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Flow Behavior And Instabilities In Viscoelastic Fluids: Physical And
Biological Systems

Abstract
The flow of complex fluids, especially those containing polymers, is ubiquitous in nature and industry. From
blood, plastic melts, to airway mucus, the presence of microstructures such as particles, proteins, and
polymers, can impart nonlinear material properties not found in simple fluids like water. These rheological
behaviors, in particular viscoelasticity, can give rise to flow anomalies found in industrial settings and
intriguing transport dynamics in biological systems.

The first part of my work focuses on the flow of viscoelastic fluids in physical systems. Here, I investigate the
flow instabilities of viscoelastic fluids in three different geometries and configurations. Realized in microfluidic
channels, these experiments mimic flows encountered in technology spanning the oil extraction,
pharmaceutical, and chemical industries. In particular, by conducting high-speed velocimetry on the flow of
polymeric fluid in a micro-channel, we report evidence of elastic turbulence in a parallel shear flow where the
streamline is without curvature. These turbulent-like characteristics include activation of the flow at many
time scales, anomalous increase in flow resistance, and enhanced mixing associated with the polymeric flow.
Moreover, the spectral characteristics and spatial structures of the velocity fluctuations are different from that
in a curved geometry. Measured using novel holographic particle tracking, Lagrangian trajectories show
spanwise dispersion and modulations, akin to the traveling waves in the turbulent pipe flow of Newtonian
fluids. These curvature perturbations far downstream can generate sufficient hoop stresses to sustain the flow
instabilities in the parallel shear flow.

The second part of the thesis focuses on the motility and transport of active swimmers in viscoelastic fluids
that are relevant to biological systems and human health. In particular, by analyzing the swimming of the bi-
flagellated green algae {\it Chlamydomonas reinhardtii} in viscoelastic fluid, we show that fluid elasticity
enhances the flagellar beating frequency and the wave speed. Yet the net swimming speed of the alga is
hindered for fluids that are sufficiently elastic. The origin of this complex response lies in the non-trivial
change in flagellar gait due to elasticity. Numerical simulations show that such change in gait reduces elastic
stress build up in the fluid and increases efficiency. These results further illustrate the complex coupling
between fluid rheology and swimming gait in the motility of micro-organisms and other biological processes
such as mucociliary clearance in mammalian airways.
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ABSTRACT

Flow behavior and instabilities in viscoelastic

fluids: physical and biological systems

Boyang Qin

Paulo E. Arratia

The flow of complex fluids, especially those containing polymers, is ubiquitous in nature and

industry. From blood, plastic melts, to airway mucus, the presence of microstructures such

as particles, proteins, and polymers, can impart nonlinear material properties not found

in simple fluids like water. These rheological behaviors, in particular viscoelasticity, can

give rise to flow anomalies found in industrial settings and intriguing transport dynamics

in biological systems.

The first part of my work focuses on the flow of viscoelastic fluids in physical systems. Here,

I investigate the flow instabilities of viscoelastic fluids in three different geometries and con-

figurations. Realized in microfluidic channels, these experiments mimic flows encountered in

technology spanning the oil extraction, pharmaceutical, and chemical industries. In particu-

lar, by conducting high-speed velocimetry on the flow of polymeric fluid in a micro-channel,

we report evidence of elastic turbulence in a parallel shear flow where the streamline is

without curvature. These turbulent-like characteristics include activation of the flow at

many time scales, anomalous increase in flow resistance, and enhanced mixing associated

with the polymeric flow. Moreover, the spectral characteristics and spatial structures of the

velocity fluctuations are different from that in a curved geometry. Measured using novel

holographic particle tracking, Lagrangian trajectories show spanwise dispersion and modu-

lations, akin to the traveling waves in the turbulent pipe flow of Newtonian fluids. These

curvature perturbations far downstream can generate sufficient hoop stresses to sustain the

flow instabilities in the parallel shear flow.
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The second part of the thesis focuses on the motility and transport of active swimmers in

viscoelastic fluids that are relevant to biological systems and human health. In particular,

by analyzing the swimming of the bi-flagellated green algae Chlamydomonas reinhardtii

in viscoelastic fluid, we show that fluid elasticity enhances the flagellar beating frequency

and the wave speed. Yet the net swimming speed of the alga is hindered for fluids that

are sufficiently elastic. The origin of this complex response lies in the non-trivial change

in flagellar gait due to elasticity. Numerical simulations show that such change in gait

reduces elastic stress build up in the fluid and increases efficiency. These results further

illustrate the complex coupling between fluid rheology and swimming gait in the motility of

micro-organisms and other biological processes such as mucociliary clearance in mammalian

airways.
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CHAPTER 1 : Introduction

1.1. Motivation

Complex fluids are a broad class of material that are homogeneous at the macroscopic scale,

disordered at the microscopic scale, yet structured at the intermediate mesoscale. The

presence of these microstructures, such as particles, proteins and polymers in an otherwise

simple fluid, is the norm rather than exception in nature, industry, and everyday life.

Examples include milk, chocolate, cosmetics, paints, polymeric solutions, plastic melts,

biofilms, blood, and mucus. An absolutely beautiful illustration of the rich complexity of

this class of material is provided by McKinley [1] and reproduced in Fig. 1.1.

Figure 1.1: The hitchhiker guide to the universe of complex fluids by Gareth McKinley [1].
The subclass of polymeric fluids resides in the lower right sector.
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More importantly, the structural organization and temporal dynamics at the intermediate

scale strongly determine the macroscopic rheology and bulk flow behavior. In particular,

fluids that contain long-chain flexible polymers, which can align with the flow, stretch under

flow gradients, and relax in time, can possess a highly nonlinear rheological behavior called

viscoelasticity. Depending on the time scale of the external flow, the material can behave

either solid-like or liquid-like; depending on the velocity gradients of the flow, there can be

an elastic stress in addition to the usual viscous stress. This link between material structure

and aggregate behavior can have profound impact on how engineers operate these fluids in

technology settings, such as 3-D printing, oil extraction and fiber extrusion. On the other

hand, it critically affects how micro-organisms and organelles operate within these fluids in

biological settings, such as the spreading of bacteria in the human gut and the mucociliary

clearance in airways.

In this work, I will focus on two aspects of fluid elasticity that are relevant to industrial

applications and human health. First I investigate the flow instabilities and anomalous

transport associated with the nonlinear polymeric stresses that are both history-dependent

and anisotropic. Three types of flow geometries and configurations are studied under high

shear and strong extension flow conditions. In particular, I focus on the sequence of flow

transitions, irregular flow structures, spectral characteristics, and the dynamical conse-

quence on flow resistance. The flow conditions studied here are particularly relevant in

industrial processes such as 3-D prototyping, oil extraction in shale layers, melt extrusions,

and microfluidic mixing.

Second, I investigate the effect of fluid elasticity on the locomotion and transport of active

swimmers. In particular, I focus on the swimming of the bi-flagellated alga Chlamydomonas

reinhardtii in a viscoelastic fluid. The flagella of this green alga share the same “9+2”

microtubule structure as respiratory cilia, and the effect of fluid elasticity on the swimming

kinematics may act as a proxy for similar biological fluids, such as epithelial mucus in the

airways. Although the flagella kinematics in Newtonian fluids have been well studied, the
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effect of fluid elasticity remains poorly understood. The impact of shear-dependent elastic

stresses on the beating of cilia and flagella can have a profound influence on important

biological processes such as fertility, mucus clearance, and respiratory health.

1.2. Thesis Overview and Synopsis

After the background information detailed in Chapter 2, the thesis will be divided into

two main parts, namely physical systems and biological systems. The first part addresses

the flow behaviors and instabilities of viscoelastic fluid in physical flow conditions, realized

in microfluidic devices. The second part addresses biological systems, in particular, the

locomotion and transport of active swimmers in viscoelastic fluids.

We begin with Chapter 3, the study of viscoelastic fluid in straight channel flows at low

Reynolds number. Flow disturbances are introduced to the parallel shear flow by placing

a variable number of cylinders upstream near the entrance. Following the onset of nonlin-

ear subcritical instability, velocimetry measurements show non-periodic fluctuations over a

broad range of frequencies, consistent with the main features of elastic turbulence. Within

the same experimental setup, we compare these features to those in the flow around cylin-

ders, located upstream of the parallel shear region; we find significant differences in power

spectrum scaling, intermittency statistics, and flow structures. Further, using pressure mea-

surements and high resolution holographic tracking, we establish the law of flow resistance

via viscous friction factor fη versus flow rate. Two regimes are found: a transitional regime

marked by rapid increase in drag, and a turbulent-like regime characterized by a sudden

decrease in drag and a weak dependence on flow rate. Lagrangian trajectories show finite

transverse modulations not seen in Newtonian fluids. These curvature perturbations far

downstream are found to generate sufficient hoop stresses to sustain the flow instabilities

in the parallel shear flow.

In Chapter 4, we employ the same viscoelastic fluid and microchannel setup, but instead

of probing the parallel shear region downstream, we look upstream and investigate the
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propagation of flow disturbances and the development of vortices upstream of a single

cylinder. Using holographic velocimetry, we report the transitions of vortices upstream of

the cylinder. First, we observe the emergence of two recirculation vortices in front of the

cylinder that grows in length with Weissenberg number. As Weissenberg number further

increases, the steady vortices become unsteady and ultimately fluctuate between two bi-

stable states. Moreover, the flow disturbance travels upstream of the cylinder in the form of

an elastic wave, whose wave speed increases with shear rate. On the other hand, the velocity

fluctuations upstream are found to be uncorrelated with the flow immediately downstream

of the cylinder, suggesting two distinct mechanisms of instability.

The discussion of purely elastic instabilities continues in Chapter 5 for the cross-slot channel,

an extensional flow system. Using holographic particle-tracking and pressure measurements,

we report a new symmetry-breaking instability that occurs normal to the extensional plane,

in addition to the well studied symmetry breaking within the plane. It is marked by bi-stable

flow switching and apparent “buckling” of the separatrix between the impinging streams.

The disturbances propagate upstream with periods of synchronization and desynchroniza-

tion. These complex flow structures may be present in other extensional geometries.

In Chapter 6, we turn over to biological system and study the swimming of bi-flagellated

alga Chlamydomonas reinhardtii in viscoelastic fluids. We show that fluid elasticity strongly

influences the flagellar beating kinematics in various aspects. First, the beating frequency

and wave speed are increased compared to Newtonian fluid at similar viscosity. Despite the

increase, however, fluid elasticity is found to adversely hinder net swimming speeds of the

alga. Closer inspection of the flagellar beating pattern reveals strong modifications of the

gait caused by fluid elasticity. To isolate the effect of elastic polymeric stress, we conduct

numerical simulations of the stress and flow field around the swimmer using swimming

kinematics obtained from experiments. We find that in viscoelastic fluids, cells employing

the Newtonian strokes swim faster but generate larger stresses, use more power, and is less

efficient compared to those using the viscoelastic strokes. Taken together, fluid elasticity
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couples with swimming gait in a complex and non-linear fashion that is not captured using

viscous fluid theory alone.

Finally, Chapter 8 concludes the dissertation by summarizing the major contributions of this

work. In addition, future prospects and potential directions on the subject of flow behavior

of complex fluids and the impact of fluid property on the motility of micro-swimmers will

be discussed.
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CHAPTER 2 : Background

2.1. Lab-on-Chip and Microfluidics

Analogous to the revolution in computation power brought by integrated circuits, the advent

of microfluidic technology has enabled vast miniaturization and parallelization of fluidic

experiments in a wealth of applications. These include health diagnostics [23,24], molecular

biology [25, 26], cell level biomedical systems [27, 28], cell motility [29–33], organ on a chip

[34–37], microliter or nanoliter scale rheology [17, 38–42], investigations of single polymer

dynamics [43,44], elastic flow instabilities [17,22,45–50] and mimicking flows in porous media

[51–54]. Figure 2.1 (a-c) illustrate a few examples among the broad spectrum of applications,

namely biological protein reactions [2], chaotic mixing at the microscale [3], and perfusion

systems capable of generating combinatorial concentration profiles for multiple species [4].

Figure 2.1: (a) Integrated fluidic chip measuring protein interactions, with scalable au-
tomation and parallelization [2] (circular chambers 250 µm in diameter). (b) Staggered
Herringbone fluidic mixer to induce chaotic mixing at low Reynolds number [3]. (c) Combi-
natorial gradient generator in a microfluidic perfusion device [4]. (d-e) Straight microchan-
nel and the linear array of cylinders used in the current study of elastic instability and
turbulence (channel width 100 µm). (f) cross-slot micro-channel in the current study of
elastic instability (channel width 100 µm).
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The defining characteristic of microfluidics, namely the micro- to nanometer length scale

L, provides many attractive advantages. The small sample volume required is particularly

appealing to biomedical applications where the samples are usually expensive and rare.

Furthermore, the portability, fast reaction time, low cost, and low power consumption

makes the miniaturized system a potential candidate for massive parallelization and high

throughput.

The length-scale found in microfluidic systems has another fluid dynamic implication: it

allows the study of material and flow behaviors in the high shear and strong extension

regime, without the plague of nonlinear inertial effects. Since the deformation rate scales

with the length scale cubed γ̇ ∼ Q/L3 for a given flow rate Q, microfluidic channel easily

access high extensional and shear rates. On the other hand, the ratio of inertial to viscous

forces, as characterized by the Reynolds number (Re), scales only with Re ∼ Q/L and

can be made less than unity. As viscous dissipation dominates, the flow inertia that leads

to hydrodynamic instabilities and turbulence vanishes. Hence for simple Newtonian fluids,

microfluidic system is the preferred platform to eliminate inertia. Hence for fluids with com-

plex rheological properties, particularly viscoelasticity, microfluidics offers a unique window

to isolate nonlinear flow behaviors that originate purely from the material properties.

In this work, we investigate the flow instabilities of viscoelastic fluids at low Re using

microfluidic device. The straight micro-channel with the linear array of cylinders is shown

in Fig. 2.1 (d,e) where the channel width is 100 µm. The cross-slot channel is shown in

Fig. 2.1 (f). These microfluidic devices are made of polydimethylsiloxane (PDMS, Dow

Corning Sylgard 184) using standard soft-lithography methods [55].

