.1)
1T+w?ry 14wt
Similarly, the capacitance of the equivalent circuit is given by:
C C
C=0Cy+—2 2 (3.4.2)

1+w?r? 14 w7

where 7, (13,) = % is the time constant associated with the low (high) peaks. The form of

Wi
equation (3.4.1) reflects that the capacitance due to frequency-dependent charge dynamics is in
parallel with the depletion capacitance, whereas the conductance branch of the equivalent circuit

is primarily sensitive to charge dynamics outside the depletion region of the PV device. As a

result, ~2 is more sensitive to interfacial recombination.[112]

67



‘_I;‘ Ce . Rt1

4 o | 0
-8

w1z 10 ., R,

2 103 104 105 106 107
w (rads-1)
. — D 10— .

(@
[EY
o

[e)]

)

wp (rad/s)
[N
ke
(sK-

=
o
b T TTTTTTT

wWo
T1/2

1 1 1 1 1 1 ]
3.6 4.0 4.4 10 3.6 4.0 4.4

1000/T (K) 1000/T (K)
Figure 3.4: (A) % vs. w for T'= 220 — 290K, with fits (red line) generated from (B) an equivalent
circuit model of the PV device. The model includes contributions from interface states with
capacitance Ct, and recombination resistance R;, and transport charge dynamics with capacitance
Cy, and Ry,. (C) Arrenhius fit to In(wp) vs. % for high frequency peaks, giving thermal activation

energy E4. (D) Arrhenius fit to 1n(wT_%) vs. =, giving thermal activation energy Ey.

The fits displayed in Figure indicate that the proposed equivalent circuit provides an
excellent model for interpreting the loss peaks in % The extracted peak positions of the high w
feature give similar resonant frequencies observed in Figure 3.3B. We therefore infer that the high
w features in Figure are due to dielectric relaxation and thus wy = wp. An Arrhenius plot
of wp vs. % provided in Figure yields E4 = 0.181 + 0.026 eV.

The pronounced low w peaks in % appear to have no explicit counterparts in the capacitance-

frequency data exhibited in Figures ,B. Re-writing equation |D in terms of w = % yields
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the following expression for the resonant frequency of charge emission out of defects:

AE
wy = 2,BpNUeXp(—kB—T) (3.4.3)

In bulk materials, the pre-factor 3,/Ny is usually written as the product of vpoT" 2. where vy is
the reduced attempt to escape frequency and the T2-dependence comes from both v, o< T7/2 and

Ny T3/2.[150, 1TT] In QDs, however, Ny is temperature independent, so we may write equation

BAI) as:
AFE

wo = 21/00T1/2exp(—kB—T)

(3.4.4)

In Figure , we present Arrhenius fits of to wg of the low frequency peaks in Figure .
The slope of the fit indicates AE = 0.086 + 0.023 eV, in excellent agreement with Ey inferred
from the capacitance data.

The fits in Figure allow us to extract the capacitance Cy, , = Ny, ,(E) for both the
interface state peaks and the dielectric relaxation peaks.[127] Since 7z = R;C;, we may also
extract a characteristic resistance R; for both sets of these features. In traditional SRH analysis,
Ry is interpreted as a resistance to recombination—low values of R; indicate that charge may flow
into the state E; via fast recombination processes.[I19] By analogy, R; for the dielectric freeze
out peak corresponds to the relative probability of a charge hopping into the DOS at the mobility
edge Ey. Large values of R; imply that charge hopping at Ey is less likely than smaller values of

R;.
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Figure 3.5: Extracted (A) R; and (B) C; for low (circles) and high frequency peaks (diamonds)

from T = 220 — 290K from fits in Figure .

The temperature-dependence of R; and C; for both wp and the low frequency feature is plotted
in Figure —B. The low frequency charge dynamics are associated with higher resistance (circles)
than the freeze out feature, and changes only by a factor of ~ 2 across the temperatures probed
in the experiment. By contrast, R;, associated with wp (diamonds) decreases over an order of
magnitude from 7' = 220 — 290K. As a result, we conclude that charge capture by states that give
rise to the low frequency peaks is less likely than occupation of the transport states responsible
for dielectric relaxation. From Arrhenius fits to both sets of data, we obtain an activation energy
of the resistance E4, = 0.126 4+ 0.025 eV for the low frequency feature and E4, = 0.258 £ 0.025
eV for the dielectric freeze out peaks. We note the excellent agreement between the activation
energy of the resistance for states associated with freeze-out and E4, of wp obtained in Figure
3.3[C. These data therefore reflect that the temperature-dependent charge dynamics in the QD
PV device probed at frequencies ~ 10* — 10 rad/s are dominated by thermally activated hopping
between transport states responsible for dielectric relaxation.

The origin of the relative importance of these states to dielectric loss can be seen in the
temperature-dependence of the capacitance C; of the QD PV device in Figure 3:5B. The capac-

itance of the low frequency peaks (Ci,, circles) is almost constant and ~ 2 orders of magnitude
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larger than CY,, the capacitance due to dielectric relaxation. As a result, we infer that the occupa-
tion of charge states responsible for the low frequency peaks undergo little increase in occupation
over the temperature range of the experiment. By contrast, the capacitance of states responsible
for dielectric relaxation (diamonds) continually increases with temperature, as expected for hop-
ping conductivity of thermally activated carrier densities.[I05] An Arrhenius fit to Cy, indicates
E 4 =0.029 V. The activation energy of C,, for the higher frequency feature we ascribe to trans-
port states yields 0.077 eV, implying that ~ 2.7 times more energy is needed to access the density
of states responsible for this spectral feature. The ratio of these two energies is comparable to
the factor of ~ 2.9 between Ey and E4 determined in Section @ We also note the agreement
between the activation energy of the capacitance of the transport states and the carrier activation
calculated in Figure [3.3D, which further match the activation energy of charge emission of the low
frequency charge relaxation feature states calculated from the fit in [3.4D. The agreement of these
energies suggests that charge relaxation probed at low frequency provides carriers for transport
throughout the QD film. We hypothesize that these low w features may result from interfacial
states, since states localized at the interface are obscured in the capacitance-frequency spectra due

to the contribution of Cp.
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3.5 AC Conductivity Measurements
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Figure 3.6: (A) Log-log plot of ¢’(w) vs. w. (B) ¢/(w) vs. # with Arrhenius fits (dashed red lines)
for wy,p =5 x 10® (circles), w = wp (triangles), and wpf &~ 1.2 x 10° rad/s (diamonds), yielding

activation energies corresponding to E,,, Fr — Ey, and Er,, respectively.

The frequency-dependent total conductivity o’(w) (Figure ), calculated from normalizing the
real part of the admittance response to the area of our PV devices, is simultaneously collected
as a function of temperature as a part of our TAS experiments. For w < 103 rad/s, o/(w) at all
temperatures exhibits a pronounced low frequency roll off due to loss peaks at these frequencies
that we ascribe to thermal activation of the carrier density (see Section . Between 103 <w <
10° rad/s, o’(w) exhibits only slight frequency dispersion for T' < 230 K and almost no dispersion
at higher T. This mid-frequency plateau in ¢’(w) occurs over the same frequency range as the
capacitance plateau in Figure|3.3]A, indicating that this feature corresponds to frequencies at which
charge can follow the applied AC signal. From equation , low measurement frequencies allow
for the experimental interrogation of longer hopping times and large energy excursions to states
further away from Er. According to the RFEB model, the availability of greater portions of N(FE)
for charge hopping at low measurement frequency implies that larger volumes of the QD film may

be probed in measurements of ¢’ (w) (Figure [3.1]A).[36] The low frequency ¢’(w) data thus reflect
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the dispersion-less DC limit of the hopping conductivity ¢’(0) in which charge may hop along a
percolation path that stretches across the QD film.[T05, 36l [4T]

The activation energy of ¢/(w) in the mid-frequency regime can be obtained by considering
the temperature dependence of conductivity at a single test frequency wp,r = 5 X 103 rad/s, as
indicated in Figure [3.6/A. An Arrhenius fit to ¢/ (wpy) vs. 7 from T = 190 — 290 K, provided
in Figure (circles), yields an activation energy E4 = 0.124 &+ 0.01 eV, in agreement the
activation energy of the mobility E, = 0.15 eV calculated from the energy levels probed in TAS
measurements. The consistency of these results suggests that the largest energetic barrier that
must be surmounted for continuous charge hopping throughout the QD film at these applied
frequencies involves a transition between states at Fp,. and those Ey .

Figure also highlights the loss peaks at wg (triangles) detected in TAS, which span
the frequency range of the measurement. The Arrhenius fit to o/(wg) in Figure yields
E4, = 0.23 £ 0.01 eV, indicating that thermal activation of wg in Figure exactly follows
the thermal activation of o’ (wp) as indicated by (3.3.3). The agreement between the capacitance
and conductance measurements provide further evidence that the resonant frequency detected in
TAS corresponds to the dielectric freeze out frequency wp. The activation energy E4 = 0.23
eV observed in these measurements likely correspond to the difference between Er and Ey,[I50]
implying that the effective bandgap of our QD PV device is less than the % expected in an ideal
Schottky junction device. We therefore expect the V. of our PV device to be constrained by the ob-
served Fermi level, and calculate a maximum achievable V. of EQ—Gf(EFfEV) =0.61-0.23 = 0.38
eV[28], in excellent agreement with the observed V..

At higher frequencies, ¢’ (w) exhibits a large, temperature-dependent enhancement in Figure
3.6/A. This increase occurs roughly where the capacitance drops to a minimum in Figure |3.3/A,
suggesting that w > wp and charge can no longer follow the applied signal. At these high
frequencies (low 7), equation dictates that only small energetic barriers are interrogated

such that only charge hops to states near Fr may be resolved by the measurement. Similar high-
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frequency enhancements to the AC conductivity of dielectric materials have been shown to result
from charge hopping hopping back and forth within finite regions where charge hopping is more
probable due to low internal energetic barriers.[36] From the drift velocity vq = 7 = p€, we can
estimate the AC drift length L of a charge through a single cluster at a given frequency w = % For
p=12x10"%cm?(Vs)! at 300 K (Appendix and an AC amplitude of 20 mV, we calculate
L ~ 9 nm for w = 2 x 10° rad/s, indicating that high frequency AC conductivity measurements
probe clusters containing a small number of dots. The use of the DC mobility in this calculation
implies that the calculated L serves as a limit of the cluster length. As frequency increases, the
cluster length decreases, and we estimate that the cluster length drops below the 3 nm single QD
diameter at ~ 5 x 10° rad/s using the DC mobility.

As in the case with the low frequency conductivity, the activation energy of the high frequency
conductivity can be calculated by considering the temperature-dependence of ¢'(w) at a test
frequency wpy = 1.71 X 108 rad/s. Since wny > wp, hopping from states at Er to those near
Ey is forbidden. Two different activation energies are apparent in Figure (diamonds): a
small activation energy on the order of the thermal energy from 7' = 190 — 220 K (E4 =~ 0.015
eV), and a larger activation energy EF4 = 0.10 £ 0.025 eV from T = 230 — 290 K. The activation
energy of the low temperature portion of the data is consistent with the nearest neighbor hopping
energy obtained from FET measurements of EDT-capped Pb-chalcogenide QDs, suggesting that
only charge hops within single QDs or across QD pairs are allowed at these temperatures and
frequencies.[I17, [71] At higher temperatures, ¢’(wps) exhibits stark thermal activation indicating
that the the clusters interrogated contain several QDs, consistent with our calculation of the
AC drift length L above. The larger thermal activation required for hopping among clusters of
QDs suggests that these clusters exhibit a broader site-to-site energy dispersion than the shorter
range hops among pairs of QDs or within single QDs. The extracted activation energy for charge
hopping within these clusters is in agreement with the thermal activation of the carrier density

EN obtained from capacitance measurements in Figure [3.3] The consistency of these energies
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implies that the most probable energetic transitions in the QD film at these frequencies are those

involving charge hops from states at Er to states in the band tail at E,..

3.6 DLCP Measurements
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Figure 3.7: (A) C vs. Vgus for w = 6.28 x 103 rad/s (circles) and 6.28 x 10° rad/s with
accompanying non-linear fits (blue line). (B) Profile of drive level densities obtained via DLCP

from T = 220290 K with example Np, values from (A) highlighted (blue stars).

The occupation of the energy levels detected in TAS and temperature-dependent AC conductivity
may be quantified with the aid of temperature-dependent DLCP. DLCP measurements of the PbS
QD device were obtained in parallel with the TAS and conductance measurements by measuring
the non-linear capacitance response of the device to large AC perturbations (Vgas) applied at a
given frequency w against a total reverse bias Vinax = |Vrams + Vbol- Vinas s held constant for
a given DLCP measurement, implying changes in Vz)rs must be compensated by a variable DC
bias Vpe.[62] Figure shows example data for T' = 280K, V4, = —100mV, and w = 27 f =
6.28 x 103 rad/s (circles) and w = 3.14 x 10° rad/s (diamonds). As described in Appendix

the coefficients of cubic fits to these data can be used to calculate the drive level carrier density
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Npy, defined as:[52)

Er+E,
Npp =p+ / N(E,z)dE (3.6.1)

Er

Here, p is the density of free carriers in the VB provided by ionized acceptors /N, . The integration
in energy performed over the N(FE) implies that Npy may be interpreted as the concentration of
occupied states (measured in cm™) at a given spatial location 2. The integral is bounded by Ex
and Er + E,, where E,, is a limiting energy separating states that may respond to the AC signal

from unresponsive states.[I50, [54] E, may be written:
v
E., = kpTh(Z) (3.6.2)
w

In the case of charge emission out of a defect state governed by Shockley-Read-Hall (SRH) kinetics,
v = vy, the attempt-to-escape frequency from equation . Equation allows us to define
an analogous limiting energy for the case of charge hopping in a disordered QD array if v — ?1C In
this interpretation, hops requiring a charge carrier to surmount larger energetic barriers become
forbidden as frequency increases, resulting in a decrease F,, and a smaller capacitance response,
as reflected in Figure A.

Fits to DLCP data are also used to find the mean spatial location < x > of the charge density
that can respond to the AC signal. < z > may be calculated by assuming that the junction
capacitance C probed by the DLCP measurement at Vgas = 0 (y-intercept of Figure ) may

be written as:[53], 52]

Aceg

= 3.6.3
Lo+ < x> ( )

ecokpT

N )% is the Debye screening length of the charge density

where A is the device area and Lo = (
that can respond to the measurement.[I122] In DLCP measurements of defects in CIGS thin film
devices, < z > can vary hundreds of nm as the application of Vzpsg alters the junction band
bending, allowing for Npy, to be profiled far into the depletion region.[52], 39] By contrast, Lo

only slightly contributes to the profile distance; for instance, given Npz, /= 1017 cm™ and T = 300

K, Ly ~ 15 nm for ¢ &~ 10. Since the measurement is not sensitive to variation in charge density
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below the Debye length, Lo provides a lower bound to the spatial resolution of DLCP.[52]

The fits to the the low frequency data in Figure yield the highlighted value of Npj, (blue
star) ~ 15 nm from the junction as displayed in the distance profile in Figure . DLCP data
obtained from T' ~ 260 — 290 K and w < 10* give similar values of < 2 >, revealing a large charge
density ~ 10*® — 10! cm™ 15 nm from the interface. Fits to the high frequency data in Figure
yield a charge response at slightly larger distances (blue star) < x > 24 nm. At higher
applied w and V4., the charge response is centered even further away from the junction. For
instance, at T' = 280, w = 6.28 x 10° rad/s, and V4 = —300 mV, the charge response is located
~ 38 nm from the junction.

As discussed in Appendix the variation in Lo+ < z > in Figure that results from
increases in frequency is much larger than the variation due to increases in V,,4,. The observed
variation in the profile distance due to V4, is also smaller than the shifts in the depletion region
expected from the application of V,,4,. We therefore conclude that the spatial variation in Npp,
exhibited in Figure 3.7B results from changes in Ly. The trends in Figure [3.7B can be explained
by a growth in Ly resulting from decreases in E,, and thus the interrogation of smaller ranges of
N(E) as frequency increases (equation . At T =280 K, E,, shrinks ~ 20% as w increases
from 3.14 x 103 rad/s to 6.28 x 105 rad/s, assuming %0 >> w. Over the same frequency range,
Lo(T = 280K) increases ~ 30% given the Npy, values obtained in the measurement, implying

that changes in L can account for the change in profile length in Figure [3.7B.
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3.7 Density of States
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Figure 3.8: (A) Calculated N(E) (red) with Fermi function for Ep = 0.23 €V at 300K (gray).
Integrating the product of the 2 distributions yields the concentration of carriers p (burgundy )
in cm™. (B) N(FE) calculated from normalizing the capacitance derivative from T' = 260290 K to

Npr, obtained at w = 6.28 x 10° rad/s.

The energy levels and carrier densities obtained via junction admittance measurements may be
clearly visualized by relating them to N(E) of band-edge states probed in optical absorption
measurements. To facilitate comparison with our DLCP data, we convert the absorption ordinate
of Figure into Ny in em™3eV-! by normalizing the amplitude of a Gaussian distribution
centered at Fg = 1.22 eV with variance 0,4, = 0.051 €V to an amplitude Ny = E"Q—VD, where Egp
is the single particle energetic linewidth previously measured to be 20 meV.[I53] ny is the spatial
concentration of valence band states, and depends on the effective volume of a single QD in the
film V. sf as ny = &.[162] As described in Appendix we calculate Vo f¢ &~ 1.4x1072%cm™ to

obtain ny = 1.77 x 102° em™. This results in a band-edge density of states N (E)y = 8.83 x 102

cm3eV!, displayed in bright red in Figure .

Figure also displays f(F) = #,E) calculated assuming Fr = 0.23 eV at room

14exp(— T
temperature (gray). Integrating the product of f(E) and Ny (Figure , burgundy) yields a

3 3

total carrier concentration p = 1.05x 108 cm™3, in reasonable agreement with Npj, ~ 3x10'® cm"
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obtained by low frequency DLCP at high temperatures (Figure ) and an order of magnitude
larger than Npy, closer to Er in the band tail determined wvia high frequency DLCP.

To corroborate this analysis, we also estimate N(EFr) from the values of Npjy deduced from
high frequency DLCP measurements. As noted in Appendix N(EF) probed in TAS may be
calculated via normalization of the capacitance derivative in Figure[3:3B by device parameters such
as Vp;. Instead, we estimate N(Er) by assuming the capacitance derivatives in Figure probe
a Gaussian density of states with peak amplitude A and variance o*. We can then analytically

carry out the integration of the N(EF) and set it equal to Npy, as follows:

/ Aexp (E - EF))

NDL = V27TAO'*

The energetic width of the distribution ¢* may be estimated by converting the frequency abscissa

(3.7.1)

of Figure to an energy scale via equation . Since both ¢* and Npj, are known, we can
then calculate the total amplitude A and therefore N(E)y

The result of this calculation is presented in Figure |3.8B for w = 10° rad/s and averaged over
T = 260—290 K. These values were chosen since the high frequency Npy,, which reflects the charge
carrier density close to Er, exhibits a smaller variance at higher temperatures. At £ = Er = 0.23
eV, we obtain a total peak density N(Er) = 5.4 x 10'® cm3eV-!. Though this value is ~ 1 order
of magnitude larger than N(Er) = 4 x 1017 cm™3eV-! predicted by optical absorption in Figure
[3-8A, we note that integration of N(Er) in Figure gives a carrier density p = 2.96 x 10'7
cm™3eV, while integration of N(E) in Figure obtained by optical absorbance over the same
energetic range gives p = 1.29 x 10!7 cm™. The discrepancy in N(EF) between these methods may
result from additional contributions to the capacitance measured in DLCP from T = 260 — 290
K at w = 10° that are not observable in the derivatives of the TAS capacitance over the same
temperature range, which are centered around slightly higher frequencies wy = 3 x 10°> — 8 x 105
rad/s. This additional contributions may make shape of N(Ep) determined by DLCP and TAS

broader than N(E) deduced via optical absorption.
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3.8 Temperature-Dependent JV Characteristics
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Figure 3.9: (A) Logarithmic plot of J,q; vs. V with linear fit to low voltage characteristics yielding
the ideality n. (B) n vs. T. (C) Logarithmic plot of In(Jy) vs. 1000/7 with Arrhenius fit (dashed
red line) giving E,. (D) Temperature-dependence of Ry with Arrhenius fit (dashed red line)

yielding activation energy Eg,.

Temperature-dependent JV characteristics of the PbS QD PV device were obtained in parallel with
the frequency-dependent characterization as indicated in Figure [3.IB. A general diode equation

for the current density J in a Schottky junction may be written:[127]

)1 - exp(— 10 (38.1)

J = Joexp( T

q
nkgT
where Jy is the reverse saturation current density and n is the ideality factor. Writing the diode
equation in this form allows for the ideality factor to capture recombination in the depletion region
and the bias-dependent lowering of the barrier height ¢ barrier due to the accumulation of charge
at the interface such that n = 1 — %.[127] Equation suggests that n and Jy may be

determined by considering the slope and intercept of a plot of In( ) against V. Fits

J
[lfcxp{f quVT }]

of to the dark JV data obtained from our PbS-QD EDT PV device from 7" = 190 — 290
are provided in Figure . The diode equation well describes the data below ~ 0.1
V, above which the series resistance Rg causes a roll off in J. As temperature increases, the
slope of the fits in Figure decrease. This results in an increase in n from ~ 1.2 — 1.3 with

temperature (Figure [3.9B). Assuming that charge recombination occurs via by band-to-band or
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trap recombination mechanisms in the bulk, n assumes a value of 1-2. In semiconductor-metal
junctions, charged interfacial layers which pin Er can dominate bulk charge dynamics. In this
case, n is related to the change in barrier height as the interface charge density accumulates with

bias: [127]

—1_ [a(¢e + A(bbzm)

] (3.8.2)

1

n
where ¢, is the effective barrier height and A¢y i, is the electrostatic lowering of the barrier
due to the charge density at the interface. In an ideal case with no image force lowering due to
interfacial charge accumulation, % = 0 and thus n = 1. Figure clearly exhibits
temperature-dependent deviations from this ideal case, from which we conclude that the amount
of image force lowering increases with temperature. The increase in n with T is consistent with
the temperature-dependent increase in charge density observed in the low frequency DLCP data,
which grows one order of magnitude from 7" = 220 — 290 K (Appendix |A.4]).

Charged interfacial at the layers at PbS QD-metal surface have been shown to contribute
to anomalous JV characteristics in QD PV devices, and stem from the temperature-dependent
hopping mobility ~ 1072 — 10~* ecm?(Vs)™! governing charge transport in the EDT-capped PbS
QD layers.[59] The observation that the deviation from n = 1 increases with temperature in Figure
is consistent with barrier lowering at the interface resulting from an increase in interfacial
charge density that occurs as the hopping mobility increases with temperature and more charge
moves to the interface. Because n is extracted from reverse bias JV data, the barrier at the
semiconductor surface is large enough to prohibit the accumulated interfacial charge from injecting
into the metal even at room temperature.

In low mobility semiconductors, the saturation current density Jy is dominated by charge

carrier diffusion according to:[127]

Pb
kpT

E#
kT

) (3.8.3)

Jo = NyEmazoexp(— Jexp(—

where p = MoeXP(*%) is the activated charge carrier mobility, &4, is the value of the electric
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field at the junction, and ¢ is the barrier height at the metal-semiconductor interface. Since Ny
in QD films is a constant,[I61] the temperature dependence of the prefactor is given by E,,, and the
total activation energy of Jy is £y = E,, + ¢p. Figure @p displays the temperature-dependence
of In(Jp) extracted from the fits in Figure with an accompanying Arrhenius fit. The slope
of the fit indicates £4 = 0.150 & 0.025 eV. The excellent agreement of £4 with £, implies that
Jo contains no dependence on ¢p. We hypothesize that the the large interfacial charge density
detected in DLCP sufficiently lowers ¢p so that the dominant thermal activation in Jj is derived
from p.

