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Alyssum inflatum is a native of serpentine soils and is able to hyperaccumulate nickel (Ni), but the importance of 
Ni to reproduction in the species is unknown. We investigated if reproductive fitness is enhanced by Ni in the 
growth medium, and included a treatment involving a relatively high level of Mg to provide a comparison 
with elevated levels of another metal. Seedlings were grown in a modified Hoagland solution culture in an 
inert medium of Perlite and were treated with Ni (100 μM), a high concentration of Mg (5 mM), or under control 
conditions (solution culture without Ni or the addition of high Mg) for 14 months. We documented survival, as 
well as the proportion of individuals that flowered. We also quantified flower production as an indicator of plant 
fitness. Survival was not affected by treatment (87–90% for all treatments), but significantly more Ni-treated 
plants (63%) flowered compared with Mg-treated (19%) or control plants (12%). In addition, inflorescences per 
plant, inflorescence length, and number of open flowers per inflorescence were all significantly greater for Ni-
treated plants relative to plants from the other treatments. Although high levels of Ni are not essential for growth 
and reproduction of the species, we suggest that Ni stimulates flowering in A. inflatum and may result in greater 
fitness for the species on serpentine soils. 

© 2014 SAAB. Published by Elsevier B.V. All rights reserved. 
1. Introduction 

The study of plant adaptations to serpentine soils is an active area of 
research (O'Dell and Rajakaruna, 2011). Serpentine soils differ from 
normal soils due to their unique physico-chemical and biological 
features that make them unfavorable for seed germination, seedling 
establishment, and subsequent growth (Brady et al., 2005; Kazakou 
et al., 2008). The unfavorable features include a Ca:Mg ratio b1, usually 
low concentrations of essential nutrients such as N, P and K, and gener-
ally low moisture holding capacity due to unstable, rocky, and shallow 
soil often found on usually open, steep landscapes upon which serpen-
tine outcrops are frequently found (Kruckeberg, 1984; Rajakaruna et al., 
2009). The soils are also rich in heavy metals such as Cr, Ni and Cd 
(Brady et al., 2005). Plants living in such harsh environments have 
evolved adaptations to overcome the stressors, including developing 
tolerance to low Ca:Mg ratios (Bradshaw, 2005; Grace et al., 2007; 
Palm et al., 2012), low essential nutrients (Brady et al., 2005), or 
elevated levels of heavy metals (O'Dell and Rajakaruna, 2011; Pollard 
et al., 2002), enabling them to even thrive on metalliferous soils. 
1 334 844 1645. 
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Heavy metals become toxic to organisms if their concentrations in tis-
sues exceed particular thresholds (Kabata-Pendias, 2001). For most plants 
these thresholds are at very low concentrations (Ahmad and Ashraf, 
2011). Based on the tolerance of different species of plants to metals 
and their ecological breadth, Pollard et al. (2002) divided plants into 
four groups: those that solely grow on non-metalliferous soils and 
have no populations or ecotypes on metal rich soils (obligate non-
metallophytes); plants endemic to metalliferous soils (obligate 
metallophytes); and two types of facultative metallophytes, those with 
a few tolerant populations and those with a few non-tolerant 
populations. The role of heavy metals in adaptation to metalliferous 
soils is unclear. Some heavy metals (e.g. Fe and Zn) have important 
roles in plants and are considered essential elements (Marschner, 
1995). Others, such as Ni (Brown et al., 1987), are essential but plants usu-
ally need them in very low amounts (Epstein and Bloom, 2004; Polacco 
et al., 2013). High concentrations of these micronutrients can cause severe 
toxicities (Kabata-Pendias, 2001; Marschner, 1995) and, in some  cases,  
even reduce both flower and ramet production (i.e. reproductive output) 
in metal-intolerant plants (Saikkonen et al., 1998). 

