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ABSTRACT 

NEURAL AND PSYCHOLOGICAL BASES OF HEALTH NEWS SHARING 

Christin Scholz 

Emily B. Falk 

Mass media content often propagates through social channels, for instance 

through shares on social media. In these social spaces, message effects interact with 

social forces like social influence to impact behavior and attitudes which has important 

implications for large-scale media effects. The abundance of online data about sharing 

patterns has enabled detailed descriptions of these processes but commonly used methods 

are less well suited to understand the psychological processes that facilitate sharing 

decisions. To address this knowledge gap, this dissertation used functional magnetic 

resonance imaging to study processes occurring in propagation chains where 

communicators shared New York Times health news articles with receivers through 

Facebook messages. Results from four empirical studies support a parsimonious 

framework, suggesting that communicators integrate considerations of the expected self-

related and social outcomes of sharing into an overall signal of the value of sharing a 

piece of content which directly impacts their choices. To this end, Chapter 2 

demonstrates the involvement of neural activity in regions associated with self-related, 

social, and value-related processing in sharing decisions made by individual 

communicators. Chapter 3 shows that the extent of neural value-related activity in 

response to these articles is significantly related to population-level sharing behavior of 

hundreds of thousands of real-world online New York Times readers and that neural 

valuation mediates the effects of self-related and social processing on choice. Chapter 4 
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demonstrates that these key processes are relevant across sharing contexts, namely when 

communicators are faced with different audience sizes. Yet the measures used here still 

showed insightful context-sensitivity through modulation of signal intensity. Finally, 

Chapter 5 discusses neural communicator-receiver coupling of activity in key regions of 

interest associated with valuation, self-related and social processing as a facilitator of 

information transfer between communications and receivers. Significant coupling 

suggests that central processes identified in communicators may propagate through social 

interaction and impact secondary receivers. In sum, this dissertation offers a detailed, 

parsimonious framework of the neural and psychological bases of sharing decisions and 

thus constitutes progress in scientific efforts to optimally account for and utilize social 

forces in the design of large-scale message campaigns and interventions. 
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CHAPTER 1. BACKGROUND AND OVERVIEW 

Mass media content such as news often propagates through social channels, for 

instance through shares on social media. In these social spaces, large numbers of 

additional exposures are generated for some pieces of content, while others are brought 

up infrequently or not at all. Those pieces of content that are shared, enter a dynamic 

environment in which receivers’ attitudes and behaviors are not only affected by the 

message itself, but are subject to social forces like social influence and persuasion from 

communicators who shared the information. Social sharing of media content is thus an 

important factor when considering media effects on a target population (Hornik & 

Yanovitzky, 2003; Southwell & Yzer, 2007). The availability of detailed data on sharing 

behavior in online spaces has made it possible to describe the occurrence of massive 

sharing events (i.e. content virality) in great detail (Adamic et al., 2016; Chatzopoulou, 

Sheng, & Faloutsos, 2010; Cheng, Adamic, Kleinberg, & Leskovec, 2016; Goel, Watts, 

& Goldstein, 2012). However, the basic psychological mechanisms that underlie sharing 

decisions are less accessible using online logs alone, and hence less well understood. This 

knowledge gap acts as a barrier to theory-driven message design and evaluation that takes 

into account and actively targets social sources of exposure and influence. In four 

empirical studies, this dissertation synthesizes existing work on communicators’ 

motivations to share content, social influence, and persuasion to propose a unifying, 

parsimonious framework that highlights value-based decision-making as a basis for 

information sharing behavior.  
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Functional neuroimaging, more specifically functional magnetic resonance 

imaging (fMRI), is used here to study value-related neural processes as well as potential 

sources of value in sharers in the specific context of online health news sharing. Thereby, 

propagation chains in which a communicator shares a health news article with a receiver 

through a social media message (Figure 1.1), are used as a simplified, highly controlled 

model of real-world sharing. This testbed, in connection with real-world data about the 

virality of actual news articles which are used as stimuli in the lab, allows detailed 

insights into the psychological and neural correlates of the likelihood of communicators 

to share media content (Chapter 2), as well as the mechanisms underlying content virality 

in a real-world population of hundreds to thousands of receivers (Chapter 3). The 

sensitivity and generalizability of the processes identified in Chapter 2-3 is further 

examined across different social context characteristics (Chapter 4). Finally, Chapter 5 

investigates the relationship of neural and psychological mechanisms in communicators 

and the mental processes active in their receivers.  

 

Figure 1.1. Propagation Chain 
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Existing Knowledge on Media Content Sharing 

Two main literatures have examined the occurrence and characteristics of the 

social diffusion of media content. First, a set of mostly large-scale, survey based studies 

that is rooted in the diffusion of innovations (Rogers, 2003) and two-step flow (Katz & 

Lazarsfeld, 1955) traditions, has examined the complex interplay between the effects of 

mass media and interpersonal communication, both online and offline (Jeong & Bae, 

2017; Southwell & Yzer, 2007). Such research has found that interpersonal 

communication about relevant issues can mediate or moderate the effects of large-scale 

media campaigns (e.g. Hornik & Yanovitzky, 2003; Jeong & Bae, 2017; Jeong, Tan, 

Brennan, Gibson, & Hornik, 2015; Valente, 1996; Valente & Fosados, 2006; van den 

Putte, Yzer, Southwell, de Bruijn, & Willemsen, 2011). This field, which is mostly driven 

by scholars in communication science and public health, has been dominated by large-

scale survey approaches and correspondingly short-form measures of interpersonal 

communication such as a dichotomous measure of whether communication occurred 

during a certain period of time (Cho et al., 2009; Frank et al., 2012; Hardy & Scheufele, 

2009; C. J. Lee, 2009; Mohammed, 2001; Saba & Valente, 2001; van den Putte et al., 

2011). A related set of studies primarily conducted by researchers in fields such as 

marketing and computer science has applied big data approaches, scraping social 

networks such as Twitter to estimate the extent to which a piece of content was shared or 

went viral (Adamic et al., 2016; Chatzopoulou, Sheng, & Faloutsos, 2010; Cheng, 

Adamic, Kleinberg, & Leskovec, 2016; Goel, Watts, & Goldstein, 2012). These studies 

have addressed the question of whether social diffusion plays a role in the reach of media 
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messages. However, the methodologies employed are less well suited to making 

inferences about the psychological and neural processes that facilitate these effects. 

A second, smaller set of studies has begun to examine the psychological 

mechanisms driving the occurrence of interpersonal communication about media, often 

focusing on the special case of sharing media content through social media. Among the 

approaches employed here are laboratory experiments using self-report measures to 

understand sharing motivations (e.g. Barasch & Berger, 2014) and examinations of the 

message characteristics of content which can provide indirect insights into potential 

psychological motivations in relation to the occurrence of sharing behavior at a large 

scale (i.e. virality; (Berger & Milkman, 2012; Cappella, Kim, & Albarracín, 2015; Kim, 

2015). This work has identified a large number of specific candidate processes such as 

self-enhancement and self-presentation which might motivate sharing behavior in 

specific situations (Berger, 2014; Cappella et al., 2015). Although valuable insights have 

been gained from these studies, some have focused on post-hoc participant responses 

related to sharing experiences and motivations, whereas others have focused primarily on 

the effects of message characteristics, leaving open questions regarding the motivations 

underlying sharing behavior in communicators (although, cf. Berger, 2011 for a direct 

manipulation of a candidate mechanism). In addition, the resulting large number of 

different processes that have been identified across many studies precludes overarching 

conclusions about the basic building blocks of sharing motivations that drive sharing 

choices across contexts. 
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Understanding Sharing Decisions through Neuroimaging 

To address this knowledge gap, the studies presented in this dissertation rely on 

additional literatures in social psychology as well as social and cognitive neuroscience to 

develop a neuroimaging-based approach to the study of the psychological mechanisms of 

media content sharing. This broader review of the scientific literature allows a greater 

focus on unifying (i.e. less context-specific) processes and novel hypotheses in the 

context of sharing. Additionally, the use of neuroimaging, in particular fMRI, affords 

several specific methodological advantages. Among these is the ability to access a wide 

array of cognitions underlying decision-making in the context of sharing, simultaneously 

and in real-time as people initially process content. This bypasses the potentially biasing 

influence of conscious, retrospective introspection by study participants (Nisbett & 

Wilson, 1977; Wilson & Nisbett, 1978; Wilson & Schooler, 1991). fMRI can further 

capture both consciously perceived and unconscious processes (Lieberman, 2007). In 

other words, fMRI is sensitive to both conscious attempts of persuasion where a 

communicator may try to convince a receiver of a certain attitude or opinion, and more 

implicit social influence processes between communicators and receivers where certain 

behaviors or norms are being modeled covertly.  

Furthermore, prior work has shown the utility of neuroimaging when linking rich 

individual-level data about psychological mechanisms and population-level, real-world 

outcomes. Traditionally, detailed psychological processes have been studied in relatively 

small, unrepresentative groups of individuals in highly controlled environments (e.g. 

Henrich, Heine, & Norenzayan, 2010). However, to gauge the external validity of these 
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data in the context of media content sharing, large-scale real-world message effects and 

behaviors need to be considered as well. Neuroscience and, more specifically, studies 

employing the brain-as-predictor approach (Berkman & Falk, 2013) have the potential to 

link these two levels of analysis. Brain-as-predictor studies use neural activity in response 

to a stimulus to predict subsequent attitudes or behavior in small samples or entire 

populations. Several existing studies have shown that data representing the neural 

processes active during information processing in small samples of study participants 

explain significant variance in population-level outcomes such as calls to smoking quit 

lines (Falk, Berkman, & Lieberman, 2012), music popularity (Berns & Moore, 2010), 

market-level micro-lending (Genevsky & Knutson, 2015), movie (Boksem & Smidts, 

2014), and TV show popularity (Dmochowski et al., 2014). Often, these neural measures 

predict population-level variance over and above what is explained by self-report 

measures (e.g. Venkatraman et al., 2014). Consequently, brain-as-predictor studies can 

expand on existing descriptive work in neuroscience and the limited evidence about the 

psychological processes underlying sharing decisions by linking real-time data about the 

neural processes occurring during decision-making in individual communicators to the 

population-level occurrence of content sharing.  

Candidate Mechanisms of Sharing Decisions 

By sharing a mass media message with others, a communicator can introduce the 

content to their conversation partner(s). The way in which this initial social action is 

carried out routinely leads to the involvement of other social forces such as social 

influence and persuasion. When sharing media content, communicators often share the 
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original content, comments about the content, or both with their receiver(s) (Singer, 

2014). As interpersonal interaction is taking place, both parties might express opinions, 

evaluate, ask questions, or relate the content to other experiences or concepts. Thereby, 

communicators and receivers might intentionally attempt to convince, that is persuade, 

each other of a certain viewpoint, or exert social influence, that is inadvertently influence 

one another, by modeling certain behaviors or social norms (e.g. Berger, 2014; Falk, 

Morelli, Welborn, Dambacher, & Lieberman, 2013). When making sharing decisions, 

communicators likely consider the potential positive and negative outcomes of their 

behavior, including the extent to which sharing may allow them to persuade or influence 

others according to their goals and motivations. Consequently, this dissertation builds on 

the assumption that existing knowledge about the psychological mechanisms of social 

influence and persuasion may be informative about the psychology that underlies 

information sharing decisions in communicators.  

Several relevant literatures have contributed to our understanding of the 

interconnected psychological processes underlying information sharing and the social 

influence, persuasion, and general decision-making processes that follow. Specifically, 

these topics have been studied across disciplines including communication science, social 

psychology, economics, as well as social and cognitive neuroscience. Based on a review 

of this work, we have recently argued (Falk & Scholz, 2018) that decisions across these 

diverse processes may be supported through a common underlying mechanism, namely 

subjective value maximization. Subjective value maximization is the tendency of 

decision makers to make choices based on a weighted sum of positive and negative value 
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signals assigned to the expected outcomes of an option (Neumann & Morgenstern, 2007; 

Samuelson, 1937). The following sections review existing knowledge on the role of 

value-based decision-making processes in the context of sharing, as well as evidence for 

potential sources of or inputs to the value-calculation in communicators who are making 

decisions about sharing.   

Value-Maximization as a Central Pathway of Decision-Making Processes 

Research on decision-making processes across domains highlights value 

maximization as a basic strategy that drives human decisions, although it has not always 

been made explicit in individual fields (Falk & Scholz, 2018). Neuroscientific studies 

have identified neural activity in the brain’s value-system, consisting of clusters of voxels 

in ventral striatum (VS) and ventromedial prefrontal cortex (VMPFC), as a reliable 

predictor of human choice that scales with the subjective value of a stimulus (Bartra, 

McGuire, & Kable, 2013). These relationships are observed across a large number of 

domains including primary (e.g. food) and secondary rewards (e.g. money and social 

approval) (Bartra et al., 2013). Signals produced within this neural value system as well 

as various behavioral indicators of value are also associated with choice behavior in 

communicators who engage in persuasion or social influence (Falk & Scholz, 2018). In 

addition, evidence presented in this dissertation demonstrates the role of valuation in the 

decision-making of communicators who share information with others.   

Prior work shows that study participants tend to assign more monetary value to 

sharing information with others than to answering knowledge questions, and sharing 

information with others is related to neural activity in the brain’s value system (Tamir & 
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Mitchell, 2012; Tamir, Zaki, & Mitchell, 2015). Value, in this context, is likely derived 

from opportunities to fulfill certain goals and motives by selectively sharing certain types 

of content with specific others (Bazarova & Choi, 2014; Berger, 2014; Cappella et al., 

2015).  

Neuroscientific evidence further suggests that valuation is not simply one among 

many processes that predict choice, but acts as a final common pathway through which 

other types of cognition impact decision-making (Levy & Glimcher, 2011, 2012). 

Specifically, as mentioned above, neural signals in the brain’s value-system have been 

found to be domain-general. That is, valuation processes are involved in decision-making 

across a wide range of contexts. Extending these findings, neuroeconomists have argued 

that the neural value-signal can be described as a ‘common currency’ of choice which 

translates various inputs, that is elements that are being considered with regards to a 

decision, into a common scale for ease of comparison. In this space, a range of aspects 

can be compared and integrated into a single signal indexing the value of a choice, which 

is directly linked to behavior. In the context of sharing, this account of value-based 

decision-making offers a parsimonious framework in which opportunities to fulfill certain 

sharing motives can be quantified and compared to arrive at a final sharing decision (Falk 

& Scholz, 2018). This process may be supported by the same neural structures 

responsible for value-based decision-making in other domains  (K. M. Cox & Kable, 

2014).  
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Sources of Value 

Assuming value maximization as a central driver of sharing decisions naturally 

leads to the question what is being valued highly by communicators. In other words, what 

are the inputs to the calculation of an overall value signal in the context of media content 

sharing. The answer to this would provide a strong basis for the development of socially 

focused message strategies.  

Berger (2014) proposed five central sharing motivations for communicators, 

namely emotion regulation, information acquisition, social bonding, impression 

management, and persuasion of receivers. Others have further proposed five rather 

similar goals and functions of self-disclosure, or information sharing about the self, 

including social validation, self-expression, relational development, identity clarification, 

and social control (Derlega & Grzelak, 1979). We have recently argued that these sharing 

motivations all constitute sources of value a communicator can gain by selectively 

sharing content with others (Falk & Scholz, 2018). In part, this is because these concepts 

map on to basic human motivations of maintaining a positive self-image (Mezulis, 

Abramson, Hyde, & Hankin, 2004; Taylor & Brown, 1994) and positive relationships 

with other people (Baumeister & Leary, 1995). Empirical evidence, indeed, suggests that 

communicators who share media content with others may do so because they expect that 

it is useful (i.e. valuable) to the receiver (Barasch & Berger, 2014; Berger & Milkman, 

2012; Kim, 2015), or because they expect it to be valuable to themselves, for instance by 

making themselves look good. That is, information about consequences of a choice for 

the self (e.g., in terms of the presentation of one’s self-image) and for social relationships 
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or interactions are particularly relevant in the computation of the overall value of a 

choice.  

Holding a positive image of oneself (Mezulis et al., 2004) and relating positively 

to others (Baumeister & Leary, 1995) are central human motives that are valuable to 

actors and drive behavior across contexts. For instance, tailored information, which is 

generally more self-relevant, tends to be more influential in changing the attitudes and 

behaviors of those who consume it (Chua et al., 2011; Chua, Liberzon, Welsh, & 

Strecher, 2009; Cooper, Tompson, O’Donnell, & Falk, 2015; Kreuter, Strecher, & 

Glassman, 1999), suggesting that it resonates more strongly with receivers. In addition, 

self-relevant information tends to be discussed more often in daily life (Dunbar, Marriott, 

& Duncan, 1997; Emler, 1990; Landis & Burtt, 1924; Naaman, Boase, & Lai, 2010) 

which demonstrates its propensity to start conversations and, potentially, encourage 

sharing.  

In parallel, to effectively and positively relate to others, communicators need to 

consider potential reactions, opinions, and knowledge of their receivers, that is, engage in 

social thought processes. Existing evidence from both psychology (Traxler & 

Gernsbacher, 1993) and neuroscience (Dietvorst et al., 2009; Falk et al., 2013) suggests 

that considering the perspective of others enhances both the effectiveness of 

communication and the success of communicators who are attempting to persuade their 

receivers. In one study, communicators who showed more neural activity in brain regions 

related to social processing during initial exposure to information were more successful 

in socially influencing their receivers with whom they shared the original content, so that 
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receivers were more likely to adopt the communicator’s opinion about the message (Falk 

et al., 2013). There is further self-report evidence that communicators routinely consider 

audience characteristics in order to choose which content to share and how to frame it 

(Barasch & Berger, 2014; Clark & Murphy, 1982; Marwick & boyd, 2011).  

There is further evidence that the opportunity to fulfill self-related and social 

motives is valuable to decision makers, highlighting these considerations as inputs to a 

final calculation of the value of a choice and valuation as the common pathway of 

decision-making. In the case of self-related processing, evidence from neuroscience 

(D’Argembeau et al., 2012; Enzi, de Greck, Prösch, Tempelmann, & Northoff, 2009; 

Northoff & Hayes, 2011) as well as psychology and communication science (Darke & 

Chaiken, 2005; Mezulis et al., 2004) suggests that considerations of self-relevance and 

value are not independent predictors of choice, but two strongly interdependent 

processes. Robust psychological findings concerning cognitive biases such as positive 

illusions, positivity biases and self-serving attributions demonstrate that those entities 

which are self-relevant are often perceived to be of disproportionally high value and 

those concepts or objects which are thought to be of high value are generally more likely 

to be closely attributed to the self (Mezulis et al., 2004; Taylor & Brown, 1994). In 

addition, whether arguments are viewed positively or negatively is partially impacted by 

the expected consequences to the self (Darke & Chaiken, 2005) and the extent to which 

arguments are processed centrally partially depends on their self-relevance (Botha & 

Reyneke, 2013; Cappella et al., 2015; Johnson & Eagly, 1989). Further, the neural 

structures supporting self-related (Denny, Kober, Wager, & Ochsner, 2012; Falk, 
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Berkman, Mann, Harrison, & Lieberman, 2010; Murray, Schaer, & Debbané, 2012; 

Northoff et al., 2006) and value processing (Bartra et al., 2013; Levy & Glimcher, 2012) 

are partially overlapping. With respect to information sharing, it has been argued that, 

similar to informing others more generally (Tamir et al., 2015), sharing information about 

the self might be inherently rewarding (Tamir & Mitchell, 2012). In sum, self-related 

considerations might be a key element of decision-making in contexts such as persuasion 

and social influence because of their strong connection to valuation (Falk & Scholz, 

2018).  

In the context of sharing decisions, it has been argued that content that reflects 

positively on the self allows communicators to further their self-enhancement and self-

presentational motives (Angelis, Bonezzi, Peluso, Rucker, & Costabile, 2012; C. S. Lee 

& Ma, 2012; Wien & Olsen, 2014). Here, I argue that to the extent that expected 

outcomes of sharing self-relevant media content are in line with the desired image of the 

self which is to be presented to others, the value of sharing this information with 

receivers will increase.  

Similar to self-related processing, social considerations are likely to affect 

decision-making by contributing to the perceived value of choices available to 

communicators. Choices that are expected to enhance an agent’s social standing or a 

particular relationship are highly valued by human decision makers (Baumeister & Leary, 

1995) and engage neural regions which are strongly associated with other, non-social 

types of rewards and punishments (Bhanji & Delgado, 2014; Fareri & Delgado, 2014; 

Lieberman & Eisenberger, 2009). Consequently, I argue here that the extent to which 
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sharing media content with other people can be expected to enhance a communicator’s 

social goals, the value of that choice and, ultimately, the likelihood of sharing, should 

increase.  

In sum, self-related and social processing are strong candidates in the search for 

basic processes that serve as inputs to value-based decision-making about sharing 

behavior across contexts. The categories of self-related and social processing include 

many of the more specific processes that have been put forward as sharing motivations in 

the existing literature (Berger, 2014; Cappella et al., 2015; Derlega & Grzelak, 1979). For 

instance, among the sharing motivations presented by Berger (2014) and Derlega and 

Grzelak (1979), impression management, self-expression, identity clarification, and 

social validation can be described as specific forms of self-related processing, and social 

bonding, persuasion of receivers, relational development, and social control as forms of 

social cognition. Following this logic, a focus on basic underlying processes can reduce 

the high dimensionality of sharing motivation which has emerged from existing work, 

partly due to the diversity of contexts and methods used to study this phenomenon. 

Identifying basic principles of sharing decisions may lead to a more generalizable and 

parsimonious model of the psychology underlying sharing. Functional neuroimaging 

methods are ideal candidates to contribute to this dimensionality reduction by identifying 

the greatest common denominators of a multitude of several specific processes, that is 

basic underlying mechanisms, driving sharing decisions at a neural level and across 

various contexts. Research presented in this dissertation uses functional neuroimaging to 

test the involvement of brain regions known to be associated with these types of 
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cognitions in sharing decisions in communicators. Chapter 2 and 3 identify basic 

psychological building blocks and their interactions in driving sharing decisions in 

individuals and a large, real-world population, and Chapter 4 examines differences and 

parallels in the role played by these processes in different communication contexts. 

Context as a Moderator of the Mechanisms Driving Sharing Decisions  

Communicators make decisions about sharing media content in a multitude of 

social contexts which vary by the characteristics of the communicator, the receiver, the 

content that may be discussed, the communication channel used for the interaction, 

and/or the cultural context in which the interaction occurs (Scholz & Falk, in press). So 

far, I have argued that similar basic processes underlie broad classes of decision-making 

including communicator’s decisions in the realm of social influence, persuasion and, 

potentially, sharing. However, it is possible that different contexts impact the specific 

pieces of information considered by communicators to determine the self- and social 

relevance of a piece of content and, ultimately the relative impact of these consideration 

on the content’s perceived value of sharing (Scholz & Falk, in press). Communicators 

may rely on different types of self-related (e.g. self-enhancement or self-presentation) 

and/or social processing (e.g. relationship management or creation of social capital) 

depending on the context. In addition, it is possible that the context influences the overall 

extent of self-related and social processing. 

Although any of the factors that make up the communication context may shape 

the process of value maximization in communicators, it is impossible to examine them all 

simultaneously. This dissertation focuses on receiver characteristics in particular as a first 
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step towards a better understanding of context characteristics in general. Sharing is an 

inherently social process that is determined to a large extent by the social actors that are 

partaking in it. A communicator’s psychological experience and decision-making about 

introducing media content into a conversation should thus be influenced by who the 

potential receiver is. For instance, audience characteristics such as the number of 

receivers, pre-existing opinions or previous behavior may impact the expected self-

related and social consequences of starting a conversation about a certain piece of media 

content for communicators.  

Studying the variability of the neural processes of decisions to initiate 

interpersonal communication about media content may allow insights into the 

generalizability and flexibility of the value-maximization framework that is being 

proposed here. Chapter 4 examines the example of audience size as a receiver 

characteristic that changes the context of communication decisions in communicators. 

Sharer-Receiver Coupling 

The research reviewed above provides evidence for the involvement of self-

related, social, and value-related processing in diverse decision-making processes in 

communicators. Research on decision-making in the receivers of that influence has 

reported findings suggesting strikingly similar underlying processes (Falk & Scholz, 

2018). There are two plausible explanations for this conceptual overlap between the 

psychological processes driving decisions in communicators and receivers. On the one 

hand, similarities might be independent manifestations of the influence of basic, domain-

general human motives to belong socially (Baumeister & Leary, 1995), perceive oneself 
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positively (Mezulis et al., 2004), and act in a way that maximizes value. On the other 

hand, these similarities might instead indicate a meaningful transfer of cognitions from 

communicator to receiver. Chapter 5 tests these two alternative hypotheses in the context 

of interpersonal communication about media content. 

Evidence for Parallel Processes in Communicators and Receivers 

The processes that lead receivers to be socially influenced or persuaded are similar to 

those that underlie decision-making about sharing in communicators (Falk & Scholz, 

2018). These parallel patterns have emerged in largely independent literatures which 

considered receivers and communicators in isolation.  

First, theories as well as empirical data highlight valuation as a central driver of 

susceptibility to persuasion and social influence in receivers. That is, receivers are more 

likely to align their behaviors and/or attitudes with those of communicators if, through 

social influence and persuasive processes, the perceived value of these attitudes or 

behaviors are altered (Falk & Scholz, 2018). This is reflected in traditional theories of 

attitude and behavior change which highlight strong effects of outcome expectations and 

the perceived valence of behavior change (Fishbein & Ajzen, 2010; Johnson, Smith-

McLallen, Killeya, & Levin, 2004; O’Keefe, 2012), as well as basic expected utility 

models put forward by economists (Neumann & Morgenstern, 2007; Samuelson, 1937) 

and neuroeconomists (Camerer et al. 2005, Levy & Glimcher 2012). Neuroscientists have 

further demonstrated that content which engages neural regions associated with valuation 

in receivers more strongly is more likely to be persuasive, for instance in the context of 

health-related messaging (Falk et al., 2010; Falk, Berkman, Whalen, & Lieberman, 2011; 
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Falk, O’Donnell, et al., 2015; Vezich, Katzman, Ames, Falk, & Lieberman, 2017), music 

sales (Berns & Moore, 2010), responses to marketing (Venkatraman et al., 2014), box 

office sales for movie tickets (Boksem & Smidts, 2014) and micro-lending (Genevsky & 

Knutson, 2015). Furthermore, the social influence literature suggests that the receiver’s 

neural value system tracks the extent to which the receiver’s attitudes or behaviors 

diverge from those expressed by a group or communicator. Higher similarity between 

communicator and receiver often leads to increased value-related neural activity in 

receivers, for instance in the contexts of recommendations of mobile game applications, 

or opinions about music (Campbell-Meiklejohn, Bach, Roepstorff, Dolan, & Frith, 2010; 

Campbell-Meiklejohn et al., 2012; Cascio, O’Donnell, Bayer, Tinney, & Falk, 2015; 

Cascio, Scholz, & Falk, 2015; Nook & Zaki, 2015). In other words, social influence may 

occur in part, because social harmony, or higher social similarity, is valued and 

dissimilarity is devalued. These effects on the value system are particularly strong in 

social compared to other non-social learning contexts (e.g., in which feedback is provided 

by a human vs. computer; (Klucharev, Hytönen, Rijpkema, Smidts, & Fernández, 2009).  

Second, similar to value-related thought, self-related processing has been linked 

to the susceptibility of message receivers to persuasion and social influence across 

literatures and contexts. Self-relevance and self-interest are key elements in several major 

theories of persuasion, social influence and behavior change. For example, both the 

Elaboration Likelihood Model of Persuasion (Petty & Cacioppo 1986) and Heuristic 

Systematic Model (Chaiken, 1980) hypothesize greater message elaboration and impact 

depending on the extent of self-relevance, and other models such as Protection 
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Motivation Theory (Maddux & Rogers, 1983) and the Health Belief Model (Rosenstock, 

1990; Rosenstock, Strecher, & Becker, 1988) include concepts of personal vulnerability 

or the extent to which a receiver believes a threat applies to themselves personally. 

Further, the Reasoned Action Approach (Fishbein & Ajzen, 2010) and Social Cognitive 

Theory (Bandura, 2001) highlight self-efficacy or beliefs regarding whether or not the 

receiver has the ability and opportunity to perform a given behavior. Reviews suggest 

that more self-related information is more likely to be influential than information that is 

not self-relevant (Kreuter et al., 1999; Strecher et al., 2005). Finally, neuroscientific 

studies have confirmed the importance of self-related processing to persuasion in 

receivers (Chua et al., 2011, 2009; Cooper et al., 2015; Vezich et al., 2017).  

Third, social processing has been linked to susceptibility to influence in receivers, 

who need to take the perspective of their communicators into account to evaluate 

communicator characteristics such as their expertise and motives (E. J. Wilson & 

Sherrell, 1993) as well as implications of persuasive attempts and social influence for 

their future relationship with the communicator (DeWall, 2010). On the basis of these 

considerations, receivers can make decisions. This claim receives strong support from the 

literature on social influence and conformity. In a review of the existing work, Cialdini 

and Goldstein (2004) argue that receivers seek social approval and bonding with those 

they interact with and thus prioritize conformity or harmony with communicator 

behaviors and attitudes over non-conformity to promote positive interactions and 

relationships. Such conformity has been demonstrated empirically across many studies 

(Asch, 1955; DeWall, 2010; Lakin & Chartrand, 2003). Further support comes from 
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neuroscientific studies which show that when receivers who learn that they are 

misaligned with a communicator or group show stronger activity in neural regions 

engaged by considerations of the thoughts and intentions of others, they are more likely 

to make socially conform changes in their preferences (Cascio, O’Donnell, et al., 2015; 

Welborn et al., 2016). In sum, value-based decision-making, self-related as well as social 

considerations are central to the delivery as well as reception of social influence and 

persuasion.  