In forward bias, Rg dominates the JV characteristics at V' 2 0.1 V. Figure displays the
Arrhenius plot of Rg from T = 190 — 290 K, obtained wia an analysis of the dark JV curves
which minimizes device parasitics (Appendix . The Arrhenius fit yields an activation energy
E4 =0.095+£0.001 eV. The agreement with the carrier activation energy Fn indicates that the
dominant DC transport mechanism in forward bias is likely hopping through band tail states at
Er,., which form a continuous percolation network for charge to hop throughout the QD film. At
applied frequencies ~ 102 rad/s, this low energy percolation network is broken up, as indicated by
the loss peak discussed in Section Continuous charge transport through the film then relies
on hopping between smaller clusters of QDs that occurs with an inter-cluster hopping energy F,,.
At higher frequencies ~ 10° rad/s, the inter-cluster hops are frozen out and only the low energy

charge hops between Er and Er, are allowed within isolated, small islands of QDs.
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3.9 Vacuum Admittance Measurements
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Figure 3.10: Vacuum evolution of (A) C vs. w, (B) wp, (C) Rg and (D) o(w) vs. w.

To confirm the position of Fr with respect to Ey, we use TAS and DLCP to monitor the variation
in the room temperature defect capacitance of a second PbS-EDT QD Schottky junction PV
device continuously exposed to vacuum at ~ 10~ torr over the course of 17 hours at constant
temperature. The well known p-doping effect of molecular oxygen is known to be reversible
by desorbing O? from the surfaces of both bulk Pb-chalcogenide crystals[102} 101}, [51] and Pb-
chalcogenide QDs[86] under vacuum. By exposing our PbS QD device to vacuum, we may therefore

qualitatively determine how the occupation of N(FE) depends on the concentration of oxygen
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adsorbed to the QD surface. In contrast to the reversible adsorption of atmospheric Oy to the
surface of Pbs QDs, oxidation of the Al top contact occurs quickly and irreversibly.[2] 8] Therefore,
we minimize the reduction of the Al Schottky contacts in the presence of ambient Oy by depositing
a thin layer of Au on top of the completed Al contact as has been done in previous studies of the
effect of oxygen on PbS QD films. [16]

The time-dependent capacitance in Figure[3.10JA shows an initial, rapid rise as adsorbed oxygen
is removed under vacuum. While the magnitude of the low frequency capacitance stabilizes within
~ 100 min, continued exposure to vacuum shifts wp to lower frequencies, as seen in Figure [3.10B.
Commensurate initial drops in Rg (calculated from JV curves available in Appendix and
increases in the low frequency DC conductivity region of ¢/(w) are observed in Figures ,D.
These trends are consistent with an initial increase in charge carrier concentration as oxygen is
desorbed from the film, with a subsequent decrease in the conductivity as probed by wp. We
hypothesize that these two phenomena occur concurrently due to an increase in the population of

less mobile states in the PbS QD PV device.
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Figure 3.11: Vaccum evolution of (A) Npr measured at w = 3.14 x 103 rad/s (circles) and
w = 4.5 x 10* rad/s (diamonds), and (B) n. (C) Schematic of upward shift in Er to pinning level

upon initial exposure to vacuum. (D) Vacuum evolution of In(Jp)

Figure exhibits Npr, measured as a function of time under vacuum. Like the capacitance
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in , Npy, obtained at low w (circles) exhibits a sharp increase and later stabilization after
t ~ 100 minutes. At high frequency (diamonds), Npy, follows an identical trend within the error
of the measurement. We ascribe the large error in the high-frequency Npy, to the vacuum-induced
shifts in wp observable in Figure[3.10A: early in the measurement, wp is larger than the frequency
used to measure the high frequency values of Npy, (w = 4.5x10% rad/s. At longer vacuum exposure
times, wp shifts below this frequency. This transition occurs at ~ 550 mins, roughly to where
the high frequency Npj values saturate in Figure |[3.11JA. The consistency between the low and
high frequency Npj; measurements suggests that the total increase in charge density in the QD
PV device may be explained by increases in charge density at energies close to Ep rather than in
states associated with high mobility around Ey, which can only be accessed at low frequency.

The evolution of Npj, matches the time-dependent behavior of n, exhibited in Figure and
calculated from JV data provided in Appendix The agreement between Npy, and n indicates
that the desorption of oxygen quickly pins EFr which results in a large spike in the interface charge
density, as indicated in Figure [3.IT|C. This interfacial charge density, in turn, lowers the barrier,
leading to the quick initial rise in Jy as the device is exposed to vacuum observed in Figure3.11D.

Scanning tunneling spectroscopy studies (STS) of FETs made of 5.5 nm PbS QDs capped
with EDT have previously measured Er = 0.1 — 0.2 eV above Ey [I61] [162], corresponding
approximately to the position of Ep, measured in our QD device in section [3.3] Desorption of
surface O? has been previously linked to a decrease in the density of these intra-gap states in both
STS studies and density function theory (DFT) calculations of PbS QD films.[I61]. We therefore
expect that desorption of Os in our QD film would lead to a decrease in the density of band tail
states N(Ey) and in the occupation of these states. Decreases in n, would explain the gradual
decrease in wp and o’ (w) observed in Figures B and C after Npy, saturates.

To investigate how ny changes with vacuum exposure, we perform a series of absorption
measurements on a PbS QD film deposited on a sapphire substrate and mounted inside a sealed

cryostat. The sample is held at room temperature while the absorbance of the film is measured
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for ~ 12 hours under continual exposure to vacuum at ~ 10~4 torr. Figure shows examples
of the absorption spectra with Gaussian fits (dashed blue lines) at 8 evenly spaced intervals over
the course of the 12 hour measurement (i.e. each example corresponds to an absorption curve
measured every ~ 90 min). Using the parameters obtained from the Gaussian fits, Gaussian

distributions representing Ny was generated, as depicted in Figure [3.12]B.

A
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Figure 3.12: (A) Example absorption curves of EDT-capped PbS QDs measured under exposure

to vacuum with accompanying Gaussian fits (dashed blue lines). (B) Gaussian distributions cal-

culated from fits to optical absorption spectra in (A), with assumed value of Er = Ey —0.23 eV

drawn in schematically (C) Decrease in long wavelength side of HWHM of Gaussians in (B) as

a function of exposure to vacuum. (D) Change in ny calculated by integrating f(Fr) and Ny

distributions pictured in (B). (E) Schematic of decrease in Ny .

The half-width at the half-maximum (HWHM) of the absorption data at long wavelength has
been previously reported to be an indicator of the dispersion in Ny due to QD size polydispersity. [153]
For this analysis, we use the HWHM to report on the width of the band tail of our PbS QD film.
Exposure to vacuum results in a notable decrease in the HWHM on the long wavelength side,

as displayed in Figure [3.12]C. This shift is generally unobservable in the Gaussian distributions
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displayed in Figure [3.I2B calculated from the fits to the absorption spectra Figure B.I2A due to
a ~ 10meV redshift of the absorption peak (displayed in Appendix . Assuming Ep =~ 1.0eV,
(Figure [3.12B), the decrease in the HWHM leads to a commensurate ~ 20% decrease in ny with
exposure to vacuum, as shown in Figure 3.12]D. We note that the decreases in the HWHM and n,,
occur at ~ 100 mins, which matches the time-trends observed in TAS and DLCP.

Though qualitative, this analysis suggests that desorption of oxygen narrows Ny and leads to
decreases in n,, as depicted in Figure [3.12[E. The resulting small decrease in n, may be linked to
the corresponding small decreases in ¢/(w) and thus wp observed in Figure [3.10B,D. This small
decrease can further help explain the decreasing trend in Jy exhibited in Figure [3.IID, which
occurs as ny decreases and thus less charge is available in the high mobility pathways that dictate
the magnitude of Jy. As indicated by the relatively small uptick in Rg observed in 3.I0]C, the
contributions of the decrease in band tail density are likely outweighed by the increase in charge

density at Er due to interface states.

3.10 Conclusion

We have performed systematic IS experiments to give broader context to the the admittance
response of a low mobility QD PV device. By correlating TAS measurements with temperature-
dependent AC conductance studies, we are able to interpret the primary loss peaks obtained in
TAS as the dielectric relaxation frequency wp. We suggest that the low conductivities responsible
for these features result from the energetic distance between Er and Ey, which may constrain
the V,. of our PbS QD PV device. The AC conductance measurements allow us to correlate
the broad distribution of relaxation times to the energetic and spatial structure of the QD film.
DLCP measurements allow us to estimate the occupation of N(E) detected in TAS and AC con-
ductance, which is mapped onto absorbance data and temperature-depdendent JV data. Finally,

by considering changes in the admittance under vacuum, we are able to hypothesize the effect
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of Oy adsorption on the width of Ny observed in capacitance and optical absorption measure-
ments. Most studies that interrogate N(E) in QD solids rely on using gated FET measurements
to sweep through the DOS available for charge transport. Frequency-dependent measurements
provide an additional tool for interrogating the structure of N(E) in disordered materials like QD
solids, where the frequency of the signal acts analogously to the gate bias in more common FET

measurements.

3.11 Methods

3.11.1 Materials

Oleic acid (OA, 90%), 1-octadecene (ODE, 90%), lead oxide (PbO, 99.999%), 1,2 EDT(> 98%),
anhydrous hexane, anhydrous 2- propanol, anhydrous methanol, anhydrous acetonitrile and an-
hydrous acetone are purchased from Sigma-Aldrich. Bis(trimethylsilyl) sulfide ((TMS)2S, 95%) is

purchased from Acros Organics.

3.11.2 Pbs QD Synthesis

PbS QDs are synthesized following literature methods. In brief, a mixture of 0.47 g of PbO, 23
mL of ODE, and 2 mL of OA is degassed at 120 °C for 2h under vacuum. Then 5 mL of 21 uL
(TMS)2S/1mL ODE solution is swiftly injected at 100 C with Ny flowing. The heat is turned off
immediately after injection, and the reaction solution is quenched in a water bath. The product
is transferred into a glovebox and purified by precipitating four times by acetone, 2-propanol and

methanol and finally re-dispersed in octane/hexane (4:1) at 50 mg/mL.

3.11.3 Device Fabrication

All fabrication steps are carried out in air unless otherwise noted. Pre-patterned ITO/glass sub-

strates (Thin Film Devices) are cleaned by sonication in 5% Hellmanex in DI water, pure DI
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water, and ethanol consecutively, followed by UV-ozone treatment for 30 min. A thin layer of
PEDOT:PSS (Clevios) is spin-coated on the ITO/glass substrate at 3000 r.p.m. for 1 min, and
annealed at 130 °C for 20 min. PbS QD films are fabricated by building up 5 layers. Each layer
is prepared by spin-coating a PbS QD dispersion (50 mg/mL) at 3000 r.p.m for 15 s, applying an
0.02 M EDT ligand solution in acetonitrile to cover the entire film for 30 s, and washing three
times with acetonitrile. A 0.8 nm LiF/65 nm Al top contact is deposited through a shadow mask
using a thermal evaporator mounted inside a N»-filled glovebox to define 2 x 2 mm? active device

areas.

3.11.4 Room Temperature Characterization

Dark and illuminated JV data are measured using a Keithley 2420 sourcemeter. Current is
recorded by sweeping the DC applied voltage from —200 to 700 mV in 20 mV steps. The PV
device is illuminated using a solar simulator (Oriel instruments model 96000, Newport Co.). The
simulated AM 1.5 light is brought into the glovebox through a liquid light guide feed-through.
The intensity at the device is calibrated to be 1 Sun, i.e., 100 mW cm2, by a Si reference cell and
meter from Newport (model 91150). PV devices are illuminated through an aperture of 1.6 mm

x 1.6 mm in size, smaller than the active device area.

3.11.5 Variable Temperature Characterization

Variable temperature TAS, %, DLCP, AC conductance, and JV measurements are performed
within a LakeShore Cryotronics vacuum probestation with a liquid-Ny cooled sample stage. PbS
PV devices are measured from 7' = 190 — 310 K at 10 K intervals. Two probe admittance and JV
measurements are carried using a Hewlett Packard HP4192A impedance analyzer and an Agilent
4156C parameter analyzer, respectively. A computer-controlled relay switch is used to toggle
between AC impedance measurements and DC JV characterization at each temperature or time-

step as depicted in the schematic in Figure B.IJA. For the temperature-dependent measurements,
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the device is left under vacuum in the dark at room temperature for 1 h, cooled to 150 K, and
allowed to thermally equilibrate for 1 h before measurements are started. For TAS measurements,
the capacitance response of the PV device to a 20 mV AC perturbation is collected for frequencies
ranging from 20 Hz1.3 MHz at a 0 mV DC bias. The same DC and AC biases are applied for AC
conductivity measurements and % DLCP measurements are performed immediately afterward
using the same setup, with AC signals at frequencies of 1 kHz, 10 kHz, and 100 kHz, and maximum
applied biases Va2 = VRvs + Voo from —50 mV to —300 mV in 50 mV steps. To obtain the non-
linear capacitance response, Vgyrs was varied from 10 mV - 300 mV, and Vpe is automatically
modulated to keep V4, constant using custom LabView software.

JV characterization is performed immediately following capacitance characterization using the

same parameters as those used in room temperature measurements.
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Chapter 4

Interfacial Defects in
Heterojunction Photovoltaic

Devices

4.1 Introduction

The gains in efficiency and environmental stability of PbS QD PV devices achieved in the past
decade are a result of optimization of the PbS QD absorber layer and the inclusion of n-type
metal oxides such as TiO2 and ZnO to form depleted heterojunction PV devices.[143] [62] 19, [43]
1201 44l [144] The inclusion of these heavily doped oxides in PbS QD PV device architectures
is thought to introduce a large depletion region in the PbS QD solid.[I20] In these geometries,
photogenerated electrons in the PbS QD layer must only diffuse to the edge of the depletion
region W before being swept into the n-type material due to the large built-in field (V3;) that
drops across the depletion region (Figure ).[154} Since transport of photoexcited carriers in

these heterojunction architectures occurs via drift within the depletion region instead of diffusion,
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these devices are believed to reduce recombination losses arising from the low carrier diffusion
lengths in PbS QD solids, resulting in higher V,. and PCE.[120]

The need for large depletion regions within the PbS QD p-type absorber layer imposes strict
requirements on the electronic performance of ZnO materials. Adsorption of molecular gases such
as Og can drastically reduce the electron doping density in ZnO [31], 1], resulting in a substantial
depletion width in ZnO, thereby reducing the extent of the depletion width within the PbS QD
layer.[I54] [135] Detailed EQE studies have shown that these ZnO depletion regions reduce the
efficiency by which charge carriers generated within the PbS QD film may be harvested.[154]

Spectroscopic studies have demonstrated a wide range of defect levels near the valence band[I21]
79] and below the conduction band in ZnO films.[70, 1311 [79, 23], 134, [135] Complicating matters,
many of these defects have different oxidation states[I42], making a complete chemical description
of these defect levels difficult. In PbS QD/ZnO heterojunctions, traps near the ZnO conduction
band have been shown to contribute to recombination of electrons in the dark.[I35] Efforts to
chemically passivate defects in ZnO films via incorporation of Mg[58], C1[25], or Al/Cl [24] have
led to some of the highest achievable PCEs achieved by PbS QD PV devices, implying that defects
in ZnO films present a large impediment to achieving commercially viable solution processable

PV devices.
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ITo

Figure 4.1: (A) Schematic of photogenerated charge diffusing to edge of depletion region W before
being swept across the depletion region by V4; into n-type ZnO, where it becomes a majority carrier
and may be extracted at the ITO electrode. Adapted from Reference [I54]. (B) Device geometry

investigated (B) Schematic of PbS QD PV device used to investigated.

In this chapter, we study the frequency-dependent capacitance response of a QD heterojunction
PV device with a p-type absorber layer of PbS QDs capped with 3-mercaptopropionic acid (MPA)
and an n-type window layer of ZnO (Figure ) TAS and DLCP experiments on this device
exhibit a low-frequency capacitance response that we hypothesize corresponds to a hole trapping
level ~ 0.29 eV above the valence band of the MPA-capped PbS QD layer ("PbS-MPA’). Assuming
that this spectroscopic signature arises from charge trapping and not limited charge transport
as discussed in Chapter [3] we present evidence that this state arises from Fermi level-pinning
of at the ZnO/PbS-QD hetero-interface. Frequency-dependent conductance measurements and
impedance spectroscopy (IS) performed at open circuit conditions suggest that this interfacial
state is similarly capable of trapping electrons in forward bias. We therefore hypothesize that
the interfacial defect is also positioned ~ 0.3 eV from the conduction band onset on the ZnO-
side of the heterojunction. IS responses corresponding to charge dynamics at this energy exhibit
a lifetime of ~ 10~* s, consistent with previous reports of electron capture at ZnO surface [134]

and ZnO/PbS QD heterointerfaces.[I35]. These IS responses dominate the broad distribution
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of charge relaxation times for hopping in our PbS QD PV device in forward bias. Though we
note that additional analysis is required for unambiguous identification of the origin of the charge
response, our preliminary work hypothesizes that this state contributes to the frequency-dependent
dynamics of both electrons in the ZnO layer and holes in the PbS QD layer, limiting V,. and

thereby constraining the performance of the PV device.
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Figure 4.2: (A) C vs. w obtained 1 day of fabrication (day 1) with highlights indicating wy
(squares) and intermediate (C,r) and high frequency (Cj ) capacitance labeled. (B) —w% VS.
w exhibiting loss peaks due to both trapping and wp. (C) Calculated frequency-dependent sus-
ceptance B derived from series connection (inset) of PbS QD geometric capacitance Cppg (red)
and ZnO geometric capacitance Cz,o (blue). (D) Experimentally observed frequency-dependence
of B. (E) Arrhenius plot showing activation of wy on day 0 (circles), day 1 (squares), and day

2 (diamonds) with accompanying fits (dashed red lines). (F) Proposed band diagram showing

depletion region extending into ZnO layer and charge trap Er.

A PbS QD PV device is fabricated in air by depositing ZnO nanoparticles (NPs) synthesized
according to literature methods [8] onto an ITO/glass substrate via spincoating. After mild air-
annealing, 3 nm PbS QDs synthesized according to literature methods [163] are spincoated onto

the substrate. The native oleic acid ligands in the PbS QD film are exhanged via treatment with a
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solution of MPA in methanol for 30 seconds followed by a methanol rinse to remove excess MOA.
10 layers of PbS QDs are deposited, resulting in a total film thickness ~ 190 nm. The device is
capped with MoO3 and an Au top contact.

Admittance characterization is performed by loading the completed device into a vacuum
probestation (~ 10~* torr) and measuring the frequency-dependent admittance response to 100
mV AC signals at 0, —100, and —200 mV DC bias from T' = 180 — 300 K. Figure [I.2]A shows the
frequency dependence of the imaginary part of the response (capacitance) of our PbS-MPA /ZnO
PV device, showing two step-like decays due to charge dynamics within the device. The high
temperature data exhibits a step-like decay from the low frequency maximum capacitance C' ~ 200
nFem™? to a stable intermediate frequency C;f ~ 140 nFem™ at w ~ 10* rad/s. A second
capacitance step to the high frequency minimum Cj, ¢ &~ 30 nFem™ occurs at w > 10° rad/s. Unlike
the capacitance decrease to C;y, the high frequency capacitance decay is largely temperature-
independent, indicating that it is not likely related to thermally activated emission from a defect
state. Furthermore, as exhibited in Appendix[BI] the high frequency-side of the capacitance step
is independent of applied bias, consistent with a decay to Cg, the geometric capacitance of the
device. [84]

C¢ is attained when the applied measurement frequency exceeds the dielectric relaxation fre-
quency wp of charge carriers in the PbS QD PV device active layer. Since no charge carriers
are capable of following the applied AC signal at these frequencies, the active layer acts as an
insulator. Cg is therefore given by the expression Cqg = % where A is the device area and D
is the total thickness of the layer.[84], [0, [I51] The room temperature data in Figure show
a peak corresponding to dielectric relaxation occurring at wp ~ 7 x 10* rad/s (Figure [£.2C).
The zero bias AC conductance data provided in Appendix similarly exhibit a temperature-
independent conductivity op ~ 1.1 x 1077 Sem™! at these frequencies, consistent with a small
temperature-independent maximum conductivity that limits the frequency-response of the device.

Higher values of wp were previously demonstrated for PbS QDs capped with EDT (Chapter

96



3), even though the mobility of MPA-capped PbS QDs is known to be a factor of ~ 10 larger than
EDT-capped PbS QDs.[64]. We hypothesize that the low wp value observed results from freeze out
of charge carriers on both sides of the PbS/ZnO heterointerface, after which the entire device acts
like a dielectric layer since limited conductive pathways exists across the heterointerface. From the
value of Cg ~ 30 nFem™? in Figure [4.2A, we estimate the total width W, 0 of the high frequency
depletion region within the ZnO layer. Assuming that the high frequency capacitance includes a
contribution from 190 nm of completely frozen out PbS-MPA QD film with ¢ = 10 (measured in
Appendix, an additional 38 nm of depletion region within the ZnO is necessary to achieve the
observed capacitance at Cg, in excellent agreement with previous estimates of W within ZnO in
heterojunctions of ZnO and PbS QDs.[I35] The device capacitance at high frequency may therefore
be modeled as the series connection of the ZnO and PbS-MPA depletion capacitances, as depicted
in the inset of Figure . For 190 nm of PbS-MPA, Cppg ~ 47 nFem™. For a ZnO dielectric
constant ¢ = 3.7,[I04] a 38 nm depletion region in the ZnO gives a total depletion capacitance
Czno = 84 nFem™. Based on the ratio of the estimated Cz,0 to the observed value of Cg, we
suggest that the high frequency charge dynamics reflected in the capacitance characteristics may
be described by a mixture of ~ 65% PbS capacitance and ~ 35% ZnO capacitance. The observed
op therefore corresponds to a mixture of the conductivities in both films.