Metallophytes may be restricted to metalliferous soils because they 
are poor competitors in non-metalliferous soils (Going et al., 2009; 
Kay et al., 2011; O'Dell and Rajakaruna, 2011), because they are 
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relatively unprotected against herbivores and pathogens on non-
metalliferous soils (Martens and Boyd, 1994; Rascio and Navari-Izzo, 
2011; Strauss and Boyd, 2011), or because they require relatively high 
levels of metals for optimal growth and reproduction. Reports regarding 
the need of Ni hyperaccumulators for Ni are inconsistent. Some authors, 
e.g. Reeves and Baker (1984) and de Varennes et al. (1996), reported no  
difference in growth between hyperaccumulator species when grown 
in greenhouse or laboratory cultures on high- versus low-Ni media. 
Conversely, others (e.g., Boyd et al., 1994; Burrell et al., 2012; Krämer 
et al., 1996; Palomino et al., 2007; Saison et al., 2004) have reported a 
growth-stimulating effect of Ni. Few authors have proposed a mecha-
nism for this effect: however, a recent review (Polacco et al., 2013) 
suggests that the growth stimulating effect may stem either from direct 
beneficial effects of Ni on N metabolism (because Ni is essential for the 
enzyme urease) or from indirect effects stemming from a potential role 
of Ni-containing urease in supporting plant pathogen defense. 

Alyssum inflatum Nyár. is considered a metallophyte since most 
populations occur on serpentine soil, although Ghasemi and Ghaderian 
(2009) report at least one population found on non-serpentine 
soil. Like many other members of the genus (Cecchi et al., 2010), 
A. inflatum is able to hyperaccumulate Ni (Ghaderian et al., 2007; 
Ghasemi et al., 2009a), accumulating more than 1000 μg Ni  g−1 dry 
weight in leaves of at least one population from its natural habitat 
(Van  der  Ent et al., 2013). In this study, we test the influence of Ni on sur-
vival and reproduction of A. inflatum to determine whether long-term 
treatment with Ni enhances the fitness of this Ni-hyperaccumulating 
serpentine plant. 

2. Material and methods 

2.1. Plant material 

A. inflatum, a native of Anatolia (Baker and Brooks, 1989), is an 
outcrossing perennial from the section Odontarrhena (Brassicaceae). It 
flowers from June–July with fruits ripening in September. The popula-
tion from which seeds were collected for this research occurs at 
Marivan, on serpentine soils in western Iran (N 35°, 13.625′ and E 46°, 
27.184′). As reported by Ghasemi and Ghaderian (2009), these serpen-
tine soils are high in Ni (total Ni 1600 μg g−1 and ammonium nitrate 
extractable Ni 1.6 μg g−1), have high Mg levels (total Mg 90,000 μg g−1 

and ammonium nitrate extractable Mg 1300 μg g−1) and have low 
Ca:Mg ratios (0.04 for total and 1.4 for ammonium nitrate extractable 
concentrations). The elevation of this area is about 1600 m above sea 
level. Average yearly precipitation is more than 700 mm, while the 
daily maximum temperature in summer reaches 42 °C and the mini-
mum temperature in winter reaches −20 °C (Ghasemi and Ghaderian, 
2009). Seeds of A. inflatum were harvested in September 2009. Approx-
imately 50,000 seeds were collected as a bulk sample from ca. 70 
individual plants found on ca. 10 ha of serpentine outcrops in a region 
of ca. 100 ha. The bulk sample was mixed thoroughly prior to using 
the seeds for the study. 

2.2. Experimental design 

Seeds were sown on Perlite under greenhouse conditions and 
watered with distilled water during germination and seedlings remained 
on the Perlite medium for the duration of the experiment. After 10 days 
(when germination was complete), seedlings were irrigated with one-
fourth strength Hoagland nutrient solution (Hoagland and Arnon, 
1950) for 2 months until the seedlings were established. The modified 
Hoagland solution (pH 7) was composed of 0.5 mM Ca(NO3)2, 0.1 mM 
KH2PO4, 0.5 mM MgSO4, 0.5 mM KNO3, 0.2 μM CuSO4, 0.2 μM ZnSO4, 
2 μM MnSO4, 10  μM H3BO3, 0.1 μM Na2MoO4, 2  μM NaCl and 5 μM 
FeEDDHA (ferric ethylenediamine-di-2-hydroxyphenylacetate). After 
seedlings were established, plants were treated with Ni using NiSO4 

