
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2018

Static Analysis For Gpu Program Performance Static Analysis For Gpu Program Performance

Nimit Singhania
University of Pennsylvania, singhania.nimit@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Singhania, Nimit, "Static Analysis For Gpu Program Performance" (2018). Publicly Accessible Penn
Dissertations. 3186.
https://repository.upenn.edu/edissertations/3186

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3186
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F3186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3186?utm_source=repository.upenn.edu%2Fedissertations%2F3186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3186
mailto:repository@pobox.upenn.edu

Static Analysis For Gpu Program Performance Static Analysis For Gpu Program Performance

Abstract Abstract
GPUs have become popular due to their high computational power. Data scientists rely on GPUs to
process loads of data being generated by their systems. From a humble beginning as a graphics
accelerator for arcade games, they have become essential compute units in many important applications.
The programming infrastructure for GPU programs is still rudimentary and the GPU programmer needs to
understand the intricacies of GPU architecture, tune various execution parameters and optimize parts of
the program using low-level primitives. GPU compilers are still far from the automation provided by CPU
compilers where the programmer is often oblivious of the details of the underlying architecture.

In this work, we present light-weight formal approaches to improve performance of general GPU
programs. This enables our tools to be fast, correct and accessible to everyone. We present three works.
First, we present a compile-time analysis to identify uncoalesced accesses in GPU programs.
Uncoalesced accesses are a well-documented memory access pattern that leads to poor performance.
Second, we present an analysis to verify block-size independence of GPU programs. Block-size is an
execution parameter that must be tuned to optimally utilize GPU resources. We present a static analysis
to verify block-size independence for synchronization-free GPU programs and ensure that modifying
block-size does not break program functionality. Finally, we present a compile-time optimization to
leverage cache reuse in GPU to improve performance of GPU programs. GPUs often abandon cache
reuse-based performance improvement in favor of thread-level parallelism, where a large number of
threads are executed to hide latency of memory and compute operations. We define a compile-time
analysis to identify programs with significant intra-thread locality and little inter-thread locality, where
cache resue is useful, and a transformation to modify block-size which indirectly influences the hardware
thread-scheduler to improve cache utilization.

We have implemented the above approaches in LLVM and evaluate them on various benchmarks. The
uncoalesced access analysis identifies 111 accesses, the block-size independence analysis verifies 35
block-size independent kernels and the cache reuse optimization improves performance by an average
1.3x on two Nvidia GPUs. The approaches are fast and finish within few seconds for most programs.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Computer and Information Science

First Advisor First Advisor
Rajeev Alur

Second Advisor Second Advisor
Joseph Devietti

Keywords Keywords
Compiler Optimization, GPU Performance, Graphics Processing Units, Program Verification, Static
Analysis

Subject Categories Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3186

https://repository.upenn.edu/edissertations/3186

STATIC ANALYSIS FOR GPU PROGRAM PERFORMANCE

Nimit Singhania

A DISSERTATION
in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in

Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2018

Supervisor of Dissertation Co-Supervisor of Dissertation

Rajeev Alur Joseph Devietti
Zisman Family Professor of
Computer and Information Science

Assistant Professor of Computer and
Information Science

Graduate Group Chairperson

Rajeev Alur
Zisman Family Professor of
Computer and Information Science

Dissertation Committee
Stephan Zdancewic, Professor of Computer and Information Science
Mayur Naik, Associate Professor of Computer and Information Science
Sampath Kannan, Henry Salvatori Professor of Computer and Information Science
Vinod Grover, Director of Engineering, NVIDIA

To my parents.

ABSTRACT

STATIC ANALYSIS FOR GPU PROGRAM PERFORMANCE

Nimit Singhania

Rajeev Alur
Joseph Devietti

GPUs have become popular due to their high computational power. Data scientists rely

on GPUs to process loads of data being generated by their systems. From a humble begin-

ning as a graphics accelerator for arcade games, they have become essential compute units

in many important applications. The programming infrastructure for GPU programs is still

rudimentary and the GPU programmer needs to understand the intricacies of GPU architec-

ture, tune various execution parameters and optimize parts of the program using low-level

primitives. GPU compilers are still far from the automation provided by CPU compilers where

the programmer is often oblivious of the details of the underlying architecture.

In this work, we present light-weight formal approaches to improve performance of gen-

eral GPU programs. This enables our tools to be fast, correct and accessible to everyone.

We present three works. First, we present a compile-time analysis to identify uncoalesced

accesses in GPU programs. Uncoalesced accesses are a well-documented memory access

pattern that leads to poor performance. Second, we present an analysis to verify block-size

independence of GPU programs. Block-size is an execution parameter that must be tuned

to optimally utilize GPU resources. We present a static analysis to verify block-size inde-

pendence for synchronization-free GPU programs and ensure that modifying block-size does

not break program functionality. Finally, we present a compile-time optimization to lever-

age cache reuse in GPU to improve performance of GPU programs. GPUs often abandon

cache reuse-based performance improvement in favor of thread-level parallelism, where a

large number of threads are executed to hide latency of memory and compute operations.

iii

iv

We define a compile-time analysis to identify programs with significant intra-thread locality

and little inter-thread locality, where cache resue is useful, and a transformation to mod-

ify block-size which indirectly influences the hardware thread-scheduler to improve cache

utilization.

We have implemented the above approaches in LLVM and evaluate them on various

benchmarks. The uncoalesced access analysis identifies 111 accesses, the block-size indepen-

dence analysis verifies 35 block-size independent kernels and the cache reuse optimization

improves performance by an average 1.3ˆ on two Nvidia GPUs. The approaches are fast and

finish within few seconds for most programs.

This thesis is based on material drawn from the following publications:

1. Rajeev Alur, Joseph Devietti, Omar S. Navarro Leija and Nimit Singhania. GPUDrano:
Detecting Uncoalesced Accesses in GPU Programs. In Proceedings of the 29th Interna-
tional Conference on Computer-Aided Verification, CAV 2017, pages 507-525. Springer,
2017.

2. Rajeev Alur, Joseph Devietti and Nimit Singhania. Block-Size Independence for GPU
Programs. In Proceedings of the 25th International Symposium on Static Analysis, SAS
2018, pages 107-126. Springer, 2018.

3. Rajeev Alur, Joseph Devietti and Nimit Singhania. Static Analysis for Cache Reuse
Optimization in GPU Programs. In submission, 2018.

v

Contents

1 A Formal Perspective to GPU Computing 1
1.1 Challenges with GPU Programming . 3
1.2 Structured Parallelism . 4
1.3 Organization . 6

2 Fundamentals of GPU Programming 7
2.1 Background . 7

2.1.1 GPU Programming Model . 8
2.1.2 GPU Architecture . 11

2.2 Example: Gaussian Elimination . 12
2.3 Formal Model . 14

2.3.1 Programming Model . 15
2.3.2 Execution Model . 17
2.3.3 Memory Performance Model . 20

2.4 Limitations of Formalization . 22
2.5 Conclusion . 24

3 Abstract Execution-based Static Analyses 25
3.1 Abstract Domain . 26

3.1.1 Example: Divide-by-zero Error . 26
3.1.2 Abstract Values and Abstract State . 27

3.2 Abstract Semantics . 28
3.3 Abstract Execution Engine . 30
3.4 Implementation . 33
3.5 Other Approaches . 34
3.6 Conclusion . 34

4 Static Detection of Uncoalesced Accesses 35
4.1 An Uncoalesced Access: Gaussian Elimination 37
4.2 Formalization . 38
4.3 Detecting Uncoalesced Accesses . 40

4.3.1 Abstract Domain . 40
4.3.2 Abstract Semantics . 43
4.3.3 Overall Analysis . 47

vi

CONTENTS vii

4.4 Implementation . 49
4.4.1 Handling Pointers and Structures . 49
4.4.2 Handling Multiple Procedures . 50
4.4.3 Handling Control Flow Graph Representation 51

4.5 Evaluation . 52
4.6 Related Work . 55
4.7 Conclusion . 56

5 Block-Size Independence for GPU Programs 57
5.1 Formalization . 59

5.1.1 Block Size Independence . 59
5.1.2 Reduction to Thread-local Block Size Independence 60

5.2 Analysis for Synchronization-free GPU Programs 63
5.3 Evaluation . 68
5.4 Related Work . 69
5.5 Conclusion . 70

6 Static Analysis for Improving Cache Reuse 71
6.1 Example: Revisiting Gaussian Elimination . 73
6.2 Cache Reuse Analysis . 74

6.2.1 Loop Reusable Accesses . 75
6.2.2 Simple Increment Analysis . 77
6.2.3 Derived Increment Analysis . 79

6.3 Overall Approach . 81
6.3.1 Cache Reuse Predictor for GPU Kernels 82
6.3.2 Block Size Transformation for Cache Reuse Optimization 84

6.4 Evaluation . 85
6.5 Related Work . 88
6.6 Conclusion . 91

7 Concluding Remarks 92
7.1 Future Directions . 93

List of Tables

4.1 Evaluation results for static analysis to detect uncoalesced accesses. 53

5.1 Results of BSI analysis for Nvidia CUDA SDK 8.0 samples. 68

viii

List of Figures

2.1 Example 2-dimensional thread-grid. 8
2.2 Example GPU program: Gaussian elimination. 9
2.3 Formal model for Fan2 kernel in Figure 2.2. 13
2.4 Independence of block-size and grid-size. 16

4.1 Uncoalesced accesses in Fan2 kernel. 37
4.2 Range-based and alignment-based uncoalesced accesses. 39
4.3 Abstract semantics for local assignments. 44
4.4 Abstract semantics for remaining statements. 45

5.1 Example illustrating block-size independence. 58
5.2 Block-size independence of global-id. 60
5.3 Fine-grained vs coarse-grained execution for threads. 61
5.4 Abstract semantics for block-size independence analysis. 65
5.5 Analysis for first grid-dimension on the program in Figure 5.1. 67

6.1 1D version of Fan2 kernel in Figure 2.3. 73
6.2 Abstract semantics for simple increment analysis. 78
6.3 Abstract semantics for derived increment analysis. 79
6.4 Overall approach for cache reuse optimization. 82
6.5 Comparison of speedups with nvcc, clang-base and clang-opt. 87
6.6 Speedup against change in L1 cache hit rate. 88
6.7 Speedup against change in global throughput. 89

ix

List of Algorithms

3.1 Abstract Execution Engine . 31

x

Chapter 1

A Formal Perspective to GPU
Computing

Graphics Processing Units, or GPUs, have emerged as a highly-parallel compute platform.
Today, they are being used to accelerate numerous data-intensive applications. They have
enabled large-scale machine learning and with that the resurgence of Artificial Intelligence.
They are powering almost every critical scientific application, and the fastest supercomputers
rely on GPUs to accelerate their computation. They have evolved into important compute
units sharing the center stage with the CPU (Central Processing Unit).

This evolution has occurred over the course of time. The first GPUs were a set of special-
ized circuits used to accelerate graphics for arcade games. They had fixed functionality and
their only task was to generate display for 2D games. Generating display required computing
values for a large number of pixels. The CPU took a long time to perform this computation,
which was a hurdle for real-time rendering of display necessary for games. Therefore, GPUs
emerged as a solution to this problem. Gradually, they were enriched to support 3D graph-
ics and later various graphics operations like geometry transformations and pixel-shading
functions. They still provided a fixed functionality and were not programmable. The first
GPU with programmmable shading capability was Nvidia GeForce 3 (NV20) that allowed
programmers to write small custom shaders which were run for every pixel in the image
or every vertex in the graphics model. Over time, they started supporting more complex
shaders with lengthy loops and floating point computation, and eventually evolved into flex-
ible data-parallel graphics engines. Since graphics computation involved a large number of
matrix and vector operations, researchers realized their computational abilities and used the
shader engine to accelerate operations like matrix multiplication and LU factorization [24].
The computation still had to be mapped on to graphics primitives, and hence, languages like
Sh [47], Brook [9] and Accelerator [65] emerged to provide a general-purpose interface to
GPUs. The languages still performed redundant graphics computation, and therefore, native
support for general-purpose GPU computing developed with languages like CUDA [51] by
Nvidia and OpenCL [63] by the Khronos Group. Ever since, the use of GPUs for general-
purpose computing has been growing exponentially.

GPUs present a data-parallel compute platform, where a large number of threads exe-

1

CHAPTER 1. A FORMAL PERSPECTIVE TO GPU COMPUTING 2

cute the same sequential program. This is useful when the same computation needs to be
performed on a large amount of data, as happens to be the case in graphics applications
where the same computation is repeated on a large number of pixels and vertices. With
frequency scaling no longer possible, CPUs have reached their limits on single-thread per-
formance, and the only way to achieve significant performance is through parallelism. GPUs
with their inherently parallel model of computation provide a viable alternative. With bur-
geoning amounts of data everywhere, GPUs are well-suited to process the data with their
high throughput and energy efficiency.

An interesting observation is that, unlike CPUs, which emerged from theoretical mod-
els like lambda calculus and Turing machines through decades of research, GPUs started
out as an engineering solution to display graphics, and only recently have gained interest
from researchers. This means there is a general lack of formal models backing the GPU ar-
chitecture and the languages supported by GPUs. The model of computation presented by
GPUs needs to be studied carefully to understand its capabilities and limitations. The use
of GPUs for serious applications also entails the need to ensure that GPU programs produce
correct and reliable results. This requires a new set of formal tools and techniques which can
ensure correctness of GPU computation. Unlike CPU programs where the programmer can
be completely oblivious of the underlying platform due to the sophisticated compiler and
hardware technology developed over the years, the GPU compiler and hardware are still
catching up and the programmer needs to be aware of the subtleties of the GPU architecture
and must carefully tune various execution parameters to achieve significant performance
gain. In general, there is need for better language, tool and hardware support to make GPU
programming as easy, reliable and performant as programming for CPUs.

A closely related architecture to GPUs is that of vector processors, where a single thread
simultaneously operates on vectors or arrays of data, also known as the Single Instruction
Multiple Data (SIMD) model [19]. This is unlike the GPU model where a large number of
threads operate on scalar data. Vector processors have been studied well in the literature,
and a large number of automatic optimizations have been developed to optimize sequential
code using vector instructions. The vector processors, however, present instruction-level
parallelism, where each instruction is executed in parallel for thousands of data elements.
In comparison, GPUs present parallelism at the granularity of whole programs, where the
complete program is executed in parallel. The distinction between the two architectures
hasn’t been studied formally, however, and performance and programmability implications
of the two architectures need to be explored further.

Significant research has been devoted to advancing tool support for GPUs in recent years.
A large number of compiler optimization frameworks have been explored [12, 76, 64, 66, 75,
6, 23, 31]. These frameworks take unoptimized CUDA or OpenCL programs and optimize
performance through various techniques like transforming data-layout for arrays and data-
structures, explicitly caching data into on-chip fast memory, transforming thread-geometry
etc. A large number of auto-tuning techniques have emerged to enable programmers to au-
tomatically identify best execution configuration [69, 45, 38, 13, 46, 74]. These techniques
empirically explore the space of values for various parameters like the data-layout represen-
tation, the thread-coarsening factor and the launch parameters like block-size and grid-size.

CHAPTER 1. A FORMAL PERSPECTIVE TO GPU COMPUTING 3

Various domain-specific languages have emerged with GPU back-ends that automatically
generate code for GPUs, for example Halide [55] for image-processing pipelines and Ten-
sorFlow [2] for machine learning. Many generic languages are also being used to generate
GPU code, including legacy languages like OpenMP [41] or C [68] and new languages like
pragma-based OpenACC [71]. There has been some research to improve the GPU hardware
for better utilizing the memory subsystem and for balancing thread-level parallelism with
cache and memory utilization [57, 50, 34, 61, 39, 56, 32]. Finally, there has been some
research on verifying correctness of GPU programs for issues like data-races and barrier di-
vergence [44, 43, 8, 21]. These techniques employ static and dynamic analyses to detect
concurrency issues and in some cases verify absence of bugs. Despite this body of research,
a large number of challenges remain, and we have only taken first steps towards building
robust tools for efficient GPU programming.

1.1 Challenges with GPU Programming

Almost every field of science today is overwhelmed with data, ranging from medical imaging
to cosmological simulations [35]. With increase in sophistication, richer data is produced at
a faster pace by the modern systems, and hence, GPU acceleration is necessary to analyze the
data. Also, the needs of the computation are specific to each domain, which existing GPU-
based frameworks do not cater to. The existing frameworks themselves are often complex
and not well-maintained, which leads domain scientists to write their own GPU programs.
Efficient GPU programming is an art, however, and non-expert programmers find it difficult
to write correct and efficient GPU programs.

There are multiple reasons for this. First, there are a large number of parameters that
need to be tuned in order to get good performance. The space of values is large and the
the combinations of values that need to be explored is overwhelming. While auto-tuning
frameworks have been developed to cater to this problem, not all choices for parameters
are correct, and subtle errors can enter the program when the parameters are modified.
These errors can be difficult to debug and none of the existing tools ensure correctness for
parameter tuning.

Second, tuning parameters may not be sufficient to achieve good performance. GPUs are
sensitive to how programs interface with the memory subsystem. If the programmer is not
careful and uses poor memory access patterns, the memory subsystem may get congested
and take a long time to respond to program’s requests, bringing down the overall perfor-
mance. While this problem has been well-documented, only way to identify such issues is to
actually execute the program and observe performance bottlenecks at run-time. There is a
need for tools that report performance issues at compile-time or as the programmer writes
the GPU program.

Third, while the compiler technology has made significant strides at automatically op-
timizing CPU programs, this is not true for GPU programs. The GPU programmer has to
manually rewrite parts of the program to improve performance which leads to code with
poor readability and maintainability. There are two primary problems with automatic opti-
mization for GPUs. First, non-trivial transformations like loop-tiling or loop-reordering are

CHAPTER 1. A FORMAL PERSPECTIVE TO GPU COMPUTING 4

necessary to improve performance which are difficult to implement correctly. Many existing
prototypes have tried implementing these transformations without successful transition to
practice. It is also not clear when these techniques are applicable and how the program-
mer can direct tools to implement necessary optimizations. Second, while a few formal
approaches have been developed to systematically optimize GPU programs, they require the
programs to be well-structured with well-defined loop bounds and array indices. This pre-
vents their applicability to general GPU programs, which are easier to write for non-expert
programmers. Hence, we need tools for robust optimization of general GPU programs.

Finally, there is a need for newer languages with better support from hardware to make
GPU programming robust and efficient at a larger scale. We need new languages with seman-
tics that are easy to reason with, both manually and automatically. We need richer controls
from the hardware, for the compiler to robustly optimize GPU programs. Lastly, we need
program representations which are easy to analyze and manipulate within the compiler.

1.2 Structured Parallelism

A key feature that distinguishes GPU programming model from other concurrency models
is that there is structure or regularity in the parallelism offered by the model. While there
are a large number of threads executing, the threads execute the same sequential program
and their executions are often correlated, especially for regular programs where the control
flow and memory access patterns are independent of input data. For instance, the programs
often operate on matrices and vectors, where each thread is assigned a row, column or a
cell in the matrix and it performs the same operation. Further, there is structure within the
execution of threads, when loops are present in the program and each iteration of the loop
performs a similar operation. For example, when a thread is assigned a row in a matrix, it
iterates over the cells of the row while repeating the same operation. This repeating pattern
within a thread and across threads is very useful for compile-time analysis and optimization.

Our work formally identifies this repeating pattern for general GPU programs, both across
the execution of multiple threads and within the execution of a single thread. While iden-
tifying the pattern exactly is difficult, an over-approximation is good enough to establish
various properties of the programs, for instance, whether a program uses poorly perform-
ing memory access patterns (also known as uncoalesced accesses), or whether modifying
an execution parameter is valid and leads to a correct program. We use abstraction-based
static analyses to identify these properties. We have defined a model for GPU programs in
Chapter 2, where we formalize the full-functional behavior of GPU programs while making
reasonable simplifications. We use this model to formally describe our analyses. We define
abstract domains that identify the information required by the analyses and associate an
abstract state and abstract semantics with each analysis to describe how the analyses exe-
cute on a GPU program. We rely on the formal model to reason about the correctness of the
analyses and to ensure all corner cases are covered. Further, the abstraction-based approach
helps filter out the relevant information from program state, which enables the analysis to
be light-weight and to scale to large programs. We have also developed a framework to im-
plement such analyses in LLVM, a popular state-of-the-art open-source compiler, which we

CHAPTER 1. A FORMAL PERSPECTIVE TO GPU COMPUTING 5

describe in Chapter 3.
We use the framework to define three static analyses. The first static analysis determines

whether a GPU program consists of poorly performingmemory access patterns. In a GPU pro-
gram, threads execute instructions often in lock-step. When threads execute access to global
memory locations in the program, instead of fetching the memory location for each thread
individually, the GPU hardware groups together locations accessed by multiple threads into
a few memory transactions. If threads access memory locations within the same memory
block, a single transaction is sufficient. However, if threads access distant locations, multiple
transactions are necessary, which leads to poor performance. Such accesses are referred to
as uncoalesced accesses. Our static analysis identifies uncoalesced accesses by computing
the stride or the distance between memory locations accessed by consecutive threads. For
coalesced accesses, where the accesses lie within a single memory block, the stride is often
constant with value one and is computable at compile-time. Therefore, our analysis identi-
fies all such accesses with a stride of value at most one, and reports the remaining accesses as
uncoalesced. Our analysis performs fairly well with a false positive rate of 38%, while identi-
fying 111 uncoalesced acccesses in Rodinia, an academic benchmark suite of GPU programs.
We describe this analysis further in Chapter 4.

Our second analysis checks if modifying an execution parameter block-size is valid. The
threads in a GPU program are organized in a two-level hierarchy, where a group of threads
forms a thread-block and group of thread-blocks forms the overall thread-grid. The block-size
determines the number of threads per thread-block and is often adjusted to improve the
overall utilization of cores within the GPU. Modifying block-size is however not valid, if the
computation performed by the program depends on the value of block-size and changing
the value leads to incorrect results. Our analysis checks if any of the block-size dependent
values, including block-size itself, flow into the final result computed by each thread. If
not, the program is block-size independent and modifying block-size is valid. The block-size
dependent values are often used in a regular pattern which allows the analysis to prove block-
size dependence for a large number of programs. We identify 35 procedures to be block-size
independent in Nvidia’s SDK samples. We describe this analysis further in Chapter 5.

Our final analysis determines the potential to utilize hardware cache to automatically
improve performance of a GPU program. The analysis identifies accesses that benefit from
cache reuse across iterations of a loop within the execution of a thread. It determines the
distance between memory locations accessed by an access in consecutive iterations of a loop,
and if the distance is small, the access is considered cache reusable. A program with one or
more cache reusable accesses can benefit from cache reuse. On-chip cache reuse to utilize
locality within each thread is often relinquished for thread-level parallelism, where the si-
multaneous execution of a large number of threads leads to cache contention, and therefore,
poor utilization. However, if there is significant locality within a thread, identified by the
presence of cache reusable accesses in the program, and very little locality across threads,
identified by the presence of uncoalesced accesses, then giving up thread-level parallelism for
improved cache reuse is beneficial. We have implemented this optimization in LLVM and ob-
serve an average 1.3ˆ speedup in benchmark performance against the base compiler without
our optimization. We describe the analysis to determine cache reuse and our optimization

CHAPTER 1. A FORMAL PERSPECTIVE TO GPU COMPUTING 6

to improve cache utilization in Chapter 6.
Finally, this thesis makes the following contributions to the state-of-the-art in analysis

and optimization of GPU programs:

(1) We present the first light-weight formal analyses and optimization for general GPU pro-
grams. Light-weight techniques are necessary to scale to large programs and to allow
usage at compile-time. A formal approach to define analyses and optimizations helps
reason about correctness. Applicability to general GPU programsmakes these techniques
widely applicable.

(2) We have implemented the approach in LLVM, a popular open-source compiler. The
implementation is modular and well-developed and tested on various benchmarks. The
build is completely automated and the tool is easy to install on a new system.

1.3 Organization

The thesis is organized as follows. Chapter 2 presents a background on GPU programming
and a formal model for functional behavior of GPU programs. Chapter 3 presents a frame-
work to define abstraction-based static analyses. Chapter 4 presents our static analysis to
detect uncoalesced accesses. Chapter 5 presents an analysis to verify block-size indepen-
dence of GPU programs. Chapter 6 presents an analysis to identify intra-thread cache reuse
across loop iterations within a GPU program and our optimization to improve cache utiliza-
tion. Finally, Chapter 7 presents some concluding remarks.

Chapter 2

Fundamentals of GPU Programming

GPUs have emerged as a popular data-parallel architecture and programming languages like
CUDA [51] and OpenCL [63] have been developed to support these devices. GPUs present an
interesting computation model where a large number of threads execute the same sequential
program and the execution for threads is distinguished via unique identifiers assigned to
each thread. This leads to a lot of regularity in the parallelism offered by the model, which
makes GPU programs amenable to analysis and performance optimization, unlike general
concurrent programs.

GPU computing has emerged only recently, and therefore, the programming models have
not been studied formally. There is previous work on modeling correctness issues like data-
races in GPU programs [8, 43, 44]. There is, however, scope to model other features like
performance and correctness of transformations. A formal model forms the basis for correct
and efficient analyses and transformations. Therefore, good formalmodels for GPU programs
are required, and in our work we formalize one such model.

This chapter presents the fundamentals of GPU programming. We first present a brief
background on the programming model and the architecture for GPUs (Section 2.1). We
describe how GPU programs are written in popular languages like CUDA and OpenCL and
how the programs are executed on GPUs. We illustrate this further using an example (Sec-
tion 2.2), and use the example to introduce our formalization. We then describe our formal
model that captures the functional and performance behavior of GPU programs (Section 2.3).
The model serves as the basis for various analyses which we describe in subsequent chap-
ters. Even otherwise, the model precisely represents various aspects of GPU programming,
which is useful in understanding the general programming model. We finally present some
limitations of our formalization (Section 2.4).

2.1 Background

We present a brief background on GPUs and their programming model. GPUs present a
highly data-parallel architecture, where a large number of threads execute the same se-
quence of instructions. This architecture is useful for applications where the same compu-

7

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 8

0 1 2 3 4 5
0

1

2

3

Figure 2.1: An example 2-dimensional thread-grid with 22ˆ10 total threads (grid-size) and
4ˆ 3 threads per block (block-size). Each solid block represents a thread-block, while each
cell represents a thread. The values represent the block-id along respective dimensions. The
darkened cell corresponds to a thread with block-id p3, 2q and thread-id p1, 2q.

tation needs to be performed on a large amount of data. The data-parallel nature of the
GPU architecture enables numerous optimizations which help GPU applications scale, while
traditional multi-threaded applications often do not scale with increase in the amount of re-
sources. Two prominent optimizations include (a) parallelism-based latency hiding, where
the execution of multiple parallel threads is used to hide the latency of compute and memory
operations, and (b) memory access coalescing, where memory accesses by multiple threads
are coalesced or grouped together into a fewmemory transactions, significantly reducing the
overall access latency. We present the GPU programming model in Section 2.1.1, followed
by some insight into the GPU architecture in Section 2.1.2. Note that, we follow the CUDA
terminology here. The other popular model, OpenCL, uses a slightly different terminology,
though the concepts are similar in both models.

2.1.1 GPU Programming Model

GPUs follow a Single Instruction Multiple Threads (SIMT) programming model, where a
large number of threads execute the same sequence of instructions. The threads are orga-
nized in a two-level hierarchy: a group of threads form a thread-block and a set of thread-
blocks form a thread-grid. Each thread in the grid is assigned a thread-id that uniquely
identifies the thread within the block, and a block-id that uniquely identifies its block within
the grid. Further, the grid can be multi-dimensional with up to three dimensions, and each
thread is assigned a multi-dimensional thread-id and a block-id. These dimensions map
naturally to 2D and 3D images which represent a traditional application domain for GPU
computing. The overall size of the grid and blocks is defined by multi-dimensional vectors
grid-size and block-size, respectively, both of which are initialized when the execution of the
GPU program is initiated. Figure 2.1 presents an example thread-grid.

The sequence of instructions executed by the threads in a GPU program is often called
the kernel. The kernel is essentially a sequential method with special read-only variables
for thread-id (tid), block-id (bid), grid-size (gdim) and block-size (bdim). The variables tid
and bid are instantiated with a distinct value for each thread, which helps distinguish the

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 9

__global__ void Fan1(float *M, float *A, int N, int i) {
int x = t i d .x + b i d .x * bdim .x;
if(x >= N-i -1) return ;
M[N*(x+i+1)+i] = A[N*(x+i+1)+i] / A[N*i+i];

}
__global__ void Fan2(float *M, float *A, float *B, int N, int i) {

int x = t i d .x + b i d .x * bdim .x;
int y = t i d .y + b i d .y * bdim .y;
if(x >= N-i -1) return ;
if(y >= N-i) return ;
A[N*(x+i+1) +(y+i)] -= M[N*(x+i+1)+i] * A[N*i+(y+i)];
if(y == 0) {

B[x+i+1] -= M[N*(x+i+1) +(y+i)] * B[i];
}

}
int ForwardSub (float *m, float *a, float *b, int N) {

cudaMemcpy (M, m, N*N, ’ CPUtoGPU ’);
cudaMemcpy (A, a, N*N, ’ CPUtoGPU ’);
cudaMemcpy (B, b, N, ’ CPUtoGPU ’);
for (int i=0; i<(N -1); i++) {

Fan1 <<<N, 512>>>(M, A, N, i);
Fan2 <<<(N, N), (512 , 512) >>>(M, A, B, N, i);

}
cudaMemcpy (m, M, N*N, ’ GPUtoCPU ’);
cudaMemcpy (a, A, N*N, ’ GPUtoCPU ’);
cudaMemcpy (b, B, N, ’ GPUtoCPU ’);

}

Figure 2.2: Forward Substitution subroutine in a Gaussian elimination application. Methods
Fan1() and Fan2() are GPU kernels and execute on GPU, while method ForwardSub() runs
on the CPU. Here, tid, bid and bdim refer to thread-id, block-id and block-size, respectively.
Method cudaMemcpy() copies data between CPU and GPU.

execution of threads. The kernel is embedded as a subroutine within the GPU application
and is launched via a function call to the kernel from sequential code that runs on the CPU.
Figure 2.2 shows an example GPU application. Note that, methods Fan1() and Fan2()
representing GPU kernels are called from the ForwardSub() method which runs on the CPU.
Further, the method calls to Fan1 and Fan2 are qualified by parameters within <<<...>>>
enclosure which represent the grid-size and block-size for the grid of threads for which the
GPU kernel is executed. We describe more details about the program in Section 2.2. Lastly,
the GPU kernels canmake calls to other GPU kernels like any other function call. A distinction
is often made between global kernels, which are called only from CPU code, and the device
kernels, which are called only from GPU code i.e. other global and device kernels.

Each thread in a GPU program has access to different memory spaces. The variables
in the kernel are qualified by the memory space they reside in, and the threads access the

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 10

corresponding memory space for each variable to fetch/write data to the variable. We briefly
describe the different memory spaces here:

• Local memory: This memory space is private to each thread and the data stored in
this space is not visible to other threads. Each thread has a separate copy of variables in
this space, and hence, the same local variable in different threads might store different
values. This space is primarily used for performing local computations within each
thread.

• Shared memory: This memory space is shared across threads within a thread-block
and a single copy of variables in this space is visible to all threads within the block.
However, each block has a separate copy of variables. This space is used to share data
between threads within a block. It provides a fast look-up and is often used as a user-
managed cache.

• Global memory: This memory space is shared across all threads in the grid and a single
copy of variables is visible to all threads. The space acts as an interface between the CPU
and GPU, and stores the data on which a GPU kernel performs computation. During a
GPU kernel execution, the data is first copied from CPU memory into global memory,
then the kernel execution is initiated and operations are performed on the data in
global memory, and after the execution is completed, the output data, representing
the result of the kernel execution, is copied back from global memory to CPU memory.

• Constant memory: This is a special memory space that stores read-only data. The
space is similar to global memory and a single copy of variables is visible to all threads.
However, since it is read-only, it benefits greatly from caching and provides a fast read-
only alternative to global memory.

We next describe some common primitives used to synchronize threads and share data
between them. We describe two kinds of primitives: barriers that ensure that all threads in a
block reach a program point before they continue further execution, and atomic operations
that ensure exclusive access to a memory location by each thread for the duration of the
operation.

• Synchronization barrier: The most commonly used synchronization primitive is the
__syncthreadspq barrier. This barrier ensures that all threads within a block synchro-
nize at the barrier, that is threads in the block wait at the barrier until all threads
reach the barrier and all shared and global memory accesses by threads in the block,
prior to reaching the barrier, are completed. This is useful to split the execution into
phases, where threads share data with each other across phases. Further, it is possible
to customize the barrier to ensure completion of only shared memory or global memory
accesses on certain GPUs.

• Atomic operations: GPUs also provide atomics like atomic add, subtract, minimum,
maximum, and compare and swap. The atomic operation takes a local varable and
a shared or global location as parameters, and atomically performs the operation on

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 11

the location, such that no other thread has access to the location while the operation
is being performed for one thread. This is useful when multiple threads update the
same shared/global variable, say a counter, and it prevents threads from interfering
with each other.

When synchronization primitives are not used properly, we end up with synchroniza-
tion issues like data-races and barrier divergence. A data-race occurs when two threads
read or write to the same shared or global memory location, with one of the accesses be-
ing a write, and the two accesses are not separated via a synchronization primitive like
__syncthreadspq barrier or an atomic operation. A data-race between threads leads to a
non-deterministic execution of the program, such that no interleaving of threads defines the
state after the execution of the program. Another common synchronization issue is that of
barrier divergence. A barrier divergence occurs when only few of the threads within a block
reach a __syncthreadspq barrier. This can occur if the barrier is present within a conditional
and the conditional evaluates to true for only few of the threads within a block. The threads
that reach the barrier are stuck waiting for other threads to reach the barrier, which leads
to a deadlock. It is important to ascertain the program does not have data-races or barrier
divergence, to ensure correct execution and termination of the program. There is prior work
on detecting such problems in GPU programs [8, 43, 44]. Hence, we focus on performance
and correctness of transformations and do not address synchronization issues in our model.