2.2. Flow Velocimetry Techniques

In this section, we introduce important flow velocimetry techniques suitable for the study

of elastic flow instabilities in Part I and at the scale relevant to microfluidic systems. Three

techniques are discussed, namely the micro-particle image velocimetry, particle tracking
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velocimetry, and holographic particle tracking velocimetry.

µPIV Technique – Traditionally, to resolve the velocity fields in macroscopic flow geome-

tries, particle image velocimetry (PIV) with laser sheet illumination is often used [56, 57].

In this method, the motions of individual tracer particles are not resolved. Instead, image

of densely seeded flow is partitioned into interrogation windows much larger than the par-

ticle. The windows are then cross-correlated between consecutive time frames to determine

the most probable local displacement. For micron scale channel flows, micron-resolution

particle image velocimetry(µPIV) inherits the method of conventional PIV yet tackles the

unique challenges optical and mechanical constraints such as tracer size, illumination, and

particle-image interrogation/post-processing algorithms [58]. Although high accuracy Eule-

rian velocity fields can be obtained using techniques such as ensemble averaging, the spatial

resolution of the velocity field is heavily limited by the size of the interrogation window.

The in-plane spatial resolution is around 1 micron (or above) for channels of dimension

∼100 micron in most advanced applications of this technique [58,59].

PTV Technique – As an alternative, particle tracking velocimetry (PTV) technique can be

used to potentially increase the spatial resolution at the particle-level [17,47,60,61]. In this

technique, developed by Crocker and Grier [60], particle centroids are directly estimated

and then connected between frames to form a Lagrangian trajectory. Spatial resolution of

the particle centroids for standard calibration systems that are two-dimensional with non-

overlapping particles, can reach 0.02 pixels (or 10 nm for 100×) [60]. In 3-dimensional flow

systems and epifluorescent microscopy, however, the out-of-plane heterogeneity and noise

from particles outside the focal plane and reduce the actual spatial resolution and produce

challenges in connecting centroids across frames. On the other hand, increasing optical

magnification sacrifices precious field of view require to visualize the micro-channel setup.

In our PTV setup, we use particles of 0.6 µm and 1 µm diameter imaged using conventional

epifluorescent microscopy. A Zeiss Z1 inverted microscope with 63× N.A. 1.0 oil immersion

objective. The objective’s depth of focus is ± 2 µm, comparable to the particle diameter to
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minimize the out-of-plane contributions. A high-speed camera (up to 104 frames/s, Photron

SA1.1) is used to resolve the fast varying temporal dynamics of the flow. In-house image

processing, band pass filter, and particle search algorithms are used to connect consecutive

particle centroids and discriminate spurious trajectories. The resultant spatial accuracy for

this method is around 200 nm with velocity grid resolution of 1 µm.

Figure 2.2: The holographic particle tracking technique, applied in the cross-slot channel
geometry of the current study. (a) Typical particle scattering fields. (b) Ensemble of
3-dimensional particle trajectories obtained from the holographs.

Holographic PTV Technique – In order to obtain 3-dimensional Lagrangian particle tra-

jectories at high spatial and temporal resolution, we use a holographic particle tracking

scheme adapted from [62, 63]. The flow is seeded with tracers (1 µm diameter) which are

imaged using an inverted microscope and a CMOS camera (5000 fps). Under a coherent

light source (DPSS 532 nm Laser), tracer particles induce a light scattering field which is

projected onto the imaging plane. This scattering image, after application of background

subtract algorithm, is shown in Fig. 2.2(a) where identified particles are indexed in the order

of their separation from the image plane. The out-of-plane (z) positions of tracer particles

are reconstructed by finding the local maxima of the 3-d convolution field between the scat-

tering image and the Rayleigh-Sommerfeld kernel. Standard particle tracking methods are

then used to connect the centroids to form Lagrangian particle trajectories. To estimate

the uncertainty at actual experimental conditions, we compute the standard deviation of

the particle trajectories measured within the microchannel at experimental flow rates for a
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viscous Newtonian fluid where particle diffusion is negligible. The uncertainty of the parti-

cle centroid for actual microchannel conditions and seeding density (10−5 volume fraction),

is around 30 nm for the in-plane (x, y) components and 0.6 µm for the out-of-plane z.

Finally, one can characterize the flow tracer fidelity with the particle Stokes number [64],

which in the case of Stokes flow, amounts to St = ρ0d0U/18η, where ρ0 is particle density,

d0 is particle diameter, U is the velocity of the flow, and η is the fluid viscosity. For the

tracer particles and the viscosity of the working fluids used in the study of elastic flow

instabilities, the Stokes number is small, St . 10−6. This means particles will follow flow

streamlines almost perfectly. The fractional error in tracer displacements due to Brownian

noise can be estimated by εB = 〈s2〉1/2/∆x, where 〈s2〉 is the mean square displacement

of the tracer and ∆x is the displacement due to advection [59]. Invoking the Einstein’s

relations, we find that even for the lowest flow rates in our experiments, εB . 0.06%. Hence

Brownian motion is negligible relative to the convective transport. Lastly, we note that the

concentration of the tracer particles are dilute (. 10−3 by volume in PTV and . 10−5 in

holographic PTV) and do not noticeably alter the properties of the fluid.

2.3. Constitutive Equations

The relationship between stress response and material deformation for many complex fluids,

in particular viscoelastic fluids, is neither well understood nor perfectly captured by even

the most sophisticated models. Yet the many advances in theoretical and numerical studies,

based on constitutive modeling, are often times necessary to gain insights into the underlying

physics. In this section, I will briefly discuss a well-known yet relatively simple constitutive

model for viscoelastic fluids, the Oldroyd-B model.

Oldroyd-B fluid model has been a popular constitutive model for the study of flow of

viscoelastic fluids, due to its formal simplicity, reasonable agreement of normal stresses

with experiments in shear flows, and separate contributions of the solvent and polymer

to the viscosity [65, 66]. These properties made Oldroyd-B model particularly appropriate
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for Boger fluids, which are highly elastic with minimal shear-thinning. The appeal of this

model also lies on the fact that it can be derived from first principals by modeling polymer

molecule as spherical beads joined together by linear Hookean spring [67].

In the Oldroyd-B model, the total stress τ is written as the sum of the solvent stress

contribution τ s and the polymer stress contribution τ p [65, 66], given by:

τ = τ s + τ p. (2.1)

The solvent contribution, usually assumed to be Newtonian (e.g. water, glycerol), follows

the usual Newton’s law of viscosity and can be expressed as:

τ s = ηs
[
∇u+ (∇u)T

]
, (2.2)

where ηs is the solvent viscosity, and ∇u is the velocity gradient. The polymer stress

contribution to the total stress, however, can be modeled by considering the elastic spring

force that joins the beads, the drag force exerted by the solvent, and Brownian motion. The

result can be described by the following evolution equation for polymeric stress:

τ p + λ
O
τ p= ηp

[
∇u+ (∇u)T

]
, (2.3)

where λ is the fluid relaxation time, ηp is the polymer viscosity contribution, and
O
τ p denotes

the upper-convected derivative defined as:

O
τ p=

∂τ p
∂t

+ u · ∇τ p − (∇u)T · τ p − τ p · ∇u. (2.4)

Note that the first two terms are the usual material acceleration due to unsteadiness and

advection, while −(∇u)T · τ p − τ p · ∇u is the rate of change of stress as observed while

translating and deforming with the fluid. Such coupling of polymeric stress and deformation

brings nonlinearities to the constitutive equation and is the root of many flow anomalies,
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even when the inertia is absent.

For steady simple shear, Oldroyd-B model predicts that the shear stress is:

τxy = (ηs + ηp)γ̇xy, (2.5)

which suggests the viscosity is the sum of the solvent and polymeric viscosity contributions.

The 1st normal stress difference, in steady shear, is quadratic in shear rate:

N1 = 2ηpλγ̇
2
yx, (2.6)

which agrees well with the rheology of Boger fluids.

The Oldroyd-B model is one of many possible constitutive models for viscoelastic liquids

and suffers several limitations. For example, it does not capture the shear thinning behavior

present in most polymeric fluid. More importantly, this model does not impose a limit on

the extension of the linear springs, which can grow unbounded in extensional flows and

lead to infinite stress [68], which is apparently unphysical. Due to these limitations, other

models have been developed including the Finite Extensibility Nonlinear Elastic (FENE)

model and its variations (e.g. FENE-P, FENE-PM, for detailed comparison see [69]). For

example, FENE-P model accounts for the finite extensibility of polymer molecules and

exhibits shear-thinning behavior [70–72]. In steady shear, FENE-P predicts

N1 ∝
{

sinh

[
1

3
arcsinh (αλγ̇)

]}2

(2.7)

which approaches γ̇2/3 for large shear rates and γ̇2 at low shear rates. Despite these im-

provements, FENE-P model is not able to describe the broad distribution of relaxation

times in most polymeric fluids.

In general, all such models have strengths and limitations and the true test of validity

for any constitutive models is whether it predicts the primary rheological responses of the
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viscoelastic fluid as measured in laboratory rheometric tests, which we describe below.

2.4. Rheology of Viscoelastic Fluids

The addition of long chain polymers to a Newtonian fluid can strongly modify its rheology,

imparting solid-like behavior known as viscoelasticity. The most pronounced features of

these fluids, as measured by carefully designed rheological tests, are a non-zero normal

stress difference and a memory of past deformation within a time frame known as the

relaxation time. In the previous section, we discussed the constitutive models that attempt

to captures these features. Here, I will briefly discuss the rheometry – i.e. the measurement

and quantification of the flow of fluids – that is essential to the study of the flow behavior

and transport of any complex fluid, in particular polymeric solution.

In a gross sense, a rheometer is a device that measures the material response, usually stress

or deformation, to an imposed perturbation, large or small, steady or unsteady, shearing

or elongational. Common geometries used in macroscopic rheometers include capillary

tube, cone-and-bob, parallel plate, and cone-and-plate geometries. However, the cone-plate

geometry, shown in Fig. 2.3(a), stands out for the uniform flow shear rates within the gap

and has been the most commonly used geometry for characterizing fluid properties of non-

Newtonian fluids.

In cone-and-plate rheometers, The test fluid is placed between the bottom horizontal plate

and an upper cone with a shallow angle (β < 6◦). The shear rate within the gap is uniform

and given by:

γ̇ ≈ ω

β
, (2.8)

where ω is the rotational speed of the cone. The first normal stress difference N1 can be

obtained by measuring the vertical thrust force Fz and is given by:

N1 =
2Fz
πR2

, (2.9)
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Figure 2.3: (a) Schematic of the cone-and-plate rheometer, adapted from the classic book by
Macosko [5]. (b) Stress relaxation in the cessation of shear test for 300 ppm polyacrylamide
(PAA, 18×106 MW) solution in 90% glycerol using cone-and-plate rheometer. The shear
rate applied is 10 s−1. (c) Steady shear viscosity and (d) first normal stress difference for
300 ppm PAA solution in 90% glycerol obtained using cone-and-plate rheometer at 21 ◦C.

where R is the radius of the cone.

Once the geometry has been chosen, various steady and unsteady dynamical tests can be

conducted to probe the rheological response of the viscoelastic fluids. For instance, in small

amplitude oscillatory shear (SAOS), one can observe the presence of a stress component that

is in-phase with strain [73], contrary to Newtonian fluids where stress is purely in-phase with

strain rate. In capillary filament thinning tests, where the diameter of the filament decreases

linearly in time for Newtonian fluids, an elastic fluid, in contrast, thins exponentially with

characteristic time of 3λc [74] (valid after the initial viscous regime but before the late-time

finite extension regime). Here λc is closely related to the longest relaxation time of the fluid

and sets the crossover time scale between solid-like behavior versus liquid-like behavior. In

step shear strain and steady shear cessation tests, the stress also relaxes with characteristic

time λ [73]. Figure 2.3(b) shows the stress relaxation after cessation of steady shear for
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the particular fluid we will be using to study elastic instabilities. We see that after a rapid

initial decay in the inertial regime, the stress decays with a fairly constant time scale λ.

Yet we note that the fluid in fact has a spectrum of relaxation times and the λ here is the

dominant one. In steady shear, one can clearly observe a non-zero normal stress difference

for viscoelastic fluids. These elastic stresses are due to the stretching of the polymers and

in general, grow with increasing shear rate prior to the finite extensibility regime. Also,

a shear-thinning viscosity is often present when the solvent viscosity is significantly lower

than the polymer contribution. Figure 2.3 (c,d) illustrates these two behaviors for the same

polymeric solution shown in (b). These complex material responses of viscoelastic fluids

give rise to a range of applications as well as challenges in both physical flow systems and

biological processes, whose context we introduce next.

2.5. Part I: Flow Anomalies of Viscoelastic Fluids

2.5.1. Inspirations from Newtonian Pipe Turbulence

In this section, we review several aspects of the pipe turbulence of Newtonian fluids, in

particular the transition from laminar to turbulent, the coherent structures, and the key

features of turbulence. The phenomenology is deeply intriguing and the insights gained

serve as a roadmap where many analogies can be made for our study of elastic instability

in channel flows.

Hydrodynamic instabilities and turbulence have long attracted the attention of engineers

and scientists. In 1883, Osborne Reynolds presented the seminal experimental study of

turbulence transition in pipe flow [6]. He found that: (i) when the velocity of water is low,

layers of fluid flow smoothly in parallel without mixing, i.e. laminar, as shown in Fig. 2.4(a);

(ii) at intermediate flow rate, a certain amplitude of perturbation is needed to drive the

dye stream to curl and penetrate into the surrounding water at a considerable distance

from the inlet (Fig. 2.4 b); (iii) when the velocity is sufficiently high, the steady laminar

flow breaks down and the dye stream quickly disperses into the surrounding water showing
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Figure 2.4: Experimental results of the flow of water in pipes by Osborne Reynolds [6]. (a)
Direct flow where the dye stream is smooth and straight. (b) Sinuous flow where the dye
stream mixes and penetrates the surrounding fluid far from the inlet. (c) At sufficiently
high flow rate, the dye stream quickly disperses into the surrounding fluid in eddies and
curls.

distinct eddies (Fig. 2.4 c). Reynolds also showed for the first time the transition from a

laminar and steady flow state to a sinuous and irregular one is controlled by a dimensionless

parameter, later called the Reynolds number (Re). This dimensionless number characterizes

the level of nonlinear inertial forces relative to viscous damping forces in the flow.