The total imaginary part of the frequency response of the circuit depicted in the inset of
Figure is given by the susceptance B = % Here, X = ﬁ, where w is the frequency,
X is the reactance, and Z is the total impedance. Though the charge response of the PbS
QD layer dominates at high frequencies, as indicated in Figure [£.2C, we expect the geometric
contribution of the ZnO layer to exceed that of the PbS layer at mid-frequencies. Figure [I.2D
displays the experimentally observed frequency-dependence of B, which increases roughly 3 orders
of magnitude across the frequency range interrogated. We note that the observed values of B agree
with calculated values presented in Figure {.2C, indicating that the high frequency capacitance is

likely dominated by the PbS QD layer. Though the values of B calculated at lower frequencies
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in Figure [£2D are in general agreement with the geometric capacitance of the ZnO layer, small
variations in B below ~ 10* rad/s are readily observable. In contrast to the admittance response
analyzed in Chapter [3] DC conductance is not observed in the zero bias frequency-dependent
admittance at any frequency (Appendix . Since the admittance response exhibits no signs
associated with transport at these frequencies, we hypothesize that these small variations result
from a thermally activated capacitance due to charge emission from defect levels. Though definitive
identification of the physical origin of these defects is difficult due to the heterojunction structure
of the device, we hypothesize that these defect levels are located at the PbS-MPA /ZnO interface
since they cannot be accounted for by consideration of the ZnO capacitance alone. We note
that the temperature-induced increase in Cp at mid-frequency in Figure corresponds to a
contraction of the depletion width within the PbS-QD layer as temperature increases, which has
been observed in previous capacitance measurements of organic capped PbS QD films [I33]. The
analysis of the 0-bias admittance that follows assumes that the charge response observed at these
frequencies results from trap emission; however, we note that limited carrier mobilities in the PV
device may also be responsible for these signals as discussed at lengthin Chapter

Assuming the dropoff in capacitance at low frequency is derived from charge emission from
interfacial trap states, the resonant frequency wg can be identified from peaks in a plot of fw%

vs. w, provided in Figure [£.2B. Unlike the transport dynamics analyzed in Chapter [3 wy for trap

emission is related to the energetic barrier Er a charge must surmount to be emitted via:

E
wp = uoexp(_k?TT) (4.2.1)

where vy = 20,v, Ny is the characteristic frequency with which a charge in a defect state with cap-
ture cross section o, and thermal velocity vy, attempts to escape to the transport level with a den-
sity of states Ny .[I50] The Tz temperature-dependence of vy, and T3 temperature-dependence
of Ny are separated from the temperature-independent terms in vy, and the attempt frequency is

written v = vooT2.[150, 61} [75, 16 15, 39, [66] In QD solids, Ny is temperature independent, [161]
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so we may more accurately write equation (4.2.1)) as:

Er — Ey

) (4.2.2)

wp = 21/00T1/2exp(—

Figure displays the thermal activation of wy extracted on 3 PbS QD PV devices measured on
the day of fabrication (’day 0’, circles), 1 day after fabrication, ('day 1’, squares), and 2 days after
fabrication (’day 2’, diamonds) with fits to Arrhenius fits to equation . Day 0 and day 2 data
may be found in Appendix@ These devices exhibit respective trap depths of Fr g = 0.274+0.01
eV and Er o = 0.32+0.01 eV, for an average trap depth of E; = 0.29£0.03 eV. These figures are
in excellent agreement with photoluminesnce measurements of defect levels within PbS-MPA QD
solids, [2I] and we tentatively ascribe Ep as the distance between the trap and Ey of the PbS QD
layer. Since TAS is primarily sensitive to energies at which Er = Ep,[I7, 150] we note that our
preliminary analysis implies that the Fermi level in the the PbS QD layer is ~ 0.3 eV away from
Ey. The reduced temperature attempt-frequencies of these defect levels are vgo = (2.040.5) x 10°
rad/s K2 on day 0, vg0 = (3.0 +0.2) x 10 rad/s K'*/2 on day 1, and vgo = (9 + 1) x 10° rad/s
K-'/2 on day 2, in notable agreement with the attempt-frequencies measured via TAS of devices
with similarly-sized, organic capped PbS QDs.[16]

The bias-dependent TAS curves presented in Appendix show that the detected resonant
frequencies in the experiment exhibit a marked dependence on the applied reverse DC bias of the
TAS measurement. A decrease in wy with increasing reverse bias has been shown to be consis-
tent with Er pinning at the heterojunction interface.[61], [I03] If the detected charge dynamics
do correspond to defect levels, the bias-dependence indicates that Ef is likely pinned under DC
equilibrium conditions.[61] We note an applied reverse bias would act to increase the ratio % of the

depletion width w to the total film thickness d. Therefore, an increase in the observed resonant

frequency can be expected if wy = wp based on equations (3.3.3) and (3.3.1)), in contrast to the

observed bias dependence. These results are in line with X-ray photoelectron spectroscopy (XPS)

and ultraviolet photoelectron spectroscopy (UPS) studies of ZnO/PbS QD interfaces, which sug-
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gest that the Er of the QD layer is pinned to Er in the ZnO.[147, 135] The resulting hypothesized
picture of our Pbs-MPA /ZnO junction is provided in Figure4.2]D, which shows an interfacial defect

with energy Er above the valence band of the PbS-MPA layer.

4.3 ZnO Analysis
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Figure 4.3: (A) FET measurements on pristine and air-annealed ZnO. (B) ZnO absorption spec-
trum before and after annealing in air. (C) Cyclic voltammetry data for un-annealed ZnO film

and ZnO annealed at 250 °C in air, showing a shift in the onset of the LUMO upon air-annealing.

To understand the doping levels in our ZnO films, we fabricate top-contact bottom-gate ZnO
field effect transistors (FETS) by depositing ZnO NPs onto n* silicon substrates and evaporating
gold top contacts onto the film. FET measurements are then performed in a nitrogen glovebox.
Pristine ZnO NP films used in PbS QD PV devices are expected to be degenerately n-doped with
carrier concentrations n ~ 102%cm™ [163]; however, lower doping densities have been shown to
result from air exposure of ZnO NP films.[154] B1], 31] Figurd4.3]A exhibits the gate voltage (Vi)-
dependent current (Ip) of a ZnO NP FET immediately after deposition (solid line) and after 15
and 25 minutes of annealing in air at 250° C. Initially, the high current levels in the device exhibit
no gate modulation across the applied Vi range, consistent with a degenerately-doped n-type ZnO

NP film. The mobility 4 under these conditions is ~ 1 x 10~* ¢cm?(Vs)™L. From the value of Ip at
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Ve =1 V and the dimensions of our film, we estimate a conductivity o ~ 0.26 Scm™, resulting in
a carrier concentration of n ~ 10?2 cm™. Upon air exposure, the current levels decrease an order
of magnitude, allowing for appreciable n-type gate modulation. A commensurate increase in y to
~ 1 x 1073cm?(Vs)! is observed, implying the carrier concentration in the film decreases by a

3 can be

factor of ~ 500. Previous reports have suggested that carrier concentrations ~ 10 cm-
re-attained in air-exposed ZnO NP films via UV illumination.[81] 24]

Figure exhibits the absorption spectra of both pristine and air annealed ZnO NP films,
allowing us to probe the band-edge N(F) in these materials. Though the ZnO NP film initially
exhibits a small quantum confinement peak at ~ 345 nm, mild annealing in air smooths out
the absorption peak into a broad, bulk-like shoulder. The absorption also exhibits a significant
red-shift to ~ 360 nm, indicating that lower energy photons provide sufficient energy for exciting
charge in the valence band of the ZnO NP film across the bandgap. These results are confirmed
in cyclic voltammetry (CV) studies of ZnO NP films, provided in Figure [£.3C. These daata were
obtained by spincoating ZnO NPs onto a gold substrate and applying a potential between the
ZnO NP working electrode and a reference electrode and measuring the amount of current flowing
through a third, inert ferrocene counter electrode. When the energy levels in the ZnO NP film
coincide with the external potential, current flows in the counter electrode. Since CV is typically
used to study molecular and quantum confined systems, the energy levels identified by small peaks
in current are commonly interpreted the lowest unoccupied molecular orbital (LUMO) and highest
occupied molecular orbital (HOMO). In QD films the HOMO and LUMO levels correspond to the
onsets of the valence and conduction bands, respectively. Figure shows a pronounced shift in
the LUMO upon annealing in air, suggesting that the conduction band onset shifts down towards
the valence band. This shift is consistent with the change in the absorption spectra in Figure [4.3B.
We hypothesize that these features correspond to a band tail extending toward mid-gap from the
ZnO NP conduction band level, in agreement with previous absorption and UPS measurements

of ZnO NP films.[58, 25] ZnO band tails are associated with low electron mobility.[58] Under the
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assumption that the charge dynamics observed at w < 10* rad/s in Figure result from charge

trapping on the PbS QD side of the junction, the presence of non-idealities in ZnO suggest that

the heterointerface affects both hole and electron dynamics in our PV device.

4.3.1 DLCP and DOS
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Figure 4.4: (A) Profile of defect densities obtained via DLCP at w = 6.28 x 103 rad/s on day 0
(circles) and day 1 (squares) from 7' = 270—300 K and on day 2 from T = 290 —320 K (diamonds).

(B) NDL vs. T (C) NDL VS. Ew

Simultaneous DLCP measurements performed in parallel with TAS allow us to estimate the charge
density within the depletion region of the device. Like TAS, DLCP is a dynamic junction ca-
pacitance technique that probes the majority carrier occupation of states within the PV device
absorber layer by monitoring how the junction capacitance changes with an applied AC signal.
As described in detail in Chapters [2] and [3] cubic fits to DLCP capacitance responses allow us
to probe the carrier density Npy at a specific location < x > within the junction. Npp is given
by:[52]

Er+E,
Npr, :er/ N(E,Cﬂ)dE (4.3.1)

Er

102



where p is the density of free carriers in the VB provided by ionized acceptors N, . In Chapter
N(E) was shown to correspond to the broad distribution of valence band staets Ny . In this
case, since we hypothesize that the response arises from charge emssion from a defect level, we
may write N(E) as the distribution of trap states Np(F), as in Chapter [2 E,, in this scenario
describes a limiting energy that defines the maximal energetic distance charge at Fr can access,

and may be calculated for an arbitrary applied frequency w as: [150] [54]
Vo
E, = kBTln(;) (4.3.2)

In p-type semiconductors, E,, corresponds to an energetic distance between Er and the valence
band edge.[52] Equations and imply that increasing the frequency of the DLCP mea-
surement decreases the energetic width around Er that can be probed by the DLCP measurement,
as discussed in Chapter

Unlike TAS, the AC signal in DLCP measurements are made at a single frequency and
use large root mean square (RMS) amplitudes Vgprs to induce band-bending at the device
heterojunction. [52] These large applied biases shift the band-bending at the junction which changes
the width of the depletion region W and thus adjusts the first moment of charge response < z >
for charge trapped in the junction. As displayed in Figure [2.10B, < x > can equivalently be
thought of as where the trap level Er crosses Fr. By inducing changes to band bending at the
junction, DLCP therefore allows for the spatial profiling of the charge response.

Figure [{:4)A shows the charge carrier profile Npj, vs. < x > obtained from the capacitance
response of the PbS QD PV device on day 0 (circles), 1 (squares), and 2 (diamonds). The
values are calculated assuming that ¢ = 10 for the MPA-capped PbS QD layer, as calculated in
Appendix [B:3] The raw capacitance transients used to generate these data for day 1 are displayed
in Appendix and show that only data obtained at w = 6.28 x 103 rad/s show sufficient
capacitance modulation to be reliably fit to the cubic response predicted by DLCP. Intuitively

this makes sense, given frequencies higher than ~ 10* rad/s cause carrier freeze out, resulting in
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a small capacitance response and unphysically high Npy values. The data obtained on all days
show a consistent charge response ~ 1 x 10'7cm™ centered ~ 50 — 75 nm from the junction,
indicating that the spatial extent of the depletion region defect response is consistent with Wpyg
predicted from analysis of the capacitance response in Figure [£.2A. We note that these values
were calculated assuming a charge response centered in the PbS QD layer. If we instead assume
a charge response containing contributions from ZnO with € = 3.7, the observed value of < z >
would decrease by a factor of ~ 3 based on equation , while Npy would increase by a factor
of ~ 3 based on equation .

Using the carrier densities calculated in the former case, we calculate a Debye screening length
Ly for the PbS-MPA QD layer of ~ 5 nm, indicating that the charge response analyzed in DLCP is
not limited to the heterointerface. The applied frequency used in this analysis roughly corresponds
to the Cp plateau in Figure [1.2]A, which gives the capacitance at the edge of the depletion region.
We note that the application of lower frequencies in the DLCP measurement would indicate a
higher charge density closer to the heterointerface corresponding to the defect at the interface.

Figure shows the temperature-dependence of Npy, obtained by averaging the data in
Figure [f-4]A across the spatial coordinate < x >. The variation in density at each temperature
point is dominated by the spread in Npr (< x >). We note that the densities at each temperature
are the same within error, at Npr ~ 1 x 10'7 ¢cm™, slightly higher than previous estimates of the
total carrier density in films of organic-capped PbS QDs of similar size.[I33] [49] These carrier
densities exhibit little thermal activation at the temperature ranges interrogated, implying that
the carrier activation energy Epn discussed in Chapter [3|is small compared to the energy E,, of
the DLCP measurement.

Using equation , the temperature axis in Figure may be recast as an energy axis
using the values of vy calculated above. Figure [f.4C exhibits the result of the re-scaling, showing
that the charge carrier concentration detected in DLCP originates from states ~ 0.22 — 0.29 eV

away Er. The error in the energy axis is derived from the error in vg, which is ~ 10%.
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4.4 Density of States
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Figure 4.5: N7 on day 1 calculated by direct integration of the capacitance derivative.

Assuming that the charge response analyzed in DLCP and TAS results from trap emission and
not transport, combining Npy, and the energetic scale calculated in TAS allows us to compute the
total density of trap states Np spatially located between the interface and < x > and energetically
bounded by Fr and Er + E,,. Typically, the value of Nt is obtained via a procedure outlined by

Walter, et. al, wherein the Np is related to the junction capacitance Ciy by:[150]

EFJFEW W
Ctot =Nt X / NV (E) dE (441)
Ep qVbi

Integration of Np with respect to energy gives the carrier occupation np that gives rise to the

capacitance response. Considering the linear drop of the applied AC bias due to band bending at

the junction, integration of equation (4.4.1) gives:

V2 dc
Nr(E,) = bi —wkgT 4.4.2
(Ee) = Ve — (B — 5] 4P (4.42)
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where Ep is the Fermi level in the bulk. Calculation of Ny via equation requires precise
estimates of Vj;, which in turn necessitates knowledge of band bending at the junction. In bulk
materials, Vj; can be estimated by measuring the open circuit (V,.). Obtaining accurate estimates
of Vp; through measurements of V,. in QD PV devices is considerably more difficult since non-
idealities such as Fermi pinning or high defect concentrations can limit charge collection and lead
to large deficits in V,..[28]

In Chapter 3| we used the direct measure of p afforded by DLCP to estimate N(Fr). Here,
we analogously estimate Np by assuming that Np is Gaussian distributed with a width ¢ and

height A defined by the amplitude of w% obtained in Figure . N7 may therefore be written

E—-FEr

o

as Np = Aexp(

), and can be analytically integrated:

° E — Ep)?
NDL:/ Aexp(%)

- (4.4.3)
Npr = V2rAs
For each peak in Figure the width in frequency can be converted into an energetic width
using equation . Since both & and Npj, are known, we can also calculate the total amplitude
A and therefore Np.

The result of the integration averaged over temperature is presented in Figure for day 1
of the measurement. These values are ~ 5x larger than the DOS values calculated via equation
(4.4.2)) provided in Appendix assuming Vp; = 0.9 eV. We also note that the width of Nt is
much smaller than the width of the band tail deduced in Chapter [3] Though this preliminary
analysis explicitly assumes that the observed capacitance responses used to calculate the distri-
bution in Figure result from charge trapping and de-trapping, we note that if these charge
dynamics were instead interpreted as a result of limited carrier mobility in the PbS QD layer as

in Chapter [3| these results would be consistent with previous estimates of the relative tail density

in PbS-MPA compared to the tail density observed in EDT-capped QDs.[64]
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4.5 JV and Conductivity
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Figure 4.6: ((A) Dark (black) and illuminated (yellow) JV data immediately after fabrication,
with observed and theoretical V,. marked with star and dashed line, respectively (B) o(w) from
T = 230300 K, with dashed red line frequency at which the DC conductivity is obtained. (C)

- 1000
DC conductivity vs. =7

with accompanying Arrhenius fit. (E) Exponent s obtained from linear
fit to AC enhanced conductivity region in (B) (squares) and estimated based on equation (4.5.1])

(stars).

The predominant recombination mechanisms in our PbS QD PV device device are also reflected
the JV characteristics. Figure displays the dark and illuminated JV curves of our PbS-MPA
device directly after fabrication, measured in an Ny glovebox. Under AM 1.5G illumination, the

device exhibits V. = 0.57 V and a PCE of = 7.8%, consistent with previous reports of PbS-MPA
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heterojunction devices.[64] Since the maximum theoretical V,. of a pn heterojunction device is
given by the bandgap of the PbS QD absorber Eg = 1.26 eV,[28] the data indicate a V.. deficit
of ~ 0.7 V. In PbS heterojunction devices, the dominant recombination pathway is thought to
arise from interfacial mechanisms[37, [58] [73, 92] 93] or from defects in the bulk of the PbS QD
absorber. [28]

To investigate the recombination and charge transport dynamics in our device, we analyze the
temperature dependence of the AC conductance ¢’(w) at an applied bias V4 = 600 mV. Since
Va4 = V,., the charge dynamics probed resemble those at open circuit, and the contributions
of majority carrier dynamics probed at zero bias in TAS are dominated by the contributions of
minority electrons injected from the ZnO into the PbS QD layer.[10, 45] Figure shows ¢’ (w)
measured from 7' = 230 — 300 K. As discussed in Chapter [3] the dispersion-less conductivity
observable at w < (1 — 4) x 10® rad/s indicates the DC limit of the hopping conductivity, o’(0).
We note that at room temperature, ¢’(0) ~ 1078 Sem™, which is ~ 5 orders of magnitude lower
than the conductivity of the air-annelaed ZnO FET device at Vg =1 V.

Figure shows the temperature dependence of ¢/ (0) for a fixed frequency w = 2 x 10? rad/s
(purple-yellow squares) and the wy frequencies obtained in (red squares). These frequencies are
highlighted in Figure with a dashed line and red squares, respectively. The fit to o/ (w = 2x102
rad/s) yields an activation energy F4 = 0.23 + 0.05 eV. The high forward bias used to obtain
these data imply that this barrier to electron transport precludes majority carrier dynamic and the
effect of defects within the depletion region; as a result, we hypothesize that E 4 corresponds to the
energetic distance between Er and the ZnO conduction band. The obtained activation energy is in
agreement with deep level transient spectroscopy (DLTS) studies of bulk ZnO defect states, which
found a range of defects between 0.28 — 0.34 eV below the ZnO conduction band onset.[I31] FET
and TAS studies of bulk ZnO films have also detected spectroscopic signatures of an electron trap
~ 0.3 eV below E¢.[70, 23] In the random free-energy barrier (RFEB) model used to explain the

AC conductivity of materials dominated by charge hopping, the energy barriers to conductivity in
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a spatially and energetically disordered material are defined by a broad distribution.[36] Because
DC conductivity necessitates charge percolation through the entire sample, the activation energy of
o’(0) is dominated by the largest energy barrier charge must surmount as it travels, suggesting that
electron hopping under open circuit conditions in our PV device requires thermal activation over
a 0.23 eV barrier. Similar energetic barriers have been detected at PbS QD/ZnO heterojunction
interfaces via time resolved XPS.[135]

The Arrhenius fit to ¢’ (wp) in Figure yields an activation energy F4 = 0.28 = 0.03 V.
While wg was derived the from zero bias admittance response in which DC transport was not
observed, we note the agreement between the F4 = 0.28 ¢V and Epr = 0.29 eV obtained in
Section [4.3] Despite the fact that charge dynamics in the depletion region at zero bias cannot, in
general, be expected dominate charge dynamics at high forward bias, we note that the consistency
between these two results implies that we cannot definitively rule out the possibility that the
charge dynamics responsible for wg observed in Figure do not arise from the limited charge
carrier mobility in our PV device.

Figure displays a steady rise in ¢’ (w) after a temperature-dependent inflection frequency
(w =~ (1 —4) x 10% rad/s at room temperature). As discussed in Chapter [3| the enhancement
to o'(w) occurs as the increase in frequency prohibits charge hops with large time constants
T = % associated with large energy barriers. Shorter range hops with higher jump probability
allowed at high frequencies enhance ¢’ (w).[36] The hopping times resulting from this distribution
of energy barriers gives rise to the universal power-law for AC conductivity ¢’(w) o w?® described
in Chapter 3| In the RFEB model, s parameterizes the distribution of 7 in the energy landscape
of the material. Since wrT — oo as the energetic barriers to charge hopping become large, s — 1.

A similar effect is expected in the limit that 7' — 0. As a result, s may be written:[30]

T
0 (4.5.1)
E.  Ep
Ty = —2 = —
07 %%kp  2kp

The temperature-dependence of the s exponent obtained from fits to the high frequency region
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in Figure [L.6B are presented in Figure [L.6D, along with the 1o error bars derived from the fits.
Over the temperature range of the experiment, s decreases slightly within error, indicating that
the energy barrier to charge hopping decreases as temperature increases. Estimates of s based
on equation and E4 = 0.3 eV are also provided in Figure (stars), and describe the
data within error. The agreement suggests that dark charge hopping at open circuit in our PbS
QD PV device are dominated by electron dynamics which may be localized at the ZnO/PbS-MPA
interface. These dynamics are dominated by the highest energy barrier electrons must surmount
as they travel from the ZnO to the Au anode. Similar conclusions were reached in studies that

incorporate Mg dopants to limit the trap density within the ZnO depletion region.[58]

110



4.6 Impedance Spectroscopy
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Figure 4.7: (A) Example fit of RQ CPE equivalent circuit to IS data obtained at T' = 300K and
600 mV applied bias. (B) Thermal activation of lifetime 7 with Arrhenius fit (dashed red line).
(C) Thermal activation of R, with Arrhenius fit (dashed red line). (D) Proposed energy band
diagram at V,. showing interfacial electron trap responsible for charge dynamics. (D) Log-normal

distribution of time constants 7G(7) detected by IS.

The charge hopping distributions parmeterized by s can be directly visualized via analysis of the
real (Z,) and imaginary (Z;) parts of the frequency-dependent impedance response of the PV
device. The total impedance Z = Z, + Z; generalizes the concept of a DC resistance for charge
flow in a sample due to an oscillating AC bias. Electron dynamics in phase with the measurement
give rise to the DC resistance R = Z,.. Dynamics in phase quadrature with the signal give rise to a
capacitance C that make up the imaginary component Z;. Analysis of the frequency-dependence
of Z;(w) and Z,.(w) allows us to obtain a snapshot of charge processes in the PbS QD PV device

as different hopping regimes are accessed by the applied frequency.
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An example complex plane plot —Z; vs. Z, at V4 = 600 mV for our PbS QD PV device
is provided in Figure [£.7A. The impedance data are obtained by calculating the frequency de-
pendence Z,. and Z; from the measured admittance response. In this representation, an implicit
frequency scale runs from right to left as indicated. The impedance is dominated by a major
arc characteristic of the parallel connection of a charge accumulation capacitance C' and a charge
transfer resistance R.[I19] 10, [45] These arcs provide essential information on carrier dynamics
at the applied bias of the measurement V. C' is generally interpreted as a chemical capacitance
resulting from shifts in Fr due to injected minority carriers. In IS studies of SRH recombination
in bulk systems, low R.; values are characteristic of effective recombination centers. As discussed
in Chapter [3] R.; for charge dynamics arising from transport corresponds to a probability that a
charge hops into the DOS responsible for charge transport.

The values of R., C, and the lifetime 7 = RC can be extracted from the impedance arc in
by fitting the data to an equivalent RC circuit model.[119] [10] The time constant dispersion
in our PbS QD PV device resulting from the broad distribution of hopping times implies that the
arc in Figure reflects an analogously broad distribution of charge relaxation times instead of
a single RC response. As a result, we model the arc by incorporating a constant phase element

(CPE), @, which has the following impedance:[20] 109, 119]

Z(w) = — (4.6.1)

where ¢ is the imaginary unit, @ is the CPE coefficient related to the capacitance, and « is the
modified phase angle of the CPE impedance due to the time constant dispersion. For o = 1,
the phase angle of the impedance is 90°, and equation reduces to the impedance for a
capacitor.[20] [118] The total impedance described by the parallel RQ circuit becomes:

Rct

Z(w) = Rs + T (o) 0R. ()" QR

(4.6.2)

where R, is the resistance of a resistor in series with the RQ) circuit. The data in (red) have

been fit to equation (4.6.2)), resulting in room temperature values R.; = 2.8 kQcm™, Q = 5.1x1074
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kQem2s* and o = 0.92. From the value of @ and «, the effective capacitance C.ss be calculated

as Ceff = Q(th I )7, and thus 7 can be determined as:[56} 20]

7= (QReut)=. (4.6.3)

The data in correspond to 7 = 8.5 x 10~ %s, in excellent agreement with previous estimates
of the dark carrier lifetime in air-annealed ZnO films [134] and in ZnO-PbS heterojunctions due
to interfacial trapping [135] measured by XPS.

Fits to impedance arcs observed from T = 230 — 300 K (provided in Appendix allow
us to measure the temperature dependence of 7, exhibited in Figure [£.7B. An Arrhenius fit to
the data gives the activation energy E4 = 0.29 4+ 0.02 eV, in excellent agreement with the low
frequency o'(w) data in Figure . As exhibited in Figure 7 R, is observed to decrease
with temperature with the same thermal activation energy (E4 = 0.30 & 0.01 eV), indicating
that charge dynamics in these levels becomes more likely as temperature increases. Based on the
agreement between the thermal activation of R, and 7, we conclude that charge dynamics in the
ZnO show little dependence on the thermal activation of carriers in the temperature range of the
experiment, in agreement with the lack of an observable capacitance de-tuning in Figure and
in contrast with the charge dynamics studied in Chapter [3| We hypothesize that the consistency
of these activation energies suggests that charge accumulation at open circuit is dominated by
electron hopping from the ZnO to the PbS QD layer over an energy barrier given by F4. As a
result, we expect that this state limits the ability of the PbS QD PV device to store charge under
illumination.