2.1.2 GPU Architecture

We now briefly describe the GPU architecture. We first describe the compute infrastructure of
a GPU and how it executes the kernel for threads and blocks in the grid. We then describe the
memory subsystem of GPUs and how data in different memory spaces is stored and accessed.

Compute infrastructure. The compute infrastructure of a GPU consists of a set of cores,
also known as streaming multiprocessors (SMs). Each SM consists of different processing
units like integer and floating point adders and multipliers, and often a number of these.
The SMs operate independently from each other, and thus each block in the grid is mapped
to a single SM since the blocks execute independently. The processing units within an SM
operate synchronously, on the other hand. Hence, the operations performed by threads
within a thread-block are mapped to these units. The threads within a block are split into
groups of threads, called warps. A warp is a group of fixed number of threads (usually 32 or
64) with contiguous thread-ids. The threads in the block are scheduled in units of warps and
operations for all threads within a warp are issued simultaneously to the processing units.
Further, the order in which different warps execute different instructions is determined by
the scheduler on the SM. Finally, when a warp encounters a conditional statement in the GPU
program and threads take different branches, the execution of the branches is serialized,
where first few threads in the warp execute the first branch while the remaining threads
are idle, and then the remaining threads execute the second branch. If a large number of
branches are encountered by a warp, multiple serializations occur which leads to a significant
slowdown in performance. This issue is also known as warp divergence.

Memory subsystem. We now describe the memory subsystem of a GPU. It first consists

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 12

of a large on-chip register file that stores the local variables in a GPU program. The register
file provides fast access to data. It next consists of an on-chip shared memory that stores the
shared memory variables in the program. Both register file and shared memory are limited
resources and determine the number of blocks that can be simultaneously scheduled on an
SM. It then consists of an off-chip DRAM that stores data for global memory variables in
the program. The DRAM provides high-latency high-bandwidth access. Therefore, it takes
a long time to access any data from DRAM, however a large amount of data can be fetched
in a single transaction. The memory subsystem utilizes this feature by coalescing accesses
by threads in a warp and fetching data in a single transaction to global memory. When this
is not feasible and more than one transaction is necessary, such global memory accesses are
referred to as uncoalesced accesses. Finally, both DRAM and shared memory are organized in
banks. If simultaneous accesses from different SMs to DRAM and different threads to shared
memory lie in the same bank, there is a bank-conflict which leads to serialization of accesses.

2.2 Example: Gaussian Elimination

We now briefly illustrate GPU programming via the example program in Figure 2.2. The
example shows a Forward Substitution subroutine, ForwardSub(), in a Gaussian elimination
application. The subroutine takes matrices A and M of size N ˆ N and a vector B of size
N, and performs forward substitution on A and B viaM. It runs on CPU and makes calls to
GPU kernels Fan1 and Fan2 to perform the substitution operation. It runsN iterations where
every ith iteration performs substitution for the ith row in A and B. In the ith iteration, the
subroutine first launches kernel Fan1 to compute values in the ith column of matrix M. It
launches N threads, where a thread with id x computes the value in cell px ` i ` 1, iq in
M. Note that A and M are flattened matrices, and hence, a cell pp,qq refers the location
pN ¨ p ` qq in the flattened array. Next, the subroutine launches kernel Fan2 with N ˆ N
threads which updates A and B via values in the ith column ofM. It uses a two-dimensional
thread-grid, where the thread with id px,yq updates cell px` i` 1,y` iq in A. Also, threads
with id px, 0q update the px` i` 1qth cell in B. Lastly, the procedure cudaMemcpy() copies
data between CPU and GPU memory. Initially before the kernels are launched, it copies A,
M and B into GPU memory, and subsequently after substitution is completed, it copies data
back into CPU memory.

We next focus on the execution of kernel Fan2. This is a global kernel and can be launched
from the CPU code. It is launched with a grid consisting of N ˆN threads with each block
consisting of 512 ˆ 512 threads. Matrices A and M and vector B reside in global memory
and are shared across all threads in the grid, whereas variables N, i, x and y reside in local
memory. The values x and y refer to global-ids for each thread which are unique to each
thread in the thread-grid and are computed via the thread-id tid, block-id bid, and block-
dim bdim along X and Y dimensions, respectively. Further, each thread in the kernel executes
the same kernel, and the executions of different threads are distinguished via their global-
ids. Each thread updates location Arx ` i ` 1,y ` is through values in Arx ` i ` 1,y ` is,
Mrx`i`1, is andAri,y`is. We note that each thread in the grid updates a distinct location
in A which is not read by any other thread. This is because, each thread reads and updates

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 13

void Fan2(int N, int i, float M[N, N], float A[N, N], float B[N]) {
int x = t i d [0] + b i d [0] * bdim [0];
int y = t i d [1] + b i d [1] * bdim [1];
if(x < N-i-1 && y < N-i) {

A[x+i+1, y+i] -= M[x+i+1, i] * A[i, y+i];
if(y == 0) {

B[x+i+1] -= M[x+i+1, y+i] * B[i];
}

}
}

Figure 2.3: Formal model for Fan2 kernel in Figure 2.2.

location Arx ` i ` 1,y ` is, where px ` i ` 1,y ` iq is unique to each thread, since x and
y have distinct values in each thread. Further, threads read a common location Ari,y ` is,
however no thread updates this location. Also, none of the threads write to matrixM. We
can similarly observe that each thread updates a distinct location in B not read by other
threads. Hence, the kernel is data-race free.

Formal Model. Given that Fan2 is data-race free, we now present a formal model for
the kernel. The model is shown in Figure 2.3. In the model, we represent one kernel at a
time. We assume the kernel consists only of scalars and arrays, and does not have pointer
and structure variables. Therefore, we convert pointers A, M and B into array variables.
We represent A andM by two-dimensional arrays. We further assume that scalar variables
reside in local memory, while array variables in global memory. Hence, N, i, x and y are
local variables, while A,M and B are global variables. We replace structure representation
for variables tid, bid and bdim with vectors. Hence, tid0 represents tid.x while tid1 represents
tid.y. We assume the program does not have return or break statements, and consists only
of local assignments, reads from andwrites to global/shared variables, conditionals, loops, or
function calls to other kernels. Lastly, the size of each global array is expressed via constants
or local variables passed as parameters. Therefore, sizes for A, B andM are defined via the
local variable N. We discuss more details about representing kernels in our formal model in
Section 2.3.1. We use this representation for all examples in future.

Execution Model. We next present an execution model for the model in Figure 2.3.
Given the grid-size ~N “ pN,Nq and block-size ~B “ p512, 512q, we maintain a state σ that
maps local and global variables to their values. The grid consists of N ˆN threads divided
into blocks of size 512ˆ 512. In our execution model, we execute one block at a time, since
the blocks execute independently. Hence, we only maintain state for variables within one
block at a time, and σ stores a single copy of shared and global variables and a copy of local
variables for each thread in the block. We assume lock-step execution for threads where all
threads execute instructions simultaneously. Therefore, in kernel Fan2, we first perform the
computation of global-id x for all threads in a block, followed by the computation of global-
id y for all threads, followed by the execution of the conditional. During the execution of
conditionals, we serialize the execution of branches, where threads for which the first branch

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 14

is true execute the branch while the other threads wait, and then the remaining threads
execute the second branch. Hence in Figure 2.3, the threads for which the condition px ă
N´i´1

Ź

y ă N´iq is false, wait for remaining threads to finish executing the conditional.
Similarly, among threads that execute the conditional, threads for which py ““ 0q is false,
wait for remaining threads to complete their execution. Further, since the kernel is data-
race free, the order of execution of threads and blocks does not matter and they can execute
in arbitrary order. For determinism, we assume the threads execute in lexicographic order
of their thread-ids and block-ids. More details about the execution model can be found in
Section 2.3.2.

Memory Performance Model. Finally, we look at the performance of accesses to global
arrays. Since the global variables reside in an off-chip DRAM, they have a high-latency access.
This is however compensated by coalescing or grouping together accesses by multiple threads
in the grid. In particular, the threads execute in groups of threads called warps, and the
accesses by threads in a warp are coalesced together into as few transactions as possible. A
warp usually consists of 32 threads with lexicographically consecutive thread-ids. We first
consider the access to location Arx ` i ` 1,y ` is. We note that since the size of array is
NˆN and the global memory is allocated linearly, the location px` i` 1,y` iq is flattened
into the location N ¨ px ` i ` 1q ` py ` iq. The threads in a warp consist of consecutive
thread-ids, where the value tid0 differs by 1 across consecutive threads, while the remaining
ids tid1, bid0 and bid1 are equal. Hence, value of x differs by 1 and value of y is equal across
consecutive threads in the warp, and therefore the locations accessed in the array differ by
value N (since a thread with x “ k and y “ l accesses location N ¨ pk` i` 1q` pl` iq, while
a thread with x “ pk ` 1q and y “ l accesses location N ¨ pk ` i ` 2q ` pl ` iq). Assuming
size of float is 4 bytes, the accessed locations differ by 4N bytes in memory. A transaction
to global memory fetches 128 bytes of contiguous data. Therefore, for a reasonably large
value ofN, the accessed locations by threads in a warp are spread far apart in memory and a
separate transaction is necessary for access by each thread. On the other hand, consecutive
threads access consecutive locations for the access Brx ` i ` 1s, and hence, all data can be
accessed in a single transaction to global memory, which is much more efficient. We model
the performance of memory accesses in more detail in Section 2.3.3.

2.3 Formal Model

This section describes a formal model for GPU programs. The model concretizes different
aspects of a GPU program. First, it defines the programming model which describes how the
behavior of a large number of threads is expressed in the model. Next, it defines an exe-
cution model wherein each instruction in the program is assigned a precise semantics and
the semantics for individual instructions are composed together to obtain the semantics of
executing the program for the grid of threads. Finally, it presents a modelling for the perfor-
mance of different types of memory accesses. Each of these components are associated with
mathematical definitions that help avoid ambiguity in the description. The formal model
however comes with the cost of abstracting away many of the underlying hardware/soft-
ware features, which makes the model an inaccurate description of the underlying system.

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 15

“All models are wrong, but some are useful”. As this quote by George Box suggests,
despite being inaccurate, the formal model is useful for reasoning about the program. More
importantly, it is useful in defining automated program analyses, which can scan the program
and check specific properties of the program like whether the program runs correctly or
finishes in reasonable time. The formal model provides the basis for reasoning about the
correctness of an analysis and ensuring that the property checked by the analysis is accurate
with respect to the model.

We have designed the model keeping three analyses in mind: The first analysis identi-
fies all global memory accesses that perform poorly; the second analysis checks if changing
the block-size preserves the functionality of the program; the final analysis identifies global
memory accesses within loops that benefit from cache reuse. We describe these analyses in
subsequent chapters. To capture these analyses, however, we model the functional and per-
formance behavior of GPU programs. We eschew any correctness concerns like data races
and barrier divergence, and the model assumes that the program, in the first place, is devoid
of any such issues. This allows the model to be simple and easy to reason with, yet captures
necessary behavior required by the analyses.

The model consists of the following components: the programming model which defines
the core constructs of a GPU program including the thread hierarchy, different types of vari-
ables and the syntax for the GPU program (Section 2.3.1); the execution model that defines
how each instruction is executed and the order in which different instructions are executed
(Section 2.3.2); and finally, the memory performance model that defines how memory ac-
cesses are performed in the model and the cost for different types of accesses (Section 2.3.3).

2.3.1 Programming Model

We first define a simple programming model that captures the key constructs of GPU pro-
gramming. A GPU program P is essentially a sequence of instructions K executed by a grid of
threads G. The grid is defined via a grid-size ~Nwhich defines the overall size of the grid, and a
block-size ~Bwhich defines the size of each block in the grid. Each thread τ in the grid is iden-
tified by a unique thread-id, tid, and a block-id, bid, which are used to distinguish the thread’s
execution from that of other threads. Further, the thread is provided access to the grid-size ~N
and block-size ~B via variables gdim and bdim, respectively. We define these quantities further
while defining the grid. The grid can be multi-dimensional, and hence, the ids are multi-
dimensional vectors of size d, which is useful for applications with multi-dimensional arrays
like matrices and images. Each thread has access to local variables (represented by set VL),
shared variables (VS), constant variables (VC) and the global variables (VG), representing
variables in corresponding address-spaces.

Formally, the program P is represented by the tuple xd,VL,VS,VG,VC,Ky. The set VC
further consists of sizes gdim and bdim and the ids tid and bid. Let l be a local variable in VL,
c be a constant variable in VC and v be an pn` 1q-dimension shared or global array variable
in VS Y VG. For simplicity, we assume that the local and constant variables are scalars,
while the shared and global variables are multi-dimensional arrays. Let E be a computable
expression on local variables. The sequence of instructions K, also known as the kernel, is

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 16

0 1 2 3 4 5
0

1

2

3

(a) ~N = 22 ˆ 10, ~B = 4 ˆ 3.

0 1 2 3 4
0

1

2

(b) ~N = 22 ˆ 10, ~B = 5 ˆ 4.

Figure 2.4: The example illustrates the independence of block-size ~B and grid-size ~N. For
a fixed value of ~N, block-size ~B can take arbitrary values, where the left-over threads are
accommodated in the last few blocks.

defined by the following grammar:

S :“ AS | if xtesty then S1 else S2 |while xtesty do S | __syncthreadspq |

fpl0, l1, . . . , lm, v0, v1, . . . , vn, xisAtomicyq |S1;S2.

AS :“ lÐ c | lÐ Epl0, l1, . . . , lnq | lÐ vrl0, l1, . . . , lns | vrl0, l1, . . . , lns Ð l.

The statement S is either an assignment statement, a conditional where statement S1 is
executed if the boolean condition xtesty is true and otherwise S2 is executed, a loop, a
synchronization primitive for threads, a call to a function f with local variables, shared and
global variables as parameters and xisAtomicy set to true if f is atomic, or a composition of
individual statements. An assignment statement AS is either a constant assignment, a local
assignment, a shared/global array read, or a shared/global array write.

Thread Grid. We next define the grid of threads G for which the program is executed.
The grid G consists of a two-level hierarchy of threads: the grid is sub-divided into a set
of blocks, and each block is then sub-divided into a group of threads. To define the grid,
we first associate a grid-size with the grid which defines the overall size of the grid. Since
the grid can be multi-dimensional, it is represented by a d-dimensional vector ~N, where ~Ni

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 17

represents the number of threads along the ith dimension of the grid. Next, we associate a
block-size which defines the size of blocks in the grid. It is represented by a d-dimensional
vector ~B, where ~Bi represents the number of threads in a block along the ith grid-dimension.
Given ~N and ~B, the grid Gp~N, ~Bq is first split into a set of blocks B “ tb~0, . . .b~ku, where the
index for each block represents its position within the grid. Next, each block b~i is split into a
set of threads Tpb~iq “ tτ~0, . . . , τ ~mu, where the index for each thread gives its local position
within the block. There might be a mismatch between the grid-size ~N and the block-size ~B,
such that if Ni is not a perfect multiple of Bi for some dimension i, then the last block along
the ith dimension consists of fewer than Bi threads, to constrain the total number of threads
to Ni. For example, Figure 2.1 in the beginning of the chapter presents a 2-dimensional
grid. Here, ~N “ p22, 10q and ~B “ p4, 3q. Each solid block in the figure represents a block of
threads, while each cell represents a thread. The last block along each dimension has fewer
threads than other blocks to overcome the mismatch between block-size and the grid-size,
since neither dimension of ~N is a perfect multiple of the corresponding dimension in ~B. It
is useful to note that block-size ~B is independent of grid-size ~N, and hence, ~B can be set to
arbitrary value for the same value of ~N, as shown in Figure 2.4.

We next define the thread-id tid and the block-id bid for each thread τ in the grid. The
thread-id refers to the position of the thread within the block, whereas the block-id refers to
the position of thread’s block within the grid. Both tid and bid are d-dimensional vectors with
the initial position being the ~0 vector. In the example grid in Figure 2.1, the block-ids range
between p0, 0q to p5, 3q, while the thread-ids range between p0, 0q and p3, 2q. The darkened
cell in the grid corresponds to a thread with bid p3, 2q and tid p1, 2q.

2.3.2 Execution Model

The execution model describes how each statement in the GPU program is executed, and
how the execution of statements for threads and blocks is composed together to get the
overall execution of a GPU program P for a grid of threads Gp~N, ~Bq. We define the execution
model using a top-down approach, where the execution of the program for the overall grid is
defined via the execution for individual blocks and the execution for blocks via the execution
for threads.

To define the execution for the grid, we first define a global state σG, that maps global
variables to their values. Let V be the set of values. Then, the global state is a function that
maps global variables in VG to type-consistent values in V, i.e. VG Ñ V. Let JKKpσG, ~N, ~Bq
represent the execution of kernel K for the grid of threads Gp~N, ~Bq, represented by sizes ~N
and ~B. The execution takes in an initial global state σG and returns the updated global state.
We define the execution for the grid, JKKpσG, ~N, ~Bq, via the execution for individual blocks
in the grid. The model assumes that the blocks execute independently of each other. This is
also true in practice, since the blocks are often allocated on independent GPU cores. Further,
it assumes that the program has no data-races. Hence, the order of execution for the blocks
does not matter and the execution for the grid is defined by a sequential composition of the
execution for individual blocks. Let JSKpσG,bq represent the execution of statement S for
a block b in the grid. Let B be the list of blocks in the grid. The execution for the grid is

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 18

defined by the following equations:

JKKpσG, ~N, ~Bq “ JKKpσG,Bq.

for all S, Γ , JSKpσG, Γq “ JSKpJSKpσG,bq, Γ 1q, where Γ ” tb, Γ 1u.

Note that Γ is a list, where b is the first element while Γ 1 represents the remaining list. To
keep things simple, we further assume that the composition is performed in the order of
block-ids, i.e. the block with block-id ~0 is executed first, followed by the remaining blocks.
This cannonical order helps achieve a deterministic execution for the program.

We next define the execution of a statement S for a block b, JSKpσG0 ,bq. We assume that
all threads execute in lock-step. Note the lock-step assumption is only valid if the original pro-
gram does not have data-races. Otherwise, the execution in this model may not correspond
to the actual execution in practice. However, this assumption greatly simplifies the seman-
tics. The set of threads in the block is given by Tpbq. We define the state σ for the execution of
threads in the block as follows. The state consists of a local state σL, that maps local variables
in each thread to their respective values, and hence is a function VLˆTpbq Ñ V. It also con-
sists of the shared state σS, that maps the shared variables to their values and represents the
function VS Ñ V. Finally, the state consists of the global state σG mapping global variables
to their values. Let JSKpσ,Πq represent the execution of statement S for the set of threads Π.
The execution starts in state σ and returns the updated state. During the execution for the
block, the local and shared variables are initialized to undefined values (K), while the global
state is set to σG0 . Note that the updated state consists of all variables, whereas the execution
for the block returns only the global state. Hence, after the execution for the threads com-
plete, we discard the shared and local state and return the updated global state. Let pG be
a function that projects out a state on to the set of global variables. Let σLK and σSK represent
local and shared state with variables initialized to unknown value K. The execution for the
block is defined as:

JSKpσG0 ,bq “ pGpJSKpσ,Tpbqqq, where σ “ σG0 Y σSK Y σLK.

We next define the execution of a statement for a set of threads, JSKpσ,Πq. We define
this by structural induction on S:

• Assignments: We first define the execution of an assignment statement for a single
thread τ, JASKpσ, τq. Let σ 1 be the resulting state. We consider different types of
assignments.

– lÐ c: The value of the local variable l gets updated to that of c. Hence, σ 1pl, τq “
cpτq, where cpτq is the value of constant c in thread τ. Note that the values of
remaining variables remains unchanged. Hence, σ 1pl 1, τq “ σpl 1, τq for all l 1 ‰ l.

– l Ð Epl0, l1, . . . , lnq: The value of local variable l is updated to the computation
of E on values of variables l0, . . . , ln. Hence, σ 1pl, τq “ Epσpl0, τq, . . . ,σpln, τqq.

– lÐ vrl0, l1, . . . , lns: The value of local variable l is updated to the value of array
v at location ~p “ pσpl0, τq, . . . ,σpln, τqq. Hence, σ 1pl, τq “ σpvqp~pq.

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 19

– vrl0, l1, . . . , lns Ð l: The value of array v at location ~p “ pσpl0, τq, . . . ,σpln, τqq
is updated to the value σpl, τq. Hence, σ 1pvqp~pq “ σpl, τq. Further, the values
at remaining locations remains unchanged. Hence, for all ~q ‰ ~p,σ 1pvqp~qq “
σpvqp~qq.

Given the semantics of executing an assignment for a single thread, we define the exe-
cution of the assignment for a set of threads Π, JASKpσ,Πq, by composing the execution
for individual threads. As described earlier, the model assumes the program does not
have data races, and therefore, the order of execution does not matter. We assume the
threads execute in the order of their thread-ids to have deterministic execution. The
execution is defined as:

JASKpσ,Πq “ JASKpJASKpσ, τq,Π 1q, where Π ” tτ,Π 1u.

• Sequences: We next define the execution for a sequence of statements [S1;S2] for
a set of threads Π. The semantics first execute S1 for all threads in Π, followed by
the execution of S2 for all threads. This ensures the lock-step execution of threads.
Formally, the execution is defined as:

JS1;S2Kpσ,Πq “ JS2KpJS1Kpσ,Πq,Πq.

• Conditionals: We next define the execution for conditionals [if xtesty then S1 else
S2]. We use the value of a local boolean variable l to represent the xtesty condition.
The semantics consist of executing the first branch S1 for all threads where the condi-
tion is true i.e. σpl, τq “ true, followed by the execution of branch S2 for the remaining
threads. Note that we serialize the execution of branches, where a few threads first
execute the first branch while the remaining threads are idle and then the remaining
threads execute the second branch. Again due to the assumption about data-race free-
dom, the order of execution for branches does not matter. Formally, the execution is
defined as:

Jif l then S1 else S2Kpσ,Πq “ JS2KpJS1Kpσ,Π1q,ΠzΠ1q,
where Π1 “ tτ P Π : σpl, τq “ trueu.

• Loops: We next define the execution for loops [while xtesty do S]. The semantics
consists of repeating the loop body S, until the xtesty condition (represented by a
local boolean variable l) becomes false for all threads in Π. Similar to conditionals, we
serialize the execution of different iterations of the loop. Let there exist a sequence of
states σ0,σ1, . . . ,σn and a sequence of sets of threads Π0,Π1, . . . ,Πn, such that:

σ0 “ σ, Π0 “ tτ P Π : σpl, τq “ trueu.

σi`1 “ JSKpσi,Πiq, Πi`1 “ tτ P Πi : σi`1pl, τq “ trueu, for all i ě 0.

Πn “ tu.

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 20

Then the state after the execution of the loop is given by σn:

Jwhile l do SKpσ,Πq “ σn.

Note that we assume the loop is terminating, and the non-termination of loops is not
taken into consideration. There is a rich body of work on proving termination of loops
for sequential programs and proving termination of loops for GPU programs is beyond
the scope of this thesis.

• Function Calls: We next consider function calls fpl0, . . . , ln, v0, . . . , vn, xisAtomicyq.
To address function calls, we define a map ψ, that given a function f, a state σ, and a
set of threads Π returns the updated state after lock-step execution of the function for
all threads. If f is a non-atomic function, then the semantics are:

Jfpl0, . . . , ln, v0, . . . , vn, falseqKpσ,Πq “ ψpf,σ,Πq.

If f is atomic, then each thread executes the function separately and the semantics are:

Jfpl0, . . . , ln, v0, . . . , vn, trueqKpσ,Πq “
Jfpl0, . . . , ln, v0, . . . , vn, trueqKpψpf,σ, tτuq,Π 1q, where Π ” tτ,Π 1u.

• Synchronization: The statement __syncthreadspq synchronizes threads within a block
and allows sharing of data (in shared or global variables or both) between threads with-
out leading to a data-race. Due to the lock-step execution followed in our model, we
don’t need special semantics for this statement. Hence, the execution of the statement
returns the same state:

J__syncthreadspqKpσ,Πq “ σ.

This completes our description of the execution model. We next define a memory perfor-
mance model to describe how memory accesses are executed in our model.

2.3.3 Memory Performance Model

We describe how accesses to different memory spaces are executed in our model. We model
these accesses primarily to understand their performance. Hence, we do not model correct-
ness aspects and assume the accesses are sequentially consistent, which ensures the execution
order of the memory operations is preserved and is the same across all threads. To describe
the memory model, we define an address map φ that stores information about the size of
each shared/global array, and given an array g and a location ~p, returns the flattened abso-
lute location φpg,~pq for the array. We further define an element-size map ξ that maps each
array to the size of elements in the array.

Moreover, the accesses are carried out in groups of threads called warps. A warp w is
group of a fixed number of threads, consisting of threads from a block b with lexicographi-
cally contiguous thread-ids. Let the number of threads in a warp be nw. Formally, we define

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 21

a warp as:

wpb,kq “ tτ P Tpbq : knw ď φpτq ă pk` 1qnwu,

where φpτq “
ÿ

i

pbidipτq.bdimipτq ` tidipτqq
i

ź

j“0
gdimjpτq.

We now describe how different types of memory accesses are executed in our model, and
their associated cost of execution.

2.3.3.1 Global Memory Accesses

We describe the execution of global memory accesses in our memory model. Consider a
global memory read rl Ð grl0, l1, . . . , lnss or write rgrl0, l1, . . . , lns Ð ls in state σ by a
set of threads Π. The accessed location is pl0, l1, . . . , lnq in a global array g. The access is
performed in units of warps. During the execution of an access AS for a warp w, we first
collect the set of addresses accessed by the warp. For each thread τ in pΠ X wq, we first
flatten the accessed location ~ppτq “ pσpl0, τq,σpl1, τq, . . . ,σpln, τqq via the address map φ
into an absolute location φpg,~ppτqq. Then we fetch the element at this location consisting of
ξpgq bytes. Overall, the set of accessed addresses for the warp is:

ApAS,σ,Π,wq “
ď

τPΠXw

rφpg,~ppτqq, pφpg,~ppτqq ` ξpgq ´ 1qs,

where ~ppτq “ pσpl0, τq, . . . ,σpln, τqq.

GPUs have a large bandwidth and can access multiple contiguous addresses in one trans-
action to global memory. Let the global memory bandwidth be η bytes. A single transac-
tion can fetch addresses rkη,kη ` η ´ 1s for all k P Z`. Therefore, all addresses a,a 1 in
ApAS,σ,Π,wq such that ta{ηu “ ta 1{ηu are fetched in the same transaction. Hence, the
cost of executing the access for a warp, NApAS,σ,Π,wq, equals the number of transactions
required to fetch addresses ApAS,σ,Π,wq, which is equal to the number of unique elements
in the set tta{ηu : a P ApAS,σ,Π,wqu.

2.3.3.2 Shared Memory Accesses

We next consider shared memory accesses. Similar to global memory accesses, the shared
memory accesses are executed in units of warps. The organization of data in shared memory
is different however. The data in shared memory is organized in banks, where the addresses
are distributed into banks in a round-robin fashion. Therefore, consecutive addresses lie in
consecutive banks; however, the addresses at distance equal to the number of banks lie in
the same bank. Access to different banks can be executed in parallel, whereas the accesses
to the same bank are serialized. Let the number of banks be κ. For an access AS by a warp
w, the set of accesses mapped to the ith bank is given by the set Ai:

Ai “ ta P ApAS,σ,Π,wq : a mod κ “ iu.

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 22

The number of transactions required is given by the maximum number of accesses mapped to
the same bank i.e. NApAS,σ,Π,wq “ max0ďiăκ |Ai|, which is the required cost of execution.

2.3.3.3 Local and Constant Memory Accesses

The local memory accesses are accessed via on-chip registers which take constant time to
access, for all threads and all addresses. Constant memory accesses, on the other hand,
benefit significantly from caching, and therefore, are almost constant time. Hence, we do
not model the performance of these accesses, and assume the cost of these accesses to be
constant.

2.4 Limitations of Formalization

This section discusses various limitations of our formalization. We describe various features
of popular GPU programming models that we do not capture in our formal model. We
also compare our execution model against the execution on real GPUs. We finally identify
features of GPU memory model that we do not address in our formal model. We note that
these simplifications not just make it easy to understand and reason about the model, they
also help simplify the analyses and optimizations that build on the semantics of the model,
which in-turn improves the scalability and precision of the analyses and the performance of
the optimizations.

Our programming model captures a small subset of the features supported by real GPU
programming models, which is sufficient to describe most GPU programs in practice. The
small subset of features allows focus on semantic properties of GPU programs, and prevents
distraction from various syntactic features available for the ease of programming. We de-
scribe the limitations of our model here:

• Grid Size. In our formalization, we represent grid-size as the total number of threads ~N
along each grid dimension. The OpenCL programming model follows this convention.
However, CUDA uses the number of blocks ~Nb along each grid dimension to represent
grid-size. Using number of blocks for grid-size restricts the possible choices for num-
ber of threads to the multiples of block-size. Our representation, on the other hand,
provides greater flexibility in deciding the number of threads in the grid. Hence, we
represent grid-size by the total number of threads ~N along each grid-dimension.

• Atomics and Synchronization Primitives. Our formalization has two primitives for syn-
chronization. First, we support atomic functions via the xisAtomicy bit in function
calls. Second, we provide a __syncthreadspq barrier to synchronize threads at the
barrier. These are also the two primary forms of synchronization supported by CUDA
and OpenCL. However, they allow customizing these primitives with fine-grained fea-
tures like the set of variables (shared or global) and the set of threads (not limited to
all threads within a block) for which the synchronization is performed. The primitives
can be further customized with consistency requirements that enforce the order in

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 23

which memory operations are performed. These customizations help improve the fine-
grained performance of GPU programs. In our work, we focus on orthogonal features
like memory coalescing and cache reuse to improve performance, and simplifying the
model reduces the complexity of proving correctness of the analyses. Therefore, we do
not model the fine-grained customizations.

• Structures and Pointers. Our formal model only considers scalars and arrays, while the
general models CUDA andOpenCL also support structures and pointers. GPU programs
often operate on simple data structures and rarely involve aliasing of pointers. The key
insights for arrays carry over to structures and pointers as well, and for simplicity, we
omit them from ourmodel. We do address these in our implementation for the analyses
and discuss relevant issues in subsequent chapters.

• Nested Parallelism. GPU programming models have recently added support for nested
parallelism, where a kernel can launch another kernel with its own set of threads. Most
GPU programs do not require this feature, and given its recent emergence, it is not in
common use yet. Hence, we do not support this feature in our model.

We next describe our simplifications to the execution model. We make two main simplifica-
tions. First, we assume the threads execute in lock-step within a block. Second, we assume
that the programs are devoid of data-races and barrier divergence. These assumptions do
not always hold. However, the assumptions greatly simplify semantics and also the analyses
and optimizations that build on these semantics.

• Lock-step Execution. In our execution model, we assume threads within a block execute
in lock-step. However, in practice, the threads often execute in groups of warps. As long
as the programs are data-race free, the semantics of lock-step execution are equivalent
to that in practice. As a consequence, our analyses and optimizations for GPU programs
are oblivious of the order in which different threads execute instructions, which helps
them scale to large programs.

• Data-races and Barrier Divergence. Our execution model assumes GPU programs to be
free of data races and barrier divergence. In our work, we focus on analyzing and
improving performance of GPU programs, and concurrency bugs like data-races and
barrier divergence are not a primary concern. Furthermore, these issues have been
tackled in previous work [8, 43, 44]. Hence, we do not model these issues in our
model. Again, this is useful in scaling analyses, since they no longer need to address
concurrency issues.

Finally, we assume memory operations to be sequentially consistent, where the order of
memory operations is preserved and is same across threads. Most GPUs, on the other hand,
support relaxed consistency and enforce memory ordering via thread-fences. First, this has
correctness implications since a lack/improper-use of fences leads to data races. We however
assume the programs to be devoid of data races and rely on existing tools to prove data-race
freedom. Hence, this is not a concern in ourmodel. Second, we currently do not use low-level
transformations like replacing a costly fence with a cheaper fence to improve performance.

CHAPTER 2. FUNDAMENTALS OF GPU PROGRAMMING 24

Therefore, modeling semantics of different types of fences is not required. Such a modeling
would however help enable the low-level transformations and we leave this as future work.

2.5 Conclusion

This chapter presents a formal model for GPU programs. The model makes strategic choices
like assuming the programs are data-race free and the threads execute in lock-step. While
this restricts the set of programs covered by the model, it helps simplify the model which
makes it easy to understand and reason about. Further, the analyses and the optimizations
build on the formal model, since their correctness is reasoned via the model. Hence, this
helps simplify the analyses and the optimizations themselves, which enables analyses to give
precise results while being scalable and optimizations to achieve significant speedups. That
said, there is significant scope to refine the model to support larger class of GPU programs
and more fine-grained optimizations, which we will address in future work.

Chapter 3

Abstract Execution-based Static
Analyses

Abstraction-based analysis is a popular way to define compile-time analyses. In an abstraction-
based approach, an abstract domain is defined where each variable in the program is asso-
ciated with an abstract value. Further, a new set of abstract semantics are assigned to the
statements in the program. The analysis execution consists of initializing an abstract state
where each variable is assigned an initial abstract value. The program is then executed using
the abstract semantics defined for the analysis. Finally, the abstract trace is used to collect
the desired information required by the analysis. There are multiple ways of defining an
abstraction-based analysis. The first approach is popularly known as Abstract Interpretation,
where the abstract values and the abstract semantics are an over-approximation or an under-
approximation of the underlying concrete values and the concrete semantics. This approach
ensures one-sided error with either soundness or completeness of the analysis. The second
approach is Symbolic Execution, where the abstract value consists of either an actual concrete
value or a symbolic value which represents all possible concrete values. The abstract seman-
tics correspond to the concrete semantics. This approach is precise (sound and complete)
but takes a long time to finish. Finally, the last approach is that Abstract Execution, where we
do not impose any constraints on the abstract values and the abstract semantics. This ap-
proach does not immediately ensure soundness or completeness, however some additional
reasoning can establish the guarantees provided by the analysis. We use this approach to
define abstraction-based analyses in our work. The idea was first introduced by Sarbó [60]
to speedup symbolic execution-based analyses. Recently, it has been popularly and widely
used in computation of worst-case execution time (WCET) bounds for verification of real-
time systems [29, 22, 28].