Neural Communicator-Receiver Coupling as an Indicator of Information Transfer 

The research reviewed above allows the conclusion that central processes 

involved in the decision-making of communicators who engage in sharing parallel those 

in receivers who are affected by this influence. The sources of these similarities are 

unclear. One potential explanation is that these associations are due to a third variable 

that triggers the involvement of self-related, social, and value-related processes 

independently in communicators and receivers. Given the domain-general nature of 

value-based decision-making and the centrality of self-enhancement and social bonding 

motives in humans, it could be plausible that communicators and receivers base their 

decisions on similar considerations stemming from consideration of the same (e.g., 

media) content. A second potential explanation for parallel processes in communicators 

and receivers is a transfer of information from communicators to receivers through 

interpersonal communication. The presence of this transfer process may be indicated by 

specific coupling of communicators and their receivers in their expression of key 

processes known to underlie decision-making.  
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Communicator-receiver coupling occurs when various psychological and 

biological processes in communicators and their receivers co-vary or ‘synchronize’ 

during social interactions. This could include coupling of non-verbal signals (Cappella, 

1996; Lakin & Chartrand, 2003; Richardson & Dale, 2005), language use (Branigan, 

Pickering, & Cleland, 2000; Gonzales, Hancock, & Pennebaker, 2009; Niederhoffer & 

Pennebaker, 2002), brain activity (Hasson, Ghazanfar, Galantucci, Garrod, & Keysers, 

2012; Silbert, Honey, Simony, Poeppel, & Hasson, 2014; Stephens, Silbert, & Hasson, 

2010) basic biological processes such as heart rate, or behaviors, among others. In 

addition to these basic processes, neural coupling has also been shown to occur in higher 

level neural systems associated with self-relevance, social processing and valuation, 

among others (Stephens et al., 2010). 

Empirical evidence suggests that communicator-receiver coupling might have 

positive effects on the success of communication between the two parties. A recent meta-

analysis revealed robust, small to medium sized, positive effects of such coupling on 

prosocial behavior, perceived social bonding, social cognition, as well as positive affect 

(Mogan, Fischer, & Bulbulia, 2017). Further, it has been argued that coupling might 

enhance successful communication, social learning, and general relationship maintenance 

(Burgoon, Stern, & Dillman, 2007; Cacioppo & Cacioppo, 2012; Cappella, 1996, 1997a). 

Stephens and colleagues (2010) also found a relationship between the degree of coupling 

and the extent to which receivers recalled a story told by a communicator. Interestingly, 

in a second set of findings, these authors also demonstrated the occurrence of anticipatory 

coupling. Specifically, receivers showed enhanced activity within brain regions 
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associated with value and self-related processing (MPFC, striatum) and cognitive control 

(DLPFC) before parallel activation was detected in communicators. That is, receivers 

anticipated cognitions which would occur shortly thereafter within communicators. 

Again, the extent of anticipatory coupling was related to the success of the 

communication encounter. These findings suggest that similarities in the neural processes 

found in communicators and receivers are not arbitrary but support mutual understanding 

and coordination in communication encounters. One potential reason for the positive 

effects of communicator-receiver coupling is that it allows communication partners to 

learn from (Bandura, 2001; Iacoboni, 2009) and understand (Hatfield, Cacioppo, & 

Rapson, 1993; Semin & Cacioppo, 2008) one another which allows interaction partners 

to promote and coordinate joint action (Semin & Cacioppo, 2008) and bonding 

(Cacioppo & Cacioppo, 2012).  

In sum, communicator-receiver coupling occurs routinely between 

communication partners and might occur in neural regions known to be associated with 

successful persuasion in communicators and susceptibility to influence in receivers. 

Further, communicator-receiver coupling might be a useful indicator of successful 

communication in the context of interpersonal communication about shared mass media 

content. If coupling enhances social interactions and social learning, it might also 

facilitate the transfer of information and evaluations of that information, thereby 

enhancing the impact of original mass media messages on secondary receivers. Chapter 5 

of this dissertation examines whether there is evidence for communicator-receiver 
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coupling in the neurocognitive processes found to be crucial for sharing decisions in 

communicators.  

Chapter Overview 

In sum, this dissertation seeks to enhance our understanding of neural and 

psychological bases of communicators’ decisions to share media content with others, by 

studying simple propagation chains in which communicators share health news articles 

with receivers through social media messages (Figure 1.1). Chapter 2 examines neural 

and psychological processes involved in the decision to share media content in individual 

communicators. Chapter 3 investigates whether valuation serves as a final common 

pathway for considerations of the self-related and social outcomes of a choice and 

whether these processes in individuals can account for population-level sharing behavior. 

Chapter 4 tests for contextual effects on the involvement of these processes. Finally, 

Chapter 5 examines competing hypotheses regarding the underlying reason for 

similarities in the processes that drive decision-making in communicators and their 

receivers. 
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CHAPTER 2. THE VALUE OF SHARING INFORMATION: A NEURAL 

ACCOUNT OF INFORMATION TRANSMISSION 
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Abstract 

Humans routinely share information with one another. What drives this behavior? 

We used neuroimaging to test an account of information selection and sharing that 

emphasizes inherent reward in self-reflection and connecting with other people. 

Participants underwent functional MRI while they considered personally reading and 

sharing New York Times articles. Activity in neural regions involved in positive 

valuation, self-related processing, and taking the perspective of others was significantly 

associated with decisions to select and share articles, and scaled with preferences to do 

so. Activity in all three sets of regions was greater when participants considered sharing 

articles with other people rather than selecting articles to read themselves. The findings 

suggest that people may consider value not only to themselves but also to others even 

when selecting news articles to consume personally. Further, sharing heightens activity in 

these pathways, in line with our proposal that humans derive value from self-reflection 

and connecting to others via sharing. 
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Introduction 

Humans routinely share information with one another. What drives this behavior? 

One account suggests that humans have evolved disproportionately large brains, in part to 

coordinate socially (Dunbar, 2008; Schoenemann, 2006). People learn better when they 

anticipate opportunities to share with others (Lieberman, 2012), and the brain’s so-called 

default mode facilitates efficient social judgments (Spunt, Meyer, & Lieberman, 2013). 

Thus, sharing may be inherently promoted by human biology (Tamir & Mitchell, 2012). 

Social-network platforms, on which users share billions of messages daily (Facebook, 

2015; Twitter, 2012), also reflect the motivation to share. In the current study, we tested 

the notion that the human biology may have evolved to support the motivation to share, 

or coordinate socially, and obtained novel evidence that connecting with others through 

sharing activates brain systems implicated in reward, social relevance, and self-relevance. 

We focused on online news as one form of sharing that has the potential for widespread 

impact (Pew Research Center, 2010).  

Neural Precursors of Sharing 

Studies of information selection and sharing have relied primarily on 

characteristics of the content or on self-reported responses (Berger & Milkman, 2012; 

Botha & Reyneke, 2013; Kim, 2015; Lee & Ma, 2012). However, people may not have 

the ability or desire to objectively reflect on their thoughts and emotions to explain their 

behavior (Dijksterhuis, 2004; Schmitz & Johnson, 2007). Furthermore, self-reports do not 

allow assessment of cognitive processes in real time, at the moment that individuals 

consider selecting or sharing information, which limits understanding of the cognitive 
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underpinnings of selection and sharing. To address these limitations, we used 

neuroimaging (functional MRI, or fMRI) of activity in regions of interest (ROIs) as 

participants considered whether they wanted to read (select) or share New York Times 

articles. We focused on three sets of neural ROIs implicated in subjective value, self-

related processing, and social cognition, respectively (Figure 2.1). 

Subjective value. We tested the idea that selecting and sharing information may 

carry inherent value. A meta-analysis of 206 fMRI studies (Bartra, McGuire, & Kable, 

2013) found that activity in regions of the ventral striatum (VS) and ventromedial 

prefrontal cortex (VMPFC) is associated with positive valuation. We examined whether 

these meta-analytically defined regions were preferentially activated as participants 

considered selecting and sharing news articles. We also tested whether activity in these 

regions scaled with preference to select and share articles. The perceived utility of 

content influences people’s choice of content (Botha & Reyneke, 2013; Kim, 2015), and 

greater activity in neural regions implicated in processing subjective value is associated 

with higher enthusiasm for sharing messages (Falk, O’Donnell, & Lieberman, 2012) and 

disclosing information about oneself (Tamir & Mitchell, 2012). 

Self-related processing. We also tested whether brain regions implicated in self-

relevance are associated with selecting and sharing information. A meta-analysis of 25 

studies (Murray, Schaer, & Debbané, 2012) found that regions of the medial prefrontal 

cortex (MPFC) and posterior cingulate cortex (PCC) were engaged when participants 

made judgments about self-relevance. We tested whether these regions were engaged 

while participants considered selecting articles to read themselves. Individuals consider 
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personal relevance when deciding to engage with content (Botha & Reyneke, 2013), and 

are biased toward content consistent with their preexisting beliefs (Cappella, Kim, & 

Albarracín, 2015). We also examined whether these ROIs were activated while 

participants considered sharing articles. Self-enhancement is a key motivation for sharing 

information, and people find value in sharing self-relevant messages (Berger, 2014; De 

Angelis, Bonezzi, Peluso, Rucker, & Costabile, 2012; Lee & Ma, 2012; Wien & Olsen, 

2014). In addition, we tested whether activity in these regions scaled positively with 

preference to select and share articles. Greater activity in neural regions implicated in 

self-related processing is associated with higher enthusiasm to spread ideas (Falk et al., 

2012), and articles that resonate more personally are more likely to be selected and 

shared (Berger, 2014). 

Social cognition. Finally, we examined brain activity associated with considering 

the mental states of other people (social cognition). Our social-cognition ROIs consisted 

of portions of the VMPFC, middle medial prefrontal cortex (MMPFC), dorsal medial 

prefrontal cortex (DMPFC), precuneus (PC), bilateral temporoparietal junction (TPJ), and 

right superior temporal sulcus (rSTS). In a study with a large sample (N = 462), Dufour 

et al. (2013) found that these regions were engaged when participants considered other 

people’s beliefs. We tested whether these regions were engaged when participants 

considered selecting information to read themselves. People regularly incorporate others’ 

recommendations when making decisions, and this process is reflected in the activation 

of brain regions similar to the ROIs we examined (Cascio, O’Donnell, Bayer, Tinney, & 

Falk, 2015). Furthermore, social-cognitive components within the brain’s default-mode 



 28 

network prime people’s minds for social judgments even at rest (Spunt et al., 2013), and 

anticipation of sharing may be a key motive for reading content. In addition, given that 

sharing information is inherently social and social interaction is a key driver of news 

sharing (De Angelis et al., 2012; Berger, 2014; Lee, Ma, & Goh, 2011), we examined 

whether these regions were actively engaged while participants considered sharing 

articles. We also tested whether activity in these social cognition regions scaled 

positively with preferences to select and share articles. Anticipation of interpersonal 

interaction is a key motivation behind sharing (Lee et al., 2011), and sharing information 

may lead to social reward, such as interpersonal bonding (Berger, 2014). Thus, we tested 

the notion that people prefer to select and share articles that evoke social thoughts. 

 

Figure 2.1. The functionally defined regions of interest (ROIs) used in the ROI analysis. 

The ROIs are the white areas outlined in black. 
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Summary 

Our approach allowed us to measure brain activity within ROIs associated with 

subjective value, self-related processing, and social cognition (Figure 2.1) while 

participants made judgments about selecting and sharing news articles, in real time. We 

used these data to test our proposal that people’s decisions to select and share information 

are based, in part, on the inherent reward associated with connecting with other people, as 

well as on considerations of self- and social relevance. 

Method 

Participants 

Forty-three participants (30 female) between the ages of 18 and 24 (M = 20.5, SD 

= 2.1) took part in this study. Our target sample size of 40 participants was predetermined 

on the basis of funding, but because of concerns with data quality, we collected data from 

3 additional participants before any statistical analysis was performed. Data collection 

stopped when we reached the enrollment goal. Two participants were excluded from 

analysis because of data corruption. This left 41 participants for our analyses. All 

participants gave informed consent in accordance with the procedures of the institutional 

review board of the University of Pennsylvania. Participants also met standard fMRI 

eligibility criteria; for example, potential participants were excluded if they had metal in 

their body, were currently taking any psychiatric medications, had a history of psychiatric 

or neurological disorders, were currently pregnant, or had claustrophobia. Participants 

were also required to be right-handed.  
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Procedure 

Participants completed a baseline screening, as well as a neuroimaging 

appointment. During the neuroimaging appointment, they completed a series of self-

report surveys and were scanned using blood-oxygen-level-dependent (BOLD) fMRI 

while they completed two tasks. In the task of interest to the present investigation, 

participants read 80 news headlines and abstracts that were published online in the health 

section of the New York Times between July 2012 and February 2013; these stimuli were 

divided into two runs of 40 news headlines and abstracts each. To control for reading 

speed, we had participants listen to recordings of the headlines and abstracts (M = 10.2 s, 

range = 8–12 s, SD = 1.41 s) while they read them. Each headline and abstract was 

randomly assigned to one of four conditions, within a randomization scheme that treated 

article length as a blocking factor (i.e., to balance the length of articles across conditions): 

In the broadcast-sharing condition, participants were asked, “How likely would you be to 

share this article on your Facebook wall?” In the narrowcast-sharing condition, they were 

asked, “How likely would you be to share this article with Facebook Friend _____?” (the 

name of a specific friend was inserted in the blank). In the select-to-read condition, they 

were asked, “How likely would you be to read the article yourself?” Finally, in the 

content recall (control) condition, they were asked to indicate their certainty of the 

article’s topic (“How sure are you that [age/nutrition/fitness/science/laws/well-

being/cancer] is the topic of this article?”). Participants responded to the questions on 

Likert scales from 1 (very unlikely) to 5 (very likely; in the content-recall condition, 1 = 

certainly not and 5 = certainly yes), thereby indicating their preferences to select or share 
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the articles or their certainty regarding the topics of the articles. Each trial began with a 

1.5-s orientation screen that indicated the trial’s condition. The participants then saw (and 

heard via headphones) an article headline and abstract for 8 to 12 s. This display was 

followed by a fixation screen with a randomly jittered duration (M = 1.5 s, range = 0.5–

4.7 s, SD = 0.97 s). Participants then had 3 s to record their response on a 5-point rating 

scale. A fixation screen was then presented for an intertrial interval, also of jittered 

duration (M = 2.0 s, range = 1.0–4.7 s, SD = 0.96 s). In order to avoid issues of 

collinearity between trials, we used Optseq2 software (Optseq2, 2006) to maximize 

design efficiency. We ran 100,000 Optseq simulations, twice per run, to determine the 

optimal jitter times between trials and between the reading and rating screens within 

trials. Figure 2.2 illustrates the task design. 

 

Figure 2.2. Illustration of the trial sequence in the article task. Participants were 

first reminded of the condition of the trial (a trial in the select-to-read condition is shown 

here). Then they saw (and heard an audio recording of) an article headline and abstract. 

This was followed by a jittered intratrial interval (M = 1.5 s). Finally, they were given 3 s 

to respond to a question, which was determined by the condition of the trial. 
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fMRI Image Acquisition 

Neuroimaging data were acquired using 3-T Siemens scanners.1 Two functional 

runs were acquired for each participant (500 volumes per run). Functional images were 

recorded using a reverse spiral sequence (repetition time = 1,500 ms, echo time = 25 ms, 

flip angle = 70°, −30° tilt relative to the anterior commissure–posterior commissure line, 

54 axial slices2, field of view = 200 mm, slice thickness = 3 mm; voxel size = 3.0 × 3.0 × 

3.0 mm). High-resolution T1-weighted images (magnetization-prepared rapid-acquisition 

gradient echo, 160 slices, slice thickness = 0.9 × 0.9 × 1 mm) and T2-weighted images 

were used in place with the BOLD images for coregistration and normalization. 

Imaging Data Analysis 

Functional data were preprocessed and analyzed using Statistical Parametric 

Mapping (SPM) software (Version 8, Wellcome Department of Cognitive Neurology, 

Institute of Neurology, London, United Kingdom). To allow for the stabilization of the 

BOLD signal, we did not collect data from the first five volumes (7.5 s) of each run. 

Functional images were despiked using the 3dDespike program as implemented in the 

AFNI toolbox (Cox, 1996). Next, data were corrected for differences in the time of slice 

                                                

1 Because of technical issues, not all participants could be scanned using a TIM 

Trio scanner; 2 of the 43 were scanned using a Prisma scanner. 

 
2 For the 2 participants scanned on the Prisma scanner, 52 axial slices were 

acquired. 

 



 33 

acquisition using sinc interpolation; the first slice served as the reference slice. Data were 

then spatially realigned to the first functional image. We then coregistered the functional 

and structural images using a two-stage procedure; a 6-parameter affine transformation 

was used in each stage. First, in-plane T1 images were registered to the mean functional 

image. Next, high-resolution T1 images were registered to the in-plane image. After co-

registration, high-resolution structural images were segmented into gray matter, white 

matter, and cerebrospinal fluid to create a whole-brain mask for use in modeling. T1 

images were normalized to the skull-stripped Montreal Neurological Institute (MNI) 

template (MNI152_T1_1mm_brain.nii) provided by the FMRIB Software Library (FSL, 

2012). Finally, functional images were smoothed using a Gaussian kernel (8 mm full 

width at half maximum).  

Task Analysis 

Data were modeled using the general linear model as implemented in SPM8. 

Three conditions were modeled. The first condition (share) combined the two types of 

sharing trials, broadcast sharing (share on Facebook wall) and narrowcast sharing (share 

with a friend). The second condition (select) consisted of trials on which participants 

considered whether to select the full articles to read themselves. The third condition 

(content) included the trials on which participants were asked to recall the content of the 

article and served as a control condition. Low-frequency noise was removed using a high-

pass filter (128 s). The following contrasts were created: share > content, share > select, 

and select > content. Percentage-signal-change scores were extracted from each contrast 

for each participant using the MarsBar toolkit for SPM (Brett, Anton, Valabregue, & 
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Poline, 2002). Next, a random-effects model was computed for each contrast, averaging 

across participants. Two sets of additional, parallel models were run: a model controlling 

for reaction time (RT) on each trial and a model using only a subset of trials that were 

matched on RT across conditions. In addition, we examined the relationship between 

brain activity and participants’ preference ratings in the select and share conditions. 

These fixed-effects models, implemented in SPM8, used the preference rating as a 

parametric modulator of neural activity during each trial, for each participant. Next, a 

random-effects model was computed for each analysis at the group level, averaging 

across participants.  

ROI Analysis 

To investigate neural response during the consideration of selecting and sharing 

news articles, we conducted a series of analyses using neural activity extracted from the 

three sets of a priori ROIs described earlier: VS and VMPFC for subjective value 

processing (Bartra et al., 2013), MPFC and PCC for self-related processing (Murray et 

al., 2012), and VMPFC, MMPFC, DMPFC, PC, bilateral TPJ, and rSTS for social-

cognitive processing (Dufour et al., 2013; see Figure 2.1 for brain maps showing these 

regions). Parameter estimates representing percentage signal change for each of the 

contrasts were extracted and averaged across participants.  

Whole-Brain Analysis 

In addition, following our planned ROI analyses, we examined the results of 

exploratory whole-brain analyses to determine whether neural regions outside of our 

ROIs were associated with the main contrasts of interest (select > content, share > 
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content, share > select), as well as whether activity in these regions in the select and share 

conditions was modulated by the subsequent ratings. For all whole-brain analyses 

reported, we used a threshold of p < .05, k > 20, corrected for family-wise error using 

SPM8.  

Results 

Neural Correlates of Selecting and Sharing Articles 

Decisions to select. We first examined whether making decisions to select articles 

was associated with brain activity in our a priori sets of ROIs (select > content contrast). 

All three sets of ROIs were more strongly activated when participants were thinking 

about selecting an article for themselves than when they were asked to recall the main 

content of the article Table 2.1, Figure 2.3)3. 

Decisions to share. Next, we examined whether making decisions to share 

articles was associated with brain activity in our a priori sets of ROIs (share > content). 

All three sets of ROIs were more strongly activated when participants were thinking 

about sharing an article with other people than when they were focusing on the content of 

the article (Table 2.1, Figure 2.3).  

                                                

3 Additional analyses were performed after removal of the social-cognition 

regions that overlapped with the subjective valuation and self-related-processing ROIs. 

We report these results in Tables A1 and A2 in the Supplemental Material. All results 

remained robust in these analyses. 
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Effects of sharing versus selecting. Although both decisions to select and 

decisions to share articles were associated with activity in our subjective-value, self-

related-processing, and social-cognition ROIs, when activity was measured relative to 

activity in the control condition, we next directly compared activity in the select and 

share conditions (share > select) to determine whether activation was stronger in one 

condition than in the other. We observed greater activation in all three sets of ROIs 

during the share condition than during the select condition (Table 2.1).  

RT robustness analyses. We compared differences in RT between all conditions 

of interest. Although participants were slower to make decisions during the content trials 

than during the select and share trials, all ROI results remained robust in analyses 

controlling for RT and in analyses of a subset of trials that were matched on RT across 

conditions (see Tables A5, A6, A7, and A8 in the Supplemental Material available online 

and in Appendix A). These robustness analyses suggest that our results were not driven 

by differences in difficulty across the conditions.



 

 

 

           Table 2.1. Results of the Three Contrasts in the Three Sets of Regions of Interest (ROIs) 

          

 

 

 

 

 

 

 

         Note: Values in parentheses are 95% confidence intervals. Table A3 in the Appendix presents the activations in  

         subregions of each set of ROIs. 

 ROIs Select > content Share > content Share > select 
 t(40) p Mean 

parameter 
estimate 

t(40) p Mean 
parameter 
estimate 

t(40) p Mean 
parameter 
estimate 

 Subjective 
valuation 

7.22 < .001 0.118  
[0.085, 
0.151] 

12.69 < .001 0.158  
[0.133, 
0.184] 

3.09 .004 0.040  
[0.014, 
0.067] 
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Self-
related 
processing 

7.26 < .001 0.143  
[0.103, 
0.183] 

15.25 < .001 0.225 
[0.195, 
0.255] 

5.02 < .001 0.082  
[0.049, 
0.115] 

 Social 
cognition 

4.99 < .001 0.067  
[0.040, 
0.095] 

9.41 < .001 0.104  
[0.082, 
0.127] 

5.12 .003 0.037  
[0.013, 
0.061] 
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Figure 2.3. Estimates of percent signal change in the subjective-valuation, self-

related-processing, and social cognition regions of interest, separately for select and share 

conditions. Activation in each of these conditions was measured in contrast to activation 

in the content condition. The sagittal and axial cuts of the brain represent the regions of 

interest (white areas outlined in black). Error bars represent 95% confidence intervals. 

Whole-brain analyses. The whole-brain analyses examined whether regions 

outside of our a priori ROIs were more active during the select and share trials than 

during the content trials (select > content, share > content) or were more active during the 

share trials than during the select trials (share > select). The results of these analyses 

confirmed the results of our ROI analyses (see Table 2.2 and Figure 2.4).   
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Table 2.2. Results of the Three Contrasts in the Whole-Brain Analysis 

Contrast and region MNI coordinates Number of 
voxels (k) 

t(41) 
x y z 

Select > content      
Medial and ventromedial prefrontal 
cortex (bilateral) 

-9 59 4 1,363 9.63 

Dorsomedial prefrontal cortex -18 38 43 92 6.75 
Temporoparietal junction (left) -51 -64 34 180 7.69 
Precuneus (left) -9 -55 19 82 6.65 
Inferior temporal gyrus 66 -10 -14 52 6.30 
Middle temporal gyrus -60 -10 -17 141 7.48 
Share > content      
Medial prefrontal cortex (bilateral) -6 53 10 3,263 15.58 
Precuneus (right) -6 -55 25 935 12.56 
Temporoparietal junction (right) 51 -61 25 233 8.52 
Temporoparietal junction (left) -54 -67 43 336 8.20 
Middle temporal gyrus -63 -7 -14 202 8.47 
Insula (left) -30 -17 -14 34 7.74 
Inferior temporal gyrus 63 -7 -17 129 7.61 
Hippocampus -27 -34 -11 23 6.10 
Share > select      
Precuneus (bilateral) 9 -61 28 385 8.50 

Note. The table reports significant activations (p < .05, corrected for family-wise 

error; minimum cluster size = 20 voxels). The t tests were conducted at peak coordinates. 

MNI = Montreal Neurological Institute. 

 

 

Figure 2.4. Results of the whole-brain analysis. The color coding indicates regions where, 

from left to right, the select > content, share > content, and share > select contrasts 
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revealed significant activations (p < .05, corrected for family-wise error; minimum 

cluster size = 20 voxels). See Table 2.2 for a detailed breakdown of the clusters, and see 

Figures A1 through A3 in the Supplemental Material for complete sets of sagittal slices 

illustrating these results. 

Neural Correlates of Preference to Select and Share Articles  

Next, we examined whether activity in the neural regions in question scaled with 

participants’ degree of preference to select and share articles, respectively.  

Preference ratings. On average, participants indicated that they had a higher 

likelihood to select articles (M = 3.17, SD = 1.40) than to share them (M = 2.12, SD = 

1.26). Intraclass correlation (ICC) analyses revealed higher within-participants than 

between-participants variance in the preference ratings; individuals’ likelihood of 

selecting and sharing varied across articles, ICC1s = .18 and .20, respectively. In other 

words, individual participants expressed a range of preferences, rather than tending to 

rate all articles positively or negatively. Likewise, higher within-articles than between-

articles variance in the preference ratings indicated that, across participants, the articles 

varied in their likelihood of being selected and shared, ICC1s = .11 and .07, respectively; 

thus, different participants preferred different articles, which suggests that the neural 

effects observed were not merely a function of article-specific features or due to some 

articles being universally preferred.  

Neural correlates of likelihood to select and share. Activity in all three sets of 

ROIs was positively associated with higher preference ratings in both the select and the 

share conditions (see Table 2.3). We also conducted whole brain analyses to more 
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precisely identify neural subregions within and outside of our ROIs whose activation was 

associated with higher preference to select and share articles (see Table 2.4). The results 

of these whole-brain analyses supported the ROI analyses and suggested that the effects 

were relatively specific to our ROIs (i.e., we did not observe widespread activity outside 

of our main ROIs). Our whole-brain search did suggest, however, that a sub-portion of 

the VMPFC that is largely associated with self-related processing was associated with 

greater preference for selecting, but not sharing, articles. In contrast, sub-portions of the 

DMPFC and TPJ that are largely associated with social cognition were found to be 

associated with greater preference for sharing, but not selecting, articles (see Figure 2.5).  

Table 2.3. Results of the Region-of-Interest (ROI) Analysis Testing Modulation of 

Neural Activity by Preference Ratings 

ROIs 

Condition 
Select Share 

t(40) p Mean parameter 
estimate 

t(40) p Mean parameter 
estimate 

Subjective 
valuation 

6.01 < .001 0.046  
[0.030, 0.061] 

3.66 < .001 0.039 [0.017, 
0.061] 

Self-related 
processing 

5.28 < .001 0.053  
[0.033, 0.073] 

3.36 .002 0.058 [0.023, 
0.093] 

Social 
cognition 

3.47 .001 0.027  
[0.011, 0.043] 

3.20 .003 0.036 [0.013, 
0.059] 

Note: Values in brackets are 95% confidence intervals. Table A4 in the Appendix 

presents the activations in the subregions of each ROI.  
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Table 2.4. Results of the Whole-Brain Analysis Testing Modulation of Neural Activity by 

Preference Rating 

Contrast and region 
MNI coordinates Number of 

voxels (k) 
t(41) 

x y z 
Select      
Ventromedial 
prefrontal cortex 
(bilateral) 

-6 38 -8 417 7.50 

Cerebellum (right) 36 -61 -41 24 6.54 
Middle temporal 
gyrus 

-54 2 -23 47 6.54 

Middle temporal 
gyrus 

-63 -22 -14 50 6.31 

Inferior frontal gyrus -42 29 -2 41 6.07 
Share      
Dorsomedial 
prefrontal cortex 

-12 53 34 48 6.31 

Temporoparietal 
junction (left) 

-48 -64 34 35 6.03 

Middle frontal gyrus -45 8 52 55 6.36 
Caudate (right) 9 8 4 24 6.27 
Caudate (left) -9 14 7 27 5.91 

Note: The table reports significant activations (p < .05, corrected for family-wise 

error; minimum cluster size = 20 voxels). The t tests were conducted at peak coordinates. 

MNI = Montreal Neurological Institute. 

Discussion 

We propose that positive valuation, self-relevance, and social relevance drive 

people’s decisions to select and share information. Neural activity within subjective 

valuation, self-related-processing, and social-cognition ROIs was associated with 

deciding to select and share news articles, and scaled with preferences to do so. We 

observed substantial overlap in the processes underpinning selection and sharing 

decisions, though activity was heightened during sharing relative to selection. Scholars 
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have previously suggested that similar psychological processes may underpin the 

selection and sharing of information (Cappella et al., 2015; Kim, 2015) and that 

representations of the self and other often overlap (Brewer, 1991; Platek, Keenan, Gallup, 

& Mohamed, 2004). Our data support these ideas by demonstrating neural overlap in the 

processes engaged. 

 

Figure 2.5. Brain images showing regions where the whole-brain analysis 

indicated that neural activity in the select (left) and share (right) conditions was 

modulated by preference ratings 

Information Selection 

Our data are consistent with a value-based account of information selection; the 

VS and VMPFC are robustly associated with computing subjective values of stimuli 

(Bartra et al., 2013). One source of value for personal consumption of information may 

be an article’s self-relevance, and we observed greater activity within self-related 

processing ROIs (MPFC and PCC) during decisions to select articles, relative to recalling 

the content. A second source of value may be an article’s social implications, and we 

observed greater activity within social-cognition ROIs (VMPFC, MMPFC, DMPFC, TPJ, 
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PC, and rSTS) during decisions to select articles, relative to recalling the content. 

Activity in all three sets of ROIs was further associated with the degree of preference to 

select the article for oneself. These findings are consistent with previous literature on 

persuasion and influence (Cascio et al., 2015; Falk et al., 2012), which suggests that self-

related processing may be a key factor in being influenced to act in accordance with a 

message (in this case, to select the article). These data are also consistent with the idea 

that even when selecting information for personal consumption, people may consider 

broader social factors (Cialdini & Trost, 1998). This finding converges with evidence that 

the default-mode network in the brain primes people to readily consider other people’s 

mental states (Spunt et al., 2013). Thus, social considerations may be important in 

selecting information, as the knowledge gained can translate into social value.  