The proposed band diagram at V) is presented in Figure [£7]D. Application of forward bias
induces splitting of the quasi-Fermi levels on both sides of the junction. The zero bias TAS
measurements discussed above were interpreted assuming that the hole quasi-Fermi level Er, is
situated a distance Ep ~ 0.29 eV from the valence band edge in the PbS-MPA layer. The forward-

biased AC conductance and IS measurements suggest an electron barrier E4 ~ 0.3 eV from the
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conduction band onset in the ZnO. As a result, we hypothesize that the max achievable V. is
limited to ETGq —0.29 - 0.3 = 0.67, in reasonable agreement with the V. observed in Figure .

The fits to —Z; vs. Z, further allow us to estimate that « increases slightly from 0.86—0.92 over
temperature range of the experiment, implying that as temperature increases, dynamics at E4
becomes the dominant hopping pathway in the PbS QD PV device.[135] IS allows us to explicitly
visualize the specific distribution of relaxation times G(7) that gives rise to the dispersion observed

in the impedance response of our QD PV device, written as:[20, 119)

2sin(a)

7G(T) = (4.6.4)

exp[(1 — a) =] + exp[—(1 — a) =] — 2cos(am)
where 7p is the characteristic time constant. As discussed in Chapter [2] this distribution is a
result of the Gaussian distribution of available energy states for electron occupation. Figure [4.7]

shows the distribution of relaxation times calculated via equation from T = 230—290 K for
values of 7 probed over the frequencies used in the IS measurement. As temperature increases, the
peak of 7G(7) shifts towards ~ 10™% s, indicating that the time constant distribution is heavily
weighted towards the large energetic barrier observed in IS and AC conductance. In addition, the
distributions also exhibit significant broadening on the low 7 side. In organic capped PbS QDs of
similar size, the charge transport lifetime has been estimated to be 7 ~ 2 x 1076 5,[133], close to
the limit in the tail of the calculated distribution. We speculate that these shifts are consistent
with contributions to the transport processes in the PV device from charge dynamics within the

PbS QD layer.

4.7 Conclusion

We have demonstrated a systematic study of the charge dynamics at a PbS QD-ZnO heterojuntion
interface in a completed PV device geometry From TAS measurements, we hypothesize that Ep
is located about 0.29 eV from the valence band of the PbS-MPA QD film. We speculate that Ep

is partially pinned in a defect state which may be localized at the interface. DLCP measurements
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allow us to estimate the total charge density within the depletion region. Though the depletion
region drops across both the PbS QD and ZnO layer, we conjecture that the N(E) probed in TAS
corresponds to a discrete defect on the PbS QD side of the junction, with a total DOS of ~ 3 x 10'®
cm3eV-1. At open circuit conditions, our preliminary analysis indicates AC conductance and IS
measurements are characterized by charge dynamics with activation energy F4 ~ 0.3 eV from
the conduction band onset in the ZnO. These charge processes dominate the broad distribution
of electron hopping times in the PV device.

We note that shallow defects in ZnO bulk films have been experimentally related to zinc
inerstitials, [79, 06] suggesting that the Zn-rich NC synthesis used to make the ZnO films may
inherently produce defects in the ZnO nanoparticles used to fabricate our device. Our results
suggest that charge dynamics within PbS QD heterojunction PV devices may be dominated by
the ZnO/PbS QD heterojunction interface. However, we note that throughout the analysis of the
admittance response at zero bias, we assumed that the charge response was due to defects at the
PbS QD interface. Given the current data, we cannot unambiguously rule out the influence of
frequency-limited transport dynamics in the zero-bias admittance response of our PbS QD PV

device.

4.8 Methods

4.8.1 Materials

Oleic acid (OA, 90%), 1-octadecene (ODE, 90%), lead oxide (PbO, 99.999%), cadmium chloride
(CdClg, 99.99%), oleylamine (70%), 3-mercaptopropionic acid (MPA, 99%), Tetrabutylammo-
nium iodide, zinc acetate dehydrate (98%), (3-mercaptopropyl)- trimethoxysilane (MPTS, 95%),
anhydrous hexane, anhydrous 2- propanol, anhydrous methanol, anhydrous toluene, anhydrous

acetonitrile and anhydrous acetone are purchased from Sigma-Aldrich. Bis(trimethylsilyl) sulfide

((TMS)2S, 95%) is purchased from Acros. Tetradecylphosphonic acid (TDPA, 98%) and molybde-
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num oxide (MoO3, 99.9995%) are purchased from Alfa Aesar. Potassium hydroxide (KOH, 85%)

is purchased from Fisher.

4.8.2 QD Synthesis

PbS QDs are synthesized as reported previously[163]. In brief, a mixture of 0.47 g of PbO, 23
mL of ODE, and 2 mL of OA is degassed at 120 C for 2 h under vacuum. Then 5 mL of 21
uL (TMS)2S/1 mL ODE solution is injected at 100 C with No flowing. The heat is turned off
immediately after injection, and when the reaction solution is cooled to 70 C, a pre-dried CdCl,
solution (0.3 g of CdCly and 0.033 g of TDPA in 5 mL of oleylamine) is added. After 5 min, the
reaction is further quenched in a water bath. The product is transferred into the glovebox and
purified by washing four times with acetone, 2-propanol, and methanol and finally re-dispersed in

octane/ hexane (4:1) at 50 mg/mL.

4.8.3 Device fabrication

All the fabrication steps are carried out in air unless otherwise noted. Prepatterned ITO/glass
substrates (Thin Film Devices) are cleaned by sonication in 5% Hellmanex in DI water, pure
DI water, and ethanol consecutively, followed by UV ozone treatment for 30 min. The cleaned
substrates are soaked in MPTS (5% in toluene) for 10 h before use. The ZnO NPs are synthesized
according to a literature recipe [8]. The ZnO NP film is fabricated by spin casting ZnO NPs (100
mg/mL) at 1500 r.p.m., and annealed in air at 250 C for 20 min. On top of the ZnO NP layer,
the PbS QD solution (50 mg/mL) is spin cast at 3000 r.p.m for 30 s, followed by MPA (1% vol)
solid-state ligand exchange for 30 s or 3 s, respectively, with three rounds of methanol washing.
10 layers of PbS QD film are deposited. To finish the device, 12 nm of MoO3 and 65 nm of Au
are thermally evaporated on the PbS QD film through a shadow mask inside a glovebox, which

defines a 2 mm by 2 mm device active area.
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4.8.4 Room Temperature Characterization

Dark and illuminated JV data are measured using a Keithley 2420 sourcemeter. Current is
recorded by sweeping the DC applied voltage from —200 to 700 mV in 20 mV steps. The PV
device is illuminated using a solar simulator (Oriel instruments model 96000, Newport Co.). The
simulated AM 1.5 light is brought into the glovebox through a liquid light guide feed-through. The
illumination intensity at the device is calibrated to be 1 Sun, i.e., 100 mW cm™2, by a Si reference
cell and meter from Newport (model 91150). PV devices are illuminated through an aperture of

1.6 mm x 1.6 mm in size, smaller than the active device area.

4.8.5 Variable Temperature Characterization

Variable temperature TAS, DLCP, AC conductance, and JV measurements are performed within
a LakeShore Cryotronics vacuum probestation with a liquid-N2 cooled sample stage. PbS PV
devices are measured from 7" = 190 to 310 K at 10 K intervals. Two probe admittance and JV
measurements are carried using a Hewlett Packard HP4192A impedance analyzer and an Agilent
4156C parameter analyzer, respectively. A computer-controlled relay switch is used to toggle
between AC impedance measurements and DC JV characterization at each temperature or time-
step as depicted in the schematic in Figure [L.TJA. For the temperature-dependent measurements,
the device is left under vacuum in the dark at room temperature for 1 h, cooled to 180 K, and
allowed to thermally equilibrate for 1 h before measurements are started. For TAS measurements,
the capacitance response of the PV device to a 100 mV AC perturbation is collected for frequencies
ranging from 20 Hz1.3 MHz at a 0 mV DC bias. The same DC and AC biases are applied for AC
conductivity measurements. IS measurements are obtained at the same frequency range and AC
bias at an applied DC forward bias V4 = 600 mV. DLCP measurements are performed immediately
afterward using the same setup, with AC signals at frequencies of 1 kHz, 10 kHz, and 100 kHz,

and maximum applied biases V02 = Vrums + Vpe from —50 mV to —300 mV in 50 mV steps.
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To obtain the non-linear capacitance response, Vrasg was varied from 10 mV - 300 mV, and Vpe

is automatically modulated to keep V.. constant using custom LabView software.
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Chapter 5

Charge Dynamics in
Halide-Capped PbS QD PV

devices with Multiple Interfaces

5.1 Introduction

Recent gains in QD PV devices have largely been driven by the exploration of a prodigious library
of ligand capping chemistries. The changes to the surface dipole moments induced by these
ligands allow for the tuning of the conduction and valence band onsets, [80, [I8] which in turn
provide a basis for optimizing the band alignment in completed QD PV devices.[27] Many of the
most efficient PbS QD PV devices demonstrated contain halide (Cl°, Br, I') treated PbS-QD
layers,[160, [32] 27, [7, [62] [165] which exhibit record carrier diffusion lengths of 20-80 nm[133] [164]
and mobilities u ~ 1072 — 1072 ¢cm?(Vs)™.[136] [114] Halide treatments have also been shown to
impart environmental stability to PbS QD solids, [32] and the efficiency of devices with active layers

of PbS QDs capped with I ions have been shown to improve upon storage in atmosphere.[27]
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Despite the benefits afforded by halide treatments, the underlying charge dynamics physics
in these devices remains unclear. For instance, though halide-treated PbS QDs are thought to
be n-type upon fabrication, [I8] exposure to air imparts increasing p-type character to the trans-
port characteristics.[I52] As a result, the ZnO/PbS-TBAI interface in these PV devices has been
reported to be both an n-i heterojunction[27] and an n-n isotpye heterojunction.[126] Further-
more, halide-treated PbS QD PV devices are known to exhibit a smaller V,. than devices made of
organic-capped PbS QD layers. Though the exact mechanism of these losses is not yet understood,

they have been heuristically linked to recombination pathways in the QD layers.[28]

PbS-MPA
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TBAI

hv
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Figure 5.1: (Structure of PbS QD PV device device studied, with illumination direction highlighted

In this chapter, we use study the frequency-dependent charge response of a PbS QD het-
erojunction PV device with a graded absorber made up of 2 PbS QD layers. The first layer
consists of PbS QDs capped with 3-mercaptopropionic acid (MPA), the second of PbS treated
with tetrabutyl-ammoinium iodiode (TBAI). As in Chapter 4] an n-type window layer of ZnO
completes the device, exhibited in Figure [5.1] The presence of two interfaces between three ma-
terials makes unambiguous physical identification of the physical origin of the charge response
difficult. However, using a suite of frequency-dependent techniques, we hypothesize a phenomeno-
logical model for electron transport with the TBAI-capped PbS QD ("PbS-TBAT’) layer and at

the PbS-TBAI/ZnO interface. TAS and DLCP show a charge response we suggest is the result
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an electron trapping level on the PbS-QD side of the junction with an activation energy of ~ 0.39
eV. After sufficient oxidation of the film, the electron concentration within the PbS-TBAI layer
decreases, and the charge response of the ZnO and PbS QD layers become difficult to disentangle.
Under these conditions, we observe a charge response at ~ 0.3 eV, which we suggest corresponds
to pinning at the ZnO/PbS-TBAI heterointerface. We note that other explanations, such as trans-
port limited carrier response, may also be responsible for these signals. Via AC conductance and
IS measurements, we propose that the observed states at zero bias affect electron transport under
applied forward bias. IS analysis provides allows us to deuce time-scales of the charge dynamics
within these layers, allowing us to make preliminary correlations bween these energy levels and
electron transport and trapping mechanisms in forward bias. Finally, illuminated TAS and DLCP
measurements imply that the charge response probed may be an effective recombination center

for photogenerated charge.
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5.2 Results
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Figure 5.2: (A) (A) C vs. w 1 day after fabrication (day 1) with highlights (squares) indicating
wo. Inset: series capacitor model used to analyze data. (B) Proposed band structure and junction

—% showing de-tuning. (D) Fermi fit to detuning energy estimating Ey. (E)

measured. (C)
In(wo?~Y/2) vs. %, with Arrhenius fit giving Ey. (F) Estimated band structure from TAS

measurements.

A PbS QD PV device was fabricated in air by depositing ZnO nanoparticles synthesized according
to literature methods [8] onto an ITO/glass substrate via spincoating. After mild air-annealing, 3
nm diameter PbS QDs synthesized according to literature methods [I63] are spincoated onto the
substrate. To exchane the native oleic acid ligands, the deposited PbS QD film is then treated
with a solution of TBAI in methanol followed by a methanol wash to remove excess ligand. 10

layers of TBAI-treated PbS QDs are deposited, resulting in a total film thickness ~ 180 nm. An
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additional two layers of PbS-MPA is deposited according to the procedure outlined in Chapter [4
The device is then capped with an Au top contact.

Admittance characterization is performed by loading the completed device into a vacuum
probestation (~ 10~% torr) and measuring the frequency-dependent capacitance response to 100
mV AC signals at 0, —100, and —200 mV DC bias from 7' = 180 — 300 K. Figure shows the
frequency-dependent capacitance characteristics of a PbS-MPA /PbS-TBAI/ZnO QD PV device
one day after fabrication ("day 1’). The spectra exhibit similar behavior to the capacitance spectra
exhibited in Chapter [ showing a temperature-dependent, step-like decrease in capacitance for
w < 10° rad/s to a large plateau followed by a temperature-independent step to a stable capac-
itance minimum at w > 10° rad/s. Bias-dependent TAS measurements included in Appendix
indicate that while the low frequency capacitance steps exhibit a voltage-dependent emis-
sion rate, characteristic of Fermi level pinning,[61} [103] the large temperature-independent step
at higher frequency shows no modulation on the high-frequency side, consistent with dielectric
freeze out.[84, [I5I] As in Chapter |4 we ascribe the high frequency capacitance step to dielectric
relaxation of charge carriers within the device. We hypothesize that the low frequency capacitance
step reflects charge emission a defect level within the depletion region.

In Chapter [} we showed that analysis of the geometric capacitance C¢ can be used to gain
insight into the structure of the depletion region at the device heterojunction. In Figure[5.2JA, the
junction capacitance bottoms out at Cg ~ 40 nFem™. Assuming that the full 40 nm thickness of
the PbS-MPA layer with a dielectric constant ¢ = 10 and the 180 nm thickness of the PbS-TBAI
layer with ¢ = 18 (measured in Appendix act as a dielectric layer at the high frequencies
where C¢ is reached, and that no depletion region drops across the ZnO, the geometric capacitance
should be ~ 60 nFem™. For €z,0 = 3.7,[104] the observed value of C¢ indicates a depletion region
of width ~ 35 nm drops across the ZnO layer, consistent with the ZnO depletion region deduced in
Chapter as well as previous reports of depletion regions in PbS QD/ZnO heterojunctions.[I35] As

in Chapter[4] we infer that this depletion region results from the decrease in electron concentration
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within the ZnO that occurs upon air exposure of the device.[154] [811, [3T]

Recent electron-beam spectroscopy studies on PbS QD PV devices with similar architectures
have suggested that PbS-TBAI/ZnO forms an n'-n isotype junction,[I26] in agreement with
ultraviolet photoelectron spectroscopy studies that have shown that PbS-TBAI QD films are n-
type when prepared and stored in an inert environment. [I8] In a PbS-TBAI/ZnO isotpye junction,
a small depletion region can be expected to drop across the wide-bandgap ZnO, while charges
accumulate within the PbS-TBAI layer at the interface.[139] The low doping density in the ZnO
window layer in our device implies that the depletion region within the ZnO is larger than in the
ideal case where the ZnO is degenerately doped. For the purposes of this analysis, we therefore
speculate that the junction capacitance on day 1 is dominated by the n-n isotype junction between
the PbS-TBAI and the ZnO, as shown in Figure [5.2]B.

Figure exhibits the frequency-normalized capacitance derivative fw% vs. w used to
find the resonant frequency of the defect state wy. As in Chapter [3] the peak-amplitude shows
a considerable temperature-dependent amplitude, implying that more charge carriers contribute
to the measured capacitance at higher temperatures. We estimate the thermal activation energy
En of the carrier density by fitting a Fermi function to the peak capacitance amplitude,[I5] [17]
presented in Figure [5.2D. From the fit, we obtain Ex = 0.05 £ 0.03. The large uncertainty and
poor fit to the data indicate that our analysis does not fully capture the thermal activation of
carriers.

A fuller picture of the charge dynamics at the interface is afforded by an Arrhenius fit to the
resonant frequency, provided in Figure [5.2E. Like in Chapter [} we hypothesize the observation
of a distinct temperature-dependent charge response at frequencies below the capacitance decay
to C¢ implies that the lower frequency dynamics correspond to charge emission from a discrete
defect level Ep. The slope of the fit indicates a total activation energy Ep = 0.39 4+ 0.01 and

a reduced attempt to escape frequency voy = 1.1 x 100 rad/sK'*/2. We note that these values

are in excellent agreement with previous TAS characterization of the PbS QDs in n*-ZnO/PbS-
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TBAT heterojunction PV devices [66] and TAS studies of similarly-sized organic capped PbS QD
solids.[T6] Unlike TAS analysis of the simpler device structure studied in Chapter the capacitance
measurement cannot disentangle contribution of F to Er and therefore cannot identify a charge
transport energy Er, below the conduction band. We nevertheless expect that Ep indicates the

position of Er below the conduction band edge E¢. These levels are drawn in the schematic in

Figure [5.2F.
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Figure 5.3: (A) C vs. w 2 days after fabrication (day 2) with highlights (squares) indicating wy.
Inset: series capacitor model used to analyze data. (B) Proposed band structure and junction
measured on day 2. (C) —%< vs. w. (D) Fermi fit to detuning energy giving Ey. (E) In(woT~1/2)

vs. =, with Arrhenius fit giving E7. (F) Estimated band structure from TAS measurements.

Figure [5.3]A exhibits TAS measurements obtained after 2 days of storage in a Ny glovebox,
exhibiting striking differences from the day 1 spectra in Figure [5.2A. Previous reports have sug-

gested that continual air exposure significantly increases device performance in ZnO/PbS-TBAI
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PV devices with a similar device architecture.[27] Though the exact mechanism of this improve-
ment has yet to be unequivocally demonstrated, exposure to atmospheric oxygen is known to
introduce acceptor levels into PbS bulk[I0T} 102, 5I] and QD films[149, [86], switching the elec-
tronic characteristics of as-prepared films from n-type to p-type. As a result, we expect that
both PbS-TBAI[I52] and PbS-MPA films become more p-type with exposure to air, resulting in
an increased p-type doping within the PbS-MPA QD layer and a more intrinsic PbS-TBAI QD
layer. We note that an intrinsic PbS-TBAT layer is consistent with the design rationale behind this
device architecture.[27] Furthermore, a depleted PbS-TBALI layer is consistent with the decreased
total capacitance measured in Figure [5.2JA, which reaches a maximum of ~ 75 nFecm™ at low
frequencies while achieving the same minimum of ~ 38 nFem™ at high frequencies observed on
day 1.

The decrease from the low frequency capacitance level in Figure to that the level in
Figure may indicate that in addition to the depleted PbS-TBAI and partially depleted ZnO
regions, a small depletion region of Wj;pa ~ 20 nm may drop across the PbS-MPA layer, depicted
schematically in Figure , implying a depletion capacitance ~ 380 nFem™. The portion of the
n-side of the depletion region in ZnO gives a much smaller depletion capacitance of ~ 90 nFem™2.
Furthermore, assuming electron transport still dominates the charge dynamics within the PbS-
TBAI QD layer,[I8] [126] which may be reasonable considering the vacuum conditions under which
this measurement was performed, the combined capacitance of a fully depleted ZnO and PbS-TBAI
layer is ~ 45 nFem™ (indicated in Figure with a dashed red-line). We speculate that the
temperature-dependent capacitance decays observed in TAS on day 2 correspond to a mixture
of electron dynamics in the ZnO layer, the PbS-TBAI QD layer, and the PbS-MPA QD layer
as indicated in the equivalent circuit in the inset of Figure [5.3B. In this model, the decay to
C¢ at high frequencies occurs as the applied frequency exceeds the temperature-dependent hole
conductivity of the PbS-MPA QD layer. We hypothesize that the dashed line in Figure [5.3JA may

therefore roughly indicate a demarcation level above which charge dynamics are dominated by the
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PbS-TBAI/ZnO layer and below which charge response is influenced by PbS-MPA. Differentiation
of charge dynamics within the PbS-TBAI and ZnO depletion region is beyond the scope of this
discussion, and for the remainder of the analysis of the day 2 data, we assume that the combination
of the two layers may be modeled as a homogeneous dielectric material. For a total depletion
capacitance of 45nFcm™? and a total thickness of Dpys+ D z,0 = 220 nm, we obtain an equivalent
dielectric constant € = 10.8

Figure shows the capacitance derivative —omega%, which exhibits a drastically smaller
capacitance de-tuning than the day 1 spectra. A Fermi fit to the capacitance amplitude, pro-
vided in Figure [5.3D, shows an excellent fit to the data and yields a carrier activation energy
Exn = 0.046 £ 0.001 eV. To determine the activation energy of the resonant frequency, we again
assume that the charge response is due to charge emission from a discrete defect level. Though
we cannot unambiguously determine if the quantum confined PbS-TBAI QD layer or the more
bulk-like annealed ZnO film is responsible for the charge response, the activation energy of wy is
calculated by fitting In(woT~'/?) against w (Figure ) following equation . The fit yields
Er =0.300£0.002 eV and a reduced attempt frequency vgg = 4.2 x 103 rad/sK'l/Q. We note that
the observed value of Ep, which is primarily sensitive to Er following the discussions in Chap-
ters [2| and |4}, is consistent with our preliminary estimate of Er at the ZnO/PbS heterointerface
deduced via forward biased IS measurements in Chapter [ This value is also in agreement with
previous estimates of defect levels at the ZnO surface detected via TAS[70], deep level transient
spectroscopy[I31], and FET studies.[23]. However, we note that these data do not unambiguously
reflect emission from a discrete trapping level, and that transport-limited charge hopping may
also be responsible for the observed response. Assuming the latter to play a role in the dynamics
observedin TAS, the implied transport level Ep, = Ep — En = 0.26 eV (Figure ) is in excel-
lent agreement with estimates of defect states below the conduction band in PbS-TBAI QD films
from sub-bandgap photoluminesnce (PL) measurements. The fact that these PL measurements

were made without an interface suggests that if the observed capacitance response results from
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transport, then Ep, dedued from the data in Figure [5.3]is related to charge dynamics in the the

PbS-TBAI QD layer.
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Figure 5.4: (Npg vs. < z > on day 1 (squares) and day 2 (diamonds). (B) Band diagram cartoon
showing location of predominant charge responses on day 1 (< x41 >) and day 2 (< x4 >) along
with Fermi levels and junction locations expected on respective days. (C). Npy, vs. T for day 1
(squares) and day 2 (diamonds). (D) Npr, vs. E, on day 1 (squares) and day 2 (diamonds). (E)
Band structure used to interpret day 2 Npy, vs. E, data, showing Er (yellow), Ep, (red), E,

(highlights), and positions of E¢ in ZnO and PbS-TBAL
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DLCP measurements made in parallel with the TAS measurements allow us to estimate the charge
density that gives rise to the response observed in Figures and [5.3A. Figure shows the
charge carrier profile Npy, vs. < x > obtained on day 1 (squares) and day 2. (diamonds).
The data presented in Figure were obtained at measurement frequencies w = 3.14 x 103
rad/s and calculated assuming that ¢ = 182y on day 1 and £ = 10.8¢y for day 2. On day 1,
Npr =~ 2 x 10'7ecm™ in excellent agreement with previous estimates of the carrier density in
PbS-TBAI QD solids based on Schottky junction capacitance measurements.[133] By contrast,
the day 2 data show a decrease to Npy, ~ 9 x 10'® cm™, indicating a carrier concentration closer
to the intrinsic carrier concentration ~ 10 c¢cm™ estimated for PbS QD films.[149] These data
indicate that the carrier concentration probed decreases after sufficient air exposure, consistent
with our interpretation of the TAS data in Figures and [5-3]A. Furthermore, < > increases
from ~ 100 nm on day 1 to ~ 150 — 300 nm on day 2, consistent with the proposed increase
in the extent of the depletion region as the PbS-TBAI layer becomes more intrinsic. We note
that since the total width of the PbS-TBAI layer and the ZnO depletion region is ~ 220 nm,
< x > values larger than this width can be considered un-physical. We ascribe the ambiguities in
the < z >-scale to uncertainty in the value of €. The use of an equivalent dielectric constant in
these calculations due to the contributions of both the ZnO and PbS QD layers imply that our
profiling analysis is qualitative; however, though the value of ¢ is not known to high accuracy,
the trends in the observed profile distance are physically significant under the assumption that we
have identified the charge mechanisms responsible for the response on day 1 and day 2.[52]

In addition to the decrease in carrier concentration from day 1 and day 2 observed in Figure
B4, the day 1 depletion width stays constant with temperature, whereas the day 2 depletion
width shrinks as temperature increases. Similar temperature-dependent decreases in the depletion
width of PbS-TBAI films have been observed in previous capacitance studies and ascribed to
carrier activation within the QD solid.[I33] The hypothesized trends in the carrier density profile

are summarized in Figure [5.4]B. In our analysis, the predominant junction on day 1 (’d1’) is the
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Pbs-TBAI/ZnO interface; as a result, Npy, corresponds to a carrier density within the PbS-TBAI
QD layer. On day 2 (d2), the PbS QD layers become more p-type. The first moment of charge
response detected in DLCP is then centered further from the interface as the PbS-MPA /PbS-TBAI
interface becomes the dominant interface in the device.[126]

Figure shows exhibits Npy as a function of temperature. Below T = 280 K, Npp,
stabilizes to ~ 2 x 1017 cm™ on day 1 and ~ 8 x 10%® ¢cm™ on day 2. For T' > 280 K, the day 2
data exhibits a slight increase in density to ~ 1 x 10" cm™. Figure indicates this increase
occurs at an activation energy F,, = Ec — Er = 0.39. Since this energy matches the hypothesized
energetic distance between F¢ and Ep observed in the TAS spectra on day 1, we speculate that
the increase in Npj, occurs as carriers close to the conduction band in the PbS-TBAI QD layer
become responsive to the measurement, as indicated in Figure [5.4E. We note that the observed
peak value ~ 1 x 10'® cm_5 at this energy is in excellent agreement with the previous estimates of

the carrier concentration of ambipolar PbS-TBAI QD films [152].
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5.2.3 AC Conductance
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Figure 5.5: (A) o(w) obtained at V4 = 400 mV on day 2, exhibiting 2 dispersion-less conductance
plateaus. Dashed red lines indicate low frequency regime (wz = 1.2 x 103 rad/s) and high fre-
quency regime (wy = 5 x 10%rad/s) used for temperature-dependence analysis. (B) o(w) at low
temperature, low frequency DC conductance plateau on day 1 (squares) and day 2 (diamonds)
with accompanying Arrhenius fits. (C) o(w) at high temperature, high frequency DC conductance

plateau on day 1 (squares) and day 2 (diamonds) with accompanying Arrhenius fits.