This chapter presents a generic abstract execution-based framework. We present an in-
formal description of the framework where each idea is presented from the perspective of
implementing it in practice. Broadly, the abstract execution framework consists of three com-
ponents: (a) the abstract domain, which determines the abstract values tracked for each vari-
able in the program and the overall information tracked in the abstract state (Section 3.1);
(b) the abstract semantics, which assigns abstract semantics to each statement in the pro-

25

CHAPTER 3. ABSTRACT EXECUTION-BASED STATIC ANALYSES 26

gram and determines how the abstract state is updated during the execution of a statement
(Section 3.2); and (c) the abstract execution engine, that describes how the program is “ab-
stractly” executed, in particular, the order in which different statements are executed and
the merging of abstract states at join points (Section 3.3). Usually, the abstract execution
engine or the execution strategy remains constant across analyses, though minor changes
can help improve the analysis performance and precision. The analysis designer primarily
needs to define the abstract values for variables, the abstract state, and the abstract semantics
for each statement in the program. We have implemented the framework in LLVM compiler
framework. We present an LLVM-based implementation of the framework in Section 3.4. We
present some other abstraction-based approaches in Section 3.5 and conclude in Section 3.6.

3.1 Abstract Domain

An abstract domain is the core of any abstraction-based static analysis. It defines the infor-
mation necessary for an analysis that must be filtered out from the program state. A good
abstract domain is necessary for a precise and scalable analysis. Hence, it is important to
carefully design the abstract domain while building a static analysis. The abstract domain
also establishes the correspondence between concrete and abstract states, which is necessary
to ascertain the correctness of the analysis.

3.1.1 Example: Divide-by-zero Error

To understand an abstract domain, let’s consider the following example. We would like to
design an analysis that detects divide-by-zero errors in a program at compile-time. Note that
we want to ensure that any divide-by-zero error reported must correspond to an actual error,
and thus, the analysis needs to be complete. A divide-by-zero error occurs when the divisor
in a division operation has value 0. Hence, the analysis needs to check if any of the divisors
in the program has a value 0. We assume for simplicity that all variables in the input state
are initialized to non-zero values. Therefore, a variable gets the value 0 only if it is assigned
value 0 in some program statement.

A simple abstract domain for the analysis tracks for each variable whether the variable
has value 0 at a program location. The abstract domain tracks a bit of information for each
variable at each program location, which is set to true if the variable has value 0, and oth-
erwise it is set to false. Initially, all variables are assigned false, since they are non-zero.
A variable is set to true if it is assigned the value 0 in some statement. Further, it is set
to true if it is assigned an expression where all variables are set to true and hence have a
value 0. We can similarly compute the abstract values in other scenarios. Given this infor-
mation, the analysis checks if a divisor is assigned the abstract value true, and if so, there is
a divide-by-zero error.

Now, consider the following program:

y = -x;
p = x + y;
r = x / p;

CHAPTER 3. ABSTRACT EXECUTION-BASED STATIC ANALYSES 27

Assuming all variables are non-zero initially, our simple abstract domain identifies p to be
non-zero. Both x and y are assigned false, and hence, p is also assigned false. However, y is
the negation of x, and summing the two variables returns a value 0. Hence, p has a value 0.
Therefore, the analysis misses these types of errors, and we define a refined abstract domain.
We refine our abstract domain to track three values for each variable:

0 : the variable has value 0.

´v : the variable is negation of another variable v.
J : otherwise.

The computation of abstract values for variables is performed similar to the simple abstract
domain, except when a variable is assigned the negation of a non-zero variable v, we set its
abstract value to ´v. Note that both ´v and J correspond to non-zero values. Using this
abstract domain, we can prove p to have a value 0 in the above program. Since x is assigned
J, y is assigned ´x and p is the sum of values x and ´x, p is assigned the abstract value 0,
and the analysis now identifies the divide-by-zero error in the next statement.

3.1.2 Abstract Values and Abstract State

Abstract values. An abstract domain defines a set of abstract values for each variable in
the program. Each abstract value can be a constant or a function of values of other variables.
For instance, in the simple abstract domain in Section 3.1.1, the set of abstract values cor-
responds to the set ttrue, falseu, while for the refined abstract domain, the set is t0,´v,Ju.
Further, different sets of abstract values can be defined for different types of variables.

Wemust be careful while using values of variables to define abstract values. If the value of
a variable is used as an abstract value (like ´v in the refined abstract domain), then we must
ensure that the variable is not modified after it is assigned as the abstract value. Otherwise,
if it is modified after it is assigned as the abstract value, the abstract value is no longer valid
and this leads to erroneous results. For instance, consider the following example:

y = -x;
x = 0;
p = x + y;
r = x / p;

Here, the abstract value ´x for variable y is invalid after x is assigned value 0, since y is
non-zero whereas x is 0, and hence, adding the two values returns a non-zero value. This is
often taken care of via a program representation where each variable has a unique definition,
and it is never modified after it is first assigned a value. Such a representation is called a
Single Static Assignment (SSA) [20] and is widely used in popular compilers like LLVM.

The abstract domain also defines a join function on abstract values. Given two abstract
values ν1 and ν2, the join function returns an abstract value ν that supersedes the individual
abstract values, such that the properties which hold for both values also hold for the returned
value. For instance, the join function for the simple abstract domain returns true if both ν1
and ν2 are true, and false otherwise. This is because if one of the values is non-zero, the

CHAPTER 3. ABSTRACT EXECUTION-BASED STATIC ANALYSES 28

join of the two values is not guaranteed to be 0, and hence, it is conservatively assigned the
abstract value false. Similarly, for the refined abstract domain, the join of values is set to
0 if both values are 0, ´v if both values are ´v for some variable v, and J otherwise. An
important point to note is that the abstract values have an implicit ordering with a greatest
element J that supersedes the remaining elements (often called a upper semi-lattice). For
example, in the refined domain J supersedes the other two elements. The join function
must ensure that the resulting abstract value is always greater than the individual values.

Abstract state. We next define an abstract state. An abstract state primarily consists of
a map from variables in the program to their abstract values. It might further consist of
information that abstracts other properties of the concrete state like the number of enabled
threads. An abstract state is the primary object that flows through the program and is mod-
ified via the abstract semantics for statements.

We further define the merge function for abstract states. The merge of two abstract states
returns a state where the value of each variable is the join of the values in the individual
states. Other abstract information in the states can be joined similarly into the merged state.
The merging of states is essential to scale analyses. It helps replace execution of statements
for multiple states with the execution for a single merged state. This is useful in removing
redundant computation and helps scale the static analysis to large programs.

Merging of states, however, comes at the cost of losing precision, since the information
contained in the merged state is often not as precise as that in individual states. This is
because, we might lose information while performing the join operation on the abstract
values of a variable. For instance, in the refined abstract domain in Section 3.1.1, the join
of values 0 and ´v is set to J, since the merged value is neither 0 nor the negation of a
variable. Now before the join, we know that the variable is either 0 or the negation of some
variable v, whereas the joined value only informs us that the variable is non-zero. This loss
in information can affect the overall abstract execution of the program and lead to loss in
precision in the analysis results.

3.2 Abstract Semantics

The user needs to define an abstract semantics for the analysis to execute a program in the
abstract domain. The abstract semantics are defined for each statement in the program.
The abstract semantics for a statement takes in an abstract state σ and returns the updated
abstract state σ 1. Given the abstract domain, the abstract semantics is often intuitive and
easy to define. However, the user needs to be careful about the correctness of the semantics,
and must ensure that the resulting abstract state after each statement is correct with respect
to the abstract domain. We next describe how abstract semantics for different statements is
defined.

Assignments. We first describe the abstract semantics for assignments. We consider
three types of assignments. First, an assignment where a local variable is assigned an ex-
pression of other local variables. Here the user needs to define how the abstract values for

CHAPTER 3. ABSTRACT EXECUTION-BASED STATIC ANALYSES 29

variables in the expression are combined together to produce the abstract value for the re-
sultant variable. The user must ensure that the resulting abstract value is correct and covers
all possible concrete values that could be assigned to the variable. For example, consider
the addition operation [v0 Ð v1 ` v2] for the simple abstract domain in Section 3.1.1. If
the abstract values for both v1 and v2 are set to true, and hence, the variables have a value
0, then v0 is assigned 0 and an abstract value true. However, if either one of v1 and v2 has
an abstract value false, then the only information available is that the variable is non-zero.
With this information, we can not conclude with certainity that v0 gets a value 0. Hence, we
conclude that v0 is potentially non-zero, and assign it the abstract value false. In the refined
abstract domain, however, the abstract values carry more information, which helps us handle
the scenario where v1 is negation of v2.

We next consider reads to array variables [vÐ Arv0, . . . , vns]. Here, the analysis needs
to model the array A and how each abstract index, consisting of abstract values for variables
v0, . . . , vn, maps to a value in the array. One approach is to not model the array, and hence,
always return the abstract value representing any value at the location, for example, J in
the refined abstract domain in Section 3.1.1. An alternate approach is to map each abstract
index to a merge of all values at the abstract location and return this value during the read.
Also, we might need to take aliasing into consideration, if the array variables can alias with
each other. The appropriate modelling depends on the requirements of the analysis. We can
similarly define writes to array variables depending on how arrays are modelled.

Conditionals. We next consider conditionals [if v then S1 else S2]. The semantics for the
conditional are defined using the semantics for S1 and S2. Unlike concrete execution, where
the value of conditional v is known, the abstract execution needs to consider both executions
where v is true and false respectively, and merge the results of the two executions to get the
updated state. Given the initial abstract state σ, we propagate the abstract states σ1 and σ2
to S1 and S2, where σ1 represents σ along with the condition that the value v is true, while
σ2 represents σ when condition v is false. One approach is to propagate the same initial
state σ to both branches, though there is scope to improve the precison of the analysis by
taking the condition into account while propagating states. Next, the updated states σ 11 and
σ 12, after the execution of S1 and S2 respectively, are merged to produce the updated state
after the conditional. We can use the merge function defined in Section 3.1.2 to merge states
or define a custom merge function, depending on the requirements of the analysis.

Loops. We next consider loops [while v do S]. The semantics for loops are similar to
conditionals, except the abstract execution for S is repeated until the updated state stabilizes.
Similar to conditionals, the updated state in each iteration might execute the loop body S
or might completely exit the loop. Hence, the user needs to define how the state before the
loop is propagated to S and how the resulting state after S is merged with the initial state
to produce the initial state for the next iteration of the loop. Note that the semantics must
ensure that the initial state before the next iteration is same or greater than that for previous
iteration and the state stabilizes after a finite number of iterations. Otherwise, since there is
no bound on the number of loop iterations, the analysis may not terminate.

Sequences. We next consider sequences [S1;S2]. The semantics involve propagating the
state obtained after the execution of S1 to the execution of S2.

CHAPTER 3. ABSTRACT EXECUTION-BASED STATIC ANALYSES 30

Function calls. We next consider function calls. Different approaches are taken to handle
function calls. The first approach is to analyze each function in isolation, and assume a fixed
behavior for function calls irrespective of which function is called. This is also referred to as
an intraprocedural analysis approach. Here the function calls return a conservative abstract
state which consists of arbitrary values for some or all of the variables. This approach is
useful if the program does not contain function calls, or the result of function calls is not
required for the analysis.

We next consider interprocedural analysis approaches where function calls are handled
with more precision. There are two common approaches here. The first approach is the
bottom-up approach where the callees or the functions called by other functions are analyzed
before the functions calling them or the callers, In this approach, each function is analyzed
for a few or all calling contexts. A calling context assigns specific abstract values to each
input parameter of the function. The analysis results are stored in a callee-summary for each
function analyzed. When a function call is encountered, the callee-summary of the callee is
used to get the desired result of the function call. This approach is useful, when the analysis
of a function depends on the analysis of its callees.

The other approach is the top-bottom approach where the callers are analyzed before the
callees. Here, a fixed behavior is assumed for function calls similar to the intra-procedural
approach. However, the calling context or the initial values for the function parameters are
constructed based on the callers of the function. Hence, the calling context for the function
is constructed by merging all possible contexts in which the function is called. This is also
referred to as the caller-summary. This approach is useful when the calling context greatly
influences the analysis result and each function is called for a few calling contexts only. We
look at examples of both bottom-up and top-bottom analyses in the subsequent chapters.

This concludes our discussion for different types of statements in the program. Note that
the program representation used can constrain the allowed abstract semantics. For instance,
the most commonly used representation is the control flow graph [3], where a program is
represented as a graph of nodes. Each node is a basic blockwhich is a sequence of assignments
ending in a conditional or unconditional jump to one or more basic blocks. Conditionals
and loops are broken down into groups of connected basic blocks. For this representation,
therefore, it may not feasible to write a custom merge function for loops and conditionals,
since the original structure is no longer available. The user needs to default to the merge
function, defined for merging abstract states, to merge states from alternate iterations or
branches.

3.3 Abstract Execution Engine

The abstract execution engine determines how a program is executed in the abstract domain.
As the underlying compiler and hardware platform determines how fast a program executes
and how precise the results are, the execution strategy for abstract execution determines the
precision of the analysis results and the running time of the analysis. Often there is a trade-
off between the running time and the precision of the analysis, and one needs to balance the

CHAPTER 3. ABSTRACT EXECUTION-BASED STATIC ANALYSES 31

Algorithm 3.1: Abstract Execution Engine
input : Program S0, Initial abstract state σ0.
output: State before statement map, preStateMap,

State after statement map, postStateMap.
worklist.push(S0,σ0);
while worklist.empty() do
pS,σq Ð GetNextExecutionUnit(worklist);
if preStateMap[S] exists then σÐ MergeState(σ, preStateMap[S]);
if σ = preStateMap[S] then break;
preStateMap[S] Ð σ;

/* nextUnitList collects next units to be executed during the
ExecuteStatement call. */

nextUnitList.clear();
σ 1 Ð ExecuteStatement(S, σ, nextUnitList);
postStateMap[S] Ð σ 1;

for pSi,σiq in nextUnitList do
if worklist.hasStmt(Si) then
pSi,σ 1iq Ð worklist.findStmt(Si);
worklist.updateState(Si, MergeState(σi, σ 1i));

else
worklist.push(Si, σi);

end
end

end

two quantities while designing the analysis.
We present a specific execution strategy for the abstract execution engine in Algorithm 3.1.

The algorithm takes as input, the program S0 and an initial abstract state σ0 in which S0 is
executed. It returns two statement-to-state maps: preStateMap and postStateMap. The map
preStateMap maps each statement S to the state in which S was executed. Note that if S is
executed multiple times, this corresponds to a merge of all states in which S was executed.
A merge of two states σ and σ 1 returns a state that supersedes both individual states. This is
useful when we want to process a single merged state instead of multiple individual states,
and the execution of statement S for the merged state, therefore, encompasses the execution
for each of the individual states. The other output, postStateMap, returns a map from each
statement S to the state after the execution of S.

The algorithm takes three user-defined methods: MergeState(), that given two abstract
states σ and σ 1, returns the merge of the two states; ExecuteStatement(), that executes a
statement S in an abstract state σ; and GetNextExecutionUnit(), that returns next execu-
tion unit, which is a pair of a statement S and the state σ in which S is executed. Given these
user-defined methods, the algorithm works as follows. The algorithm keeps a list of execu-

CHAPTER 3. ABSTRACT EXECUTION-BASED STATIC ANALYSES 32

tion units, worklist, with each unit consisting of a statement to be executed and the state
in which it is executed. It initializes the list with statement S0 and initial state σ0. Next,
it processes units in worklist until no units remain. It obtains the next unit to be processed
from worklist, pS,σq, via the GetNextExecutionUnit() method call. This is a user-defined
method, and the user can use different heuristics to define the function. For example, the
method could return the first unit in worklist, or the next unit with most recently executed
statement (which is beneficial for faster execution of loops).

On obtaining the next unit pS,σq, it first merges σ with the pre-execution state before S,
preStateMaprSs, if it exists. If themerged state σ is same as the previous state preStateMaprSs,
the state in which the execution begins remains unchanged, and hence, the execution itself
is unchanged. Therefore, we skip processing the unit. Otherwise, we first update the map
preStateMaprSs with the updated state before S. Then, we begin execution of S for the
merged state σ via the method call ExecuteStatement(). The method is defined by the
user and captures the abstract semantics necessary for abstract execution. The method call
returns the state after the execution of the statement. During the execution, we maintain
a buffer of units, nextUnitList, that gets populated with execution units which need to be
processed next after the execution of S. The method call ExecuteStatement() is respon-
sible for populating nextUnitList. Note we assume that for sequence of statements [S1;S2],
statement S1 has access to the next statement S2 in the sequence. Hence, after S1 finishes
its execution, it can populate nextUnitList with the execution unit pS2,σ1q, where σ1 is the
state obtained after the execution of statement S1. This is a reasonable assumption and most
program representations provide access to the next statement to be executed.

After the execution for a statement completes, we add the execution units in nextUnitList
to our worklist. We use an optimization to prevent the explosion of units, especially when the
same statement needs to be processed for multiple states. This can happen in the control flow
graph representation of programs, where the statement after a loop or a conditional is visited
multiple times based on the path taken (consisting of different branches for conditionals
and different number of iterations for loops). Hence, we compress the processing of the
statement for multiple states into that for a single merged state. We do this compression in
a demand-driven fashion. While inserting a unit pSi,σiq from nextUnitList into worklist, we
check if there already exists an execution unit for statement Si in worklist. If there exists
such a unit, say pSi,σ 1iq, then we merge the new unit with the existing unit by updating it
to pSi, MergeStatepσi,σ 1iqq. Otherwise, if no existing unit is found, we push the new unit
pSi,σiq into worklist.

Finally, the maps preStateMap and postStateMap provide an execution trace for the over-
all abstract execution. Note the method MergeState() is used to merge abstract states for
multiple visits to a statement in the program. This merging of states is essential to scale the
execution. Without merging, we may never terminate the execution and we might indefi-
nitely cycle through a loop with a different initial state during each visit. Merging states is
also necessary to prevent explosion of states due to a large number of feasible execution paths
in a program. It is important to carefully implement this method and ensure that the merged
state always supersedes the individual states being merged. Otherwise, the execution might
not terminate or take a really long time to complete.

CHAPTER 3. ABSTRACT EXECUTION-BASED STATIC ANALYSES 33

Complexity: We now briefly discuss the time complexity for Algorithm 3.1. We assume
ExecuteStatement() takes constant time for each statement in the program. Then, the
running time of the algorithm is linear in the number of units processed by the algorithm.
We observe that an execution unit pS,σq, for each statement S and each state σ, will be
processed at most once. This is because any subsequent copy of the unit will either get
merged with the first unit while being entered into the worklist, if the unit has not been
processed, or will be subsumed by the pre-state mapping at S, if the unit has already been
processed, since the pre-state preStateMaprSs is a merge of all previously processed states.
Suppose the size of the program being analyzed is NS and the number of feasible abstract
states is Nσ. The maximum number of units processed is NSNσ, and therefore, the running
time for the algorithm is OpNSNσq.

3.4 Implementation

Wehave implemented the abstract execution framework in the LLVM compiler framework [40].
LLVM presents a modular framework to implement compiler analyses and optimizations. It
exposes an intermediate representation, called LLVM IR, for programs. LLVM IR is both easy
to read in textual form and easy to analyze and manipulate in the data-structure representa-
tion exposed by the framework. It is well-documented and supported by a huge community
of compiler developers. An analysis or a transformation is represented as a pass in LLVM. A
large number of passes have been implemented in LLVM, that scan through the IR to analyze
it for specific properties or to generate an optimized IR. Further, the passes can be stacked
together in a sequence with one pass running after the other. The passes can specify depen-
dencies on other passes, and the dependency chain can be used to appropriately schedule
the passes. Note, the dependency chain must a DAG (directed acyclic graph), so that a total
order on the sequence in which the passes must execute can be defined.

We have implemented a core framework which can be extended by an LLVM pass to im-
plement the required analysis. The framework consists of a generic implementation of the
abstract execution engine, described in Section 3.3, an abstract C++ class for abstract value,
useful to define the abstract domain, and an abstract C++ class for abstract state. An analy-
sis in this framework must implement the abstract classes for the abstract value and abstract
state to define the abstract domain. Further, it must implement the ExecuteStatement()
method in the abstract execution engine to define the abstract semantics. This division of
the implementation between the core abstract execution framework and the analysis-specific
abstract domain and abstract semantics greatly reduces the burden of an analysis developer
and makes it easy to implement abstraction-based analyses. Further, it helps keep the anal-
ysis modular where the core design of the analysis, represented by its abstract domain and
abstract semantics, is separated from the implementation of the analysis, represented by the
abstract execution framework. There exist similar frameworks that separate the implemen-
tation from the definition of the analyses (for example, using Datalog to define static anal-
yses [70]). However, these frameworks are often very formal and restricted in the types of
static analyses defined in the framework. Abstract execution framework allows rich analyses
to be defined while keeping the design and implementation separate from each other.

CHAPTER 3. ABSTRACT EXECUTION-BASED STATIC ANALYSES 34

3.5 Other Approaches

We describe two alternate approaches to define abstraction-based static analysis: data-flow
analysis and abstract interpretation. Both approaches have been widely used to define static
analyses. Data-flow analysis [36, 52] represents the analysis as a flow of facts across the
edges of a control flow graph. The program is represented as a control flow graph, where
each node represents a basic block or a sequence of statements, and each edge represents
the flow of control from one node to another under some guard condition. The analyses
specify how incoming facts are processed by each node to generate the outgoing facts, and
how facts from multiple incoming edges are merged together before they are processed.
This approach has been used widely to define efficient analyses and transformations for
sequential programs, many of which have been implemented in popular compilers. A key
drawback of this approach is that it does not allow control over the order in which the facts
are processed and what facts are forwarded to different outgoing edges. The order in which
facts are processed and merged can affect the scalability of the analysis. Hence, fine-tuning
the processing order is important.

Abstract interpretation [18, 52] represents the analysis as an interpretation of concrete
executions for an abstract domain. The analyses define an abstraction function, that con-
verts a concrete state into an abstract state, and abstract transfer functions, that propagate
abstract state across statements in the program. The approach is similar to abstract execu-
tion, except there is a strong emphasis on ensuring that the abstraction is valid, and each
abstract state and abstract transfer function is a sound approximation of the concrete state
and concrete semantics for the program. This is useful for ensuring soundness/complete-
ness of an analysis. However, for many of the analyses proving soundness or completeness is
challenging. Hence, a large number of useful and light-weight analyses can not be defined
in this framework.

3.6 Conclusion

This chapter presents the abstract execution framework to define static analyses. It requires
the analysis designer to specify an abstract domain, which consists of abstract values for
variables and the abstract state, and the abstract semantics for various program statements.
Given these, the analysis can use the abstract execution engine to execute the program in
the abstract domain. The generated abstract trace can then be utilized to generate the re-
quired analysis results. We rely on this common framework to define our static analyses in
subsequent chapters.

Chapter 4

Static Detection of Uncoalesced
Accesses

GPUs provide tremendous computational power, which when tapped can reduce the running
time of an application by orders of magnitude. Yet, tapping this potential in GPUs is difficult,
and a programmer needs to be aware of various subtleties of GPU architecture in order to
achieve significant performance gain. One such area of subtlety is accessing global memory
or the GPU DRAM. Global memory provides a high-latency access and any access to global
memory takes hundreds of cycles to complete. To compensate for that, the global memory
provides high-bandwidth and a large amount of data can be fetched in a single transaction.
The GPU hardware utilizes this feature by coalescing or grouping together accesses to global
memory by multiple threads into a few transactions. The key constraint, however, is that only
contiguous bytes from a single memory block can be fetched in a single transaction. Hence,
it needs to be ensured that the accesses by threads lie in a few memory blocks. Otherwise,
multiple transactions are necessary and the accesses take much longer to complete, affecting
the overall program performance.

The GPU hardware uses a simple approach to coalesce accesses for multiple threads.
It groups together threads into units called warps. Each warp consists of a fixed number
of threads (usually 32 or 64), with contiguous thread-ids. For instance, in a 1-dimensional
thread-grid, threads with thread-ids 0 to 31 are placed in the first warp, threads with thread-
ids 32 to 63 are placed in the second warp, and so on. Having contiguous thread-ids helps be-
cause threads with consecutive ids often access adjacent memory locations. A global memory
access in the GPU program is executed simultaneously for all threads within a warp. When a
warp executes a global memory access, the locations accessed by the individual threads are
collected, and the GPU hardware coalesces them together into as few transactions as pos-
sible. If the accesses lie within a memory block, then the accesses require a single memory
transaction. If the accesses are spread-out in the memory, multiple transactions are neces-
sary, and such accesses are referred to as uncoalesced accesses. The problem of uncoalesced
accesses has been well-documented in literature [53, §5.3.2].

Uncoalesced accesses pose a severe performance issue, and the programmers should en-
sure their programs do not contain uncoalesced accesses, unless they are unavoidable. Due to

35

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 36

the subtlety of the access patterns involved, it is often difficult for programmers to determine
whether an access is coalesced or not. Therefore, automatic tools to report all uncoalesced
accesses in a GPU program are desirable. A common approach used to automatically detect
such accesses is to execute the program for some input data and then trace the execution
to track number of transactions required by each global memory access. The accesses which
require a large number of transactions are then reported back to the user as uncoalesced.
This approach is also referred to as dynamic analysis, where the program is analyzed during
an actual execution. There are multiple drawbacks of this approach. First, it requires an
actual execution of the program. This implies that the program must be fully implemented
before the dynamic analysis can run, and appropriate inputs are necessary for the uncoa-
lesced accesses to present themselves during the execution. Second, the dynamic analysis is
often slow and the GPU program takes orders of magnitude longer to complete with the dy-
namic analysis enabled. Hence, it is desirable to have a fast compile-time analysis to identify
uncoalesced accesses in GPU programs.

We present here a light-weight compile-time analysis to detect uncoalesced accesses. The
analysis relies on the idea that during the execution of a global memory access, the location
accessed by a thread is a function of its thread-id. The function is often known at compile-
time, specially when the access is coalesced. There are two primary forms of coalesced
accesses: first where each thread accesses the same location in memory, in which case the
function is an expression independent of thread-id; second where consecutive threads ac-
cess consecutive locations, in which case the function is an expression of form p˘tid`constq,
where tid represents thread-id and const represents an expression independent of thread-id.
These are the most common patterns observed and can often be computed statically. The
computation however may not be obvious if the value of thread-id flows through a chain of
variable assignments into the final access index. We would need to track the flow through
expressions to compute the access pattern. We rely on the abstract execution framework (de-
fined in Chapter 3) to define an analysis where we track the dependence of each variable on
tid. We further refine the analysis to track the number of threads that execute a statement. If
a single thread in a warp executes a global memory access, then a single transaction to global
memory is sufficient and the access is therefore coalesced. This is similar to an information
flow analysis or slicing [1] where the flow of dependence on tid is tracked across program
statements. However, our approach involves non-trivial computation of dependence values
during assignments involving arithmetic and boolean operations and the merge operation
after conditionals. This makes our approach unique as compared to the existing approaches.

The chapter is organized as follows. We first describe an example to explain the prob-
lem of uncoalesced accesses and how to detect such accesses using our static analysis in
Section 4.1. Then we formalize the problem in Section 4.2. We describe the details of the
design of our analysis in Section 4.3, and its implementation in Section 4.4. We describe
some evaluation in Section 4.5. We present some related work in Section 4.6. We finally
conclude in Section 4.7.

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 37

// i,N ÞÑ c0
if(t i d +i+1 < N) {

x = t i d +i+1; // x ÞÑ c1
for(y=i; y<N; y++){ // y ÞÑ c0

xi = N*x + i; // xi ÞÑ J

xy = N*x + y; // xy ÞÑ J

iy = N*i + y; // iy ÞÑ c0
A[xy] -= M[xi]*A[iy];
if(y == i)

B[x] -= M[xi]*B[i];
}

}

(a) Original Fan2 snippet

// i,N ÞÑ c0
if(t i d +i < N) {

y = t i d +i; // y ÞÑ c1
for(x=i+1; x<N; x++){ // x ÞÑ c0

xi = N*x + i; // xi ÞÑ c0
xy = N*x + y; // xy ÞÑ c1
iy = N*i + y; // iy ÞÑ c1
A[xy] -= M[xi]*A[iy];
if(y == i)

B[x] -= M[xi]*B[i];
}

}

(b) Repaired Fan2 snippet

Figure 4.1: Fan2 Kernel snippets from Gaussian Elimination program to illustrate uncoa-
lesced accesses.

4.1 An Uncoalesced Access: Gaussian Elimination

We use an example GPU program to illustrate the problem of uncoalesced accesses and our
static analysis to detect such accesses. Figure 4.1a shows a 1-dimensional variant of Fan2
kernel from Gaussian Elimination program in Figure 2.3 in Chapter 2. The kernel performs
row operations on a matrix A and a vector B using the ith column of a multiplier matrixM.
The kernel uses a 1-dimensional thread-id, tid to distinguish executions of different threads.
The kernel is executed for threads with ids in range r0,N´ i´ 2s. Each thread is assigned a
distinct row and updates the ptid` i`1qth row of matrix A and vector B. Note that A, B and
M reside in global memory and are shared across threads, while the remaining variables are
private to each thread.

The GPU executes threads in units of warps, where threads in each warp consist of con-
secutive ids and execute instructions in lock-step. The above kernel, for example, might be
executed for warps: w0 with ids r0, 31s, w1 with ids r32, 63s, and so on . . . When a warp,
say w0, accesses Arxys for some iteration y0, the elements ArNpi ` 1q ` y0s,ArNpi ` 2q `
y0s, . . . ,ArNpi` 32q `y0s are fetched simultaneously. The elements are at least N locations
apart from each other, and thus, separate transactions are necessary to access each element
which takes significant time and energy. This is an uncoalesced access. Access to Mrxis is
similarly uncoalesced. Figure 4.1b shows a repaired version of the kernel where each thread
is mapped to a column in matrices A andM. The access to Arxys by the warp w0 results in
elements ArNx` is,ArNx` i`1s, . . . ,ArNx` i`31s to be accessed. These are consecutive
elements, and therefore, are fetched in a single global memory transaction. Access toMrxis
is similarly coalesced. Our experiments show a 25% reduction in run-time for the repaired
kernel when run for an input where N “ 1024.

Analysis. We next describe how our static analysis detects uncoalesced accesses in the

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 38

kernel in Figure 4.1a. Our analysis defines an abstract domain that tracks local variables
as a function of tid. All variables that are independent of tid are assigned value c0 in the
abstract domain. Thus, variables i andN are assigned value c0 initially (shown in comments).
Further, variables y and iy are constructed from tid-independent variables, and therefore,
assigned c0. All variables that are linear function of tid with a unit coefficient (i.e. of the
form tid ` const), are assigned value c1. Hence, variable x is assigned value c1. Lastly, all
variables that are either non-linear function of tid or linear function with possibly greater
than one coefficient are assigned J. For example, variable xi is assigned expression N.ptid`
i ` 1q ` i, where the coefficient for tid is N. Since the value of N is not known at compile-
time and can be greater than one, xi is assigned J. Similarly, variable xy is assigned J. The
analysis flags all global array accesses where the index variable has value J as uncoalesced.
Hence, accesses Arxys and Mrxis are marked uncoalesced. Note in the repaired kernel in
Figure 4.1b, none of the index variables are J, and hence, none of the accesses are marked
as uncoalesced.

4.2 Formalization

This section presents a formal definition for uncoalesced accesses. We rely on the formal
model described in Section 2.3 to define uncoalesced accesses. To define them, we first
define the set of reachable configurations Rpb,σGq reachable during the execution of kernel
K for threads in block b starting in global state σG. A configuration is a tuple pσ,Π,Sq,
where σ is the current state, Π is the set of threads which are currently enabled, and S
is the next statement to be executed. We give an inductive definition for R. The initial
configuration pσ,Tpbq,Kq belongs to R, where σ “ pσG Y σSK Y σ

L
Kq is the initial state and

Tpbq is the set of threads in the block. For the recursive case, suppose pσ,Π,Sq belongs to
R. When S is the sequence [S1;S2], the configuration pσ,Π,S1q belongs to R, since S1 is
the next statement to be executed. Further, the configuration pJS1Kpσ,Πq,Π,S2q belongs to
R if the state JS1Kpσ,Πq is not undefined. When S is a conditional [if l then S1 else S2],
both branches are reachable, and hence, configurations pσ,Π1,S1q and pσ,Π2,S2q belong to
R, where Π1 “ tτ P Π : σpl, τq “ trueu and Π2 “ ΠzΠ1. Lastly, when S is a loop [while
l do S 1], the configuration pσ,Π 1,S 1q, where Π 1 “ tτ P Π : σpl, τq “ trueu, belongs to R.
Further, the configuration pJS 1Kpσ,Π 1q,Π 1,Sq belongs to R, if the state after executing S 1 is
not undefined.

We now define uncoalesced globalmemory accesses. Consider the configuration pσ,Π,ASq,
where AS is a read or write on a global array g at location pl0, l1, . . . , lnq. Consider the
number of transactions NApσ,Π,AS,wq required for the access by a warp, as defined in
Section 2.3.3. If it is greater than a threshold tA for some warp w in the set of warps, we
define the configuration pσ,Π,ASq as an uncoalesced configuration. We define a global mem-
ory access AS as uncoalesced, if an uncoalesced configuration involving the access belongs to
Rpb,σGq for some block b in the grid and some initial state σG. We state it formally in the
following definition.

Definition 4.1. An access AS in a GPU program P is uncoalesced, if for some block b, initial

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 39

(a) Range-based uncoalescing (b) Alignment-based uncoalescing

Figure 4.2: An example illustrating range-based and alignment-based uncoalesced access.
In the first case, the locations are strided, whereas in the second case, the locations are
contiguous but mis-aligned with memory block boundary.

state σG and a warpw, there is a reachable configuration pσ,Π,ASq inRpb,σGq such that the
number of transactions required, NApσ,Π,AS,wq, is greater than threshold tA. Formally,
an access AS is uncoalesced if:

exists b,σG,w, pσ,Π,ASq P Rpb,σGq, s.t. NApσ,Π,AS,wq ą tA.