Information Sharing 

We also observed greater activity within all three sets of ROIs during decisions to 

share, both relative to decisions to select and relative to recall of content. Activity in all 

three sets of ROIs also scaled with the degree of preference to share the articles. These 

data are consistent with a value-based account of information sharing, in accordance with 

evidence that informing other people (Tamir, Zaki, & Mitchell, 2015) and sharing about 

oneself (Tamir & Mitchell, 2012) activates reward pathways. We extended these findings 

to the domain of sharing more broadly, and also examined two possible additional 

sources of value: self-relevance and social relevance. Indeed, activity in meta-analytically 

defined self-related processing regions of the MPFC and PCC was greater during sharing 

even when compared with making selections for oneself. These findings align with 
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previous research demonstrating that MPFC activity scales with intentions to recommend 

ideas (Falk, Morelli, Welborn, Dambacher, & Lieberman, 2013). We extended these 

findings to show that merely considering sharing information activates this ROI, and the 

activity scales with preference. These findings also highlight how the social act of sharing 

may be self-reflective, converging with accounts of self-presentation motives in sharing 

(Barasch & Berger, 2014). It has been suggested that desires to enhance one’s reputation 

and social status are key motivators behind news sharing (De Angelis et al., 2012; 

Berger, 2014; Lee & Ma, 2012; Wien & Olsen, 2014). Further, people are particularly 

likely to engage with messages that promote their values (Berger, 2014; Botha & 

Reyneke, 2013). Critically, our findings provide neural evidence that self-related 

processing is engaged not only when people consider selecting messages for themselves 

to read, but also when they consider sharing those messages with other people. We also 

observed greater activity in our social-cognition ROIs in the share condition than in the 

select condition and the content condition. Also, this activity scaled with preferences to 

share. Humans have an inherent motivation to socialize through sharing information 

(Baumeister & Leary, 1995; Berger, 2014; Tamir & Mitchell, 2012). Prior research has 

shown that activity within subregions of the social-cognition ROIs is associated with 

successful retransmission of information (Falk et al., 2013) and enthusiastic 

recommendations (Falk et al., 2012).  

Neural Differences between Selecting and Sharing Information 

Although there was substantial overlap in neural activity when participants 

considered selecting and sharing information, the activity in all three sets of ROIs was 
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strongest during decisions to share. In addition, we found preliminary support for some 

spatial distinctions in the areas engaged by preferences to select information to read 

oneself and preferences to share with other people. Specifically, our whole-brain results 

showed that a more ventral sub-portion of MPFC previously implicated in self-related 

processing and value to self was robustly associated with greater preference for selecting, 

but not sharing, articles. In contrast, DMPFC and TPJ areas previously implicated in 

social cognition were associated with greater preference for sharing, but not selecting, 

articles. These results support the proposed ventral-dorsal gradient of self- and other-

related processing in the MPFC (Denny, Kober, Wager, & Ochsner, 2012) and suggest 

that although there is overlap of self-related and social-cognition activity in the selection 

and sharing of information, some specificity may also be involved when people consider 

how much they would like to read information as opposed to how much they would like 

to share it with other people. In summary, we have proposed a novel account of the 

neurocognitive mechanisms behind selection and retransmission processes as participants 

actively consider selecting and sharing news. Increased activity in hypothesized 

subjective value, self-related-processing, and social-cognition ROIs was associated with 

decisions to select and share information, as well as with preferences to do so. These 

results suggest fundamental dimensions of the motivation to communicate and highlight 

more generally the overlap in processes involved in considering information for personal 

and social purposes.  
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CHAPTER 3: A NEURAL MODEL OF VALUATION AND INFORMATION 

VIRALITY 
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Cappella, J. N., & Falk, E. B. (2017). A neural model of valuation and information 
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Abstract 

Information sharing is an integral part of human interaction that serves to build 

social relationships and affects attitudes and behaviors in individuals and large groups. 

We present a unifying neurocognitive framework of mechanisms underlying information 

sharing at scale (virality). We argue that expectations regarding self-related and social 

consequences of sharing (e.g., in the form of potential for self-enhancement or social 

approval) are integrated into a domain-general value signal that encodes the value of 

sharing a piece of information. This value signal translates into population-level virality. 

In two studies (n = 41 and 39 participants), we tested these hypotheses using functional 

neuroimaging. Neural activity in response to 80 New York Times articles was observed 

in theory-driven regions of interest associated with value, self, and social cognitions. This 

activity then was linked to objectively logged population-level data encompassing n = 

117,611 internet shares of the articles. In both studies, activity in neural regions 

associated with self-related and social cognition was indirectly related to population-level 

sharing through increased neural activation in the brain’s value system. Neural activity 
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further predicted population-level outcomes over and above the variance explained by 

article characteristics and commonly used self-report measures of sharing intentions. This 

parsimonious framework may help advance theory, improve predictive models, and 

inform new approaches to effective intervention. More broadly, these data shed light on 

the core functions of sharing—to express ourselves in positive ways and to strengthen our 

social bonds. 

Introduction 

Human social interaction is centered on sharing information with others (Csibra & 

Gergely, 2011), and this sharing critically affects the reach and impact of news, ideas, 

and knowledge over time (Berger, 2014; Cappella et al., 2015; Rogers, 2003; Southwell 

& Yzer, 2007). The more than 4 billion Facebook messages, 500 million tweets 

(Krikorian, 2013), and 200 billion e-mails (Radicati Group, 2015) shared daily highlight 

this phenomenon. However, not all information is equally likely to be shared (Bandari, 

Asur, & Huberman, 2012; Southwell, 2013). Although a growing body of research 

describes large-scale patterns of sharing (Goel, Anderson, Hofman, & Watts, 2016; Kim, 

2015; Suh, Hong, Pirolli, & Chi, 2010), the types of data that are used to describe such 

patterns cannot speak to the underlying psychological and neurocognitive antecedents of 

sharing. Furthermore, extant empirical research on the psychological mechanisms of 

sharing (Berger, 2014; Cappella et al., 2015) is limited by social desirability bias, 

memory gaps, and the inaccessibility of unconscious, basic processes inherent in self-

report and other commonly used measures (Krumpal, 2011; T. D. Wilson & Nisbett, 

1978; T. D. Wilson & Schooler, 1991).  



 49 

To this end, we assess the neurocognitive processes in individuals that translate 

into population-level sharing of health news articles (i.e., virality, defined as the mass 

popularity of a piece of information among those with direct access to that information). 

Real-time measurement of brain activity offers a mechanistic window into the processes 

underlying sharing decisions, is less biased by the factors noted above (Falk, Cascio, & 

Coronel, 2015; Plassmann, Venkatraman, Huettel, & Yoon, 2015), and hence may offer a 

new way to understand and predict virality. 

Value-Based Virality 

We tested a parsimonious model of virality centered around the value of sharing. 

Value-based virality posits that (i) two types of inputs—expectations of self-related 

outcomes and the social impact of sharing—inform an overall computation of the value 

of sharing a piece of information with others, and (ii) this domain-general value signal 

translates into population-level information virality. Operationally, we relied on meta-

analyses and large-scale studies in social neuroscience and neuroeconomics to define 

theory-driven brain regions of interest (ROIs) from which to extract neural activity as a 

proxy for each of the three psychological processes central to value-based virality (Table 

C1). 

Information-Sharing Value 

Neuroscientists have identified subregions of the ventromedial prefrontal cortex 

(VMPFC) and ventral striatum (VS) that compute value in various contexts (Bartra et al., 

2013). Importantly, prior work has characterized the domain-general nature of the value 

signal that is computed in this neural system (Levy & Glimcher, 2011, 2012). That is, if a 
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decision maker is faced with different types of value (e.g., primary and secondary 

rewards), the brain’s value system enables direct comparisons by transforming them onto 

a common scale during decision-making. Value-based virality argues that this same 

mechanism enables sharers to compute an overall value of the act of sharing a specific 

piece of information based on considerations of the self-related and social consequences 

of sharing. Operationally, the neural valuation system includes VS and VMPFC 

subclusters which are linked to preference judgments and valuation in decision-making 

across hundreds of studies (Bartra et al., 2013) and which have been linked to sharing 

decisions in individuals (Baek, Scholz, O’Donnell, & Falk, 2017; Falk et al., 2013). 

Self-Related Outcome Expectations as an Antecedent of Sharing 

Value-based virality suggests that expectations of self-related outcomes are one 

primary antecedent to sharing. In line with work on self-relatedness, this concept assumes 

thoughts about how sharing information affects “our self-presentation or mental concept” 

(Murray et al., 2012). This broad definition encompasses various specific thought 

processes, for instance about the effects of sharing on one’s self-presentation or its 

potential to support self-enhancement, which have been studied separately elsewhere 

(Berger, 2014; Cappella et al., 2015). Value-based virality suggests that neural activity in 

the brain’s self-related processing system is the greatest common denominator of these 

broadly self-related processes, allowing us to capture within one measure a set of related 

cognitions that can vary across people and contexts. Similar to content that enhances such 

self-related thoughts (Berger, 2014; Cappella et al., 2015), information that engages 

neural activity in regions related to such processes, especially in medial prefrontal cortex 
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(MPFC) (Murray et al., 2012; Northoff et al., 2006), has been linked to self-reported 

intentions to share information (Baek et al., 2017; Falk et al., 2013).  

Extant observational evidence further suggests that self-relevant issues are among 

the most frequent conversation topics (Dunbar et al., 1997; Landis & Burtt, 1924), 

especially in social media (Naaman et al., 2010), and that disclosing information about 

the self may be inherently rewarding (Tamir & Mitchell, 2012). Value-based virality 

suggests that, through this neural mechanism, expectations of positive self-related 

outcomes of sharing increase the perceived value of information sharing, which in turn 

increases the likelihood of actual sharing.  

Operationally, we focus on a self-related processing ROI consisting of clusters in 

the MPFC and precuneus/posterior cingulate cortex (PC/PCC), regions commonly 

activated by the types of self-related judgments detailed above (Falk et al., 2016; Murray 

et al., 2012). 

Social Outcome Expectations as an Antecedent of Sharing 

In parallel, value-based virality suggests that expectations of social outcomes of 

sharing are another primary antecedent of sharing decisions. Sharing is an inherently 

social process, and social considerations can strongly impact how content is received and 

acted upon (Cascio, Scholz, et al., 2015; Southwell & Yzer, 2007). In particular, sharers 

need to consider others’ mental states (e.g., knowledge, opinions, and interests) to predict 

the potential reactions of their audience and to share successfully (Barasch & Berger, 

2014; Clark & Murphy, 1982). This type of social cognition is called “mentalizing” and 

involves cognitions or forecasts about the mental states of others (Frith & Frith, 2006), 
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for instance, predicting what others are likely to think and feel about the shared 

information and about the sharer. Value-based virality suggests that neural activity in the 

brain’s social cognition system constitutes the greatest common denominator of a range 

of socially relevant thought processes in sharers, including thoughts about the meaning of 

the information to receivers and the potential for positive social interactions with others. 

Neurally, activity in the mentalizing system has been linked to sharing decisions in 

individuals (Baek et al., 2017), and successful persuaders engage brain regions strongly 

associated with mentalizing (Dufour et al., 2013) more than unsuccessful persuaders 

within two-person propagation chains (Falk et al., 2013).  

Furthermore, sharing information with others has been found to be rewarding 

(Tamir et al., 2015). Value-based virality predicts that, by this mechanism, thoughts 

about potential positive social outcomes of sharing (e.g., having another person know you 

better or gaining others’ approval) increase the perceived value of information sharing. 

This is reflected by positive associations between neural activity in social cognition and 

value systems.  

We operationalize social cognition as defined above with an ROI consisting of 

clusters in the middle and dorsal MPFC, bilateral temporoparietal junction, and right 

superior temporal sulcus, regions which are robustly activated by tasks involving 

mentalizing (Dufour et al., 2013) and which specifically overlap with considerations of 

whether others’ mental states are rational and social (Tamir, Thornton, Contreras, & 

Mitchell, 2016). 
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Current Study 

We tested the value-based virality framework empirically by combining data from 

two fMRI experiments with objectively logged population-level data on the sharing of 

New York Times (NYTimes) health news articles that were collected using the 

NYTimes’ Most Popular application programming interface (API) search tool (Kim, 

2015). We focused on neural activity in theory-driven ROIs associated with key 

psychological processes (positive valuation, self-related, and social processing) measured 

while participants in two samples were exposed to headlines and abstracts of NYTimes 

health news articles. fMRI participants also provided ratings of the likelihood with which 

they would share each article with their Facebook friends. To create a more realistic 

sharing context, participants were informed that they would be asked to act on their self-

reported intentions after the fMRI scan by sharing articles they rated positively with 

actual Facebook friends. Furthermore, several article characteristics, such as positivity 

and perceived usefulness, were available from a prior content-focused investigation of the 

articles used here (Kim, 2015). Participants completed similar tasks in the two studies 

(Figure C1), and parallel analyses were applied to the two datasets to allow the 

replication of our results linking neural and population-level data. The population-level 

framework presented here substantially extends orthogonal analyses of individual-level 

results based on study 1 data showing that decisions about information sharing engage 

more activity in value, self-related, and social cognition ROIs than do other types of 

decisions and that this neural activity scales with self-reported, individual-level sharing 

preferences (Baek et al., 2017). 
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Results 

Based on the predictions made by value-based virality (Figure 3.1), path models 

were specified to link percent signal change of brain activity measured in the three 

theory-driven ROIs while our participants read headlines and abstracts to the population-

level sharing counts of each article. The 80 NYTimes articles were shared a total of 

117,611 times (mean ± SD, 1,470.1 ± 2,304.3 times; range, 34–12,743 times) via 

Facebook, Twitter, and email by the NYTimes online reader population within 30 d of 

each item’s publishing date.  

 

Figure 3.1. Value-based virality path model. The path diagram shows maximum 

likelihood estimates (unstandardized coefficients). The table presents indirect effect 

coefficients and bias-corrected, bootstrapped 95% CIs (1,000 replications). As in prior 

work predicting population-level message effects from neural data (30), all variables 

were rank-ordered. n = 80 in study 1 and 76 in study 2; *P < 0.05, **P < 0.01, ***P < 

0.001, n.s., not significant. 
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In both samples, we found robust support for value-based virality (Figure 3.1 and 

Table C2). First, articles that had high sharing value indicated by stronger neural activity 

in the valuation ROI in each of our samples were shared more frequently by NYTimes 

readers. This result is in line with the idea that, in the context of sharing, the brain’s 

valuation system encodes the value of sharing information with others. Further, there are 

commonalities across people in the extent to which information engages this neural 

system.  

In addition, the effects of neural activity in self- and social-cognition systems on 

population-level virality were fully mediated through value-related activity in both 

samples. This finding is consistent with the idea that considerations of self-related and 

social outcomes of sharing impact the overall perceived value of the act of sharing, which 

in turn directly affects sharing behavior.  

These results were robust when using unranked variables (Appendix C, Figure 

C2, and Table C3). Further, models specifying value-related neural activity as the 

mediator of the effects of social and self-related processing on virality showed acceptable 

model fit and outperformed alternative path models (Appendix C, Table C4). Finally, 

following our planned ROI analyses, a whole-brain search for regions associated with 

population-level virality did not reveal widespread activity outside our ROIs (Appendix 

C, Figure C3, and Table C5).  

We further compared the predictive power of neural activity in regions predicted 

by value-based virality with variance explained by commonly used self-report measures 

(intentions to share each article on Facebook) and tested the robustness of the framework 
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when controlling for the effects of article characteristics that have been associated with 

news virality in prior work (Berger & Milkman, 2012; Kim, 2015). For both the study 1 

and study 2 samples, self-reported intentions were significant predictors of population-

level sharing (explaining 11.3% and 13.8% of its variance, respectively). Neural activity 

alone explained 17.5% and 9.6% of the variance in the virality outcome in studies 1 and 

2, respectively (Figure 3.1). When combined, both self-reported intentions and brain 

activity remained significant predictors, together explaining 19.2 and 19.1% of the 

variance in studies 1 and 2, respectively (Figure C4 and Table C2). In addition, all effects 

reported in Figure 1 were robust, even when controlling for any of nine content 

characteristics available for the article headlines and abstracts (Appendix C). Thus, brain 

activity measured with fMRI can significantly improve the prediction of large-scale 

sharing behavior beyond other commonly used metrics. 

Discussion 

Information sharing is an integral part of human nature (Csibra & Gergely, 2011) 

that enables and accelerates innovation and development in modern societies (Pentland, 

2014; Rogers, 2003). We iteratively combined neuroimaging data with objectively logged 

population-level data on hundreds of thousands of shares from the NYTimes API search 

tool to test a parsimonious, neurocognitive framework of the psychological mechanisms 

underlying sharing decisions that translate into population-level virality. Specifically, we 

argue that potential sharers consider a broad range of self-related and social consequences 

of sharing a piece of information with others. The resulting self-related and social-

relevance judgments then serve as inputs to the brain’s valuation system, which converts 
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them to a common scale. This overall value of information sharing is directly predictive 

of largescale sharing dynamics.  

Consistent with this framework, we found that brain activity in the valuation 

system (VS and VMPFC) in two groups of participants was associated with virality in the 

larger population (117,611 total shares of 80 NYTimes articles). That is, articles 

associated with higher information-sharing value in the brain when individuals first read 

the headlines and abstracts were shared more frequently by the population of NYTimes 

readers. Information-sharing value may be a primary psychological motivator and central 

theoretical concept that guides sharing behavior at scale. Prior work has shown that 

neural activity in the brain’s valuation system is not only associated robustly with 

personal preferences (Bartra et al., 2013) but also with the expectation of positive 

outcomes (Diekhof, Kaps, Falkai, & Gruber, 2012; Rademacher et al., 2010). Brain 

activity in response to persuasive messages in these regions also is associated with 

message-consistent behaviors at the individual (Cooper et al., 2015; Falk et al., 2013) and 

population level (Falk et al., 2012, 2016; Plassmann et al., 2015). Our findings show that 

the predictive validity of neural valuation activity extends to the realm of information 

virality and highlights the domain-general nature of this brain signal (Levy & Glimcher, 

2011, 2012). In the case of sharing, value-based virality suggests that considerations of 

self-related and social consequences of sharing are key inputs in the computation of the 

value of sharing information, even though the specific nature of the self-related and social 

inputs that inform that value signal may vary depending on qualities of the information 

sharer, the receiver, or their relationship.  
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In line with this argument, we found robust, indirect effects of brain activity in 

regions associated with self-related processing during article exposure on population-

level sharing behavior through value-related activity. Prior evidence has linked a range of 

self-related judgments to sharing. For example, the promotion of a positive self-image 

(Mezulis et al., 2004; Taylor & Brown, 1994) is an important goal in social interactions, 

and information that allows potential sharers to appear in a more positive light is more 

likely to go viral (Barasch & Berger, 2014; Cappella et al., 2015), perhaps because it 

increases the perceived value of information sharing. Further, self-disclosure increases 

activity in the brain’s valuation system, suggesting that providing information about or 

reflecting about the self might be inherently rewarding (Tamir & Mitchell, 2012). Value-

based virality brings together prior findings, arguing that self-related neural activity is the 

greatest common denominator for various self-related thought processes, including 

reflecting self-concept and self-presentational concerns, and constitutes a primary 

antecedent of sharing value.  

Further, our results show an indirect effect of activity in neural regions associated 

with social cognition, and in particular mentalizing, on population-level article virality 

through value-related activity. Existing work has shown that the expectation of positive 

social outcomes such as positive interactions with others engages the brain’s valuation 

system (Fehr & Camerer, 2007; Rademacher et al., 2010), and our ROI overlaps with 

brain regions supporting considerations of whether others’ mental states are rational and 

whether they are social (Tamir et al., 2016). Social belonging is a basic human need and 

motivation (Baumeister & Leary, 1995; Lieberman, 2013), and relationship maintenance 
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has been suggested as a motivator of information sharing (Berger, 2014; Cappella et al., 

2015). A range of basic social motives focused on understanding others’ minds and 

forecasting their reactions, and expectations about positive social outcomes of sharing 

information with others may increase the perceived value of information sharing; in turn, 

the perceived increase in the value of information increases the potential that the 

information will go viral. Value-based virality brings together prior findings, arguing that 

neural activity in areas associated with social cognition is the greatest common 

denominator for various social thought processes and informs sharing value.  

Although we removed voxels within the VMPFC and PCC [regions commonly 

associated with both self-related and social processing (Dufour et al., 2013; Murray et al., 

2012; Saxe, Moran, Scholz, & Gabrieli, 2006)] from our social-processing ROI to ensure 

statistical validity, self-related and social thoughts are conceptually intertwined. Social 

psychologists have suggested that one’s sense of self is defined by simple rules that 

include or exclude an individual from certain social groups and practices, resulting in a 

“social self” concept (Bretherton, 1991; Brewer, 1991). In the context of value-based 

virality, it follows that content that is expected to have positive social outcomes when 

shared (e.g., because it is helpful to the receiver or results in a positive social interaction) 

will likely reinforce the perceived positivity of self-related outcomes of sharing (e.g., by 

making the sharer look charitable and friendly) and vice versa. Nonetheless, our analyses 

demonstrate that when operationalizations of both self-related and social processing are 

included in one model, each concept contributes unique variance to the calculation of 

overall sharing value. In the future, explorations of the relative importance of each 
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cognition and the patterns of their interaction in the calculation of information-sharing 

value will be valuable.  

Finally, in line with prior investigations in other contexts (Berns & Moore, 2010; 

Falk et al., 2012, 2016; Genevsky & Knutson, 2015; Venkatraman et al., 2014), we show 

links between brain activity in small groups of individuals and large-scale virality, even 

though the perception of the sharing value of the same content might vary across people, 

and the same content might appear valuable to different people for different reasons. 

Although what is personally relevant to the self and useful to share with others might 

differ somewhat across individuals, human societies are characterized by a set of basic 

common values and social norms that drive behavior across individuals (Schwartz, 2006, 

2007). Sharing decisions rely on such basic motives, namely, the pursuit of a positive 

self-image and social belonging (Baumeister & Leary, 1995; Mezulis et al., 2004). 

Consequently, similar types of information are likely to be perceived to have high sharing 

value across individuals. Furthermore, expectations of self-related and social outcomes, 

two core concepts within value-based virality, are defined broadly as the greatest 

common denominators of various self-related and social thought processes, respectively. 

In other words, population-level prediction of virality from neuroimaging of small groups 

is likely facilitated by broad societal values, the inclusiveness of our theoretical 

conceptualizations, and the unique information afforded by neuroimaging. Specifically, 

neuroimaging is optimally situated to identify such high-level, hard-to-articulate 

cognitions, allowing us to capture relevant cognitions in a parsimonious way despite the 

variability in the thought processes that different individuals might associate with the 
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same content. Along with this strength, however, we relied on functionally defined ROIs 

to take optimal advantage of neuroimaging to operationalize these constructs, which are 

inherently subject to the limitations of reverse inference (Poldrack, 2011).  

The results summarized in this article were robust across several methods of 

analysis, and the hypothesized model outperformed alternative path structures, although 

causal inferences are limited by the cross-sectional nature of our data. Additionally, a 

whole-brain analysis did not provide strong evidence for the involvement of neural 

regions outside our ROIs in population-level virality. Nevertheless, future work might 

reveal other basic processes that could complement the theory, for instance as additional 

inputs to the value signal or its antecedents. Further, our effects were robust, even when 

controlling for self-reported sharing intentions and various article characteristics. In sum, 

our data highlight the value of including neural variables in the conceptualization of 

virality in the context of health news and offer a testable and parsimonious framework 

that could be extended to virality in other contexts. This mechanistic account of sharing 

decisions complements insights from previous studies using self-report measures or big 

data approaches (e.g., Goel et al., 2016; Suh et al., 2010). 

Conclusion 

Information that elicits greater brain response in self-, social-, and in turn value-

related systems is more likely to be shared. These processes may reflect thoughts about 

the potential outcomes of sharing to the self and to one’s social relationships. If so, self-

related and social processes could serve as targets for content designers aiming to 

increase the virality potential of their messages. Taken together, our data support a 
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parsimonious neurocognitive model of virality, one of the most prominent social 

phenomena in the 21st century, and shed light on the core functions of sharing— to 

express aspects of ourselves and to strengthen our social bonds. 

Methods 

Neural activity was examined while two samples of participants (study 1 and 

study 2) completed the article task (Figure C1) in which participants were exposed to 

headlines and abstracts of news items taken from the NYTimes website 

(https://www.nytimes.com/). We then tested for associations between activity within 

functionally defined, theory-driven ROIs associated with self-relatedness, social 

processing, and valuation and the number of article retransmissions performed online by 

NYTimes readers as a population-level indicator of virality.  

Similar protocols were administered in both studies, and each group of 

participants was presented with the same news items. Differences in data collection and 

processing between the two studies are detailed below. All models and results reported 

here were derived using parallel statistical approaches across studies. All participants 

provided informed consent, and all procedures were approved by the Institutional Review 

Board at the University of Pennsylvania. 

Hypothesis Pre-Registration 

At the onset of study 1, we preregistered our study design (Scholz, Baek, 

O’Donnell, & Falk, 2015), and upon completion of data collection we explored the 

relationship between neural data and population-level article retransmission. Based on the 

results in study 1, hypotheses specifying the effects of self- and social-processing on 
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value-related neural activity and of activity in the value-related ROI on population-level 

virality were preregistered before the analysis of study 2 data (Scholz, Baek, O’Donnell, 

& Falk, 2016).4 

Sample NYTimes articles 

During the article task, participants in both samples were exposed to the original 

headline and abstract of 80 articles from the Health section of the NYTimes website 

(https://www.nytimes.com/). The articles were chosen from a complete census (excluding 

certain article categories to preserve homogeneity in article format; see Kim, 2015 for 

details) of articles (n = 760) published online in the 7.7 mo between 11 July 2012 and 28 

February 2013. Population-level data about the number of retransmissions of each article 

through email, Twitter, and Facebook were collected via the NYTimes API. The 80 

articles were chosen to maximize comparability regarding topic (healthy living and 

physical activity) and length (for the word count of title and abstract, see Appendix C). 

The 80 articles selected into the final sample were of comparable lengths, i.e., a word 

count (mean ± SD) of 29.43 ± 3.87 words (range, 21–35 words). To control for reading 

speed in study 1, we produced audio files in which a female voice read each of the article 

headlines and abstracts. Depending on word count, each audio file was produced to last 8, 

10, or 12 s. Coded characteristics of each article’s headline and abstract were available as 

described by Kim (2015). 

                                                

4 See Appendix B for a more detailed comment on efforts made to implement 
open science practices in this dissertation.  
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Population-Level Retransmission 

An article’s population-level retransmission count was measured through the 

NYTimes’ Most Popular API and defined as the sum of retransmissions via Facebook, 

Twitter, and email using sharing tools available on the NYTimes website within 30 d of 

the article’s first appearance on the website (mean ± SD, 1,470.14 ± 2,304.32 

retransmissions; range, 34–12,743 retransmissions). Retransmission counts for social 

media (Twitter and Facebook) and email were highly correlated (r = 0.917) and thus are 

not presented separately, although results remain substantively identical when each type 

of sharing is considered separately. 

Study 1 Participants 

From a larger sample of respondents who participated in a project examining the 

neural correlates of retransmission and social influence by filling out a short online 

survey, we selected 43 participants. These 43 participants completed an online screening 

process and an in-person appointment including a 60-min fMRI scan. To be eligible for 

the fMRI portion, screened participants had to meet standard fMRI eligibility criteria 

including no metal in the body, no history of psychiatric or neurological disorders, not 

currently pregnant or breast-feeding, and not currently taking psychiatric or illicit drugs. 

All participants were right-handed.  

Two participants were excluded from analysis because of data corruption. One 

participant saw only three of the four conditions during the article task, and one 

participant showed poor normalization to the template brain. Additionally, for four 

participants a smaller number of trials was available for analysis because of the loss of 
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data from one run of the article task (n = 1), excessive head motion in one run of the task 

(n = 2), and technical difficulties in which 23 articles were shown twice, resulting in only 

57 trials that qualified as initial exposures to an article (n = 1). The partial data from these 

participants were included in the analyses. The age of the final sample of 41 participants 

(29 females) was 20.6 ± 2.1 y (mean ± SD) (range, 18–24 y). 

Study 2 Participants 

Forty participants were selected from the pool of respondents used to select the 

study 1 sample using inclusion criteria that paralleled those in study 1. These participants 

underwent an fMRI session. Because of excess head movement during the article task, 

one participant was removed from all analyses, and one run of the article task was 

discarded for a second participant. The remaining 39 participants (28 female) were 18–24 

y old (mean ± SD, 21.0 ± 2.02 y). 

Study 1 Article Task 

Inside the fMRI scanner, study 1 participants completed two runs of the article 

task consisting of 40 trials each (Figure C1A). Each trial lasted an average of 14.7 s 

without fixation. At the beginning of each trial a cue screen indicating the current 

condition was presented for 1.5 s. Then participants read the article’s title and abstract 

while considering a condition-specific question. In the four conditions participants were 

asked to consider (i) whether to read the full text of the article themselves, (ii) whether to 

share the article via a post on their Facebook wall; (iii) whether to share the article via a 

private Facebook message to one friend (5-point Likert-type scales from very unlikely to 

very likely), and (iv) whether age/nutrition/fitness/science/ laws/well-being/cancer was 
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the topic of this article (5-point Likert-type scale from certainly not to certainly yes). 

Conditions were presented in a pseudorandom order based on a Latin-square. To control 

for reading speed, headlines and abstracts were also presented in auditory format through 

scanner-compatible headphones while the text was presented on the screen. Article 

abstracts were categorized in three groups depending on the length of the text. 

Consequently, the reading screen was presented for 8 (n = 16), 10 (n = 40), or 12 (n = 24) 

s. Article length was counterbalanced across conditions and task runs. The reading screen 

was followed by a randomly jittered fixation screen that lasted 1.5 s on average (range, 

0.5–4.7 s). Participants then used a button box to indicate their answer to the condition-

specific question (3 s). Finally, there was a randomly jittered inter-trial interval with an 

average length of 2 s (range, 1–4.7 s).  

In this analysis, we focused on reading trials in which participants viewed the 

article headlines and abstracts to decide whether they wanted to read the full text of the 

article (see Appendix C for results in other conditions). Furthermore, we only included 

reading screens within each trial (i.e., periods in which article headlines and abstracts 

were visible). This task condition closely mimics natural situations in which readers are 

initially exposed to articles online. 