We hypothesize that the presence of two activated processes in the PV device on day 2 is reflected
in the frequency-dependence of the AC conductance ¢’(w) displayed in Figure . These data
are obtained in parallel with the TAS data at V4 = 400 mV applied bias. The applied forward
bias suggests that the predominant charge dynamics observed in Figure are dominated by
electron injection from the ZnO into the PbS-QD layers, as discussed in Chapter [} Two distinct,
frequency-independent conductance plateaus are observed in Figure . For T < 290 K, ¢'(w)
is flat below a temperature-dependent inflection frequency w,, (=~ 10* rad/s at T = 280 K, as
indicated in Figure ) For T' > 290K, this region exhibits a pronounced frequency dispersion,
after which the second, higher temperature conductance plateau is observable from w ~ 10* — 103
rad/s. As discussed in Chapter |3} dispersion-less plateaus in ¢’ (w) vs. w indicate the formation of
a complete percolation network in which charge can hop across the entire device. In this regime,

o'(w) indicates the DC conductivity limit, and the temperature activation of ¢’(w) is dominated
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by the largest energy barrier that electrons must hop over as they travel from the ZnO to the
Au contact at the back of the device.[36] Interestingly, for T' > 290 K, the frequencies at which
the first conductance plateau appears at low temperatures show no evidence of DC transport.
Instead, the data show pronounced frequency dispersion, consistent with dielectric loss due to
recombination. [IT11]

The observation of two distinct DC conductance regimes in Figure suggests the presence
two different barriers to DC transport in the device on day 2, consistent with the increase in
the day 2 Npy observed in Figure [5.4B,C. As exhibited in Appendix [C.4] the forward-biased
AC conductance data on day 1 also show evidence of two energy barriers to electron transport
in the device. To estimate the activation energy E 4 associated with these energy barriers, we
select two test frequencies: one within the low temperature conductance plateau and one within
the high temperature conductance plateau. For the day 2 data exhibited in Figure [5.5]A, this
corresponds to a low test frequency wy, = 1.2 x 10 rad/s and a high test frequency wg = 5 x 10*
rad/s. The day 1 data exhibited in Appendix are analyzed at wy, = 6.0 x 102 rad/s and
wg = 1.2 x 10* rad/s.Figure shows the temperature-dependence of the ¢’(wr,) on both day
1 (squares) and day 2 (diamonds). The included Arrhenius fits indicate a day 1 activation energy
of low temperature DC conductance EF4 = 0.24 4+ 0.02 eV, while on day 2, F4 = 0.27 £ 0.02 eV.
Similarly, Figure displays the temperature-dependence of ¢’ (wyr), from which we deduce that
the activation energy of the high temperature DC conductance plateau on day 1 is 0.21 £0.03 eV

whereas F4 = 0.23 £ 0.02 €V on day 2.
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5.2.4 Impedance Spectroscopy
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Figure 5.6: (A) Example impedance arc for IS data obtained at 7' = 230 K with accompanying
fit from equivalent RQ circuit (inset). B) R.; extracted from IS fits at different temperatures on
day 1 showing 2 different temperature dependences and accompanying Arrhenius fits to low and
high temperature regimes (dashed red lines). (B) Cesy extracted from IS on day 1 showing high
temperature carrier activation with Arrhenius fit (dashed red line). (D) Resulting 7 calculated
from R, and @ on day 1 with Arrhenius fits to 2 separate temperature regimes. (E) R.; extracted
from IS fits at different temperatures on day 1 showing 2 different temperature trends and ac-
companying Arrhenius fits to low and high temperature regimes (dashed red lines), with the same
thermal activation as (F) 7 calculated for day 2 data. (G) Proposed band structures for electron

transport at V4 =400 mV and V4 =0 mV.

A more complete picture of the charge transport dynamics within the device is afforded by
temperature-dependent IS measurements, obtained in parallel with admittance characterization.
As in Chapter |4} the frequency-dependence of the real (Z,.) and imaginary (Z;) parts of the de-
vice impedance can be simultaneously analyzed in a complex-plane (Nyquist) plot. Figure

exhibits an example complex-plane plot of our PV device device obtained on day 2 at T" = 240
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K. The remainder of the day 2 data is displayed in Appendix [C.6] while those for day 1 are
featured in Appendix Though the impedance data is characterized by single RC arc, the
broad distribution of charge relaxation times resulting from the spatial and energetic disorder
in PbS QD solids results in deviations from the ideal semicircle expected for a single, dominant
charge relaxation process. The arc in Figure is depressed so that the real axis is larger than
the imaginary axis, characteristic of a distribution of time constants that contribute to charge
relaxation. 20, [1T9] 118, 56] As in Chapter 4] we analyze the impedance data with an equivalent
circuit that uses a CPE @ in parallel with a charge transfer resistance R.;. These parallel elements
are in series with a series resistor R,. The total impedance described by the parallel RQ circuit

is then:

Rct

2W) = Rs + T e 00,

(5.2.1)

where @ is the CPE coefficient and « is parameterizes how close to ideal the CPE is. For a = 1,
Q — C, and the recombination process can be characterized by a single time constant.[20] The
values of these circuit elements can be determined by a complex, non-linear least squares regression
of both Z,. and Z; to the impedance given by equation . An example of the fits is provided
in Figure , yielding Ry = 7.5 kQem™2, Q = 1.1 x 107 s°kQcm™2, o = 0.93, and R, = 0.05

kQcm™2. As in Chapter [4] the calculated values of @ and « allow us to estimate the effective

capacitance Cefy = Q(R% + Rl )ﬁ The characteristic time constant 7 of the recombination

process that gives rise to the impedance arc can thus be determined as:[56, [20]
1
7= (QRet)". (5.2.2)

The fit in Figure corresponds to 7 = 5.1 x 107 s. The highlighted diamond indicates the
resonant frequency wy = % By repeating this process for impedance data obtained at various
temperatures, the activation energy of the recombination process corresponding to the measured

impedance arc can be obtained.

Figures|5.6B,C exhibits the temperature-dependence of R.; and C.s; deduced from equivalent
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circuit fits to impedance data measured on day 1 from T = 210 — 330 K. The Nyquist plots
and accompanying fits are available in Appendix Both plots show a large discontinuity at
T = 270 K, consistent with the discontinuous jump exhibited by the day 1 frequency-dependent
hopping conductance in Appendix and by the day 2 data in Figure[5.5A. In Figure[5.6[C, Cey/
exhibits significant thermal activation above T = 270 K but an unphysical, negative activation
energy below this temperature, consistent with thermal activation of the carrier density at high
temperatures. Arrhenius fits to these two regimes are also provided in Figures [5.6B, C. The
day 1 activation energy of R.; at low temperature given by the Arrhenius fit in Figure is
E4 =0.34£0.03 €V, while in the high temperature regime, F4 = 0.22£0.03 eV. We note that the
high temperature F 4 is consistent with the activation of the day 1, high temperature conductance
data presented in Figure [5.5C. At these temperatures, the activation energy of the carrier density
in Ceyys is calculated to be E4 = 0.1 £ 0.02 eV. These two thermal activation energies combine
to give a total high temperature thermal activation energy F4 = 0.29 £ 0.01 eV for the day 1
time constant 7 in Figure [5.6]D. At low temperatures, the activation energy of 7 is dominated by
R such that F4 = 0.25 £ 0.04 eV. These figures are in excellent agreement with the activation
energies of the DC hopping conductivity o’(w) once the assumed carrier activation for electrons is
added. The day 1 data therefore also suggest the presence of 2 distinct barriers to dark electron
transport in our PbS QD device.

The day 2 data, featured in Figure 5.GE,F similarly indicate 2 energy barriers to electron
transport. At low temperature, the day2 data exhibit a thermal activation of both 7 and R
at low temperature of E4 = 0.3 + 0.03 eV, consistent with the activation energy of the day 2
low temperature DC hopping conductance. At higher temperatures, the fit in Figure gives
E4 = 0.23+0.04 for 7. Again, the obtained activation energy is in agreement with the high
temperature DC hopping activation. The observation that F4 for 7 matches EF4 for R.; suggests
that the activation energy of the carrier density in the device (reflected in the temperature-

dependence of C.ry in Appendix does not play a role in the charge dynamics probed in
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forward biased IS and AC conductance on day 2.

The source of the discontinuities in the data is hinted at in the Nyquist plot of the day
2 impedance response at T = 290 K, provided in Appendix [C:8 The data exhibits a high
frequency feature in which Z; increases nearly linearly with Z,., distorting the recombination arc.
Linear high frequency features in Nyquist plots are characteristic the Warburg impedance, which
corresponds to mass transport processes.[119] Warburg impedances have also been used to model
electron diffusion in IS studies of semiconductor materials.[9] Recently, heuristic extensions of
the Warbug impedance have been formulated to describe anomalous diffusion processes in which
carriers hop through structurally disordered media.[I1] These carrier diffusion models rely on
CPEs to describe the ensemble average transport time that arises as a charge carrier is trapped
and subsequently released through a distribution of localized sites. As a result, we hypothesize
that the discontinuity in the impedance response above T' = 290 K on day 2 (and T' = 270K on day
1) reflects a transition between the low and high temperature CPEs associate with recombination
and transport, respectively.

The physical processes that correspond to the two distinct regimes of charge dynamics in Figure
5.6| are suggested by the values of 7 that characterize charge relaxation process at low and high
temperatures. In Figures ,F, the value of the 7 ranges from ~ 1072 s at T = 210 K at low
temperatures to ~ 8 x 107 in the high temperature regime. The observed low value time constant
matches well with measurements of the dark carrier lifetime in ZnO films annealed in the presence
of Oq, which has been estimated to be ~ 1 — 2 x 10* s at room temperature via XPS studies
of ZnO surfaces[I34] and ZnO/PbS QD interface.[I35] Open circuit voltage decay measurements
on PbS QD/ZnO heterojunction PV devices have also observed time constants ~ 10~* s.[34] We
note that this figure also matches well with the electron relaxation lifetime analyzed in forward
biased impedance data in Chapter [4] which we hypothesized resulted from interfacial ZnO/PbS-
MPA states. Based on the similarity between the observed activation energy of 7 (F4 =~ 0.3

eV) and the activation energy of low temperature DC hopping transport (Fa =~ 0.27 eV), we
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hypothesize that electron dynamics at the interface may present the largest hopping barrier to
electrons injected from the ZnO into the PbS QD layer.

At higher temperatures, by contrast, Figures 7F show that 7 extends from ~ 8 x 107° s
at T =280 K to 7x 1079 s at T = 330 K on day 1, and ~ 1.5 x 107° s at T = 300K down
to 7x 1075 s at T = 330 K on day 2. The observed 7 at high temperature is characteristic of
electron transport lifetimes in PbS-TBAI QD solids, which has been reported to be ~ 2 x 1076 s
via IS[133] and transient photovoltage measurements.[28] [73] As a result, we hypothesize that the
carrier lifetime at high temperature likely contains significant contributions from charge dynamics
in the PbS-TBAI QD film. The thermal activation of these charge dynamics seems to dominate
DC hopping transport at elevated temperatures in Figure [5.5A.

These conclusions are summarized in Figure [5.6(G, which shows the proposed band diagram
at an applied bias V4 = 400 mV. The splitting of the electron and hole quasi-Fermi levels implies
that defects at both the PbS-TBAI/ZnO and PbS-TBAI/PbS-MPA both present barriers to charge
transport, which give rise to the arcs measured in IS. Since the thermal activation energy of the
electron density at high temperatures is measured to be ~ 0.1 eV via IS measurements at 400 mV
on day 1, we infer that at zero bias, the thermal activation of this density is ~ 0.1 +0.4 =~ 0.14 V.
We note that a carrier thermal activation of ~ 0.14 eV at zero bias implies that any band tail in
the PbS-TBAI QD film extends to ~ 0.24 eV, in excellent agreement with the PL interrogation

of TBAI-capped QD solids.[28]
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Figure 5.7: (A) a parameter extracted from IS fits on day 2 exhibiting steady decrease at high
temperature. (B) Distribution of carrier lifetimes 7G(7) in low temperature regime on day 1. (C)
Distribution of carrier lifetimes 7G(7) in high temperature regime on day 1. (D) « parameter
extracted from IS fits on day 2 exhibiting discontinuous jump between low and high temperature

regimes. (E) Distribution of carrier lifetimes 7G(7) on day 2

Further information about the charge hopping dynamics interrogated by forward biased IS
measurements can be obtained by analysis of the temperature dependence of the o parameter
extracted from the fits in Figure displayed in Figures [5.7A,D. On day 1, « is observed to
increase slightly with temperature until 7" = 270K, whereupon it drops about 10% as the high
temperature CPE begins to contribute to the impedance of the device. On day 2 (Figure ),
« increases from 0.88 at T = 210 K to 0.94 at T = 240 K, indicating that as temperature
increases, the charge dynamics probed in the IS measurement can described by a single relaxation
process.[119, [T35] As temperature continues to increase to T = 290 K, the competition between

the high and low temperature regimes causes « to decrease to 0.88, after which it discontinuously
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rebounds to 0.95 as the high temperature relaxation process begins to dominate lower temperature
dynamics.

As in Chapter[4] the extracted o parameter can be used to estimate the log-normal distribution
of time constants G(7) assumed to give rise to CPE behavior. For a characteristic time constant

70, G(7) may be written:[20, 119]

B 2sin(ar)
") = = @) 2] exp[—(1 — @) Z] — Zeos(am) (523)

The distributions on day 1 are plotted in Figure [5.7B,C for the range of 7 accessed in our ex-
periment. As temperature increases, the peak of the distribution shifts continuously to lower
temperatures, and initially, the short-timescale tail of the distribution is observed to increase in
Figure . For T > 270 K, the width of 7G(r) decreases around 7 = 1075 s, as observed in
Figure[5.7/C. The observed decrease in the distribution width is consistent with the decreasing con-
tribution of the ZnO/PbS-TBAI interface we hypothesize dominates the charge dynamics probed
at these temperatures. The same low temperature increase in the low-timescale tail of 7G(7) is
observed in the day 2 data presented in Figure [[.7E. At T' = 270 a similar decrease in the width
of the distribution occurs, followed by a discontinuous broadening of 7G(7) for T > 290 K. The
peak of this distribution is ~ 5 x 107% s but with a large, long-timescale tail extending out to
1072 s. Based on these data, we speculate that on day 2, the highest temperature time constant
distributions contain significant contributions from both the PbS-TBAI QD layer, expected to
have lower carrier transport times, and the ZnO/PbS-TBAI interface. By contrast, the sharper
high temperature distributions observed on day 1 in Figure may be related to the clear
separation of charge dynamics probed in the day 1 capacitance response in Figure [5.2A. In this
scenario, contributions to the observed charge dynamics from processes with large time constants
that we tentatively ascribe to the ZnO/PbS-TBAI QD interface in our preliminary analyses may
dominate the electron hopping times probed in forward bias. This could explain the narrow time

constant distribution in Figure [5.7)C. On day 2, by contrast, the intermingling of the PbS QD and
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ZnO charge responses may give rise to more facile charge transfer from ZnO band tail states into

PbS band tail states, broadening the distribution at the highest temperatures in Figure [5.7[E.

5.2.5 IR Illumination
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Figure 5.8: (A) JV curves obtained the dark (black) and under AM 1.5G illumination (yellow) in
the glovebox immediately after fabrication, with red star indicating V,.. (B) JV data obtained
in the dark (black) and under IR illumination with A = 980 nm (red) at T = 300 K. (C) TAS
data obtained in the dark from 7' = 240330 K. (D) TAS data obtained under illumination at
A =980 nm. (E) Arrhenius fits to dark and IR-illuminated TAS curve. (F) Npg vs. E,, in the
dark (black) and under illumination (red). (G) Intensity-dependent Npy, at various temperatures
for illumination powers of 3.8 mWem™ (i, pink), 4.8 mWem™ (ii, red), and 5.7 mWem (iii, deep

red). (H). Proposed recombination mechanism for photogenerated charge in the PbS layers.

Figure shows JV characteristics of the PV device 1 day after fabrication in the dark (black)
and under AM 1.5 G illumination (yellow) measured in an inert Ny glovebox. The dark and

illuminated currents are higher than the PbS-MPA /ZnO PV device discussed in Chapter [i] and
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the PbS-TBALI device exhibits a slightly larger PCE of 8.7% than the device analyzed in Chapter
However, the PbS-TBAI device also exhibits a slightly lower V,. = 0.47 V compared to V,. = 0.57
for the PbS-MPA PV device. Lower V. parameters are commonly observed in halide-treated PbS
QD PV devices compared to their organic-capped counterparts [62] 27, [143]. Though the precise
reason for this discrepancy is not well understood, these V,. losses have been heuristically linked
to recombination within pathways at the interface [37, 58, [73], 92, [03] and in the bulk of the PbS
QD layers. [28]

To clarify the role the distinct charge responses observed wvia IS play in recombination of
photogenerated charge, we perform TAS and DLCP experiments on a PbS-EDT/PbS-TBAI/ZnO
QD PV device in dark and under illumination. The device was fabricated via spincoating methods
similar to those used for the PbS-MPA /PbS-TBAI/ZnO device, and measured in the same vacuum
sealed probestation. Illumination is provided via a 980 nm laser connected to the probestation
with an optical fiber. The wavelength of the laser illumination is chosen to match the ~ 1.2 eV
bandgap of our PbS QD film. As depicted in Figure [5.I] light enters through the ZnO layer,
which exhibits an absorption onset ~ 350 — 360 nm according to the spectra presented in Figure
in Chapter @} Due to the large ZnO bandgap, we expect that the 980 nm illumination passes
through the ZnO layer and is absorbed by the PbS-TBAI QD layer.[27] The illuminated TAS and
DLCP measurements are performed in parallel with the dark characterization, such that at each
temperature point, dark data is collected and, following a 2 minute waiting period, the illuminated
data is collected. After a subsequent 20 minute waiting period, the temperature is increased and
the measurement cycle is repeated.

The JV curves of the PbS-EDT/PbS-TBAI/ZnO QD device in the dark (grey) and under 980
nm illumination with a power density of I = 3.8 mWecm™ is displayed in Figure . Though
the current levels are much lower than the PbS-MPA /PbS-TBAI/ZnO device in Figure [5.8A, a
weak photocurrent is observed in the cell, indicating excitation of photogenerated carriers within

the PV device. Figure 5.8(C shows the capacitance-frequency spectra obtained in the dark from
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T = 240 — 330K, while Figure [5.8D exhibits the illuminated C vs. w characteristics. The spectra
show little observable difference in the inflection frequency wg especially at low temperature.
However, the rate of decay of the capacitance-frequency curves at low frequencies is smaller under
illumination than in the dark, consistent with an illumination-induced occupancy of a broader
range of states which results in a less stark cutoff frequency. This effect is most pronounced at
lower temperatures. At higher temperatures, wo decreases slightly under illumination (Appendix
7 implying that the illuminated charge response at high temperature may be linked to charge
occupancy of less mobile charge states due to a low conductivity (assuming wy results from limited
carrier conductivity) or a larger energetic distance from the transport band (assuming wq is due
to trap emision). Assuming the latter case, we obtain the activation energy of wp in Figure [5.8]
by fittingln(weT~1/?) vs. 7 for both the illuminated and dark data to Arrhenius fits. The fits
yield a dark activation energy Er 4 = 0.27 £0.02 eV and a slightly lower illuminated activation
energy Er; = 0.23 +0.02 eV, with respective attempt frequencies of 19 4 = (8 & 1) x 10% HzK1/2
and vp,; = (2.2 4+ 0.4) x 10% HzK'/2. Under the assumption that wy indicates charge emission
from a state at Ep, we hypothesize that the decrease in activation energy may correspond to an
increase in the quasi-Fermi level under illumination.

The illumination-dependent carrier densities exhibited in Figure F.8F obtained in parallel
DLCP measurements shed more light on the charge carrier dynamics under illumination. The
Npr, values presented are obtained at test frequencies of 6.28 x 103, (1.88,3.14, 4.40, 6.28) x 10%,
and (1.26,1.88,3.14) x 10° rad/s at 300 K. The energy axis E,, is calculated at T = 300 K using
these frequency values and equation (4.3.2). In the dark, the carrier density detected at high fre-
quency corresponds to E,, = 0.25 eV. At this energy, Npy, ~ 6x10'6 cm™, in good agreement with
previous estimates of the dark carrier density in PbS-TBAI QD solids [152] and the dark DLCP
measurements on the day 2 PbS-MPA /PbS-TBAI/ZnO PV device measured in The carrier
density in more states which respond at high frequencies is slightly lower under illumination, at

Npr ~ 4 x 10'%cm™ than in the dark. Interestingly, the slight decrease in Npy in these high
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frequency-states states under illumination is compensated by a strong increase in Npy, observed
at lower frequencies. At E, ~ 0.28 — 0.32 eV, the illuminated Np;, exhibits a large increase to
~ 10'® e¢m™, compared to a dark Np; ~ 107 cm™ at E,, =~ 0.29 — 0.36. The energy range at
which the increases in Npy, under illumination are observed match the energy of the low temper-
ature state characterized by 7 ~ 107 s, which we tentatively ascribed to the ZnO/PbS-TBAI
interface. We hypothesize that this interfacial defect state dominates recombination of photogen-
erated electrons within the PbS QD layer, in agreement with x-ray photoelectron spectroscopy
studies of ZnO-PbS QD heterointerfaces.[I35] These results are also consistent with device-level
experiments that reduce the ZnO band-tail density via inclusion of Mg[58], C1[25], and Al/Cl [24]
dopants, resulting in increases in device performance. As depicted in Figure[5.8G, this phenomena
scales with illumination intensity, indicating that the increased carrier density in these states is a
direct result of laser illumination.