More than a century after Reynolds’ experiments, the mechanism governing the transition

in pipe flow is still an unsolved mystery. In contrast to other laminar-turbulence transitions

where the base flow is linearly unstable and a sequence of flow instabilities provide possible

routes to turbulence, the transition in pipe flow occurs suddenly and fully [9]. The Poiseuille

base flow is linearly stable, yet transitions can be subcritical and patches of turbulence

can emerge in the form of localized “puffs” surrounded by laminar flow at moderate Re

(1800< Re <2500) [75].

The discovery of transient traveling waves marks a major advance in pipe turbulence. First

found numerically, these traveling waves, or coherent structures moving at constant wave

speed, are the unstable solutions to the Navier-Stokes equation [76]. In their multitude,

they form a chaotic repellor in phase space [77], which gives rise to long-lived turbulent

transients. The experimental evidence of these transient flow states is later reported by Hof
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Figure 2.5: Coherent traveling wave structures and the self-sustaining process. (a) Com-
parison of experimentally (top) and numerically (bottom) observed streak patterns on a
cross-section of turbulent pipe flow [7]. Arrows indicate in plane components while color
indicates deviation from the parabolic profile. Left column shows traveling waves with C2

symmetry mode and right shows C6. (b) the self-sustaining process proposed by Waleffe [8].
(c,d) Experimental evidence of the regeneration process [9]. (c) Three-dimensional recon-
struction of the low-speed (blue) and high-speed (red) streaks. (d) The formal appearance
of wavy streaks (blue) sandwiched by counter-rotating streamwise vortices (yellow and red).
The periodicity λ is shared by both the wavy streak as well as from the vortices.

et al [7]. Figure 2.5(a) top row shows the experimentally observed high speed streaks and

low speed streaks of the streamwise velocity within a cross section of the pipe, showing the

presence of traveling waves. Excellent agreement with the numerical prediction (bottom

row) [77,78] are found for both the C2 and C4 symmetry modes (first and second column).

This discovery forms an important piece to the self-sustaining process proposed by Waleffe

[8, 79], shown in 2.5(b). In this conjecture, streamwise vortices that redistribute the mean

shear create streaks, which become inflexionally unstable. Nonlinear self-interaction of

the unstable modes then regenerates the streamwise vortices, closing the self-sustained

loop [7, 8]. Again, the experimental evidence of such regeneration cycle is reported by Hof

et al [9] and Fig. 2.5(c) shows that the low-speed streak (blue) undergoes a wavy instability

while (d) shows counter-rotating streamwise vortices (yellow and red) surrounding the wavy

streak (blue). Taken together, we conclude that the traveling wave coherent states are indeed

crucial in organizing turbulence pipe flows.

Although the transition to turbulence is highly individualistic to the flow geometry, once the
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Figure 2.6: Features of turbulence in pipes. (a) Highly irregular flow structures and en-
hanced mixing [Courtesy J. Peixinho and T. Mullin]. (b) Flow is activated at many time
scales and length scales; velocity spectra follow power-law decays [10]. (c) Strong increase
in flow resistance compared to the laminar base flow, depicted by the Moody diagram [11].

flow becomes fully turbulent, however, many universal features emerge. These includes: (i)

highly irregular flow structures and enhanced mixing, see Fig. 2.6(a), where the length-scales

of the structures become progressive finer as Re increases; (ii) flow is activated at many

time-scales and length-scales and velocity spectra follows the almost universal 5/3 power-

law decay [10], as shown in Fig. 2.6(b); (iii) strong increase in flow resistance compared to

the laminar base flow due to turbulent structures and enhanced momentum transport. The

friction factor versus Re is shown by the Moody diagram, reproduced here in Fig. 2.6(c) [11].

Although the singular driving force of nonlinearity is inertia, these flow characteristics of

Newtonian pipe turbulence will be particularly relevant for our study of elastic turbulence

at low Reynolds number.

2.5.2. Elastic Instabilities and Elastic Turbulence in Curved Geometries

Fluids containing polymers are found in everyday life, from food, paint, to cosmetics, and

in technologies spanning the oil, pharmaceutical, and chemical industries. As the polymers
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stretch and align with the flow, they develop elastic stresses that are history-dependent,

anisotropic, and relaxes with time scale λ. These extra stresses are nonlinear under shear

and can dramatically alter the flow behavior. At low Reynolds numbers where inertia is

negligible, elastic stresses can lead to a new class of flow instabilities not found in ordinary

fluids like water. They can also exhibit a new type of disordered flow called elastic turbulence

– a turbulent-like regime existing far below the dissipation scale [13,22,80].

A wealth of the studies of elastic instabilities and elastic turbulence are conducted in systems

where the mean flow is strongly curved, such as the flow between rotating disk [13, 81, 82],

between concentric cylinders [12, 80, 83, 84], serpentine channels [22], cross-slot channels

[47,48,85], and around cylinders [86,87]. In these systems, high velocity gradients stretch the

polymer and the curved streamlines induce a so-called “hoop stress” which has a component

normal to the streamlines and can amplify secondary flow perturbations.

Figure 2.7: Photographs of purely elastic instability in Taylor-Couette flow by Muller,
Larson and Shaqfeh [12]. The flow structures are made visible by adding mica flakes. (a)
Taylor cell instability of a Newtonian fluid (glycerol solution). (b) The onset of elastic
instability at low inertia and Taylor number. (c) The irregular multi-wavelength structure
at late times.

For example, in a classic experiment done by Larson, Shaqfeh, and Muller, a secondary

cellular instability was observed in Taylor-Couette flow of of polymer solutions at vanishing

Taylor number [12, 83]. The polymeric fluid used is a 1000 ppm polyisobutylene (PIB)
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solution dissolved in a highly viscous polybutene (PB) Newtonian solvent. Such dilute

solution of high molecular weight polymers (e.g. PIB, PAA) dissolved in a low molecular

weight viscous solvent (e.g. PB, glycerol) are known as Boger fluid which is highly elastic

with minimal shear thinning viscosity [66,88]. For Newtonian fluids at high enough Taylor

number (∼103), a series of toroidal vortices, known as Taylor vortices emerges along the

circumference, shown in Fig. 2.7 (a). Strikingly, when the Newtonian fluid is replaced with

Boger fluid, they find that even without inertia (vanishing Taylor number), the onset of

toroidal vortices still occurred, (Fig. 2.7 b). At short times, this banded vortex structure is

comparable to the inertia-driven Taylor vortices with approximately the same wavelength.

At long times (more than 1000 s), however, the banded vortex structure becomes highly

irregular with multiple wavelengths (Fig. 2.7 c).

Groisman and Steinberg continued to study other geometries with curved streamlines and

showed that following the onset of elastic instabilities, viscoelastic fluids at high shear

rates can display many flow features that resemble those found in Newtonian turbulence

[13, 22, 89]. In particular, for the parallel plate system shown in Fig. 2.8 (a), they found

highly irregular flow structures and mixing patterns (Fig. 2.8 b), similar to that reported by

Muller, Larson and Shaqfeh in the Taylor-Couette flow. Moreover, the flow is activated at

many times scales and velocity spectra follow a steep -3.5 decay law shown in Fig. 2.8 (d).

By mounting the system on a commercial rheometer, they also measured both the torque

needed to drive the flow and the flow resistance. Compared to the predicted laminar flow,

the viscoelastic drag is seen to increase by a factor of twenty following the transition to

irregular flow. Despite the arbitrarily low Reynolds number, these observations match the

main features of developed turbulence [90].

The origin of these flow anomalies of viscoelastic fluids lies in the extra elastic stress that

develops due to the mechanical response of the polymers to external flow. At high velocity

gradients, the polymer molecules can be stretched to an elongated state from a “coiled”

state [73] [43]. The level of stretching experienced by the polymers can be quantified by
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Figure 2.8: The study of elastic instabilities in parallel plates by Groisman and Steinberg,
leading to the so-called “elastic turbulence” [13]. (a) The system is mounted on a com-
mercial rheometer for torque measurements in addition to the laser Doppler velocimetry
measurements. The fluid used is 80ppm polyacrylamide (PAA) in 65% saccharose and 1%
NaCl in water. (b) Bottom view of the flow pattern visualized using Kalliroscope flakes. (c)
Stress ratio relative to a computed laminar value shows a clear transition in flow resistance.
Curve 1,2 are for two different plate diameters. Curve 3 is for Newtonian solvent. (d) Power
spectra of velocity fluctuations for various shear rates in the unstable regime.

the Weissenberg number, defined as Wi = λγ̇ where γ̇ is the flow shear rate and λ is the

fluid relaxation time [91]. When Wi is increased beyond a critical value (around unity),

polymer molecules unravel and become increasingly stretched until the nonlinear elasticity

limits further extension. This “coil-stretch” transition is first seen in extensional flows and

is later found to be strongly hysteretic [43, 92–94]. In shear flows, however, the average

polymer extension does not display a sharp coil-stretch transition. Instead, they undergo

large and frequent excursions in extension, and unstable “tumbling” events [95].

A classic example of flow phenomenon due to the stretching of flexible molecules is the

so-called “rod-climbing” effect, where a viscoelastic fluid creeps up a rotating rod [14],
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Figure 2.9: Macroscopic “rod-climbing” and its microscopic origin. (a) Rod-climbing (Weis-
senberg) effect of a viscoelastic fluid around a rotating rod [14]. (b) The radial component
associated with the “hoop stress” generated by polymer stretching in flow with curved
streamlines. (c) Flow of polymeric solution around a cylinder, visualized by fluorescently
labeled lambda-DNA tracer molecules, Arratia lab.

shown in Fig. 2.9 (a). The force responsible for this effect lies in the centripetal stress

component associated with the “hoop stress” generated by the shear-induced stretching of

polymer molecules in the flow, shown schematically in Fig. 2.9 (b). The τθθ component,

which for Newtonian fluid points outward, is instead directed inward along the radius of

curvature R for viscoelastic fluids and can generate a centripetal body force that pushes the

fluid inward and up. Figure 2.9(c) shows the microscopic view of this picture in a slightly

different condition. Here, a fluid with fluorescently labelled long-chain DNA molecules is

flown around a cylinder from left to right. As they travel near the obstacle, the DNA

molecules are seen to align with the streamlines and stretch to their extended states.
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The heuristic principal sketched here can be generalized and made rigorous in many sys-

tems with streamline curvature. In fact, it has been argued that curved streamlines are a

necessary condition for infinitesimal perturbations to be amplified by the normal stress im-

balances in viscoelastic flows. The Pakdel-McKinley criterion, proposed from linear stability

arguments, can be written as [83,96,97]:

[
λU

R
N1

τp,s(γ̇)

]1/2

≥M, (2.10)

where M is a constant that depends on the type of flow geometry, U is a typical velocity

along the streamlines, R is the radius of curvature, and τp,s(γ̇) is the polymeric shear stress.

According to this criterion, purely elastic linear instabilities are not possible in parallel shear

flow such as plane Poiseuille flow and pipe flow, and infinitesimal perturbations decay at a

rate proportional to 1/λ [96, 98].

2.5.3. Nonlinear Subcritical Instability in Parallel Shear Flows

Yet linear stability of the base flow does not imply a global stability. Indeed, there has

been mounting evidence that the flow of viscoelastic fluids in pipes and straight channels

are nonlinearly unstable and undergo a subcritical instability at sufficiently high flow rates

even at low Re [15–17, 99–101]. A possible route to unstable flows gradually emerges fol-

lowing a series of theoretical investigations demonstrating the possibility of a subcritical

bifurcation from the linearly stable base states [15, 16, 99]. The basic argument is that

following a sufficiently strong perturbation to the streamline, such as the one shown in

Fig. 2.10(a), the locally generated curvature can then drive the flow unstable via same in-

stability mechanism in curved systems at high enough Weissenberg number Wi. The leads

to the subcritical bifurcation shown in Fig. 2.10(b), where flow perturbations below the crit-

ical threshold (dashed line) will decay while those above it will survive and drive the flow

unstable. Moreover, this threshold is lowered for increasing control parameter Wi. Using

nonlinear stability analysis on the plane Couette flow of the Upper-Convected Maxwell fluid,

Morozov and von Saarloos identified such threshold amplitude of the perturbation [15], as
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Figure 2.10: Theoretical evidence of a possible subcritical instability in plane Couette flow
[15, 16]. (a) Finite amplitude perturbation on the streamline generates local curvature,
from [16]. (b) “Bifurcation from infinity”, or the subcritical instability where the base
flow is linearly stable for all values of control parameter, may characterize the transition
in parallel shear flows [16]. (c) Stability phase diagram obtained from nonlinear stability
analysis of plane Couette flow for the Upper-Convected Maxwell fluid [15].

shown in Fig. 2.10(c).

Other theoretical investigations using non-modal analysis predict the transient growth of

perturbation [102,103]. Their results show that streamwise velocity fluctuations can be sig-

nificantly amplified for viscoelastic fluids in the absence of inertia. Subsequent experiments

in small pipes found unusually large velocity fluctuations that are activated at many time

scales [101] and experiments on polymer melt extrusion found hysteretic behavior in the

melt fracture instability [100].

More recently, experiments in a straight long microchannel using a linear array of cylin-

24



(b)

(a)

(c)

(d)

Figure 2.11: Experiment in microchannel with flow perturbation generated by a linear
array of cylinders demonstrates the nonlinear subcritical instability of a viscoelastic fluid
in parallel shear flow [17]. (a) Device schematic. (b) Stability phase diagram consisting
of the degree of nonlinear elastic stresses (Wi) and the level of perturbation (n). (c)
Normalized velocity fluctuation showing the bifurcation depends on both the perturbation
by the cylinders as well as Wi. (d) Hysteretic loop of velocity fluctuations between ramping
up and down.

ders as flow perturbation found strong evidence of a nonlinear subcritical transition to an

unstable state of sustained flow fluctuations [17]. The schematic of the setup is shown

in Fig. 2.11(a) where the channel length is about 300 times the channel width (W = 100

µm). The region of initial flow perturbation by the cylinders lasts about 6% of the channel

length, and the number of cylinders is adjusted to varying the level of flow perturbation.