Study 2 Article Task 

Study 2 participants completed two runs (21 trials each) of a modified version of 

the article task (Figure C1B). First, each article’s headline and a description of the article 

were presented on the reading screen for 10 s, and participants were instructed to read the 

text on the screen. Articles were not presented in auditory format in study 2. Three types 
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of article descriptions were used: Participants saw the original article headline and 

abstract that also was seen by study 1 participants (i) or saw the original article headline 

and a Tweetlength message written by a participant in study 1 to be shared either with 

one Facebook friend (ii) or on the participants’ Facebook wall (iii). The reading screen 

was followed by a randomly jittered fixation period (mean, 1.5 s; range, 0.3–4.8 s). 

Afterward, participants provided two ratings per trial: (i) the likelihood they would share 

the article on their Facebook wall and (ii) the likelihood (on 5-point Likert-type scales 

paralleling those used in study 1) that they would share the article via a private Facebook 

message with one friend. Each rating screen was available for 3 s. Rating screens were 

separated by a short, jittered fixation period (mean, 1.5 s; range, 0.4–4.3 s). Finally, there 

was a randomly jittered intertrial interval (mean, 2.9 s; range, 0.5–11.5 s). To parallel 

study 1 analyses closely, only reading screen periods within each trial (i.e., when article 

headlines and descriptions were visible) and only abstract trials that presented original 

NYTimes abstracts were analyzed here. The 80 articles used in study 1 were pseudo-

randomly assigned to experimental conditions for each participant in study 2; however, 

because of randomization, only 76 articles were presented in the relevant abstract 

condition across all study 2 participants. 

A Priori ROIs 

Three neural masks were constructed as functional ROIs based on extensive prior 

work in each of the respective subject areas (Table C1). The self-relatedness ROI was 

defined based on a prior study (Falk et al., 2016) that collected neural data using a well-

validated self-localizer task (Schmitz & Johnson, 2007) in which participants judge 
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whether personality traits describe them or not (the self-condition) or whether the 

adjective shown is positive or negative (the valence condition). Blocks of self-judgments 

are contrasted with blocks of valence judgments to isolate neural activity associated with 

self-relatedness.  

The social-processing ROI was defined based on a large-scale study that used the 

well-validated false-belief localizer during which participants engage in mentalizing. 

Trials during which participants judged whether beliefs held by others were true or false 

were contrasted to trials in which they judged whether physical representations were true 

or false to retrieve the mask used here. To avoid inflated correlations among activity in 

the three neural systems, we created a reduced version of the social cognition mask, 

excluding the clusters in VMPFC and PCC that overlap with the self and value ROIs. 

This mask is used in all analyses presented here. Models using the full social-cognition 

ROI instead of the reduced social-cognition ROI yielded very similar results and support 

identical conclusions.  

Finally, the valuation ROI was defined based on a quantitative meta-analysis of 

206 studies that reported neural correlates of subjective valuation during decision-

making. This mask represents the conjunction of several valuation-relevant contrasts, all 

of which required some form of value-based decision-making (figure 9 in Bartra et al., 

2013). 

MRI Image Acquisition 

Neuroimaging data were collected using a 3-T Siemens Magnetom Tim Trio 

scanner equipped with a 32-channel head coil was used for 40 participants in study 1 and 
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33 participants in study 2, and a Siemens Prisma 3T whole-body MRI with a 64-channel 

head/neck array was used for one participant in study 1 and six participants in study 2. 

Identical specifications were used on both scanners, except for the number of slices 

acquired for T2*-weighted images (54 at the Tim Trio and 52 at the Prisma scanner). 

This difference was accounted for in the slice-time correction step during preprocessing. 

Standard parameters used to acquire T2*- (two runs of 500 volumes in study 1 and two 

runs of 311 volumes in study 2), T2-, and T1-weighted anatomical image sequences are 

described in detail in Appendix C. 

Imaging Data Pre-Processing 

For the analysis of data from both studies, we used SPM8 (Wellcome Department 

of Cognitive Neurology, Institute of Neurology, the University of London), incorporating 

tools from AFNI (Analysis of Functional NeuroImages) (R. W. Cox, 1996) and FSL 

(FMRIB Software Library) (S. M. Smith et al., 2004) during data preprocessing. The first 

five volumes of each run were not collected to allow stabilization of the blood 

oxygenation level-dependent (BOLD) signal. Functional images were despiked using 

3dDespike as implemented in AFNI. Slice time correction was performed using Sinc 

(Stanford University ideal bandlimited) interpolation in FSL. Data then were spatially 

realigned to the first image and were co-registered in two six-parameter affine stages. 

First, mean functional images were registered to in-plane T2-weighted images. Next, 

high-resolution T1 images were registered to the in-plane image. After co-registration, 

high-resolution structural images were segmented into gray matter, white matter, and 

cerebral spinal fluid to create a brain mask used to determine the voxels to be included in 
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first- and second-level models. The masked structural images then were normalized to the 

skull-stripped Montreal Neurological Institute (MNI) template provided by FSL 

(MNI152_T1_1mm_brain.nii). Finally, functional images were smoothed using a 

Gaussian kernel (8 mm FWHM). The fMRI data were modeled for each participant using 

fixed-effects models within the general linear model as implemented in SPM8, using 

SPM’s canonical difference of gamma hemodynamic response function (HRF). The six 

rigid-body translation and rotation parameters derived from spatial realignment were also 

included as nuisance regressors in all first-level models. Data were high-pass filtered with 

a cutoff of 128 s. Random effects models for the article task were also implemented in 

SPM8. 

Analysis of Study 1 Imaging Data 

We took an item-wise approach to modeling the article task using procedures 

similar to those used elsewhere (Falk et al., 2016). Specifically, using a single boxcar 

function for each trial (i.e., each of the 80 articles) encompassing the 8- to 12-s reading 

screen, we extracted neural activity in each ROI during each trial compared with the 

implicit baseline resting state. Activity related to cue and all rating screens was pooled 

into a separate regressor of no interest each. In addition, the model for one participant 

who accidentally saw several articles twice included an additional regressor of no interest 

for each second occurrence of an article. Fixation periods were pooled into the implicit 

baseline rest. 
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Analysis of Study 2 Imaging Data 

Study 2 data were analyzed using methods parallel to those applied to study 1 data 

to yield comparable models. Specifically, using a single boxcar function for each of the 

42 trials per participant, encompassing the 10-s reading screen, we extracted neural 

activity observed during each trial compared with the implicit baseline resting state. A 

regressor of no interest was included for each of the two rating screens. Fixation periods 

were pooled into the implicit baseline rest. 

Path Models 

For each a priori ROI, average parameter estimates of activity across all voxels 

within the region were extracted for each participant and each article using Marsbar 

(Brett, Anton, & Valabregue, 2002). Each set of parameter estimates was divided by the 

grand mean to derive estimates of the percent signal change. Percent signal change 

vectors for each participant were reduced to those trials shown in the reading condition 

for study 1 and in the abstract condition for study 2. For each participant, these reduced 

vectors were then z-scored and ranked across articles. As in prior work (Falk et al., 

2016), we then computed the mean ranks of each article across participants and linked 

these data with the ranked population-level data from the NYTimes API separately. 

Specifically, we conducted path analyses using maximum likelihood estimation in lavaan 

(Rosseel, 2012) to yield the results presented in Figure 3.1. Nonparametric, bias-

corrected 95% confidence intervals (CIs) for indirect effects using 1,000 bootstrap 

samples were further estimated using the mediation package for R (Tingley, Yamamoto, 

Kentaro, Keele, & Imai, 2014) to test for indirect effects of self-related processing and 
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social processing on population-level retransmission through valuation (see Table C2 for 

relevant correlation matrices). 

Robustness Checks 

To check the robustness of our results, we fit (i) models using unranked variables 

in which population-level retransmission counts were log-transformed because of the 

positively skewed distribution (Figure C2 and Table C3), (ii) models excluding the 

insignificant direct effects of the exogenous variables shown in Figure 3.1 to obtain 

model fit statistics (Appendix C), and (iii) alternative structural models to those estimated 

in step ii to compare model fit (Appendix C and Table C4). 

Whole-Brain Analysis 

We conducted exploratory whole-brain searches for regions associated with 

population-level retransmission ranks in study 1 and study 2 to verify the specificity of 

our results to our ROIs and to explore whether additional activity outside these ROIs is 

associated with population-level virality (Appendix C). 

Models Including Self-Reported Sharing Intentions and Article Characteristics 

We further tested whether the predictions of value-based virality held above and 

beyond the variance explained by self-reported sharing intentions (Figure C4 and Table 

C2) and article characteristics (Appendix C). Study 1 participants provided one rating 

(intention either to broadcast or narrowcast) for 40 articles. For each article, we computed 

a mean sharing intention across participants including all available narrowcast and 

broadcasting ratings. Study 2 participants provided both narrowcast and broadcasting 

ratings for all 42 articles shown to them. For trials shown in the abstract condition, we 
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first calculated a mean sharing intention across the two ratings for each article within 

participants and then computed a mean sharing intention for each article across 

participants. First, ranked population-level retransmission was regressed onto sharing 

intentions to estimate the effect of intentions on virality in each sample. Second, we re-

estimated the models shown in Figure 3.1 with self-reported intentions specified as an 

additional exogenous variable with a direct effect on population-level retransmission. 

This step was further repeated for each available article characteristic (Appendix C).  
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CHAPTER 4: MOTIVATIONS OF BROAD- AND NARROWCASTING: A 

NEUROSCIENTIFIC PERSPECTIVE 

Abstract 

What differentiates sharing with few, well-defined others (narrowcasting) from 

sharing with loosely defined crowds (broadcasting)? One account suggests a trade-off 

where broadcasting is self-focused and self-serving, and narrowcasting is based on other-

oriented, altruistic motives. We present neuroimaging data consistent with a second, 

parallel-processes perspective. According to this account, both narrow- and broadcasting 

simultaneously involve self-related and social motives since these concepts are strongly 

intertwined both on a psychological and neural level. Instead, narrow- and broadcasting 

may be differentiated by the intensity of these parallel processes. We recorded brain 

activity within regions that are meta-analytically associated with self-related and social 

cognition while participants made decisions to narrow- or broadcast New York Times 

articles on social media. Results show increased involvement of regions associated with 

both self-related and social processing in narrow- and broadcasting compared to a control 

condition. However, both processes were involved with higher intensity during narrow- 

compared to broadcasting. These data help to disambiguate a theoretical discussion in 

communication science and clarify the neuropsychological mechanisms that drive sharing 

decisions in different contexts. Specifically, we highlight that narrow- and broadcasting 

afford differing intensities of two psychological processes that are crucial to persuasion 

and population-level content virality. 
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Introduction 

Information sharing is an inherently social process. As such, communicators who 

share information with others must consider the characteristics, preferences, and goals of 

their audience to effectively create messages that will resonate with receivers (Barasch & 

Berger, 2014; Bargh & Williams, 2006; Clark & Murphy, 1982; Magnifico, 2010). This 

effort allows the communicator to fulfill central self-related and social motivations such 

as to shape and present their own identity and to manage social relationships (Berger, 

2014; Cappella et al., 2015; Cunningham, 2012; Meshi, Tamir, & Heekeren, 2015; 

Rosenberg & Egbert, 2011). Communicators regularly transmit information to one or few 

well-characterized others, for instance through private chat messages (narrowcasting), or 

large, often loosely defined audiences, for instance through social media status updates 

(broadcasting). The size of an audience may modify the motivations that lead to 

information sharing and, consequently, sharing behavior (Barasch & Berger, 2014; 

Bazarova & Choi, 2014; Derlega & Grzelak, 1979; Omarzu, 2000) and downstream 

outcomes such as persuasion and information diffusion (Falk & Scholz, 2018). Whether 

and how audience size changes the role played by self-related and social concerns during 

sharing remains a matter of active discussion. Here, we test two competing accounts of 

this relationship. The trade-off perspective, suggests a trade-off between self-related and 

social concerns wherein broadcasting is mainly motivated by self-focused considerations, 

and narrowcasting is driven by audience-directed, social thought processes. An 

alternative account, the parallel-processes perspective, implies that narrow- and 

broadcasting simultaneously engage both self-related and social thinking and are, instead, 
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differentiated by the intensity of these parallel processes. We derive falsifiable 

hypotheses from each account of the motivational bases of narrow- and broadcasting and 

present empirical tests based on a neuroimaging experiment.  

Characteristics of Broad- and Narrowcasting 

Broadcasting involves sharing with large, often ill-defined audiences. Shared 

content is usually not private and messages composed by information sharers tend to be 

undirected, that is, not addressed towards a particular individual or group (Bazarova & 

Choi, 2014). Broadcasting allows sharers to address self-presentation and social 

affiliation motivations efficiently by reaching many and diverse receivers through a 

single message. For instance, a Facebook status update might reach about 200 potential 

receivers for the median adult Facebook user (Smith, 2014). At the same time, 

broadcasters face significant risks and uncertainty regarding the appropriateness of the 

content they share due to the diversity of potential audience members. Broadcast 

audiences are often characterized by context collapse, that is a conglomeration of people 

from different contexts within a person’s life (e.g. work and a sports team; Marwick & 

boyd, 2011) and broadcasters tend to hold biased representations of the size and 

characteristics of their audience (Bernstein, Bakshy, Burke, & Karrer, 2013; Marwick & 

boyd, 2011). The limited information available to accurately predict attitudes, preferences 

and potential reactions to shared content (Krämer & Haferkamp, 2011; Marwick & boyd, 

2011) might have implications for the extent to which sharers pursue self-related and 

social motivations. 
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In contrast, narrowcasting, or sharing with one or few, well-defined others, 

affords more privacy and more often leads to messages which are directed at specific 

individuals or groups (Bazarova & Choi, 2014; Nguyen, Bin, & Campbell, 2012; 

Walther, 1996). Sharers retain greater control over who may receive their messages and 

can thus rely on more specific person or group-specific knowledge as the basis for their 

sharing decisions. Dyadic interactions, especially in online contexts (Nguyen et al., 2012; 

Walther, 1996), have been shown to increase the intimacy of shared content (Bazarova & 

Choi, 2014). In what follows, we will discuss two competing accounts of the effects of 

these audience characteristics in narrow- and broadcasting situations on central sharing 

motivations, namely self-related and social considerations. 

The Trade-Off Perspective 

Arguing for a trade-off between self-related and social processing in broad- and 

narrowcasting, Barasch and Berger (2014) suggest that default egocentrism, a sharer’s 

default focus on the self, motivates individuals to primarily share content that is related to 

their self-concept (e.g. by sharing content that reflects positively on themselves) when 

faced with loosely defined broadcasting audiences. Narrowcasting, on the other hand, is 

described as a special case of sharing where sharers are confronted with more prominent 

and concrete representations of their audience and thus motivated to abandon their 

egocentrism for a more sociocentric approach to sharing (e.g. by choosing content useful 

to the audience). In this view, ego- and socio-centrism are conceptualized and 

operationalized as extremes on a bipolar scale, suggesting that sharers focus primarily on 

one at a time and that increasing the focus on one, will decrease attention to the other.  
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The idea of an egocentric default is grounded in psychological research which 

suggests a central role of self-perceptions when interacting with others. Holding a 

positive self-image is a central human motive that drives behavior across contexts (Leary, 

1996; Mezulis et al., 2004). Research has demonstrated that sharing information about 

the self is intrinsically rewarding (Tamir & Mitchell, 2012), and that most conversations 

include self-related information (Dunbar et al., 1997; Emler, 1990; Landis & Burtt, 

1924), particularly on social media (Naaman et al., 2010). Reviews of the existing work 

on word-of-mouth and virality have confirmed the prominent role of self-presentational 

and self-enhancement concerns in the context of information sharing (Berger, 2014; 

Cappella et al., 2015). Even in social contexts, people tend to rely disproportionately on 

their own perspectives to predict those of their interaction partners (Dunning, Boven, & 

Loewenstein, 2001), perhaps because self-related information is more easily accessible 

(Ross & Sicoly, 1979). The trade-off perspective argues that egocentrism is particularly 

prominent in broadcasting situations where audiences tend to be ill-defined and reactions 

to shared content are hard to predict (Bazarova & Choi, 2014; Krämer & Haferkamp, 

2011; Marwick & boyd, 2011). In other words, when broadcasting, sharers might focus 

on themselves as the primary known variable in a complex social equation.  

Nevertheless, next to the desire to hold a positive image of oneself, humans are 

also inherently social and motivated to associate positively with others in social groups 

(Baumeister & Leary, 1995; Lieberman, 2013). When narrowcasting, a clearer definition 

of audience make-up and more reliable predictions about potential audience preferences 
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and reactions might make it more feasible to address such social motivations through 

information sharing.  

There is some empirical evidence for the trade-off perspective in the literatures on 

information sharing and self-disclosure. In a study by Barasch and Berger (2014), 

broadcasters were more likely than narrowcasters to share information that made them 

look good and to report a stronger self- rather than other-focus. In contrast, participants 

reported stronger other- than self-focus during narrowcasting compared to broadcasting 

and tended to share information considered helpful to the audience. In a study reported by 

Bazarova and Choi (2014), one part of the empirical data showed that participants 

identified self-related motivations, namely self-expression and social validation of self-

related aspects, as the most common motivations for information sharing in broadcasting 

situations like Facebook status updates. Social motivations like the development of 

positive relationships were reported for a greater proportion of narrowcasted than 

broadcasted Facebook messages. Interestingly, other findings reported in this study are 

more supportive of hypotheses within the parallel processes account which will be 

discussed shortly. 

An additional, important aspect of the trade-off account is the idea that ego- and 

sociocentric states are negatively related to each other, so that a self-focus in sharers 

decreases attention to the audience and an other-focus decreases attention to the self 

(Barasch & Berger, 2014). A similar notion can be found in the self-disclosure literature, 

which describes an intrapersonal-interpersonal orientation continuum (Archer & Earle, 
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1983; Miller & Read, 1987). Characteristics of the self-disclosure context such as one’s 

audience are thought to impact a sharer’s position on this bipolar scale.  

Existing evidence for the trade-off account is derived primarily from self-report 

scales, which operationalize pre-existing assumptions about a competing relationship 

between self- and other-focus during sharing. In addition, existing measures have 

typically required the measurement of these concepts to occur post-hoc, sequentially, and 

using pre-defined categories and descriptions of cognitions.  

The Parallel-Processes Perspective 

Evidence from economics, social psychology, communication science and social 

neuroscience supports a set of competing hypotheses to the trade-off account. 

Specifically, the parallel-processes perspective suggests that: 1) Self-related and social 

processing do not have a trade-off relationship where one process suppresses the other, 

but often co-occur and might interact; 2) Both narrow- and broadcasting are based on 

both self-related and social considerations; 3) Differences between narrow- and 

broadcasting are likely due to differences in intensities of both self-related and social 

processing.  

Neuroscientists who observe the brain’s resting state, that is, spontaneous activity 

when study participants are not given specific instructions, routinely observe activity in 

the brain’s so-called default mode network which substantially overlaps with neural 

systems related to both self-related and social processing (Mars et al., 2012; Schilbach, 

Eickhoff, Rotarska-Jagiela, Fink, & Vogeley, 2008; Spreng, Mar, & Kim, 2008). These 

data provide a first hint at a default mode that may consider the self and others 
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simultaneously. In further support of this idea, game theorists and economists frequently 

observe social behavior in study participants, even when selfish behavior is more rational 

and explicitly anonymous (Nowak, Page, & Sigmund, 2000) which is inconsistent with a 

purely egocentric default. In line with these findings, psychologists have advocated the 

‘social self’, arguing that a definition of self is itself developed based on the inclusion and 

distinction from social groups and practices (Bretherton, 1991; Brewer, 1991).  

Extending this argument to the realm of information sharing leads to the 

prediction that self-related and social sharing motives occur in parallel and interact with 

one another during narrow- and broadcasting. For instance, even though sharers 

motivated to present themselves in a positive light are labeled as self-focused in the trade-

off account, they likely consider aspects of their audience in order to determine what a 

given individual or group may perceive as a positive characteristic. Similarly, when 

trying to understand others, for instance, to help somebody, information sharers might 

reference their own experiences and preferences (Dunning et al., 2001).  

Some existing data supports this view. For instance, some empirical work has 

shown effects of broadcasts about characteristics of the self on social relationships and 

enhanced relationship management both online and offline (Greene, Derlega, & 

Mathews, 2006; Valkenburg & Peter, 2009). For instance, in one study (Steijn & 

Schouten, 2013) participants were most likely to identify public status updates (i.e. 

broadcasts) as the most common causes for changes in their social relationships (e.g. 

uptake of new relationships or changes in trust), compared to other types of narrow- and 

broadcasting. Similarly, Utz (2015) found a positive relationship between certain 
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characteristics of broadcasted self-disclosures on Facebook and the perceived connection 

to the communicator experienced by message receivers.  

Although these findings call into question whether broadcasting is primarily 

egocentric, they merely speak to the outcomes of sharing, not the motivations driving it in 

different contexts. Addressing motivational underpinnings, other researchers have 

suggested that information sharers use heuristics to engage in social processing by 

making predictions about the preferences and characteristics even of large, ill-defined 

broadcasting audiences (Bernstein, Bakshy, Burke, & Karrer, 2013; Litt, 2012; Marwick 

& boyd, 2011). For instance, in a largest common denominator approach, communicators 

might attempt to identify content believed to be suitable for all possible audience 

members. Alternatively, according to the strongest audience effect, a sharer might focus 

more on a concrete subset of audience members than the entire group (Hogan, 2010; Litt, 

2012; Marder, Joinson, Shankar, & Thirlaway, 2016; Vitak, 2012).  

With regards to narrowcasting, information about the self also remains a 

prominent topic for sharers, even in dyads, the most extreme form of narrowcasting 

(Nguyen et al., 2012). One important way of enhancing the intimacy of a social 

relationship is to disclose increasingly intimate information about the self (Collins & 

Miller, 1994; Jiang, Bazarova, & Hancock, 2011; Kashian, Jang, Shin, Dai, & Walther, 

2017) and this self-disclosure intimacy is both more expected (Bazarova, 2012) and 

practiced (Bazarova & Choi, 2014) in sharing situations that are more private. Privacy, in 

turn, is higher during narrowcasting compared to broadcasting (Bazarova & Choi, 2014). 

In this way, self-disclosure, which requires a self-focus, might help to achieve 
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relationship maintenance goals and might occur more frequently in narrowcasting. This 

stands in contrast to the trade-off hypothesis that narrowcasting is inherently sociocentric, 

and not self-focused. 

Although the parallel-processes account suggests that narrow- and broadcasting 

involve similar types of cognitions, differences are hypothesized in the intensity of both 

types of thought processes. Compared to narrowcasters, broadcasters’ thoughts are 

guided by a more abstract, and loosely defined conception of audience (e.g. the entire 

Facebook network or a general interest group) than when sharing with specific others. 

Cognitions driving broadcasting are thus likely to be based on heuristics such as the ones 

described above rather than person-specific knowledge. As a result, social and self-

related cognitions might be more vivid and intensive during narrowcasting. 

Table 4.1. Hypotheses (H) derived from Trade-Off and Parallel-Processes Accounts of 

Narrow- and Broadcasting 

Trade-Off   Parallel-Processes Data Supports 
H1: Broadcasting 
involves more self-
related, but not more 
social cognitions than 
the control condition. 

vs. H5: Broadcasting 
involves more self-related 
and more social 
cognitions than the 
control condition. 

H5 
Parallel Processes 

H2: Narrowcasting 
involves more social, 
but not more self-
related cognitions than 
the control condition.  

vs. H6: Narrowcasting 
involves more social and 
more self-related 
cognitions than the 
control condition. 

H6 
Parallel Processes 

H3: Narrowcasting 
engages more social 
cognitions than 
broadcasting. 
 
H4: Broadcasting 
engages more self-

vs. 

H7: Self-related and 
social cognitions are 
stronger during 
narrowcasting than during 
broadcasting. 

H3 (Trade-Off and 
Parallel Processes) 

& H7 (Parallel 
Processes) 
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related cognitions than 
narrowcasting. 

 

Measuring Self-Related and Social processes with Neuroimaging 

The hypotheses outlined in Table 4.1 require the measurement of basic 

psychological processes, namely self-related and social processing. This implies several 

measurement issues. First, these broad categories of thought processes may be expressed 

as a number of different motivations depending on the context (Berger, 2014; Cappella et 

al., 2015; Scholz et al., 2017). For instance, self-related processing may manifest as self-

presentational concern or self-enhancement. Social processing might be associated with 

the wish to help somebody or to start a funny, relationship-building conversation. 

Second, each of these motivations might impact sharing within or outside of conscious 

awareness. Third, given the possibility of the co-occurrence and interactions between 

self-related and social processes, sequential, post-hoc measurement might be vulnerable 

to memory bias and introduce unintended order effects. Consequently, well-known 

consequences of self-report measures (e.g. Nisbett & Wilson, 1977; Wilson & Nisbett, 

1978) limit our ability to distinguish between the trade-off and parallel-processes 

accounts of narrow- and broadcasting through this method alone.  

Neuroimaging methods such as functional magnetic resonance imaging (fMRI) 

can provide additional, unique information about sharing decisions that can ultimately 

help to triangulate the underlying mechanisms of sharing (Baek et al., 2017; Meshi et al., 

2015; Scholz et al., 2017; Tamir & Mitchell, 2012). Specifically, fMRI provides an 

estimate of neural activity in real-time and across the entire brain while participants 
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consider sharing content with others. This allows simultaneous measurement of a 

multitude of potential processes as they unfold in an unobtrusive manner. 

We rely on large existing literatures of hundreds of brain mapping studies which 

have identified neural substrates of self-related and social thought. The results of these 

studies are meta-analytically summarized on the open-access database Neurosynth 

(Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). Using this database, we 

identified region of interest (ROI) masks consisting of voxels implicated in self-related 

and social processing. We then analyzed the intensity of neural activity during narrow- 

and broadcasting within each ROI (compared to a control condition and compared to 

each other) as a proxy for the extent to which participants engage in social- and self-

related processing. The self-related processing mask consists of clusters of brain voxels 

located mainly within medial prefrontal cortex (MPFC) and precuneus/posterior cingulate 

cortex (PC/PCC) and thus converges with other meta-analyses of the neural correlates of 

various types of self-related processing (Murray et al., 2012). In addition to clusters 

within ventral and dorsal MPFC, social processing regions include the temporal poles 

bilaterally as well as bilateral temporo-parietal junction (TPJ). These regions conform to 

other large-scale studies of social processing (Dufour et al., 2013). Given the diversity of 

self-related and social tasks that have been found to activate similar underlying neural 

regions, neural activity in these brain areas might constitute the greatest common 

denominator of various specific motivations relevant to sharing (Scholz et al., 2017). 
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Methods 

To distinguish between the trade-off and parallel-processes perspectives (Table 

4.1), we conducted a within-subject experiment in which participants were exposed to 80 

News York Times (NYTimes) articles in different conditions in the Article task while we 

monitored their neural activity using fMRI. We have reported on orthogonal analyses of 

the same neural data elsewhere to understand the neural correlates of individual (authors 

redacted) and population-level sharing (authors redacted), averaging across (and thereby 

ignoring differences between) narrow- and broadcasting situations. Here, for the first 

time, we distinguish between narrow- and broadcasting.  

Article Task 

Inside the fMRI scanner, participants completed two task runs of the Article Task 

which consisted of 40 trials each (Figure 4.1). In the current analysis, we focus on three 

within-subject conditions (20 trials each) in which participants were asked to consider: 

(1) whether to share each article with a specific, close friend via a private Facebook 

message (narrowcasting), (2) whether to use a Facebook status update to post the article 

(broadcasting), or (3) whether a word shown on the screen 

(cancer/age/laws/fitness/science/nutrition/well-being) represented the article’s main topic 

(control condition). In a fourth condition that is not analyzed here, participants decided 

whether they wanted to read the full text of the article after the scan. In an online survey 

prior to scanning, participants identified six Facebook friends who they had interacted 

with recently, and who they thought were interested in the general subject matter of the 

articles used here (physical activity and healthy living). In each narrowcasting trial, 
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participants were asked to consider sharing with one randomly chosen individual from 

this list. The control condition was designed to subtract neural processes associated with 

exposure to the visual stimuli, reading NYTimes articles about health, and being in the 

fMRI experiment environment. Comparing each sharing condition to the control 

condition thus isolates neural activity associated with the specific processes of interest.  

Each trial lasted an average of 14.7 s, excluding fixation periods. The first screen 

informed participants about the trial condition and was visible for 1.5 s. Next, participants 

read the article’s title and abstract, while considering a question corresponding to the 

current condition (e.g. whether to narrowcast the article). Reading speed was controlled 

through additional auditory presentation of the articles by a female voice through MRI 

compatible headphones. The reading screens were presented for 8 (N = 16 trials), 10 (N 

= 40 trials) or 12 (N = 24 trials) seconds, depending on the word count of the text and the 

length of the corresponding audio file. For each participant, article length was 

counterbalanced across task runs and conditions. An, on average, 1.5 s (range 0.5 – 4.7 s) 

fixation period followed the reading screen. Afterwards, depending on the trial condition, 

participants had 3 s to rate their likelihood to narrowcast, broadcast, to read the article’s 

full text, or their certainty that the word presented on the screen represented the article’s 

main topic (control trials). Ratings were made on 5-point Likert-type scales and followed 

by a second fixation period with an average length of 2 s (range 1 - 4.7 s). Optimized 

fixation time distributions were obtained using Optseq2 (Dale, Greve, & Burock, 1999). 

All analyses are based on neural activity extracted from task screens which presented 
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article headlines and abstracts, only. 

 

Figure 4.1. Article sharing task (example trial in broadcasting condition) 

New York Times Article Sample 

The 80 headlines and abstracts used in the Article Task were originally published 

in the health section of the NYTimes website (www.nytimes.com). All articles were 

sampled from a census (excluding certain article categories to preserve homogeneity in 

article format) of articles (N = 760) published between 11 July 2012 and 28 February 

2013 and described in detail by Kim (2015). Inclusion criteria were comparability 

regarding word count and topic. To this end, we conducted a keyword search to identify 

articles that discuss healthy living and exercise. Keywords included: physical activity, 

exercise, running, fitness, swimming, soccer, skiing, food (excluding “Food and Drug 

Administration”), walking, eating, nutrient, nutrition, diet, gluten, calcium, vitamin, 

caffeine, carbohydrates, obesity, cholesterol, and weight. Four irrelevant articles were 

excluded before we sub-selected 80 articles from the resulting sample (N = 139) to meet 
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fMRI time constraints. This final selection was made based on word count comparability 

(range: 21 and 35 words). 