(100 μM). Prior work (Ghasemi and Ghaderian, 2009) using  a
concentration of 100 μM resulted in shoot Ni concentrations similar to 
those of field-collected plants (3000 vs. 3700 μg Ni g−1). Since the 
concentration of Mg in serpentine soils is high, for comparison the effect 
of high concentration of Mg (5 mM) was also studied. This level was 
selected because preliminary experiments showed that greater levels 
decreased plant growth. The concentration of Mg in the Hoagland solu-
tion (prior to the addition of high Mg) was 0.5 mM. The Ca:Mg ratios 
(mol:mol) were 1 and 0.1 at low and high Mg concentrations, respec-
tively (if expressed in ppm:ppm, these were 1.67 and 0.167 at low 
and high Mg concentrations, respectively). Thirty plants in 10 pots 
(three plants per pot) were each treated with Ni and Mg, alongside a 
control consisting of the same sample size. The pots were arranged in 
a completely randomized design: each pot was placed into a separate 
plastic tray to which the appropriate nutrient solution was added to 
sub-irrigate the plants in that pot. The fluid level in each tray was kept 
constant by adding water as needed: daily during warm weather and 
less frequently (every few days) when evaporative demand was low. 
Nutrient solutions in trays were replaced every 10 days to maintain 
treatment effectiveness during the experiment. 

The experiment was completely performed in partially climatically 
controlled conditions in a greenhouse. Temperature conditions ranged 
from about 36 °C/19 °C max./min. during summer (July/August) and 
24 °C/13 °C max./min. in winter (January and February). Maximum 
sunlight into the greenhouse was almost 12 h in June and almost 8 h 
in January: no additional light was supplied. Seeds were sown in May 
and flowering occurred in June of the following year. At the end of the 
blooming period (July), all flowering stalks had senesced yet most plants 
remained alive. The number of plants that flowered was recorded, along 
with the number of inflorescences, length of each inflorescence to the 
nearest mm, and the number of open flowers produced by each inflo-
rescence per plant. 

2.3. Data analysis 

Two types of statistical analyses were used. Data on survival and on 
plants flowering were analyzed using 3 × 2 contingency table analyses 
in the program StatView 5.0 (SAS Institute, 2005). If the full table 
showed significance (as it did for flowering), it was further subdivided 
into pairwise comparisons to determine which treatments differed 
from each other. Data on inflorescence number per flowering plant, 
mean inflorescence length per flowering plant, and mean number of 
flowers/inflorescence per flowering plant were analyzed using One-
way Analysis of Variance (ANOVA) in StatView 5.0, followed by pairwise 
mean comparisons using Fisher's Protected Least Significant Difference 
(PLSD) Test if the ANOVA showed significance (SAS Institute, 2005). 
Count variables (inflorescence number and flower number) were log-
transformed before analysis to minimize violation of ANOVA assump-
tions (Zar, 1996). 

3. Results 

3.1. Plant survival 

Few plants died during the experiment: 90% of both Ni-treated and 
Mg-treated plants survived to the experiment's end, compared to 87% 
of control plants. Contingency table analysis showed no effect of treat-
ment on survival (chi-square = 0.23, df = 2, P = 0.89). 

3.2. Flowering response 

Flowering occurred in spring of the year following germination. 
Treatment significantly affected flowering (contingency table analysis: 
chi-square = 19.4, df = 2, P b 0.0001). Sixty-three percent of Ni treated 
plants flowered, compared to only 19% of Mg-treated plants and 12% of 
control plants. Subdividing the contingency table showed that Ni-
treated plants flowered significantly more than both Mg-treated plants 



49 R. Ghasemi et al. / South African Journal of Botany 92 (2014) 47–52 

 

Fig. 2. Mean inflorescence length of flowering A. inflatum plants for the experimental 
treatments. Means represent 10 replicates each containing 3 plants (error bars = SD). 
Different letters show significantly different means (P b 0.05) based on Fisher's PLSD 
Test (SAS Institute, 2005). 
(chi-square = 11, df = 2, P = 0.0009) and control plants (chi-square = 
15, df = 2, P b 0.0001), whereas Mg-treated and control plants did not 
differ from each other (chi-square = 0.51, df = 2, P = 0.48).  