The flow of a Boger-like fluid, a 300ppm PAA dissolved in 90% glycerol by weight solution,

is monitored far downstream in the parallel shear region at x = 200W . They find that,

above a critical level of perturbation and flow rate, a sudden onset of sustained velocity

fluctuations is observed. In contrast, the flow at lower Wi or when the number of cylinders

is less than 2, has minimal fluctuation, on par with the level of instrument noise. This

behavior is quantified in Fig. 2.11(c) where the normalized velocity fluctuation is shown for

various Wi and the number of cylinders n. For n ≤ 1, the flow shows minimal fluctuation

at all Wi investigated. For n ≥ 2, however, a sudden transition to sustained high levels of
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fluctuations is observed beyond a critical Wi. The stability phase diagram can be plotted

(Fig. 2.11b) which reflects such dependency of the transition on the perturbation level. Note

the striking agreement here with the theoretical analysis shown in Fig. 2.10(c). Further, a

flow hysteresis between ramping up and ramping down in flow rate is identified in the par-

allel flow region (Fig. 2.10d) which occurs due to the inflection of the stability curve, typical

for a subcritical transition.

Taken together, the above features strongly suggest the existence of a nonlinear finite ampli-

tude transition in the parallel shear flow of a viscoelastic fluid. The instability is subcritical

– a sudden onset of sustained velocity fluctuations above a perturbation threshold and a

critical flow rate. This scenario is akin to the transition from laminar to turbulent flow of

Newtonian fluids in pipe flows [6,104], except the driving force is elastic stresses rather than

inertia.

Yet many questions remain unanswered. Unlike the Newtonian pipe turbulence, however,

little is known about the basic structures organizing the instability and the law of resistance

(i.e. pressure loss due to friction) as the flow transitions from a stable to an unstable state.

Further, is there characteristics of elastic turbulence? What are the phenomenological

distinctions between polymeric flow in parallel shear flows compared to that in curved

geometries, given that the transition mechanisms are markedly different? Lastly, can we find

direct experimental evidence for the “instability upon an instability” picture for subcritical

transition?

2.6. Part II: Locomotion and Transport in Viscoelastic Fluids

In this section, we first introduce some well established results and previous work on the

locomotion of active swimmers at the microscale. Then we shift our focus to the swimming

in viscoelastic fluids.
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Figure 2.12: Micro-swimmers and the flow fields that they generate. (a) Bacteria Es-
cherichia coli with helical flagella, courtesy Howard Berg, and (d) the positive force dipole
field generated. (b) Bi-flagellated green alga Chlamydomonas reinhardtii [18] and (e) the
flow streamlines around it, resemble those generated by a negative force dipole [19]. (c)
Millimeter-scale roundworm Caenorhabditis elegans [20] and (f) the streamlines around the
swimmer [21].

2.6.1. Swimming at Low Reynolds Number

The swimming of micro-organisms at low Reynolds number is a classic fluid dynamics

problem motivated by important biological processes found in nature. Here we define the

Reynolds number as Re = U`/ν, where U is the velocity of the swimmer, ` is the length scale

of the swimmer, and ν is the fluid kinematic viscosity. For micrometer-size swimmers, such

as bacteria, algae, and spermatozoa, the Reynolds number is usually far less than unity

and linear viscous drag dominates over nonlinear inertia. The lack of inertia has many

consequences in the fluid dynamics of the swimming. The equations of motion become

time-reversible and any reciprocal motion brings the swimmer back to its original location,

a curse known as the “Scallop theorem” [105]. Moreover, without inertia all forward motion

comes to a halt once the swimmer stops its action and coasting is impossible. To achieve

locomotion at low Reynolds number therefore, micro-swimmers device a wide range of

swimming strategies. These include: (i) pushers such as the bacteria Escherichia coli with

27



rotating helical propellers or flagella located on the trailing side of the swimming direction,

(ii) pullers such as the green algae Chlamydomonas reinhardtii with a pair of flexible oars

located on the leading side of the swimming direction [18], and (iii) undulatory swimmers

such as Caenorhabditis elegans with body deformations resembling traveling waves. Figure

2.12(a-c) illustrate these three types of swimmers. Of course, the crude classification here

does not address the rich complexity of swimming methods such as squirmers with surface

tangential waves and metachronal waves (alga Volvox carteri) [106] and swimming dynamics

such as the run-and-tumble or run-reverse-flick behavior of bacteria [107].

Understanding the locomotion of these micro-organisms at low Reynolds number can led to

profound insights and practical control on how they feed, spread, and proliferate. A classic

example is the chemotaxis of E. coli towards regions with higher nutrient concentration,

where swimming bias is generated by suppressed run-and-tumble reorientation when swim-

ming up the chemical gradient [108]. With the advent of medical robotics, the development

of micro-scale artificial swimmers has gain tremendous popularity, driven by applications

such as targeted drug delivery and robotic surgery. One of the leading avenues of such re-

search is the use of magnetic fields to actuate micro-fabricated bio-inspired helical structures

in fluids [109] and catalytic artificial swimmers for drug delivery [110] among others.

Extensive progress has been made to understand the underlying physics of swimming at low

Reynolds number in Newtonian fluids. Early theoretical works use geometric abstractions

of the swimming motion and resolve the full flow fields around the swimmer. Sir Geof-

frey Taylor developed the infinite waving sheet [111] and filament [112] models with small

beating amplitude and established the basic relationship between propulsion and swimming

kinematics such as wave speed and amplitude for undulatory swimmers. For large deforma-

tion of thin filaments, useful approximations such as resistive force theory and slender body

theory are developed. The former relies on anisotropic drag coefficients that are assumed

to be local to each segment (i.e. no interaction between distant segments). Such theory

is accurate in the limit of exponentially thin filaments. The slender body theory, however,
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removes this constraint and requires only thin filaments [113]. The idea is to approximate

the flow induced by the filament surface with that induced by a distribution of stokeslets

along its centerline [106,113].

A feature common to these theoretical studies is that the swimming gait is assumed to be

fixed and independent of the fluid properties. Yet even in Newtonian fluids, the swimming

gait and speed of actual micro-swimmers can by altered by viscosity [114]. The ability to

study the effect of fluid rheology on the swimming gait of micro-organism has been enabled

by advances in modern microscopy. Experiments that directly visualize the contours of the

swimming apparatus and the flow field generated by the swimmer become available. For

example, the flow streamlines generated by the three representative swimmers are shown

in Fig. 2.12(d-f). These experimental methods greatly facilitate the study the effect of fluid

rheology on the swimming dynamics of micro-organisms.

In reality, however, biological fluids such as airway mucus, often contain proteins and poly-

mers. These fluids possess rheological properties much more complex than simple Newtonian

fluids like water. The next section reviews studies of locomotion in viscoelastic fluids.

2.6.2. Swimming in Viscoelastic Fluids

Understanding the locomotion of micro-swimmers in viscoelastic fluids is motivated by the

fact that many fluids encountered in biological processes contain polymers and proteins.

Examples include the swimming of spermatozoa in the cervical mucus [115], the mucociliary

clearance by the airway epithelial cilia [116, 117], and the penetration of stomach mucus

lining of the ulcer-causing bacteria Helicobacter pylori [118].

The presence of polymers can profoundly alter swimming at Low Reynolds number. The

first example is the breakdown of the scallop theorem due to the history-dependent nonlinear

fluid rheology. Even in the limit of a periodic motion executed at the same rate back and

forth, the strain-dependent elastic stresses can generate propulsion [119, 120]. The waving

sheet model for Oldroyd-B and FENE-P fluids has been derived by Lauga who showed that
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elasticity consistently hinders motility relative to a Newtonian fluid [121]. This result is

consistent with perturbation analysis of infinitely long cylinders using Upper Convected

Maxwell model. Numerical simulations with spherical squirmers in Giesekus fluid [122] and

experiments with C. elegans in long-chain carboxymethyl cellulose polymer into water [123]

have also showed that swimming speed is reduced compared to Newtonian counterparts. On

the other hand, simulations of finite sized moving filaments [124] and large tail undulations

[125] suggest that fluid elasticity can increase the propulsion speed – consistent this time

with experiments on rotating mechanical helices [126]. Recently, experimental work on E.

coli find that the presence of polymers can dramatically increase swimming speed, attributed

to suppressed tumbling by viscosity and speed boost by elasticity [114]. Taken together, it

becomes clear that there is no universal answer to whether motility is enhanced or hindered

by viscoelasticity. Instead, the fluid rheology is strongly coupled to the swimming gait and

propulsion strategy of the micro-organism in a complex manner.
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Part I

Physical Systems: Flow Instability

of Viscoelastic Fluids
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CHAPTER 3 : Elastic Turbulence in Channel Flows at Low Reynolds

Number

3.1. Introduction: Flow Instabilities of Viscoelastic Fluids

Unlike water, the flow of viscoelastic fluids such as polymeric and surfactant solutions can

exhibit flow instabilities even in the absence of inertia, i.e. low Reynolds number (Re)

[12, 17, 47, 83–86, 127]. At high flow rates, flows of viscoelastic fluids exhibit a completely

new type of chaotic behavior – elastic turbulence – that exists below the dissipation length

scale and has no analogues in Newtonian liquids [13, 22, 80, 89]. This elastic flow anomaly

has been proposed as a method for efficient mixing in curved pipes at low Re (Fig. 3.1)

[22]. Purely elastic instabilities are found in many practical flows and understanding these

instabilities is fundamental to our knowledge of the flow in biological fluids (e.g. blood,

vesicles, mucus) [128–131], in chemical and polymer industries where flow instabilities have

long been plaguing processing [14,100], and in micro- and nano-fluidics where purely elastic

instabilities are proposed as a way of effective mixing at small length scales [22,132–134].

These flow instabilities result from the development of polymeric elastic stresses in the fluid

due to flow-induced changes in polymer conformation in solution. These stresses are strain-

dependent, anisotropic, and depend on the nature of the flow [73]. Elastic instabilities

are often observed in systems where the mean flow has sufficient curvature, such as the

flow between rotating disk [13, 81, 82], between concentric cylinders [12, 80, 83, 84], curved

channels [22], and around obstacles [86, 87]. In these systems, high velocity gradients can

stretch the polymer molecules and the curved streamlines can generate hoop stresses that

destabilize the flow [73]. In fact, it has been argued that curvature is a necessary condition

for infinitesimal perturbations to be amplified by the normal stress imbalances in viscoelastic

flows [96,97,135]. The Pakdel-McKinley criterion for linear instability of viscoelastic fluids

states that
[
λU
R

N1
τp,s(γ̇)

]1/2
≥ M , where M is a constant that only depends on the type of

flow geometry, U is a typical velocity along the streamlines, R is the radius of curvature,
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Figure 3.1: Chaotic mixing in curved pipes at low Reynolds number using dilute polymer
solutions [22]. (a) Experimental setup and location of the dye visualization, taken at the
29th bent. Fluorescent dye snapshots showing the mixing structures for (b) Newtonian fluid
and (c) polymeric solution in at identical flow rates.

and τp,s(γ̇) is the polymeric shear stress. According to this criterion, purely elastic linear

instabilities are not possible in parallel shear flow such as plane Poiseuille flow and pipe

flow, and infinitesimal perturbations decay at a rate proportional to 1/λ [96, 98]. For this

reason, much of the work on elastic instabilities and elastic turbulence has been devoted to

geometries with curvature [87,89].

Recent theoretical investigations, however, have shown that viscoelastic flows can be non-

linearly unstable even in parallel shear flows such as in straight pipes and channels at low

Re [15, 16, 99, 102, 103]. For example, nonlinear perturbation analysis [15, 16, 99] predicts a

subcritical bifurcation from stable base states, while non-modal stability analysis predicts

transient growth of perturbation [102, 103]. Subsequent experiments in small pipes [101]

found unusually large velocity fluctuations that are activated at many time scales, but

the subcritical nature of the instability was not established and no hysteretic behavior (a

characteristic of subcritical instabilities) was reported. More recently, the existence of a

nonlinear subcritical instability of viscoelastic fluid in a (micro)channel flow was reported
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in experiments [17]. It is shown that, in the absence of inertia (i.e. low Reynolds number),

a finite level of perturbation is required to destabilize the flow and the resultant flow fluctu-

ation is hysteretic [17]. This subcritical transition in viscoelastic channel flows is hence akin

to the transition from laminar to turbulent flows of simple Newtonian fluids (e.g. water) in

pipes, except that the governing parameter is the Weissenberg number (Wi).

However, the main features of the resulting unstable flow have yet to be well characterized.

In particular, is there evidence of “turbulent-like” behavior, namely the presence of irregular

flow structures activated at many times scales and a decay law in the flow power spectra in

parallel channel flow? If so, how do these features compare with those in geometries with

curved streamlines? Moreover, how do the flow resistance and drag evolve following the

emergence of such chaotic flow? Finally, is there evidence for the so-called “instability on

top an instability” mechanism proposed for the finite amplitude transition of viscoelastic

fluids in parallel flows [15,16]? We will address these questions in this chapter.

3.2. Experimental Setup and Methods

3.2.1. Channel Apparatus

W
x,u

y,v 1 2 ... n

` d

x1=1W

P1

50W

P2

290W

P3

fluorescent dye

Figure 3.2: Schematic of the experimental channel geometry. A linear array of cylinders is
followed by a long parallel shear region. Pressure sensors and dye injection locations are
indicated.

The flow of a dilute polymeric solution is investigated using a straight microchannel with a

square cross-section of equal width W and depth D (W = D = 100µm). The microchannel

is made of polydimethylsiloxane (PDMS) using standard soft-lithography methods [55]. The

length of the microchannel is much larger than its width L/W = 330, and it is partitioned

34



into two regions. The first region is comprised of a linear array of cylinders that extends for

30W . A total of 15 cylinders (n = 15) is used in the linear array; a schematic is shown in

Fig. 3.2. Each cylinder has a diameter d of 0.5W and is evenly spaced with a separation of

` = 2W ; the last cylinder is at position x = 0. The second region follows the initial linear

array of cylinders and is a long parallel shear flow that is 300W in length. Fluorescent dyes

are injected after the cylinders at x = 1W and the patterns are monitored far downstream

at 200W .