These results suggest photoexcited electrons within the PbS layer are transported to the ZnO
interface with a transit time quicker than the resolution of our frequency-dependent experiment.
We hypothesize that charge dynamics are dominated by an interfacial defect state, as depicted in
Figure . The carrier transport lifetime 7 ~ 1075 s measured inis the limit of the time res-
olution of our frequency-dependent measurements; as a result, we note that illumination-induced
increases in states with shorter lifetimes are not observable in our measurement. We therefore
cannot definitively rule out an illumination-induced increase in the occupation of transport states
within the bulk of the PbS-TBAI QD layer. Instead, we can only comment that illumination

increases the carrier density in the longer-lifetime state.

5.2.6 Conclusion

We have systematically probed the charge dynamics in a PbS-MPA /PbS-TBAI/ZnO QD PV de-
vice. TAS measurements obtained over two days allow us to discern two predominant regimes of

charge dynamics—one that we hypothesize may be related to charge dynamics in PbS-TBAI, and
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one which likely corresponds to charge dynamics within the PbS-TBAI and ZnO layers. DLCP
measurements suggest that the differences in carrier profile and density occur as the PbS-TBAI
film becomes more intrinsic upon oxidation. Charge dynamics in the PbS-TBAT QD layer then be-
come physically indistinct from the ZnO depletion region. Frequency-dependent AC conductance
measurements and detailed IS analysis also reflect the existence of two different energy barriers to
transport. The characteristic time scales deduced in the IS analysis are consistent charge dynam-
ics at the ZnO/PbS QD interface and charge transport within the PbS-TBAI QD layer. Finally,
preliminary analysis of illumination-dependent TAS and DLCP suggest that the former state acts
dominates photogenerated charge dynamics. We note that these results are consistent with the
dynamics probed at the ZnO/PbS-MPA interface discussed in Chapter [4f and with recent efforts
to optimize the ZnO layer in PbS QD PV devices.[58, 25, [24] Our results suggest that the popu-
lar PbS-EDT(PbS-MPA)/PbS-TBAI/ZnO PV device architecture does indeed behave as a p-i-n
structure after sufficient oxygen doping, as originally designed.[27] However, though extensive ef-
fort has gone into optimization of the the PbS QD layers, defects with the ZnO layer may still

dictate cell performance.

5.2.7 Materials

Oleic acid (OA, 90%), l-octadecene (ODE, 90%), lead oxide (PbO, 99.999%), cadmium chlo-
ride (CdCly, 99.99%), oleylamine (70%), 1,2-Ethanedithiol (EDT, ;98%), 3-mercaptopropionic
acid (MPA, 99%), Tetrabutylammonium iodide (TBAI, 98%), zinc acetate dehydrate (98%), (3-
mercaptopropyl)- trimethoxysilane (MPTS, 95%), anhydrous hexane, anhydrous 2- propanol, an-
hydrous methanol, anhydrous toluene, anhydrous acetonitrile and anhydrous acetone are pur-
chased from Sigma-Aldrich. Bis(trimethylsilyl) sulfide ((TMS)2S, 95%) is purchased from Acros.
Tetradecylphosphonic acid (TDPA, 98%) and molybdenum oxide (MoO3, 99.9995%) are purchased

from Alfa Aesar. Potassium hydroxide (KOH, 85%) is purchased from Fisher.
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5.2.8 QD Synthesis

PbS QDs are synthesized as reported previously[163]. In brief, a mixture of 0.47 g of PbO, 23
mL of ODE, and 2 mL of OA is degassed at 120 C for 2 h under vacuum. Then 5 mL of 21
puL (TMS)2S/1 mL ODE solution is injected at 100 C with Ny flowing. The heat is turned off
immediately after injection, and when the reaction solution is cooled to 70 C, a pre-dried CdCl,
solution (0.3 g of CdCly and 0.033 g of TDPA in 5 mL of oleylamine) is added. After 5 min, the
reaction is further quenched in a water bath. The product is transferred into the glovebox and
purified by washing four times with acetone, 2-propanol, and methanol and finally re-dispersed in

octane/ hexane (4:1) at 50 mg/mL.

5.2.9 Device fabrication

All the fabrication steps are carried out in air unless otherwise noted. Prepatterned ITO/glass
substrates (Thin Film Devices) are cleaned by sonication in 5% Hellmanex in DI water, pure
DI water, and ethanol consecutively, followed by UVozone treatment for 30 min. The cleaned
substrates are soaked in MPTS (5% in toluene) for 10 h before use. The ZnO NPs are synthesized
according to a literature recipe [8]. The ZnO NP film is fabricated by spin casting ZnO NPs (100
mg/mL) at 1500 r.p.m and annealed in air at 250 C for 20 min. On top of ZnO NP layer, PbS
QD solution (50 mg/mL) is spin cast at 3000 r.p.m for 30 s, followed by TBAI (10mg/mL in
methanol) solid-state ligand exchange for 30 s or 3 s, respectively, with three rounds of methanol
washing. 10 layers of PbS QD films are deposited by sequential deposition. For MPA capped PbS
QD layers, a 1% vol MPA in methanol solution is used followed by three methanol rinsing steps.
For EDT capped PbS QD layers, EDT in acetonitrile (0.02 M) are used followed by 30 s washing
in acetonitrile. Two layers of MPA- (or EDT-) capped PbS QDs are deposited. To finish the
device, 12 nm of MoO3 and 65 nm of Au are thermally evaporated on the PbS QD film through a

shadow mask inside a glovebox, which defines the active area of the device to be 2 mm by 2 mm.
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5.2.10 Room Temperature Characterization

Dark and illuminated JV data are measured using a Keithley 2420 sourcemeter. Current is
recorded by sweeping the DC applied voltage from —200 to 700 mV in 20 mV steps. The PV
device is illuminated using a solar simulator (Oriel instruments model 96000, Newport Co.). The
simulated AM 1.5 light is brought into the glovebox through a liquid light guide feed-through. The
illumination intensity at the device is calibrated to be 1 Sun, i.e., 100 mW cm™2, by a Si reference
cell and meter from Newport (model 91150). PV devices are illuminated through an aperture of

1.6 mm x 1.6 mm in size, smaller than the active device area.

5.2.11 Variable Temperature Characterization

Variable temperature TAS, DLCP, AC conductance, and JV measurements are performed within
a LakeShore Cryotronics vacuum probestation with a liquid-N2 cooled sample stage. PbS PV
devices are measured from 7" = 190 to 310 K at 10 K intervals. Two probe admittance and JV
measurements are carried using a Hewlett Packard HP4192A impedance analyzer and an Agilent
4156C parameter analyzer, respectively. A computer-controlled relay switch is used to toggle
between AC impedance measurements and DC JV characterization at each temperature or time-
step as depicted in the schematic in Figure [L.TJA. For the temperature-dependent measurements,
the device is left under vacuum in the dark at room temperature for 1 h, cooled to 180 K, and
allowed to thermally equilibrate for 1 h before measurements are started. For TAS measurements,
the capacitance response of the PV device to a 100 mV AC perturbation is collected for frequencies
ranging from 20 Hz1.3 MHz at a 0 mV DC bias. The same DC and AC biases are applied for AC
conductivity measurements. IS measurements are obtained at the same frequency range and AC
bias at an applied DC forward bias V4 = 400 mV. DLCP measurements are performed immediately
afterward using the same setup, with AC signals at frequencies of 1 kHz, 10 kHz, and 100 kHz,

and maximum applied biases V02 = Vrums + Vpe from —50 mV to —300 mV in 50 mV steps.
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To obtain the non-linear capacitance response, Vrasg was varied from 10 mV - 300 mV, and Vpe

is automatically modulated to keep V.. constant using custom LabView software.
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Appendix A

A.1 FET Measurements
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Figure A.1: FET measurements on 3 nm PbS QDs capped with EDT made in the saturation

regime. Linear fits to (B) allow us to estimate p.

Figure exhibits gated FET measurements on devices made of 3 nm PbS-EDT QDs. Figure
shows the saturation regime response measured at Vpg = 50 V and. From the fit in Figure

we estimate that p ~ 1.3 x 107* ecm?(Vs)™.
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A.2 Capacitance of PbS-EDT/Au Dielectric Stack
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Figure A.2: (A) Capacitance-frequency curves for PbS-EDT dielectric stack with an Au top contact

(B) AFM height re-trace of dielectric stack (C) Dielectric constant €g as a function of frequency.

Figure [A2] shows the the capacitance of a dielectric stack of a PbS-EDT QD film deposited on a
silicon wafer with 250nm SiO5. To minimize the effect of fringing fields, the SiO5 was patterned
into squares of 8, 6.25, and 4 mm? before deposition of the QDs. Four layers of PbS were then
deposited onto the substrate via spin-coating following the same exchange procedure followed for
the devices, which were subsequently capped with 50mm of thermally evaporated Au for a top
contact.

The frequency-dependent capacitance of the resulting films was measured using the same vac-
uum set-up and HP-4192A impedance analyzer used in the TAS and DLCP measurements, and
is displayed in Figure [A2A. Like the capacitance data in Chapter [3] the dielectric stacks studied
here show nearly constant capacitance values from 10? — 10° rad/s, and exhibit a steep drop-off
at afterward. Note that the drop in capacitance occurs at wy &~ 6 x 10° rad/s for 2 measurements,
and a at a slightly higher frequency wy ~ 1 x 10° rad/s for the third measurement. The close
agreement between wg observed in these Au-PbS junctions, in which no depletion region is ex-

pected, and wqy observed in the PbS-Al Schottky junction studied in the Chapter [3] implies that

149



wp is not due to charge dynamics in the depletion region, consistent with the interpretation of wy
as the dielectric relaxation frequency wp.

We may also use this data to precisely determine the value of £g for the PbS-EDT QD film
over the operating frequency of the TAS and DLCP measurements. Since we expect contributions
of both the SiOs substrate and the QD films, we can write the total measured capacitance as a

sum of these distinct series capacitances [48]:

1 1 1
_ L. A21
C'tot Csub CQD ( )

where Cyo; is the total measured capacitance, Cl,; is the capacitance of the substrate, and Cgp is
the capacitance of the QD film. Since the simple geometry used here is a parallel plate capacitor,

the resulting QD film dielectric can be solved for according to:

- Eoé‘sA

= (A.2.2)

CQD

where gq is the vacuum permittivity, g is the static permittivity of the QD film, A is the device
area, and D represents the total thickness of the film.

The film thickness D of the dielectric stacks used in this analysis was characterized by atomic
force microscopy (AFM), the results of which are shown in Figure . The total film height
measured was 44nm for 3 layers of PbS-EDT.

Using this film thickness, the QD film permittivities eg were then determined and are displayed
in Figure A[A-2C. The resulting dielectric was calculated to be eg = 11.5+0.9. These results match
well literature reports [16].

The same technique is used in Appendices 2 and 3.
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A.3 AC Conductance
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Figure A.3: Fits to o(w) in low and high w regimes at (A) T =190K, (B) T =200 K, (C) T = 210

K,(D)T=220K, (E)T=230K, (F) T=240K, (G) T =250 K, (H) T =260 K, (I) T = 270

K, (J) T =280 K, and (K) T'= 290 K. Fits to high In(w) give s. Red stars indicate wp.

Fits of the ¢'(w) data in Figure 3A of Chapter [3| to equation (1.4.14) at w > w,, are provided

in Figure The fits yield temperature dependent s values displayed in Figure At

temperatures below T = 220 K, s > 1 which is prohibited by the RFB model.

observed in Figure 3C of the Chapter [3| high frequency ¢'(w) at this temperature range exhibits

little thermal activation, likely indicating that charge hopping between adjacent QDs can no longer
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occur in this regime. We therefore expect the dominant charge mechanism at these temperatures
and frequencies to be significantly enhanced by charge dynamics within a single QD, which may
be due to charge motion in extended states within the individual QD bands and not subject to

the RFEB model.
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Figure A.4: (A) s vs. T extracted from fits to high frequency regions of o(w) in Figure 3A of

Chapter E}

Above these temperatures, s < 1, and for T > 240 K, s exhibits a steady increase and
subsequent roll-off with temperature. At the highest temperatures in the measurement, s =~
0.7 —0.8, as expected from numerous reported exponents.[55] Inspection of the fits in Figure
show that the loss peak at wp occurs within the range of frequencies fit to equation .
The non-linearity of the peak at wp can be observed to have a large effect on the fit: at lower
temperatures, the feature at wp heavily skews the high frequency region of the fit. This effect is
mitigated at higher temperatures where wp occurs at the end of the frequency domain of the fit.

From the high temperature fits, we therefore infer that s ~ 0.7 — 0.8, in qualitative accordance
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with the RFEB model. We note here that broader ranges of applied frequency may be able to

discern more quantitatively descriptive structure in N(E).

A.4 DLCP Details

19 L @)
0% ¢
[ap)] ()
£ ° :
= |
al10‘18_
p %

17 1 .
10 10 20 30 40

<x> (nm)

Figure A.5: Npp vs. <z > at T = 280 K at all frequencies and biases applied in the measurement

Figure AJA-5|shows the distance profile of the capacitance response at 7' = 280 K for all frequencies
and biases scanned in the DLCP measurement. As mentioned in Chapter [3] the spatial shift due
to frequency far outpaces the change due to the applied reverse bias, indicating that application
of reverse bias does little to change the profile distance of the measurement. This implies that
changes in the distance profile are dominated by shifts in the Debye screening length Lg, which
contains an implicit frequency dependence in the carrier density Npy, but no dependence on bias.

The discrepancies between the expected shifts in profile distances due to increases in reverse
bias dependence and the observed shifts are more clearly seen in Figure [AZ6/A-B, which plots the
expected shift in the depletion width w (lines) given the applied reverse biases Vj,4. and the
observed shift in the average location of the charge density at low frequencies (circles) and high

2e0e(Vyi—V)

frequencies (diamonds). In these plots, w = N is calculated assuming the maximum
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achievable V;; = TG = 0.6 and the measured Np, values from T = 260 — 290 K. At low applied
bias, the low frequency DLCP data in Figure [A.6/A show reasonable agreement with the expected
values. As bias increases, the discrepancy between the observed and expected values increases
dramatically. The high frequency DLCP data in Figure show a similar trend, but larger
overall differences between the observed and expected values. The increase in the difference
between the data and the expected values with V,,,4, is more evidence that band bending induced
shifts cannot explain the spatial variation of the data. Since the low mobility of our device prevents
the observation of discrete defect levels within the junction, the independence of the profiling depth

on Vi,qz is not surprising. We note that the lack of band bending is also consistent with the Fermi

level pinning exhibited in the JV data.

B 80 . o

\
\

EGO ”/ -

i 5 ’,

240F ¢ ¢ $ 88
: SEES

0 : : : 20

0 100 200 300 0 100 200 300
V__ (V) V__ (V)

Figure A.6: (A) Depletion width calculated for the carrier densities detected at T' = 260290 K and

max max

applied reverse biases V4, of the DLCP measurement at w = 3.14 x 103 rad/s (lines) and spatial
variation of Npy, observed in DLCP. (circles) (B) Depletion width calculated for carrier densities
and reverse biases over the same range at w = 6.28 x 105 rad/s (dashed lines) and observed spatial

variation of Npy, (diamonds).
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As described in equation (4) of Chapter [3| the upper energetic limit of a DLCP measurement is
given by £ = Ep + E,,, where the limiting energy F,, is dependent on both 7" and w after equation
(5) of Chapter [3| We can estimate E,, (T,w) by measuring Npr(T) at various temperatures and
fixed w and plotting an Arrhenius fit to the data. Figure [A.7A-F show fits to the data obtained
at each of the discrete frequencies applied in the DLCP measurement. The activation energies
extracted from these data are displayed on the ordinate of Figure 3C in Chapter 3] At low w,
charge may follow the AC signal at nearly all temperatures and the resulting capacitance response
gives physically meaningful data aside from an outlier at 7" = 290 K that was ignored in the fit.
As frequency increases, charge cannot follow at the lowest temperatures in the measurement. As
a result, the physically valid range of Npy, begins at higher temperatures, and the uncertainty in

the extracted activation energy increases.
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Figure A.7: Thermal activation of Npz, obtained at (A) w = 6.28 x 10° rad/s, (B) w = 3.14 x 10*

rad/s, (C) w = 6.28 x 10* rad/s, (D) w = 3.14 x 10° rad/s, and (E) w = 6.28 x 10° rad/s.

A.5 Optical Absorption Calculations

To determine the total concentration of valence band states ny in our QD film we first calculate
the volume of a single QD vgp = %’R’T’%D for a single QD with radius rgp = 1.5 nm. We then
calculate the total volume fraction of QDs in the QD film used in the solar cell device. We

start by assuming a randomly close packing fraction £ =~ 0.64 of QD-ligand complexes in the
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film. Since EDT molecules have an average length rgp ~ 1 nm[4g], the total fraction of the film

UQD
VQD+EDT

volume occupied by PbS QDs can be approximated as & = x &, where vop+EDT is 2

sphere with radius rgpr + rgp. The total number of QDs in the film can thus be calculated as

ngp ~ UgD ~ 2.21 x 10! em™. Since ny = 8 x ngp,[161] we obtain ny ~ 1.77 x 10%° cm™3. This

value was used to normalize the N(FE) for the absorption analysis in Figure 5 of Chapter

A.6 DLCP — N(FE)y Calculation

Typically, the value of N(E) for a trap distribution of states measured by capacitance measure-
ments is obtained via a procedure outlined by Walter, et. al, wherein the total density of states

is related to the junction capacitance Cto by:[150]

Erp+E, 1%
Ctot =N X / NV(E) dE (A61)
Ep qVii

where np denotes the occupation of a trap distribution Np, W is the depletion width and Vj; is
the built-in voltage. Integration of Nt with respect to energy gives the occupation np that gives
rise to the capacitance response. Considering the linear drop of the applied AC bias due to band

bending at the junction, integration of equation (A.6.1)) gives:

V2 dC
Nr(E,) = bi ——wkgT A.6.2
() = v~ (Bre — B 4" (8.6.2)

where Epo, is the Fermi level in the bulk. Calculation of Ny wvia equation therefore
requires precise estimates of V3;, which in turn necessitates knowledge of band bending at the
junction. In bulk materials, V,; can be estimated by measuring the open circuit (V,.) of a solar
cell device. Obtaining accurate estimates of Vj; in QD solar cells is considerably more difficult

since high concentrations of defects limit charge collection, leading to large deficits in V.. [28]

157



A.7 JV Data

R, displayed in Figure 6E in Chapter [3]is calculated for high Vp via a procedure to minimize
the effects of device parastics outlined by Hegedus and Shafarman [54]. We summarize it briefly
here. A standard J-V curve is plotted in Figure [A:8A for the PbS QD solar cells as a function

of increasing temperature and increasing exposure to vacuum, respectively. From these plots, the

conductance g(v) = % vs. V in reverse bias is shown in Figure IB These plots allow for the

calculation of the shunt conductance G. For an Ohmic G, g(V') will be flat with a reverse bias

value of G.
3 T T T T 60 T T T T 0.15
A0 B
. —
‘\.‘; 10 Ng 0.1
5 <3
<
E & 3
NN
= 40 ‘§§ 50.05
X T = 190K~ 290K
03— L \ . 2ol ! ! ! . 0 ) ) ;
02 0 02 04 06 2025 02 015 -01 -005 O 0 0.2 04 06 08
V (volt) V (volt) (J-Gvy" (mA'em?)

Figure A.8: (A) dark J vs V curves measured as a function of temperature. (B) Shunt g(V)

characterization. (C) ‘(% vs. J — GV with fit used to determine R;.

The derivative r(J) = 4% = R, + "kTBT(J — GV) is plotted in Figure . The intercept of

the linear fits to these plots give the series resistance, Ry, shown in the Chapter [3] Figure 6E.
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A.8 Vacuum Data
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Figure A.9: JV curves taken under continuous exposure to vacuum. (B) J,4 calculated for

vacuum exposed JV curves. (C) dJ/dV vs. V at evenly spaced intervals of vacuum exposure time

(D) dV/dJ vs. (J — GV)~! used to calculate Rg at evenly spaced intervals of vacuum exposure

time.

(E) Dissipation D vs.w with inset showing shift in loss peak frequency and w used to

measure high frequency Npy as a function of exposure to vacuum (F) Vacuum-induced redshift

in absorption data which obscures direct observation of decrease of long wavelength HWHM
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A.9 Full DLCP data

-8
4 =10
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w=23.14%x10% —6.28 x 10°
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Figure A.10: Raw DLCP data obtained at T' = 220K and (A) Vgraps = 50 mV, (B) Veps = 100
mV, (C) VRMS =150 mV, (D) VRMS = 200 mV, (E) VRMS = 250 mV, and (F) VRMS =300 mV.
Frequencies of w = 3.14 x 103, 6.28 x 103, 3.14 x 10%, 6.28 x 10%, 3.14 x 10, and 6.28 x 10° rad/s

were used to obtain the data at each voltage, as indicated in the figures.
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Figure A.11: Raw DLCP data obtained at T' = 230K and (A) Vrays = 50 mV, (B) Veys = 100
mV, (C) VRMS =150 mV, (D) VRMS = 200 mV, (E) VRMS = 250 HIV7 and (F) VRMS =300 mV.
Frequencies of w = 3.14 x 103, 6.28 x 103, 3.14 x 10%, 6.28 x 10%, 3.14 x 10°, and 6.28 x 10° rad/s

were used to obtain the data at each voltage, as indicated in the figures.
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Figure A.12: Raw DLCP data obtained at T" = 240K and (A) Vgys = 50 mV, (B

~—

Verms = 100
mV, (C) Vems = 150 mV, (D) Vems = 200 IIlV, (E) Vems = 250 IIlV7 and (F) Vems = 300 mV.
Frequencies of w = 3.14 x 103, 6.28 x 103, 3.14 x 10*, 6.28 x 10%, 3.14 x 10°, and 6.28 x 10° rad/s

were used to obtain the data at each voltage, as indicated in the figures.
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Figure A.13: Raw DLCP data obtained at 7' = 250K and (A) Vrys = 50 mV, (B) Veps = 100
mV, (C) VRMS =150 HlV, (D) VRMS = 200 mV, (E) VRMS = 250 mV, and (F) VRMS =300 mV.
Frequencies of w = 3.14 x 10%, 6.28 x 10%, 3.14 x 10%, 6.28 x 10%, 3.14 x 10°, and 6.28 x 10° rad/s

were used to obtain the data at each voltage, as indicated in the figures.
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Figure A.14: Raw DLCP data obtained at T = 260K and (A) Vgys = 50 mV, (B) Vrys = 100

IIlV, (C) Vems = 150 mV, (D) Vems = 200 HlV, (E) Vems = 250 HlV7 and (F) Vems = 300 mV.