Besides being more likely to flower, Ni-treated plants produced 
more inflorescences per flowering plant compared to flowering plants 
from other treatments. ANOVA showed a significant effect of treatment 
on inflorescence number per flowering plant (F2,22 = 18,  P b 0.0001): 
Ni-treated plants had significantly more inflorescences per flowering 
plant than either Mg-treated or control plants (Fig. 1: Fisher's PLSD
Test: P b 0.004 in both cases). Similarly, inflorescence length and num-
ber of open flowers per inflorescence both were affected by treatment 
(F2,22 = 20,  P b 0.0001 and F2,22 = 15,  P b 0.0001, respectively). Ni-
treated plants had significantly longer inflorescences (Fig. 2) and  more  
open flowers per inflorescence (Fig. 3) compared to both other treat-
ments (Fisher's PLSD Test: P b 0.0004 for comparison of Ni-treated 
plants compared to other treatments for both variables). Fig. 4 shows 
representatives of Ni-treated, Mg-treated, and control plants at the 
end of the experiment. 

4. Discussion 

The effects of Ni on Ni hyperaccumulating plants and other 
serpentine-tolerant plants (Lee, 1974) have not received much atten-
tion beyond the well-studied phenomenon of the role of Ni in plant 
defense against pathogens and herbivores (Boyd, 2007; Strauss and 
Boyd, 2011). Enhanced growth of some metal hyperaccumulator plants 
in the presence of higher concentration of metal has previously been 
reported (e.g., Burrell et al., 2012; Ingle et al., 2005; Krämer et al., 
1996; Whiting et al., 2000) but no physiological mechanism for the 
enhanced growth has been suggested. Hanikenne et al. (2008) reported 
constitutive increased expression of genes responsible for metal trans-
port in a Zn hyperaccumulator plant Arabidopsis halleri (L.) O'Kane & 
Al-Shebaz subsp. halleri. Similarly, Ingle et al. (2005) report constitu-
tively high expression of the histidine biosynthetic pathway in the Ni-
hyperaccumulating Alyssum lesbiacum (Candargy) Rech.f. These studies 
suggest that plants that hyperaccumulate metal are equipped with 
physiological mechanisms for both increased uptake and tolerance of 
those metals. The growth stimulating effect may also stem from direct 
beneficial effects of Ni on N metabolism or from indirect effects resulting 
from a potential role of Ni-containing urease in supporting plant patho-
gen defense (Polacco et al., 2013). 

It has been proposed that hyperaccumulation (Ni or other metals) 
has varied advantages for a plant: Boyd and Martens (1992) summa-
rized five potential explanations for metal hyperaccumulation. First, 
it could be a mechanism for metal tolerance so that the absorbed 
Fig. 1. Mean number of inflorescences per flowering A. inflatum plant for the experimental 
treatments. Means represent 10 replicates each containing 3 plants (error bars = SD). 
Different letters show significantly different means (P b 0.05) based on Fisher's PLSD 
Test (SAS Institute, 2005). 
metal translocates into the shoot and is detoxified there or removed 
from the plant by shedding the leaves (Baker, 1981). Second, metal 
hyperaccumulation could be a mechanism to improve competitive 
ability against other plants (elemental allelopathy: Boyd and Jaffré, 
2001). Concentration of the metal-rich plant materials around the 
hyperaccumulator may decrease growth of other less metal-tolerant 
plants. Third, a high concentration of stored metal could increase 
drought resistance (Baker and Walker, 1989). Fourth, metal hyper-
accumulation could be the result of other properties of these plants, 
such as higher transpiration or higher activity of transporters of 
essential elements, leading to ‘inadvertent’ metal uptake (Cole, 1973). 
The last explanation (defense hypothesis) stresses the role of hyper-
accumulated metal to reduce herbivory and pathogen attack (Reeves 
et al., 1981). 