For many current GPUs, the bandwidth η “ 128 bytes and warp size nw “ 32. We use
threshold tA “ 1, so that accesses requiring more than one transaction are marked uncoa-
lesced. We observe that most global memory accesses either require a single transaction to
finish or many more than one transaction. Therefore, tA “ 1 serves an appropriate threshold
to distinguish efficient coalesced accesses from poorly performing “uncoalesced” accesses.

Range-based Uncoalescing. One of the primary reasons for uncoalesced accesses is that
the accesses by consecutive threads in a warp are strided. For such accesses, a large number
of memory transactions are necessary to fetch all addresses. Consider an access grl0, . . . , lns
to a global array g. Suppose index variable ln is a linear function of tid0, i.e. ln ” c.tid0`c0,
while the remaining indices are independent of tid0. The locations accessed by consecutive
threads in a warp differ by c, and the range of addresses, A, accessed by a warp w with all
threads enabled is 32|kc| bytes, where k “ ξpgq is the size of each element in g. Hence, the
number of transactionsNA required is at least |A|{η “ |kc|{4. If k ě 4 bytes and |c| ě 1 (with
one of the inequalities being strict), NA is greater than 1 and the access is uncoalesced. We
define such accesses where the range of addresses accessed by a warp is large as range-based
uncoalesced accesses. Figure 4.2a illustrates such an uncoalesced acccess.

Alignment-based Uncoalescing. Alternately, an uncoalesced access can occur due to
alignment issues when the range of accessed locations is small but mis-aligned with the
memory block boundaries. Suppose k “ 4 and c “ 1 but c0 “ 8 for the access above. Since,
kc “ 4, the range of addresses is small and sufficient to be fetched in a single memory trans-
action. Yet, the access requires two global memory transactions. We refer to such accesses as
alignment-based uncoalesced accesses. Figure 4.2b illustrates such an uncoalesced acccess.

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 40

4.3 Detecting Uncoalesced Accesses

We present a static analysis to detect range-based uncoalesced accesses in GPU programs.
To define the analysis, We rely on the abstract execution framework presented in Chapter 3.
The core idea behind the static analysis is to track the flow of thread-id tid0 into the global
memory accesses. For each global memory access, grl0, . . . , lns, if the indices l0 to ln´1 are
independent of tid0 and the index ln is either independent of tid0 or a linear function of tid0
with unit coefficient i.e. ln “ tid0 ` c where c is a constant, then the access is coalesced.
However, if the above can not shown to be true for an access, then the access is potentially
uncoalesced. The analysis tracks the dependence of index variables on thread-id tid0 to check
if an access is coalesced. To track the dependence, it defines a novel abstract domain that
tracks dependence of all local integer and real variables on tid0. We describe this domain in
Section 4.3.1.

The analysis further tracks the number of threads enabled during the execution of an
access. If an access is enabled for a single thread in a warp, a single location is accessed by the
warp containing the enabled thread. Thus, a single global memory transaction is sufficient to
complete the access, irrespective of the dependence of index variables on tid0. The analysis
hence also tracks the set of enabled threads during the execution of a statement. It tracks
the set of enabled threads by tracking the dependence of path-predicate, or the condition
under which the access is executed by a thread, on tid0. The path-predicate is a conjunction
of xtesty conditions for all conditionals surrounding the access. Each xtesty condition is
defined by a local boolean variable. The analysis, therefore, also tracks the dependence of
local boolean variables on tid0 in its abstract domain.

We further present an abstract semantics in Section 4.3.2, to support the abstract domain.
We present semantics for assignments with arithmetic and boolean operations on local vari-
ables, global array reads andwrites, conditionals, and loops. The semantics are easy to define
in most cases. However, an intricate definiton of the merge operation is necessary to handle
condtionals and loops. We finally present the overall analysis to detect uncoalesced accesses
in Section 4.3.3, which essentially is an abstract execution of the program for the abstract
domain and the abstract semantics. We further present some reasoning for the correctness
of the analysis in this section.

4.3.1 Abstract Domain

We now present the abstract domain for our analysis. The abstract domain tracks the de-
pendence of local variables in a GPU program on tid0, or the thread-id along the first grid
dimension. We track two kinds of dependences. First for integer and real variables, we track
whether the value of the variable is independent of tid0, it has a unit linear dependence on
tid0 whereby consecutive threads have consecutive values, or it has a non-unit linear or non-
linear dependence on tid0. The first two scenarios lead to coalesced accesses, while the last
scenario is potentially uncoalesced. Next, we define the dependence of boolean variables on
tid0, which is whether the variable is independent of tid0 whereby the variable has the same
value in all threads, the variable is true for at most one thread, the variable is false for at most

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 41

one thread, or the variable is true for arbitrary number of threads. When the test condtion
for a conditional is true for at most one thread, the true branch has a single thread enabled,
and hence, all accesses within the branch are coalesced. Similarly, when the test condition is
false, all accesses within the false branch are coalesced irrespective of their access patterns.

Integer/real abstact domain. We now define the abstract domain for local integer and
real variables. We first give an intuitive definition for the abstract values and then a formal
definition via the corresponding concrete values. We assign a single abstract value to each
local variable that represents its dependence on tid0. Each integer and real variable gets a
value from the set pVint “ tK, c0, c1, c´1,Ju. Let ν̂ represent an abstract value. The abstract
values are defined as:

K : the value is not defined.
c0 : the value is independent of thread-id tid0 i.e. ν̂ ” rconsts.
c1 : the value has unit dependence on tid0 i.e. ν̂ ” rtid0 ` consts.
c´1 : the value has negative unit dependence on tid0 i.e. ν̂ ” r´tid0 ` consts.
J : otherwise.

We now formally define the values via the formal model in Section 2.3. Let σ̂ represent the
abstract state corresponding to a concrete state σ for a block b. The abstract state σ̂ tracks
the abstract values for variables in the program for all threads within the block. Since the
abstract values track the dependence of variables on tid0, we assign a single value for all
threads in the block. We now define the abstract values for integer and real variables. Let l
be a local variable. The abstract values are:

σ̂plq “

$

’

’

’

’

&

’

’

’

’

%

K, exists τ P Tpbq s.t. σpl, τq “ K.
c0, exists c0 s.t. for all τ P Tpbq,σpl, τq “ c0.
c1, exists c0 s.t. for all τ P Tpbq,σpl, τq “ tid0pτq ` c0.
c´1, exists c0 s.t. for all τ P Tpbq,σpl, τq “ ´tid0pτq ` c0.
J, otherwise.

The two definitions are exactly alike, except in the second definition we associate the abstract
values in σ̂ to the corresponding concrete values in σ. This is useful to precisely define the
abstract domain and also to reason about its correctness. For instance, from the second
definition, it is obvious that each variable is mapped to a single abstract value for all threads
in the block.

Boolean abstact domain. We next define the abstract domain for boolean variables
which is used to track path-predicates in the analysis. We assign each boolean variable an
abstract value from the set pVbool “ tK, bTF, bTt, bFf ,Ju. We define the values as:

K : the value is not defined.
bTF : the value is either true for all threads or false for all threads.
bTt : the value is false for at most one thread.
bFf : the value is true for at most one thread.
J : otherwise.

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 42

We next define the values formally. The choice of names for the values will become clear
once we see the formal definition. We first define a primitive set of values:

σ̂plq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

K, exists τ P Tpbq,σpl, τq “ K.
bT, for all τ P Tpbq,σpl, τq “ true.
bt, exists τ P Tpbq,σpl, τq “ false, and for all τ 1 P Tpbqztτu, σpl, τ 1q “ true.
bF, for all τ P Tpbq,σpl, τq “ false.
bf , exists τ P Tpbq,σpl, τq “ true, and for all τ 1 P Tpbqztτu, σpl, τ 1q “ false.
J, otherwise.

Here, bT represents an abstract value that is true for all threads, bt is true for all but one
thread, bF is false for all threads, while bf is false for all but one thread. Now, the values
bTF, bTt and bFf are represented as a combination of above values. The value bTF represents
the pair tbT, bFu, the value bTt represents tbT, btu, and the value bFf represents tbF, bfu,
respectively.

We next define the join operation on the abstract values. The operation is quite straight-
forward. If any one of the values ν̂1 and ν̂2 being joined is undefined (i.e. K), then the
joined value is also undefined. Otherwise, if ν̂1 and ν̂2 are equal, then join returns the same
value. Otherwise, join returns the value J, since the dependence of the joined value on tid
for all abstract values ν̂1 and ν̂2 can not be defined by any other abstract value in the abstract
domain.

Finally, we do not track shared or global arrays in our abstract domain. This is because,
the index variables for array accesses are often a function of the local variables only. Also,
when an index variable is computed by indexing into a shared or global array, it often repre-
sents an index non-linear in tid0 (an exception is indexing for neighbour vertices in stencil
computations). Hence, we do not model shared/global arrays in our abstract domain. We
assume that arrays can hold arbitrary values, and indexing into an array returns J, unless
all threads access the same location in the array via a tid0-independent index. To conclude
the abstract state σ̂ is a function from local variables to integer and boolean abstract values
i.e. VL Ñ pVint Y pVbool.

We next define an abstract entity that tracks the number of threads enabled during the
execution of a statement. We represent it via the symbol π̂ and assign it an abstract boolean
value representing the number of enabled threads. We assign it two values: bFf if at most
one thread is enabled and J if an arbitrary number of threads is enabled. Note that we can
visualize the set of threads Π as a predicate on the set of enabled threads in the block. Hence,
π̂ is an abstract boolean value representing Π.

Design Justification. We designed our abstraction by manually analyzing the set of
benchmark programs in Rodinia [10], a popular GPU benchmark suite. We observed that
most global memory access indices had a unit dependence or a large linear or non-linear
dependence on tid0. We did not observe small linear coefficients for the access indices.
This motivated us to only consider unit dependence tc1, c´1u on tid0 for coalesced accesses
and arbitrary dependence J for uncoalesced access. Further, we distinguish positive unit
dependence c1 from negative unit dependence c´1. We observed a few scenarios where
the values with positive and negative unit dependence were added together to produce a

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 43

tid0-independent value and the distinction between the two dependences was useful. We
identified abstract boolean values bFf and bTt to capture conditionals where either the true
branch or the false branch had at most one thread enabled. The value bTF was only a side-
effect of our choice for boolean abstract domain. However, it turned out to be useful for
the merge operation in tid0-independent conditionals, as explained in abstract semantics for
conditionals in Section 4.3.2. Finally, we used an undefined value K to initialize variables.
This helps track the flow of only the defined variables, and also identify errors when the flow
of values is broken due to the presence of undefined values.

4.3.2 Abstract Semantics

We now define the abstract semantics for the abstract domain defined in Section 4.3.1. We
define the semantics for different types of statements. Given an abstract state σ̂ and the
path-predicate for the set of enabled threads π̂, let σ̂ 1 be the resulting state. We first define
the semantics for local assignments. The semantics for most prominent scenarios is shown
in Figure 4.3. Index tid0 evaluates to c1, while for all i ‰ 0, tidi evaluates to c0. Arithmetic
operations on abstract values are defined just as regular arithmetic, except all values that
do not have linear dependency on tid with coefficient c0, c1 or c´1, are assigned J. For
example, rc1 ` c1s “ J since the resultant value has a dependency of c2 on tid. Boolean
values are constructed from comparison between arithmetic values. Equalites rν̂1 “ ν̂2s
are assigned a boolean value bFf (rule Eq) and inequalities rν̂1 ‰ ν̂2s a boolean value bTt
(rule Neq), where one of ν̂1 and ν̂2 equals c1 or c´1, and the other is c0. Note this is
consistent with our abstraction. The equalities are of the form rtid0 “ cs for some constant
c and are true for at most one thread. The inequalities are of the form rtid0 ‰ cs and are
true for all except one thread. For boolean operations, we observe that bTt “ bFf (rules
BoolNeg1 and BoolNeg2), rbFf

Ź

bs “ bFf (rule And), and rbTt
Ž

bs “ bTt (rule Or), for
all b P tbTF, bFf , bTt,Ju. Other comparison and boolean operations are defined similarly.

We show the semantics for the remaining statements in Figure 4.4. We first consider reads
from shared and global arrays [l Ð vrl0, . . . , lns]. We do not model arrays in our abstract
domain. It is easy to observe, however, if all index variables are tid0-independent, then all
threads in a warp access the same location and get the same value. Hence, the resulting value
is tid0-independent (rule Read1). However, if any of the indices depend on tid0, then the
threads access different locations in the array. Since we do not model arrays in our abstract
domain, the threads can get arbitrary values from the array. Hence, the resulting value can
have an arbitrary dependence on tid0 and it is assigned the abstract value J (rule Read2).
We do not define semantics for writes since we do not model arrays in our domain. We next
define abstract semantics for a sequence of statements [S “ S1;S2]. Let xJSKpσ̂, π̂q represent
the abstract semantics of executing statement S in abstract state σ̂ for the path-predicate π̂
on enabled threads. Now, the semantics for sequence consists of composing executions of
individual statements as shown in rule Seq in Figure 4.4.

We next consider conditionals [if l then S1 else S2] shown in rules ITEind and ITEdep.
The semantics takes the initial abstract state σ̂ and the path-predicate π̂. It first computes
the path-predicates π̂1 and π̂2 for the abstract execution of statements S1 and S2. The path-

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 44

Tid[0]
σ̂ptid0q “ c1

Tid[i]
i ‰ 0

σ̂ptidiq “ c0
Bid

σ̂pbidrisq “ c0

Bdim
σ̂pbdimrisq “ c0

Sum1

lÐ l0 ` l1
σ̂pl0q “ c0 σ̂pl1q P pVint

σ̂ 1plq Ð σ̂pl1q

Sum2

lÐ l0 ` l1
σ̂pl0q “ c1 σ̂pl1q P c´1

σ̂ 1plq Ð c0
Sum3

lÐ l0 ` l1
σ̂pl0q “ σ̂pl1q σ̂pl0q P tc1, c´1u

σ̂ 1plq Ð J

Neg1

lÐ ´l0
σ̂pl0q “ c1

σ̂ 1plq Ð c´1
Neg2

lÐ ´l0
σ̂pl0q “ c´1

σ̂ 1plq Ð c1
Neg3

lÐ ´l0
σ̂pl0q “ c0

σ̂ 1plq Ð c0

Eq

lÐ pl0 “ l1q
σ̂pl0q “ c0 σ̂pl1q P tc1, c´1u

σ̂ 1plq Ð bFf
Neq

lÐ pl0 ‰ l1q
σ̂pl0q “ c0 σ̂pl1q P tc1, c´1u

σ̂ 1plq Ð bTt

BoolNeg1

lÐ l0
σ̂pl0q “ bFf

σ̂ 1plq Ð bTt
BoolNeg2

lÐ l0
σ̂pl0q “ bTt

σ̂ 1plq Ð bFf

And

lÐ l0
Ź

l1
σ̂pl0q “ bFf σ̂pl1q P pVboolztKu

σ̂ 1plq Ð bFf
Or

lÐ l0
Ž

l1
σ̂pl0q “ bTt σ̂pl1q P pVboolztKu

σ̂ 1plq Ð bTt

ArithZero

lÐ l0 op l1
σ̂pl0q “ c0 σ̂pl1q P c0

σ̂ 1plq Ð c0
RelZero

lÐ l0 rel l1
σ̂pl0q “ c0 σ̂pl1q P c0

σ̂ 1plq Ð bTF

BoolZero

lÐ l0 bop l1
σ̂pl0q “ bTF σ̂pl1q P bTF

σ̂ 1plq Ð bTF

Figure 4.3: Abstract semantics for different local assignments and initial abstract states.
State σ̂ is the incoming abstract state, while σ̂ 1 is the updated state after the assignment.
Operators op, rel and bop are arithmetic, relational and boolean operators, respectively. For
the scenarios not shown above, an operation involving a variable with value K, returns the
value K, whereas an operation involving value J, returns value J for the operation.

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 45

Read1

lÐ vrl0, . . . , lns v P VS Y VG
for all i P t0, . . . ,nu, σ̂pliq “ c0

σ̂ 1plq Ð c0
Read2

lÐ vrl0, . . . , lns v P VS Y VG
exists i P t0, . . . ,nu, σ̂pliq ‰ c0

σ̂ 1plq Ð J

Seq

σ̂1 “ yJS1Kpσ̂, π̂q
σ̂2 “ yJS2Kpσ̂1, π̂q
{JS1;S2Kpσ̂, π̂q “ σ̂2

ITEind

σ̂plq “ bTF
π̂1 “ π̂

Ź

σ̂plq π̂2 “ π̂
Ź

 σ̂plq

σ̂1 “ yJS1Kpσ̂, π̂1q σ̂2 “ yJS2Kpσ̂, π̂2q
σ̂ 1 “ mergepσ̂1, σ̂2q

{Jif l then S1 else S2Kpσ̂, π̂q “ σ̂ 1

ITEdep

σ̂plq ‰ bTF
π̂1 “ π̂

Ź

σ̂plq π̂2 “ π̂
Ź

 σ̂plq

σ̂1 “ yJS1Kpσ̂, π̂1q σ̂2 “ yJS2Kpσ̂, π̂2q
σ̂ 1 “ mergepσ̂1, σ̂2,S1,S2q

{Jif l then S1 else S2Kpσ̂, π̂q “ σ̂ 1
Merge1

σ̂ “ mergepσ̂1, σ̂2q
σ̂1plq “ ν̂1
σ̂2plq “ ν̂2

σ̂plq “ joinpν̂1, ν̂2q

Merge2

σ̂ “ mergepσ̂1, σ̂2,S1,S2q
AS ” rlÐ . . . s in S1 or S2

σ̂plq “ J
Merge3

σ̂ “ mergepσ̂1, σ̂2,S1,S2q
AS ” rlÐ . . . s not in S1 and S2

σ̂plq “ σ̂1plq

WhileInd

σ̂plq “ bTF
π̂1 “ π̂

Ź

σ̂plq σ̂1 “ xJSKpσ̂, π̂1q

σ̂2 “ mergepσ̂, σ̂1q σ̂3 “ {Jwhile l do SKpσ̂2, π̂1q

{Jwhile l do SKpσ̂, π̂q “ σ̂3

WhileDep

σ̂plq ‰ bTF
π̂1 “ π̂

Ź

σ̂plq σ̂1 “ xJSKpσ̂, π̂1q

σ̂2 “ mergepσ̂, σ̂1,Sq σ̂3 “ {Jwhile l do SKpσ̂2, π̂1q

{Jwhile l do SKpσ̂, π̂q “ σ̂3

Figure 4.4: Abstract semantics for shared/global reads, conditionals and loops for different
initial abstract states. State σ̂ is the incoming abstract state while σ̂ 1 is the updated state
after the assignment.

predicate π̂1 is computed by conjuncting abstract values σ̂plq and π̂. This is because if either
σ̂plq has value bFf i.e. l is true for at most one thread, or π̂ has value bFf i.e. at most one
thread is enabled for the conditional, then S1 is executed for at most one thread, and hence
π̂1 is set to bFf . Otherwise, S1 is executed for arbitrary number of threads, and π̂1 is set to
the abstract value J. The abstract semantics for

Ź

operation capture this accurately. The

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 46

path-predicate π̂2 is computed similarly.
Next, we abstractly execute S1 and S2 in the abstract state σ̂ for path-predicates π̂1 and

π̂2. Since we do not know the concrete values for boolean variable l during the abstract
execution, we execute both branches for each thread and then conservatively merge the
resulting states σ̂1 and σ̂2 to get the final updated state σ̂ 1 after the conditional. We consider
two scenarios for merging the resulting states. First, when σ̂plq is tid0-independent (rule
ITEind), all threads in the block execute either the if branch S1 or all threads execute the
else branch S2. Hence, the final value for any variable li is one of the values σ̂1pliq or σ̂2pliq,
and therefore, li is assigned the join of the two values in mergepσ̂1, σ̂2q (rule Merge1).
Consider the abstract execution for the example shown here:

if (x = 5){
y := 10;

} else {
y := t i d [0] + 10;

}

Suppose σ̂pxq “ c0 and σ̂pyq “ K initially. In the program, the predicate rx “ 5s is inde-
pendent of tid0, and hence, all threads in a warp execute the same branch. If they execute
the if branch, y is assigned a constant and y gets the abstract value c0, and otherwise, y is
assigned tid0` 10 and gets the value c1. Since either branch can execute, the dependence of
y on tid0 is not known, and therefore, it is assigned joinpc0, c1q “ J.

Next, we consider the case when σ̂plq is dependent on tid0 (shown in rule ITEdep). Here,
a special merge operation is required to get the merged state σ̂ 1. To understand this better,
consider the abstract execution for the following example:

if (t i d [0] < x){
y := 10;

} else {
y := 20;

}

In this program, the predicate rtid0 ă xs is dependent on tid0. Therefore, all threads with
tid0 less than x execute the if branch, while the remaining threads execute the else branch.
Along both branches y is assigned a constant, and hence, gets an abstract value c0. However,
the final value for y is dependent on tid0 and is a non-linear function of tid0, since depending
onwhich branch is executed it gets the value 10 or 20. Hence, ymust be assigned the abstract
value J. But the usual merge operation on the abstract states returns join of the two values
which is joinpc0, c0q “ c0. To address this inconsistency, we define a new merge operation
that takes S1 and S2 as additional parameters. The new merge operation checks if a variable
li is assigned a value in S1 or S2. If so, it sets the value for li in the merged state to J
(rule Merge2), since it is potentially a non-linear function of tid0. The values for remaining
variables remain unchanged, and hence, it returns their original value in σ̂ (rule Merge3).

The abstract semantics for loops are defined similar to conditionals in rules WhileInd
and WhileDep. There are two primary differences here. First, the merge operation for tid0-
dependent test condition (ruleWhileDep) only takes S as the additional operator, since the

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 47

merge operation is performed between the original state σ̂ and the state after executing S,
σ̂1, depending on whether the statement S was executed or not. Second, the semantics for
loop involve repeating the loop until the resultant state σ̂2 after the execution saturates and
is same as that in the previous iterations. Unlike concrete execution where the bounds on
the number of iterations of the loop is exactly defined for all threads, the bounds are not
known in abstract execution. Hence, we repeat the loop indefinitely, until repeating the loop
does not change the resultant state σ̂2. We can stop at this point, because executing a new
iteration for the loop results in the same state. Such a state is also known as a fixpoint, and
is uniquely defined for most abstract domains with finite set of values and a monotonic join
operation.

We next define abstract semantics for function calls. We assume a function call always
returns an arbitrary return value, and hence, set the return value to J. We further assume
that none of the parameters sent to the function call are modified by the function. Local
variables are passed by value. Shared/global arrays are passed by reference and can be
modified, however we do not track values stored in arrays. Therefore, no abstract semantics
are necessary to update these after the function call.

4.3.3 Overall Analysis

We now define the overall analysis. The analysis initializes an abstract state for the kernel. It
initializes all local variables toK and all constants to c0 in the initial abstract state σ̂0. Further,
a kernel usually consists of a set of local parameters passed to the kernel from the calling
method. These parameters are initialized appropriately. We address how to initialize these
parameters in Section 4.4.2. The analysis similarly initializes the path-predicate π̂0 based
on the calling method. Once the initial abstract state σ̂0 and path-predicate π̂0 is defined,
the analysis begins abstract execution using the abstract semantics defined in Section 4.3.2.
During the execution, when it reaches a global memory read or write AS, it checks if the
access is “uncoalesced”. Suppose the reaching configuation consists of an abstract state σ̂
and path-predicate π̂. Let the statement AS access a global array g at location rl0, . . . , lns.
The analysis reports the access as uncoalesced if the following conditions hold:

• rπ̂ “ Js: This implies that multiple threads are potentially enabled at this statement
during the execution.

• One of following three cases must be true:

– rexists i ‰ n, σ̂pliq ‰ c0s: This implies one of the non-final indices is dependent
on tid0. On flattening, this index is multiplied by a large value, which leads to a
large dependence on tid0, and hence, a potentially uncoalesced access.

– rσ̂plnq “ Js: This directly implies that the index is a non-linear function of tid0,
and hence, it leads to an uncoalesced access.

– rσ̂plnq P tc1, c´1u
Ź

ξpgq ą 4s: Here, the index is a linear function of tid0 with
unit coefficient. However, the size of each element in the array is large, and
hence, addresses accessed by consecutive threads are at least ξpgq addresses

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 48

apart. Therefore, consecutive threads access distant locations and this potentially
leads to an uncoalesced access.

The analysis continues abstract execution until the abstract state saturates for all loops and
all statements are executed and no statements are left to be executed. It collects all accesses
that were potentially uncoalesced during the execution and returns these as the output of
the analysis. We now show that the reported accesses cover all range-based uncoalesced
accesses present in the GPU program.

4.3.3.1 Correctness

We briefly discuss the correctness of the analysis. We first define an abstract reachable config-
uration. An abstract configuration pσ̂, π̂,Sq is reachable if S is visited in state σ̂with predicate
π̂ during the abstract execution for the analysis. We can define the set of abstract reachable
configurations similar to reachable configurations set R, defined in Section 4.2. An abstract
configuration is uncoalesced, if the analysis identifies it as uncoalesced based on the condi-
tions defined above.

We show that for all global memory accesses AS if a range-based uncoalesced configura-
tion can reachAS for some initial state σ0 and set of threadsΠ0, then an abstract uncoalesced
configuration is also reachable and the analysis identifies AS as uncoalesced. We first prove
that for any reachable configuration in R, there is an abstract configuration that subsumes
the concrete configuration and is reachable during the abstract execution. The initial ab-
stract configuration subsumes all initial configurations (assuming it is initialized correctly),
i.e. αpσ0q Ď σ̂0 and αpΠq Ď π̂0, where αpq returns the smallest abstract entity that repre-
sents the concrete entity in the abstract domain, and ν̂1 Ď ν̂2 implies ν̂2 supersedes or is
larger than ν̂1. Further, since the abstract semantics preserves the abstraction, we can show
by induction that at each step of the abstract execution, the concrete configuration is sub-
sumed by the resulting abstract configuration. Hence, any reachable configuration pσ,Π,Sq
is subsumed by the corresponding abstract configuration pσ̂, π̂,Sq obtained by replaying the
execution in the abstract domain.

Now for a range-based uncoalesced configuration pσ,Π,ASq, where AS is an access to
a global array g at location rl0, . . . , lns, first the access must be executed by more than one
thread. Hence, |Π| ą 0 and the abstraction of Π, αpΠq “ J. Further, the flattened access
index must be a non-linear or large linear function of tid0, so that accesses by threads are
spread far-apart in memory. This can occur, first if one of l0 to ln´1 is dependent on tid0
and on flattening leads to a large access index, which implies αpliq ‰ c0; second, if ln is
has a large dependence on tid0, in which case αplnq “ J; third, if ln has a unit dependence
on tid0, but the size of each element in the array is greater than 4 bytes. If none of the
above conditions hold, then the access is coleasced, because the flattened index is either a
constant or has at most unit dependence on tid0 but the size of each element is less than
4 bytes. Both of these scenarios lead to a single transaction to global memory. Therefore,
the access must be uncoalesced if one of the above conditions is true. Also, there must exist
an abstract reachable configuration that subsumes the configuration pσ,Π,ASq, and such a
configuration would be reported as uncoalesced by the analysis.

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 49

Theorem 4.2. For all global memory accesses AS, if a range-based uncoalesced configuration
pσ,Π,ASq is reachable, then an abstract uncoalesced configuration pσ̂ 1, π̂ 1,ASq is also reachable,
and the analysis identifies AS as uncoalesced.

4.4 Implementation

We have implemented the static analysis to detect uncoalesced accesses in our abstract ex-
ecution framework for LLVM (Section 3.4). Recently, a front-end for CUDA was added to
LLVM [72], that converts programs written in CUDA into LLVM IR. Since CUDA programs
consist of both the CPU and GPU code, the frontend makes two passes through the program.
In the first pass, it parses all GPU kernels and generates a single file containing LLVM IR for
the GPU code, also known as the device code. In the second pass, it parses CPU methods
into LLVM IR and generates a file with LLVM IR for the CPU code, also called the host code.
The individual IRs can be subsequently analyzed and transformed to obtain the optimized
IRs which can then be converted into a GPU binary.

In Section 4.3, we present the overall design and the core idea behind the analysis. To do
this however, we gloss over many features of mordern programming langauges like pointers,
structures and inter-procedural nature of programs. Most of these are present in current
GPU programming languages. Therefore, it is necessary to support them in a static analysis.
We address this here and describe how our static analysis for uncoalesced accesses handles
these practical challenges for current programming languages.

4.4.1 Handling Pointers and Structures

Pointers. Like any other programming language, current GPU programming languages
support pointers and structures. We first describe how pointers are handled in our analysis.
We extend the abstract values in our analysis with a bit of information isPointerType that
distinguishes a regular abstract value from a pointer abstract value. A pointer abstract value
tracks the dependence of the address of a variable on tid0 unlike regular abstract values which
track the dependence of the value of a variable. This is useful to track the dependence for
variables whose address is initialized dynamically, for instance, by dereferencing a pointer
variable. We observe that for each variable in the program, storing either one of the regular
abstract value or the pointer abstract value suffices. If the address of a variable is initial-
ized dynamically at run-time, then storing the abstract value for the address of the variable
gives enough information about the value of the variable. Consider the following example
to understand this further. Suppose a is a pointer variable independent of tid0.

int *p = a + t i d [0];
int q = *p;
int r = *a;

Now p is assigned a pointer abstract value with value c1. Since the address of p is dependent
on tid0, the instance of p in each thread corresponds to a distinct location. Each location
can hold an arbitrary value, and therefore, dereferencing the pointer would return a value

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 50

that has arbitrary dependence on tid0. Hence, dereferencing p assigns an abstract value J
to q. However, if the pointer variable is independent of tid0, which happens to be the case
for variable a, then each thread accesses the same location in a. We assume that distinct
threads do not write to the same location in the array, otherwise we would have a data-race.
Therefore, the value read by each thread is identical, and hence, the dereferenced value is
also independent of tid0. Therefore, we assign the abstract value c0 to variable r.

The semantics for pointer abstract values can be defined similar to regular abstract values,
except the statements considered involve pointer arithmetic and pointer assignments. We
assume that the pointers do not alias with each other, and therefore, we do not implement
any alias analysis. This assumption is generally true for GPU programs. The GPU programs
are much simpler than regular programs with very few complex data-structures. Hence,
aliasing of pointers is not a problem in general.

Structures. Handling structures does not pose any major challenges. LLVM IR implements
field accesses in structures by indexing the structure at a constant location. Hence, array
accesses and field accesses appear alike and no special semantics are necessary. One small
issue, however, is that the size of element accessed by a thread may not correspond to the
stride for the array. Consider the following example. Suppose a is a global array of type
int4.

// struct int4 {int p; int q; int r; int s; } a [1024];

int x = a[t i d [0]].p;

Here, each thread accesses the field p in consecutive locations of array a. While the size
of element accessed is 4 bytes, the size of each element in the array is 16 bytes. Hence, a
total of 4 global memory transactions are necessary to fetch data for a fully-enabled warp,
even though the size of element accessed is only 4 bytes. We handle this discrepency by
back-tracking from the element access to the access where the array was accessed with a
tid0-dependent index and using the size of element in the array being indexed as the desired
element size.

4.4.2 Handling Multiple Procedures

The analysis in Section 4.3 glosses over how the parameters for which the analysis is run are
initialized. We now describe how the calling context is computed and how the parameters
for a kernel are initialized. We do a multi-procedure analysis to compute these for each
kernel in the program. We use a top-bottom analysis approach where we analyze callers
before callees. Note that, we analyze each kernel only once, but in a sequence where a
caller for a kernel is analyzed before the kernel itself. We start the analysis from global
kernels which are kernels called from the CPU code. For these kernels, we assume that the
parameters passed to the kernel are independent of tid0, and hence, we initialize them to c0
(bTF for boolean variables). We next define how the calling context for a GPU function f is
constructed. When a function call to f is encountered during the analysis of g, a caller for

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 51

f, we record the abstract values for parameters, ν̂g0 , . . . , ν̂
g
n, passed to f during the function

call. Let the existing calling context for f consist of abstract values ν̂0pfq, . . . , ν̂npfq, where
ν̂ipfq refers to the current value for ith parameter in function f. We update the calling
context by merging the new parameter values with existing ones to obtain values ν̂ 10pfq “
joinpν̂0pfq, ν̂g0 q, . . . , ν̂ 1npfq “ joinpν̂npfq, ν̂gnq for the updated calling context.

We observe that most kernels are called with the same call context and the parameters get
the same values across function calls. Therefore, analyzing kernels under each individual call
context is not required, and analyzing them under a singlemerged context suffices. Further, a
top-bottom analysis suffices, since the result of a kernel call rarely flows into an access index,
and when that is the case, such calls are often inlined for efficiency. This greatly improves
the scalability of the analysis, and allows the analysis to finish at compile-time. We note,
however, this approach does not support recursive kernels, but then GPU programs often
do not consist of recursive kernels in practice. Hence, this approach provides a simple and
efficient way to analyze GPU programs.

4.4.3 Handling Control Flow Graph Representation

LLVM IR exposes a control flow graph representation of the program, which consists of a
directed graph of nodes, each node representing a statement or a sequence of statements,
also known as a basic block, and each edge representing the flow of control from one state-
ment to the next. Each edge might be guarded by a condition under which the transition can
be taken. The conditionals and loops are lowered into this representation and their explicit
structure is lost. This poses problems specially for the special merge operation after the exe-
cution of branches and the loop body. Further, the IR is often converted into an SSA (Single
Static Assignment) form where each variable v is assigned a value once in the program. If
the same variable is assigned a value in both branches of a conditional, then during the SSA
conversion, the variable v is replaced by new temporaries v1 and v2, assigned values within
branches, and the variables v1 and v2 are then merged in a ‘PHI statement’ to produce a new
variable v3 after the conditional. The PHI statement records the variables being merged and
the corresponding nodes in which each variable is assigned. It produces the merged value
and assigns it to a new variable. The following program shows the usage of PHI statements.

int v = 0;
if (v > 5) {

v1 = v + 5;
} else {

v2 = v + 10;
}
v3 = PHI(v1 , v2);

Since the explicit structure of conditionals and loops is lost, we use an alternate approach
to implement the merge operation for conditionals and loops with a tid0-dependent condi-
tion. First, we identify the variables assigned a value on either branch via the PHI statements
present after the conditional or loop. For each PHI statement S that merges variables v1 and
v2 into v3, we compute the abstract value for v3 as follows. We first identify the immediate

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 52

dominator for the PHI statement S. A node u is a dominator for node v in a graph G if every
path to v from the root node goes through u. An immediate dominator is a dominator that
has the least distance to v. For loops and conditionals, the branches and the loop body are
dominated by a node with a branch statement where the test condition for the loop/con-
ditional is checked. Further, the node after the branches and the loop body where the PHI
statement S is present, is immediately dominated by the node with the branch statement.
Therefore, we identify the dominating node for PHI statement S and check if it consists of
branch statement with a tid0-dependent condition. If so, we assign v3 the value J, since
v3 potentially has a non-linear dependence on tid0. Otherwise, we assign it the join of the
incoming value and its previous value, so that it is assigned the value joinpv1, v2q. Remain-
ing variables are not updated inside the branches/loop-body, and hence, remain unchanged
after the loop/conditional.