Participants  

Forty-three participants were sampled from respondents of an online survey 

which was part of a project about social influence and information diffusion5. In addition 

to completing this online screening survey, selected participants attended a lab session 

which included a 60-min fMRI scan. Screening criteria included conventional fMRI 

eligibility criteria, namely no history of neurological or psychiatric disorders, being right-

handed, having no metal in their body, no current pregnancy or breast-feeding, and 

currently not taking psychiatric medication or illicit drugs.  

Two participants were excluded from all analyses. One of them was only 

presented with three out of four conditions of the Article Task and the second showed 

poor normalization to the template brain. For four additional participants we only analyze 

a sub-set of trials due to data loss affecting one task run (N = 1), excessive head 

movement affecting one task run (N = 2), and technical issues leading to 23 articles being 

shown to one participant twice. For this latter person, 57 trials represent initial article 

exposures and are thus included in the analyses. The final sample of 41 participants (29 

                                                

5 Note that a larger sample of participants was screened for participation in this study. Forty-
three participants were chosen based on the ego-betweenness centrality of their Facebook networks in 
order to answer a research question that is orthogonal to the analyses discussed here (see the online 
pre-registration document for details; authors redacted, 2015). 
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female) was aged between 18 and 24 (!" = 20.6, SD = 2.1). The Institutional Review 

Board at our institution reviewed and approved all study procedures.  

MRI Image Acquisition 

Thirty-nine participants underwent fMRI scanning using a 3-Tesla Siemens 

Magnetom TrioTim scanner (32-channel head coil). Two participants were scanned using 

a Siemens Prisma 3 Tesla whole-body MRI (64-channel head/neck array). Both scanners 

were operated using identical specifications (described below), except for slice numbers 

acquired for functional T2*-weighted images (54 at the TrioTim and 52 at the Prisma 

scanner) which we took into account during slicetime correction.   

T1-weighted anatomical images were acquired using an MPRAGE 

(magnetization-prepared rapid-acquisition gradient echo) sequence (160 axial slices, slice 

thickness = 1 mm, TI = 1110 ms, FOV = 240 mm, voxel size = 0.9 x 0.9 x 1). A 

structural, in plane, T2-weighted image (176 axial slices, slice thickness = 1 mm, voxel 

size = 1 x 1 x 1) was collected for the purpose of two-stage co-registration. While 

participants completed the Article Task, we collected five-hundred volumes of functional 

images per run using a T2*-weighted reverse spiral sequence (TR = 1.5 s, - 30 degree tilt 

relative to AC-PC line, flip angle = 70°, TE = 25 ms, voxel size = 3 x 3 x 3 mm, slice 

thickness = 3 mm, FOV = 200 mm, multiband acceleration factor = 2, interleaved slice 

order).  
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A Priori Regions of Interest (ROIs) 

Two region of interest (ROI) masks were extracted from the Neurosynth “reverse 

inference”6 meta-analysis tool: a self-related processing ROI based on 903 studies using 

the search term “self”, and a social processing ROI based on 104 studies using the search 

term “mentalizing”. Mentalizing refers to thoughts about others’ mental states (Frith & 

Frith, 2006), a highly relevant type of social processing for information sharing and 

social interactions (Baek et al., 2017; Dietvorst et al., 2009; Falk et al., 2013; Meshi et al., 

2015; Scholz et al., 2017). We further intersected these ROIs to create two additional 

masks representing regions sensitive to self-related, but not social processing and vice 

versa (see Figure 4.2A).  

Imaging Data Analysis 

Statistical Parametric Mapping (SPM8, Wellcome Department of Cognitive 

Neurology, Institute of Neurology, London, UK) was used for all data-preprocessing 

steps described below except those which are explicitly identified as using tools from 

AFNI (R. W. Cox, 1996) or FSL (S. M. Smith et al., 2004). The initial five volumes of 

each functional run were not recorded to allow the BOLD signal to stabilize. AFNI’s 

3dDespike tool was used to despike functional images. Subsequently, FSL sinc 

interpolation was used for slice time correction, before images were realigned spatially to 

the first image in SPM8 and co-registered to structural and functional images in two 

                                                

6 As noted on neurosynth.org: “Reverse inference map: z-scores corresponding to the 
likelihood that a term is used in a study given the presence of reported activation (i.e., 
P(Term|Activation))”, in other words reverse inference maps illustrate brain regions where activation 
is associated with the specified function.  
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stages, each of which was six-parameter affine. Thereby, the in-plane T2-weighted image 

was registered to the mean functional image before the high-resolution T1 image was 

registered to the in-plane image. To select voxels to be included in statistical modeling, 

high-resolution structural images were then segmented into cerebral spinal fluid, white 

and gray matter. These masked structural images were normalized in SPM8 to the skull-

stripped Montreal Neurological Institute (MNI) template available in FSL 

(“MNI152_T1_1mm_brain.nii”). Functional images were finally smoothed using a 

Gaussian kernel (8mm FWHM). For each participant, we modeled functional 

neuroimaging data using fixed effects models within the general linear model in SPM8, 

using SPM’s canonical difference of gammas HRF. Six rigid-body translation and 

rotation parameters derived from spatial realignment were included in first-level models 

as nuisance regressors. Data were further high-pass filtered with a 128 s cutoff. Finally, 

random effects models were implemented in SPM8.  

Neural Model of the Article Task 

We modeled the Article Task using the following boxcar functions: one function 

describing all condition screen periods, four functions describing reading screen periods 

pooled by task condition, eight functions describing each rating screen type separately 

pooled by task condition, a function describing entire trials in which participants failed to 

provide a rating. Fixation periods were pooled into a baseline rest regressor. For the 

participant who was exposed to several articles twice, repeated exposure trials were 

pooled into a separate regressor of no interest. The contrasts of interest for the current 

analysis are: (1) reading screens during narrowcasting vs. control trials, (2) reading 
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screens during broadcasting vs. control trials, and (3) reading screens during 

narrowcasting vs. broadcasting trials.  

On average, reaction times for providing ratings in control trials (!" = 0.94 s, SD 

= 0.26) were significantly slower than reaction times in narrowcasting (!" = 0.74 s, SD = 

0.18, T(40) = 7.09, p < .001) and broadcasting trials (!" = 0.82, SD = 0.23, T(40) = 2.88, 

p = .006). Reaction times in broadcasting trials were further significantly slower than 

those in narrowcasting trials (T(40) = 3.23, p = .002). This may indicate differing 

demands on processing resources. Consequently, a second model was constructed to test 

the robustness of the results. In this model, four additional regressors were added to 

represent reading screen periods for all four task conditions modulated by a parametric 

modulator of reaction time (i.e., allowing us to control for reaction time).  

ROI and Whole Brain Analyses 

Average parameter estimates of neural activity across all voxels were extracted 

for each participant, contrast, and ROI using MarsBaR (Brett et al., 2002). These values 

were then divided by the constant to convert them to percent signal change. One-sample 

t-tests were computed in R to test for significant percent signal change in each contrast (R 

Team, 2015). All tests were two tailed to account for competing hypotheses. As a 

robustness check, we further tested the effects of individual differences in Facebook 

friend counts, and hence size of each participant’s potential broadcast audience, on these 

results by computing bivariate correlations between percent signal change in each of the 

contrasts and each of the regions and friend count. None of these correlations was 

significant. 
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Whole brain analyses combined contrast images using random effects models in 

SPM8. FDR correction at p < .05 assured multiple comparison correction. 

Results 

First, we separately examined the role played by self-related and social processing 

in narrow- and broadcasting by comparing each sharing condition to control. Figure 4.2B 

shows increased activity within both hypothesized self-related and social cognition ROIs 

during both types of sharing relative to control judgments. Parallel results were obtained 

using the self exclusive of social (narrowcasting>control: !" = 0.18, T(40) = 11.81, p < 

.001, broadcasting>control: !" = 0.14, T(40) = 10.73, p < .001) and social exclusive of 

self  (narrowcasting>control: !" = 0.09, T(40) = 6.64, p < .001, broadcasting>control: !" 

= 0.07, T(40) = 5.57, p < .001) ROIs and all results remained highly significant when 

controlling for reaction time. In sum, we find direct overlap between the neural processes 

involved in the two sharing contexts, which is consistent with the parallel-processes (H5 

and 6), but not trade-off perspective (H1 and 2; Table 4.1).  
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Figure 4.2. (A) Regions of interest (ROIs) based on reverse inference maps 

calculated using neurosynth.org. Black: Voxels that are exclusively part of the self-

related processing ROI, White: Voxels that are exclusively part of the social processing 

ROI, Grey: Overlap; Coordinates correspond to the Montreal Neurological Institute 

(MNI) standard space.; (B) Percent signal change in self- and social-processing ROIs for 

the broadcasting (BC) > control (C), and the narrowcasting (NC) > control contrasts.; (C) 

Percent signal change in self- and social processing ROIs for the narrowcasting > 

broadcasting contrast.; Error bars represent 95% confidence intervals; N = 41 

Figure 4.2C shows the results of a one sample, two-sided t-test assessing percent 

signal change during narrow- compared to broadcasting trials. Results show significantly 

stronger activation in both the self-related (!" = 0.05, T(40) = 3.56, p < .001) and social 

cognition (!" = 0.03, T(40) = 2.43, p = .02) ROIs during narrowcasting trials, supporting 

H3 which is implicated in both the trade-off and parallel processes accounts but not trade-
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off H4. In contrast, parallel processes H7 is supported (see Table 4.1). These results are 

replicated in the self exclusive of social (!" = 0.04, T(40) = 3.16, p = .003) and the social 

exclusive of self (!" = 0.02, T(40) = 2.02, p = .05) ROIs and all results remain significant 

in the neural model that controls for reaction time, except the test for percent signal 

change in the social exclusive of self ROI which becomes marginal (!" = 0.02, T(40) = 

1.65, p = .10). Again, our data lend stronger support to an account of differences between 

broad- and narrowcasting that focuses on the intensity of parallel-processes rather than 

the type of process. 

After completing our planned ROI analyses, we conducted exploratory whole-

brain analyses to identify clusters of significant activity outside of the ROI masks 

differentiating narrow- and broadcasting from the control condition, respectively, and 

clusters of significant activity differentiating narrow- from broadcasting (Figure 4.3, 

Table 4.2). Whole brain results show large clusters overlapping with regions within both 

the self-related and social ROIs that are more involved in both narrow- and broadcasting, 

compared to control. In addition, consistent with the finding of longer reaction times 

during the control condition, control trials compared to narrow- and broadcasting trials 

showed stronger involvement in areas such as the dorsolateral prefrontal cortex which is 

thought to be involved in effortful processing, among others. Analyses comparing 

narrow- to broadcasting confirm the heightened intensity of neural activity in regions 

associated with self-related and social processing during narrowcasting which was shown 

in the ROI analyses. In addition, we identified several regions outside of our a priori 
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ROIs which showed heightened activity during broadcasting compared to narrowcasting, 

including the lateral prefrontal cortex and anterior cingulate cortex.  

 

Figure 4.3. Exploratory whole brain results showing voxels positively (warm 

colors) or negatively (cold colors) associated with the following contrasts: (A) 

narrowcasting greater than control, (B) broadcasting greater than control, and (C) 

narrowcasting greater than broadcasting; Whole brain maps are FDR corrected at p < .05. 

Coordinates refer to the Montreal Neurological Institute (MNI) standard space. In each 

sequence, the first slice of the first row is located at x = -52.5, and the first slice of the 

second row at x = 5 (2.5 in panel C).  
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Table 4.2. Whole brain analysis comparing narrow- and broadcasting to the control 

condition, and narrow- to broadcasting 

Regions R/L X Y Z T K 
Narrow- > Broadcasting       
Precuneus R 3 -52 25 7.22 579 
Precuneus R 3 -61 34 7.11  
Ventro-medial prefrontal cortex R 3 59 -8 5.93 943 
Middle medial prefrontal cortex R 6 56 13 4.73  
Dorso-medial prefrontal cortex R 6 53 40 4.19  
Right temporo-parietal junction R 48 -61 43 5.48 195 
Left temporo-parietal junction L -51 -70 40 4.10 52 
Left temporal lobe L -69 -22 -14 4.90 99 
Right temporal lobe R 63 -7 -20 4.38 39 
Narrow- < Broadcasting       

Right temporal lobe R 48 -40 13 5.75 141 
Lateral frontal cortex L -51 8 16 5.26 700 
Lateral frontal cortex L -51 35 7 4.74  
Insula L -30 20 7 4.27  
Lateral frontal cortex R 45 11 13 5.00 267 
Insula R 33 29 10 3.84  
Supplemental motor area R 6 8 58 4.76 514 
Anterior cingulate cortex  R 12 11 43 4.41  
Superior frontal cortex L -24 -10 49 4.14  
Parietal lobe L -18 -61 55 4.67 129 
Supra marginal gyrus L -57 -43 28 3.72  
Parietal lobe R 24 -58 55 4.57 112 
Inferior parietal lobe L -42 -40 40 4.52 292 
Temporal lobe L -51 -46 10 4.49  
Precentral gyrus R 27 -4 55 4.23 52 
Brain stem R 12 -19 -35 4.16 62 
Brain stem M 0 -25 -2 4.09 24 

Note. BA = Brodmann area, R = right, L = Left, M = Medial, K = number of voxels 

within cluster, X, Y, and Z coordinates correspond to the Montreal Neurological Institute 

(MNI) standard brain. Clusters are separated by horizontal lines. The first row within 

each cluster shows the peak voxel. Whole brain maps were FDR corrected at p < .05, K > 

20. All coordinates (except peaks) were chosen to represent cluster extends.  
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Discussion 

Information sharers confronted with an audience of few, well-defined others 

(narrowcasting), or a large, loosely defined crowd (broadcasting) may arrive at their 

sharing decisions through different psychological processes. Research has shown strong 

links between such thought processes underlying sharing decisions and important 

downstream outcomes such as persuasion and virality (Falk & Scholz, 2018). We have 

outlined two competing accounts of psychological antecedents of broad- and 

narrowcasting. The trade-off perspective suggests that, when broadcasting, sharers are 

primarily focused on presenting themselves in a positive light, while smaller, well-

defined audiences in narrowcasting situations demand greater attention and lead to 

greater other-focus (e.g. Barasch & Berger, 2014). The parallel-processes perspective, on 

the other hand, suggests that both self-related and social processing are key to sharing 

with small and large audiences, and that narrow- and broadcasting are differentiated 

instead by the intensity of these processes. We used fMRI to test competing hypotheses 

generated by these two accounts of differences in the psychological drivers of broad- and 

narrowcasting.  

Our data are consistent with a parallel-processes account showing higher activity 

in both brain regions associated with self-related and social cognition when participants 

were considering either narrow- or broadcasting relative to a control condition. In 

addition, neural activity during narrow- and broadcasting differed in intensity, such that 

both processes showed stronger involvement during narrow- compared to broadcasting.  
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These results are consistent with the idea that sharing decisions are made on the 

basis of both social and self-related considerations irrespective of audience size and that 

the two types of thought processes are not necessarily mutually exclusive or negatively 

correlated. Neural activity within self-related and social processing systems in the brain 

might originate in sharers’ considerations of the consequences of sharing for themselves 

and their self-image and for their social interactions and relationships (Scholz et al., 

2017). Holding a positive self-image and social belonging are two central human motives 

which are relevant to behaviors and cognitions across domains (Baumeister & Leary, 

1995; Mezulis et al., 2004) and these core motives are strongly interconnected. For 

instance, psychologists have argued that a person’s self-concept is often defined in terms 

of inclusion and exclusion from certain social groups and practices (Bretherton, 1991; 

Brewer, 1991). In the context of sharing information with others, researchers have 

demonstrated relationships between self-focused actions (e.g., disclosure of self-related 

information) and social motivations and outcomes (e.g., relationship management and 

changes in trust) (Steijn & Schouten, 2013; Utz, 2015). Adding to these insights about 

sharing outcomes, our data suggest that self-related and social sharing motivations tend to 

co-occur during sharing decisions in both narrow- and broadcasting situations.  

Although self-related and social processes both played some role in narrow- and 

broadcasting, both types of neural activity were significantly stronger during narrow- 

compared to broadcasting. This finding further supports the parallel-processes account 

which posits that narrow- and broadcasting are differentiated by the intensity rather than 

the involvement of two parallel-processes. Again, this difference might be due to the 
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affordances of each sharing mode. Small, well-defined narrowcasting audiences might be 

associated with higher certainty regarding the knowledge, opinions or past behavior of 

one’s audience. Increased neural activity during narrowcasting might thus reflect the 

greater tendency to integrate and translate this knowledge into expectations regarding the 

self-related and social consequences of sharing.  

Finally, expanding on both the trade-off and parallel processes accounts, our 

exploratory whole brain analysis identified clusters within lateral prefrontal cortex and 

anterior cingulate cortex which were activated more strongly during broadcasting 

compared to narrowcasting. Similar regions have been implicated in cognitive control, 

effortful processing, and emotion regulation (Buhle et al., 2014, www. neurosynth.org). 

For instance, these areas are active when participants reappraise their reactions to 

emotionally evocative stimuli by imagining that the depicted events are not relevant to 

them or happened a long time ago (i.e. through psychological distancing). In the context 

of broadcasting, these processes might indicate the greater psychological distance 

between broadcasters and their audience which may be due to uncertainty about the 

composition and potential reactions of ill-defined broadcasting audiences (Krämer & 

Haferkamp, 2011; Marwick & boyd, 2011). The cognitive control network is also 

involved in broader effortful processes to adapt and react appropriately in situations 

which are not highly automatized (Wager, Jonides, & Reading, 2004). Thus, another 

possible interpretation is that broadcasting is more effortful or deliberate, possibly 

because shared content is judged and seen by more individuals and sharing might thus be 

perceived as more consequential. Future research aimed at exploring psychological 
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differences between narrow- and broadcasting next to those identified with regards to 

self-related and social processing will complement the theoretical account presented here. 

Additionally, it will be important to understand the effects of differences in 

psychological antecedents of sharing decisions on downstream behaviors. Barasch and 

Berger (2014) found that participants were more likely to share information deemed 

useful to the audience when narrowcasting and more likely to share information which 

made the sharer look good during broadcasting. Prior work shows associations between 

variation in sharing behavior and thought processes measured while sharing decisions are 

being made (Baek et al., 2017; Scholz et al., 2017). To better understand these effects, it 

will be crucial to examine whether differences in the intensity of social and self-related 

processing in narrow- and broadcasters are related to these differences in sharing 

behavior. Next, identifying the source of these motivational differences will be 

informative for interventional approaches. Another relevant future direction concerns the 

effects of communication context on self-related and social processing in narrow- and 

broadcasters. The parallel-processes account does not posit that all instances of narrow- 

and broadcasting are necessarily governed to an equal extent by social and self-related 

considerations. Instead, the relative contributions can vary across contexts (e.g. different 

media).  

Finally, it is important to note inherent limitations of inferences about 

psychological processes based on observations made using fMRI (Poldrack, 2006), for 

instance, because more than one type of process may engage activity in the same brain 

region. In this project, we strengthened these reverse inferences by examining activity in 
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regions in which activity is regularly observed when study participants engage in self-

related and social processing according to consensus across hundreds of neuroimaging 

studies. In addition, the involvement of these specific processes was hypothesized a priori 

based on a strong theoretical background. Finally, the results presented here demonstrate 

shared processes across narrow and broadcasting, regardless of the specific psychological 

labels ascribed to the brain activation. 

In sum, the size of the audience attending to a communicator who is considering 

to share information has specific effects on the psychological processes underlying 

sharing decisions. Our data show that both self-related and social processing occurs when 

communicators consider sharing via narrow- and broadcasting. However, both types of 

processing occur more intensively during narrowcasting. That is, narrow- and 

broadcasting afford different intensities of two processes known to be highly relevant for 

downstream outcomes concerning the diffusion of information such as persuasion and 

virality (Falk & Scholz, 2018).  
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CHAPTER 5: A NEURAL PROPAGATION SYSTEM: NEUROCOGNITIVE AND 

PREFERENCE COUPLING IN INFORMATION SHARERS AND THEIR 

RECEIVERS 

Abstract 

Interpersonal communication shapes and catalyzes the spread of information 

through populations. We propose that propagation between information sharers and 

receivers is driven by neural coupling in brain systems associated with valuation, self-

reflection, and social cognition. To test this hypothesis, we measured neural activity as 

well as content-related preferences in communicators who share information while they 

were exposed to news articles and in receivers exposed to communicator-composed 

messages about the same articles. We observed significant neurocognitive synchrony 

between communicators and receivers within the hypothesized regions of interest, but not 

within other areas of the brain associated with saliency and attention. This effect held 

irrespective of the news article content, sharer, and receiver characteristics, suggesting 

that it is a characteristic of human communication rather than a by-product of the 

situation. Next, we tested whether the observed coupling could be explained by exposure 

to shared content; Here, we observed coupling only for communication partners, not 

randomly paired individuals who were exposed to the same content without interacting, 

suggesting that neurocognitive coupling is driven by the interpersonal communication 

instead. Finally, the extent of neurocognitive coupling covaried with the successful 

propagation of content-related preferences. Together, our findings suggest that sharer-

receiver coupling, especially in a neural propagation system consisting of regions 
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associated with valuation, self-reflection, and social cognition, supports the interpersonal 

transmission of information and preferences across contexts. These findings highlight not 

only core neurocognitive processes relevant to social influence and the spread of ideas, 

but also more fundamental elements of human communication. 

Introduction 

Interpersonal communication shapes and catalyzes the spread of information 

through populations as is evident across multiple fields including the work on the 

diffusion of innovations, word of mouth, and interactions between mass and interpersonal 

communication (Berger, 2014; Cappella et al., 2015; Katz & Lazarsfeld, 1955; Rogers, 

2003; Southwell & Yzer, 2007). What happens in the minds of communicators who share 

information with others and their receivers that facilitates this type of propagation? 

Beyond the processes that unfold in either party alone, we argue that successful 

propagation may be facilitated by synchronized or coupled activity across biological and 

behavioral systems (Mogan et al., 2017), including certain brain regions (Stephens et al., 

2010). More specifically, given strong evidence of their involvement in both the 

processes that facilitate sharing decisions and persuasiveness in communicators (Baek et 

al., 2017; Falk et al., 2013; Scholz et al., 2017) and susceptibility to social influence in 

receivers (Cascio, Scholz, et al., 2015), we propose that brain regions associated with 

subjective valuation, self-reflection, and social cognition are central elements of this 

neural propagation system. The successful spread of information can bring 

communicators’ and receivers’ views and preferences into alignment (Falk et al., 2013). 

Here, we use neuroimaging to test whether coupling of brain activity within specific 
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regions of interest also supports the transmission of information from communicators to 

receivers. 

Information Propagation through Neurocognitive Sharer-Receiver Coupling  

What is the meaning of sharer-receiver coupling? Research has revealed that 

activity across various biological and behavioral systems couples or synchronizes 

between interaction partners who engage in interpersonal communication. Coupling 

between human communicators has been identified in multiple domains, including 

linguistic patterns exhibited by communicators and their receivers (Branigan et al., 2000; 

Gonzales et al., 2009; Niederhoffer & Pennebaker, 2002), nonverbal cues (Cappella, 

1996; Giles & Smith, 1979; Richardson & Dale, 2005), and brain activity related to the 

production and decoding of information (Hasson et al., 2012; Stephens et al., 2010). 

Further, both verbal and nonverbal synchrony of communication partners is 

advantageous, for instance in the context of learning processes, social relationships, 

attachment, and mutual understanding (Burgoon et al., 2007; Cappella, 1996, 1997b; 

Mogan et al., 2017; Semin, 2007). Relatedly, large bodies of research have shown that 

mirroring others is one of the ways in which people learn and behaviors spread (Bandura, 

1986, 2001).  

Here, we argue that this natural communicator-receiver coupling during 

interpersonal communication facilitates successful information propagation as well. 

Specifically, self-related, social, and value-related considerations are central drivers of 

both sharing decisions and persuasiveness in communicators (Baek et al., 2017; Falk et 

al., 2013; Scholz et al., 2017) and susceptibility to persuasion and influence in receivers 
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(Cascio, Scholz, et al., 2015). We argue that successful transmission of information, that 

is correspondence in the content-related preferences of communicators and receiver, is 

driven by communicator-receiver coupling during interpersonal communication. More 

specifically, coupled neural activity in regions associated with self-reflection, social 

cognition, and valuation may be particularly important in the facilitation of information 

propagation.  

Components of the Neural Propagation System 

Brain structures associated with self-reflection, social cognition, and valuation 

may be central elements of a neural system that supports information propagation 

between communicators and receivers. Each of these processes has been shown to be 

involved when communicators share information with others and when receivers are 

exposed to the shared information (Falk & Scholz, 2018).  

Valuation, or the extent to which individuals value objects and concepts across a 

large variety of domains (from food, to money, to social encounters) covaries robustly 

with activity in the ventral striatum (VS) and ventro-medial prefrontal cortex (VMPFC) 

(Bartra et al., 2013). Recent work linked activity in the brain’s valuation system to the 

intention of individuals to share a message with others (Baek et al., 2017) and large-scale 

sharing behavior (Scholz, Baek, O’Donnell, Kim, et al., 2016). In the context of sharing, 

value-related neural activity might encode the perceived value of the act of sharing a 

piece of information with others (Scholz, Baek, O’Donnell, Kim, et al., 2016). In prior 

work, the extent to which sharers showed VS activity during initial information exposure 

predicted their success in communicating the content to a receiver (Falk et al., 2013). The 
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act of sharing information itself might be a rewarding experience (Tamir et al., 2015). 

Next to these communicator-centered results, neural valuation signals in the VS and 

VMPFC co-vary with the susceptibility of receivers to influence by communicators 

(Cascio, Scholz, et al., 2015). Thus, the brain’s value system is implicated in both 

successful sharing and receiving information. We argue that similarities in neural content 

valuation in communicators and receivers might originate in the propagation of key 

cognitions from communicators to receivers via neurocognitive coupling in the brain’s 

value system during interpersonal communication.  

Prior theorizing and empirical evidence (Baek et al., 2017; Berger, 2014; Falk & 

Scholz, 2018; Scholz et al., 2017) suggests that communicators consider the 

consequences of information propagation for their self-image and social relationships to 

determine the value of sharing a piece of information. If there is communicator-receiver 

synchrony in content valuation, communicators may also propagate self-related and 

social cognitions as contextualizing information and, thereby, further facilitate the 

propagation of information.  

Brain regions most commonly involved in self-reflection include medial 

prefrontal cortex (MPFC) and posterior cingulate cortex (PCC) (Murray et al., 2012), and 

the brain’s social cognition system encompasses clusters within bilateral temporo-parietal 

junction (TPJ), right superior temporal lobe, PCC, and MPFC (Dufour et al., 2013). 

Paralleling results in the valuation system, neural signatures of self-reflection and social 

cognition play a role in both sharing and receiving information. Activity in MPFC and 

PCC during initial information exposure (Falk et al., 2013), as well as neural signatures 



 109 

representing the entire self-reflection and social cognition systems (Baek et al., 2017) 

have been linked to sharing intentions, and large-scale sharing behavior (Scholz, Baek, 

O’Donnell, Kim, et al., 2016). MPFC activity is associated with being persuaded in 

information receivers (Chua et al., 2009; Cooper et al., 2015; Falk et al., 2010). Further, 

activity in TPJ, a key component of the social cognition system, is associated with 

increased success in communicating ideas with others (Falk et al., 2013) and with being 

influenced information shared by peers (Cascio, O’Donnell, et al., 2015). Extending this 

work, we suggest that sharer-receiver synchrony in brain systems of self-reflection and 

social cognition facilitates successful information propagation, and may constitute a 

missing link between research focused exclusively on communicators or receivers, 

respectively.  

Alternative Hypotheses 

We hypothesize that neural communicator-receiver synchrony is a natural 

characteristic of communication, and indicates the transmission of neural signals 

associated with valuation, self-reflection, and social cognition between communicators 

and their receivers. This process may facilitate information propagation. However, 

alternative explanations exist for each of these claims.  

Although communicator-receiver coupling of activity within hypothesized brain 

regions may be evidence for a specialized neural propagation system, it is possible that 

coupling extends across a broader neural network. For instance, neural synchrony might 

represent general situational attention or saliency that is propagated from sharers to 

receivers, rather than more specific cognitions of the type we hypothesize. If so, sharer-



 110 

receiver synchrony would be expected in neural systems encoding these kinds of 

processes instead of or in addition to synchrony in the hypothesized neural propagation 

system. Consequently, here we not only examine synchrony in key hypothesized brain 

regions, but also within areas encoding attention and saliency, namely the ventral and 

dorsal attention networks and the saliency system (Power et al., 2011) 

Second, it is possible that neurocognitive synchrony is a function of the 

communication context rather than a characteristic of communication itself. That is, 

synchrony during interpersonal communication might be fully explained by the 

persuasiveness of sharers, the susceptibility of receivers to influence, or the quality of 

shared content. Prior work has focused on each of these communication context variables 

individually and demonstrated variation of propagation success across characteristics of 

sharers, receivers, as well as content. Specifically, in one study, the success of 

propagating sharer’s preferences about TV show ideas was associated with the extent to 

which sharers showed neural activity in the TPJ, a region often implicated in social 

cognition, while they were first exposed to the shared contents (Falk et al., 2013). That is, 

communicators might differ in their ability to create communicator-receiver synchrony 

between content-related preferences (i.e. successful propagation). Demonstrating similar 

results for receivers, other work found that those participants who showed more TPJ 

activity when receiving the information that others’ preferences differed from their own, 

were more likely to synchronize their preferences with those of their peers (Cascio, 

O’Donnell, et al., 2015). Finally, it is well documented that different pieces of content 

can vary substantially in their popularity and the extent to which they are propagated 



 111 

through social interactions (Cappella et al., 2015; Kim, 2015). To test the hypothesis that 

communicator-receiver synchrony is solely a function of communication context 

variables, we will control for variation in synchrony attributable to communicators, 

receivers, and shared content, to observe whether there is an effect of synchrony on 

information propagation success above and beyond these component parts.  

Third, sharers and receivers are often exposed to partially identical content, 

especially in online environments. For instance, instant messenger services often display 

content previews when a hyperlink is shared together with a personal message composed 

by the communicator. Exposure to identical content such as movies (Hasson, Malach, & 

Heeger, 2010), TV shows and advertisements (Dmochowski et al., 2014; Imhof, 

Schmälzle, Renner, & Schupp, 2017), and political speeches (Schmälzle, Häcker, Honey, 

& Hasson, 2015), can lead to cognitive synchrony among audience members. However, 

this type of synchrony does not capture aspects of human interaction and can, in fact, 

exist in its absence. Here, we examine the possibility that synchrony is due to exposure to 

partially identical content (hereinafter called exposure effects) by comparing situations in 

which communicators and receivers are exposed to identical content and interact, and 

situations with partially identical content but without interaction. 