Frequencies of w = 3.14 x 103, 6.28 x 103, 3.14 x 10*, 6.28 x 10%, 3.14 x 10°, and 6.28 x 10° rad/s

were used to obtain the data at each voltage, as indicated in the figures.
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Figure A.15: Raw DLCP data obtained at T = 270K and (A) Vgrys = 50 mV, (B) Vrayrs = 100
mV, (C) VRMS =150 IIlV, (D) VRMS =200 Hl\/7 (E) VRMS = 250 mV, and (F) VRMS =300 mV.
Frequencies of w = 3.14 x 103, 6.28 x 103, 3.14 x 10*, 6.28 x 10*, 3.14 x 10°, and 6.28 x 10° rad/s

were used to obtain the data at each voltage, as indicated in the figures.
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Figure A.16: Raw DLCP data obtained at 7' = 280K and (A) Vrams = 50 mV, (B) Vrus = 100
mV, (C) VRMS =150 HlV, (D) VRMS = 200 Hl\/7 (E) VRMS = 250 mV, and (F) VRMS =300 mV.
Frequencies of w = 3.14 x 107, 6.28 x 103, 3.14 x 10%, 6.28 x 10%, 3.14 x 10, and 6.28 x 10° rad/s

were used to obtain the data at each voltage, as indicated in the figures.
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Figure A.17: Raw DLCP data obtained at T = 290K and (A) Vs = 50 mV, (B) Vrayrs = 100
mV, (C) Vems = 150 mV, (D) Vems = 200 mV, (E) Vems = 250 HlV7 and (F) Vems = 300 mV.
Frequencies of w = 3.14 x 103, 6.28 x 103, 3.14 x 10*, 6.28 x 10%, 3.14 x 10°, and 6.28 x 10° rad/s

were used to obtain the data at each voltage, as indicated in the figures.
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Appendix B
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Figure B.1: TAS data obtained at (i) OmV, (ii) -100 mV, and (iii) -200 mV applied bias.
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Figure B.2: Frequency-dependent conductance o(w) vs. w at 0 mV on day 1. Dashed red line

indicates freeze out frequency.
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Figure B.3: (A) Film height of ZnO. (B) C vs. w of dielectric stack of PbS-MPA QD film. (C)

Calculated dielectric constant for PbS-QD MPA film.
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Figure B.4: C vs. w obtained on day 1 with highlights indicating wg (squares) obtained from (B)
—w4C vs. w. (C) C vs. w obtained on day 2 with highlights indicating wy (diamonds) obtained

from (D) —w% VS, w.
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Figure B.5: Appendix 2.5 Raw DLCP C vs. Vgys obtained for day 1 data at (A) T = 270 K,

(B) T =280 K, (C) T =290 K, and (D) T = 300 K.
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Figure B.6: N(T) determined assuming Vj; = 0.9 eV and a fully depleted PbS layer on (A) day

0, (B) day 1, and (C) day 2.
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Figure B.7: N(T) determined by direct integration of the capacitance derivatives on (A) day 0

and (B) day 2.
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Figure B.8: (A) Shunt g(V) characterization. (B) 4% vs. J—GV with fit used to determine R, for

dark data (C) ) % vs. J — GV with fit used to determine R, sample in vaccum (D) Logarithmic

plot of Juq; vs. V' with linear fit to low voltage characteristics yielding Jy and n.
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Figure B.9: Fits to IS arcs at V4 = 600mV and (A) T =260 K, (B) T =270 K, (C) T = 280 K,
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Figure B.10: Thermal activation of effective capacitance C sy with Arrhenius fit (dashed red line).
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illumination from T' = 240 — 330 K, (C) in both dark (grey) and 980 illumination (light red) at

T =260 K, and (D) in both dark (black) and under 980 illumination (red) at 7' = 325 K
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Appendix C
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Figure C.1: (A) Capacitance of 3 separate dielectric stacks of SiOy/PbS-TBAI/Au.

20

Distance (um)

Lk,

40

60

C 22

20

| HHH\H\HHHHH!!\\H\\HHH\\HHHHHH\WHHHHHWH\H
Wl UHHH!\!!\\H\\!H!H\\H\HWH\HHHHH\HHHH\H

16
10° 10* 10°
Frequency, w (rad/s)

(B) AFM

height retrace of PbS-TBAI layer used in dielectric stack. (C) Dielectric constant & for PbS-TBAI
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Figure C.2: Voltage-dependent capacitance for PbS-TBAI cell on (A) day 0, showing freeze out
at wp ~ 10°, and (B) day 2, showing traces of freeze out at w ~ 3 x 10 rad/s. The biases used
on both days are (i) 0 mV, (ii)- 100 mV and (iii) 200 mV. The bias-dependent emission on both

days is consistent with interfacial defect states.
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Figure C.3: (A) o(w) vs. w at V4 = 0 mV on day 1, with dashed red line indicating wp observed
in TAS. B) o(wp) vs. w on day 1 with accompanying Arrhenius fit (dashed red line) giving
Es=0.43+£0.03eV. (C) ) o(w) vs. wat V4 =0 mV on day 2, with red diamonds highlighting wy.
(C) o(w) vs. w on day 2 with accompanying Arrhenius fit (dashed red line) giving F4 = 0.40+0.02

eV
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Figure C.4: o(w) on day 1, exhibiting 2 dispersion-less conductance plateaus like on day 2. Dashed
red lines indicate low test frequency (w;r = 600 rad/s) and high test frequency (wpy = 1.2 x 10*

rad/s) used in analysis.
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Figure C.5: Appendix 3.5: Impedance
(A)T=210K, (B) T=220K, (C) T

(G)T=280K, (H) T=290K, (I) T
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arcs and accompanying equivalent circuit fits on day 1 at

= 270 K,
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Figure C.6: Impedance arcs and accompanying equivalent circuit fits on day 1 at (A) T = 210 K,
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-10

T=325K

10%10*10%10°

w (rad/s)

C 20
_15¢f
N
£10}
L
£ 5
©)
0 -
T =260 K
0 _5 ul ul l
1031010°10° 10%10*10°10° 10%10%10°10°
w (rad/s) w (rad/s) w (rad/s)
Figure C.9: w%C vs. w obtained (A) in the dark from 7 = 240 — 330 K, (B) under 980 nm

illumination from 7' = 240 — 330 K, (C) in both dark (grey) and 980 illumination (light red) at

T =260 K, and (D) in both dark (black) and under 980 illumination (red) at 7' = 325 K

181



Bibliography

[1]

[7]

D. M. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. V. Kamat,
M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-Beyerle, J. R.
Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze, J. Yardley, and X. Zhu.
Charge Transfer on the Nanoscale: Current Status. The Journal of Physical Chemistry B,

107(28):6668-6697, 2003.

V. K. Agarwala and T. Fort. Work function changes during low pressure oxidation of

aluminum at room temperature. Surface Science, 45(2):470-482, 1974.

V. K. Agarwala and T. Fort. Nature of the stable oxide layer formed on an aluminum surface

by work function measurements. Surface Science, 54(1):60-70, 1976.

N. C. Anderson, M. P. Hendricks, J. J. Choi, and J. S. Owen. On the Dynamic Stoichiometry
of Metal Chalcogenide Nanocrystals: Spectroscopic Studies of Metal Carboxylate Binding

and Displacement. Journal of the American Chemical Society, 2:11457-11471, 2013. [7]

P. W. Anderson. Absence of diffusion in certain random lattices. Physical Review,

109(5):1492-1505, 1958.

I. G. Austin and N. F. Mott. Polarons in Crystalline and Non-Crystalline Materials. Ad-

vances in Physics, 50(7):757-812, nov 1969.
W. K. Bag, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W. K. Koh, H. Luo, V. I. Klimov,

182



[10]

[12]

[13]

[15]

and J. M. Pietryga. Highly effective surface passivation of pbse quantum dots through
reaction with molecular chlorine. Journal of the American Chemical Society, 134(49):20160—

20168, 2012. [[T9]

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen. Hybrid zinc

oxide conjugated polymer bulk heterojunction solar cells. Journal of Physical Chemistry B,

109(19):9505-9516, 2005.

J. Bisquert. Theory of the impedance of electron diffusion and recombination in a thin layer.

Journal of Physical Chemistry B, 106(2):325-333, 2002.

J. Bisquert, F. Fabregat-Santiago, I. Mora-Ser6, G. Garcia-Belmonte, and S. Giménez. Elec-
tron lifetime in dye-sensitized solar cells: Theory and interpretation of measurements. Jour-

nal of Physical Chemistry C, 113(40):17278-17290, 2009.

J. Bisquert, G. Garcia-Belmonte, and A. Pitarch. An explanation of anomalous diffusion pat-

terns observed in electroactive materials by impedance methods. ChemPhysChem, 4(3):287—
292, 2003. [T} [[30

P. P. Boix, G. Garcia-Belmonte, U. Munecas, M. Neophytou, C. Waldauf, and R. Pacios.
Determination of gap defect states in organic bulk heterojunction solar cells from capacitance

measurements. Applied Physics Letters, 95(23), 2009.

B. A. Boukamp. A nonlinear least squares fit procedure for analysis of immittancs data of

electrochemical systems. Solid State Ionics, 20:31-44, 1986. [39]

E. Bozler and K. S. Cole. Electric impedance and phase angle of muscle in rigor. Journal

of Cellular and Comparative Physiology, 6(2):229-241, 1935.

D. Bozyigit, W. M. Lin, N. Yazdani, O. Yarema, and V. Wood. A quantitative model for

charge carrier transport, trapping and recombination in nanocrystal-based solar cells. Nature

Communications, 6, 2015.

183



[16]

[17]

[18]

[20]

[22]

[23]

D. Bozyigit, S. Volk, O. Yarema, and V. Wood. Quantification of deep traps in nanocrystal

solids, their electronic properties, and their influence on device behavior. Nano Letters,

13(11):5284-5288, 2013.

D. Bozyigit and V. Wood. Non-Resonant Thermal Admittance Spectroscopy. pages 15-18,

2014. [@5, P9}, 124

P. R. Brown, D. Kim, R. R. Lunt, N. Zhao, M. G. Bawendi, J. C. Grossman, and V. Bulovié.

Energy level modification in lead sulfide quantum dot thin films through ligand exchange.

ACS Nano, 8(6):5863 5872, 2014.

P. R. Brown, R. R. Lunt, N. Zhao, T. P. Osedach, D. D. Wanger, L. Y. Chang, M. G.
Bawendi, and V. Bulovié. Improved current extraction from ZnO/PbS quantum dot hetero-
junction photovoltaics using a MoO3 interfacial layer. Nano Letters, 11(7):2955-2961, 2011.

91

G. J. Brug, A. L. van den Eeden, M. Sluyters-Rehbach, and J. H. Sluyters. The analysis of

electrode impedances complicated by the presence of a constant phase element. Journal of

FElectroanalytical Chemistry, 176(1-2):275-295, 1984.

G. H. Carey, I. J. Kramer, P. Kanjanaboos, G. Moreno-Bautista, O. Voznyy, L. Rollny, J. A.
Tang, S. Hoogland, and E. H. Sargent. Electronically active impurities in colloidal quantum

dot solids. ACS Nano, 8(11):11763-11769, 2014.

J. A. Carr, M. Elshobaki, and S. Chaudhary. Deep defects and the attempt to escape

frequency in organic photovoltaic materials. Applied Physics Letters, 107(20), 2015.

C. Casteleiro, H. Gomes, P. Stallinga, L. Bentes, R. Ayouchi, and R. Schwarz. Study of trap

states in zinc oxide (ZnO) thin films for electronic applications. Journal of Non-Crystalline

Solids, 354(19-25):2519-2522, may 2008.

184



[24] J. Choi, J. W. Jo, F. P. G. de Arquer, Y.-B. Zhao, B. Sun, J. Kim, M.-J. Choi, S.-W.

[25

126

28

29

]

]

]

Baek, A. H. Proppe, A. Seifitokaldani, D.-H. Nam, P. Li, O. Ouellette, Y. Kim, O. Voznyy,
S. Hoogland, S. O. Kelley, Z.-H. Lu, and E. H. Sargent. Activated Electron-Transport Layers

for Infrared Quantum Dot Optoelectronics. Advanced Materials, 30(29):1801720, jul 2018.

02} 101} 143 [144]

J. Choi, Y. Kim, J. W. Jo, J. Kim, B. Sun, G. Walters, F. P. Garcia de Arquer, R. Quintero-
Bermudez, Y. Li, C. S. Tan, L. N. Quan, A. P. T. Kam, S. Hoogland, Z. Lu, O. Voznyy,

and E. H. Sargent. Chloride Passivation of ZnO Electrodes Improves Charge Extraction in

Colloidal Quantum Dot Photovoltaics. Advanced Materials, 29(33), 2017.

113} 114

J. H. Choi, A. T. Fafarman, S. J. Oh, D. K. Ko, D. K. Kim, B. T. Diroll, S. Muramoto,
J. G. Gillen, C. B. Murray, and C. R. Kagan. Bandlike transport in strongly coupled and

doped quantum dot solids: A route to high-performance thin-film electronics. Nano Letters,

12(5):2631-2638, 2012.

C.-H. M. Chuang, P. R. Brown, V. Bulovi¢, and M. G. Bawendi. Improved performance and

stability in quantumdot solar cells through band alignmentengineering. Nature Materials,

13(8):796-801, 2014.

C. H. M. Chuang, A. Maurano, R. E. Brandt, G. W. Hwang, J. Jean, T. Buonassisi,
V. Bulovi¢, and M. G. Bawendi. Open-circuit voltage deficit, radiative sub-bandgap states,

and prospects in quantum dot solar cells. Nano Letters, 15(5):3286-3294, 2015.

[106} [108} [120} [137], [141} [L57]

J. P. Clifford, K. W. Johnston, L. Levina, and E. H. Sargent. Schottky barriers to colloidal

quantum dot films. Applied Physics Letters, 91(25), 2007.

185



[30]

[36]

K. S. Cole. ELECTRIC PHASE ANGLE OF CELL MEMBRANES. The Journal of General

Physiology, 15(6):641-649, jul 1932.

R. J. Collins and D. G. Thomas. Photoconduction and surface effects with zinc oxide crystals.

Physical Review, 112(2):388-395, 1958.

R. W. Crisp, D. M. Kroupa, A. R. Marshall, E. M. Miller, J. Zhang, M. C. Beard, and J. M.
Luther. Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD

Solar Cells. Scientific Reports, 5, 2015. [T}

C. R. Crowell and G. I. Roberts. Surface state and interface effects on the capacitance-voltage

relationship in Schottky barriers. Journal of Applied Physics, 40(9):3726-3730, 1969.

C. Ding, Y. Zhang, F. Liu, Y. Kitabatake, S. Hayase, T. Toyoda, R. Wang, K. Yoshino,
T. Minemoto, and Q. Shen. Understanding charge transfer and recombination by interface
engineering for improving the efficiency of PbS quantum dot solar cells. Nanoscale Horizons,

3(4):417-429, 2018.

H. S. Duan, H. Zhou, Q. Chen, P. Sun, S. Luo, T. B. Song, B. Bob, and Y. Yang. The
identification and characterization of defect states in hybrid organic-inorganic perovskite

photovoltaics. Physical Chemistry Chemical Physics, 17(1):112-116, 2015.

J. C. Dyre. The Random Free-Energy Barrier Model for A.C. Conduction in Disordered
Solids. Journal of Applied Physics, 64(5):2456-2468, 1988.
(74}, [109} [132]

B. Ehrler, K. P. Musselman, M. L. Bohm, F. S. Morgenstern, Y. Vaynzof, B. J. Walker, J. L.
MacManus-Driscoll, and N. C. Greenham. Preventing interfacial recombination in colloidal

quantum dot solar cells by doping the metal oxide. ACS Nano, 7(5):4210-4220, 2013.

108} [14]

186



[38]

[40]

[44]

R. Eisberg and R. Resnick. Quantum Physics of Atoms, Molecules, Solids, Nuceli, and

Particles. John Wiley & Sons, second edi edition, 1985. ]

T. Eisenbarth, R. Caballero, M. Nichterwitz, C. A. Kaufmann, H. W. Schock, and T. Unold.

Characterization of metastabilities in Cu(In,Ga)Se2thin-film solar cells by capacitance and

current-voltage spectroscopy. Journal of Applied Physics, 110(9), 2011.

G. A. Elbaz, D. B. Straus, O. E. Semonin, T. D. Hull, D. W. Paley, P. Kim, J. S. Owen, C. R.
Kagan, and X. Roy. Unbalanced Hole and Electron Diffusion in Lead Bromide Perovskites.

Nano Letters, 17(3):1727-1732, 2017.

S. Elliott. A.C. Conduction in Amorphous Chalcogenide and Pnictide Semiconductors.

Advances in Physics, 36(2):135-217, jan 1987.

A. J. Epstein, H. Rommelmann, M. Abkowitz, and H. W. Gibson. Anomalous Frequency-
Dependent Conductivity of Polyacetylene. Physical Review Letters, 47(21):1549-1553, nov

1981.

J. Gao, J. M. Luther, O. E. Semonin, R. J. Ellingson, A. J. Nozik, and M. C. Beard.
Quantum dot size dependent J - V characteristics in heterojunction ZnO/PbS quantum dot

solar cells. Nano Letters, 11(3):1002-1008, 2011.

J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H. Y. Chen, O. E. Semonin, A. J. Nozik,
R. J. Ellingson, and M. C. Beard. N-type transition metal oxide as a hole extraction layer

in PbS quantum dot solar cells. Nano Letters, 11(8):3263-3266, 2011.

G. Garcia-Belmonte, P. P. Boix, J. Bisquert, M. Lenes, H. J. Bolink, A. La Rosa, S. Filippone,
and N. Martin. Influence of the Intermediate Density-of-States Occupancy on Open-Circuit
Voltage of Bulk Heterojunction Solar Cells with Different Fullerene Acceptors. The Journal

of Physical Chemistry Letters, 1(17):2566-2571, sep 2010.

187



[46]

[47]

[49]

[52]

[53]

C. Giansante and I. Infante. Surface Traps in Colloidal Quantum Dots: A Combined Ex-
perimental and Theoretical Perspective. The Journal of Physical Chemistry Letters, pages

5209-5215, 2017. [§]

E. D. Goodwin, D. B. Straus, E. A. Gaulding, C. B. Murray, and C. R. Kagan. The effects
of inorganic surface treatments on photogenerated carrier mobility and lifetime in PbSe

quantum dot thin films. Chemical Physics, 471:81-88, 2016.

D. D. W. Grinolds, P. R. Brown, D. K. Harris, V. Bulovic, and M. G. Bawendi. Quantum-
dot size and thin-film dielectric constant: Precision measurement and disparity with simple

models. Nano Letters, 15(1):21-26, 2015.

P. Guyot-sionnest. Electrical Transport in Colloidal Quantum Dot Films. J Phys Chem

Lett, 3:1169-1175, 2012. 22} B1} B9

A. Hagfeldt and M. Gritzel. Molecular Photovoltaics. Accounts of Chemical Research,

33(5):269-277, may 2000.
R. H. Harada and H. T. Minden. Photosensitization of PbS films. Physical Review,

102(5):1258-1262, 1956.

J. T. Heath, J. D. Cohen, and W. N. Shafarman. Bulk and metastable defects in Culnl-

xGaxSe2thin films using drive-level capacitance profiling. Journal of Applied Physics,

95(3):1000-1010, 2004.

S. S. Hegedus and E. A. Fagen. Midgap states in a-Si:H and a-SiGe:H p-i-n solar cells and

Schottky junctions by capacitance techniques. Journal of Applied Physics, 71(12):5941-5951,

1992. [59} [76]

S. S. Hegedus and W. N. Shafarman. Thin-film solar cells: device measurements and analysis.

Progress in Photovoltaics: Research and Applications, 12(23):155-176, 2004.

188



[55]

[59]

[61]

R. M. Hill and A. K. Jonscher. DC and AC conductivity in hopping electronic systems.

Journal of Non-Crystalline Solids, 32(1-3):53-69, 1979. [152]

B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani. Determi-
nation of effective capacitance and film thickness from constant-phase-element parameters.

FElectrochimica Acta, 55(21):6218-6227, 2010.

A. J. Houtepen, D. Kockmann, and D. Vanmaekelbergh. Reappraisal of variable-range

hopping in quantum dot solids. Nano Lett., 8:3516, 2008.

R. L. Hoye, B. Ehrler, M. L. Béhm, D. Munoz-Rojas, R. M. Altamimi, A. Y. Alyamani,
Y. Vaynzof, A. Sadhanala, G. Ercolano, N. C. Greenham, R. H. Friend, J. L. MacManus-
Driscoll, and K. P. Musselman. Improved open-circuit voltage in ZnO-PbSe quantum dot

solar cells by understanding and reducing losses arising from the ZnO conduction band tail.

Advanced Energy Materials, 4(8), 2014.

L. Hu, A. Mandelis, X. Lan, A. Melnikov, S. Hoogland, and E. H. Sargent. Imbalanced charge
carrier mobility and Schottky junction induced anomalous current-voltage characteristics of
excitonic PbS colloidal quantum dot solar cells. Solar Energy Materials and Solar Cells,

155:155-165, 2016. [B]

B. K. Hughes, D. A. Ruddy, J. L. Blackburn, D. K. Smith, M. R. Bergren, A. J. Nozik,
J. C. Johnson, and M. C. Beard. Control of PbSe quantum dot surface chemistry and

photophysics using an alkylselenide ligand. ACS Nano, 6(6):5498-5506, 2012.

M. Igalson and H. W. Schock. The metastable changes of the trap spectra of CulnSe2-based
photovoltaic devices. Journal of Applied Physics, 80(10):5765-5769, 1996.

112)

A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina,

L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle,

189



[64]

[65]

K. W. Chou, A. Amassian, and E. H. Sargent. Hybrid passivated colloidal quantum dot

solids. Nature Nanotechnology, 7(9):577-582, 2012.

A. N. Jansen, P. T. Wojcik, P. Agarwal, and M. E. Orazem. Thermally Stimulated Deep-

Level Impedance Spectroscopy. Journal of The Electrochemical Society, 143(12):4066, 1996.
87 39 [671

K. S. Jeong, J. Tang, H. Liu, J. Kim, A. W. Schaefer, K. Kemp, L. Levina, X. Wang,
S. Hoogland, R. Debnath, L. Brzozowski, E. H. Sargent, and J. B. Asbury. Enhanced

mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano, 6(1):89—

99, 2012. [65} [07} [T06} [T08]

M. Jiang, F. Lan, B. Zhao, Q. Tao, J. Wu, D. Gao, and G. Li. Observation of lower
defect density in CH3NH3Pb(I,Cl)3 solar cells by admittance spectroscopy. Applied Physics

Letters, 108(24):243501, 2016.

Z. Jin, A. Wang, Q. Zhou, Y. Wang, and J. Wang. Detecting trap states in planar PbS

colloidal quantum dot solar cells. Scientific Reports, 6, 2016. [£3] (9} O8] 125

J. C. Johnson, K. P. Knutsen, H. Yan, M. Law, Y. Zhang, P. Yang, and R. J. Saykally.

Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers. Nano Letters,

4(2):197-204, 2004.

K. W. Johnston, A. G. Pattantyus-Abraham, J. P. Clifford, S. H. Myrskog, S. Hoogland,
H. Shukla, E. J. Klem, L. Levina, and E. H. Sargent. Efficient Schottky-quantum-dot
photovoltaics: The roles of depletion, drift, and diffusion. Applied Physics Letters, 92(12):1—

4, 2008. [7

C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin. Building devices from colloidal

quantum dots. Science, 353(6302), 2016.

190



[70]

[71]

[72]

Y. Kanai. Admittance Spectroscopy of ZnO Crystals. Japanese Journal of Applied Physics,

29(Part 1, No. 8):1426-1430, aug 1990.

M. S. Kang, A. Sahu, D. J. Norris, and C. D. Frisbie. Size- and Temperature-Dependent

Charge Transport in PbSe Nanocrystal Thin Films. Nano Letters, 11(9):3887-3892, 2011.

(661 [

N. Karl. Charge carrier transport in organic semiconductors. Synthetic Metals, 133-134:649—

657, mar 2003. B9

K. W. Kemp, A. J. Labelle, S. M. Thon, A. H. Ip, I. J. Kramer, S. Hoogland, and E. H.

Sargent. Interface recombination in depleted heterojunction photovoltaics based on colloidal

quantum dots. Advanced Energy Materials, 3(7):917-922, 2013.

S. V. Kershaw, A. S. Susha, and A. L. Rogach. Narrow bandgap colloidal metal chalcogenide
quantum dots: Synthetic methods, heterostructures, assemblies, electronic and infrared op-

tical properties. Chemical Society Reviews, 42(7):3033-3087, 2013.