We have a problem when the values are stored within branches/loop-body via a store
statement, and retrieved after the conditional/loop via a load statement. Consider the fol-
lowing example (based on a benchmark program ParticleFilter in Rodinia benchmark suite).
Suppose p is a pointer variable independent of tid0 and points to a local variable x in each
thread.

int *p = &x;
if (t i d [0] > N) {

*p = 10;
} else {

*p = 20;
}
int y = *p;

As can be observed, the value of y has non-linear dependence on tid0. Our approach can
not handle this scenario and incorrectly assigns the value c0 to y. This is because there
is no PHI statement after the conditional to merge assignments within the branches. One
approach to address this is to usememory dependence information that maps each load/store
to the immediate store/load statement prior to the load/store instruction. We observed that
memory dependence analysis is too conservative, and hence, the generated information is
too imprecise which leads to a large number of false positives. Also, we observed this issue
in only one benchmark ParticleFilter in the Rodinia benchmark. Therefore, we decided not
to handle this scenario.

4.5 Evaluation

This section describes the evaluation of our static analysis on the Rodinia benchmarks (ver-
sion 3.1) [10]. Rodinia consists of GPU programs from various scientific domains. We com-
pare static analysis against a dynamic analysis implementation that executes benchmarks
for the inputs provided with Rodinia and collects uncoalesced accesses at run-time. The dy-
namic analysis is precise, and hence, each reported access is an actual access. However, the
analysis might miss uncoalesced accesses in uncalled kernels and along unexecuted paths in

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 53

Benchmark LOC Real UA Static Analysis Dynamic Analysis
UA (real) Runtime(s) UA Runtime(s)

backprop 110 7 0 (0) 0.14 7 5.23
bfs 35 7 7 (7) 0.07 0-7 3.89
b+tree 115 19 19 (19) 0.35 7 16.71
CFD 550 0 22 (0) 12.41 - -
dwt2D 1380 0 16 (0) 5.99 n/a 3.72
gaussian 30 6 6 (6) 0.07 5-6 6.82
heartwall 1310 8 25 (8) 39.87 - -
hotspot 115 3 2 (0) 0.75 3 0.89
hotspot3D 50 2 12 (2) 0.21 2 327.00
huffmann 395 21 26 (21) 0.68 3 2.42
lavaMD 180 9 9 (9) 0.73 5 511.60
lud 160 3 0 (0) 0.34 3 0.83
myocyte 3240 19 19 (19) 1,813.72 0 134.13
nn 10 4 4 (4) 0.06 2 0.13
nw 170 7 2 (2) 0.41 6 4.17
particle filter 70 4 3 (2) 0.58 4 11.62
pathfinder 80 3 0 (0) 0.22 3 4.25
srad_v1 275 2 14 (2) 0.33 2 185.00
srad_v2 250 9 0 (0) 1.38 9 53.94
streamcluster 45 10 10 (10) 0.11 - -

143 180 (111) 69

Table 4.1: Evaluation results for static analysis and dynamic analysis on Rodinia benchmark
programs. We use UA to refer to uncoalesced accesses. “-” indicates the DA hit the 2-hour
timeout.

kernels. More details about the dynamic analysis can be found in [4]. We run our static and
dynamic analyses to identify existing uncoalesced accesses in these programs. We run an
intra-procedural version of the static analysis, where the initial parameters for each kernel
are initialized to tid0-independent values. We observe that most kernels were called with
tid0-independent values, and therefore, the intra-procedural analysis is sufficient to identify
uncoalesced accesses present in the benchmark suite. We have implemented our analyses
in LLVM version 3.9.0, and compile programs with --cuda-gpu-arch=sm_30. We use CUDA
SDK version 7.5. We run our experiments on an Amazon EC2 instance with Amazon Linux
2016.03 (OS), an 8-core Intel Xeon E5-2670 CPU running at 2.60GHz, and an Nvidia GRID
K520 GPU (Kepler architecture).

Table 4.1 shows results of our experiments. It shows the benchmark name, the lines of
GPU source code analyzed, the manually-validated real uncoalesced accesses, and the num-
ber of uncoalesced accesses found and running time for each analysis. The Rodinia suite
consists of 22 programs. We exclude 4 (hybridsort, kmeans, leukocyte, mummergpu) as

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 54

they could not be compiled due to lack of support for texture functions in LLVM. A subtle
point to note here is that since the static analysis was designed by analyzing the benchmarks
themselves, the static analysis results might be biased. Yet, the analysis itself is simple and
well-designed without specific adaptation for any of the benchmarks. Also, the results span
a large number of benchmarks from varied domains, and are reasonable for any static anal-
ysis. Hence, given that the static analysis finishes within a few minutes for most benchmarks
and can execute at compile-time, the merits of static analysis stand even when they overfit
the provided benchmarks. Though, a further analysis on other benchmarks to validate gen-
eralization of the analysis would be useful. We next address different questions related to
the evaluation.

Do uncoalesced accesses occur in real programs? We found 143 manually-validated
uncoalesced accesses in Rodinia benchmarks, with uncoalesced accesses in almost every
program (Column “Real uncoalesced accesses” in Table 4.1). A few uncoalesced accesses
involved random or irregular access to global arrays (bfs, particle filter). Such accesses
are dynamic and data-dependent, and hence, difficult to fix. Next, we found uncoalesced
accesses where consecutive threads access consecutive rows of global matrices, instead of
columns (gaussian). Such accesses could be fixed by assigning consecutive threads to consec-
utive columns or changing the layout of matrices, but this is possible only when consecutive
columns can be accessed in parallel. Another common uncoalesced access occurred when
data was allocated as an array of structures instead of a structure of arrays (nn, streamclus-
ter). A closely related issue was one where the array was divided into contiguous chunks
and each chunk was assigned to a thread, instead of allocating elements in a round-robin
fashion (myocyte, streamcluster). There were some uncoalesced accesses which involved
reduction operation (for example, sum) on arrays (heartwall, huffmann). These accesses do
not have a standard solution, and few of the above solutions could be applicable. A few un-
coalesced accesses were caused by alignment issues where accesses by a warp did not align
with cache-block boundaries, and hence, got spilled over to multiple blocks. These were
caused, first, when the input matrix dimensions were not a multiple of the warp size which
led consecutive rows to be mis-aligned (backprop, hotspot3D), or when the array itself was
misaligned due to incorrect padding (b+tree). These could be fixed by proper padding.

Which real uncoalesced accesses does static analysis miss? While the static analysis
identifies a significant number of uncoalesced accesses (111 out of 143), it does miss a few in
practice. We found two primary reasons. 22 of the missed uncoalesced accesses depend on
the second dimension of thread-id, tid1, while we only considered the smallest dimension in
our analysis. Uncoalesced accesses typically do not depend on higher dimensions unless the
block dimensions are small or not a multiple of the warp size. We modified our analysis to
track the second dimension and observed that all such uncoalesced accesses were caught by
our static analysis at the cost of 20 new false positives. Next, eight of the missed uncoalesced
accesses were alignment-based which were caused by an unaligned offset added to tid0. The
actual offsets are challenging to track via a static analysis. Finally, two missed uncoalesced
accesses (particle filter) were due to an issue with conditionals described in Section 4.4.3.

What false positives does static analysis report? For most programs, the static analy-
sis reports few or no false positives. The primary exceptions are CFD, dwt2D and heartwall,

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 55

which account for the bulk of our false positives. A common case occurred when tid0 was
divided by a constant, and multiplied back by the same constant to generate the access index
(heartwall, huffman, srad_v1). Such an index should not lead to uncoalesced accesses. The
static analysis, however, cannot assert that the two constants are equal, since we do not track
exact values, and hence, sets the access index to J, and reports any accesses involving the
index as uncoalesced. Another type of false positive occurred when access indices were non-
linear function of tid0, but consecutive indices differed by at most one, and led to coalesced
accesses. Such indices were often either generated by indirect indexing (CFD, srad_v1) or
by assigning values in conditionals (heartwall, hotspot, hotspot3D). In both cases, our static
analysis conservatively assumed them to be uncoalesced. Lastly, a few false positives hap-
pened because the access index was computed via a function call (__mul24) which returned
a coalesced index (huffmann), though we conservatively set the index to J.

How scalable is static analysis? As can be noted, the static analysis is quite fast, and
finishes within seconds for most benchmarks. The largest benchmark, myocyte, is 3240 lines
of GPU code, with the largest kernel containing 930 lines. The static analysis takes significant
time for this benchmark, however for the remaining benchmarks, it finishes within a few
minutes.

How does static analysis compare with dynamic analysis? The dynamic analysis
misses about half of the uncoalesced accesses in our benchmarks, but the results reported by
the analysis correspond to actual uncoalesced accesses. We found several benchmarks where
different inputs varied the number of uncoalesced accesses reported by dynamic analysis
(bfs, gaussian, lud). Similarly, the analysis finds uncoalesced accesses along a single exe-
cution path, so all uncoalesced accesses in unexecuted branches or uncalled kernels were
not found. Due to compiler optimizations it can be difficult to map the results of dynamic
analysis back to source code. In dwt2D, we were unable to do so due to multiple uses of
C++ templates. Moreover, the dynamic analysis does not scale to long-running programs,
as it incurs slowdown of orders of magnitude.

4.6 Related Work

There are a few existing static analysis tools to identify uncoalesced accesses. First, many
existing compilers for optimizing GPU programs use implicit analysis to detect uncoalesced
accesses [75, 64, 66, 6]. However, these analyses are stated informally, often hidden as part
of the optimization, and not evaluated for precision. Further, they present additional con-
straints which restricts their applicability. CUDA-lite [66] relies on programmer annotations.
Sung et al [64] and Baskaran et al [6] require the programs to have affine acccess patterns.
Yang et al [75] present an incomplete analysis covering a restricted set of coalesced accesses
and conservatively reporting others as uncoalesced. CUPL [5] presents a preliminary static
analysis to detect uncoalesced accesses. However, unlike our work, it does not present a
formalization and a detailed evaluation for its analysis.

Several tools have been developed to verify GPU programs, which also identify unco-
alesced accesses in programs along with other performance and correctness issues. GK-
LEE [44] presents a symbolic execution engine for CUDA programs, where the programs

CHAPTER 4. STATIC DETECTION OF UNCOALESCED ACCESSES 56

are executed for symbolic inputs to identify various issues including uncoalesced accesses.
PUG [43] and GPUVerify [8] present static analysis tools to identify data-races in GPU pro-
grams where threads are also treated symbolically apart from symbolic inputs, and two
symbolic threads are sufficient to identify all possible data-races in the programs. The pri-
mary drawback of these approaches is that they do not scale to large programs. They rely
on SMT solvers to check the validity of symbolic expressions computed during the symbolic
execution, which do not scale to large formulae. On the other hand, our work uses abstract
values and abstract semantics to compute values during the analysis, which avoids the need
for SMT solvers and scales the analysis to large programs.

There are a few dynamic analysis approaches to identify uncoalesced accesses. Fauzia
et al [23] use dynamic analysis to identify uncoalesced accesses, and then use this informa-
tion to drive polyhedral model based code transformations to generate colaesced accesses.
CuMAPz [37] relies on runtime traces to present a comprehensive analysis of GPU program
performance for different types of memory access patterns. Nvidia presents various perfor-
mance analysis tools [54] based on profiling and tracing via hardware performance counters,
where uncoalesced accesses is one of the few analysis results. All these approaches are, how-
ever, computationally expensive and require an actual execution of GPU programs. Our work
can complement these by providing a fast compile-time alternative to compute uncoalesced
accesses.

4.7 Conclusion

In this chapter, we present the problem of uncoalesced accesses, a precise definition of the
problem, and a light-weight compile-time analysis to identify such accesses in GPU programs.
The analysis relies on the regularity of global memory access patterns which are easy to
identify at compile-time. The analysis uses on a non-trivial abstract domain that tracks the
dependence of variables on thread-id tid0. This is similar to taint-tracking in information
flow analyses, where the flow of taint is tracked from sensitive variables to public variables.
However, our analysis tracks the dependence on tid0 rather than the value itself, which makes
it unique. Tracking the dependence on thread-id, or in general, the relationship between the
execution of a thread and its thread-id is essential for scalable analysis of GPU programs.
This idea can be further extended to other kinds of analyses like detecting shared memory
bank-conflicts, which we will address in future work.

Chapter 5

Block-Size Independence for GPU
Programs

Tuning GPU applications is important to achieve significant speedups and to have perfor-
mance portability across GPUs. It can, however, introduce subtle errors into the application
which can be difficult to debug and resolve. We need tools that can automatically detect
these errors and ensure any transformations performed while tuning an application are cor-
rect. Existing tools for GPU verification help identify correctness issues like data-races and
barrier-divergence [44, 43, 8], but none verify correctness of transformations. Further, au-
tomatically synthesizing optimal execution configuration is difficult since the optimization
space is large and non-convex [58]. Therefore, tuning applications by trying out different
values for parameters is unavoidable. This further necessitates automatic tools that can
verify correctness of transformations. This chapter focuses on the correctness of tuning an
execution parameter block-size. The parameter block-size represents the number of threads
in each thread-block and is specified during kernel invocation, along with the total number
of threads. The block-size determines how resources required by the program are allocated
on GPU cores, and is often tuned to maximally utilize each core for performance, while
balancing performance across cores in a GPU.

We present an analysis to verify block-size independence of GPU programs which ensures
changing block-size is a valid transformation and does not introduce errors into the program.
In the GPU execution model, threads in a thread-block can share data via shared memory,
and changing the block-size alters the sets of threads allowed to share data, making program
equivalence hard to reason about. Therefore, we only consider synchronization-free pro-
grams, where each thread executes independently of other threads and any sharing of data
between threads is prohibited and leads to a data-race. For synchronization-free programs,
the analysis needs to ensure that the execution of each individual thread is independent of
block-size. The analysis is a taint-tracking approach that checks if any block-size dependent
values flow into the final result for a thread. Each thread in a GPU program is provided with
a block-id, bid, a thread-id within the block, tid, and the block-size, bdim. These values get
modified when the block-size is modified, and hence, the analysis tracks the flow of these
values through program variables to verify that they do not influence the final result.

57

CHAPTER 5. BLOCK-SIZE INDEPENDENCE FOR GPU PROGRAMS 58

__global__ void cudaProcess (int imgw , unsigned g_odata [][imgw]) {
int tx = t i d [0]; int ty = t i d [1];
int bw = bdim [0]; int bh = bdim [1];
int x = b i d [0]* bw + tx;
int y = b i d [1]* bh + ty;
uchar4 c4 = make_uchar4 ((x & 0x20)?100:0 , 0,

(y & 0x20)?100:0 , 0);
g_odata [y, x] = rgbToInt (c4.z, c4.y, c4.x);

}

Figure 5.1: Example illustrating block-size independence.

Interestingly, the expression pbidi ¨ bdimi ` tidiq identifies a globally unique id for each
thread for all dimensions i, and remains unchanged when the block-size is modified. This is
because, the set of global-ids for a thread-grid defines a continuous space of values where ev-
ery id within the space is assigned to some thread. Changing the block-size does not change
this space of values, and hence, the global-id for each thread remains unchanged. The anal-
ysis tracks the sub-expressions of the global-id expression and when a variable is observed
to be a function of this expression, it is marked as independent of block-size by the analysis.
To gain further precision, the analysis also tracks block-size independent multipliers, so the
expressions of the form pk ¨ bidi ¨ bdimi` k ¨ tidiq, where k is a block-size independent value,
can be proven block-size independent. Finally, if none of the block-size dependent values
flow into the final state for any thread, the program is determined as block-size indepen-
dent. The analysis uses a novel abstraction to track these values, where symbolic constants
track block-size independent multipliers while abstract constants track sub-expressions of
global-id. This combination of abstract values with symbolic values helps scale the analysis
while retaining good precision.

To understand this further, consider the function cudaProcess() in Figure 5.1 from a
GPU program “simpleCUDA2GL” in Nvidia CUDA SDK. The function initializes pixels in an
image represented by array g_odata. Each thread initializes a globally unique location py, xq
with a value that is a function of these coordinates. The coordinates x and y are independent
of block-size. Also, the function is synchronization-free and each thread executes indepen-
dently. Therefore, the function must be block-size independent. To prove this, the analysis
tracks the flow of block-size dependent values bid, bdim, and tid through program variables.
Note that, to mirror the 2-dimensional nature of the image, the threads are organized in a
2-dimensional grid, where the first and second dimensions identify the x and y coordinates,
respectively. Initially, imgw is block-size independent. Next, tx is assigned tid0, ty is as-
signed tid1 and so on. Importantly, variables x and y are assigned pbid0 ¨ bdim0 ` tid0q and
pbid1 ¨ bdim1 ` tid1q, respectively, both of which are block-size independent. Further, calls to
functions make_uchar4() and rgbToInt() return block-size independent values. Therefore,
writes into array g_odata by threads and the resultant final array are block-size indepen-
dent. Hence, the analysis verifies the program to be block-size independent. Now, suppose

CHAPTER 5. BLOCK-SIZE INDEPENDENCE FOR GPU PROGRAMS 59

the program instead initializes variable y as:

int y = b i d [1]* bw + ty;

Notice we use variable bw which corresonds to bdim0 instead to bh, and therefore, value of
y is block-size dependent, and the program is block-size dependent for this initialization of
y. If the block-size along both first and second dimensions is equal initially (which is often
the case), then this would not be noticable during the execution of the program. However, if
block-size is updated so that it has different values along the two dimensions, then we might
get inconsistent results.

The chapter is organized as follows. Section 5.1 identifies and formalizes the problem of
block-size independence for GPU programs. Section 5.2 presents a scalable inter-procedural
analysis to verify block-size independence for the class of synchronization-freeGPU programs.
Section 5.3 demonstrates the relevance of the problem for real-world GPU programs through
an extensive evaluation on Nvidia CUDA SDK samples. Section 5.4 presents some related
work and Section 5.5 concludes.

5.1 Formalization

In this section, we present a formalization for the problem of block-size independence in
Section 5.1.1. We rely on the formal-model described in Section 2.3 to define the prop-
erty. We next prove some interesting properties about synchronization-free GPU programs
in Section 5.1.2, which are useful to prove the correctness of the analysis.

5.1.1 Block Size Independence

We formally define block-size independence for a GPU program. Let two states σ and σ 1 be
equivalent (i.e. σ ” σ 1) if they consist of the same set of variables and each variable has the
same valuation in both states. Also, recall from Section 2.3, JKKpσG, ~N, ~Bq represents the
execution of a kernel K in initial global state σG for a grid with grid-size ~N and block-size
~B. We state block-size independence in the following definition.

Definition 5.1. A GPU program P is block-size independent, if and only if for all initial global
states σG and grid-sizes ~N, the execution of the program is independent of the block-size ~B,
that is:

for all σG, ~N, ~B, ~B 1, JKKpσG, ~N, ~Bq ” JKKpσG, ~N, ~B 1q.

Note that as described in Section 2.4, CUDA specifies the number of blocks ~Nb instead of
the total number of threads as grid-size. However, if the updates to block-size are restricted
to divisors of total number of threads i.e. ~B 1i is a divisor for p~Nbqi~Bi for all grid dimesions i,
then the new grid consists of the same number of total threads as the original grid and the
above definition is also applicable to CUDA programs.

CHAPTER 5. BLOCK-SIZE INDEPENDENCE FOR GPU PROGRAMS 60

0 1 2 3 4 5
0

1

2

3

(a) ~N = 22 ˆ 10, ~B = 4 ˆ 3.

0 1 2 3 4
0

1

2

(b) ~N = 22 ˆ 10, ~B = 5 ˆ 4.

Figure 5.2: Example illustrating block-size independence of global-id expression. Note the
global position of the thread for darkened cell remains p13, 8q, also referring to the global-id.
Further, the thread-grid defines a continuous space where each thread is assigned a global-id.

5.1.2 Reduction to Thread-local Block Size Independence

In a synchronization-free GPU program, each thread must execute independently of the
other threads (since any dependence on updates from other threads would lead to a data-
race). Therefore, the global problem of verifying block-size independence of the program
can be reduced to the local problem of verifying block-size independence for the execution
of each thread in the program. We show that if the program is synchronization-free, then
verifying thread-local block-size independence for the program is sufficient to verify block-
size independence for the program.

We first define thread-local block-size independence for GPU programs. A GPU program
is thread-local block-size independent if the execution of each thread in the thread-grid is
independent of block-size. Given block-sizes ~B and ~B 1, let a thread τ in grid Gp~N, ~Bq be
equivalent to another thread τ 1 in grid Gp~N, ~B 1q, i.e. τ ” τ 1, if they have the same unique
global location in the thread-grid, namely:

for all 0 ď i ă d, bidipτq.bdimipτq ` tidipτq “ bidipτ 1q.bdimipτ 1q ` tidipτ 1q

where bidipτq refers to the value bidi in thread τ. For instance, the global-id for thread
corresponding to the darkened cell in Figure 5.2 remains unchanged as p13, 8q, even though
the individual thread-ids and block-ids are modified when block-size is modified. We can

CHAPTER 5. BLOCK-SIZE INDEPENDENCE FOR GPU PROGRAMS 61

τ0τ1τ2τ3τ4τ5. . .
i0
i1
i2
i3
i4
i5...

(a) Fine-grained interleaving

τ0τ1τ2τ3τ4τ5. . .
i0
i1
i2
i3
i4
i5...

(b) Coarse-grained interleaving

Figure 5.3: The figure shows fine-grained vs coarse-grained interleaving of threads in a
block. The rows represent sequence of instructions to be executed, while the columns rep-
resent the threads in a block. The arrows signify the order in which the threads and the
instructions are executed.

observe this equivalence to be a one-to-one relation, where each thread τ in the first grid
corresponds to a unique global thread τ 1 in the second grid. Now, the program is thread-local
block-size independent, if each pair of equivalent global threads has equivalent executions.
Recall JSKpσ,Πq denotes the execution of statement S for a set of threads Π starting in initial
state σ. Also remember pGpσq represents the projection of state σ on to the global variables
VG.

Definition 5.2. A GPU program P is thread-local block-size independent, if and only if for all
initial states σ and grid-sizes ~N, the global state after the execution of each thread in the
thread-grid is independent of block-size. Formally, the program is thread-local block-size
independent iff:

for all σ, ~N, ~B, ~B 1, τ P Gp~N, ~Bq, τ 1 P Gp~N, ~B 1q,
τ ” τ 1 =ñ pGpJKKpσ, tτuqq ” pGpJKKpσ, tτ 1uqq.

We now observe that for a synchronization-free program, the lock-step execution of
threads in a block is equivalent to executing threads one after another. This is because,
to avoid data-races, each thread must operate independently and not see updates from
other threads. Therefore, the order of execution between threads does not matter and a
fine-grained interleaving (Figure 5.3a) produces the same execution as a coarse-grained in-
terleaving (Figure 5.3b).

Lemma 5.3. Given a synchronization-free GPU programP and a set of threadsΠ “ tτ0, . . . , τku,

CHAPTER 5. BLOCK-SIZE INDEPENDENCE FOR GPU PROGRAMS 62

the lock-step execution of threads is equivalent to executing threads sequentially:

for all σ,Π, JKKpσ,Πq ” σk`1,
where σ0 “ σ and for all 0 ď i ď k,σi`1 “ JKKpσi, tτiuq.

Proof sketch. Suppose the lock-step execution of threads is not equivalent to sequential exe-
cution of threads. Then, there must exist a variable v that differs in its final value after the
two executions. This implies the variable v must have seen two distinct writes in the two
executions. Let the two writes be S1 and S2 respectively. We show that the two writes must
define a data-race. If the writes lie within distinct threads, then clearly there is data-race
between the two threads. Alternately, if the writes lie within the same thread, there must
be some variable v 1 in the thread that is assigned distinct values in the two executions. By
backward reasoining, we can show that the distinct values for the variable must originate in
distinct writes to a variable in distinct threads, which represents a data-race.

By Lemma 5.3, the lock-step execution of threads in a block can be substituted with
sequential execution of threads. Next, we observe that we can execute each thread in a
state where the local and shared variables are undefined initially. This is because the thread
must not observe any updates to these variables from the previously executed threads, or we
would have a data-race. Also, these variables are discarded at the end of the execution of
the block and we need not retain their values. Remember B represents the set of all blocks
in thread-grid and JKKpσG, Γq represents execution for a set of blocks Γ , where the local and
shared variables are undefined initially and the result of the execution consists of the global
state only.

Lemma 5.4. Given a synchronization-free GPU program P and a block b, the lock-step execu-
tion for block b is equivalent to executing threads sequentially with local and shared variables
initialized to undefined values:

for all σG,b P B,
JKKpσG, tbuq ” σGk`1, where σG0 “ σG and σGi`1 “ p

GpJKKpσLK Y σ
S
K Y σ

G
i , tτiuqq,

for all τi in Tpbq “ tτ0, . . . , τku.

Finally from Lemma 5.4 and the definition of thread-local block-size independence, the
execution of each thread in the first grid can be substituted with the execution of equivalent
thread in the second grid, and therefore, thread-local block-size independence of a synch-
ronization-free program implies block-size independence for the program. We conclude the
following theorem.

Theorem 5.5. If a synchronization-free GPU program P is thread-local block-size indepen-
dent, then it is also block-size independent.

CHAPTER 5. BLOCK-SIZE INDEPENDENCE FOR GPU PROGRAMS 63

5.2 Analysis for Synchronization-free GPU Programs

This section presents an analysis to verify block-size independence for synchronization-free
GPU programs, where the kernel does not contain __syncthreadspq statements. In a synch-
ronization-free GPU program, the global problem of verifying block-size independence of the
program can be reduced to the local problem of verifying block-size independence for the
execution of each thread in the program, as shown in Section 5.1.2. Further, the execution
of a thread is independent of block-size if the writes by the thread to the shared and global
variables do not depend on block-size1. A write can depend on block-size if either the location
accessed, the value written or the condition under which the write is executed is dependent
on block-size. The only sources of block-size dependence in a thread are the thread’s block-id,
bidpτq, the thread-id, tidpτq, and the block-size itself, bdimpτq “ ~B. Further, as we observed
earlier, the expression gidipτq “ pbidi ¨ bdimi ` tidiqpτq is independent of block-size for all
thread dimensions i.

We present our analysis to check thread-local block-size independence of GPU programs
and to ensure that the execution of each thread is block-size independent. Initially when
a thread’s execution starts, only constants bid, bdim and tid are block-size dependent and
the remaining variables are block-size independent. While bdim is equal to block-size, the
thread-id tid and block-id bid of a thread also depend on the block-size and get updated when
the block-size is modified. Hence, if any of these values potentially flows into a global variable
update, then the final global state after the thread’s execution depends on block-size and the
program is block-size dependent. The analysis defines an abstraction of state and abstract
semantics for kernel instructions to track the flow of block-size dependent values during a
thread’s execution. Note we run the analysis separately for each dimension of the thread-
grid. So for the subsequent discussion, consider bid, bdim and tid to be one-dimensional
values.

Abstract Domain. The analysis defines an abstract domain to track the dependence of each
local scalar variable on block-size. The abstract domain assigns each local integer/real vari-
able an abstract value from the set pVint “ tcind,kctid,kcbid,kcbdim,kcbidcbdim, cbsizeu, where k
is a block-size independent variable. The values are:

cind : the value is independent of block-size.
kcbid : the value is of the form k ¨ bid.
kcbdim : the value is of the form k ¨ bdim.
kctid : the value is of the form pk ¨ tid` constq.
kcbidcbdim : the value is of the form pk ¨ bid ¨ bdim` constq.
cbsize : otherwise.

The value cind represents all block-size independent values. The abstract value cbsize repre-
sents values with arbitrary dependence on block-size. We observe the expression pk ¨ bid ¨
bdim`k ¨ tidq, where k is a block-size independent variable, is independent of block-size. To

1Reads can be ignored because our __syncthreadspq-free and race-free assumptions permit a thread to only
read values it has written itself or are part of the initial state.

CHAPTER 5. BLOCK-SIZE INDEPENDENCE FOR GPU PROGRAMS 64

take this account, the analysis tracks abstract values for sub-expressions of this expression,
kcbid,kcbdim,kctid and kcbidcbdim, where k is the multiplier or a symbolic constant represent-
ing a block-size independent local variable. We assume each local variable has a unique
definition (e.g. SSA form), and the variables are not updated after they are first defined.
Hence, the symbolic constant represents the correct abstract value for each variable k.

We now define the abstract values formally. Let σ̂ be the abstraction of program state σ,
which maps each local variable to an abstract value, i.e. VL Ñ pV. Let l,k be local variables.
Let f0 be a function that maps each thread to a block-size independent value. For integer
and real variables, the abstraction is defined as:

σ̂plq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

cind, for all τ, σpl, τq “ f0pτq.
kcbid, σ̂pkq “ cind; for all τ, σpl, τq “ σpk, τq.bidpτq.
kcbdim, σ̂pkq “ cind; for all τ, σpl, τq “ σpk, τq.bdimpτq.
kctid, σ̂pkq “ cind; for all τ, σpl, τq “ σpk, τq.tidpτq ` f0pτq.
kcbidcbdim, σ̂pkq “ cind; for all τ, σpl, τq “ σpk, τq.bidpτq.bdimpτq ` f0pτq.
cbsize, otherwise.

We similarly define an abstraction for local boolean variables, which tracks whether the
boolean variable depends on block-size or not. Let b0 be a block-size independent boolean
function. The abstraction for boolean variables is:

σ̂plq “

"

bind, for all τ, σpl, τq “ b0pτq.
bbsize, otherwise.

Finally, we do not track shared and global variables or arrays in our abstraction. We
compensate by tracking each write to these variables and ensuring that the writes are inde-
pendent of block-size. We further define a path-predicate, π̂, which is the condition under
which a statement is executed. The value of π̂ is an abstract boolean value, representing
whether the condition is dependent on block-size or not.

Abstract Semantics. We now define some abstract semantics for propagating the abstract
state σ̂ and the path-predicate π̂ through statements in the kernel. Figure 5.4 defines updates
to the abstract states for different assignment statements and initial states. Note the rules
in Figure 5.4 are only valid if the path-predicate π̂ is bind. Further, we show rules for the
scenarios where the result is non-trivial and not equal to cbsize{bbsize. For the remaining
scenarios, the updated value for arithmetic/boolean variables is set to cbsize{bbsize. Lastly, the
path-predicate remains unchanged after each assignment statement.

We now briefly describe the rules shown in Figure 5.4. Note that when the multiplier k0
for an abstract value is constant 1, we drop the multiplier, e.g. cbid in rule Prod1. The rules
ensure that the abstraction is preserved. For example, in rule Sum2, abstract values k0ctid
and k1cbidcbdim are added together, where k0 equals k1. This is equivalent to the expression
pk0 ¨ tid`k0 ¨ bid ¨ bdimq, which we know is block-size independent. Hence, the final result is
assigned the value cind. Similarly, the other rules update the abstract state while preserving
the abstraction. An important point to note here is that during the product operation (rules
Prod1, Prod2, Prod3), the multiplier for at least one of the operands must be constant 1,

CHAPTER 5. BLOCK-SIZE INDEPENDENCE FOR GPU PROGRAMS 65

tid
σ̂ptidq “ ctid

bid
σ̂pbidq “ cbid

bdim
σ̂pbdimq “ cbdim

gdim
σ̂pgdimq “ cind

Sum1

lÐ l0 ` l1 σ̂pl0q “ cind
σ̂pl1q P tk0ctid,k1cbidcbdimu

σ̂ 1plq Ð σ̂pl1q

Sum2

lÐ l0 ` l1 σ̂pl0q “ k0ctid
σ̂pl1q “ k1cbidcbdim k0 ” k1

σ̂ 1plq Ð cind
Prod1

lÐ l0.l1 σ̂pl0q “ cind
σ̂pl1q P tcbid, cbdim, ctid, cbidcbdimu

σ̂ 1plq Ð l0σ̂pl1q

Prod2

lÐ l0.l1 σ̂pl0q “ cbid
σ̂pl1q “ k0cbdim

σ̂ 1plq Ð k0cbidcbdim
Prod3

lÐ l0.l1 σ̂pl0q “ k0cbid
σ̂pl1q “ cbdim

σ̂ 1plq Ð k0cbidcbdim

Arith

lÐ l0 op l1
σ̂pl0q “ cind
σ̂pl1q “ cind

σ̂ 1plq Ð cind
Rel

lÐ l0 rel l1
σ̂pl0q “ cind
σ̂pl1q “ cind

σ̂ 1plq Ð bind
Bool

lÐ l0 bop l1
σ̂pl0q “ bind
σ̂pl1q “ bind

σ̂ 1plq Ð bind

Read

lÐ vrl0, . . . , lns
σ̂pl0q “ cind . . . σ̂plnq “ cind

σ̂ 1plq Ð cind
Merge

σ̂0plq “ ν̂0 σ̂1plq “ ν̂1
σ̂ “ mergepσ̂0, σ̂1q ν̂0 “ ν̂1

σ̂plq Ð ν̂0

Figure 5.4: Abstract semantics for different assignment statements and initial abstract
states. State σ̂ is the incoming abstract state while σ̂ 1 is the updated state after the as-
signment. The path-predicate π̂ for the rules is bind. Lastly, op, rel and bop are arithmetic,
relational and boolean operators, respectively.

so that the multiplier for the other operand is set as the final multiplier. Otherwise, the result
is set to cbsize. This ensures that the set of symbolic values for the multiplier is limited to the
set of variables in the program and we do not consider complex expressions on variables for
the multiplier. While this is imprecise, it is necessary to scale the analysis.