The above hypotheses show that elevated concentrations of metals 
may affect hyperaccumulator plant fitness through multiple pathways. 
The defense hypothesis has been relatively extensively investigated, 
and defense has been demonstrated in a number of studies (see review 
by Boyd, 2007), but evidence for other hypotheses is more equivocal. 
For example, the elemental allelopathy hypothesis has not been demon-
strated for metals (Morris et al., 2009). However, recent investigation of 
elemental allelopathy as a benefit of hyperaccumulation of Se (a metal-
loid) has found multiple effects. Soil near Se hyperaccumulators had 
greater Se concentration, supported 10% less vegetative cover and 
decreased germination and growth of a Se-sensitive plant (El Mehdawi 
Fig. 3. Mean number of open flowers per inflorescence of A. inflatum for each treatment. 
Means represent 10 replicates each containing 3 plants (error bars = SD). Different letters 
show significantly different means (P b 0.05) based on Fisher's PLSD Test (SAS Institute, 
2005). 

image of Fig.�2
image of Fig.�3


50 R. Ghasemi et al. / South African Journal of Botany 92 (2014) 47–52 

Fig. 4. Photographs of representatives of Ni-treated (A), Mg-treated (B), and control 
(C) plants at the end of the experiment. Inflorescences with at least one open flower are 
indicated by arrows. 
et al., 2011a). However, further investigation showed that Se-tolerant 
plant species benefitted from growing near Se hyperaccumulators 
because the higher Se concentrations of their tissues protected them 
from herbivory (El Mehdawi et al., 2011b). It is likely that similar 
combinations of effects operate in the field situation for our Ni 
hyperaccumulator species and these should be explored in future 
experiments. 

Because the experiment described here was performed on seeds 
collected from the Ni-enriched serpentine soils, some of the differences 
we observed may result, in part, from maternal effects (Mousseau and 
Fox, 1998; Roach and Wulff, 1987; Wright and Stanton, 2011). Maternal 
effects are most likely to influence seedling characteristics and to 
diminish over time (Donohue et al., 2005; Roach and Wulff, 1987; 
Wright et al., 2006) and our variables were all measured on adult plants. 
Hence, we assume in our discussion that maternal influence is either 
minimal or uniform across treatments in its potential effects. 

Our finding of a stimulatory effect of Ni on flowering suggests a new 
hypothesis for the role of Ni in hyperaccumulator plants: that Ni can 
stimulate flowering and enhance reproductive fitness. We note that, 
because these are long-lived plants and our experiment only docu-
mented first-year's reproductive effort, we are documenting an initial 
fitness advantage of Ni-treated plants (as measured by greater flower 
production) rather than a lifetime fitness difference. Furthermore, few 
seeds were produced by plants studied by us (probably due to lack of 
pollinators in the greenhouse setting) so that we necessarily used flower 
number as an indicator of seed production under more natural condi-
tions. Our data clearly show, however, that the Ni-treated plants had 
an initial reproductive advantage and, since plant size was not observed 
to be different, we expect that this initial advantage would continue into 
future flowering seasons. 