The Current Study 

In sum, we argue that synchrony in a neural propagation system involved in 

valuation, self-reflection, and social cognition parsimoniously connects separate 

literatures on propagation from the perspectives of communicators and receivers, and on 

synchrony in interpersonal communication encounters. We experimentally initiated 



 112 

online interactions between two groups of study participants (called “communicators” 

and “receivers”). Communicators retransmitted news articles via Facebook to assigned 

receivers. Results show that neurocognitive coupling selectively occurs in neural regions 

hypothesized to be part of the neural propagation system and that the strength of this 

synchrony is related to successful information propagation, expressed as coupling in 

content preferences.  

Methods 

Two groups of participants (“communicators” and “receivers”) formed two-step 

propagation chains (Figure 5.1). Communicators were exposed to headlines and abstracts 

of New York Times health news articles while performing the Article Task (described 

below) while we measured their brain activity using functional magnetic resonance 

imaging (fMRI). After seeing each article, communicators indicated their intentions to 

share the content with others. After the scan, sharers completed a Writing Task 

(described below) in which they composed short messages about the articles and further 

rated each article on the extent to which they perceived sharing it to be beneficial. 

Receivers were exposed to original article headlines and messages written about each 

article by assigned sharers while performing a variant of the Article Task inside the fMRI 

scanner. Receivers further provided sharing intention and perceived benefit ratings 

paralleling those collected from sharers. All study procedures were approved by the IRB 

at the University of Pennsylvania. 
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Figure 5.1. Study Design 

Communicators 

Forty-three “communicators” (!"#$% = 20.58, -.#$% = 2.13, 30 females) were 

selected from a larger sample of respondents to an online screening survey and invited to 

complete a three-hour study appointment including a 60-minute fMRI session. Eligibility 

requirements included standard fMRI safety criteria, namely having no metal in one’s 

body, no history of psychiatric or neurological disorders, no current pregnancy, breast-

feeding, or consumption of psychiatric or illicit drugs. All participants were right-handed. 

For purposes, orthogonal to the current investigation, respondents were further screened 

to be high or low in ego-betweenness centrality within their social networks.  

Neural data was missing partially7 (N=4) or completely8 (N = 2) for some 

communicators, resulting in a final sample size of 41. Further, due to technical 

                                                

7 Partial data loss was due to missing data for one run of the fMRI task (N = 1), 
excessive head motion in one run of the fMRI task (N = 2), and errors in stimuli 
presentation (N = 1). 

8 One participant saw only three out of the four conditions during the Article 
Task, and one participant showed poor normalization to the template brain. 
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difficulties, sharing intention and benefit ratings (described below) were available for 33 

and 34 sharers, respectively.  

Receivers 

A second group of 40 receivers (!"#$% = 20.9, -.#$% = 2.05, 28 females) were 

chosen using the same screening criteria and the same respondent pool utilized to select 

communicators. Communicators were excluded from participation as receivers. Receivers 

then completed a study appointment including an fMRI scan.  

Neural data was partially excluded for one participant and completely discarded 

for a second9, resulting in a final sample of 39 receivers. Additionally, technical 

difficulties led to reduced sample sizes for the analysis of sharing benefit preferences (N 

= 34). 

New York Times Articles 

Headlines and abstracts of 80 New York Times health news articles were 

propagated between communicators and receivers. The articles were sampled from a 

census of articles (excluding certain article categories to ensure homogeneity format, see 

(Kim, 2015) for details; N = 760) published online between 11 July 2012 and 28 

February 2013 (7 ½ months).  

Eighty articles were chosen maximizing comparability in subject matter (healthy 

living and physical activity), and length (title and abstract word count). A keyword search 

on the full set of articles included the following terms: exercise, fitness, physical activity, 

                                                

9 Exclusions were due to excess head movement, which affected the entire fMRI 
task for one participants, and one run for a second. 
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running, swimming, skiing, soccer, walking, food (excluding “Food and Drug 

Administration”), eating, nutrition, nutrient, diet, vitamin, calcium, carbohydrates, gluten, 

caffeine, cholesterol, obesity, and weight. This procedure retrieved 143 articles, of which 

four were removed because the topic was judged irrelevant. Finally, 80 articles of 

comparable lengths (word count M = 29.43, SD = 3.87; Range = 21 to 35) were selected 

to adhere to time restrictions during the fMRI scan.   

Neural Regions of Interest 

We relied on meta-analyses and large-scale studies in social neuroscience and 

neuroeconomics to define brain regions of interest (ROIs) related to valuation, self-

reflection, and social cognition (Figure 5.2A) which were used to operationalize neural 

activity within the hypothesized neural propagation system. Specifically, the neural 

valuation system includes clusters in VS and VMPFC derived from a large meta-analysis 

of studies in neuroeconomics (Bartra et al., 2013). The self-related processing ROI 

consists of regions within MPFC and PCC, which are commonly activated by self-

reflection (e.g. about one’s personality characteristics; Falk et al., 2016). Finally, the 

social cognition ROI includes clusters in ventral, middle and dorsal MPFC, PCC, 

bilateral TPJ, and right STS, which are often activated when participants consider the 

thoughts and mental states of others (called mentalizing; Dufour et al., 2013).  

In addition, we selected neural regions implicated in attention and saliency 

(Figure 5.2B), using a large atlas of 264 brain regions which describe the functional 

organization of the human brain in healthy adults (Power et al., 2011). Specifically, we 

defined 8 mm spheres around the nine coordinates that are part of the ventral attention 
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network, eleven coordinates of the dorsal attention network, and 18 coordinates of the 

salience network. All sub-clusters within the same neural system were combined into a 

single mask, representing the system as a whole.  

 

Figure 5.2. Regions of Interest A) Proposed neural propagation system, B) 

Attention and salience systems, coordinates indicate slice locations within the Montreal 

Neurological Institute (MNI) space 
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Article Task - Communicators 

During the fMRI session, communicators were exposed to the original headlines 

and abstracts of the 80 articles10 described above in four conditions (Figure 5.3A) which 

are described in detail elsewhere (Baek et al., 2017). In this analysis, we focused on data 

extracted from 40 trials, in which participants viewed article headlines and abstracts with 

the goal of deciding whether to share the article via private Facebook messages 

(narrowcasting condition) or by posting them on their Facebook wall (broadcasting 

condition). For the purpose of the analyses presented here, trials from these two sharing 

conditions are combined. After viewing each article, participants used a 5-point Likert-

type scale to indicate their sharing intentions.  

Writing Task - Communicators 

Communicators completed the Writing Task after the fMRI scan. For each article 

shown in one of the two sharing conditions during the Article Task, they were asked to 

compose a short message which they might use to share the content on Facebook.  

All messages were required to be at least 140 characters long. Before sharer-

composed messages were propagated to receivers, we removed excessively used 

characters which some participants utilized as space fillers (e.g. a large number of dots). 

The final messages seen by receivers consisted of, on average, 130.7 characters (SD = 

34.2). 

                                                

10 To control for reading speed, headlines and abstracts were also presented in 
auditory format through scanner-compatible headphones while the text was presented on 
the screen. 
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Article Task - Receivers 

Receivers completed a modified version of the Article Task which consisted of 42 

trials due to time restrictions during the fMRI scan (Figure 5.3B). Each article’s original 

headline was presented together with a description of the article and participants were 

instructed to read the text on the screen. Participants saw two types of article descriptions 

including either the original headline and abstract that was also seen by communicators 

(14 trials), or the original article headline and a message written by an assigned 

communicator during the Writing Task (28 trials). The analyses presented here focus on 

the latter propagation condition.  

After seeing each article headline and description, receivers rated (a) their 

likelihood to share the article on their Facebook wall, and (b) their likelihood to share the 

article via a private Facebook message to one friend on 5-point Likert-Type scales (which 

paralleled those used in the narrowcasting and broadcasting conditions completed by 

sharers.  
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Figure 5.3. Article Task. Succession of screens seen for each trial by sharers (A) 

and receivers (B). Red frames indicate trial periods used for the analysis of cognitive 

synchrony. For sharers, article abstracts were categorized in three groups varying by the 

length of the text. Consequently, the reading screen was presented for 8 (N = 16), 10 (N = 

40) or 12 (N = 24) seconds (counterbalanced across conditions). Trials for both sharers 

and receivers were separated by a randomly jittered inter-trial interval of an average of 2 

seconds (range 1 - 4.7 seconds) for sharers and 2.9 seconds (range 0.5 – 11.5) for 

receivers. 
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Perceived Benefits of Sharing 

After the fMRI scans, communicators and receivers provided a second type of 

preference rating regarding the articles seen in the Article Task. For each article, 

participants rated the extent to which they perceived the act of sharing the article in 

question to be beneficial on 7-point Likert-Type scales. Average sharing benefit ratings 

in sharers (M = 3.83, SD = 1.99) were slightly lower than those in receivers (M = 4.38, 

SD = 1.88). 

Preference and Neurocognitive Coupling 

To estimate preference coupling (i.e. successful propagation) and neurocognitive 

coupling between communicators and receivers, we regressed each measure collected in 

receivers on the corresponding variable assessed in assigned communicators within each 

communication dyad. Preference coupling was operationalized as communicator-receiver 

correspondence in sharing intention and sharing benefit ratings. With regards to sharing 

intention ratings, communicators provided one rating (either intention to broadcast or to 

narrowcast) for 40 articles. Receivers provided both narrow- and broadcasting ratings for 

all 42 articles shown to them. Intention coupling analyses considered all available trials 

(both from narrow- and broadcasting conditions). That is, we include whichever rating 

was provided for a given article by the communicator (M = 2.20, SD = 1.52), and an 

average rating across the narrow- and broadcasting rating provided for the same article by 
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the receiver (M = 2.30, SD = 1.34)11. Neurocognitive coupling was assessed by regressing 

percent signal change in each brain region of interest in receivers on percent signal 

change in the same brain region in communicators. 

Assigned Communicator-Receiver Communication Dyads 

Specific communicators were systematically assigned to interact with specific 

receivers through the content and messages they shared during the Article Task (Figure 

5.4). These assigned dyads were used to study communicator-receiver coupling as a 

result of interpersonal communication. Each receiver was exposed to messages from two 

pseudo-randomly assigned communicators, so that each pair of communicators was 

assigned to approximately the same number of receivers12. In the Article Task for 

communicators, articles were pseudo-randomly assigned to conditions so that a pair of 

communicators was exposed to an opposite set of 40 articles in the sharing (narrow- and 

broadcasting) and non-sharing (not analyzed here) conditions, respectively. This ensured 

a full set 80 articles shown in a sharing condition to the pair of communicators from 

which articles could be selected to be propagated to receivers. For each communicator, 

                                                

11 Note that both communicator’s and receivers’ sharing intention ratings were 
strongly left-skewed. Consequently, results obtained from statistical tests including these 
variables need to be interpreted with caution. 

12 There were 17 usable groupings of two communicators, eleven of which were 
assigned to two receivers each, and six of which were assigned to three receivers. For the 
purpose of analyses orthogonal to the results presented here, each communicator pair 
consisted of a communicator whose social network showed high ego-betweenness 
centrality and a communicator with low ego-betweenness centrality. Communicator ego-
betweenness centrality was counterbalanced across conditions. 
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14 propagated messages from the post-scan Writing Task were pseudo-randomly chosen 

to be shown to an assigned receiver.  

Random Communicator-Receiver Dyads 

To test the alternative hypothesis that coupling between communicators and 

receivers is due to the fact that both members of a propagation chain saw partly identical 

content (namely headlines; ‘exposure effects’) rather than the propagation of relevant 

cognitions, we created random communicator-receiver dyads who did not communicate 

with one another but were exposed to identical article headlines (Figure 5.4). For each 

trial and each receiver, we randomly chose an individual out of a list of communicators 

who (a) were not paired with this particular receiver for the propagation of any articles in 

an assigned communicator-receiver dyad, and (b) saw the same article in question in a 

sharing condition. That is neural activity in the randomly chosen communicator was 

collected in a situation identical to that experienced by the communicator who was 

originally assigned to the receiver in question. Both randomly assigned sharers and 

receivers were exposed to partially similar content (namely, the same headline), but did 

not communicate with one another through a Facebook message.  
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Figure 5.4. Assigned and random communicator-receiver dyads 

fMRI Data Acquisition - Communicators 

Neuroimaging data from 40 communicators were collected using a 3-Tesla 

Siemens Magnetom TimTrio scanner and a 32 channel head coil. One communicator was 

scanned using a Siemens Prisma 3 Tesla whole-body MRI with a 64-channel head/neck 

array for one sharer. Identical specifications where used on both scanners.  

We captured neural activity during two runs of the Article Task (500 volumes 

each) using a T2*-weighted image sequence (TR = 1.5 s, TE = 25 ms, flip angle = 70°, - 

30 degree tilt relative to AC-PC line, 54 slices, FOV = 200 mm, slice thickness = 3mm, 

multiband acceleration factor = 2, voxel size = 3 x 3 x 3 mm). High resolution T1-

weighted anatomical images were collected using an MPRAGE sequence (TI = 1110 ms, 

160 axial slices, voxel size = 0.9 x 0.9 x 1). Finally, we collected an in plane, structural, 

T2-weighted image (slice thickness = 1 mm, 176 axial slices, voxel size = 1 x 1 x 1) to 

implement a two-stage co-registration procedure between functional and anatomical 

images.  
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fMRI Data Acquisition - Receivers 

Neuroimaging data from 33 receivers were collected using a 3-Tesla Siemens 

Magnetom TimTrio scanner equipped with a 32 channel head coil. The other six 

participants were scanned on a Siemens Prisma 3 Tesla whole-body MRI with a 64-

channel head/neck array. Receivers completed two runs of the Article Task (311 volumes 

each). All other MRI acquisition parameters were identical to those described for 

communicators.  

Imaging Data Pre-Processing 

For the analysis of data from both communicators and receivers, we used 

Statistical Parametric Mapping (SPM8, Wellcome Department of Cognitive Neurology, 

Institute of Neurology, London, UK), incorporating tools from AFNI (R. W. Cox, 1996) 

and FSL (S. M. Smith et al., 2004) during data pre-processing. The first 5 volumes of 

each run were not collected to allow for stabilization of the BOLD signal. The 3dDespike 

program as implemented in the AFNI toolbox was used to despike functional images. We 

then performed slice time correction using sinc interpolation in FSL. Subsequently, data 

were spatially realigned to the first image, and co-registered to functional and structural 

images using two six-parameter affine stages. First, mean functional images were 

registered to in-plane T2-weighted images. Next, high-resolution T1 images were 

registered to the in-plane image (total of 12 parameter affine). After co-registration, high-

resolution structural images were segmented into gray matter, white matter and cerebral 

spinal fluid to create a brain mask used to determine voxels to be included in first- and 

second-level models. The masked structural images were then normalized to the skull-
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stripped MNI template provided by FSL (“MNI152_T1_1mm_brain.nii”). Finally, 

functional images were smoothed using a Gaussian kernel (8mm FWHM). The fMRI 

data were modeled for each participant using fixed effects models within the general 

linear model as implemented in SPM8, using SPM’s canonical difference of gammas 

HRF. The six rigid-body translation and rotation parameters derived from spatial 

realignment were also included as nuisance regressors in all first-level models. Data were 

high-pass filtered with a cutoff of 128 seconds. Random effects models that aggregate 

across participants for the Article Task were also implemented in SPM8.  

fMRI Data Analysis - Communicators 

We took an item-wise approach to modeling the Article Task (Figure 5.3A) using 

procedures similar to those employed elsewhere (Falk et al., 2012, 2016). Specifically, 

using a single boxcar function for each trial (i.e. each of the 80 articles), encompassing 

the 8-12 seconds reading screen of the task, we extracted neural activity in each of the 

ROIs during each trial as compared to baseline rest. Activity related to all cue and all 

rating screens was pooled into a separate regressor of no interest each. In addition, the 

model for one participant who accidentally saw several articles twice included an 

additional regressor of no interest for each second occurrence of an article. Fixation 

periods were pooled into a baseline rest regressor. Only data extracted from the 40 

sharing trials completed by each participant were utilized in the analyses described 

below. 
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fMRI Data Analysis - Receivers 

To analyze neural data collected while receivers completed the Article Task 

(Figure 5.3B), we used methods parallel to those applied to data obtained from 

communicators to yield comparable models. Specifically, using a single boxcar function 

for each of the 42 trials per participant, encompassing the 10 seconds reading screen of 

the task, we extracted neural activity observed during each trial as compared to baseline 

rest. A regressor of no interest was included for each of the two rating screens. Fixation 

periods were pooled into a baseline rest regressor. Only data from the 28 propagation 

trials were used in the analyses described below. 

Analysis Steps 

First, to identify optimal model structures for the estimation of the various types 

of cognitive and preference coupling, we fit a series of cross-classified mixed effects 

models. Specifically, a first set of models ('full models') estimated coupling effects and 

included random effect terms to allow intercepts and slopes to vary by sharers, receivers, 

and articles. Using Akaike and Bayesian Information Criteria (AIC, BIC) as well as log-

likelihood ratio tests we compared these models to a second set of 'reduced models' 

which omitted the three random slopes. For the purpose of model comparisons, all 

models were fit using maximum likelihood (ML) estimation. When full models showed 

improved model fit compared to a reduced version of the model we further investigated 

which of the three random slope terms contributed to model fit by adding them 

individually to the reduced model and repeating the model comparison step. Each random 

slope which contributed to model fit was retained in the final models.  
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Second, we re-estimated the final models identified in step one using restricted 

maximum likelihood estimation (REML) to obtain unbiased estimates of the standard 

errors for each of the cognitive and preference synchrony effects.  

Third, for the models that showed significant neurocognitive coupling effects in 

step 2, we tested whether there was a relationship between the extent of neurocognitive 

coupling and communicator-receiver preference coupling. To this end, we fit a set of 

models using REML, each specifying one of the cognitive or preference coupling effects 

in question and allowing for variation of intercepts across individual communicators, 

receivers, and articles. In addition, these models allowed the slopes of each coupling 

effect to vary across articles. We then used the random slope estimates from each of the 

cognitive coupling models and correlated them with each of the random slope estimate 

vectors for preference coupling effects to assess relationships between the extent of 

cognitive and preference coupling between communicators and receivers across articles. 

 Fourth, we tested the alternative hypothesis that significant coupling effects 

identified in step two might represent exposure effects rather than propagation between 

communicators and receivers. Specifically, we compared 'reduced' models used in step 

one fit to data from assigned communicators-receiver dyads to identical models fit to data 

from random dyads (who did not communicate with one another) using REML. These 

models did not include random slopes and thus did not control for coupling variation 

across communication context. This results in a broad definition of coupling and, thus, a 

strong test of differences between random and assigned dyads in several potential types 

of coupling. We obtained 1,000 bootstrapped estimates for cognitive and preference 
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coupling effects in random communicator-receiver dyads. Subsequently, we computed 

mean estimates of coupling effects as well as standard deviations, T-values, degrees of 

freedom and p-values. We then compared coupling estimates derived from random dyads 

to those derived from corresponding assigned dyads by applying EQ 1 to obtain T-values 

and EQ 2 to obtain corresponding degrees of freedom. 

EQ 1:	3 = 	 (56778$9%: − 5<69:=>)/ABC6778$9%:D + BC<69:=>
D   

, where bassigned and brandom are the estimates of coupling in assigned and random 

communicator-receiver dyads, respectively, and seassigned and serandom are the standard error 

of these estimates. 

EQ 2: .F =
(7%GHHIJKLM

N O7%PGKMQR
N )N

HLGHHIJKLM
S

MTGHHIJKLM
	O
HLPGKMQR
S

MTPGKMQR

 

, where seassigned and serandom are the standard errors, and dfassigned and dfrandom are 

the degrees of freedom of the coupling estimates in assigned and random communicator-

receiver dyads, respectively. In addition, we provide the percentage of random models in 

which estimated synchrony effects are larger than in assigned communicator-receiver 

dyads.  

Results 

Model Construction 

First, we tested whether allowing the slope of each cognitive and preference 

synchrony effect to vary across communicators, receivers, and articles improved model 

fit compared to models without random slopes. As shown in Table 5.1, most models did 

not show improved model fit after inclusion of all three varying slopes with the exception 
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of models estimating coupling in the brain's social cognition, ventral attention, and 

salience networks.  

Table 5.1. Model comparison of “full” models including random slopes for coupling 

effects across articles, individual sharers and receivers, and “reduced” models without 

random slopes 

Model AICfull AICreduced BICfull BICreduced Log-Likelihood 
Ratio Test (c2, p) 

Neurocognitive Coupling 
Subjective value 986.1 982.1 1045.7 1012.0 8.113, .230 
Self-reflection 1058.8 1050.1 1118.4 1079.8 3.227, .780 

Social Cognition 852.0 854.9 911.6 884.7 14.88, .021 
Dorsal Attention 706.5 703.9 766.1 733.7 9.432, .157 

Ventral 
Attention 

727.6 752.4 787.2 782.2 36.803, <.0001 

Salience 742.8 745.3 802.4 775.1 14.485, .025 
Preference Coupling 

Sharing intention 2943.5 2937.7 3003.0 2967.4 6.195, .402 
Sharing Benefits 3469.1 3461.9 3527.4 3491.1 4.854, .563 

Note: Models were estimated using full maximum likelihood estimation to 

facilitate model comparison.; AIC = Akaike information criterion, BIC = Bayesian 

information criterion, degrees of freedom for all log-likelihood ratio tests = 6 

Examination of the contribution of individual random slope terms showed that the 

fit of the social cognition coupling model was significantly improved by allowing the 

coupling effect to vary across articles only (c2 (2) = 9.654, p < .01). Model fit for 

coupling in the ventral attention network was improved by both a random slope for 

individual receivers (c2 (2) = 11.847, p < .01) and articles (c2 (2) = 26.296, p < .0001). 

Finally, the model estimating cognitive salience coupling was improved by a random 

slope across articles (c2 (2) = 10.146, p < .01).  
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Significant Neurocognitive and Preference Coupling in Assigned Communicator-

Receiver Dyads 

Table 5.2 presents estimates for both neurocognitive and preference coupling 

derived from the final, preferred models developed in the model construction step, 

described above. First, we tested whether there was significant communicator-receiver 

coupling in neural activity within ROIs hypothesized to be part of the neural propagation 

system. Indeed, neural activity in regions associated with value-related processing, self-

reflection, and social cognition in communicators was significantly related to neural 

activity in the same regions in receivers with whom they communicated. In contrast, we 

did not find significant cognitive coupling in any of our attention or salience ROIs, which 

where thus dropped from further analysis. Additionally, the examination of preference 

coupling showed significant correspondence between ratings of sharing intentions and 

benefits provided by assigned communicators and receivers. In sum, we found significant 

communicator-receiver coupling in areas within the hypothesized neural propagation 

system, but not in regions associated with attention and salience. Further, hypothesized 

coupling effects in ROIs related to valuation, self-reflection and social cognition held 

over and above variance explained by communication context variables (i.e., differences 

between sharers, receivers, and articles), which were represented by random slopes and 

intercepts in our models.  
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Table 5.2. Fixed effects of neurocognitive and preference coupling estimates for assigned 

communicator-receiver dyads 

Model B SE T (df), p 
Neurocognitive Coupling 

Subjective Valuation 0.074     0.035 2.096 (677.5), .037 
Social Cognition 0.105     0.046 2.265 (69.1), .027 

Self-Reflection 0.094    0.034 2.731 (648.6), .007 
Ventral Attention 0.079 0.059 1.349 (76.1), .181 
Dorsal Attention 0.002 0.039 0.066 (526.6), .947 

Salience 0.034 0.048 0.715 (60.63), .477 
Preference Coupling 

Sharing Intention 0.070 0.021 3.393 (855.3), .001 

Sharing benefits 0.074 0.029 2.584 (532.7), .01 

Note: Estimates were obtained using restricted maximum likelihood estimation; B = 

unstandardized effect estimate, SE = standard error, df = degrees of freedom  

Relationship between Neural and Preference Coupling 

Next, we tested whether the extent of neural coupling was related to 

correspondence between communicators’ and receivers’ self-reported preferences. 

Estimates of the random slopes of neurocognitive coupling effects for each of the 80 

articles did not relate to slope estimates for coupling in sharing intentions in neural 

regions associated with self-reflection, social cognition or valuation. However, we found 

significant relationships between the extent of neural coupling in regions associated with 

self-reflection (r = .249, T(78) = 2.274, p = .025), valuation (r = .235, T(78) = 2.131, p = 

.036), and social cognition (r = .253, T(78) = 2.313, p = .023), and communicator-

receiver correspondence in perceived benefits of sharing. 
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Sources of Coupling: Propagation vs. Exposure Effects 

Finally, we tested whether cognitive and preference coupling effects described 

above were due to exposure effects or represented the propagation of information 

between individuals through communication. Table 5.3 presents coupling estimates from 

models each including a respective synchrony effects and random intercepts for the three 

communication context variables fitted to data from random (i.e., non-communicating) 

communicator-receiver dyads. Table 5.4 compares these estimates to estimates from 

identical models fitted to data from assigned dyads.  

Table 5.3. Cognitive and preference coupling estimates for random communicator-

receiver dyads 

Model B SE T (df), p 
Cognitive Coupling 

Subjective Valuation 0.005     0.032 0.139 (1065.3), .499 
Social Cognition -0.009     0.035 -0.257 (1046.1), .459 

Self-Reflection -0.007    0.033 -0.214 (1019.0), .506 
Ventral Attention -0.016 0.034 -0.460 (1061.3), .476 
Dorsal Attention -0.013 0.038 -0.354 (1073.1), .505 

Salience -0.005 0.036 -0.152 (1063.1), .511 
Preference Coupling 

Sharing Intention 0.033 0.035 0.948 (676.9), .370 

Sharing Benefits 0.009 0.032 0.293 (507.2), .490 

Note: Estimates were obtained using restricted maximum likelihood estimation. 

We did not find significant neurocognitive or preference coupling in random 

communicator-receiver dyads. Further, neurocognitive coupling in both the self-reflection 

and social cognition systems was significantly stronger in communicating (assigned) than 

in random dyads. This difference was also marginally significant for coupling in the 
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neural valuation system. That is, neurocognitive coupling in the proposed neural 

propagation system is likely due to the propagation of cognitions between individual 

communicators rather than exposure effects.  

We did not find significant differences in sharing intention correspondence 

between random and assigned dyads, which might suggest that sharing intention coupling 

is at least partly due to exposure effects. In contrast, paralleling the observed relationship 

to brain coupling, coupling estimates for sharing benefit ratings, were (marginally) 

significantly stronger in assigned than in random communicator-receiver dyads. 

Table 5.4. Comparison of cognitive and preference coupling in paired and random 

communicator-receiver dyads 

Model T (df), p % superior random models 
Neurocognitive Coupling 

Subjective Valuation 1.452 (1582.3), .073 1.2 
Social Cognition 1.89 (1598.8), .030 0.2 
Self-Reflection 2.125 (1547.9), .017 0.1 

Preference Coupling 
Sharing Intentions 0.927 (1132.5), .177 14.8 
Sharing Benefits 1.516 (1024.4), .065 1.6 

Note: % of superior random models indicates the percentage of the 1,000 

bootstrapped estimates derived from models fit to data from random sharer-receiver 

dyads that indicate stronger coupling effects than corresponding models fit to assigned 

dyads 

Discussion 

We used fMRI to observe neural activity in a sample of communicators who 

shared short messages about New York Times health news articles and in a second 

sample of receivers who were exposed to these messages. We hypothesized that the 
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propagation of content-related preferences (namely sharing intentions and ratings of 

perceived benefits of sharing) between communicators and receivers would be facilitated 

by neural coupling in a propagation system consisting of regions associated with self-

reflection, social cognition and valuation. Results show that there is communicator-

receiver coupling in the proposed neural propagation system when communicators are 

exposed to news articles and receivers are exposed to communicator-composed messages 

about these articles. Further, there was a positive relationship between the extent of 

neural coupling and successful information propagation operationalized as coupling in 

perceived benefits of sharing each news item. These findings provide empirical support 

for the idea that communicator-receiver coupling in key areas of the brain associated with 

valuation, self-reflection and social cognition, supports the successful propagation of 

information between individuals. The transmission of such content-related cognitions 

may facilitate positive social encounters and contribute to the goals of communicators 

and receivers.  

Valuation is a central driver of decision-making across domains (Bartra et al., 

2013). When communicators decide whether or not to share content and when receivers 

determine whether to be persuaded or affected by shared content, the overall value of the 

expected outcomes of their choice has a direct effect on their decision (Falk & Scholz, 

2018). The transfer of this value-signal between communicators and receivers may 

constitute an opportunity for both parties to fulfill important goals. For instance, 

knowledge of a communicator’s valuation of shared content can help receivers efficiently 

evaluate the new information. Communicators may influence others or describe their 
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agendas by spreading their valuation for specific stimuli to others. Our data suggest that 

communicator-receiver coupling in the brain’s valuation system might facilitate 

information transmission in the form of similarity in content evaluations.  

In line with prior theorizing on the cognitive processes supporting information 

sharing decisions (Scholz, Baek, O’Donnell, Kim, et al., 2016; Scholz & Falk, in press), 

we further argue that the transmission of self-reflective and social cognitions 

contextualizes this broader content-evaluation. The transmission of content-related self-

reflective cognitions can help communicators to fulfill their self-enhancement and self-

presentation motives, which often motivate information sharing (Berger, 2014; Cappella 

et al., 2015). For receivers, self-reflective coupling can help them understand and react to 

the communicator’s viewpoint in the current social context, and provide hints as to how 

certain contents apply to others (namely the communicator) and, by extension, to 

themselves. Finally, it can be beneficial for communicators to transmit their social 

cognitions related to the act of sharing and the content in question to effectively 

communicate and fulfill relationship management goals which constitute another 

prominent motivation of sharing behavior (Berger, 2014; Cappella et al., 2015). 