A special scenario is that of writes to shared/global arrays rvrl0, . . . , lns Ð ls, where
the analysis checks if the accessed location, the value written and the path-predicate are
independent of block-size, i.e. the values σ̂pl0q, . . . , σ̂plnq and σ̂plq must be cind and the
path-predicate π̂ must be bind. If this is not the case, the write is potentially a function of
block-size and the analysis reports the write, and the kernel itself, to be block-size dependent.
Also, this ensures the values in shared/global arrays are always block-size independent, and
thus, the array reads return a consistent value in rule Read in Figure 5.4.

For conditionals [if l then S1 else S2], the analysis sets the path-predicates for S1 and
S2 to pπ̂ ^ σ̂plqq and pπ̂ ^ σ̂plqq, respectively, while propagating the same initial abstract

CHAPTER 5. BLOCK-SIZE INDEPENDENCE FOR GPU PROGRAMS 66

state σ̂ to both statements. Further, the final state after the conditional is a merge of the
states after S1 and S2. If the values for a variable are identical in both states (i.e. the type
and the multiplier are equal), then this is set as the merged value for the variable (rule
Merge). Otherwise, the merged value is set to cbsize{bbsize. Also, the path-predicate after
the conditional is set to the initial predicate π̂.

The semantics for loops are defined similarly to conditionals, but we must additionally
ensure that the analysis terminates. We observe that the set of abstract values is finite, with a
small number of different value types where themultiplier for each type ranges over the finite
set of local variables. Further, the merge operation ensures that the merged state supersedes
the input states, and is strictly “greater” than the input states (the set of abstract values
and the merge operation form a finite upper semi-lattice). Further, the abstract semantics
are monotonic over the semi-lattice. Therefore, the fixed point computation on loops must
terminate, and the analysis will reach the fixed point for the loop in a finite number of steps.

Algorithm. The overall algorithm is as follows. We initialize local variables to cind{bind in
the initial abstract state σ̂, while the path-predicate π̂ is initialized to bind. The constants bid,
bdim and tid are assigned values cbid, cbdim and ctid, respectively, while gdim is independent
of block-size and is assigned cind. The analysis executes the kernel for the abstract state σ̂
and the path-predicate π̂with the abstract semantics defined above. If it encounters a poten-
tially block-size dependent shared or global write, it terminates with block-size dependence.
Otherwise, it reports the kernel to be block-size independent.

Inter-procedural analysis. Our analysis also supports inter-procedural analysis, where a
kernel can call other kernels. We use a bottom-up analysis approach where the callees are
analyzed before the callers. We analyze each kernel assuming the parameters are set to
cind{bind initially and reuse this analysis result for all calls to the kernel with call arguments
cind{bind. For calls with block-size dependent arguments, we conservatively report the call to
be block-size dependent and return cbsize{bbsize as the return value. For library calls (where
the library code is not linked) and inline assembly instructions, we conservatively assume
the function to be block-size dependent and return value cbsize{bbsize. However, for specific
cases, like library calls to Math functions __sinf, __cosf, __sqrtf etc., where we know the
result is a trivial function of inputs, we assume the call to be block-size independent, and
return cind{bind if the call-arguments are cind{bind.

Implementation. The implementation for this analysis is very similar to that for detecting
uncoalesced accesses (Section 4.4). The primary difference lies in the representation of
multipliers in the abstract domain. LLVM exposes each variable in the program as a unique
Value* pointer. We use this pointer to represent the multiplier and to compare it against
other pointers. Since LLVM uses the SSA form, the pointer corresponds to a unique definition
and the value for the variable is not updated after it is first defined. Note the program
variables that are accessed via load/store instructions do not appear as operands in regular
arithmetic or boolean operations, and vice-versa. Hence, such variables are never used as
multipliers in the abstract domain and the value for the multipliers is never updated through
indirect store operations.

CHAPTER 5. BLOCK-SIZE INDEPENDENCE FOR GPU PROGRAMS 67

__global__ void cudaProcess (int imgw , unsigned g_odata [][imgw]) {
// imgw ÞÑ cind
int tx = t i d [0]; int ty = t i d [1]; // tx ÞÑ ctid, ty ÞÑ cind
int bw = bdim [0]; int bh = bdim [1]; // bw ÞÑ cbdim,bh ÞÑ cind
int x = b i d [0]* bw + tx; // x ÞÑ pcbid.cbdim ` ctidq “ cind
int y = b i d [1]* bh + ty; // y ÞÑ cind
uchar4 c4 = make_uchar4 ((x & 0x20)?100:0 , 0,

(y & 0x20)?100:0 , 0); // c4 ÞÑ cind
g_odata [y, x] = rgbToInt (c4.z, c4.y, c4.x);

}

Figure 5.5: Analysis for first grid-dimension on the program in Figure 5.1.

Example. We illustrate our analysis using the example in Figure 5.1. The resulting analysis
run is shown in comments in Figure 5.5. We run the analysis separately for the two thread-
grid dimensions. For the first thread-grid dimension, the analysis initializes variables as
σ̂pbid0q “ cbid, σ̂pbdim0q “ cbdim, σ̂ptid0q “ ctid, σ̂pbid1q “ σ̂pbdim1q “ σ̂ptid1q “ σ̂pimgwq “
cind. Also, it initializes the path-condition to bind, which is never modified. Next, it executes
the statement rtx Ð tid0s, and sets σ̂ptxq to ctid. It assigns values to variables ty,bw,bh
similarly. Now when computing x, it first computes the product bid0.bw which is equal to
cbidcbdim, and then computes x as the sum of values cbidcbdim and ctid, which we know is
cind. The execution for the remaining statements continues similarly. Finally, the global
write to image g_odata is executed with block-size independent abstract values and path-
condition, and hence, the write is block-size independent. Therefore, the analysis declares
the program block-size independent along this thread-grid dimension. The analysis repeats a
similar process for other thread-grid dimensions and concludes the program to be block-size
independent.

Correctness. We now show the correctness of our analysis. The analysis preserves the
abstraction and ensures that each variable gets an abstract value cind{bind only if the value
is truly block-size independent i.e. the assigned value and the path-predicate are block-size
independent. Further, each write to global variables is guarded by a check for block-size
independence. Therefore, if the analysis does not report any block-size dependent writes,
the updates to the global memory are always block-size independent, and the global state
at the end of each thread’s execution must also be block-size independent. This implies
the program is thread-local block-size independent, and hence, we conclude the following
theorem.

Theorem 5.6. If the block-size independence analysis reports a synchronization-free GPU pro-
gram P to be block-size independent, then P is block-size independent.

CHAPTER 5. BLOCK-SIZE INDEPENDENCE FOR GPU PROGRAMS 68

Benchmark # Kernels # BSI Benchmark # Kernels # BSI
Mandelbrot 6 0 concurrentKernels 2 0
simpleGL 1 0 eigenValues 4 0
convolutionSeparable 2 0 fastWalshTransform 3 2
cudaDecodeGL 2 2 FDTD3dGPU 1 0
dwtHaar1D 2 0 interval 1 0
histogram 4 0 mergeSort 7 3
recursiveGaussian 3 2 newDelete 16 8
simpleCUDA2GL 2 2 reduction 132 0
binomialOptions 1 0 scalarProd 1 0
BlackScholes 1 0 scan 3 0
MonteCarloMultiGPU 2 0 shfl_scan 4 0
quasiRandomGenerator 2 2 SimpleHyperQ 3 0
SobolQRNG 1 1 sortingNetworks 6 0
nbody 2 0 StreamPriorities 1 1
oceanFFT 3 2 threadFenceReduction 40 0
alignedTypes 12 12 threadMigration 1 0
cdpLUDecomposition 2 0 transpose 8 0

Table 5.1: Results of BSI analysis for Nvidia CUDA SDK 8.0 samples.

5.3 Evaluation

We have implemented the block-size independence analysis in LLVM 7.0, a popular open-
source compiler framework, and evaluate it on the Nvidia CUDA SDK 8.0 sample programs.
The SDK consists of 62 applications, out of which 28 benchmarks rely on texture memory
fetches and the Thrust library and could not be compiled with LLVM. We therefore analyze
the remaining benchmarks. For each benchmark, we analyze global kernels which are in-
voked directly from CPU code. For each global kernel, the analysis reports whether the kernel
is block-size independent (BSI), and if not, the potential block-size dependent accesses in
the kernel. Note that the kernels may not be synchronization-free, and hence, our analysis
also checks this. We run the analysis on an Amazon EC2 machine with 4-core Intel Xeon
2.3GHz CPU and 16GB memory running Ubuntu 16.04 LTS (OS).

How many BSI kernels are found by the analysis? Table 5.1 shows the results for the
analysis. The table shows the the total number of global kernels and the kernels found to
be BSI. Note in a few benchmarks, the global kernels are instantiations of templated ker-
nels, and hence, the numbers are slightly bloated. For example, in benchmarks “reduction”,
“threadFenceReduction”, and “alignedTypes”, the total number of kernels is 132, 40 and 16,
though these are instantiations of 7, 2 and 1 templated kernels, respectively. Yet, the analysis
is able to verify a large number of kernels as BSI. It finds 35 BSI kernels in 11 benchmarks,
and runs in a few seconds for most benchmarks (with a maximum of 100 seconds).

Are there truly non-BSI kernels? We manually investigated the benchmarks and found
a few non-BSI kernels. These kernels asymmetrically distribute computation between blocks
and threads, and hence, are block-size dependent. For example, benchmarks “binomialOp-

CHAPTER 5. BLOCK-SIZE INDEPENDENCE FOR GPU PROGRAMS 69

tions” and “MonteCarloMultiGPU” allocate an ‘option’ per block while the threads collaborate
to compute the value for the option. Similarly, “scalarProd” allocates a vector-pair per block
while the threads multiply and add individual elements to get the scalar product.

What class of kernels could not be verified? We could not verify block-size indepen-
dence for kernels where shared memory and thread-synchronization were used to intricately
share data between threads within a block. A common scenario was a parallel reduction op-
eration such as summing elements. The block-size was hard-coded via #define constants
for few of the kernels, which prevented verification. We observed an interesting pattern in
benchmarks “dwtHaar1D” and “reduction” where each thread operated on two locations in
a global array: p2bid ¨ bdim ` tidq and p2bid ¨ bdim ` bdim ` tidq. The locations individu-
ally are block-size dependent. However, cumulatively, the threads operate on all elements,
which makes the operation block-size independent. Finally, we could not verify kernels in
“simpleGL”, “oceanFFT” and “interval”, because library calls containing assembly calls and
addition between integers and booleans were inlined into kernels, which prevented the anal-
ysis from proving block-size independence.

Does tuning block-size for BSI kernels improve performance? We experimented with
benchmark “SobolQRNG” to gauge performance improvement via block-size tuning. The
benchmark originally used shared memory to cache some global constants and was reported
non-BSI by our analysis. The block-size was set to 64 threads/block and produced 18.8
Gsamples/s (baseline) on an Nvidia GTX Titan X GPU. We removed caching to obtain a BSI
version. Here for 64 threads/block, we lost performance by 40% (11.6 Gsamples/s), but
then for 256 threads/block, we regained performance with an improvement of 9% over the
baseline (20.5 Gsamples/s). Hence, our analysis helped tune block-size to gain performance
while ensuring correctness, unlike the other optimization.

How many kernels could be easily fixed to become BSI? We fixed 7 kernels to be
proven BSI by our analysis (included in the 35 BSI kernels found by the analysis). In “quasiR-
andomGenerator” and “fastWalshTransform”, the number of blocks for the second grid di-
mension was set to 1, and thus bid1 was always set to 0 and dropped from the computation
for gid1. In “cudaDecodeGL”, gid0 was computed as pbdim0q.pbid0 ăă 1q`ptid0 ăă 1q, where
the ‘ăă’ operator was not supported by our analysis. Finally, in “quasiRandomGenerator”,
gid0 was computed as pmulpbid0, bdim0q ` tid0q, where the ‘mul’ method was not supported.

5.4 Related Work

Auto-tuning: A rich body of work exists on automatically tuning GPU applications for spe-
cific hardware configurations. Broadly, there are three types of auto-tuning: empirical tun-
ing [77, 45, 55, 49, 62, 74], where different program variants are executed and the best
variant is identified via exhaustive search or a hill-climbing approach; model-based tun-
ing [13, 14], where a hand-crafted model is used to select the best program variant; and
predictive model-based tuning [69, 45, 38, 46, 7], where a predictive model trained via ma-
chine learning techniques like decision trees is used to select the best program variant. All
these approaches either automatically generate the final GPU program, or transform an ex-
isting program to generate the tuned program. A few of these works tune block-size di-

CHAPTER 5. BLOCK-SIZE INDEPENDENCE FOR GPU PROGRAMS 70

rectly [45, 46, 7, 74], but do not verify the correctness of the transformation. A few are
domain-specific [77, 55, 14, 49, 62], often using programs written in a domain-specific lan-
guages instead of CUDA and OpenCL. Finally, many recent works focus on data-layout op-
timization [69, 38] and data placement [13]. These works segregate specification of data-
layout and data-placement from the actual program by hiding it under a data-abstraction
layer. Hence, only the spec for data-layout and placement is modified during auto-tuning
and the program remains unchanged. This localizes any errors to the implementation of
data-layout specifications, which ensures greater correctness. Tuning block-size is, however,
essential to utilize resources on GPUs effectively, and our work on validating block-size in-
dependence can enable robust auto-tuning of block-size.

GPU Verification: Several systems exist for verification of GPU programs. GKLEE [44]
and KLEE-CL [16] extend KLEE, a popular symbolic execution engine, to verify GPU pro-
grams against data-races and barrier divergence. Due to the presence of a large number of
threads, these tools do not scale to large programs. GPUVerify [8] and PUG [43] improve
upon GKLEE and KLEE-CL, by using symbolic threads and SMT-based verification to iden-
tify data-races. The underlying SMT solvers have trouble scaling to very large formulae as
well. Finally, Leung et al. [42] present an approach where they analyze programs for input-
independence, verify safety properties of input-independent programs for a small set of inputs
and then generalize results to all other inputs. The analysis to verify input-independence
is similar to ours, except that it tracks the flow of input variables rather than the block-size
dependent constants.

Abstract Interpretation + Symbolic Execution: A few works, similar to our work, use
symbolic constants to improve precision of an abstract domain, while retaining the scalabil-
ity of the analysis. Sankaranarayanan et al. [59] and Venet [67] extend the Interval domain
with symbolic ranges, where the upper and lower bounds of an interval are a linear combina-
tion of symbolic constants representing program variables. Miné [48] presents two generic
techniques: linearization, which instantiates symbolic variables with abstract constants to
obtain a linear expression in symbolic variables, and symbolic constant propagation, which
propagates symbolic constants across expressions to gain precision.

5.5 Conclusion

This chapter presents the notion of block-size independence for GPU programs and an analy-
sis to verify block-size independence for synchronization-free programs. The analysis uses a
novel abstract domain that combines symbolic multipliers with abstract constants for differ-
ent dependencies on block-size. The analysis is practical and finishes within a few seconds
for most programs, while finding a large number of BSI kernels in Nvidia CUDA SDK 8.0
samples.

This work is a first step towards verifying block-size independence for GPU programs. In
future, we would like to extend the analysis to more programs, by either transforming these
into synchronization-free programs or ensuring the execution of each thread is independent
of the set of threads it synchronizes with. Then, the present analysis for synchronization-free
programs would be sufficient to verify block-size independence for the programs.

Chapter 6

Static Analysis for Improving Cache
Reuse

Traditional compiler technology, developed through decades of research, is useful for im-
proving performance of individual threads in a GPU program. The performance of a GPU
program, however, is greatly dependent on cross-thread behavior, and if the threads don’t
operate in synchrony with each other, we see significant performance degradation, as in the
case of uncoalesced accesses. The compiler technology to improve cross-thread performance
is yet to catch-up. The challenges involve both reasoning about cross-thread behavior and
transforming programs to improve cross-thread performance. Recent compiler approaches
rely on the polyhedral model [27], where a mathematical representation is used to reason
about and transform programs. These approaches, however, require programs to be well-
structured with well-defined loops and array accesses. Various compiler optimizations for
general GPU programs have been explored. However, they are often informal and flaky with
few correctness guarantees owing to the complexity of the transformations involved. The
programmer, therefore, often resorts to manual re-writing to improve program performance.

GPU hardware relies primarily on parallel threads to hide latency of compute operations
and memory accesses, which results in a round-robin scheduling of threads. Round-robin
scheduling, however, is detrimental for cache reuse since the cache is split across a large
number of threads, due to which the data required by one thread is evicted by another
thread before it is reused, leading to poor cache hit-rates. Recently, there have been efforts
to balance cache reuse with thread-level parallelism in hardware by careful scheduling of
threads [57, 39]. While it is possible by tracking reuse information within the hardware,
this requires intricate hardware extensions which might be difficult to implement correctly.
Further, the hardware scheduler needs to simultaneously observe the program execution and
adjust the thread-schedule for cache reuse. Therefore, it may take some time to reach an
optimal schedule.

A software analysis to detect cache reuse within GPU programs can help overcome draw-
backs of hardware approaches. In particular, detecting reuse of data across iterations of a
loop can be useful to improve performance for many “regular” programs. Two prominent
examples are (1) matrix and vector manipulating programs, where each thread processes

71

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 72

elements in a row, and (2) data chunking programs, where each thread is assigned a small
contiguous chunk of data from a large pool of data to be processed. In both these cases, each
thread iterates over consecutive elements in a row/chunk and there is significant data local-
ity between loop iterations. Further, consecutive threads access elements in distinct rows or
chunks, and hence, the accesses are spread apart in memory leading to uncoalesced accesses.
While data-layout transformation or redistribution of work can help, these approaches are
not always applicable and also the code becomes difficult to maintain. In such scenarios, im-
proving cache reuse within threads leveraging data locality across loop iterations can help
improve program performance.

In this work, we present such a compile-time approach to optimize general GPU programs
by improving cache reuse within threads. We present a cache reuse analysis (Section 6.2)
that detects global memory accesses which can reuse cache data across loop iterations. The
analysis relies on computing the maximum increment to the value of each variable across
a loop iteration. If the increment to the accessed location during a global memory access
is small, then the access is considered loop-reusable. Next, if there are sufficient number
of loop-reusable uncoalesced global memory accesses (since uncoalesced accesses benefit
significantly from cache reuse) within a kernel, we mark the kernel to be optimized for
cache reuse. We further compute the required working set per thread for each such kernel
and other necessary information within a cache reuse predictor (Section 6.3.1).

Updating the thread-schedule to improve cache reuse is not directly feasible within a com-
piler, since the GPU does not provide external knobs to control how threads are scheduled
on the GPU. However, we observe that threads within a thread-block are often scheduled to-
gether and threads from the same block have priority over threads from other blocks. Hence,
the set of active threads that execute on a GPU core at a time consist of threads from a single
thread-block. Therefore, we resize (often reduce) the number of threads in each block, so
that all threads in a block can effectively utilize cache for reusing data across loop iterations.
This is however contingent on first proving that the kernel is also block-size independent,
otherwise the block resizing is not allowed. To change block-size, we have implemented
a block-resize transformation (Section 6.3.2) that inserts code to convert old block-size and
grid-size into updated sizes. The transformation is easy to implement and involves changing
block-size and grid-size only, which ensures robustness.

Both existing and new GPU programs can benefit from our optimization, where each
thread is assigned a coarse-grained unit of work like a complete row in a matrix or a chunk
of data, instead of a fine-grained unit with significant inter-thread locality. While it might
be possible to transform the program to allot a fine-grained unit of work to each thread, this
requires a lot of manual rewriting leading to programs which are not maintainable. Our
approach presents a light-weight alternative to improve performance with minimal change
to the existing program.

We have evaluated our approach on six benchmarks, three matrix manipulating and
three data chunking-based benchmarks (Section 6.4). We have implemented our tool in
LLVM 7.0 and we compare our optimization, clang-opt, with Nvidia’s native compiler, nvcc,
and the base LLVM-based CUDA compiler, clang-base. We evaluate on two Nvidia GPUs. We
observe an average speedup of 1.3ˆ across compilers and GPUs. We compare the perfor-

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 73

void Fan2(int N, int i, float M[N, N], float A[N, N], float B[N]) {
int x = t i d [0] + b i d [0] * bdim [0];
for(y = 0; y < N; y++) {

if(x < N-i-1 && y < N-i) {
A[x+i+1, y+i] -= M[x+i+1, i] * A[i, y+i];
if(y == 0) {

B[x+i+1] -= M[x+i+1, y+i] * B[i];
}

}
}

}

Figure 6.1: 1D version of Fan2 kernel in Figure 2.3.

mance improvements with cache-utilization performance counters and observe some inter-
esting patterns. First, the change in cache utilization is observed to be directly proportional
to the speedups obtained. Second, our approach performs particularly well when the ker-
nel involves non-trivial code, for example, non-trivial matrix manipulation or imperfectly
nested loops. We finally present some related work on existing program transformation and
hardware-based approaches to improve performance (Section 6.5) and then conclude the
chapter (Section 6.6).

6.1 Example: Revisiting Gaussian Elimination

We now illustrate the overall approach using an example kernel in Figure 6.1. This is a
one-dimensional implementation of the Fan2 kernel from Gaussian elimination program in
Rodinia benchmark suite [10], shown in Figure 2.3. Note that we have substituted the y
dimension of the thread-grid with a for loop. We observe that each thread accesses a distinct
row in each of the accesses Arx ` i ` 1,y ` is,Mrx ` i ` 1, is andMrx ` i ` 1,y ` is. For
instance, thread with tid0 “ 0 and bid0 “ 0 accesses the pi ` 1qth row, while the thread
with tid0 “ 1 and bid0 “ 0 accesses the pi ` 2qth row, for each of the accesses. We assume
the matrices are laid out in a row major order. Hence, there is little locality across threads
and simultaneous access by a warp of threads leads to an uncoalesced access. Next, for
each of these accesses, a thread accesses consecutive elements in consecutive iterations of
the y-loop. For instance, in the access Arx ` i ` 1,y ` is, the first iteration (y “ 0) of
a thread with tid0 “ 0 and bid0 “ 0 accesses location pi ` 1, iq and the second iteration
(y “ 1) accesses location pi` 1, i` 1q. Therefore, when data is fetched for the first iteration
of the loop, we fetch not just the location required by the iteration but also the next few
locations into cache, which can be reused by subsequent iterations. Thus, there is potential
for cache reuse. Finally, since there is little locality across threads but significant locality
within each thread, optimizing the kernel for cache-reuse against thread-level parallelism
should improve performance.

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 74

We next show how our approach optimizes the kernel for cache reuse. It is easy to see
that accesses Arx ` i ` 1,y ` is, Mrx ` i ` 1, is and Mrx ` i ` 1,y ` is are uncoalesced,
since x has unit linear dependence on tid0, and the flattened access location for each of these
accesses is of the form px ` i ` 1q.N ` c0, which leads to a non-unit dependence on tid0.
We next show that consecutive iterations of the y-loop access consecutive locations in each
of these accesses. In the program, we observe that y is directly incremented by 1 across
each iteration of the y-loop. Also, variables N, x and i are not modified inside the loop, and
hence, are loop-invariant and have a increment of 0 across consecutive iterations. Next, the
expression px ` i ` 1q has an increment 0, since each of the variables has an increment 0,
and the expression py ` iq has an increment 1, since y has an increment 1 and variable i
is loop-invariant. Thus, the access Arx ` i ` 1,y ` is has an overall increment of 1. The
flattened location for the access is given by px` i` 1q.N`py` iq where N is loop-invariant.
Therefore, the product px ` i ` 1q.N is also loop-invariant since both individual values are
loop-invariant. The sum of increments for px ` i ` 1q.N and py ` iq results in an overall
increment 1. We similarly conclude the accesses Mrx ` i ` 1, is and Mrx ` i ` 1,y ` is
have an increment of 1 across each loop iteration. Consecutive iterations access consecutive
locations for each of these accesses, and hence, the accesses can benefit from cache reuse.
We call these accesses loop-reusable.

Each of the three accesses are both loop-reusable and uncoalesced. In a kernel, we are
primarily interested in loop-reusable uncoalesced accesses, since such accesses take a long
time to complete but benefit from cache reuse. Each access fetches a complete cache-line
into the memory for each thread. Assuming the cache-line size of 128B and cache-size of
48KB per core, we need to retain cache-lines for each of the three accesses. Hence, we
need at least 3ˆ 128 “ 384B of cache memory per thread, which restricts the total number
of active threads per core to cache-size divided by the cache-memory required per thread,
which is 48 ˆ 1024{384 “ 128 threads. Hence, we must allow a maximum of 128 active
threads per GPU core for each thread to benefit from cache-reuse. While this is difficult to
enforce directly, we update the block-size for the kernel to 128 threads. Assuming the GPU
thread-scheduler prioritizes threads within the block, there would be at most 128 threads
actively executing on a GPU core which would allow effective cache reuse.

6.2 Cache Reuse Analysis

We first present an analysis to identify global memory accesses that benefit from cache reuse
across iterations of a loop during the execution of a thread. An access benefits from cache
reuse if the data fetched by a thread is reused by the same thread (intra-thread) or another
thread (inter-thread) in a subsequent access. We focus on intra-thread reuse for instances of
the same access across loop iterations. Inter-thread reuse can be useful to identify, especially
if the reuse occurs across the second or third dimension of the thread-grid. Identifying
inter-thread reuse can be difficult at compile-time, however, and poses problems similar to
analyses for loop transformations to improve cache-locality in sequential programs. Also,
updating the thread schedule for inter-thread reuse can be difficult in practice. Similarly,
identifying reuse between two distinct accesses in a loop is difficult at compile-time and

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 75

would require tracking relationships between different index variables. This in-turn requires
the loop indices and the access indices to be well-defined, which restricts the set of applicable
programs. Hence, we focus on intra-thread cache reuse for the same global memory access
across loop iterations.

A global memory access in a loop can benefit from cache reuse if the data fetched in an
iteration of a loop can be reused in subsequent iterations of the loop. An access to global
memory fetches a complete cache-line or memory block from memory. Hence, if the sub-
sequent iteration accesses a neighboring element in the cache-line (i.e. exhibits spatial lo-
cality), the data fetched previously can be reused, and the access is cache reusable if the
increment in the accessed location across consecutive loop iterations is less than the cache-
line size. To identify such accesses, therefore, we need to track the increment in access index
across consecutive loop iterations.

Our static analysis identifies cache reusable accesses one loop at a time. Given a loop,
the analysis computes the maximum increment in values of variables, and index variables
in particular, across a loop iteration. For a global memory access, if the increment in the
accessed location is less than the cache-line size, then the access is considered cache reusable.
The analysis runs in two passes through the loop. In the first pass, it scans instructions in
the loop to identify instructions of the form vÐ v` c0 where v is a local variable and c0 is
a constant. Such variables are incremented by a value at least c0, and the maximum of the
sum of all such constants along a path is assigned as the simple increment for the variable.
Note that we only track constants smaller than cache-line size, since larger increments are
not useful for cache reuse. Also, if the variable is loop-invariant and not assigned any value
inside the loop, we set the simple increment to 0.

In the second pass, the analysis uses the simple increments for variables to compute
derived increments. Consider the statement x “ a ` b, where the simple increments for
a and b are ∆a “ 3 and ∆b “ 4. It is easy to see that the increment for variable x is
∆x “ ∆a ` ∆b “ 7. We compute these increments via an abstract execution where the
variables are initialized with simple increments or undefined values, and are updated with
derived increment values during the execution of the loop. We note that this is similar to
computing induction variables [15, 25, 17], useful in operator strength reduction. The tech-
niques, however, compute precise increments, whereas we are interested only in increments
smaller than the cache-line size which helps simplify the analysis and improve its efficiency.

Finally, if the access index increment for a global memory access is less than the cache-
line size, the access benefits from cache reuse within the loop, and we refer to such accesses
as loop reusable accesses. We formally define loop reusable accesses in Section 6.2.1. We
then describe the analysis to compute simple increments in Section 6.2.2 and the analysis
to compute derived increments in Section 6.2.3.

6.2.1 Loop Reusable Accesses

A global memory access AS to an array g is considered loop-reusable in a loop L, if for all
threads τ, the execution of AS in an iteration of loop L can reuse cached data from the
previous iteration of L. A GPU accesses data in global memory in units of η bytes, where

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 76

η is the bandwidth for global memory. Hence, when a memory location p is read from the
memory, the whole cache-line consisting of η bytes alongwith the data at location p is fetched
into an on-chip cache. If the location accessed in the subsequent iteration of the loop lies
within the memory block fetched into the cache and the cached data is not over-written,
the cached data can be reused to access the required data, which significantly improves the
performance of the access. This is greatly useful for uncoalesced accesses where a large
amount of unnecessary data is fetched during the access. Caching and reusing this data in
subsequent iterations can help utilize this data and amortize the overall cost of executing
the uncoalesced access across loop iterations.

We present here a formalization for loop-reusable accesses. Given an initial state σ0
and a set of threads Π0, we first define the set of configurations pσ,Π,Sq reaching the ith

iteration of a loop L, Rpi,σ0,Π0,Lq. We define this inductively. First, the initial configuration
pσ0,Π0,Lq is in Rp0q. For the recursive case, suppose a configuration pσ,Π,Sq is in Rpiq.
When S is a sequence [S1;S2], then pσ,Π,S1q is in Rpiq. Further, pJS1Kpσ,Πq,Π,S2q is in Rpiq

if the state after the execution of S1 is not undefined. The reach sets for conditionals are
defined similarly. When S is a loop, [while l do S 1], first the configuration pσ,Π 1,S 1q, where
Π 1 “ tτ P Π : σpl, τq “ trueu, is in Rpiq if Π 1 is not empty. Next, if S is not the loop L, then the
next iteration of S still belongs to the ith iteration of the loop L, and hence, the configuration
pJS 1Kpσ,Π 1q,Π 1,Sq is in Rpiq if not undefined. However, if S is the desired loop L, the next
iteration of S corresponds to the next iteration of the loop, and therefore, pJS 1Kpσ,Π 1q,Π 1,Sq
is in Rpi` 1q.

We now formally define a loop-reusable access. Given a loop L and a global memory
access AS to array g at location pl0, l1, . . . , lnq within the loop, consider two configurations
pσ,Π,ASq P Rpiq and pσ 1,Π 1,ASq P Rpi`1q for an initial state σ0, initial set of threadsΠ0 and
an iteration i. Consider a thread τ in ΠXΠ 1. Consider the global memory locations accessed
by τ in the two configurations, q “ φpg,~ppτqq and q 1 “ φpg, ~p 1pτqq, where φpv,~qq returns
the absolute location for the index ~q in array v, and indices ~ppτq “ pσpl0, τq, . . . ,σpln, τqq
and ~p 1pτq “ pσ 1pl0, τq, . . . ,σ 1pln, τqq, respectively. If the distance between locations, |q´q 1|,
is less than cache-line size or the bandwidth for global memory η, then the thread τ can
reuse cached data from ith iteration in the pi ` 1qth iteration. If this is true for all threads
τ P ΠXΠ 1 and all configurations pσ,Π,ASq and pσ 1,Π 1,ASq, then the accessAS is considered
loop-reusable in L. Note that thresholding is sufficient to identify loop-reusable accesses, since
most reusable accesses have a small increment when compared to the non-reusable acceses
(similar to uncoalesced accesses).

Definition 6.1. Given a loop L and a global memory access AS in the loop to array g at loca-
tion pl0, l1, . . . , lnq, consider two configurations pσ,Π,ASq P Rpi,σ0,Π0,Lq and pσ 1,Π 1,ASq P
Rpi` 1,σ0,Π0,Lq for all initial states σ0, initial sets of threads Π0 and iterations i. Consider
the locations accessed for the two configurations by a thread τ P ΠXΠ 1, q “ φpg,~ppτqq and
q 1 “ φpg, ~p 1pτqq. If the distance between the locations |q´ q 1| is less than η for all threads
τ and all configurations pσ,Π,ASq and pσ 1,Π 1,ASq, then the access AS is loop-reusable in

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 77

L. Formally, an access AS in loop-reusable in a loop L if:

for all σ0,Π0, i, pσ,Π,ASq P Rpi,σ0,Π0,Lq, pσ 1,Π 1,ASq P Rpi`1,σ0,Π0,Lq, τ P ΠXΠ 1,
|φpg,~ppτqq ´ φpg, ~p 1pτqq| ă η,

where ~ppτq “ pσpl0, τq, . . . ,σpln, τqq and ~p 1pτq “ pσ 1pl0, τq, . . . ,σ 1pln, τqq.

6.2.2 Simple Increment Analysis

We describe our analysis to compute simple increments for variables. We first describe our
abstract domain for tracking increments. Let the maximum value tracked by the analysis be
the cache-line size or global memory line size η. We consider the following abstract values:

K : the value is not defined.
ci : the value is a loop-invariant with constant value i.
δi : the value has an increment with value at most i across one loop iteration.
J : the value corresponds to an arbitrary increment.

Note that, we track loop-invariant constants ci along with increments δi. Loop-invariant
constants are useful specially during a multiplication operation where a variable is multiplied
by a constant k i.e. v1 “ v0 ˚ k. In such a scenario, the increment for v1 is set to k times
the increment for v0. Finally, we only track the increment values for local variables in the
program and the abstract state consists of the abstract valuation of local variables. Also, we
do not track path-predicate or the condition under which a statement is executed during the
analysis.

The analysis for simple increments starts in an abstract state with all variables initialized
to undefined values K. It starts from the loop header, which is the entry block into the
loop, and makes a single pass through the loop body. To ensure a single pass, we stop
the execution whenever we reach the loop header again and the values in the state at this
point represent the simple increments for variables. We define abstract semantics for only
specific statements. For remaining statements, the same abstract state is passed to the next
statement. We define the semantics in Figure 6.2.