To obtain pressure drop measurements in the microchannel, we use pressure sensors (Hon-

eywell TBPDANS compensated/unamplified series) of different ranges (1-30psi). The time

response of the sensor is 1ms and the measurement accuracy is 0.15% of the full scale.

These sensors are placed in a pitot style arrangement. At specified location on the channel

x1 = 1W,x2 = 50W,x3 = 290W , we create a short side branch to the main channel that

is fully sealed by the glass. At the end of the side branch, a dead-end chamber is formed

by inserting the pressure taps. This ensures that no volume flow can enter this branch

in steady state. Pressure signals are recorded for over 2 hours with 5 ms resolution. The

pressure drop per length between sensor 1 and 2 is p1(t) = (P1−P2)/(x2−x1) and similarly

p2(t) = (P2 − P3)/(x3 − x2) for the segment between 2 and 3 (see Fig. 3.2).

3.2.2. Working Fluid and Rheology

The polymeric solution is prepared by adding 300 ppm of polyacrylamide (PAA, 18×106

MW) in a viscous Newtonian solvent (90% by weight glycerol aqueous solution); the PAA

polymer overlap concentration (c∗) is approximately 350 ppm [136] and c/c∗=0.86. This

polymeric solution possesses a nearly constant viscosity of approximately η = 0.30 Pa·s for

γ̇ > 10s−1 as shown in Fig. 3.3(a). A Newtonian solution, 90% by weight glycerol in water,

is also used for comparison. The Reynolds number is kept below 0.01, where Re = ρUH/η,

U is the mean centerline velocity, H is the channel half width, and ρ is the fluid density.

The strength of the elastic stresses compared to viscous stresses is characterized by the

Weissenberg number [127], here defined as Wi(γ̇) = N1(γ̇)/2γ̇η(γ̇), where γ̇ = U/H is the
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Figure 3.3: Fluid rheological measurements. (a) Shear viscosity η(γ̇) of both Newtonian and
viscoelastic fluid and (b) normal stress difference N1(γ̇) of viscoelastic fluid as a function
of shear rate (γ̇), measured using a strain-controlled cone-plate rheometer at an ambient
temperature of 21◦C. Power law fit (line) gives N1 = 6.31 γ̇1.02. (c) The Weissenberg
number defined by Wi(γ̇) = N1(γ̇)/ [2γ̇η(γ̇)] as a function of shear rate, and a power law
fit (line) given by Wi(γ̇) = 3.2 γ̇0.23. (d) The fluid relaxation time defined by λ(γ̇) =
N1(γ̇)/

[
2γ̇2η(γ̇)

]
.

shear rate and N1 is the first normal stress difference. The fluid relaxation time is obtained

from shear rheology data, defined as λ(γ̇) = N1(γ̇)/2γ̇2η; values of λ range from 0.1 to 1.0

seconds for the typical shear rates in the channel experiment. We note that the critical value

of Wi for the onset of the subcritical instability in the parallel flow region is Wic ≈ 5.2 for

the type of disturbances (15 cylinders) introduced here.
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3.2.3. Particle Tracking Velocimetry: Fluorescent and Holographic

The flow velocity is measured using particle tracking velocimetry as described in detail in

Section 2.2. For 2-dimensional flow fields, conventional particle tracking using epifluorescent

microscopy is used. Spatially-resolved velocity fields are obtained by tracking particles in a

rectangular window (width=0.9W , length=1.2W , centered at y = 0) with a grid resolution

of ∼ 1 µm. The resultant time resolution is ∆t = 25 ms. Time-resolved measurements with

smaller window sizes produce velocity time series with high resolution (∆t = 1 ms) and

relatively long sampling duration (up to 300 s).

For high accuracy Lagrangian particle tracking in 3-dimensions, we use holographic particle

tracking, as described in Section 2.2. Measurement window of the trajectories is located

at x = 200W in the parallel shear region and extends 2.5W in the streamwise direction

and 0.9W spanwise. The uncertainty of estimated particle centroid is around 30 nm for

the in-plane (x, y) components and 0.6 µm for the out-of-plane z, at experimental seeding

density (10−5 volume fraction).

3.3. Results Part A: Signatures of Elastic Turbulence

In this section, we report our results on the flow of a viscoelastic fluid in a parallel shear

geometry at low Reynolds number. In particular, as the flow becomes unstable via a subcrit-

ical transition, 2-d velocimetry measurements show non-periodic fluctuations over a broad

range of frequencies and wavelengths, consistent with the main features of elastic turbu-

lence. Within the same channel system, we compare these flow features to those in the

flow around cylinders, located upstream of the parallel shear region; we find significant

differences in power spectra scaling, intermittency statistics, and flow structures. A simple

mechanism is proposed to explain the sustained velocity fluctuations in parallel shear flows

based on polymer stretching and fluctuations in velocity gradients.
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Figure 3.4: (a) Location of the measurement for the space-time plot of streamwise velocity
fluctuation for viscoelastic fluids with n = 15. (b) Space-time plot of the streamwise
velocity fluctuation u′, immediately after the last cylinder, x = 2W and Wi = 10 and (c)
the fluctuation landscape far downstream at 200W and Wi = 10.

3.3.1. Irregular Flow Structures

We begin our flow analysis by measuring the space-time plot of the streamwise velocity

field u(y, t) in the wake of the last cylinder (x = 2W ) as well as in the parallel shear region

(x = 200W ), as indicated in Fig. 3.4(a). To quantify the streamwise velocity fluctuation u′,

we subtract the ensemble average 〈u〉 from the measured signal, u′ = u−〈u〉. Figure 3.4(b)

shows the space-time plot of u′(y, t) along a cutline in the wall-normal direction (y-axis) at

the cylinder wake region x = 2W of the channel. Here the spatial coordinate used is the

wall-normal y coordinate and the channel centerline is at y = 0. Large velocity fluctuation

in the cylinder wake is observed, with the amplitude reaching approximately 2 mm/s or 28%
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of the fully developed average channel centerline speed (∼ 7 mm/s). Along the y direction,

we find that high intensity fluctuations are gathered in the form of “spots”, which are

manifestations of streamwise streaks of high and low local velocity fluctuations. These

streaks have a wide range of temporal durations and spatial sizes, as large as the cylinder

diameter (∼ 50µm) and as small as the velocity grid spacing (∼ 1µm). Far downstream

(200W , Fig. 3.4c), however, the flow is significantly different from that in the cylinder wake.

We find that velocity fluctuations at 200W exist in the form of aperiodic “bursts” of various

durations and appear to be spatially smoother in the wall-normal direction. We note that no

appreciable fluctuations are found in the Newtonian case under similar conditions. Clearly,

there’s a markedly different flow structures as the fluid moves from cylinder wake (curved

flows) to the parallel shear region.

3.3.2. Temporal Statistics and Velocity Spectra

Figure 3.5: Turbulent temporal characteristics of the flow in the cylinder wake and far
downstream in the parallel shear region (Wi = 10, n = 15). (a) Velocity time series
measured in the cylinder wake (x = 2W ). An interval of 60 s is shown out of the total
duration of 300 s. (b) Velocity time series measured far downstream in the parallel shear
flow region (200W ) (c) Probability distribution of the associated time series, normalized by
the maximum of the probability density. Each curve includes 1.3×106 samples. (d) Power
spectra of centerline streamwise velocity at various channel positions for Wi = 10, n = 15

Next, we quantify the temporal characteristics of the unstable flow. The centerline velocity

fluctuations u′c(t) for both Newtonian and polymeric solutions in the wake of the cylinder is

shown in Fig. 3.5(a) and in the parallel shear region, Fig. 3.5(b). The data show significant

velocity fluctuations for the viscoelastic fluid; the root mean square velocity (i.e. fluctua-
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tions) reaches above 10% of the centerline mean, in both regions of the flow. No significant

fluctuations are found in the Newtonian fluid case, shown in gray, under the same condi-

tions and flow rates. At both locations, the velocity fluctuations of the polymeric solution

appear irregular without apparent periodicity, and the amplitudes of the centerline velocity

variations are quite similar. There are, however, differences between the flow in the wake

of the cylinder (2W ) and in the parallel shear region (200W ). Specifically, the mean of

u′c(t) at the cylinder wake is negatively biased towards the low velocity values, with spo-

radic excursions to high values. Physically, this means the flow at 2W is characterized by

intermittent jumps to high velocities amidst dwelling at lower velocities. Far downstream

(200W ), on the other hand, the flow seems to fluctuate around the mean evenly.

These contrasts in the velocity fluctuations between these two locations are further reflected

in the normalized probability distribution of u′c(t), shown in Fig. 3.5(c). In the cylinder wake,

we find that the mode of the distribution has a negative bias towards lower velocity, and

a pronounced tail towards high velocities, consistent with Fig. 3.5(a). In the parallel shear

region, on the other hand, the distribution is unskewed and is in fact well captured by a

Gaussian distribution (solid line). Consequently, the skewness of the distribution is 0.41 at

2W , compared to the much lower 0.06 at 200W . We believe that near the cylinder (2W ), the

observed aperiodic jumps in u′c(t) are associated with the sudden release of elastic energy

by polymer molecules into the flow (analogous to the intermittently injection of elastic

energy in curved systems [82, 137]). Far downstream (200W ), on the other hand, the even

likelihood of velocity above and below the mean value indicates an unbiased energy transfer

back and forth between the polymer and the flow.

Next, we analyze the velocity fluctuations in the frequency domain by computing the Fourier

transform of u′c(t). Figure 3.5(d) shows the power spectra for n = 15 and Wi = 10. We find

that the viscoelastic fluid flow is excited at a broad range of frequencies f at all measured

channel locations (2W to 200W ), compared to the Newtonian control at the highest flow

rates. This feature is one of the main hallmarks of elastic turbulence, previously observed in
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curved geometries [13]. Figure 3.5(d) also shows a gradual decay law in the power spectrum

in the cylinder wake, following f−1.7. As the flow moves downstream from the array of

cylinders into the parallel shear flow region, however, we observe clear developments in

the frequency spectra. We find that, in a few channel widths after the last cylinder, the

energy decreases in the high frequency range (10-100 Hz), which corresponds to the periodic

perturbation introduced by the cylinders. At x = 20W , the decrease in high frequency

fluctuations intensifies across two frequency decades. On the other hand, the power in the

low frequency range (0.01-0.1 Hz) of the spectrum increases. The combined result is that,

after 20W , velocity fluctuations are increasingly dominated by low frequency variations

and the power law decay becomes steeper, following f−2.7. This suggests that the energy

contained in the high frequency range near the cylinders seems to shift toward the low

frequency range in the parallel shear region.

3.3.3. Energy Consideration and Polymer Stretching

To test this idea of energy transfer rather than simple viscous dissipation, we compute the

summed power over the dominant frequency range (0.01-100 Hz). This is equivalent to

the standard deviation of the time series if all valid frequencies are used. We perform this

analysis for flows above and below the onset of the subcritical instability in the parallel

shear region (Wic = 5 for n =15). Fig. 3.6(a) shows the evolution of the total energy down

the channel for Wi = 4(< Wic) and Wi = 10 (> Wic). Note that n = 15 is used for both

cases. For the Wi = 4 case, where the flow rate is not energetic enough to trigger velocity

fluctuations downstream in the parallel shear flow, we find a sharp decay of total power

by two orders of magnitude. The Wi = 10 case sees a weak initial decay in total power

within the first 20W . However, after x = 20W , the trend reverses and follows a steady

increase downstream into the parallel shear flow region, despite the dissipative environment

(Re ∼ 10−3). A zoom-in of the unstable case is shown in the inset and clearly displays such

trend. Such persistence of fluctuation energy suggests a self-sustaining mechanism that we

try to elucidate below.
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Figure 3.6: (a) Sum of total power from (0.01 Hz ≤ f ≤ 100 Hz) versus channel position
x/W . The solid line is the best fit exponential decay. Inset: zoom-in for the Wi = 10.2
case. (b) The rms variation σ of shear ∂u/∂y and extensional ∂u/∂x components of the
velocity gradient, normalized by the spatial mean shear rate 〈γ̇〉 in the parallel shear flow.
(c) Extensional component of the rms profile across channel width y immediately in the
cylinder wake (2W ), at the end of the cylinder flow decay (20W ), and far downstream in
the parallel shear flow region (150W ).

So far we have shown that the flow of a polymeric fluid in a parallel shear geometry can

sustain relatively large velocity fluctuations in both space and time even at low Re. These

velocity fluctuations, far downstream from the initial perturbation, are most likely driven by

the stretching of polymer molecules in the flow. To test this hypothesis, we measure the root

mean square (rms) variation of the shearing (∂u/∂y) and elongational (∂u/∂x) components

of the velocity gradient; here the rms of quantity A is defined as σ = 〈(A − 〈A〉)2〉1/2,

similar to [138]. These components (quantities) are known to mediate polymer stretching

in random flows [138–141].

Figure 3.6(b) shows the rms variation σ of ∂u/∂y and ∂u/∂x at various positions along

the channel normalized by the spatial average shear rate 〈γ̇〉 downstream in the parallel

shear flow. Near the linear array of cylinders, we find significant fluctuations of the velocity

gradients relative to the mean shear rate in the parallel shear flow. Moreover, the ∂u/∂y

component dominates ∂u/∂x and both components decay as the polymeric solution flows

downstream. These trends persist down to approximately 20W in the channel. However,

at x & 20W , we find that both components of σ/〈γ̇〉 reverse trend and begin to increase as

the fluid flows downstream. Concurrently, we observe that the fluctuation in the elongation
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component become increasingly comparable to that of the shear component. These trends

clearly show a change in flow at or around 20W accompanied by an increase in velocity

fluctuations and polymer stretching. This non-monotonic trend is also captured by plotting

the spatial profile of σ/〈γ̇〉 for ∂u/∂x across the channel width (y-axis) for three differ-

ent channel locations, shown in Fig. 3.6(c). The data suggest that polymer molecules are

increasingly stretched by flow gradient in the streamwise direction beyond 20W .