S. Khelifi, K. Decock, J. Lauwaert, H. Vrielinck, D. Spoltore, F. Piersimoni, J. Manca,
A. Belghachi, and M. Burgelman. Investigation of defects by admittance spectroscopy mea-
surements in poly (3-hexylthiophene):(6,6)-phenyl C61-butyric acid methyl ester organic

solar cells degraded under air exposure. Journal of Applied Physics, 110(9), 2011.

B9 64 P8

E. J. D. Klem, H. Shukla, S. Hinds, D. D. MacNeil, L. Levina, and E. H. Sargent. Impact of
dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS

colloidal quantum dot solids. Applied Physics Letters, 92(21), 2008.

D. K. Ko and C. B. Murray. Probing the Fermi Energy Level and the Density of States
Distribution in PbTe Nanocrystal (Quantum Dot) Solids by Temperature-Dependent Ther-

mopower Measurements. ACS Nano, 5(6):4810-4817, 2011.

191



[78]

[84]

G. L. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham,
and E. H. Sargent. Efficient, Stable Infrared Photovoltaics Based on Solution-Cast Colloidal

Quantum Dots. ACS Nano, 2(5):833-840, may 2008.

T. A. Krajewski, P. Stallinga, E. Zielony, K. Goscinski, P. Kruszewski, L. Wachnicki, T. As-
chenbrenner, D. Hommel, E. Guziewicz, and M. Godlewski. Trap levels in the atomic layer

deposition-ZnO/GaN heterojunctionThermal admittance spectroscopy studies. Journal of

Applied Physics, 113(19):194504, may 2013.

D. M. Kroupa, M. Voros, N. P. Brawand, B. W. McNichols, E. M. Miller, J. Gu, A. J. Nozik,
A. Sellinger, G. Galli, and M. C. Beard. Tuning colloidal quantum dot band edge positions

through solution-phase surface chemistry modification. Nature Communications, 8, 2017.

119

G. Lakhwani, R. F. H. Roijmans, A. J. Kronemeijer, J. Gilot, R. A. J. Janssen, and S. C. J.
Meskers. Probing charge carrier density in a layer of photodoped ZnO nanoparticles by

spectroscopic ellipsometry. Journal of Physical Chemistry C, 114(35):14804-14810, 2010.

02} [100, [101} [124]

X. Lan, O. Voznyy, F. P. Garcia De Arquer, M. Liu, J. Xu, A. H. Proppe, G. Walters,
F. Fan, H. Tan, M. Liu, Z. Yang, S. Hoogland, and E. H. Sargent. 10.6% Certified Colloidal

Quantum Dot Solar Cells Via Solvent-Polarity-Engineered Halide Passivation. Nano Letters,

16(7):4630-4634, 2016.

M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins, and A. J. Nozik. Structural,
optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple

amines. Journal of the American Chemical Society, 130(18):5974-5985, 2008.

J. Lee, J. D. Cohen, and W. N. Shafarman. The determination of carrier mobilities in CIGS

192



[36]

[91]

[92]

photovoltaic devices using high-frequency admittance measurements. In Thin Solid Films,

volume 480-481, pages 336-340, 2005.

J. S. Lee, M. V. Kovalenko, J. Huang, D. S. Chung, and D. V. Talapin. Band-like transport,
high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nature

Nanotechnology, 6(6):348-352, 2011.

K. S. Leschkies, M. S. Kang, E. S. Aydil, and D. J. Norris. Influence of atmospheric gases

on the electrical properties of PbSe quantum-dot films. Journal of Physical Chemistry C,

114(21):9988-9996, 2010.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang. High-efficiency
solution processable polymer photovoltaic cells by self-organization of polymer blends. Na-

ture Materials, 4(11):864-868, nov 2005.

J. V. Li, R. S. Crandall, I. L. Repins, A. M. Nardes, and D. H. Levi. Applications of
admittance spectroscopy in photovoltaic devices beyond majority-carrier trapping defects.

In Conference Record of the IEEE Photovoltaic Specialists Conference, pages 000075-000078,

2011. @3} 9]

J. V. Li and D. H. Levi. Determining the defect density of states by temperature derivative

admittance spectroscopy. Journal of Applied Physics, 109(8):083701, apr 2011.

J. V. Li, X. Li, D. S. Albin, and D. H. Levi. A method to measure resistivity, mobility, and

absorber thickness in thin-film solar cells with application to CdTe devices. Solar Energy

Materials and Solar Cells, 94(12):2073-2077, 2010.

H. Liu, A. Pourret, and P. Guyot-Sionnest. Mott and Efros-Shklovskii variable range hopping

in CdSe quantum dots films. ACS Nano, 4(9):5211-5216, 2010. [7]

H. Liu, J. Tang, I. J. Kramer, R. Debnath, G. I. Koleilat, X. Wang, A. Fisher, R. Li,

193



[94]

[98]

[99]

[100]

L. Brzozowski, L. Levina, and E. H. Sargent. Electron acceptor materials engineering in

colloidal quantum dot solar cells. Advanced Materials, 23(33):3832-3837, 2011.

H. Liu, D. Zhitomirsky, S. Hoogland, J. Tang, I. J. Kramer, Z. Ning, and E. H. Sargent.

Systematic optimization of quantum junction colloidal quantum dot solar cells. Applied

Physics Letters, 101(15):2012-2015, 2012. [63] [108]

Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H. W. Hillhouse, and M. Law. Dependence
of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids. Nano

Letters, 10(5):1960-1969, may 2010.

A. R. Long, J. Mcmillan, N. Balkan, and S. Summerfield. The application of the extended
pair approximation to hopping conduction in r.f. sputtered amorphous silicon. Philosophical

Magazine B, 58(2):153-169, aug 1988.

D. C. Look, J. W. Hemsky, and J. R. Sizelove. Residual Native Shallow Donor in ZnO.

Physical Review Letters, 82(12):2552-2555, mar 1999.

J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik.

Schottky solar cells based on colloidal nanocrystal films. Nano Letters, 8(10):3488-3492,

2008. [7}, [63]

J. R. Macdonald. Analysis of Impedance and Admittance Data for Solids and Liquids.

Journal of The Electrochemical Society, 124(7):1022, 1977.

A. R. Marshall, M. C. Beard, and J. C. Johnson. Nongeminate radiative recombination
of free charges in cation-exchanged PbS quantum dot films. Chemical Physics, 471:75-80,

2016. 311

A. Miller and E. Abrahams. Impurity conduction at low concentrations. Physical Review,

120(3):745-755, 1960.

194



[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

H. T. Minden. Effects of oxygen on PbS films. The Journal of Chemical Physics, 23(10):1948—

1955, oct 1955. 83} [[26]

H. T. Minden. Space-charge formation in small PbS particles. The Journal of Chemical

Physics, 25(2):241-248, 1956.

M. Monirul Islam, N. Miyashita, N. Ahsan, T. Sakurai, K. Akimoto, and Y. Okada. Identifi-
cation of defect types in moderately Si-doped GaInNAsSb layer in p-GaAs/n- GaInNAsSb/n-

GaAs solar cell structure using admittance spectroscopy. Journal of Applied Physics,

112(11), 2012.

S. Monticone, R. Tufeu, and A. V. Kanaev. Complex Nature of the UV and Visible Fluores-

cence of Colloidal ZnO Nanoparticles. The Journal of Physical Chemistry B, 102(16):2854—

2862, 1998. 07} [[Z3

N. F. Mott and E. A. Davis. Electronic Processes in Non-crystalline Materials. Oxford
University Press, New York, NY, second edition, 1982. [x]
23} 25} B9 [65} [66} [T} [73]

N. F. Mott and H. Massey. Theory of Atomic Collisions. Oxford University Press, New

York, NY, third edition, 1988.

C. B. Murray, C. R. Kagan, and M. G. Bawendi. Synthesis and Characterization of Monodis-
perse Nanocrystals and Close-Packed Nanocrystal Assemblies. Annual Review of Materials

Science, 30(1):545-610, aug 2000.

C. B. Murray, D. J. Norris, and M. G. Bawendi. Synthesis and characterization of nearly
monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal

of the American Chemical Society, 115(19):8706-8715, sep 1993.

M. Musiani, M. E. Orazem, N. Pebere, B. Tribollet, and V. Vivier. Constant-Phase-Element

195



[110]

[111]

[112)

[113]

[114]

[115]

[116]

Behavior Caused by Coupled Resistivity and Permittivity Distributions in Films. Journal

of The Electrochemical Society, 158(12):C424, 2011.

J. Newman. Frequency Dispersion in Capacity Measurements at a Disk Electrode. Journal

of The Electrochemical Society, 117(2):198, 1970.

E. Nicollian and J. Brews. MOS Physics and Technology. Wiley-Interscience, Toronto, 1st

edition, 1982.

E. H. Nicollian and A. Goetzberger. MOS Conductance Technique for Measuring Surface

State Parameters. Applied Physics Letters, 7(8):216-219, 1965.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet,
M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite. High-efficiency
solution-processed perovskite solar cells with millimeter-scale grains. Science (New York,

N.Y.), 347(6221):522-525, 2015.

Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi,
X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent. Graded doping for enhanced colloidal

quantum dot photovoltaics. Advanced Materials, 25(12):1719-1723, 2013.

S. J. Oh, N. E. Berry, J. H. Choi, E. A. Gaulding, H. Lin, T. Paik, B. T. Diroll, S. Muramoto,
C. B. Murray, and C. R. Kagan. Designing high-performance PbS and PbSe nanocrystal
electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano

Letters, 14(3):1559-1566, 2014.

S. J. Oh, D. B. Straus, T. Zhao, J. H. Choi, S. W. Lee, E. A. Gaulding, C. B. Murray, and
C. R. Kagan. Engineering the surface chemistry of lead chalcogenide nanocrystal solids to
enhance carrier mobility and lifetime in optoelectronic devices. Chemical Communications,

53(4):728-731, 2017.

196



[117]

[118]

[119]

[120]

[121

[122]

[123

[124]

S. J. Oh, Z. Wang, N. E. Berry, J. H. Choi, T. Zhao, E. A. Gaulding, T. Paik, Y. Lai,
C. B. Murray, and C. R. Kagan. Engineering charge injection and charge transport for high

performance PbSe nanocrystal thin film devices and circuits. Nano Letters, 14(11):6210—

6216, 2014. 31} [74]

M. E. Orazem, N. Pebere, and B. Tribollet. Enhanced Graphical Representation of Electro-

chemical Impedance Data. Journal of The Electrochemical Society, 153(4):B129, 2006.

{2 112 134

M. E. Orazem and B. Tribollet. Electrochemical Impedance Spectroscopy. Wiley, Hoboken,

New Jersey, 2nd edition, 2008. 39} [} B2} B9} [69, (12} [[14] [T34} [136} 38} [[39]

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos,
R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grétzel, and E. H. Sargent.

Depleted-Heterojunction Colloidal Quantum Dot Solar Cells. ACS Nano, 4(6):3374-3380,

jun 2010. P1] 02

T. J. Penfold, J. Szlachetko, F. G. Santomauro, A. Britz, W. Gawelda, G. Doumy, A. M.
March, S. H. Southworth, J. Rittmann, R. Abela, M. Chergui, and C. J. Milne. Reveal-
ing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy. Nature

Communications, 9(1):478, dec 2018.
R. F. Pierret. Field Effect Devices. Addison-Wesley, Reading, MA, second edition, 1990.

C. Piliego, L. Protesescu, S. Z. Bisri, M. V. Kovalenko, and M. A. Loi. 5.2% efficient PbS
nanocrystal Schottky solar cells. Energy and Environmental Science, 6(10):3054-3059, 2013.

03]

Y. Y. Proskuryakov, K. Durose, B. M. Taele, and S. Oelting. Impedance spectroscopy
of unetched CdTe/CdS solar cellsEquivalent Circuit Analysis. Journal of Applied Physics,

102(2):024504, jul 2007.

197



[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

U. Reislohner, H. Metzner, and C. Ronning. Hopping conduction observed in thermal ad-

mittance spectroscopy. Physical Review Letters, 104(22), 2010.

P. Rekemeyer, C.-H. M. Chuang, M. G. Bawendi, and S. Gradecak. Minority Carrier Trans-

port in Lead Sulfide Quantum Dot Photovoltaics. Nano Letters, page acs.nanolett.7b02916,

2017. [120} [T24 [126} [130]

E. Rhoderick and R. Williams. Metal-Semiconductor Contacts. Oxford University Press,

second edition, 1988. il [11] 32] [33] [36} [66} [69} 30} 1]

C. T. Sah. The Equivalent Circuit Model in Solid-State Electronics Part II: The Multiple

Energy Level Impurity Centers. Proceedings of the IEEE, 55(5):672-684, 1967.

M. Schmitt, U. Rau, and J. Parisi. Charge Carrier Transport via Defect States in
Cu(In,Ga)Se2 Thin Films and Cu(In,Ga)Se2/CdS/ZnO Heterojunctions. Physical Review

B, 61(23):16052-16059, jun 2000.

B. I. Shklovskii and A. L. Efros. Flectronic properties of doped semiconductors. Springer,

first edit edition, 1984. 22]

J. C. Simpson and J. F. Cordaro. Characterization of deep levels in zinc oxide. Journal of

Applied Physics, 63(5):1781-1783, mar 1988.

H. J. Snaith. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar

Cells. The Journal of Physical Chemistry Letters, 4(21):3623-3630, nov 2013.

M. J. Speirs, D. N. Dirin, M. Abdu-Aguye, D. M. Balazs, M. V. Kovalenko, and M. A. Loi.

Temperature dependent behaviour of lead sulfide quantum dot solar cells and films. Energy

Environ. Sci., 9(9):2916-2924, 2016.

B. F. Spencer, D. M. Graham, S. J. O. Hardman, E. A. Seddon, M. J. Cliffe, K. L. Syres,

A. G. Thomas, S. K. Stubbs, F. Sirotti, M. G. Silly, P. F. Kirkham, A. R. Kumarasinghe,

198



[135]

[136]

[137]

[138)]

[139)]

[140]

G. J. Hirst, A. J. Moss, S. F. Hill, D. A. Shaw, S. Chattopadhyay, and W. R. Flavell. Time-

resolved surface photovoltage measurements at n-type photovoltaic surfaces: Si(111) and

Zn0O(1010). Physical Review B, 88(19):195301, nov 2013.

B. F. Spencer, M. A. Leontiadou, P. C. J. Clark, A. I. Williamson, M. G. Silly, F. Sirotti,
S. M. Fairclough, S. C. E. Tsang, D. C. J. Neo, H. E. Assender, A. A. R. Watt, and W. R.
Flavell. Charge dynamics at heterojunctions for PbS/ZnO colloidal quantum dot solar

cells probed with time-resolved surface photovoltage spectroscopy. Applied Physics Letters,

108(9):091603, feb 2016.

P. Stadler, B. R. Sutherland, Y. Ren, Z. Ning, A. Simchi, S. M. Thon, S. Hoogland, and
E. H. Sargent. Joint mapping of mobility and trap density in colloidal quantum dot solids.

ACS Nano, 7(7):5757-5762, 2013.

D. B. Straus, E. D. Goodwin, E. A. Gaulding, S. Muramoto, C. B. Murray, and C. R. Kagan.
Increased Carrier Mobility and Lifetime in CdSe Quantum Dot Thin Films through Surface
Trap Passivation and Doping. Journal of Physical Chemistry Letters, 6(22):4605-4609, 2015.

BT

L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B. R. Hyun, G. G. Malliaras, T. Hanrath, and
F. W. Wise. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing

control. Nature Nanotechnology, 7(6):369-373, 2012.

S. Sze. Physics of Semiconductor Devices Physics of Semiconductor Devices. Wiley-

Interscience, third edit edition, 2007. [x] [9

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko. Prospects of colloidal
nanocrystals for electronic and optoelectronic applications. Chemical Reviews, 110(1):389—

458, 2010. B8]

199



[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

D. V. Talapin and C. B. Murray. Applied physics: PbSe nanocrystal solids for n- and

p-channel thin film field-effect transistors. Science, 310(5745):86-89, 2005.

K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisi¢, C. C. Ling, C. D. Beling, S. Fung,
W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge. Defects in ZnO nanorods
prepared by a hydrothermal method. Journal of Physical Chemistry B, 110(42):20865-20871,

2006.

J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang,
R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H.

Sargent. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Ma-

terials, 2011. 01} [T41]

J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E. H.

Sargent. Quantum junction solar cells. Nano Letters, 12(9):4889-4894, 2012.

J. Tang, X. Wang, L. Brzozowski, D. A. R. Barkhouse, R. Debnath, L. Levina, and E. H.
Sargent. Schottky quantum dot solar cells stable in air under solar illumination. Advanced

Materials, 22(12):1398-1402, 2010.

B. C. Thompson and J. M. J. Fréchet. PolymerFullerene Composite Solar Cells. Angewandte

Chemie International Edition, 47(1):58-77, jan 2008.

B. A. Timp and X. Y. Zhu. Electronic energy alignment at the PbSe quantum
dots/Zn0O(101{combining overline}0) interface. Surface Science, 604(17-18):1335-1341,

2010.

M. Tomozawa. Dielectric Characteristics of Glass. In Treatise on Materials Science &

Technology, volume 12, pages 283—-345. ACADEMIC PRESS, INC., 1977.

O. Voznyy, D. Zhitomirsky, P. Stadler, Z. Ning, S. Hoogland, and E. H. Sargent. A charge-

200



[150]

[151]

[152]

[153]

[154]

[155]

[156]

orbital balance picture of doping in colloidal quantum dot solids. ACS Nano, 6(9):8448-8455,

2012. [T04, [126} 129

T. Walter, R. Herberholz, C. Miiller, and H. W. Schock. Determination of defect distribu-

tions from admittance measurements and application to Cu(In,Ga)Se2based heterojunctions.
Journal of Applied Physics, 80(8):4411-4420, 1996.
[L03} [L05} [157)

S. Wang, P. Kaienburg, B. Klingebiel, D. Schillings, and T. Kirchartz. Understanding Ther-

mal Admittance Spectroscopy in Low-Mobility Semiconductors. The Journal of Physical

Chemistry C, 122(18):9795-9803, may 2018.

D. D. Wanger, R. E. Correa, E. A. Dauler, and M. G. Bawendi. The dominant role of exciton

quenching in PbS quantum-dot-based photovoltaic devices. Nano Letters, 13(12):5907-5912,

2013. [T20} [126} [T30} 122

M. C. Weidman, M. E. Beck, R. S. Hoffman, F. Prins, and W. A. Tisdale. Monodisperse, Air-

Stable PbS Nanocrystals via Precursor Stoichiometry Control. ACS Nano, 8(6):6363-6371,

jun 2014. [63] [78] [86]

S. M. Willis, C. Cheng, H. E. Assender, and A. A. Watt. The transitional heterojunction

behavior of PbS/ZnO colloidal quantum dot solar cells. Nano Letters, 12(3):1522-1526,

2012. [ T}, 92} 03} [0 127

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C.
Sum. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic

CH3NH3PbDI3. Science, 342(6156):344-347, oct 2013.

L. Xu, J. Wang, and J. W. Hsu. Transport Effects on Capacitance-Frequency Analysis for De-
fect Characterization in Organic Photovoltaic Devices. Physical Review Applied, 6(6):064020,

2016.

201



[157]

[158]

[159]

[160]

[161]

[162]

[163)]

[164]

[165]

J. Yang and F. W. Wise. Effects of disorder on electronic properties of nanocrystal assem-

blies. Journal of Physical Chemistry C, 119(6):3338-3347, 2015.

W. Yoon, J. E. Boercker, M. P. Lumb, D. Placencia, E. E. Foos, and J. G. Tischler. Enhanced
open-circuit voltage of PbS nanocrystal quantum dot solar cells. Scientific Reports, 3:1-7,

2013. [I1

D. Yu, C. Wang, B. L. Wehrenberg, and P. Guyot-Sionnest. Variable Range Hopping Con-

duction in Semiconductor Nanocrystal Solids. Physical Review Letters, 92(21):216802, may

2004. BT} [59]

J. Zhang, J. Gao, E. M. Miller, J. M. Luther, and M. C. Beard. Diffusion-controlled synthesis

of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells.

ACS Nano, 8(1):614-622, 2014.

Y. Zhang, D. Zherebetskyy, N. D. Bronstein, S. Barja, L. Lichtenstein, A. P. Alivisatos,

L. W. Wang, and M. Salmeron. Molecular Oxygen Induced in-Gap States in PbS Quantum

Dots. ACS Nano, 9(10):10445-10452, 2015.

Y. Zhang, D. Zherebetskyy, N. D. Bronstein, S. Barja, L. Lichtenstein, D. Schuppisser, L. W.
Wang, A. P. Alivisatos, and M. Salmeron. Charge percolation pathways guided by defects

in quantum dot solids. Nano Letters, 15(5):3249-3253, 2015.

T. Zhao, E. D. Goodwin, J. Guo, H. Wang, B. T. Diroll, C. B. Murray, and C. R. Ka-

gan. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe

Quantum Dot Buffer Layer. ACS Nano, 10(10):9267-9273, 2016. 1100}

D. Zhitomirsky, O. Voznyy, S. Hoogland, and E. H. Sargent. Measuring charge carrier

diffusion in coupled colloidal quantum dot solids. ACS Nano, 7(6):5282-5290, 2013.

D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K. W. Kemp, A. H. Ip, S. M. Thon, and

202



E. H. Sargent. Engineering colloidal quantum dot solids within and beyond the mobility-

invariant regime. Nature Communications, 5, 2014. [T19]

203



	University of Pennsylvania
	ScholarlyCommons
	2018

	Characterizing The Energetic Landscape In Solution Processable Solar Cells Via Frequency-Dependent Impedance Measurements
	Eric S. Wong
	Recommended Citation

	Characterizing The Energetic Landscape In Solution Processable Solar Cells Via Frequency-Dependent Impedance Measurements
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Subject Categories


	Mesoscale Properties of Quantum Dot Solids
	Introduction
	Colloidal QDs
	Size-Dependent Physical Properties of QDs
	QD Assemblies

	JV Characteristics of PV Devices
	Recombination Kinetics in Diodes

	Charge Transport in Disorderd QD Arrays
	Emergent DOS in Array of Potential Wells and DC Transport
	AC Conductance in Disordered Materials

	Thesis Outline

	Frequency Domain Characterization of the Density of States in Disordered Materials
	Introduction
	Capacitance-Voltage
	Effect of Defects on Capacitance Response

	Impedance Spectroscopy
	Thermal Admittance Spectroscopy
	Drive Level Capacitance Profiling
	Instrumentation
	Cryostage
	Electrical Measurements

	Conclusion

	In-Situ Characterization of the Density of States in QD Schottky Junction Photovoltaic Devices
	Introduction
	Optical Absorption and JV
	TAS Measurements
	Gp Measurements
	AC Conductivity Measurements
	DLCP Measurements
	Density of States
	Temperature-Dependent JV Characteristics
	Vacuum Admittance Measurements
	Conclusion
	Methods
	Materials
	Pbs QD Synthesis
	Device Fabrication
	Room Temperature Characterization
	Variable Temperature Characterization


	Interfacial Defects in Heterojunction Photovoltaic Devices
	Introduction
	TAS
	ZnO Analysis
	DLCP and DOS

	Density of States
	JV and Conductivity
	Impedance Spectroscopy
	Conclusion
	Methods
	Materials
	QD Synthesis
	Device fabrication
	Room Temperature Characterization
	Variable Temperature Characterization


	Charge Dynamics in Halide-Capped PbS QD PV devices with Multiple Interfaces
	Introduction
	Results
	TAS
	DLCP
	AC Conductance
	Impedance Spectroscopy
	IR Illumination
	Conclusion
	Materials
	QD Synthesis
	Device fabrication
	Room Temperature Characterization
	Variable Temperature Characterization


	
	FET Measurements
	Capacitance of PbS-EDT/Au Dielectric Stack
	AC Conductance
	DLCP Details
	Optical Absorption Calculations
	DLCP N(E)V Calculation
	JV Data
	Vacuum Data
	Full DLCP data

	
	