We assign updated values such that the abstraction is preserved, i.e. variables with con-
stant values ci retain the constant value i across iterations, while the variables with incre-
ment values δj have an increment at most j across an iteration. The semantics mainly con-
siders four scenarios. First, if a variable is assigned a constant k, its abstract value is updated
to ck (rule Const). Next, if a variable is initially undefined and is incremented by value k
(rule IncrUndef), we update the value to δ|k|, since the absolute value of the variable may
be incremented by |k| within each loop iteration during this assignment. If the variable is a
constant ci before the increment operation (rule IncrConst), we update the value to ci`k,
since the variable is a constant ci before the increment and remains a constant ci`k after
the increment. We track values only up to cache-line size η, and any value above η results in
an unknown value J. Finally, if the variable already has an increment δj, the new increment

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 78

Const vÐ k

σ̂ 1pvq “ ck
IncrUndef

vÐ v` k
σ̂pvq “ K

σ̂ 1pvq “ δ|k|
IncrConst

vÐ v` k
σ̂pvq “ ci

σ̂ 1pvq “ ci`k

Incr

vÐ v` k
σ̂pvq “ δj j` |k| ă η

σ̂ 1pvq “ δj`|k|
MergeUndef

vÐ joinpv1, v2q
σ̂pv1q “ K σ̂pv2q ‰ ci

σ̂ 1pvq “ σ̂pv2q

MergeConstEq

vÐ joinpv1, v2q
σ̂pv1q “ ci σ̂pv2q “ ci

σ̂ 1pvq “ ci
MergeConstNeq

vÐ joinpv1, v2q
σ̂pv1q “ ci σ̂pv2q “ cj

i ‰ j

σ̂ 1pvq “ J

MergeIncr

vÐ joinpv1, v2q
σ̂pv1q “ δi σ̂pv2q “ δj

σ̂ 1pvq “ δmaxpi,jq
MergeIncrConst

vÐ joinpv1, v2q
σ̂pv1q “ δi σ̂pv2q “ cj

σ̂ 1pvq “ J

Figure 6.2: Abstract semantics for computing simple increments. Note k is a constant less
than the maximum value. State σ̂ is the abstract state before execution of the statement,
while σ̂ 1 is the state after the execution.

is at most the sum pj ` |k|q, and hence, the variable is assigned an increment value δj`|k|
(rule Incr).

Next, we consider the join or merge of values. This occurs when states flowing through
different paths get merged. First, the undefined value K is superseded by increment values
and the unknown value (rule MergeUndef). This is not true for constant values, however,
because if the merged value is assumed to be a constant and is incremented subsequently,
it is not guaranteed to remain constant in rule IncrConst. Hence, we set merged value to
valueJ. Next, when two constants are merged, we return the same constant if they are equal
(rule MergeConstEq). Otherwise, since the variable might be assigned different constants
in different iterations depending on the path taken, we return the unknown value J (rule
MergeConstNeq). Merge of two increment values results in assigning the maximum of
the two values, since only one of the two increments flows into the merged value (rule
MergeIncr). Finally, the merge of an increment value and a constant value result in an
unknown value J, because depending on which path is taken in different iterations, the
value might be incremented or reset to the constant value, leading to an unknown change to
the value (rule MergeIncrConst). Finally, for the remaining cases, the resultant variable
is assigned the value J, especially if a variable is assigned a constant or increment value
greater than η.

The above semantics assigns simple increment values to variables, where the variables
are either directly assigned a constant value or they are directly incremented by a constant

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 79

SumConst

vÐ v1 ` v2
σ̂pv1q “ ci σ̂pv2q “ cj

i` j ă η

σ̂ 1pvq “ ci`j
SumIncr

vÐ v1 ` v2
σ̂pv1q “ δi σ̂pv2q “ δj

i` j ă η

σ̂ 1pvq “ δi`j

SumIncrConst

vÐ v1 ` v2
σ̂pv1q “ δi σ̂pv2q “ cj

i` j ă η

σ̂ 1pvq “ δi
ProdConst

vÐ v1 ¨ v2
σ̂pv1q “ ci σ̂pv2q “ cj

i ¨ j ă η

σ̂ 1pvq “ ci¨j

ProdIncr

vÐ v1 ¨ v2
σ̂pv1q “ δ0 σ̂pv2q “ δ0

σ̂ 1pvq “ δ0
ProdIncrConst

vÐ v1 ¨ v2
σ̂pv1q “ δi σ̂pv2q “ cj

i ¨ |j| ă η

σ̂ 1pvq “ δi¨|j|

Undef

vÐ v1 op v2
σ̂pv1q “ K σ̂pv2q ‰ J

σ̂ 1pvq “ K
Unknown

vÐ v1 op v2
σ̂pv1q “ J

σ̂ 1pvq “ J
FuncCall

vÐ fp. . . q
σ̂ 1pvq “ J

Figure 6.3: Abstract semantics for computing derived increments. State σ̂ is the abstract
state before execution of the statement, while σ̂ 1 is the state after the execution. Semantics
for join operation are same as in Figure 6.2.

value. We also make an initial pass through all statements in the loop to identify variables
that are read during the loop but not written to, and assign an increment value δ0 since
they are loop-invariant. We note for arrays, if any location in the array is written to, we
conservately assume all locations might be written to, and hence, none of the reads to the
array return a loop-invariant value. This completes our discussion of the computation of
simple invariants. We next consider the computation of derived increments and a soundness
argument for the computation of correct increment values for all variables in the loop.

6.2.3 Derived Increment Analysis

After computing the simple increments for variables, we run another analysis pass to com-
pute the derived increments and the final increment values for all variables. The analysis
pass initializes variables with their simple increment values (or undefined value K if the
simple increment was not computed). Next, it uses the semantics shown in Figure 6.3 to
execute statements in the loop repeatedly, until the final state saturates for all statements
and remains unchanged on executing another iteration. The final abstract state before each
statement stores the increments for variables.

We now describe the semantics shown in Figure 6.3. We primarily consider two kinds of
operations: sum p`q and product p¨q. For the sum operation, if both variables have constant

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 80

values or both have increment values, we sum their values together to get the desired result
(rules SumConst and SumIncr). Note that if the resulting value is greater than η, we
replace it with the unknown value J. If one of the variables has a constant value while the
other has an increment value, we set the result to increment value (rule SumIncrConst).
This is because the constant has a zero increment across iterations, and thus, the overall
increment for the result is given by the increment value for the other variable. Note that,
this also ensures that simple increments for variables remain unchanged during an increment
operation vÐ v` k, since the constant k has a zero increment across iterations. Hence, no
special semantics are necessary to retain simple increments of variables.

We next consider the product operation. If both operands have constant values, their
values are multiplied together (rule ProdConst). If both operands are increment values
and the operands have zero increments δ0, we set the result to δ0 (rule ProdIncr). Oth-
erwise, we set the result to value J. This is because the increment for the result is given
by pv1∆v2 ` v2∆v1 ` ∆v1 ¨ ∆v2q, and thus if either of the operands have a non-zero incre-
ment, the increment for the result depends on the absolute value for variables which is not
known during the analysis. Finally, if one operand is a constant and other an increment
value, the increment for result is amplified by the constant, and the result is assigned an
increment value which is the product of the constant value and the increment value (rule
ProdIncrConst).

For all remaining operations and function calls, we set the result to the unknown valueJ.
We also note that if any operand is not defined, then the result is also not defined. Similarly,
if one of the variables has an unknown value, then the result is unknown value. Therefore,
for the join operation, we use the same semantics as in the case of simple increment analysis.

Finally, after the analysis completes and the abstract state saturates, we check for each
global memory access if the access is reusable across iterations. An access is reusable, if the
increment in absolute location across a loop iteration is less than the cache-line size η. Given
a global access to a location pl0, . . . , lnq in an array g, if local variables l0, . . . , ln´1 have a
zero increment value (or a constant value) and the product of increment value for variable
ln and the size of each element in g, ξpgq, is less than η, then we consider the access to be
loop reusable.

Correctness. We briefly discuss the correctness of our analysis. We claim the final in-
crement values for variables overapproximate the actual increments to variables across any
loop iteration. Our semantics for join operation ensures that each variable is assigned the
maximum increment along any path, and hence, we only need to ensure that the increment
computed along a path is correct. The increment stored in each variable at the end of the
derived increment analysis is a fixed point for the loop, and consists of the flow of increments
from other variables. The source of these increments consists of the simple increments as-
signed to variables during the simple increment analysis and unknown values J assigned
during arbitrary operations and function calls. We assert that if a variable is ever assigned
an unknown increment value, the final increment value for the variable is set to unknown,
since no operation (other than assignment to constants) can replace the unknown value with
an alternate value (rule Unknown in Figure 6.3). Therefore, a variable gets an increment
value δi only if either it is directly incremented along the path or it is derived from other

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 81

simple increments. The simple increments assigned to variables are conservative, assuming
the variables are not set to unknown value J during the derived increment analysis. Hence,
the increments assigned to variables at the end of the derived increment analysis are sound
and overapproximate the actual increments. This provides some evidence for the correctness
of the analysis.

6.3 Overall Approach

We now describe the overall approach to determine cache reuse in a kernel K and to improve
cache reuse via block-size transformation. First, we run the cache reuse analysis for each
loop in K and collect all accesses that are loop reusable for some loop in the kernel. This
set of accesses LR represents the potential for cache reuse within the kernel. If there are no
loop-reusable accesses, then optimizing the kernel for cache-reuse will not be useful. Next,
we compute the set of uncoalesced accesses UC in the kernel using the uncoalesced access
analysis described in Chapter 4. The set UC on the other hand represents the set of accesses
that have poor performance and can benefit from cache-reuse. Hence, the intersection of the
two sets UC X LR gives the desired set of accesses that need optimization and can benefit
from cache reuse.

We further check if the kernel is block-size independent using the block-size indepen-
dence analysis in Chapter 5. Given that the kernel is block-size independent and the set
UC X LR is non-empty, we compute the working set or the amount of data that must be
cached by each thread in order to benefit from cache reuse. This is difficult to determine
accurately at compile-time. However, we use heuristics to obtain an overapproximation. We
present further details in Section 6.3.1.

We observe that threads within a block are likely to be scheduled together. Hence, the
set of threads actively executing on a core consists of threads from a single thread-block.
Therefore, we update block-size for each call to the kernel, such that the cache on GPU is
sufficient to support all threads within a thread-block. We rely on a block-size transformation
pass that inserts dynamic code before each call to the kernel to take in the previous grid
configuration and generate the updated configuration. We describe this in Section 6.3.2.

The overall approach to optimize a global kernel K, which is a kernel directly called from
CPU code, is shown in Figure 6.4. The approach first checks if the kernel is block-size inde-
pendent. If so, it runs the cache reuse analysis and uncoalesced access analysis to generate
sets LR and UC, respectively. Next, it invokes the cache reuse predictor (Section 6.3.1). The
predictor checks if the intersection of the two sets is non-empty. If so, it first computes the
working set for the kernel, and then based on the working set, computes the new block-size
~B 1 for the kernel. Finally, it invokes the block-size transformation pass (Section 6.3.2) to
insert code before every call to the kernel K from CPU code, to update grid configuration
with the new block-size. This completes the required transformation and the transformed
IR is compiled down to generate an executable binary.

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 82

Kernel K

BSI Analysis

Cache Reuse Analysis

Uncoalesced Analysis

Cache Reuse Predictor

Block-size Transformation

Updated calls to K

K is BSI

LR

UC

~B 1

Figure 6.4: Overall approach to optimize a GPU program for a global kernel K for cache
reuse. BSI Analysis checks if the kernel is block-size independent. Cache Reuse Analysis
outputs loop reusable accesses in the kernel, LR. Uncoalesced Analysis outputs the set of
uncoalesced accesses, UC. Cache Reuse Predictor checks if the intersection LRX UC is non-
empty. If so, it computes the working set per thread and the new block-size ~B 1. Finally,
Block-size Transformation updates calls to K with the new block-size.

6.3.1 Cache Reuse Predictor for GPU Kernels

Before diving into the details of the cache reuse predictor, which predicts whether a GPU
kernel has the potential for cache reuse, we briefly describe the caching sub-system inside
GPUs. A significantly smaller portion of the chip is devoted to cache in GPUs as compared
to CPUs. There are two primary forms of on-chip cache provided: L1 cache, which is local
to each GPU core, ranging from 16kB to 48kB in size, and L2 cache, which is a system-
wide cache common to all cores, ranging from 512kB to 2MB in size. L1 cache is often
disabled since the cache hit-rates are low. We, on the other hand, rely on L1 cache to improve
performance of global memory accesses, and hence, enable its use during compilation. L1
cache provides a fast local access and significantly improves performance of a program when
used efficiently. Depending on GPU architecture, the caches are used both for reads and
writes, or only the reads from global memory.

The predictor determines if a given kernel would benefit from optimizing for cache reuse.
The optimization for cache reuse involves restricting the number of threads active at a time
on a GPU core, so that sufficient portions of cache are available to all active threads. This
is also popularly known as warp throttling [57]. Warp throttling directly impacts thread-
level parallelism within a kernel. Therefore, we selectively choose kernels that benefit from
cache reuse rather than thread-level parallelism. We target matrix manipulating and data
chunking-based programs, where a thread accesses consecutive elements in consecutive it-
erations of a loop, but each thread operates on a distinct chunk of data and simultaneous
accesses by threads are spread apart by the size of row/data-chunk. This often exhibits in
programs with the presence of loop reusable accesses for access to consecutive elements in

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 83

consecutive iterations, and uncoalesced accesses for the simultaneous accesses to distant el-
ements by threads. These programs have significant locality within a thread and almost no
locality across threads, and benefit significantly from optimizing for cache-reuse. Hence, if
the set LRXUC or the set of uncoalesced loop reusable accesses within a kernel is non-empty,
we optimize the kernel for cache reuse.

Working Set Computation. We next describe our heuristics to compute the working set
or the amount of data that needs to be retained in cache per thread during the execution of
a kernel, for effective cache reuse. We compute the working set for each loop L within the
kernel and use the maximum of working sets for loops as the working set for the kernel, since
cache reuse occurs for accesses within a single loop nest at a time. We observe that cache
reuse often occurs in the innermost loop of a loop nest. Hence, we only consider the accesses
in the current loop L while computing the working set for L and do not take into account
accesses within sub-loops of L. We compute working set for a loop by considering distinct
uncoalesced loop-reusable accesses in the loop. We observe that for each distinct access, we
must retain a complete cache-line in memory. Hence, the overall working set per thread for
a loop is defined by the product of the number of distinct accesses and the cache-line size η.

Computing the exact set of distinct uncoalesced loop-reusable accesses is infeasible at
compile-time, because it is difficult to determine at compile-time whether two accesses
point to the same location in memory. Hence, we rely on a heuristic where two accesses
grl0, . . . , lns and g 1rl 10, . . . , l 1ns access the “same” location if they have the same access sig-
nature. We define the access signature as the set of unique symbolic variables used in the
access expression. This consists of both the root array pointer g and the set of variables in
expressions assigned to index variables l0 to ln. For instance the access signature for the
access gra ` b, c ` 1s is given by the set tg,a,b, cu. We observe that distinct accesses of-
ten differ in the root pointer or at least one variable used in expressions for index variables.
Hence, considering the set of symbolic values suffices.

A kernel may call other kernels, and hence, we also need to account for working sets
of the called kernels while computing the working set for a kernel. We again observe that
cache reuse occurs either in the current kernel or one of its callees, and not simultaneously
in both a caller and the callee. Therefore, taking the maximum of the working sets of the
current kernel and its callees suffices. We do a bottom-up computation of working set, so
that the working sets for callees is computed before that for callers. Finally, the maximum
of the working sets of all loops and callees within a kernel gives the desired working set per
thread for the kernel.

Block Size Computation. Once the working set per thread is computed for a kernel, we
next compute the new block-size for calls to the kernel. The essential idea is that threads
from a single thread-block are often active on a GPU core, and hence, the cache is divided be-
tween the threads of a single thread-block. The cache space available for each thread should
be larger than the computed working set for the thread. Hence, the maximum number of
allowed threads in the block is equal to cache-size divided by the working set per thread. We
assume all of cache is available to threads in a block (true for associative caches). However,

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 84

if that is not true, we can update the cache-size to reflect the total available cache. We cur-
rently work with programs with one-dimensional thread-blocks (hence higher dimensions
are set to value 1) and update the smallest grid-dimension only. The block-size is often set
to a power of 2 in GPU programs, and therefore, we set the new block-size to the largest
power of 2 that is smaller than the maximum number of allowed threads.

6.3.2 Block Size Transformation for Cache Reuse Optimization

Given a global kernel K and a new block-size ~B 1, we describe the transformation to update
calls to kernel K with the new block-size. The transformation inserts dynamic code before
each call to K, to take the existing block-size ~B and grid-size ~N and return the updated block-
size ~B 1 and grid-size ~N 1. When the grid-size ~N represents the total number of threads in the
grid (as is the case for OpenCL), the new grid-size ~N 1 is same as the old grid-size. However
in CUDA, the grid-size is represented by the number of blocks along each dimension which
also needs to be updated when the block-size is modified. Hence, we update the grid-size
such that the total number of threads is preserved.

LLVM Transformations. We have implemented the transformation in the LLVM compiler
framework. LLVM supports compiling CUDA programs into executable binaries. The com-
piler can be configured with custom passes to be run during compilation. Command-line
options can be specified which are forwarded to these custom passes. There is also provi-
sion to insert custom code (in separate files) during compilation. We present here a sample
command-line to invoke a pass xyz in pass library abc.so with arguments p “ 10, q “ 20
and r “ 25 and to insert functions in custom.c during the compilation of a CUDA program
gpu-prog.cu:

clang ++ -include custom .c
-Xclang -load -Xclang abc.so

-mllvm "´p=10" -mllvm "´q=20" -mllvm "´r=25 "
gpu -prog.cu
--cuda -gpu -arch=<arch >
-I/usr/local/cuda/ samples / common /inc -L/usr/local/cuda/lib64
-lcudart_static -lcuda -ldl -lrt -pthread

Note that we configure pass xyz such that it is automatically invoked by LLVM’s pass manager
when the pass library abc.so is loaded. The command-line arguments are automatically
forwarded to the pass by the compiler.

Implementation. We now describe the the implementation for our block-size transforma-
tion pass. We have defined custom functions that take the old block-size and grid-size and
the new block-size for a kernel call, and return the updated grid-size and block-size. For
each kernel K that needs to be optimized for cache reuse, our transformation pass inserts
calls to these custom functions to take the old grid configuration and return the updated
grid configuration before each call to the kernel, based on the new block-size ~B 1. The set
of kernels in a GPU program that must be transformed and the corresponding block-sizes

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 85

are passed to the transformation pass as command-line arguments. This information in-turn
is scraped from a temporary text-file that is generated by a prior analysis where the cache
reuse predictor is run to identify kernels that must be transformed by the transformation
pass.

CUDA Programs. We have currently implemented the transformation for CUDA programs,
where the grid-size corresponds to the number of blocks ~Nb instead of the total number of
threads ~N. We note that during the transformation, we need to ensure that the total number
of threads remains unchanged. Thus, our custom functions check if the total number of
threads along each dimension p~Nbqi.~Bi is a multiple of new block-size ~B 1i. If so, the new grid-
size is set to p~Nbqi.~Bi{~B 1i. Otherwise, it returns the original grid configuration. Note that,
since the grid configuration is only available at runtime, the check cannot be performed at
compile-time and must be inserted in the dynamic code to transform the grid configuration.

6.4 Evaluation

Experimental Setup. We next describe some evaluation for our approach. We have imple-
mented it in LLVM. We evaluate it on 6 benchmarks, three matrix manipulating and three
data chunking-based programs. Matrix manipulating programs perform non-trivial opera-
tions on vectors and matrices, while the data chunking-based programs split the data into
chunks and each thread is assigned one chunk. In both types of programs, there is little local-
ity across threads and significant loop-level locality within the execution of each thread. We
evaluate our approach on two real GPUs: Nvidia Tesla M60 (Maxwell) and Quadro P4000
(Pascal). We compare our approach against the native Nvidia compiler nvcc, the base LLVM
compiler clang-base, and LLVM with our optimization clang-opt. We use CUDA version 9.2
and compile all benchmarks with the -O2 flag. For each kernel optimized with our approach,
we collect the running time (average of five runs), the average cache hit rate and the global
load throughput. We use a Linux system function gettimeofday() to collect the running
time, while rely on Nvidia’s profiler nvprof to collect data using metrics global_hit_rate
and gld_throughput.

We briefly decribe the benchmarks. Kernel Gaussian/fan2 is a 1D kernel from a “Gaus-
sian elimination” program in Rodinia benchmark suite [10], shown in Figure 6.1. The re-
maining kernels are from the Mars benchmark suite [30]. Mars is a map-reduce framework
implemented in CUDA, where the overall work is divided into tasks and each thread is as-
signed a task to perform. We primarily look at the map and mapCount operations and the
corresponding kernels in the program. The task itself consists of a contiguous chunk of data
which is processed by each thread iterating over each data element in a loop. Two matrix-
manipulating programs “matrix multiplication” (mm) and “similarity score” (ss) and three
data chunking-based string manipulating programs “inverted index” (ii), “word count” (wc)
and “page view count” (pvc) are implemented in this framework.

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 86

Evaluation process. In the evaluation, we are concerned with the following questions: (1)
Does our optimization improve performance for GPU kernels? (2) What types of benchmarks
benefit from our optimization? (3) How are the speed-ups correlated with improvement in
cache reuse and effective memory throughput? Note that we launch each benchmark with
a large input size, so that there are enough thread-blocks to fill all GPU cores, even before
our optimization is applied. Otherwise, the speedup might be obtained by filling up of cores
due to increase in the number of thread-blocks after the optimization. For most programs,
the block-size is shrunk to increase the number of blocks. However, in some rare cases the
block-size might be increased, though we assume that the programs have been optimized for
thread-level parallelism with large block-sizes. We will address the scenario of optimizing
for thread-level parallelism in future.

Also, we made slight modifications to the Mars framework to ensure kernels are block-
size independent, and therefore, our optimization is applicable. The framework previously
allocated tasks to threads in a round-robin fashion. We modified it to instead allocate con-
tiguous sets of tasks to each thread. Second, the framework relied on shared memory buffers
to store intermediate data. We substituted this with storing data in registers and local mem-
ory. These changes were necessary to prove block-size independence of programs in the
framework.

Runtime improvements. Figure 6.5 shows the speedups obtained for different kernels on
the two GPUs. Overall, the kernels compiled with clang-opt have an average speedup of
1.317ˆ and 1.34ˆ vs nvcc, and 1.16ˆ and 1.347ˆ vs clang-base, on Tesla M60 and Quadro
P4000 GPU, respectively. On both GPUs, we obtain significant speedups for pvc/map. The
speedup against nvcc provides an estimate of the speedup against a production compiler
used by a large fraction of GPU developers, while the speedup against clang-base provides an
estimate of how well our optimization performs compared to the base compiler. The fact that
the original kernels were not modified and the speedups are obtained on real GPUs makes
these results quite significant.

We now discuss the benchmarks and the corresponding speedups in more detail. We
compare speedups over the base LLVM compiler, since they present a better estimation of the
speedup for our optimization. We first discuss kernels from the three matrix manipulating
programs. Kernel Gaussian/fan2 kernel performs row operations on a matrix where each
thread is assigned a row of the matrix and iterates over the elements in the row. Kernels
mm/map and ss/map perform standard matrix operations similar to matrix multiplication.
We observe that the performance improvement for Gaussian/fan2 kernel is slightly higher
than that for the other two kernels. This is probably because the non-trivial row operations
in this kernel prevent automatic optimization by the compiler/hardware.

Next, we consider kernels from the string manipulating programs. In each of these ker-
nels, threads are assigned a segment of a string file and threads iterates over the characters
in the segment to extract information like HTML links, word count and number of page
views. Again, we observe that the speedup for pvc/map is significantly higher than the other
two kernels. We investigated code for this kernel and observed that the loop iteration over
characters occurs inside a branch of a conditional, whereas for the other benchmarks, the

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 87

 0.5

 1

 1.5

 2

 2.5

Gau
ss

ian
/fa

n2

mm/m
ap

ss
/m

ap

ii/m
ap

Cou
nt

ii/m
ap

wc/m
ap

Cou
nt

wc/m
ap

pv
c/m

ap

Speed-up for Tesla M60 GPU.

Speed-up over nvcc
Speed-up over base

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Gau
ss

ian
/fa

n2

mm/m
ap

ss
/m

ap

ii/m
ap

Cou
nt

ii/m
ap

wc/m
ap

Cou
nt

wc/m
ap

pv
c/m

ap

Speed-up for Quadro P4000 GPU.

Speed-up over nvcc
Speed-up over base

Figure 6.5: Speedup for our optimization clang-opt over Nvidia’s compiler nvcc and base
LLVM compiler clang-base for different kernels on the Tesla M60 and Quadro P4000 GPUs.

code consists of perfectly nested loops. It appears that perfectly nested loops are easier to
optimize automatically. Further, kernels ii/map and ii/mapCount consist of non-trivial case
analysis within a loop, whereas wc/map and wc/mapCount consist of a simple iteration over
the characters in a loop, which is better optimized by existing compiler/hardware. Hence,
lower speedups are observed for wc/map and wc/mapCount. Overall, it seems this class of
benchmarks benefits more from our optimization.

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 88

 0

 5

 10

 15

 20

 25

 30

 35

 1 1.5 2 2.5 3 3.5

C
ha

ng
e

in
 L

1
C

ac
he

 H
it

R
at

e
(%

)

Base speedup vs change in L1 cache hit rate.

Tesla M60
Quadro P4000

Figure 6.6: Change in L1 cache hit rate against the speedup for our optimization clang-opt
over the base LLVM compiler clang-base. The ‘`’ points represent the results for Tesla M60
GPU, while the ‘ˆ’ points represent results for Quadro P4000 GPU.

L1 cache hit rate. Figure 6.6 compares the change in cache hit rate with the speedup
over base LLVM compiler. Clearly, for large speedups, the change in cache hit rate is also
high for both GPUs. The correlation seems to be stronger for Tesla M60 as compared to
Quadro P4000. Overall, there is a positive correlation between change in cache hit rate with
the speedup obtained which indicates our optimization seems to improve the cache hit rate
while also improving the performance.

Global load throughput. Figure 6.7 compares change in global load throughput against
the speed of our optimization over clang-base. Again, similar to L1 cache hit rate, there is a
positive correlation between global load throughput and the speedup. Global load through-
put measures the effective throughput for global memory load accesses, which includes hits
in L1 and L2 cache. Clearly, a positive correlation indicates that our optimization improves
throughput, and therefore, leading to speedups.

6.5 Related Work

We describe some related work, covering various existing program transformation and hard-
ware approaches to improve performance. We describe our work in context of these works.
We first describe progam transformation approaches, where the compiler transforms the pro-
gram into an optimized version, without relying on hardware support for performance. We
next discuss approaches to improve performance by augmenting hardware.

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 89

 0

 50

 100

 150

 200

 250

 300

 350

 1 1.5 2 2.5 3 3.5

C
ha

ng
e

in
 G

lo
ba

l L
oa

d
Th

ro
ug

hp
ut

 (G
B/

s)

Base speedup vs change in global load throughput.

Tesla M60
Quadro P4000

Figure 6.7: Change in global load throughput against the speedup for our optimization
clang-opt over the base LLVM compiler clang-base. The ‘`’ points represent the results for
Tesla M60 GPU, while the ‘ˆ’ points represent results for Quadro P4000 GPU.

Program transformation-based approaches. There are broadly two types. We first con-
sider approaches that transform the data-layout of arrays and structures to gain performance.
The data-layout defines how elements are laid out in memory and determines how the mem-
ory accesses are carried out and whether they are coalesced or not. Dymaxion [12, 11]
presents a user-directed approach, where the user specifies the data-layout tranformation
that must be applied to a data-structure, as API calls or pragmas. The transformations in-
clude rows to columns or diagonal elements into rows for matrices, indirect mapping to
map old locations in arrays to new ones through an index array, and array-of-structures
to structure-of-arrays for data structures. Zhang et al [76] describe a similar approach,
except the transformations are automatically determined at run-time, which is useful for
irregular programs where the irregularities in data-layout are not known at compile-time.
The transformations dynamically move data elements or redirect references from threads
to data-elements. Sung et al [64] present another automatic approach which operates at
compile-time and is useful for regular programs. They however rely on array definitions and
accesses to be well-structured. The approach automatically computes a transformation to en-
sure all accesses to a data structure are coalesced by remapping thread-ids to steering bits in
array accesses. In all of the approaches, the transformations are performed at run-time when
data is transferred from CPU to GPU, and the latency is hidden by pipelining tranformations
with data-transfer. Note that a single transformation is implemented per data-structure for
one kernel call. These transformations require complex run-time analysis for irregularities
or user-guidance in terms of pragma’s and well-defined array accesses. Our approach, on
the other hand, requires minimal runtime analysis and modifications with no user-guidance.

The other set of program transformation-based approaches modify the GPU program
itself. They rely on simple techniques like transforming program to cache data in shared

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 90

memory and reordering loops and thread-geometry. The techniques are also accompanied
with analyses to identify performance issues and to search optimal transformations. CUDA-
lite [66] presents an approach to optimize uncoalesced accesses in programs by transforming
program to cache the accesses in shared memory. This involves loop tiling, transferring data
between global memory and shared memory, and substituting global memory accesses with
sharedmemory accesses. The technique relies on significant user annotation for arrays which
are analyzed, array bounds and dimensions, and loop iterators and their bounds. Yang et
al [75] present a comprehensive compiler that performs many transformations to optimize
CUDA code. Similar to CUDA-lite, they optimize uncoalesced accesses by caching data in
shared memory. They further substitute float variables with float2 variables. They apply
thread-block merging and thread merging to reduce local and shared memory usage. Both
CUDA-lite and this work rely on simple compiler analyses and transformations to gain per-
formance. On the other hand, Bhaskaran et al [6] use sophisticated polyhedral model-based
analysis to automatically identify loop and thread-geometry transformations. They set up
execution-order and spatial-locality constraints and search for a valid reordering transfor-
mation that optimizes uncoalesced accesses. They however rely on loop-bounds and array
accesses in programs to be well-structured (affine functions of thread-ids and loop-iterators).
Jang et al [31] present a similar approach, however they use their own representation, rather
than the polyhdedral model, to analyze and transform programs. All of the above approaches
require extensive transformation of programs, which can be both difficult and error-prone.
Our approach in comparison requires minimal transformation which makes it robust and
easy to implement.

Hardware-based approaches. The hardware-specific approaches improve performance
via two techniques. First, they control the global memory traffic to avoid congestion due to a
large number of simultaneous requests from multiple threads. Second, they improve cache
utilization, similar to our approach. These approaches rely on additional hardware support,
not available in current GPUs. Some of these are purely hardware-based techniques, while
others also involve a compiler component, similar to our approach.

We first describe some approaches that tweak hardware scheduler to improve perfor-
mance. CCWS [57] extends the GPU warp-scheduler to utilize intra-warp spatial locality for
effective cache reuse. It dynamically controls the set of warps that are active on the core,
so that the cache is effectively reused by warps. It maintains a lost-locality score for each
warp, and prioritizes warps that are losing locality and encountering cache misses, to pre-
vent them from losing locality in future. OWL [34] and Narasiman et al [50] use multi-level
warp scheduling to prevent bursts of requests to global memory and thus avoid congestion.
The scheduler first selects a group of warps to be scheduled and then a warp within the
group. It prioritizes warps within the group for scheduling, and moves on to another group
only when all warps in the previous group are stalled. This ensures that the memory requests
sent to the global memory are restricted to one group at a time which prevents congestion.
Also, the cache is divided between warps of only one group which leads to better utilization.
Mascar [61] presents a similar approach, however it prioritizes requests from a single warp
when it detects congestion, and uses round-robin scheduling otherwise when there is no

CHAPTER 6. STATIC ANALYSIS FOR IMPROVING CACHE REUSE 91

congestion. This helps maximize thread-level parallelism in the general case, and prioritiz-
ing a single warp helps faster recovery from memory congestion. MRPB [32] and Rhu et
al [56] augment the memory subsystem to prioritize requests from certain threads and by-
pass cache for memory requests that don’t have enough reuse. Finally, APCM [39] presents
a warp scheduling strategy that identifies cache reusable memory accesses by dynamically
observing the behavior of a single warp in hardware, and then using this information to
schedule remaining warps such that the cache is effectively reused. Our approach similarly
tries to control the scheduling of threads and memory requests to global memory by updat-
ing the number of threads in a block. However, since the analysis happens at compile-time,
we don’t need hardware extensions to predict cache reuse and to determine the scheduling
strategy. Also, our analysis predicts cache reuse at the level of loops, which might be diffi-
cult in hardware if the loop body is large. Yet, our approach can effectively complement the
above approaches to improve overall performance.

We next consider some compile-time approaches, similar to our approach, that utilize
hardware features or extensions to improve performance. Jia et al [33] present an algorithm
to determine if an access is coalesced or not. If it is colaesced, they use 128B cache-line to
fetch data, and otherwise, they bypass cache and use a 32B memory request. The algorithm
is manually applied and not embedded into a compiler. Xie et al [73] present a compiler
framework with light-weight profiling to identify locality between instructions, and hence,
their potential for cache reuse. They select a set of instructions with good locality, and use
cache to store data for these instructions and bypass cache for remaining instructions. Gong
et al [26] present a compiler framework to compile each kernel into two different binary
versions using different instruction schedulers. Each warp in the thread-grid is assigned one
of these versions, and the hardware is tweaked to support simultaneous execution of the
two versions. The primary insight is that different instruction schedules lead to spreading
of memory requests in time which prevents memory congestion, and hence, results in better
performance. Our work is complementary to these approaches and can benefit from ideas
presented in these works.

6.6 Conclusion

This chapter presents a compile-time framework to improve performance of GPU programs
through effective cache reuse. It presents an analysis to identify accesses that benefit from
caching, a predictor to compute appropriate block-size for kernels that must be optimized,
and a transformation pass to update the block-size. The framework leads to minimal code
transformations at compile-time, which makes it robust and easy to implement. Further, it
requires no hardware changes and produces an average speedup of 1.3ˆ on two real GPUs.