To further demonstrate the magnitude of the fluctuation in velocity gradients is large enough

to generate polymer stretching, we compute a Weissenberg number based on fluctuations

in the velocity gradients. Here, Wisrms = λ(γ̇) · σ(∂u/∂y) where the rms fluctuation of the

shear gradient is non-dimensionalized by the polymer relaxation time. Using the relaxation

time corresponding to Wi=10.2, we find that Wisrms ∼ 5.2 in the cylinder wake (x = 2W ),

while far downstream, it is approximately 2. Moreover, far downstream, the Weissenberg

number based on the rms of elongational Wierms ∼ 1. We note that the values of both

Wisrms and Wierms are near or larger than 1, which suggest that the flow is able to generate

sufficient polymer stretching [43,95].

3.4. Results Part B: Law of Resistance and Coherent Structures

In this section, we continue to investigate the flow of polymeric solutions in straight channels

at low Reynolds number using pressure measurements and high-resolution particle tracking.

The law of flow resistance is established by measuring the flow friction factor fη versus flow

rate. Two regimes are found: a transitional regime marked by rapid increase in drag, and a

turbulent-like regime characterized by a sudden decrease in drag and a weak dependence on

flow rate. Lagrangian trajectories show finite transverse modulations not seen in Newtonian

fluids. These curvature perturbations far downstream are found to generate sufficient hoop

stresses to sustain the flow instabilities in the parallel shear flow.
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Figure 3.7: Dye injection and mixing downstream in the parallel shear region. (a-c) Space
time graph of the dye stream. (d) Channel profile rms fluctuation of the dye intensity,
normalized by the intensity difference of the two streams.

3.4.1. Chaotic Mixing

To further reveal the flow structure, we begin by investigating the flow patterns formed

when a stream of fluorescent dye is injected one channel width (1W ) after the last post.

The dye spreading and patterns are then visualized far downstream in the parallel shear

region, 200 channel widths downstream from the last post (x = 200W ). Figure 3.7 show the

spatio-temporal profile of the dye intensity along the device’s cross section (y) for various

flow rates of Newtonian and viscoelastic fluids for 15 posts (n = 15). For the Newtonian

case Fig. 3.7(a) and the viscoelastic flow below the onset of subcritical instability Wi = 1

Fig. 3.7(b), the profile shows typical laminar dye layer with minimal penetration into the

undyed stream, except for diffusion. (Similar behavior is observed with viscoelastic fluids

for the n = 0 case.) However, a different dye pattern is observed once the flow becomes

unstable for the Wi=20, n = 15, shown in Fig. 3.7(c). We find highly irregular flow patterns

with spikes of dye penetration into the undyed fluid stream. These mixing layer profiles

along the channel width are quantified in Fig. 3.7(d), where root-mean-square intensity

fluctuations, as normalized by the mean intensity difference between the two dye streams,

are shown. The flow in the elastic turbulent regime, Wi = 20, n = 15 has both a high level
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of fluctuations and a deeper penetration into the undyed stream. The observed fluctuations

in time suggest the presence of velocity modulations in space. Indeed, we will soon show

that particle trajectories do exhibit wavy and coherent motions in the parallel shear region.

3.4.2. Law of Resistance in Pipe Flow of Viscoelastic fluids
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Figure 3.8: Flow resistance as measured by mean pressure drop per length, as a function of
flow rate and Wi for unstable n = 15 case and the stable n = 0 case. Solid line represents
estimation using wall shear rates and viscosity values from fluid rheology.

As mentioned before, little is known about elastic turbulence in channel flows. Importantly,

there is no known law of resistance for such flows. Here, we propose a new law of friction for

polymeric solutions in channel and pipe flows. Pressure drop is measured along the parallel

shear region using sensors that are placed at three locations, x1 = 1W,x2 = 50W,x3 =

290W . The pressure drop per length signals p1, p2 are recorded for approximately 104 sec-

onds (with 5 ms resolution). Figure 3.8 shows the mean pressure drop values for viscoelastic

fluids for n = 0 and n = 15 cases as a function of flow rate Q and Wi. We note that the

statistical mean of the reported signals measure the aggregate flow resistance encountered

to sustain a constant mass flow rate. As expected, the pressure drop or flow resistance

increases with flow rate and Wi. The pressure drop for the n = 0 case slightly deviates

from the Newtonian case (i.e. 4P ∝ Q) due to mild shear-thinning in fluid viscosity. These
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effects can be accounted for by estimating the pressure drop using wall shear rate and corre-

sponding viscosity η(γ̇) measured using a cone-and-plate rheometer, as shown by the solid

line in Fig. 3.8. No significant difference is found between p1 and p2 for n = 0 case as ex-

pected, since entrance effect is carefully minimized using tapered inlet and generates minor

disturbance relative to that of the cylinder array. For n = 15, we find a clear increase in

pressure drop relative to the n = 0 case; the two pressure segments p1 and p2 show little to

no difference. This increase in flow resistance cannot be explained by solely shear-thinning

effects and is related to the development of additional elastic stresses in the flow as the

Wi is increased. It also indicates that more energy is necessary to keep the same flow rate

compared to a stable viscoelastic channel.
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Figure 3.9: Pressure fluctuations in the parallel shear region. (a) Pressure gradient fluctu-
ations for p′1(t) between x = 1W and 50W for n=15 case, compared with the unperturbed
n=0 case, Wi = 18. (b,c) Root-mean-square (rms) of the pressure gradient fluctuations as
a function of Wi for n = 0 versus n = 15, (b) p′1 and (c) p′2.
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The increase in flow resistance is closely associated with the onset pressure fluctuations.

Figure 3.9(a) shows sample time records of pressure fluctuations p′1(t) for viscoelastic fluids

at Wi = 18 in devices with n = 0 (black line) and n = 15 (blue line). We clearly observe an

increase in the pressure fluctuations once cylinders are introduced in the flow. Figure 3.9(a)

and 3.9(b) show root-mean-square (rms) values of the pressure fluctuations of the p′1 and p′2

segments, respectively, as a function of Wi for the n = 15 and n = 0 cases. For the n = 0

case, pressure fluctuations remain relatively small and steady, nearly independent of Wi;

the small increase in pressure fluctuation at the higher values of Wi may be due to entrance

effects. We find that for both segments, p′1 and p′2, the rms values show significant departure

from the stable n = 0 case and a marked increased with increasing Wi. The values of the

rms(p′1) and rms(p′2) start to depart from the n = 0 trend at Wi ≈ 5 and grows weakly

until Wi ≈ 9. This is followed by a much steeper growth for Wi & 9. This trend in pressure

fluctuation measurements agrees relatively well with measurements of velocity fluctuations

which established that the linear instability associated with the flow around the upstream

cylinders occurs at Wi ≈ 4 and the onset of subcritical instability occurs at Wi ≈ 9 [17,61].

Since pressure data is now available, one can investigate the law of (flow) resistance for

viscoelastic channel flows as a function of Wi. This is analogous to measuring the Darcy

friction factor for Newtonian pipe flows as a function of Re [11]. Traditionally, the friction

factor f is defined as (∆P/∆L)/(ρU2/2W ), where W is the channel width and U is the fluid

mean velocity. As long as variations are small (e.g. smooth pipes), the friction factor f is

solely a function of Re such that f = f(Re). In what follows, we proposed an analogous law

of resistance for viscoelastic channel flows as a function of Wi. As noted earlier, the values

of Re in our experiments are quite small (Re . 10−3). Since fluid inertia is negligible, we

propose to scale the pressure drop by the fluid shear stresses across the channel and define

a viscous friction factor fη as [(∆P/∆L)/(cηwγ̇w/W )], where γ̇w is the wall shear-rate, ηw

is the corresponding viscosity and c is a geometry factor (4.06 for square duct and 4 for

circular pipe).
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Figure 3.10: Viscous wall friction factor fη (definition see text) as a function of Wi for
n = 0 and n = 15.

Figure 3.10 shows the values of fη as a function of Wi for polymeric solutions in channels

with n = 0 and n = 15. For n = 0, we find that the fη is independent of Wi indicating that

flow resistance is purely governed for by viscous effects, which are well accounted for by the

normalization. For n = 15, on the other hand, we observe an increase in flow resistance

fη as Wi is increased and find that fη ∼ Wi1/3 up to Wi ≈ 9. Surprisingly, we find a

second regime for Wi & 9 in which a sudden decrease in fη is observed followed by a weak

dependence on Wi. This relative decrease in drag or friction seems to suggest the emergence

of a new flow state which has yet to be explored in detail. The data shown in Fig. 4 also

suggests that the initial fη ∼ Wi1/3 regime is associate with a transitional flow that is

then followed by a turbulent-like state. Similar to Newtonian pipe flows, there is an initial

increase in drag followed by a sudden decrease once the flow becomes turbulent.

3.4.3. Coherent States and Mechanism of Finite Amplitude Transition

Next, we investigate the structure of the viscoelastic flow for n=15 and Wi=18; this is the

regime in which we expect flow instabilities but quantifying the presence of flow structures

has been difficult due to the weak spanwise velocity component relative to the mean shear
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Figure 3.11: Lagrangian trajectories and statistics. (a) Trajectories in the x (streamwise)
and y (spanwise) direction; blue curves represent the n=15 viscoelastic case at Wi = 18
and the gray curve represents Newtonian case at identical flow rate. (b) Collection of 2000
trajectories colored by streamwise speed. (c,d) Normalized probability distribution of the
trajectory averaged ratio of the transverse versus streamwise components for (c) cumulative
and (d) end-to-end displacement.

[61]. Here, we use a 3-dimensional holographic particle tracking method. As described by

Section 2.2, the resolution of our method is 30 nm in the x, y imaging plane and 0.6 µm out

of the plane in z. The measurement window of the trajectories is located at x = 200W in

the parallel shear region and extends 2.5W in the streamwise direction and 0.9W spanwise.

Figure 3.11(a) shows sample particle trajectories for the Newtonian (grey symbols) and

viscoelastic (blue symbols) fluids for the n = 15 case at Wi = 18. While the particle tra-

jectory in the Newtonian case is fairly rectilinear (following the mean flow direction) with

little to no lateral movement, particle trajectories in the viscoelastic fluid case display a rel-
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atively pronounced waviness and lateral movement. This is not isolated to a few particles

and Fig. 3.11(b) shows the full extent of the spanwise spread of the Lagrangian trajecto-

ries for approximately 2000 trajectories. Such wavy structures underlies the irregular dye

transport patterns seen in Fig. 3.7(c). We quantify these deviations from the base-flow by

plotting the probability distribution functions (pdf) of the ratio between the transverse and

streamwise components of the particles cumulative displacement (Fig. 3.11c) and end-to-

end displacement (Fig. 3.11d) for Newtonian and viscoelastic fluids. We define the ratio of

cummulative displacement for each observed trajectory by δy/δx =
∑ |dyi|/∑ |dxi| over

the duration of observation for that trajectory; the ratio of end-to-end displacement is

∆y/∆x =
∑
dyi/

∑
dxi. Here dyi and dxi are the x, y displacements of a single trajectory

between consecutive frames.

The Newtonian data (black symbols) represent mostly the measurement noise level. Re-

sults show that particles in the viscoelastic fluid exhibit small but finite values of transverse

(spanwise) velocity and a broader distribution of individual particle end-to-end displace-

ment. These results indicate the presence of subtle flow structures in viscoelastic fluids

in parallel shear flows. Specifically, the mean of the ratio of cumulative displacements is

1.3% and the rms of the ratio of end-to-end displacements is 3.8% for the viscoelastic case.

These modulations are significantly higher than the 0.3% and 0.6% for Newtonian fluids

at identical flow rates. These deviations from the base-flow are small in absolute terms

(1-2% of the streamwise component), but in viscoelastic flows even small deviations in the

velocity fields can represent large increase in elastic stresses in the flow due to the nonlinear

relationship between stress and velocity [142,143].

Are these curved particle trajectories enough to drive flow instabilities far downstream

(200W )? A key measure is the streamline curvature of the particle pathlines. In Fig. 3.12, we

show the distribution of trajectory curvatures obtained from particle trajectory data shown

in Fig. 3.7 (Wi = 18, n = 15). We see that the viscoelastic flow generated significantly

higher curvature than the Newtonian case. The mean curvature is 0.024 rad/µm, which is
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Figure 3.12: Sampled curvature distribution of trajectories at Wi = 18 for viscoelastic fluid
at n = 15 and the Newtonian fluid at comparable flow rate. The dashed colored lines are
the population mean.

an order of magnitude larger than the Newtonian and gives a mean radius of curvature of

R = 43 µm for the particle pathlines. Using N1 data (see Fig. 3.3 b), we can compute the

Pakdel-McKinley condition defined as [(λU/R)(N1/τp,s)]
1/2 [96] and described in Sec. 2.5.2.

We find a value of approximately 7, which is sufficiently large to trigger flow instabilities.

Similarly, we find that hoop stresses N1/R = 8 Pa/µm can be of the same order (or higher)

than pressure drop ∆P/∆L = 2 Pa/µm. These particle trajectories have enough curvature

and speed to generate hoop stresses that can sustain flow instabilities. Our results provide

strong evidence for the “instability upon an instability” mechanism proposed for the finite

amplitude transition of viscoelastic fluids in parallel flows [15,16].

3.5. Summary

First, using high speed velocimetry, we have found evidence for turbulent-like flow behavior

in a parallel shear geometry of a viscoelastic fluid, namely the presence of irregular flow

structures activated at many times scales and a decay law in the flow power spectra. Further,

these features, including power spectra scaling, intermittency statistics, and flow space-
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time structures are distinct from with those near the curved cylinders in the same system.

Specifically, we find that the flow near cylinders is organized by streamwise streaks that

manifest as “spots” that is highly intermittent in time, while temporal burst that manifest

as spanwise bands are found in the parallel shear region. Moreover, the energy contained in

the high frequency range near the cylinders seems to shift toward the low frequency range

in the parallel shear region. These results suggest the emergence of a new type of elastic

turbulent state in parallel shear flows. The details of this investigation are published in [61].