Understanding the communicator’s social motives may also help receivers to react 

adequately to the current social interaction and potentially plan future interactions about 

the content. In sum, the propagation of contextual information together with a broader 

content evaluation might not only facilitate successful information propagation, but 

benefit both communicators and receivers.  
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The coupling effects described here may be a product of the broader tendency of 

communication partners to synchronize cognitions and behaviors to facilitate social 

learning and the maintenance of positive social relationships (Bandura, 1986; Burgoon et 

al., 2007; Cappella, 1996). That is, the neural propagation system consisting of neural 

regions associated with valuation, self-related, and social processing, may originate from 

the biological evolution of human communication itself. Specifically, humans evolved to 

be social creatures who seek safety and support in social group membership and 

relationships (Baumeister & Leary, 1995). A biological system that serves both to learn 

by mirroring and maintain positive relationships through successful communication and 

social influence (Cialdini & Goldstein, 2004) could result in correspondence between 

cognitions, and consequently, preferences of communicators and receivers. 

Tests of several alternative hypotheses further supported the idea that cognitive 

coupling specifically in the proposed neural propagation system is a sign of meaningful 

and successful information propagation between communicators and receivers. First, we 

did not find evidence for coupling in neural regions associated with salience and 

attention. It follows that cognitive coupling during information retransmission does not 

merely represent the propagation of situational salience. Instead communicators seem to 

propagate higher-level, contextualized cognitions. Although not directly tested here, one 

implication of this finding is that the propagation of information through social channels 

is at least partially dependent on communicator evaluations, which can significantly alter 

the ways in which the content is received at the next step of a propagation chain.  
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Second, there was no cognitive or preference coupling in random communicator-

receiver dyads who saw identical headlines, but did not communicate with one another. 

This suggests that in addition to neural synchrony in response to exposure to identical 

content which has been identified elsewhere (Dmochowski et al., 2014; Hasson et al., 

2012; Schmälzle, Häcker, Renner, Honey, & Schupp, 2013; Silbert et al., 2014), the 

neural propagation system produces synchrony that serves as a vehicle for propagation 

between communication partners.  

Finally, although prior work has shown individual differences in propagation 

processes from the perspective of communicators, receivers, and content items, we show 

that coupling in the neural propagation system cannot be fully explained by variation in 

these context characteristics. This pattern is consistent with the idea that the nature of 

human communication itself plays a central role in the propagation evaluations and 

information and suggests that the processes identified here might be operating in any 

social encounter across contexts. 

Limitations and Future Directions 

The highly-controlled nature of our data imposes several limitations on the 

inferences that can be derived from our results. First, because our study population as 

well as sample of news items is relatively homogeneous, it is possible that we 

underestimate the role played by variation across communication context variables. 

Future work will benefit from exploring the extent to which information can spread 

effectively between individuals, irrespective of variables such as their opinion leadership 

status or abilities, by including samples that vary more widely on these dimensions. 
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Second, we studied a specific type of communication, namely a one-way written 

transmission of a message as it might occur in online contexts. Although the 

generalizability of our results thus needs to be confirmed in other modes communication, 

we argue that our study design represents one of the most minimal forms of social 

interaction. Arguably, coupling effects may be substantially stronger during longer, richer 

interactions. Finally, although we showed a significant relationship between all three 

parts of the neural propagation system and coupling in sharing benefit ratings, 

neurocognitive coupling was not related to the propagation of sharing intention 

preferences; these results should be interpreted with caution since our intention variable 

in this investigation was highly skewed. It is possible that the neural propagation system 

discussed here might selectively facilitate the propagation of certain kinds of preferences 

while others could be supported by different mechanisms, or that our measure of sharing 

intentions led to biased statistics and a false null result.  

Conclusion 

We show that natural synchrony in a neural propagation system between 

information communicators and their receivers is associated with successful propagation 

of information. Our results point to the importance of coupling in the brain’s valuation, 

self-relevance and social cognition systems, which are in turn associated with shared 

perceptions of the benefits of sharing specific information. The fact that, in our data, this 

finding was robust across communication context variables is encouraging for 

communication strategists and is consistent with social diffusion as an important 

complement to mass communication.  
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CHAPTER 6: DISCUSSION 

This dissertation aimed to identify the basic underlying neural and psychological 

mechanisms driving decisions to share media content. Findings support a mechanistic, 

and parsimonious account of decision-making about sharing. Specifically, empirical 

findings from the four studies presented here (Chapters 2-5) suggest a value-based 

decision-making process in which decision makers attempt to maximize the value of 

expected outcomes when making choices about sharing information with others. 

Considerations of the self-related and social outcomes of sharing are highlighted as inputs 

to this value calculation. That is, valuation may serve as a final common pathway that 

allows decision makers to integrate diverse inputs into a single value signal that 

determines choice. This framework parsimoniously integrates prior work on more 

specific types of sharing motivations (Berger, 2014; Cappella et al., 2015; Derlega & 

Grzelak, 1979), most of which can be categorized in either social or self-related terms, as 

well as work on general decision-making processes that are applicable across domains 

(Falk & Scholz, 2018). In the applied context of the study of interconnected effects of 

mass media and interpersonal communication on attitude or behavior change, this 

theoretical account of basic cognitions may further facilitate future hypothesis testing and 

the development of new strategies to capitalize on social forces when promoting mass 

media messages at a large scale.  

Four empirical studies were conducted to contribute to the development of this 

framework. These studies systematically examined crucial elements of simple 

propagation chains (Figure 1.1) in which communicators made decisions about sharing 
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health news articles with receivers through short Facebook messages. Chapters 2-4 

focused on the communicator’s perspective. Chapter 5 considered cognitive connections 

between communicators and receivers to understand whether key processes identified as 

motivating sharing in communicators propagate through the act of communication and 

affect downstream receivers. Chapter 6 summarizes and interprets the main findings 

presented here and discusses potential future extensions of this work. 

Building Blocks of Communicator Decisions to Share Media Content 

Based on a review of research in social psychology, communication science, and 

social and cognitive neuroscience, this dissertation began with the observation that 

decision-making, across domains, has been linked to value-maximization processes (Falk 

& Scholz, 2018). Further, evidence for links between valuation and social (e.g. 

Rademacher et al., 2010; Tamir et al., 2015) as well as self-related (D’Argembeau et al., 

2012; Mezulis et al., 2004; Northoff & Hayes, 2011) outcome considerations in humans 

suggested that these processes might serve as inputs to the overall calculation of the value 

of a choice. Chapter 2 presents evidence in support of this idea. Specifically, brain 

activity collected while communicators in a propagation chain were considering whether 

to socially share New York Times health news articles on Facebook, revealed the 

involvement of areas within the brain that, according to meta-analyses and large-scale 

studies, are associated with self-related, social and value-related processing. Further, 

activity in these regions was stronger during sharing decisions than when participants 

considered whether to privately read the full text of each article and when participants 

made judgments about the main topic of each article. Moreover, activity in all three 
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regions of interest significantly scaled with self-reports of each individual 

communicator’s likelihood to share the article with others. Finally, a whole brain search 

revealed that increases in brain activity during sharing decisions compared to private 

reading and content decisions were largely specific to the regions of interest defined here, 

suggesting the centrality of self-related, social and value-related processes in sharing 

decisions.  

The conclusions that can be drawn based on these results are restricted by the 

limitations of reverse inference (Poldrack, 2011). That is, given that each of the brain 

regions of interest studied here has been found to be involved in multiple processes 

including, but not restricted to the processes discussed so far, interpretations about which 

of these potential mechanisms is involved in the decisions made by study participants 

cannot be made with absolute certainty. Attempts were made to reduce the extent of 

uncertainty by choosing regions of interest in the brain to represent each of the processes 

of interest based on independent evidence, namely functional data derived from meta-

analyses of the brain mapping literature or large-scale studies of each of the processes. In 

addition, predictions about the involvement of these processes were made a priori 

(Scholz, Baek, O’Donnell, & Falk, 2016; Scholz et al., 2015) and based on strong 

empirical evidence. Given these design features, our results are reasonably suggestive 

towards the involvement of self-related, social, and value-related processing in 

communicators’ sharing decisions about health news. Confidence could further be 

enhanced in future work by assessing neural activity in conjunction with self-report 
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ratings of the target processes in order to assess whether neural activity is significantly 

related to the conscious experience of communicators in this particular situation.  

Furthermore, self-related, social and value-related processing are defined in very 

broad terms in this dissertation. Consequently, results provide high-level insights into 

what communicators were considering when making sharing decisions. Prior work 

identified various more specific sharing motivations and thought processes that may fall 

within the broader categories of self-related and social processing (Berger, 2014; 

Cappella et al., 2015). Assuming this birds-eye view on decision-making processes has 

both advantages and limitations. A clear limitation is the lack of specificity. Given the 

proven successfulness of message tailoring and targeting approaches (Davis & Resnicow, 

2011; Kreuter et al., 1999; Matz, Kosinski, Nave, & Stillwell, 2017; Noar, Benac, & 

Harris, 2007), being able to distinguish whether a communicator’s decision is likely to be 

based on self-enhancement rather than self-presentation motives may enhance the effects 

of messages aiming to encourage sharing behavior.  

At the same time, focusing on basic cognitive processes allows us to take optimal 

advantage of the affordances offered by fMRI, which does not currently have the level of 

granularity to confidently identify and distinguish between the more specific thought 

processes such as self-enhancement and self-presentation within the categories of self-

related and social thoughts. In contrast, large-scale studies and meta-analyses are 

available to functionally localize basic thought processes such as valuation (Bartra et al., 

2013), social cognition or mentalizing (Dufour et al., 2013), and self-related processing 

(e.g. Falk et al., 2016). In addition, it is advantageous to understand the basic building 



 143 

blocks of communicator decision-making as it is being processed in the brain. By 

measuring and targeting a high-level factor rather than individual indicators such as 

specific types of self-related or social processing, the neuroimaging methodology used 

here presents a more parsimonious account of decision-making and a more universally 

usable metric for intervention. Specifically, neural activity in the regions discussed here 

is sensitive to a range of relevant, related processes, even in slightly varying 

circumstances. For instance, across sharing situations, an individual is likely to 

experience multiple types of self-related and social processing, which can all be captured 

using the same neural indicator. That is, fMRI allows us to parsimoniously capture the 

greatest common denominators of multiple processes given their functional co-

localization in specific brain regions (Lieberman, 2010). In contrast, it is problematic to 

approach these cognitions through self-report which is restricted by the researcher’s 

foresight regarding which specific processes will be involved and limitations on 

questionnaire length. Thus, fMRI provides advantages regarding the generalizability and 

predictive power of the measure and, thus, it’s utility for diverse research endeavors. In 

this manner, the neural data add new information to the existing literature. In sum, data 

presented in Chapter 2 provide evidence for the involvement of self-related, social and 

value-related processes in communicators’ decisions to share media content.  

Value-Based Virality: Mechanisms of Population-Level Communicator Decisions 

Data discussed in Chapter 3 add nuance to and extend the findings reviewed so 

far. This study showed that value-related processing during decision-making about a 

given message is not only predictive of the communication behaviors of a small group, 
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but also associated with large-scale article sharing behavior in the population of the New 

York Times’ online readership. In line with existing brain-as-predictor work (Falk et al., 

2011; Venkatraman et al., 2014), value-related processing explained variance in 

population-level article virality over and above commonly used self-reports of sharing 

likelihood in two samples of fMRI participants. Finally, neural value-related activity was 

identified as a common pathway, or mediator, for the effect of social and self-related 

considerations on information sharing at scale.  

The capability of population-level prediction is crucial in the context of 

information sharing. Media content such as of the New York Times articles studied here 

routinely targets large populations and the effects of campaigns and messages are often 

assessed at the population-level (Hornik, 2002; Snyder et al., 2004). Yet, information 

sharing represents individual-level decision-making and leads to individual interactions. 

Unfortunately, available methodologies for the in-depth study of psychological processes, 

including fMRI, are generally hard to assess in large groups of people. The fact that the 

neural measures used here in two small groups of study participants are predictive of 

large-scale sharing behavior thus offers a unique opportunity to gain in-depth 

understanding of psychological processes that drive choices and behaviors in large 

groups and to parsimoniously connect the two levels of analysis inherent in the study of 

sharing of media content. 

Our ability to detect relationships between neural activity in a small group and 

population-level outcomes may be surprising initially. Individual communicators likely 

vary in which specific pieces of content are self-relevant or socially advantageous. 
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Nevertheless, human societies are also characterized by a set of basic common values and 

social norms (Hofstede, Hofstede, & Minkov, 1991; Schwartz, 2006, 2007). 

Consequently, similar types of content can be expected to have relatively high sharing 

value across individuals. In other words, those content items which represent a certain 

societal value more effectively (e.g. health, belonging, positivity, intelligence) will have 

higher sharing value and be shared more often. A second issue for population-level 

prediction is that different people might be motivated to share the same article for 

different reasons, that is based on different types of self-related and/or social processing. 

As described above, one advantage of focusing on basic, broadly defined constructs 

rather than more specific instances of these concepts is that variation in the specific 

manifestations of thought processes (e.g. specific self-presentational concerns) within 

these greater categories (e.g. broader self-related thought) across participants and 

contexts can be captured using a single measure. The underlying assumption is that 

various specific types of self-related and social thought load on the same, basic constructs 

and contribute to information sharing value in similar ways. This allows us to capture 

relevant cognitions in a parsimonious way, despite individual variability, and thus predict 

population-level virality.  

It will be important in future work to understand the boundary conditions under 

which a relationship between population-level sharing and individual-level cognitions 

can be identified. Some studies within the brain-as-predictor tradition have begun to 

explore individual differences in the power of brain activity to predict large-scale 

outcomes (Dore, Scholz, Baek, & Falk, under review; Vezich et al., 2017; Weber, 
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Huskey, Mangus, Westcott-Baker, & Turner, 2015). This work shows, for instance, that 

those individuals who are not frequent New York Times readers in normal life, show 

neural activity in the brains’ value system that is more predictive of population-level 

sharing behavior than individuals who are frequent readers (Dore et al., under review). 

The authors reason that domain expertise in frequent readers may lead to a non-

discriminatorily high value-signal in response to all, not just the most enticing, articles, 

suppressing predictive effects. Continuing this line of work may allow researchers in 

future studies to further enhance the predictive power of their neural models by 

strategically selecting samples that are likely to be neurally representative of the target 

population. 

Conceptualizing the diverse processes involved in sharing decisions as a broad 

class of value-based decision-making offers a parsimonious explanation for similarities in 

the decision-making processes across previously disconnected empirical literatures and 

theories. Specifically, similar brain regions have been shown to encode choice value 

across a large number of domains (Bartra et al., 2013; Rademacher et al., 2010) and value 

has been implicitly characterized as a driver of behavior in the contexts of persuasion and 

social influence, for instance in the form concepts such as self-interest and expectations 

or beliefs about the outcomes of behavior for oneself or one’s social relationships (Darke 

& Chaiken, 2005; Fishbein & Ajzen, 2010; Johnson et al., 2004; O’Keefe, 2012). It has 

been argued that sharing information with other people might be intrinsically valuable 

(Tamir et al., 2015), maybe because it allows communicators to fulfill their evolutionarily 

developed need for social belonging (Baumeister & Leary, 1995). Indeed, prior work in 
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line with findings reported in Chapter 3, identifies value-maximization as a final common 

pathway of decision-making which allows decision makers to integrate considerations 

regarding diverse aspects of a decision context to derive a final value signal that affects 

choice.  

In sum, Chapters 2 and 3 support a parsimonious theoretical framework of the 

mechanisms that drive communicators’ decisions to include media content into 

interpersonal conversations. Specifically, communicators may consider self-related and 

social outcomes of their choices and integrate them into an overall value signal associated 

with the choice which is directly related behavior. These processes appear to predict 

choices at both the individual and population-level. 

Context Effects 

Chapter 4 demonstrates that this framework is sensitive to yet remains relevant 

across communication contexts. Specifically, findings reveal that self-related and social 

processing are important elements of sharing decisions both in the case of narrow- and 

broadcasting. At the same time, our neural measures showed sensitivity to this context 

variable in that neural self-related and social activity was found to be stronger during 

narrow- than during broadcasting.  

These findings further support the idea that the broad conceptualization of basic 

processes in the proposed model is advantageous in that these concepts are generalizable 

to different contexts in which a communicator may make decisions about sharing. 

Nevertheless, only one of many potentially influential context effects was tested here and 

the generalizability of these findings is thus limited to narrow- and broadcasting 
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situations in the context of health news article sharing on Facebook. Prior work suggests 

that not only the number of receivers, but also their identity may play an important role in 

interpersonal communication. For instance, one study has shown that conversations about 

anti-binge drinking PSAs differed depending on whether the communication partner was 

familiar or unfamiliar (Hendriks, de Bruijn, Meehan, & van den Putte, 2016) and others 

have found different associations between interpersonal communication and health 

behavior depending on the relationship between communication partners (e.g. family 

members, friends, or teacher and student; Dorsey, Scherer, & Real, 1999; Hendriks et al., 

2016). Thus, future investigations of the role played by self-related, social and value-

related processing in communicator decision-making across contexts differing, for 

instance, in cultural variables, communicator, receiver, content, or channel characteristics 

would be highly insightful. 

Next to investigations regarding the relative contributions of the three main 

processes of interest discussed here, it will further be interesting to investigate potential 

roles played by other types of processes in specific contexts. Chapter 4 provides some 

exploratory evidence suggesting the stronger involvement of other types of processes 

including areas of the brain often involved in emotion-regulation and effortful processing 

when broadcasting rather than narrowcasting.  

Neural Propagation 

Finally, findings presented in Chapter 5 provide evidence suggesting that neural 

traces of the three processes of interest discussed here may be transmitted from 

communicators to receivers. This may suggest downstream effects of the processes 
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identified in communicators (Chapters 2-4) for receivers further down the propagation 

chain.  

Prior work has demonstrated that synchrony across various biological and 

linguistic systems is a feature of natural human communication and may contribute to 

communicative success (Mogan et al., 2017; Stephens et al., 2010). Our findings suggest 

the possibility that next to enhancing the relationship between communicators and 

receivers and supporting the transfer of content, coupling in specific neural regions of 

interest may also be involved in the transfer of a communicator’s value-based 

calculations with regards to talking about the content. Potentially, this may influence 

further downstream interpersonal communication. This suggests that message-based 

interventions enhancing these central processes in a first set of communicators may affect 

downstream sharing by their receivers as well.  

Future work is needed to further understand the sources, nature, and effects of 

synchrony in the context of interpersonal communication about media content. Are there 

message or communicator characteristics that might increase or decrease synchrony? 

Does synchrony only occur on the aggregate level (i.e. per trial) as demonstrated here or 

also second by second in longer interactions? Does increased communicator-receiver 

synchrony lead to downstream effects such as sharing by the original receiver? Future 

work tackling these questions would strongly contribute to our understanding of the 

psychology of sharing decisions and their effects in interpersonal contexts. 
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Future Practical Implications 

This dissertation presents studies focused on the specific contexts of sharing 

health news articles on social media. As briefly discussed before, sharing is a process that 

introduces media content into a social domain where it is subject to social forces such as 

persuasion and social influence. The findings presented here are thus of relevance to the 

literature examining the complex interconnections between mass media effects and the 

influence of interpersonal communication, both online and offline, on attitudes and 

behavior (Hornik & Yanovitzky, 2003; Jeong & Bae, 2017; Katz & Lazarsfeld, 1955; 

Southwell & Yzer, 2007).  

Relationships between mass media and interpersonal effects have been widely 

recognized in communication science, public health, and studies on the diffusion of 

innovations and word-of-mouth (Berger, 2014; Jeong & Bae, 2017; Rogers, 2003; 

Southwell & Yzer, 2007). Yet, less is known about the psychology underlying the 

progression of mediated content into interpersonal conversations. As a result, social 

factors such as the number and types of conversations that are motivated by media 

messages are underappreciated in theory-based message design and evaluation within the 

realm of communication science and public health. In contrast, commercial sectors have 

whole-heartedly embraced the potential of social routes to persuasion with large, yet 

seldomly theoretically driven literatures on social media marketing and word-of-mouth in 

the fields of marketing and business (e.g. Scott, 2015; Tuten & Solomon, 2017). 

Understanding the psychological processes that lead communicators to share media 

content from a communication scientific perspective will contribute to theorizing and 
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facilitate hypothesis testing about potential media message-based interventions that could 

strategically encourage and enhance interpersonal communication about media content.  

This dissertation provides evidence that may contribute to one particular part of 

these process, namely the initiation of sharing, or social interactions about media content.  

Existing work on the effects of interpersonal communication on health behavior 

shows that, next to occurrence, characteristics of interpersonal communication encounters 

such as the valence of the interaction (David, Cappella, & Fishbein, 2006; Dunlop, 

Kashima, & Wakefield, 2010; Hendriks, van den Putte, & de Bruijn, 2014; Scholz, Dore, 

Cooper, & Falk, in prep) and the nature of conversation partners (Dorsey et al., 1999; 

Hendriks et al., 2016) are crucial in determining whether the effects of these encounters 

are congruent or incongruent with the intent of the original media message. More work is 

needed to understand the psychological mechanisms that underlie downstream processes 

of interpersonal communication about media messages that follow the initial sharing 

decision discussed here. Nevertheless, Chapter 5 of this dissertation provides initial 

evidence for the idea that processes known to drive decision-making in communicators 

may also be central to receiver preferences and behaviors.  

Conclusion 

In sum, findings presented in this dissertation suggest a central role of neural 

activity in regions associated with self-related, social, and value-related processing in the 

decisions of communicators to share media content with others. Support for this claim 

was found at both the individual and population levels. In addition, valuation is 

highlighted as a central, common pathway through which other types of processes impact 
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decision-making. These findings were robust across two separate samples and across 

interpersonal communication with large and small Facebook audiences. Finally, neural 

communicator-receiver coupling in brain systems of interest was associated with 

similarities in preferences and may have implications for further downstream effects of 

messages which are successful in encouraging sharing. Taken together, these findings 

address the lack of knowledge in the existing literature regarding the psychological 

mechanisms that encourage sharing decisions about media content and provide a basis for 

future research and hypothesis testing regarding potential new message strategies which 

systematically enhance these processes and, thereby, interpersonal communication about 

media. Thus, this dissertation constitutes scientific progress towards the development of 

theory-based message strategies which allow persuaders to take adequate advantage of 

the potential of social forces that are constantly active in their target populations.
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APPENDIX 

Appendix A: Chapter 2 Supplementary Materials 

Supplementary materials, first published in: Baek, E. C.*, Scholz, C.*, 

O’Donnell, M. B., & Falk, E. B. (2017). Neural correlates of selecting and sharing 

information. Psychological Science. 28(7), p. 851-861. DOI: 

https://doi.org/10.1177/0956797617695073. Copyright © 2017 (The Authors). Reprinted 

by permission of SAGE Publications.  

* denotes joint first-authors 

Tables A1 and A2 below show the neural correlates of selecting and sharing news 

articles in the social cognition ROI, after removing regions that overlap with the Self-

Related Processing and Subjective Valuation ROIs. All results remained robust after 

removing overlapping regions.



 

                Table A1. Neural Correlates of Selecting and Sharing News Articles, Non-Overlapping Regions 

 ROIs Select > Content Share > Content Share > Select 
 t(40) p Mean 

parameter 
estimate  

[95% CI] 

t(40) p Mean 
parameter 
estimate  

[95% CI] 

t(40) p Mean 
parameter 
estimate  

[95% CI] 
 Social Cognition, 

Non-overlapping 
with Self or 

Subjective Valuation 

4.81 <.001 0.063 
[0.036, 
0.089] 

8.92 <.001 0.096 
[0.075, 
0.118] 

2.96 .005 0.034  
[0.011, 
0.057] 
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                 Table A2. Neural Activity Modulated by Preference Ratings Measuring Likelihood to Select to Read or Share, Non- 

                 Overlapping Regions 

ROIs Conditions 
Select x Rating Share x Rating 

t(40) p Mean 
parameter 
estimate  

[95% CI] 

t(40) p Mean 
parameter 
estimate  

[95% CI] 
Social Cognition, Non-
overlapping with Self 

or Subjective Valuation 

3.30 .002 0.025  
[0.010, 0.041] 

3.18 .003 0.035  
[0.013, 0.058] 



 

   Tables A3 and A4 below show the results of selecting and sharing news articles in the sub-regions of the subjective  

      valuation, self-related processing, and social cognition ROIs.  

   Table A3. Neural correlates of selecting and sharing news articles 

  Conditions 
 ROIs Select > Content Share > Content Share > Select 
 t(40) p Mean parameter 

estimate  
[95% CI] 

t(40) p Mean parameter 
estimate  

[95% CI] 

t(40) p Mean parameter 
estimate 

[95% CI] 
 Subjective 

Valuation 7.22 <.001 0.118 
[0.085, 0.151] 12.69 <.001 0.158 

[0.133, 0.184] 3.09 .004 0.040 
[0.014, 0.067] 

 VMPFC 7.88 <.001 0.181 
[0.134, 0.227] 13.99 <.001 0.248 

[0.212, 0.284] 3.92 <.001 0.067 
[0.032, 0.101] 
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Striatum 
3.97 <.001 0.040 

[0.019, 0.060] 5.54 <.001 0.047 
[0.030, 0.064] 0.75 >.250 0.007 

[-0.012, 0.027] 
 Self-Related 

Processing 7.26 <.001 0.143 
[0.103, 0.183] 15.25 <.001 0.225 

[0.195, 0.255] 5.02 <.001 0.082 
[0.049, 0.115] 

 MPFC 7.91 <.001 0.153 
[0.114, 0.192] 16.04 <.001 0.230 

[0.201, 0.260] 4.43 <.001 0.077 
[0.042, 0.112] 

 PCC 4.92 <.001 0.130 
[0.077, 0.183] 9.61 <.001 0.223 

[0.176, 0.270] 4.92 <.001 0.093 
[0.055, 0.132] 

 Social 
Cognition 5.00 <.001 0.067 

[0.040, 0.095] 9.41 <.001 0.104  
[0.082, 0.127] 3.12 .003 0.037 

[0.013, 0.061] 
 VMPFC 8.03 <.001 0.157 

[0.118, 0.197] 12.93 <.001 0.223 
[0.188, 0.258] 4.19 <.001 0.066 

[0.034, 0.097] 
 MMPFC 7.18 <.001 0.127 14.45 <.001 0.198 4.46 <.001 0.070 



 

[0.091, 0.163] [0.170, 0.225] [0.039, 0.102] 
 DMPFC 5.23 <.001 0.080 

[0.049, 0.111] 8.99 <.001 0.125 
[0.097, 0.153] 3.22 .003 0.045 

[0.017, 0.073] 
 PC 2.61 .013 0.053 

[0.012, 0.094] 7.21 <.001 0.128 
[0.092, 0.163] 5.01 <.001 0.075 

[0.044, 0.105] 
 rTPJ 2.73 .009 0.028 

[0.007, 0.049] 4.48 <.001 0.042 
[0.023, 0.062] 1.43 .161 0.014 

[-0.006, 0.034] 
 lTPJ 4.26 <.001 0.058 

[0.031, 0.086] 5.73 <.001 0.064 
[0.042, 0.087] 0.53 >.250 0.006 

[-0.017, 0.029] 
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rSTS 
3.34 .002 0.037 

[0.015, 0.060] 3.97 <.001 0.038 
[0.019, 0.057] 0.07 >.250 0.001 

[-0.021, 0.024] 
  Note: Brain activity within sub regions of the major networks reported in the main body of the paper associated with selecting  

              and sharing articles, compared to a control condition (recalling the article’s content), and relative to one another. 

 
   Table A4. Neural Activity Modulated by Preference Ratings Measuring Likelihood to Select or Share 

 ROIs Conditions 
 Select x Rating Share x Rating 
 T 

(40) 
p Mean 

parameter 
estimate  

[95% CI] 

t(40) p Mean 
parameter 
estimate  

[95% CI] 
 Subjective Valuation 6.01 <.001 0.046 

[0.030, 0.062] 3.66 <.001 0.039 
[0.017, 0.061] 

    VMPFC 6.04 <.001 0.064 
[0.043, 0.086] 3.46 .001 0.048 

[0.020, 0.076] 



 

    Striatum 3.97 <.001 0.024 
[0.012, 0.036] 3.50 .001 0.028 

[0.012, 0.044] 
 Self-Related Processing 5.28 <.001 0.053 

[0.033, 0.073] 3.36 .002 0.058 
[0.023, 0.093] 

    MPFC 5.38 <.001 0.057 
[0.036, 0.079] 3.56 <.001 0.056 

[0.024, 0.087] 
    PCC 3.29 .002 0.043 

[0.017, 0.069] 2.72 .010 0.061 
[0.016, 0.107] 

 Social Cognition 3.47 .001 0.027 
[0.011, 0.043] 3.20 .003 0.036 

[0.134, 0.059] 
     VMPFC 5.25 <.001 0.052 

[0.032, 0.072] 3.51 .001 0.046 
[0.019, 0.072] 

157     MMPFC 5.38 <.001 0.052 
[0.032, 0.071] 3.82 <.001 0.057 

[0.026, 0.085] 
     DMPFC 4.62 <.001 0.043 

[0.024, 0.062] 4.23 <.001 0.055 
[0.029, 0.081] 

     PC 0.99 >.250 0.011 
[-0.012, 0.034] 2.11 .041 0.037 

[0.002, 0.072] 
 

    rTPJ 0.59 >.250 0.005 
[-0.012, 0.022] 1.05 >.250 

0.010 
[-0.009, 
0.030] 

     lTPJ 3.09 .004 0.022 
[0.008, 0.036] 4.42 <.001 0.038 

[0.020, 0.055] 
     rSTS 3.06 .004 0.026 

[0.009, 0.042] 2.00 .052 0.021 
[0, 0.043] 

 Note: This table shows brain activity within sub regions of the major networks reported in the main body of the paper  

             associated with ratings of how likely participants would be to select and share the articles, respectively. 



158 

Our findings suggest that activity in all three ROIs was greater during selecting 

and sharing compared to the content condition. One alternative explanation for these 

differences might be due to the content trials being more cognitively taxing. We found 

that participants’ reaction times were slower during the content trials than during 

selecting and sharing. However, all results remained robust when we ran the analyses 

controlling for RT (see Tables A5 and A6 below), and when considering only trials 

matched on RT (see Tables A7 and A8 below) suggesting that our results were not driven 

exclusively by difficulty across conditions. 