In future, we would like to extend this work to multi-dimensional thread-grids, especially
when consecutive threads along a grid dimension access consecutive locations in memory.
A similar analysis as the cache-reuse analysis would be useful, however non-trivial changes
to thread-grid configuration might be neeeded. We would also like to extend the idea of
utilizing existing hardware features to improve performance, while making minimal source-
code changes, to other goals like reducing energy usage in GPU programs.

Chapter 7

Concluding Remarks

This thesis explores a new approach to analysis and optimization of GPU programs. The
analyses are light-weight and execute efficiently at compile-time. Yet, they are robust and
based on formal abstraction-based techniques. Similarly, the optimization leverages hard-
ware cache to improve performance, while ensuring minimal transformation which again
gives greater guarantees of correctness. Further, the analyses and the optimizations work
with general GPU programs and do not impose constraints on how the programs must be
written.

This is unlike previous work in analysis and optimization of GPU programs. The existing
analyses for GPU programs are either described informally as part of compile-time opti-
mization frameworks which diminishes their reliability (for example in CUDA-Lite [66]),
or they rely on complex techniques like symbolic execution which take a long time to run
(for example in GPUVerify [8] and GKLEE [44]). We present light-weight analyses based
on abstraction and reason about their correctness via a formal model for GPU programs.
Abstraction filters necessary information from program state which helps scale the analysis,
yet formally captures the execution of the analysis via an abstract state and abstract seman-
tics which allows reasoning about correctness. For GPU programs, a novel abstraction that
tracks the dependence of program variables on thread descriptors like thread-id, block-id and
block-size is required, which has not been used previously and distinguishes our analyses
from existing work.

Similarly, compiler optimization to improve scheduling of threads within GPUs has not
been explored previously. While this has been explored in hardware [57, 39], there are lim-
ited opportunities to identify cache reuse due to the narrow visibility into program execution,
especially for regular programs where there is significant cache reuse across loop iterations.
Also, simultaneous detection of cache reuse and optimization of thread-schedule can be dif-
ficult in hardware. Hence, the hardware presents limited opportunities to improve thread
schedule to leverage such cache reuse. Further, existing compiler optimization frameworks
transform the data-layout or the program itself to improve performance, which requires non-
trivial changes like reordering loops and access indices, tiling loops, pre-fetching data in
user-managed cache etc. These changes are difficult to implement robustly for general GPU
programs where the loops and memory accesses are not well-formed. We, on the other hand,

92

CHAPTER 7. CONCLUDING REMARKS 93

leverage the fact that the order in which different threads execute is flexible, and hence, can
be reconfigured for better cache reuse without implications to correctness. Therefore, our
optimization overcomes limitations of existing work, via compile-time analyses that predict
loop-level cache reuse which is difficult in hardware, and minimal program transformation
which gives greater guarantees of correctness than existing compilers.

We have implemented the analyses and optimization in LLVM. The implementation is
modular and easy to work with. The core abstract execution engine has been extracted
into a generic framework, which is then extended by each our analyses to implement the
required functionality. This simplifies the implementation and also makes it easy to define
new analyses. Next, the build is completely automated and the tool is easy to install on
a new system. We have also written automated scripts to invoke our tool on benchmarks.
The tool has been artifact evaluated for the uncoalesced access analysis and the block-size
independence analysis, which further demonstrates its robustness.

Furthermore, we have results demonstrating usefulness of our work in practice. The anal-
ysis to detect uncoalesced accesses found 111 uncoalesced accesses in Rodinia benchmark
suite with a false positive rate of 38%. The analysis is fast, finishing in few seconds for most
programs. Similarly, the analysis to prove block-size independence identifies 35 block-size
independent global kernels in Nvidia CUDA SDK samples and again finishes in a few seconds
for most programs. Finally, our compiler optimization to reuse cache in hardware shows an
average speedup of 1.3ˆ on six matrix manipulating and data chunking benchmarks on two
real Nvidia GPUs. Overall, our analyses and optimization are fast, robust and applicable to
real world GPU programs.

Our work also comes with certain limitations. First, we assume the programs being
analyzed or optimized are correct and devoid of concurrency issues. Any guarantees fail if
the original program is not data-race-free or barrier-divergence-free. Second, the block-size
independence analysis and cache reuse-based optimization work only for a small class of
programs currently. Finally, our cache reuse optimization has been evaluated on a small
set of benchmarks. We will address these limitations in future work. Despite that, each of
these works break ground into a new and practical dimension of GPU compiler research with
significant scope for improvement.

7.1 Future Directions

Each work in this thesis, on finding uncoalesced accesses, proving block-size independence
and leveraging cache reuse for compile-time optimization, only scratches the surface and
there is scope for improvement, which we would like to address in future work. There are
also other possible directions that we discuss shortly. Broadly, we would like to improve the
state-of-the-art in programming tools for general GPU programs, written in programming
languages like CUDA and OpenCL. These languages have gained wide spread adoption and
cater to general audiences. We are also open to extending other existing languages (espe-
cially functional languages) to support GPU programming. We describe here various direc-
tions we would like to pursue in future.

CHAPTER 7. CONCLUDING REMARKS 94

• Identifying properties of GPU programs. Wewould like to build on our experience in
analysis for uncoalesced accesses to identify other properties of GPU programs, partic-
ularly performance and correctness issues like shared memory bank-conflicts and data-
races. The essential idea is to track relationship between the executions of threads via
an appropriate abstraction. We believe this approach could be useful for identifying
other properties. An important application would be detection of data races where
most of the existing static approaches rely on heavy-weight SMT solving and do not
scale to large programs. A light-weight approach based on abstraction to detect data-
races would be desirable.

• Block-size independence. This is an important property necessary to ensure ro-
bust tuning of block-size in GPU programs. Currently, we handle a small subset of
synchronization-free programs. We would like to extend the analysis to other GPU
programs with restricted synchronization.

• Cache reuse optimization. We propose a novel compile-time approach to balance
cache reuse with thread-level parallelism via improved thread-scheduling, and hence
improve performance. The cache reuse analysis and the cache reuse predictor can be
improved to predict other types of cache reuse like inter-thread reuse and reuse across
different global memory accesses.

• Traditional compile-time optimizations. There is scope to improve the robustness
and applicablity of classic optimizations like loop-reordering, loop-fusion and loop-
fission to general GPU programs. There is also scope for new formal methods that allow
such optimizations to be implemented on generic programswhile ensuring correctness.
There is a rich body of work done for sequential programs. GPU programs, however,
exhibit greater regularity, and therefore, many existing techniques can be adapted for
better performance on GPU programs.

• New languages for GPU programming. The existing languages for GPU program-
ming present many challenges to automatic analysis and optimization. The challenges
arise due to the absence of high-level code structure (like loops and conditionals), pres-
ence of aliases and side-effects, and non-trivial transformations necessary for improv-
ing cross-thread performance. A few of these challenges can be overcome with better
support from hardware, like compiler-level control for tuning thread-scheduling etc.
A fresh look at both hardware and software for GPU programming could be useful in
making it robust and accessible to masses.

With that, we would like to conclude this thesis. We hope it is an informative and enjoy-
able read. We also hope it opens up news ideas for exploration and enables new research on
tools for robust and efficient GPU programming.

Bibliography

[1] Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A core calculus of dependency.
In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 147–160. POPL ’99, ACM, New York, NY, USA (1999),
http://doi.acm.org/10.1145/292540.292555

[2] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensor-
flow: A system for large-scale machine learning. In: Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation. pp. 265–283. OSDI’16,
USENIX Association, Berkeley, CA, USA (2016), http://dl.acm.org/citation.cfm?
id=3026877.3026899

[3] Allen, F.E.: Control flow analysis. SIGPLAN Not. 5(7), 1–19 (Jul 1970), http://doi.
acm.org/10.1145/390013.808479

[4] Alur, R., Devietti, J., Leija, O.S.N., Singhania, N.: GPUDrano: Detecting uncoalesced
accesses in GPU programs. In: CAV (2017)

[5] Amilkanthwar, M., Balachandran, S.: CUPL: A compile-time uncoalesced memory ac-
cess pattern locator for CUDA. In: Proceedings of the 27th International ACM Con-
ference on International Conference on Supercomputing. pp. 459–460. ICS ’13, ACM,
New York, NY, USA (2013), http://doi.acm.org/10.1145/2464996.2467288

[6] Baskaran, M.M., Bondhugula, U., Krishnamoorthy, S., Ramanujam, J., Rountev, A., Sa-
dayappan, P.: A compiler framework for optimization of affine loop nests for GPGPUs.
In: Proceedings of the 22Nd Annual International Conference on Supercomputing. pp.
225–234. ICS ’08, ACM, New York, NY, USA (2008), http://doi.acm.org/10.1145/
1375527.1375562

[7] Bergstra, J., Pinto, N., Cox, D.: Machine learning for predictive auto-tuning with
boosted regression trees. In: 2012 Innovative Parallel Computing (InPar). pp. 1–9 (May
2012)

[8] Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: A verifier for
GPU kernels. SIGPLAN Not. 47(10), 113–132 (Oct 2012), http://doi.acm.org/10.
1145/2398857.2384625

95

http://doi.acm.org/10.1145/292540.292555
http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
http://doi.acm.org/10.1145/390013.808479
http://doi.acm.org/10.1145/390013.808479
http://doi.acm.org/10.1145/2464996.2467288
http://doi.acm.org/10.1145/1375527.1375562
http://doi.acm.org/10.1145/1375527.1375562
http://doi.acm.org/10.1145/2398857.2384625
http://doi.acm.org/10.1145/2398857.2384625

BIBLIOGRAPHY 96

[9] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan,
P.: Brook for GPUs: Stream computing on graphics hardware. In: ACM SIGGRAPH
2004 Papers. pp. 777–786. SIGGRAPH ’04, ACM, New York, NY, USA (2004), http:
//doi.acm.org/10.1145/1186562.1015800

[10] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.: Ro-
dinia: A benchmark suite for heterogeneous computing. In: 2009 IEEE International
Symposium on Workload Characterization (IISWC). pp. 44–54 (Oct 2009)

[11] Che, S., Meng, J., Skadron, K.: Dymaxion++: A directive-based api to optimize data
layout and memory mapping for heterogeneous systems. In: Proceedings of the 2014
IEEE International Parallel & Distributed Processing Symposium Workshops. pp. 916–
924. IPDPSW ’14, IEEE Computer Society, Washington, DC, USA (2014), http://dx.
doi.org/10.1109/IPDPSW.2014.104

[12] Che, S., Sheaffer, J.W., Skadron, K.: Dymaxion: Optimizing memory access patterns
for heterogeneous systems. In: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. pp. 13:1–13:11. SC ’11,
ACM, New York, NY, USA (2011), http://doi.acm.org/10.1145/2063384.2063401

[13] Chen, G., Wu, B., Li, D., Shen, X.: PORPLE: An extensible optimizer for portable data
placement on GPU. In: Proceedings of the 47th Annual IEEE/ACM International Sym-
posium on Microarchitecture. pp. 88–100. MICRO-47, IEEE Computer Society, Wash-
ington, DC, USA (2014), http://dx.doi.org/10.1109/MICRO.2014.20

[14] Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-vector
multiply on GPUs. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. pp. 115–126. PPoPP ’10, ACM, New York, NY,
USA (2010), http://doi.acm.org/10.1145/1693453.1693471

[15] Cocke, J., Kennedy, K.: An algorithm for reduction of operator strength. Commun. ACM
20(11), 850–856 (Nov 1977), http://doi.acm.org/10.1145/359863.359888

[16] Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic testing of OpenCL code. In: Haifa
Verification Conference (HVC 2011) (1 2011)

[17] Cooper, K.D., Simpson, L.T., Vick, C.A.: Operator strength reduction. ACM Trans.
Program. Lang. Syst. 23(5), 603–625 (Sep 2001), http://doi.acm.org/10.1145/
504709.504710

[18] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In: Proceedings of
the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
pp. 238–252. POPL ’77, ACM, New York, NY, USA (1977), http://doi.acm.org/10.
1145/512950.512973

http://doi.acm.org/10.1145/1186562.1015800
http://doi.acm.org/10.1145/1186562.1015800
http://dx.doi.org/10.1109/IPDPSW.2014.104
http://dx.doi.org/10.1109/IPDPSW.2014.104
http://doi.acm.org/10.1145/2063384.2063401
http://dx.doi.org/10.1109/MICRO.2014.20
http://doi.acm.org/10.1145/1693453.1693471
http://doi.acm.org/10.1145/359863.359888
http://doi.acm.org/10.1145/504709.504710
http://doi.acm.org/10.1145/504709.504710
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973

BIBLIOGRAPHY 97

[19] Cypher, R., Sanz, J.L.C.: The SIMDModel of Parallel Computation. Springer Publishing
Company, Incorporated, 1st edn. (2011)

[20] Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently com-
puting static single assignment form and the control dependence graph. ACM Trans.
Program. Lang. Syst. 13(4), 451–490 (Oct 1991), http://doi.acm.org/10.1145/
115372.115320

[21] Eizenberg, A., Peng, Y., Pigli, T., Mansky, W., Devietti, J.: BARRACUDA: Binary-level
analysis of runtime races in CUDA programs. In: Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. pp. 126–
140. PLDI 2017, ACM, New York, NY, USA (2017), http://doi.acm.org/10.1145/
3062341.3062342

[22] Ermedahl, A., Gustafsson, J., Lisper, B.: Deriving WCET bounds by abstract execution.
Proc. 11th International Workshop on Worst-Case Execution Time (WCET) Analysis
(WCET 2011:) s. 72-82 (2011)

[23] Fauzia, N., Pouchet, L.N., Sadayappan, P.: Characterizing and enhancing global mem-
ory data coalescing on GPUs. In: Proceedings of the 13th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization. pp. 12–22. CGO ’15, IEEE
Computer Society, Washington, DC, USA (2015), http://dl.acm.org/citation.
cfm?id=2738600.2738603

[24] Galoppo, N., Govindaraju, N.K., Henson, M., Manocha, D.: LU-GPU: Efficient algo-
rithms for solving dense linear systems on graphics hardware. In: Proceedings of the
2005 ACM/IEEE Conference on Supercomputing. pp. 3–. SC ’05, IEEE Computer So-
ciety, Washington, DC, USA (2005), https://doi.org/10.1109/SC.2005.42

[25] Gerlek, M.P., Stoltz, E., Wolfe, M.: Beyond induction variables: Detecting and classi-
fying sequences using a demand-driven SSA form. ACM Trans. Program. Lang. Syst.
17(1), 85–122 (Jan 1995), http://doi.acm.org/10.1145/200994.201003

[26] Gong, X., Chen, Z., Ziabari, A.K., Ubal, R., Kaeli, D.: TwinKernels: An execution
model to improve GPU hardware scheduling at compile time. In: Proceedings of the
2017 International Symposium on Code Generation and Optimization. pp. 39–49. CGO
’17, IEEE Press, Piscataway, NJ, USA (2017), http://dl.acm.org/citation.cfm?id=
3049832.3049838

[27] Grosser, T.: Polyhedral Compilation, https://polyhedral.info

[28] Gustafsson, J.: Analyzing Execution-Time of Object-Oriented Programs Using Abstract
Interpretation. Ph.D. thesis, Department of Computer Engineering, Mälardalen Uni-
versity, Box 883, S-721 23 Västerås, Sweden, and Department of Computer Systems,
Information Technology, Uppsala University, Box 325, S-751 05 Uppsala, Sweden (May
2000), http://www.es.mdh.se/publications/231-

http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/3062341.3062342
http://doi.acm.org/10.1145/3062341.3062342
http://dl.acm.org/citation.cfm?id=2738600.2738603
http://dl.acm.org/citation.cfm?id=2738600.2738603
https://doi.org/10.1109/SC.2005.42
http://doi.acm.org/10.1145/200994.201003
http://dl.acm.org/citation.cfm?id=3049832.3049838
http://dl.acm.org/citation.cfm?id=3049832.3049838
https://polyhedral.info
http://www.es.mdh.se/publications/231-

BIBLIOGRAPHY 98

[29] Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic derivation of loop
bounds and infeasible paths for WCET analysis using abstract execution. In: Proceed-
ings of the 27th IEEE International Real-Time Systems Symposium. pp. 57–66. RTSS
’06, IEEE Computer Society, Washington, DC, USA (2006), https://doi.org/10.
1109/RTSS.2006.12

[30] He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: A MapReduce frame-
work on graphics processors. In: Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques. pp. 260–269. PACT ’08, ACM, New
York, NY, USA (2008), http://doi.acm.org/10.1145/1454115.1454152

[31] Jang, B., Schaa, D., Mistry, P., Kaeli, D.: Exploiting memory access patterns to improve
memory performance in data-parallel architectures. IEEE Trans. Parallel Distrib. Syst.
22(1), 105–118 (Jan 2011), http://dx.doi.org/10.1109/TPDS.2010.107

[32] Jia, W., Shaw, K.A., Martonosi, M.: MRPB: Memory request prioritization for massively
parallel processors. In: 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA). pp. 272–283 (Feb 2014)

[33] Jia, W., Shaw, K.A., Martonosi, M.: Characterizing and improving the use of demand-
fetched caches in GPUs. In: Proceedings of the 26th ACM International Conference on
Supercomputing. pp. 15–24. ICS ’12, ACM, New York, NY, USA (2012), http://doi.
acm.org/10.1145/2304576.2304582

[34] Jog, A., Kayiran, O., Chidambaram Nachiappan, N., Mishra, A.K., Kandemir, M.T.,
Mutlu, O., Iyer, R., Das, C.R.: Owl: Cooperative thread array aware scheduling tech-
niques for improving gpgpu performance. In: Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems. pp. 395–406. ASPLOS ’13, ACM, New York, NY, USA (2013), http:
//doi.acm.org/10.1145/2451116.2451158

[35] Jones, K.E.: Exploring the dark universe with super-
computers, https://www.symmetrymagazine.org/article/
exploring-the-dark-universe-with-supercomputers

[36] Kildall, G.A.: A unified approach to global program optimization. In: Proceedings of
the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages. pp. 194–206. POPL ’73, ACM, New York, NY, USA (1973), http://doi.acm.
org/10.1145/512927.512945

[37] Kim, Y., Shrivastava, A.: CuMAPz: A tool to analyze memory access patterns in CUDA.
In: Proceedings of the 48th Design Automation Conference. pp. 128–133. DAC ’11,
ACM, New York, NY, USA (2011), http://doi.acm.org/10.1145/2024724.2024754

[38] Kofler, K., Cosenza, B., Fahringer, T.: Automatic data layout optimizations for GPUs.
In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015: Parallel Processing. pp.
263–274. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

https://doi.org/10.1109/RTSS.2006.12
https://doi.org/10.1109/RTSS.2006.12
http://doi.acm.org/10.1145/1454115.1454152
http://dx.doi.org/10.1109/TPDS.2010.107
http://doi.acm.org/10.1145/2304576.2304582
http://doi.acm.org/10.1145/2304576.2304582
http://doi.acm.org/10.1145/2451116.2451158
http://doi.acm.org/10.1145/2451116.2451158
https://www.symmetrymagazine.org/article/exploring-the-dark-universe-with-supercomputers
https://www.symmetrymagazine.org/article/exploring-the-dark-universe-with-supercomputers
http://doi.acm.org/10.1145/512927.512945
http://doi.acm.org/10.1145/512927.512945
http://doi.acm.org/10.1145/2024724.2024754

BIBLIOGRAPHY 99

[39] Koo, G., Oh, Y., Ro, W.W., Annavaram, M.: Access pattern-aware cache management
for improving data utilization in gpu. In: Proceedings of the 44th Annual International
Symposium on Computer Architecture. pp. 307–319. ISCA ’17, ACM, New York, NY,
USA (2017), http://doi.acm.org/10.1145/3079856.3080239

[40] Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analy-
sis & transformation. In: Proceedings of the International Symposium on Code Gen-
eration and Optimization: Feedback-directed and Runtime Optimization. pp. 75–.
CGO ’04, IEEE Computer Society, Washington, DC, USA (2004), http://dl.acm.org/
citation.cfm?id=977395.977673

[41] Lee, S., Min, S.J., Eigenmann, R.: OpenMP to GPGPU: A compiler framework for au-
tomatic translation and optimization. In: Proceedings of the 14th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming. pp. 101–110. PPoPP ’09,
ACM, New York, NY, USA (2009), http://doi.acm.org/10.1145/1504176.1504194

[42] Leung, A., Gupta, M., Agarwal, Y., Gupta, R., Jhala, R., Lerner, S.: Verifying GPU
kernels by test amplification. In: Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 383–394. PLDI ’12, ACM,
New York, NY, USA (2012), http://doi.acm.org/10.1145/2254064.2254110

[43] Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel functions. In:
Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations
of Software Engineering. pp. 187–196. FSE ’10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1882291.1882320

[44] Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE: Con-
colic verification and test generation for GPUs. In: Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. pp. 215–
224. PPoPP ’12, ACM, New York, NY, USA (2012), http://doi.acm.org/10.1145/
2145816.2145844

[45] Liu, Y., Zhang, E.Z., Shen, X.: A cross-input adaptive framework for GPU program opti-
mizations. In: 2009 IEEE International Symposium on Parallel Distributed Processing.
pp. 1–10 (May 2009)

[46] Magni, A., Dubach, C., O’Boyle, M.: Automatic optimization of thread-coarsening for
graphics processors. In: Proceedings of the 23rd International Conference on Paral-
lel Architectures and Compilation. pp. 455–466. PACT ’14, ACM, New York, NY, USA
(2014), http://doi.acm.org/10.1145/2628071.2628087

[47] McCool, M., Toit, S.D.: Metaprogramming GPUs with Sh. AK Peters Ltd (2004)

[48] Miné, A.: Symbolic methods to enhance the precision of numerical abstract domains.
In: Proceedings of the 7th International Conference on Verification, Model Checking,
and Abstract Interpretation. pp. 348–363. VMCAI’06, Springer-Verlag, Berlin, Heidel-
berg (2006), http://dx.doi.org/10.1007/11609773_23

http://doi.acm.org/10.1145/3079856.3080239
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
http://doi.acm.org/10.1145/1504176.1504194
http://doi.acm.org/10.1145/2254064.2254110
http://doi.acm.org/10.1145/1882291.1882320
http://doi.acm.org/10.1145/2145816.2145844
http://doi.acm.org/10.1145/2145816.2145844
http://doi.acm.org/10.1145/2628071.2628087
http://dx.doi.org/10.1007/11609773_23

BIBLIOGRAPHY 100

[49] Monakov, A., Lokhmotov, A., Avetisyan, A.: Automatically tuning sparse matrix-
vector multiplication for GPU architectures. In: Proceedings of the 5th International
Conference on High Performance Embedded Architectures and Compilers. pp. 111–
125. HiPEAC’10, Springer-Verlag, Berlin, Heidelberg (2010), http://dx.doi.org/
10.1007/978-3-642-11515-8_10

[50] Narasiman, V., Shebanow, M., Lee, C.J., Miftakhutdinov, R., Mutlu, O., Patt, Y.N.: Im-
proving GPU performance via large warps and two-level warp scheduling. In: Proceed-
ings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture.
pp. 308–317. MICRO-44, ACM, New York, NY, USA (2011), http://doi.acm.org/
10.1145/2155620.2155656

[51] Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with
CUDA. Queue 6(2), 40–53 (Mar 2008), http://doi.acm.org/10.1145/1365490.
1365500

[52] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer Pub-
lishing Company, Incorporated (2010)

[53] Nvidia: CUDA C Programming Guide v9.0, http://docs.nvidia.com/cuda/
cuda-c-programming-guide/

[54] Nvidia: Nvidia Performance Analysis Tools, http://developer.nvidia.com/
performance-analysis-tools/

[55] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.: Halide:
A language and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. In: Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 519–530. PLDI ’13, ACM,
New York, NY, USA (2013), http://doi.acm.org/10.1145/2491956.2462176

[56] Rhu, M., Sullivan, M., Leng, J., Erez, M.: A locality-aware memory hierarchy for
energy-efficient GPU architectures. In: Proceedings of the 46th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture. pp. 86–98. MICRO-46, ACM, New York,
NY, USA (2013), http://doi.acm.org/10.1145/2540708.2540717

[57] Rogers, T.G., O’Connor, M., Aamodt, T.M.: Cache-conscious wavefront scheduling.
In: Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. pp. 72–83. MICRO-45, IEEE Computer Society, Washington, DC, USA
(2012), http://dx.doi.org/10.1109/MICRO.2012.16

[58] Ryoo, S., Rodrigues, C.I., Stone, S.S., Baghsorkhi, S.S., Ueng, S.Z., Stratton, J.A.,
Hwu, W.m.W.: Program optimization space pruning for a multithreaded GPU. In:
Proceedings of the 6th Annual IEEE/ACM International Symposium on Code Gener-
ation and Optimization. pp. 195–204. CGO ’08, ACM, New York, NY, USA (2008),
http://doi.acm.org/10.1145/1356058.1356084

http://dx.doi.org/10.1007/978-3-642-11515-8_10
http://dx.doi.org/10.1007/978-3-642-11515-8_10
http://doi.acm.org/10.1145/2155620.2155656
http://doi.acm.org/10.1145/2155620.2155656
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://developer.nvidia.com/performance-analysis-tools/
http://developer.nvidia.com/performance-analysis-tools/
http://doi.acm.org/10.1145/2491956.2462176
http://doi.acm.org/10.1145/2540708.2540717
http://dx.doi.org/10.1109/MICRO.2012.16
http://doi.acm.org/10.1145/1356058.1356084

BIBLIOGRAPHY 101

[59] Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program analysis using symbolic ranges.
In: Proceedings of the 14th International Conference on Static Analysis. pp. 366–383.
SAS’07, Springer-Verlag, Berlin, Heidelberg (2007), http://dl.acm.org/citation.
cfm?id=2391451.2391476

[60] Sarbó, J.: Abstract execution of programs. Periodica Polytechnica Electrical Engineer-
ing (Archives) 30(1), 37–47, https://pp.bme.hu/ee/article/view/4640

[61] Sethia, A., Jamshidi, D.A., Mahlke, S.: Mascar: Speeding up GPU warps by reducing
memory pitstops. In: 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA). pp. 174–185 (Feb 2015)

[62] Sørensen, H.H.B.: Auto-tuning dense vector and matrix-vector operations for Fermi
GPUs. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) Parallel
Processing and Applied Mathematics. pp. 619–629. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012)

[63] Stone, J.E., Gohara, D., Shi, G.: OpenCL: A parallel programming standard for het-
erogeneous computing systems. IEEE Des. Test 12(3), 66–73 (May 2010), http:
//dx.doi.org/10.1109/MCSE.2010.69

[64] Sung, I.J., Stratton, J.A., Hwu, W.M.W.: Data layout transformation exploiting
memory-level parallelism in structured grid many-core applications. In: Proceedings
of the 19th International Conference on Parallel Architectures and Compilation Tech-
niques. pp. 513–522. PACT ’10, ACM, New York, NY, USA (2010), http://doi.acm.
org/10.1145/1854273.1854336

[65] Tarditi, D., Puri, S., Oglesby, J.: Accelerator: Using data parallelism to program GPUs
for general-purpose uses. In: Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems. pp. 325–
335. ASPLOS XII, ACM, New York, NY, USA (2006), http://doi.acm.org/10.1145/
1168857.1168898

[66] Ueng, S.Z., Lathara, M., Baghsorkhi, S.S., Hwu, W.M.W.: Languages and compilers
for parallel computing. chap. CUDA-Lite: Reducing GPU Programming Complexity,
pp. 1–15. Springer-Verlag, Berlin, Heidelberg (2008), http://dx.doi.org/10.1007/
978-3-540-89740-8_1

[67] Venet, A.J.: The gauge domain: Scalable analysis of linear inequality invariants. In:
Proceedings of the 24th International Conference on Computer Aided Verification. pp.
139–154. CAV’12, Springer-Verlag, Berlin, Heidelberg (2012), http://dx.doi.org/
10.1007/978-3-642-31424-7_15

[68] Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gómez, J., Tenllado, C., Catthoor,
F.: Polyhedral parallel code generation for CUDA. ACM Trans. Archit. Code Optim.
9(4), 54:1–54:23 (Jan 2013), http://doi.acm.org/10.1145/2400682.2400713

http://dl.acm.org/citation.cfm?id=2391451.2391476
http://dl.acm.org/citation.cfm?id=2391451.2391476
https://pp.bme.hu/ee/article/view/4640
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/MCSE.2010.69
http://doi.acm.org/10.1145/1854273.1854336
http://doi.acm.org/10.1145/1854273.1854336
http://doi.acm.org/10.1145/1168857.1168898
http://doi.acm.org/10.1145/1168857.1168898
http://dx.doi.org/10.1007/978-3-540-89740-8_1
http://dx.doi.org/10.1007/978-3-540-89740-8_1
http://dx.doi.org/10.1007/978-3-642-31424-7_15
http://dx.doi.org/10.1007/978-3-642-31424-7_15
http://doi.acm.org/10.1145/2400682.2400713

BIBLIOGRAPHY 102

[69] Weber, N., Goesele, M.: MATOG: Array layout auto-tuning for CUDA. ACM Trans. Ar-
chit. Code Optim. 14(3), 28:1–28:26 (Aug 2017), http://doi.acm.org/10.1145/
3106341

[70] Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using Datalog with binary decision di-
agrams for program analysis. In: Proceedings of the Third Asian Conference on Pro-
gramming Languages and Systems. pp. 97–118. APLAS’05, Springer-Verlag, Berlin,
Heidelberg (2005), http://dx.doi.org/10.1007/11575467_8

[71] Wienke, S., Springer, P., Terboven, C., an Mey, D.: OpenACC: First experiences with
real-world applications. In: Proceedings of the 18th International Conference on Paral-
lel Processing. pp. 859–870. Euro-Par’12, Springer-Verlag, Berlin, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-32820-6_85

[72] Wu, J., Belevich, A., Bendersky, E., Heffernan, M., Leary, C., Pienaar, J., Roune, B.,
Springer, R., Weng, X., Hundt, R.: GPUCC: An open-source GPGPU compiler. In: Pro-
ceedings of the 2016 International Symposium on Code Generation and Optimization.
pp. 105–116. CGO ’16, ACM, New York, NY, USA (2016), http://doi.acm.org/10.
1145/2854038.2854041

[73] Xie, X., Liang, Y., Sun, G., Chen, D.: An efficient compiler framework for cache
bypassing on GPUs. In: Proceedings of the International Conference on Computer-
Aided Design. pp. 516–523. ICCAD ’13, IEEE Press, Piscataway, NJ, USA (2013),
http://dl.acm.org/citation.cfm?id=2561828.2561929

[74] Yang, Y., Xiang, P., Kong, J., Mantor, M., Zhou, H.: A unified optimizing compiler
framework for different GPGPU architectures. ACM Trans. Archit. Code Optim. 9(2),
9:1–9:33 (Jun 2012), http://doi.acm.org/10.1145/2207222.2207225

[75] Yang, Y., Xiang, P., Kong, J., Zhou, H.: A GPGPU compiler for memory optimization
and parallelism management. In: Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 86–97. PLDI ’10, ACM,
New York, NY, USA (2010), http://doi.acm.org/10.1145/1806596.1806606

[76] Zhang, E.Z., Jiang, Y., Guo, Z., Tian, K., Shen, X.: On-the-fly elimination of dy-
namic irregularities for GPU computing. In: Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems. pp. 369–380. ASPLOS XVI, ACM, New York, NY, USA (2011), http:
//doi.acm.org/10.1145/1950365.1950408

[77] Zhang, Y., Mueller, F.: Auto-generation and auto-tuning of 3D stencil codes on GPU
clusters. In: Proceedings of the Tenth International Symposium on Code Generation
and Optimization. pp. 155–164. CGO ’12, ACM, New York, NY, USA (2012), http:
//doi.acm.org/10.1145/2259016.2259037

http://doi.acm.org/10.1145/3106341
http://doi.acm.org/10.1145/3106341
http://dx.doi.org/10.1007/11575467_8
http://dx.doi.org/10.1007/978-3-642-32820-6_85
http://doi.acm.org/10.1145/2854038.2854041
http://doi.acm.org/10.1145/2854038.2854041
http://dl.acm.org/citation.cfm?id=2561828.2561929
http://doi.acm.org/10.1145/2207222.2207225
http://doi.acm.org/10.1145/1806596.1806606
http://doi.acm.org/10.1145/1950365.1950408
http://doi.acm.org/10.1145/1950365.1950408
http://doi.acm.org/10.1145/2259016.2259037
http://doi.acm.org/10.1145/2259016.2259037

	Static Analysis For Gpu Program Performance
	Recommended Citation

	Static Analysis For Gpu Program Performance
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories

	A Formal Perspective to GPU Computing
	Challenges with GPU Programming
	Structured Parallelism
	Organization

	Fundamentals of GPU Programming
	Background
	GPU Programming Model
	GPU Architecture

	Example: Gaussian Elimination
	Formal Model
	Programming Model
	Execution Model
	Memory Performance Model

	Limitations of Formalization
	Conclusion

	Abstract Execution-based Static Analyses
	Abstract Domain
	Example: Divide-by-zero Error
	Abstract Values and Abstract State

	Abstract Semantics
	Abstract Execution Engine
	Implementation
	Other Approaches
	Conclusion

	Static Detection of Uncoalesced Accesses
	An Uncoalesced Access: Gaussian Elimination
	Formalization
	Detecting Uncoalesced Accesses
	Abstract Domain
	Abstract Semantics
	Overall Analysis

	Implementation
	Handling Pointers and Structures
	Handling Multiple Procedures
	Handling Control Flow Graph Representation

	Evaluation
	Related Work
	Conclusion

	Block-Size Independence for GPU Programs
	Formalization
	Block Size Independence
	Reduction to Thread-local Block Size Independence

	Analysis for Synchronization-free GPU Programs
	Evaluation
	Related Work
	Conclusion

	Static Analysis for Improving Cache Reuse
	Example: Revisiting Gaussian Elimination
	Cache Reuse Analysis
	Loop Reusable Accesses
	Simple Increment Analysis
	Derived Increment Analysis

	Overall Approach
	Cache Reuse Predictor for GPU Kernels
	Block Size Transformation for Cache Reuse Optimization

	Evaluation
	Related Work
	Conclusion

	Concluding Remarks
	Future Directions