Second, we establish the law of resistance and the coherent structures organizing the elastic

turbulence in channel flows. Pressure measurements are used to establish flow resistance.

We find two regimes: (i) a transitional regime (5 .Wi . 9) in which the (viscous) friction

factor fη ∼ Wi1/3, and (ii) a turbulent-like regime (Wi . 9) in which a sudden reduction

of fη is observed followed by a weaker dependence on flow rate that leads to fη ∼ Wi1/10.

This behavior is analogous to Newtonian pipe flows in which a sudden increase in drag is

followed by a weaker dependence on Re. Dye and particle tracking data show the presence

of weak flow structures far downstream in the parallel shear region (200W ). In particular,

we find small but finite particle lateral (spanwise) movement and transverse modulations

relative to the Newtonian case (Fig. 5). These particle trajectories have enough curvature

and speed to generate hoop stresses that can sustain flow instabilities. Our results provide

strong evidence for the “instability upon an instability” mechanism proposed for the finite

amplitude transition of viscoelastic fluids in parallel flows [15,16] and provide new insights

into the flow of polymeric solutions in channels and pipes. Even small perturbations in the

velocity field can lead to significant changes in pressure drop and drag.
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CHAPTER 4 : Upstream Vortex and Instability of the Viscoelastic Flow

around a Confined Cylinder

4.1. Introduction: Flow Around Cylinders and Elastic Waves

The creeping flow of complex fluids, in particular polymeric solutions, in porous media is

important to an array of technologies, such as polymer processing, filtration, flow in soil,

and oil extraction [144]. Natural porous media often consist of sand grains, clays, and

shales that, under the forces of nature, forms intricate microscale geometries and complex

flow patterns, such as converging-diverging flows with strong shear and extension [145].

The flow around confined cylinders, however, is a much simpler geometry that has long been

used as a benchmark system for non-Newtonian flows. The basic geometric elements of flow

around cylinder represent a fundamental example of flow past obstacles and blockages such

as those encountered in porous flow. The flow here is characterized by strong extension

from the stagnation points both upstream and downstream of the cylinder and strong shear

around the cylinder generated under the confinement of the channel walls. Indeed, the

study of elastic flow instability around cylinder arrays has been used extensively as a model

for the viscoelastic flow in porous media [146,147].

More recently, microfluidic channels with multiple posts have been used in a number of

studies of viscoelastic instabilities at low Reynolds number [148–151]. The microposts pro-

vide a perturbation to the fluid streamlines that can initiate viscoelastic instabilities above

a critical condition [96]. Most experimental and numerical investigations have observed a

wake region form downstream of the cylinder [87, 127]. The wake instability forms at a

critical Deborah number at which point normal stresses along curved streamlines distort

the flow.

Existing literatures on upstream instability, on the other hand, focus on contraction type

geometry. The vortex development in the classic contraction geometry has been well studied
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by many authors where the lip and corner vortices emerge, grow and become unstable

[45,46,152–155] for a range of contraction ratios and polymeric solutions including long chain

polymers, DNA, and surfactant systems. The onset of upstream vortex in the viscoelastic

flow through a 90-degree bend has been studied by Muller et al [156–158].

However, the development and characteristics of elastic instabilities upstream of an ob-

stacle such as a cylinder are not well understood. The micropost differs from the planar

constriction because the centerline of the upstream flow, where the velocity is maximum,

reaches a stagnation point in the front of the micropost. The velocity field has strong

extensional components in both the axis of the cylinder and the cross stream direction. Ex-

isting experimental results have shown a possible upstream instability [149]. The coupling

of upstream instabilities and downstream wakes has been hypothesized to drive this com-

plex flow [149, 159]. The flow can also be highly three dimensional, as shown by numerical

studies [160]. Yet the dynamical transition and three-dimensional structure of the vortex

is not fully resolved experimentally. Here, we report three main discoveries of the elastic

instability upstream of a single cylinder in confined channel flow. First, we report the onset

of upstream instability in the form of corner vortices in front of the cylinders whose size

grows with increasing flow rate. Second, beyond a critical flow rate, the vortex becomes un-

steady and switches between two bi-stable configurations that leads to symmetry breaking

perpendicular to the cylinder axis and is highly 3-dimensional in nature. Lastly, we show

that the disturbance of the elastic instability propagates far upstream in the form of an

elastic wave, yet remains relatively isolated from the flow in the cylinder wake. The elastic

wave speed is found to increases with Weissenberg number.

4.2. Experimental Methods

The flow of a dilute polymeric solution is investigated using a straight microchannel made

from PDMS with a rectangular cross section with width W = 100µm and height D = 60µm.

A single cylindrical post with diameter d = 50µm is located far (300W ) from the inlet and

is centered in the channel width direction. The device schematic is shown in Fig. 4.1 (a).
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Figure 4.1: (a) Schematic of the experimental setup. (b-d) Three snapshots of the streak
plots showing the unsteady vortex upstream of the cylinder.

The level of confinement can be defined as α = D/W = 0.6 and blockage β = d/W = 0.5.

Fluid flow is delivered with a constant flow rate from a syringe pump (Harvard apparatus

PHD 22/2000).

The viscoelastic fluid is a polymeric solution made by mixing 300 ppm of polyacrylamide

(PAA, MW 18× 106) in a 90 wt.% glycerol aqueous mixture. The polymeric solution has a

nearly constant viscosity of η =0.300 Pa.s as a function of shear rate. The Weissenberg num-

ber is defined from the strength of elastic stress to viscous stresses as Wi(γ̇) = N1(γ̇)/2γ̇η(γ̇)

where U/H is the shear characteristic shear rate and N1 is the first normal stress differ-

ence. The fluid is seeded with less than 0.01% by volume of 1 µm polystyrene microspheres.
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Steady shear rheology is conducted using cone-and-plate rheometer (Bohlin Gemini) and

shown in previous sections in Fig. 3.3.

We visualize the channel using both particle streak velocimetry for 2-d imaging and in-line

holographic microscopy for 3-d images, as described in detail in Section 2.2.

4.3. Results and Discussion

We report three main discoveries of the elastic instability upstream of a single cylinder in

confined channel flow. First, we observe the onset of upstream instability in the form of

corner vortices in front of the cylinders whose size grows with increasing flow rate. Second,

beyond a critical flow rate, the vortex becomes unsteady and switches between two bi-

stable configurations that leads to symmetry breaking perpendicular to the cylinder axis

and is highly 3-dimensional in nature. Lastly, we show that the disturbance of the elastic

instability propagates far upstream in the form of an elastic wave, yet remains relatively

isolated from the flow in the cylinder wake. The elastic wave speed is found to increases

with Weissenberg number.

4.3.1. Upstream Vortex: Growth, Fluctuation, and Pulsing

We begin with two-dimensional streak plots showing the highly unsteady vortices imme-

diately upstream of the cylinder. In Fig. 4.1(b,c) we show two snapshots of streaks taken

at z = 10µm (from bottom plane) of the channel for Wi = 23. We observe the presence

of a large recirculation region in front of the post which clearly separates the dominant

bulk flow into two streams. To quantify the onset of the upstream vortex, we monitor its

length χ normalized by the cylinder diameter d as a function of Weissenberg number at a

particular height (z = 10µm). The length is defined as furthest upstream point with zero

or negative to the edge of the cylinder. This stagnant vortex extends far upstream with

maximum normalized vortex length of about χ/d ∼ 6 as in Fig. 4.1(b). The feature of the

vortex is marked by flow recirculation with relatively low or negative velocity compared to

the bulk flow. At Wi=23, the vortex is highly unsteady and frequently collapses (Fig. 4.1c)
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and regenerates in time (Fig. 4.1d).

To quantify the onset of the stagnant vortex, we track the non-dimensional vortex length as

a function of Weissenberg number at a particular position (z = 10µm) along the height of the

channel. The vortex length is normalized by the post diameter d and shown in Fig. 4.2(a)

where black dots represent the statistical mean of the vortex length for all samples ( 80

snapshots for a duration of 200 s) and the shaded blue region represents 5th and 95th

percentile to indicate the lower and upper bound of the extent of the vortex. We note that

for the Newtonian solvent, no vortex or irregular flows can be observed at all experimental

flow rates.

Figure 4.2: (a) Vortex length normalized by post diameter d as a function of Wi. Each
black dot represents the mean of the vortex length sampled over 200s and shaded region
represents 5th and 95th percentile. Four regimes of vortex dynamics can be identified. I:
steady fore-aft symmetric profile with no vortex. II: emergence of steady vortex in front
of the post. III: vortex becomes unsteady and grows in length. IV: pulsing vortex which
collapses suddenly to a length of around 2D. Inset: rms fluctuation of normalized vortex
length. (b) streak plot for regime I. (c) streak plot in regime II showing vortex that is
symmetric around channel centerline at Wi∼4 and (d) subsequently symmetry breaking at
higher Wi ∼ 8 in regime III.
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For the viscoelastic fluid, however, we can clearly identify four regimes as the flow Weis-

senberg number increases. For Wi . 2 (regime I in Fig. 4.2a), the flow around the cylinder

possesses fore-aft symmetry identical to the creeping flow shown in Fig. 4.2(b). Beyond a

critical Weissenberg number Wi ∼ 2, however, we see the emergence of a recirculation zone

made up of two rotating vortex rolls that are symmetric relative to the line y = 0 passing

the center of the cylinder, as in Fig. 4.2(c). The flow is steady and the pattern does not

change over several minutes. As Wi increases, the stagnant region become highly elongated

and extend further upstream along the centerline (regime II in Fig. 4.2a), before reaching

another flow transition at Wi ≈ 4. For Wi & 4 (regime III in Fig. 4.2a), the size of the recir-

culation zone becomes unsteady and fluctuates weakly in time. This can be seen in the 5th

and 95th percentile of all observed vortex lengths, shown by the shaded area in Fig. 4.2(a).

These percentile curves begin to deviate from the mean in this regime, indicating variance

in the sampled vortex lengths. The unsteadiness of the vortex length is also reflected in

the increase of root-mean-square (rms) fluctuation of χ/d, shown in Fig. 4.2(a) inset. The

rms fluctuation, however, saturates before reaching Wi ∼ 9. In this regime (III), the vortex

grows rapidly in size with Wi and the lateral symmetry of the two vortex rolls is lost, as

shown in Fig. 4.2(d). Lastly, for Wi & 9, the flow enters into a regime where the vortex

frequently collapses suddenly to 2 post diameter and then regenerates, as shown by the

constant 5th percentile curve despite increasing Wi. The vortex length frequently “pulse”

in time with large rms fluctuations, as shown previously by the streak plots in Fig. 4.1(b-c).

The mean vortex length continues to grow with Wi and extends far upstream, reaching 6

post diameters (3 channel width) at Wi = 16.

Although the observed vortex is measured in an x − y plane, the structure and dynamics

are far from two-dimensional. In fact, the structure of the flow switches from two bi-stable

modes in the z direction, as we explore next.
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4.3.2. Upstream Vortex: 3-Dimensional Structure

Figure 4.3: Three dimensional structure of the stagnant vortex upstream of the cylinder in
the pulsing regime (Wi = 23). (a) Snapshot of the stagnant vortex defined by the isosurface
for zero speed U = 0 showing the dominance of the vortex near the top wall. (b) Snapshot
showing the complementary case where the vortex near the bottom wall dominates. (c,d)
Velocity maps along a cross-section passing through the channel centerline for similar cases
shown in (a,b) respectively.
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In order to visualize the full flow structure upstream of the cylinder, we use holographic

particle tracking to reconstruct the three-dimensional flow field. To identify the stagnant

region, characterized by negative streamwise velocity, we plot the isosurface where the

velocity magnitude is zero. Figure 4.3(a,b) show two snapshots of the spatial structure of

the stagnant region at different times. It is clear that the flow is in fact made up of a pair of

two separate recirculation zones originating near the corner of the cylinder with the walls.

The vortex regions extend upstream along the top and bottom surfaces. Moreover, the

vortex growth along one wall is accompanied by the suppression of the vortex on the other

wall. The switching between the two states occurs irregularly in time: as the stagnant zone

collapses on one side, the other vortex reforms. The symmetry breaking in the z-direction

for the entire flow field is evident in Fig. 4.3 (c,d), where the corresponding velocity field in

a x− z cross-section along the channel centerline is plotted. The presence of the backwards

flow (blue) clearly alters the surrounding bulk flow, as shown by the streamwise flow (red)

in Fig. 4.3 (c,d). The generation of backwards flow originates along the upstream sides of

the cylinder that drives flow along top or bottom surface. In the pulsing regime, the vortex

in an extended position can separate from the cylinder and move upstream along the top or

bottom surface. Meanwhile, the other vortex expands in the z-direction and fills the space

directly in front of the post.

The origin of the vortex regions may be the minimization of the flow extension due to

high fluid extensional viscosity [161], similar to contraction type geometries cite. The flow

field develops recirculating vortices in order to produce an effectively longer entrance region

for the flow to increase in velocity gradually and reduce the extension rate ε̇ ∼ ∂U/∂x

around the post. This connection of the vortex regions to the bulk flow provides insight

into perturbation produced by the cylinder and will be explored next.

In Fig. 4.4 (a,b), we distinguish the bulk flow from the vortex region by comparing the

high-velocity isosurface U = 6.9 mm/s with the low-velocity ones U = 0, measured simul-

taneously. We find that the stagnant vortices constrict the flow and cause an increase in
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Figure 4.4: (a,b) Surfaces of equal velocity from holographic velocimetry in front of the
cylinder at two different time instances. Regions of zero velocity, U = 0 form in front of
the post along the top or bottom walls. High velocity regions U = 6.9 mm/s separate into
two regions along the left and right sides of the channel. (c) The volume of flow above a
critical flow rate U ≥ 6.9 mm/s compared to the volume of the back flow U ≤ 0 over a
length of 1W upstream of the post. The strong correlation indicates that vortex region acts
to constrict the bulk flow into a smaller region.

bulk flow speed. As the bulk flow separates into two high velocity regions surrounding the

stagnant region, the stagnant zone takes up cross-sectional area upstream of the post, which

then constricts the streamwise flow. This constriction causes an increase in the bulk flow

velocity on one side of the channel. In Fig. 4.4 (c), we compare the volume of the stagnant

vortex (low velocity region) and the bulk flow (high-velocity region) within 1W upstream of

the micropost. Indeed, the two signals are highly correlated. The growth of the upstream

vortex corresponds to an increase in the bulk velocity magnitude. Similarly, periods of

reduced vortex size correspond to transitional states where the bulk flow occupies larger

cross section.