We are unable to determine definitively if the increased flowering 
documented in our experiment resulted from enhanced growth in the 
presence of Ni, or if Ni had a direct effect on stimulating flowering, 
since we do not have total biomass data for the plants at the flowering 
stage. However, there were no obvious visible differences in plant size 
associated with treatments during the experiment. Furthermore, 
Ghasemi and Ghaderian (2009) reported similar relative growth of 
this species (at a short timeframe: 4 wk after transplanting into treat-
ment solutions) at Ni concentrations of 0, 10, 100 and 250 μM across  a  
range of Ca/Mg ratios. Finally, data from another experiment (Ghasemi 
and Zare, unpublished results) show that shoot biomass of A. inflatum 
is unaffected by Ni concentrations of up to 250 μM (compared to an 
unamended control). It is therefore possible that Ni had a direct effect 
on flowering. Additionally, we are not able to absolutely verify if the 
increased flowering resulted from reduced infection/herbivory caused 
by a defensive effect of Ni. Herbivore and pathogen damage are not 
always easily detected (especially some pathogens) and so we cannot 
absolutely eliminate that as a potential explanation, but we do not 
think it is a likely explanation for our results. Ultimately, the increase 
in flowering suggests that Ni is directly or indirectly responsible for 
increased fitness in this Ni-hyperaccumulating taxon. Additional stud-
ies, such as cultivating these plants in aseptic culture, are required to 
better elucidate the mechanism of Ni in enhancing fitness. 

The mechanism underlying the flowering response by the Ni-treated 
plants is unknown: flowering is a complicated phenomenon and, apart 
from its genetic basis (Bernier and Perilleux, 2005), environmental 
conditions (Mouradov et al., 2002) such as soil nutrient and moisture 
status could affect it. No specific Ni transporter, Ni metallochaperone 
or Ni response element has yet been found in plants (Eitinger et al., 
2005; Krämer and Clemens, 2006; but see Nishida et al., 2011). Urease 
(E.C. 3.5.1.5) is perhaps the most important of the several known Ni-
requiring enzymes in higher plants (Liu, 2001).  Nickel  works as a cofactor  
to enable urease to catalyze the conversion of urea into the ammonium 
ion, which plants can use as a source of N. Without the presence of Ni, 
urea conversion is impossible. Nickel deficient plants develop leaf 
chlorosis and leaf tip necrosis (Malavolta and Moraes, 2007), symptoms 
that can be prevented with the application of Ni which increases leaf 
urease activity and prevents urea accumulation (Eskew et al., 1984). 
Thus, in generally N-poor soils such as serpentine (Kruckeberg, 1984), 
nickel may be particularly important for N acquisition and metabolism. 
Thus the stimulatory effect we have observed in flowering could be in 
response to better N metabolism in those plants exposed to Ni. In fact, 
Roach and Barclay (1946) showed that Ni significantly increased the 
yield of potato, barley, and wheat. Additionally, Ni deficiency can also 
lead to oxalic and lactic acid accumulation and toxicity, greatly 
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disrupting carbon metabolism (Bai et al., 2006). In addition to influenc-
ing photosynthesis, these toxicities can disrupt the conversion of organic 
acids to other metabolites necessary for optimal growth and develop-
ment, including reproduction. Nickel is also critical for N-fixation in 
the Fabaceae, as deficiency contributes to delayed nodulation and 
reduced efficiency of N-fixation (Brown, 2006). Hence, the increased 
reproductive effort we have observed in A. inflatum in response to the 
addition of Ni could simply be a byproduct of increased N and C metab-
olism in the presence of Ni. It is tempting to speculate that the require-
ment for Ni may be greater in Ni-hyperaccumulating plants and 
increased Ni contributes to both more efficient N and C metabolism, 
thereby promoting growth, including reproduction. 

It is also possible that Ni acts by changing the balance of other 
elements in the tissues, and such ion balances directly or indirectly con-
tribute to enhanced flowering. Nickel may show strong interference 
with other essential elements such as Ca, Mg, Fe, or Cu, and Zn in uptake, 
transport and translocation in plants (Brown, 2006; Chaney et al., 2008; 
Ghasemi et al., 2009b; Nishida et al., 2011). It may be that Ni directly 
affects flowering gene expression or indirectly affects it by changing 
the status of available elements (including N), enzymes, and hormones, 
contributing to greater reproductive effort in plants. Additional studies, 
exposing plants to a range of Ni concentrations, including those found in 
non-serpentine and serpentine soils, can better elucidate the role of Ni 
in enhancing reproductive effort in serpentine-tolerant plants. Further 
investigation of this stimulatory effect can also lead to a better under-
standing of the adaptive significance of hyperaccumulated metals in 
plants. 
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