Table A5. Mean Reaction Time (RT) by Condition 

Condition Mean (SD) RT 

Content 0.95 (0.59)a 

Select to Read for Self 0.80 (0.47)b 

Share with Others  0.79 (0.46)b 

Note: Content trials (a) differed significantly from Select to Read and Share with 

Others trials (b), but the latter two were not significantly different from one another



 

Table A6. Neural Correlates of Selecting and Sharing News Articles, with Reaction Time (RT) as covariate 

 ROIs Select > Content Share > Content Share > Select 
 t 

(40) 
p Mean parameter 

estimate  
[95% CI] 

t 
(40) 

p Mean parameter 
estimate  

[95% CI] 

t 
(40) 

p Mean parameter 
estimate  

[95% CI] 
 Subjective 

Valuation 6.65 <.001 0.116 
[0.081, 0.151] 13.03 <.001 0.159 

[0.134, 0.184] 3.13 .003 0.044 
[0.015,0.072] 

 Self-
Related 

Processing 
6.84 <.001 0.164 

[0.115, 0.212] 14.54 <.001 0.258 
[0.222, 0.294] 4.86 <.001 0.095 

[0.055, 0.134] 

 Social 
Cognition 4.51 <.001 0.065 

[0.036, 0.094] 9.38 <.001 0.105 
[0.082, 0.128] 3.23 .002 0.040 

[0.015, 0.065] 
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We extracted the middle 50% of the distribution of trials within the sharing 

condition, based on RT (0.476-0.952), and subsetted the content and select to read 

conditions to match this range. This resulted in a subset of all 3 conditions with same 

range and similar distributions of RT. As Table A7 indicates, the subsetted data no longer 

had significantly different mean differences on RT.  In other words, the subsets of trials 

are of comparable difficulty across conditions. 

Table A7. Mean Reaction Time (RT) by Condition, Before and After Subsetting Data 

Condition Mean RT, 
before 

subsetting 
(range) 

Mean 
Difference 

from Content 

Mean RT, 
after 

subsetting 
(range) 

Mean 
Difference 

from Content 

Content 0.951 
(0.008-3.01) 

-- 0.670 
(0.477-0.951) 

-- 

Select to Read for 
Self 

0.803 
(0.063-2.99) 

-0.148*** 0.673 
(0.477-0.951) 

0.003 (n.s.) 

Share with Others  
(combined 

narrowcasting & 
broadcasting trials) 

0.794 
(0.014-2.93) 

-0.157*** 0.663 
(0.477-0.947) 

0.007 (n.s.) 



 

             Table A8. Neural Correlates of Selecting and Sharing News Articles, reduced dataset with comparable RTs 

 ROIs Select > Content Share > Content Share > Select 
 t(40) p Mean 

parameter 
estimate  

[95% CI] 

t(40) p Mean 
parameter 
estimate  

[95% CI] 

t(40) p Mean 
parameter 
estimate  

[95% CI] 
 Subjective 

Valuation 4.92 <.001 
0.131 

[0.077, 
0.185] 

10.01 <.001 
0.177 

[0.141, 
0.212] 

2.35 .02 
0.046 

[0.006, 
0.085] 

 Self-
Related 

Processing 
5.18 <.001 

0.179 
[0.109, 
0.249] 

14.50 <.001 
0.300 

[0.258, 
0.341] 

4.48 <.001 
0.121 

[0.066, 
0.175] 

 Social 
Cognition 3.29 .002 

0.071 
[0.027, 
0.114] 

8.58 <.001 
0.122 

[0.094, 
0.152] 

3.28 .002 
0.052 

[0.020, 
0.085] 
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Tables A9 and A10 show the sharing conditions separated by narrowcasting and 

broadcasting. 

Table A9. Neural Correlates of Selecting and Sharing News Articles, Narrowcasting 

ROIs Narrowcasting > Content Narrowcasting > Select 
t(40) p Mean parameter 

estimate  
[95% CI] 

t(40) p Mean parameter 
estimate  

[95% CI] 
Subjective 
Valuation 10.94 <.001 0.178 

[0.145, 0.211] 3.46 .001 0.060 
[0.025, 0.095] 

Self-Related 
Processing 14.08 <.001 0.269 

[0.230, 0.307] 5.93 <.001 0.125 
[0.083, 0.168] 

Social 
Cognition 8.90 <.001 0.123 

[0.095, 0.150] 3.85 <.001 0.055 
[0.026, 0.084] 

 

Table A10. Neural Correlates of Selecting and Sharing News Articles, Broadcasting 

ROIs Broadcasting > Content Broadcasting > Select 
t(40) p Mean parameter 

estimate  
[95% CI] 

t 
(40) 

p Mean parameter 
estimate  

[95% CI] 
Subjective 
Valuation 9.75 <.001 0.139 

[0.110, 0.167] 1.47 .149 0.020 
[-0.008, 0.049] 

Self-Related 
Processing 11.21 <.001 0.182 

[0.149, 0.215] 2.32 .026 0.039 
[0.005, 0.072] 

Social 
Cognition 7.09 <.001 0.086 

[0.061, 0.110] 1.43 .160 0.018 
[-0.008, 0.044] 

 

Figures A1, A2, and A3 show the sagittal cuts of whole brain associations of 

select to read and share conditions. The numbers in the top left corner indicate x-

coordinates, using standard MNI (Montreal Neurological Institute) coordinates. 
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Figure A1. Sagittal cuts of whole brain associations of Select > Content contrast, 

thresholded at p < .05, corrected for family-wise error with a minimum cluster size of 20. 
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Figure A2. Sagittal cuts of whole brain associations of Share > Content contrast, 

thresholded at p < .05, corrected for family-wise error with a minimum cluster size of 20. 
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Figure A3. Sagittal cuts of whole brain associations of Share > Select contrast, 

thresholded at p < .05, corrected for family-wise error with a minimum cluster size of 20.

Appendix B: A Comment on Open Science 

This dissertation is based on a research program that developed in parallel to dramatic 

changes in the social science community. Concerns about reproducibility (Open Science 

Collaboration, 2015) have led to increased calls for rigorous and open scientific practices 

including, but not limited to, replication studies, hypothesis pre-registrations, and open, inclusive 

reporting about the scientific process as well as significant and null results. Improvements in the 

implementation of these elements for an increasing number of projects will enhance transparency 

of research and may uncover much needed additional information about null results tackling the 

current file drawer problem.  
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In an effort to contribute to these steps towards an open and transparent science, the work 

presented in this dissertation implements several of the recommended elements. The studies 

reported in Chapters 2, 3, and 4 are fully or partially based on hypothesis pre-registration 

documents that were registered with the Open Science Foundation before data analysis began 

(Scholz, Baek, O’Donnell, & Falk, 2016; Scholz et al., 2015). The study in Chapter 3 further 

offers a replication of reported effects in a second sample. Analysis code and data for the 

published papers is available to interested readers on a linked GitHub page, and, finally, my co-

authors and I have begun to publish null findings related to this project on GitHub.  

Making the science presented here open and transparent to other researchers has been a 

challenge and a learning process, and the documents created to facilitate this process, especially 

early hypothesis pre-registrations, are flawed in various ways. For instance, the studies presented 

here were part of a larger research project combining the interests and research questions of 

several researchers and were thus designed to test a large number of hypotheses. All of these 

scientific interests were combined into a single document listing a large number of hypotheses 

for each of the two datasets discussed here. I have since come to the conclusion that a more 

detailed pre-registration focused on a small set of connected hypotheses and analyses which 

might be part of one planned publication would be a more sensible format. In that way, readers 

may be more likely to read the additional, yet concise text and gain a more complete 

understanding of the original thinking of the scientists. Such a format would also make it easier 

to report on all related null and significant results obtained throughout the study in a single 

manuscript. Nevertheless, the efforts made here to contribute to the development of Open 

Science have achieved at least a minimum level of reproducibility of the published findings and 
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demonstrated the replicability of a subset of the results presented. It is the hope of the author that 

some of the lessons learned here about the open science process may inform and support others 

in implementing similar elements into their projects in increasingly efficient and helpful ways. 

Appendix C: Chapter 3 Supplementary Materials 

Supporting Information: First published in: Scholz, C., Baek, E. C., O’Donnell, 

M. B., Kim, H. S., Cappella, J. N., & Falk, E. B. (2017). A neural model of valuation and 

information virality. Proceedings of the National Academy of Sciences of the United 

States of America, DOI: 10.1073/pnas.1615259114  

Licensed under: CC BY-NC-ND 4.0 

SI NY Times Article Sample  

We selected 80 articles from the full set of 760 articles analyzed in ref. 11 with 

the goal of maximizing comparability in topic and length. Specifically, we conducted a 

keyword search of the full set of 760 articles using the following terms: exercise, fitness, 

physical activity, running, swimming, skiing, soccer, walking, food (excluding “Food and 

Drug Administration”), eating, nutrition, nutrient, diet, vitamin, calcium, carbohydrates, 

gluten, caffeine, cholesterol, obesity, and weight. The search retrieved 143 articles. A 

closer examination revealed that four articles were irrelevant, and these articles were 

removed. Of the remaining 139 articles, the 80 that were most similar in length were 

chosen.  

SI Scanning Parameters  

We captured neural activity during two runs of the article task (500 volumes in 

each run in study 1 and 311 volumes in each run in study 2) using a T2*-weighted image 
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sequence [repetition time (TR) = 1.5 s, echo time (TE) = 25 ms, flip angle = 70°, −30° tilt 

relative to the anterior commissure–posterior commissure (AC– PC) line, 54 slices at the 

Magnetom Tim Trio scanner, 52 slices at the Prisma scanner, field of view (FOV) = 200 

mm, slice thickness = 3 mm, multiband acceleration factor = 2, voxel size = 3 × 3 × 3 

mm]. High-resolution T1-weighted anatomical images were collected using a 

magnetization-prepared rapid gradient-echo (MPRAGE) sequence [inversion time (TI) = 

1,110 ms, 160 axial slices, voxel size = 0.9 × 0.9 × 1 mm]. Finally, we collected an in-

plane, structural, T2-weighted image (slice thickness = 1 mm, 176 axial slices, voxel size 

= 1 × 1 × 1 mm) to implement a two-stage co-registration procedure between functional 

and anatomical images.  

SI Robustness Checks  

To test the robustness of our main results reported in Figure 3.1, we estimated 

models using unranked variables. These analyses produced results similar to those 

presented in the main text and supported identical conclusions (Figure C2 and Table C3). 

Further, models excluding the insignificant direct effects of the two exogenous variables 

on virality shown in Figure 1 were estimated to obtain model fit statistics. Both models 

revealed satisfactory model fit for the hypothesized structural model, considering its 

small degrees of freedom (df) and small sample size (66): χ2 (2) = 2.36, P = 0.31, 

comparative fit index (CFI) = 0.997, residual mean square error of approximation 

(RMSEA) = 0.05, 90% CI (0.00, 0.23) for study 1; χ2 (2) = 3.26, P = 0.20, CFI = 0.986, 

RMSEA = 0.09, 90% CI (0.00, 0.26) for study 2. Additional analyses revealed the model 

fit for the hypothesized path structure was superior to that of alternative structural models 
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(Table C4), providing additional confidence to our proposal that valuation, taking inputs 

from self and social considerations, serves as a final common pathway.  

SI Study 1 Whole-Brain Analysis  

To test the specificity of our results to our theory-driven ROIs, we conducted 

exploratory whole-brain analyses. We first created first-level models for each participant 

that included a separate boxcar function for activity across all trials within a certain 

condition (content, reading, broadcasting, narrowcasting) for the reading screen and the 

rating screen of the article task, respectively (eight regressors). An additional regressor 

represented the boxcar function representing the reading screen during reading trials 

modified by a mean-centered parametric modulator of population-level virality ranks of 

each article. Population-level virality ranks were derived by ranking all articles presented 

within the reading condition by their population-level retransmission counts for each 

participant (range, 1–20). The model also included a boxcar function for activity across 

all trials within the cue screen and six nuisance regressors to control for motion. Finally, 

to ensure that only first exposures were modeled in the main regressor of interest, one 

regressor of no interest was entered to account for trials in which one participant was 

accidentally presented with an article for a second time. Second, at the group level, neural 

activity was pooled for all participants to examine the main contrasts of interest: activity 

during the reading screen in reading trials modulated by population-level retransmission 

ranks compared with implicit baseline. To balance the risks of false positives and false 

negatives, we conducted two different kinds of correction for multiple comparisons to 

derive whole-brain maps and tables of voxels in which neural activity scales with 
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population-level virality (Figure C3 and Table C5). The first whole-brain map was 

thresholded at P < 0.005 and K ≥320, where K is the number of voxels per cluster, to 

produce a threshold of P < 0.05, corrected using 3dClustSim simulation (version 

AFNI_16.2.02). Although the type 2 error rate can be expected to be lower for this 

method of analysis, prior work has shown that cluster correction tends to overestimate the 

number of significant voxels and thus increases the type 1 error rate (Eklund, Nichols, & 

Knutsson, 2016). Consequently, we also present the results of a more stringent whole-

brain correction that controls the number of false positives more efficiently. Specifically, 

we used nonparametric permutation testing (5,000 iterations) and false-discovery rate 

(FDR) correction for a voxel-wise P-threshold of P < 0.05 and K ≥10 as implemented in 

the SnPM13 toolbox (“Statistical nonParametric Mapping. A toolbox for SPM,” n.d.). 

(Study 1 results for multiple comparisons correction using nonparametric permutation 

testing corrected at FDR P < 0.05 vary across individual runs of the 5,000 permutations 

protocol implemented here, because of random elements in this analysis technique. 

Specifically, although several runs produced maps similar to the map printed in Figure 

C3, these results border on P < 0.05. All runs of the permutation protocol for study 1 

produced maps that looked very similar to the one printed here at P < 0.06 or P < 0.07. 

Study 2 results are highly robust across several runs of the permutation protocol, P < 

0.05, FDR corrected.)  

SI Study 2 Whole-Brain Analysis  

To conduct a parallel whole-brain analysis for study 2 participants, we first 

created first-level models for each participant that included a separate boxcar function for 
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activity across all trials within a certain condition (abstract, narrowcasting, broadcasting) 

for the reading screen (three regressors) of the article task. Separate regressors for rating 

screens were further derived depending on the condition presented on the reading screen 

(six regressors in total). Crucially, an additional regressor specified the boxcar function 

representing the reading screen during abstract trials modified by a mean-centered 

parametric modulator of population-level virality ranks of each article. As for study 1, 

virality ranks were derived by ranking articles shown within the abstract condition by 

their population-level retransmission counts for each participant (range, 1–14). The 

model also included six nuisance regressors to control for motion. Second, at the group 

level, neural activity during the main task was pooled for all participants to examine the 

main contrasts of interest: activity during the reading screen in abstract trials modulated 

by population-level virality ranks compared with the baseline resting state. See Appendix 

C, Figure C3, and Table C4 for details and results. 

In parallel to study 1 analyses, whole-brain maps were thresholded via 

3dClustSim simulation at P < 0.005 and K ≥296 (version AFNI_16.2.02) and 

nonparametric permutation testing (5,000 iterations) and FDR correction for a voxel-wise 

P-threshold of P < 0.05 and K ≥10 as implemented in the SnPM13 toolbox (“Statistical 

nonParametric Mapping. A toolbox for SPM,” n.d.). Results are reported in Figure C3 

and Table C5.  

SI Analysis of Other Article Task Conditions  

In the main text, we focus on neural activity extracted from reading trials in the 

study 1 article task (Figure 3.1) because the reading condition most closely represents 



 172 

real-world experiences of NYTimes readers who are unlikely to visit the website to find 

an article to share with somebody. Instead, readers are more likely to browse abstracts 

and consider reading various articles until one article motivates them to share it with 

somebody else. Nonetheless, an additional question to consider is the extent to which task 

instructions affect the relationship between neural activity during article exposure and 

population-level sharing. Therefore, we examined the relationship between value-related 

neural activity in our value ROI in response to an article’s headline and abstract and 

population-level article retransmission data, focusing separately on narrowcasting trials in 

which participants were primed before each trial via a cue screen to consider sharing 

articles with one Facebook friend and broadcasting trials in which participants were 

primed to consider sharing the article on their Facebook wall. Note that this analysis is 

not possible for study 2 data, because the other two conditions, not analyzed in the main 

text, are not comparable to those in study 1 and did not include the presentation of 

original article abstracts. Results show that value-related neural activity in response to 

articles shown in a sharing condition is marginally related to population-level virality in 

the case of narrowcasting trials [r = 0.184, P = 0.10] and is not significantly related to 

population-level virality in the case of broadcasting trials [r = 0.133, P = 0.24]. 

Individual-level data from study 1 suggest that explicit instructions to share (i.e., the two 

sharing conditions) increase the overall level of sharing-relevant brain activity compared 

with instructions to consider reading the full text of an article (i.e., the reading condition 

analyzed here; Baek et al., 2017). However, we also found that these explicit instructions 

reduce the variance in value-related activity, which is larger for reading trials (s2 = 5.10) 
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than for narrowcasting (s2 = 4.18) and broadcasting (s2 = 3.24) trials. This ordering of 

conditions according to variance in information-sharing value corresponds to the 

condition ordering in terms of the strength of the relationship between value-related 

activity and population-level virality. If this interpretation is correct, one potential 

implication could be that sharers are likely to share articles based on “gut” decisions, 

which are better represented by the reading trials, which did not specifically give 

participants the goal of sharing in each trial, than by longer elaboration, which is better 

represented by sharing trials.  

SI Article Characteristics  

In a content-focused investigation of 760 NYTimes health news articles that 

included the 80 articles used here, Kim (2015) characterized the article headlines and 

abstracts by analyzing human (i.e., the presence of efficacy information or the mention of 

diseases or bad health conditions) and computerized (expressed positivity: the difference 

between the number of positive and negative words; expressed evocativeness/arousal: the 

sum of positive and negative words) content and with the help of lay human raters 

(perceived usefulness, induced positivity, perceived controversiality, induced 

evocativeness/arousal, and perceived novelty). Here we explore the relationship between 

these content characteristics and concepts within our value-based virality framework as 

well as population-level virality. 

SI Analysis of Article Characteristics  

Prior work has shown that content characteristics can impact virality (Berger, 

2014; Cappella et al., 2015), and this argument has been made particularly effectively in 
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the case of news articles (Berger & Milkman, 2012; Kim, 2015). Consequently, we 

explored the role of content characteristics in value-based virality. Specifically, content 

characteristics might be involved in three different ways. (i) Article characteristics might 

affect virality directly and independently of variables included in the value-based virality 

model. If so, it would be of interest whether neural data explain the variance in 

population-level sharing over and above that explained by article characteristics. (ii) 

Article characteristics might affect information-sharing value directly or via some other 

mechanism not currently included in the value-based virality model. (iii) Article 

characteristics might be antecedents of thoughts regarding the self-related and social 

outcomes of sharing. To explore these possibilities, we first checked whether the 

predictions made by value-based virality (Figure 3.1) hold even when controlling for 

article characteristics. For this purpose, we estimated models identical to the one in 

Figure 3.1 but for the sake of parsimony excluded the insignificant direct effects of self-

related and social processing on virality. Each model additionally included a direct effect 

of one article characteristic on population-level virality. Paralleling other analyses 

presented in this article, all variables were rank-ordered. In both studies, the effects 

presented in Figure 3.1 were robust when controlling for any of the nine article 

characteristics considered here. In fact, the only article characteristic that showed a 

significant effect on population-level virality in these models was the perceived 

usefulness of an article [B (unstandardized estimate of this parameter) = 0.202, SE = 

0.101, P = 0.04] in study 1, but this effect did not replicate in study 2. Second, we 

examined the relationships between each of the nine content characteristics available to 
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us and average neural activity in regions associated with self-related and social 

processing in response to each article using t tests and Pearson correlation where 

appropriate. Paralleling other analyses presented in this article, all variables were rank-

ordered. In study 1, we found a positive relationship between induced positivity in an 

article and neural activity in the self-related processing ROI [r = 0.231; P = 0.04]. In 

addition, articles that mentioned diseases or negative health issues (mean, 9.74) were 

associated with less self-related processing than articles that did not [mean, 10.70; T(78) 

= 2.24; P = 0.03] in study 1. However, these effects did not replicate in study 2. Finally, 

we explored direct effects of article characteristics on information-sharing value (i.e., 

average neural activity in our value-related processing ROI) using analytical strategies 

identical to those explained above. Value-related neural activity was positively related to 

the extent to which articles induced positivity in human raters [r = 0.309; P = 0.005], and 

articles that mentioned diseases or bad health conditions (mean, 9.50) engaged less value-

related activity than articles that did not [mean, 10.96; T(78) = 3.04; P = 0.003]. 

However, these effects did not replicate in study 2. In sum, our results hold, even when 

controlling for the effects of various article characteristics on virality, suggesting that 

neural activity contributes information over and above what can be learned from 

variables commonly used in the literature on virality (Berger & Milkman, 2012; Kim, 

2015). In contrast to prior work, most article characteristics did not predict population-

level sharing. This dissonance with existing studies might be the result of methodological 

differences among studies. Most notably, previous reports of effects between article 

characteristics and population-level sharing showed relatively small effect sizes that were 
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identified only in very large samples (e.g., n > 6,000 in Berger & Milkman, 2012 and n = 

760 in Kim, 2015). Because of time restrictions in the fMRI scan, we were not able to 

replicate these article sample sizes. Nonetheless, our ability to predict virality from neural 

variables even in this small sample of articles speaks to the strength and utility of fMRI. 

In addition, we identified selected relationships between individual article characteristics 

and the extent to which articles engaged neural activity associated with self-related, 

social, or value-related cognition in study 1. Although these relationships generally did 

not replicate in study 2, these findings might suggest that content characteristics could be 

promising candidates in the search for antecedents of the psychological processes that 

affect sharing. The lack of robustness of these effects might be due to the small sample 

size and homogeneity of articles. In addition, it is possible that sharing-relevant 

cognitions are more sensitive to combinations of article characteristics (e.g., the 

emotional tone in combination with the topic) than to isolated characteristics. However, 

the specific combination of article characteristics that enhances expectations of positive 

social or self-related outcomes of sharing might be highly context dependent. An 

exploration of the large number of potential interaction terms is beyond the scope of this 

investigation. 
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Figure C1. fMRI tasks. (A) Reading trial of the article task (study 1). (B) Abstract 

trial of the article task (study 2). The trial modeled in main analyses is marked in red. 
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Figure C2. Value-based virality path model including unranked variables. The 

path diagram shows maximum likelihood estimates (unstandardized coefficients). The 

table presents indirect effect coefficients and bias-corrected, bootstrapped 95% CIs 

(1,000 replications). Population-level virality was log-transformed because of its 

positively skewed distribution. n = 80 in study 1 and 76 in study 2; *P < 0.05, **P < 0.01, 

***P < 0.001, n.s., not significant 
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Figure C3.Whole-brain analyses of regions associated with each article’s rank of 

population-level sharing counts in study 1 and study 2. Whole-brain maps were 

thresholded using (A) a nonparametric permutation analysis corrected at FDR-corrected P 

< 0.05, K ≥10 and (B) a cluster-based approach thresholded at P < 0.005 uncorrected and 

K ≥320 in study 1 and K ≥296 in study 2, respectively where K is the number of vowels 

per cluster on a 3dClustSim simulation together corresponding to P < 0.05 corrected. 
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Figure C4. Effects of self-reported intention. (A) Model using intention ratings to 

predict population-level virality. (B) Model using both intention ratings and value-based 

virality to predict virality. All variables are rank-ordered; *P < 0.05, **P < 0.01, ***P < 

0.001, +P = 0.056, n.s., not significant. 

 

Table C1. ROIs in study 1 and study 2 

ROI Volume, cm3 
Center of mass 

x y z 
Self-related processing     
Ventromedial prefrontal cortex 0.23 -4.26 56.6 -3.92 
Precuneus/posterior cingulate cortex 1.93 -6.68 -55 28.2 
Valuation     
Ventral striatum 4 -3 10 -4 
Ventromedial prefrontal cortex 3.59 1 46 -7 
Social processing     
Middle-medial prefrontal cortex 2.4 1.91 55 11.6 
Dorsomedial prefrontal cortex 2.61 -0.13 53.7 29.3 
Right temporoparietal junction 3.0 54.1 -52.6 23.1 
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Left temporoparietal junction 3.0 -51.7 -58.3 24.8 
Right superior temporal lobe 3.1 54.4 -8.45 -17.3 

The x, y, and z coordinates correspond to the MNI standard brain. All neural 

systems and subclusters are defined based on prior studies as described in Methods. 

 

Table C2. Correlation matrices underlying the path models in Figure 3.1 (variables 1-4) 

and Figure C4 (variables 1-5) 

Variable 1 2 3 4 5 
Study 1, n = 80      
1. Self-related processing 
ROI 

1     

2. Social processing ROI 0.705*** 1    
3. Valuation ROI 0.838*** 0.702*** 1   
4. Population-level virality 0.240* 0.253* 0.387*** 1  
5. Self-reported intentions 0.125 0.263* 0.285* 0.337** 1 
Study 2, n = 76      
1. Self-related processing 
ROI 

1     

2. Social processing ROI 0.822*** 1    
3. Valuation ROI 0.814*** 0.770*** 1   
4. Population-level virality 0.094 0.182 0.237* 1  
5. Self-reported intentions 0.146 0.164 0.191 0.372*** 1 

Asterisks indicate statistical significance: *P < .05, **P < 0.01, ***P < 0.001 

Table C3. Correlation matrices underlying the path model in Figure C2 that includes 

unranked variables 

Variable 1 2 3 4 
Study 1, n = 80     
1. Self-related processing 
ROI 

1    

2. Social processing ROI 0.717*** 1   
3. Valuation ROI 0.856*** 0.758*** 1  
4. Population-level virality 0.236* 0.235* 0.352*** 1 
Study 2, n = 76     
1. Self-related processing 
ROI 

1    
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2. Social processing ROI 0.868*** 1   
3. Valuation ROI 0.859*** 0.851*** 1  
4. Population-level virality 0.107 0.163 0.256* 1 

Population-level virality showed a positively skewed distribution and thus was 

log-transformed. Asterisks indicate statistical significance: *P < .05, **P < 0.01, ***P < 

0.001 
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Table C4. Model fit comparison for alternative path structures 

Model !2 (df), P CFI 
RMSEA (90% 

CI) AIC BIC 
Study 1, n = 80      
(A) Valuation mediates 2.36 (2), 

0.31 
0.997 0.05 (0.00-

0.23) 
1,593.80 1,605.71 

(B) Self-related 
processing mediates 

10.63 (2), 
0.01 

0.925 0.23 (0.11-
0.38) 

1.602.08 1,613.99 

(C) Social cognition 
mediates 

10.08 (2), 
0.01 

0.888 0.23 (0.10-
0.37) 

1,601.53 1,613.44 

Study 2, n = 76   0.09 (0.00-
0.26) 

  

(A) Valuation mediates 3.26 (2), 
0.20 

0.986 0.18 (0.05-
0.34) 

1,457.07 1,468.72 

(B) Self-related 
processing mediates 

6.98 (2), 
0.03 

0.955 0.14 (0.00-
0.30) 

1,460.79 1,472.44 

(C) Social cognition 
mediates 

5.09 (2), 
0.08 

0.968  1,458.90 1,470.56 

(A) represents a model resembling the path model in Figure 3.1 excluding the 

two insignificant effects. (B) represents a version of model A in which the roles of 

“valuation” and “self-related processing” are switched. (C) represents a version of model 

A in which the roles of “valuation” and “social cognition” are switched. AIC, Akaike’s 

information criterion; BIC, Bayesian information criterion. 

  



 184 

Table C5. Whole-brain tables: Clusters significantly associated with population-level 

virality ranks of the NYTimes articles shown in each trial during reading screen periods 

(study 1) or abstract trials (study 2) 

Region R/L x y z 
Cluster Nonparametric 

T K T K 
Study 1         
Medial prefrontal cortex* L -3 59 1 4.52 1,495 4.52 90 
Anterior cingulate cortex L -3 47 10 4.27  4.28  
Caudate† R 3 8 -5 2.97    
Dorsomedial prefrontal cortex L -12 38 31 4.08  4.09 14 
Dorsomedial prefrontal 
cortex† 

R 6 68 25 3.22    

Dorsolateral prefrontal 
cortex/superior frontal gyrus 

L -27 53 31 3.28  3.28 11 

Ventromedial prefrontal 
cortex 

L -3 38 -11 4.23  4.24 11 

Lateral orbital frontal cortex L -21 62 10 4.08  4.09 48 
         
Mid cingulate cortex* L -6 -16 34 4.56 549 4.57 129 
Mid cingulate cortex M 0 -22 40 4.33  4.33  
Precuneus† L -18 -49 31 4.09    
Cingulate† R 12 -28 28 3.84    
         
Thalamus L -4 -28 7 -  3.05 32 
         
Study 2         
Medial prefrontal cortex R 15 50 1 4.76 2,698 4.77 905 
Medial prefrontal cortex L -15 50 -2 4.42  4.43  
Ventromedial prefrontal 
cortex 

R 3 38 -8 3.67  3.67  

Anterior cingulate cortex* L -3 32 10 5.33  5.34  
Caudate R 3 8 4 4.73  4.74  
Putamen R 15 8 -8 3.88  3.89  
Caudate L -12 20 1 4.59  4.61  
Caudate R 12 17 1 3.99  4.01  
         
Posterior cingulate cortex* R 3 -40 19 4.48 506 4.50 126 
Posterior cingulate cortex R 6 -22 31 3.99  4.00  
Posterior cingulate cortex L -9 -43 19 3.70  3.72  
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Clusters significantly associated with population-level virality ranks of the 

NYTimes articles shown in each trial during reading screen periods of reading (study 1) 

or abstract trials (study 2). The x, y, and z coordinates correspond to the MNI standard 

brain. No suprathreshold clusters were observed that were negatively associated with the 

parametric modulator. Thresholding: For each study, voxels significant under cluster 

correction and voxels significant under nonparametric correction are shown. Cluster 

correction thresholding was performed based on 3dClustSim simulation at P < 0.005 

uncorrected and K ≥ 320 in study 1 and K ≥ 296 in study 2; nonparametric thresholding 

was performed through nonparametric permutation testing and FDR P < 0.05, K >10. 

Separate clusters in the cluster-corrected map are divided by spaces between rows. df = 

1, 38; voxel size = 3 × 3 × 3 mm. K, number of voxels per cluster. L, left; M, medial; R, 

right.  

*Peak voxel within cluster.  

† Peaks that are present only under cluster correction. 
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