The flow symmetry also breaks down in the spanwise y-direction, resulting in a shift of

the primary flow to either the left or right of the channel. For instance, Fig. 4.4(a) shows

the region has shifted the predominant flow towards the left side and Fig. 4.4(b) shows the

dominant flow on the right. This results in a greater flow along the right side of the post.

In fact, the flow rate around either side of the post are found to be anti-correlated due to
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constant volume flow rate, but can vary by approximately 20% from the mean, suggesting

flow switching and symmetry-breaking in the spanwise y direction. Lastly, while the vortex

formation increases the local velocity upstream of the post, we show in the subsequent

section these fluctuations are not communicated downstream, although the variation in

flow to either side of the cylinder may produce further disturbances downstream. Instead,

we find that the same instability actually propagates upstream.

4.3.3. Disturbance Propagation and Elastic Waves

Figure 4.5: (a) Fluctuation of the centerline velocity u′c normalized by the mean far from the
cylinder at an upstream location x = −3W for Wi = 23 and (b) downstream at x = 3W .
The gray line represents the flow of the Newtonian fluid at similar flow rates in each of
these plots. (c) The normalized root mean square of the centerline velocity fluctuation at
various channel locations and Weissenberg number.

The unsteady vortex is accompanied by bulk flow instabilities. To quantify the fluctuation

in the unstable flow, we conduct flow velocimetry focused on a small window in the chan-

nel centerline and monitor the instantaneous streamwise velocity uc at various channel x

locations. The fluctuation is then obtained by subtracting the mean u′c = uc − uc from

the instantaneous velocity. To facilitate comparison between various flow rates, we normal-

ize the velocity fluctuation with the mean centerline velocity U far from the cylinder. In

Fig. 4.5(a), we plot the time series of the normalized velocity fluctuations at 3W upstream

of the cylinder. We observe large fluctuations (20% of the mean flow) for the viscoelastic
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flow compared to the Newtonian solvent (gray line). The flow downstream of the cylinder

at comparable location, however, sees a different type of fluctuation. The amplitude of the

fluctuation is much smaller and the signal shows frequent jumps to the high velocity amidst

dwelling at low velocities.

The impact of the vortex instability is not confined to the vicinity of the cylinder but prop-

agates far upstream. In Fig. 4.5(c), we plot the root mean square velocity fluctuation σ

normalized by U at various x locations. For low Wi (. 1), we see very little velocity fluctu-

ations at all channel locations. As Weissenberg number increases, we see the flow becomes

weakly unstable upstream of the cylinder, similar to the observation of the vortex length

shown in Fig. 4.2(a). However, the flow downstream of the cylinder also becomes unstable

and the level of fluctuations is in fact higher than that upstream. As Wi further increases,

the upstream velocity fluctuation rapidly grows in strength and propagates increasingly

further upstream. At Wi = 23, it can be felt over 10W upstream of the cylinder. The

increase in flow fluctuation upstream must be due to the presence of cylinders, since very

far upstream (20W above), the flow is found to be steady with fluctuations close to the

instrument noise.

The propagation of the disturbance upstream suggests a mechanism by which the flow

downstream can communicate with the flow upstream even in the presence of strong advec-

tion by mean flow. Specifically, we investigate the relay of disturbance by computing the

two-point cross-correlation. In Fig. 4.6(a), we compute the cross-correlation coefficient for

the two streamwise velocity measured simultaneously at −3W and −2W upstream (dashed

black curve). First of all, we see that the two signal are highly correlated, with ρ(τ) reach-

ing almost 0.8. Note that a perfect correlation has ρ = 1, anti-correlation has ρ = −1,

while uncorrelated signal has ρ = 0. However, the peak shift time τp occurs at a non-zero

location, around -0.14 s. This means that the velocity signal at −3W leads −2W by 0.14

s. This lead time turns out to be much longer than if only advection by mean flow exist,

which is around 0.018 s. This time increases if there is an elastic wave traveling upstream
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Figure 4.6: (a) Cross-correlation coefficient between velocity signals measured simultane-
ously but between different locations at Wi = 23. The cross correlation between the flow
upstream and downstream or −W and W is shown by the dashed blue curve while that
between two upstream locations is shown by the solid black curve. (b) The elastic wave
speed computed via the peak shift time as a function of Wi.

with wave speed, ce that goes against the bulk advection. The net result is a reduction in

speed and increase in the time needed to travel:

τp =
`

U − ce
, (4.1)

where τp is the peak shift (lead/lag) time, ` is the separation distance between the two

observation points, U is the mean advection speed, and ce is the elastic wave speed. We

note that the minus sign implies the wave is going in the direction opposite to the bulk flow

and the shift time reflects the competition between the wave speed going upstream and the

advection of fluid downstream.

Since all quantities other than ce can be directly measured, we can then compute ce. We

can measure the peak shift time and extract the corresponding wave speed for two pairs of

locations −3W,−2W and −2W,−W . The average of the two pairs is then report in Fig. 4.6

(b) for various Weissenberg number. Since flow is steady without fluctuation below Wi = 4,

we only report results for Wi & 4. However, since accuracy of the methods relies on a large
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velocity fluctuation from which a shift time can be measured, we note that only flows in

the pulsing regime (Wi & 9) demonstrate a clear wave speed. As shown in the figure, the

elastic wave increases with Weissenberg number almost linearly for Wi & 9. This implies

that as Wi increases, the disturbance increases in strength and propagates upstream faster.

The propagation of the disturbance upstream due to the elastic wave seem to follow very

different dynamics compared to the flow in the cylinder wake. When we compare the

velocity signals measured simultaneously 1W upstream and downstream of the cylinder,

we find that the signals are weakly correlated, as in Fig. 4.6(a). This is expected from the

very different velocity time series shown in Fig. 4.5 (a,b), where the characteristics of the

fluctuation are clearly uncorrelated. Hence we conclude that the upstream instability and

the wake instability follows markedly different mechanisms.

4.4. Summary

Using conventional and holographic particle tracking methods, we study the three-dimensional

structure and dynamics of the flow of viscoelastic fluids around a confined cylinder. In con-

trast to most studies of viscoelastic flow around cylinders, we observe a region of stagnant

flow forming in front of the cylinder. We attribute the difference to the vertical confinement

of the microchannel, which produces a flow similar to a planar constriction where entrance

vortices are observed. The flow differs from a planar contraction because the post sepa-

rates the flow into two streams. The stagnant votices form along the top and bottom of

the channel at a critical Wi number. As flow rate increases, the streamwise length of the

vortex increase linearly with Wi, similar to theory for entrance flows of high Trouton ratio

fluids.

The velocity fluctuations in front of the post are 3-dimensional in nature, notably shifting

upward and downward (in the axial direction of the post) around the stagnant regions

which extend along the top and bottom walls. At sufficiently high Wi, the flow switches

between two dominant states characterized by strong symmetry breaking in the channel
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height direction with violent pulsing behavior.

Strikingly, the disturbance propagates far upstream, rather than confined to the extend of

the vortex. Although the flow downstream of the cylinder becomes unstable, the strength of

the instability upstream is comparable at high Wi. Further the two instabilities, although

separated only by a cylinder 50 µm in diameter, appears to be isolated from each other and

possess very distinct temporal and spatial features. Finally, we identified an elastic wave

speed with which disturbance can travel upstream. This wave speed is found to increase

linearly with Wi. Our results provide insight into the source of this perturbation and build

towards understanding the more complex flows such as flow in porous media.
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CHAPTER 5 : 3-D Elastic Instabilities in Cross-slot Channels

5.1. Introduction: Polymer Dynamics and Flow Instabilities in Elongational

Flows

The dynamics of long chained polymers in elongational flow is of fundamental importance

in polymer physics. The complex behaviors of these polymers in elongational flows, such as

strain-dependent elastic stresses, nonlinear spring constants, and conformational changes

often lead to flow instabilities that plague industrial processes such as fiber spinning, ex-

trusion, and molding. At the microscopic level, polymers can undergo a phase transition

from a coiled state to an elongated state, known as “coil-stretch” transition in extensional

flows [43]. On the other hand, the reverse process from stretched to coiled state is found

to be strongly hysteretic [94] and can lead to the so-called “buckling instability” of the

long-chain macromolecules, which has been reported for actin filaments [49] and birefrin-

gent strands [162]. At the macroscopic flow level, the bulk flow behavior is often studied in

extensional systems such as the cross-slot channel which resembles the classic four rolling

mill geometry. Arratia et al experimentally found two flow transitions in the purely elas-

tic regime, a steady symmetry breaking instability followed by an unsteady flow switching

instability in the elongational plane [47]. Subsequent 2-d simulations found qualitative

agreement [85] and 3-d simulations investigated the role of channel aspect ratio on the flow

transitions and argued that the flow is redirected via a path of least resistance [163]. Re-

cently, Sousa et al quantified the flow characteristics in the elastic turbulence regime [48],

while Burshtein et al found additional instabilities in the elasto-inertial regime [164] and

detailed a phase diagram from the inertia-dominated to the elasticity-dominated regime.

However, the 3-dimensional structure of the flow as well as the presence of any tertiary flow

instabilities in the purely elastic regime remains unexplored.

Using holographic particle-tracking and pressure measurements, we report a new symmetry-

breaking instability normal to the extension plane, marked by bi-stable flow switching in
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that direction and “buckling” of the separatrix between the impinging streams. The distur-

bances propagate upstream with periods of synchronization and desynchronization. These

complex flow structures may be present in other extensional geometries.

5.2. Experimental Setup and Methods

Figure 5.1: (a) Cross-slot channel apparatus, with width W = 100µm and height D =
90µm. The pressure sensors are placed at 50W towards the inlets. (b) Cutaway view of
the ensemble of three-dimensional particle trajectories and velocity fields obtained from the
holographic particle tracking velocimetry.

The cross-slot channel used in the experiments is shown in Fig. 5.1(a). The channel width

is W = 100µm and depth is D = 90µm. The confinement ratio is α = D/W = 0.9 and

the extensional strain rate near the stagnant point is estimated by ε̇ = 2Q/DW 2 where Q

is the volumetric flow rate prescribed externally with a syringe pump (Harvard Apparatus

PHD2000). Two fluids are used in the experiments, a polymeric fluid consisting of 300

ppm PAA in 90% by weight glycerol aqueous solution and a Newtonian fluid 90% glycerol

aqueous solution. The extensional Weissenberg number is Wi = λε̇ where λ is the longest

relaxation time measured by stress relaxation.

We measure the 3-dimensional flow field in a volume centered around the central hyperbolic

point within the cross-slot using holographic particle tracking technique described in section

2.2. The size of the volume is approximately a cube that is 100µm in span and shown in

Fig. 5.1(b), where the Lagrangian particle trajectories are shown in 3-d and colored by speed.

Further, we measure the pressure signal upstream of the cross-slot using two pressure taps
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(Honeywell TBPDANS series), installed at about 50W upstream of the cross-slot center.

The two sensors record the pressure signals simultaneously with a time resolution of 5 ms

and a pressure accuracy of 0.02 psi.

5.3. Results and Discussion

We begin with flow characterization in the extensional x, y plane, in which the flow enters

along the y-axis and the leaves along the x axis. Snapshots of the flow streamlines colored by

the velocity magnitude u normalized by the mean channel velocity, U = Q/WD are shown

in Fig. 5.2(a,b) for Newtonian and viscoelastic fluids at comparable extensional rates. For

Newtonian fluid (90% glycerol), the flow within the extensional plane remains steady and

symmetric around the hyperbolic point for all flow rates, as shown in Fig. 5.2(a). The flow

for the viscoelastic fluid, on the other hand, becomes highly asymmetric and the inflow

streams choose randomly between two outflow directions via a path of minimal resistance.

Such symmetry breaking instability and time-dependent instability within the elongational

plane have been well documented experimentally [47] and numerically [85, 163]. We note

that for our system, the asymmetric flow becomes unsteady and switches between the two

bi-stable modes for extensional rates larger than ε̇ & 4 s−1.

The flow structures normal to the extension plane, however, have not been previously

investigated in detail. In the following section, we document the presence of (i) tertiary

flow structures that occur in the plane normal to the planar extension and (ii) an unsteady

“buckling” instability of the separatrix between the inlet streams.

5.3.1. Symmetry Breaking in Three Dimensions

The break down of symmetry, however, is not limited to the extensional plane. In fact, the

symmetry breaking occurs also normal to the extensional plane. Using three-dimensional

holographic particle trajectories such as those shown in Fig. 5.1(b), we can probe the entire

flow structure in 3-d, particularly the velocity profiles along z direction. First, we show the

flow field within a y−z cut-plane that passes through the hyperbolic point and extends along
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(c) (d)

(e) (f)

Figure 5.2: Secondary and tertiary instability in the cross-slot flow of viscoelastic fluids. Left
column is Newtonian fluid and right column is viscoelastic fluid at comparable extensional
strain rates ε̇ = 11 s−1. (a,b) Streamlines and normalized velocity magnitude map in the
extensional x−y plane for (a) Newtonian and (b) viscoelastic fluid, showing the well-known
secondary asymmetric flow instability. (c,d) Streamlines and normalized uy component map
in a cut-plane normal to the extensional plane and along the inflow direction (x = 50 µm)
for (c) Newtonian and (d) viscoelastic fluid. Note that the flow enters along y direction
and exits along x. (e,f) Streamlines and map of normalized tertiary velocity uz in the same
cut-plane for (e) Newtonian and (f) viscoelastic fluid.
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the inlet (y) direction. In Fig. 5.2(c,d), we plot the uy velocity component normalized by

mean flow speed U and flow streamlines. For Newtonian fluids (Fig. 5.2 c), the streamlines

are parallel and the two inflow streams are symmetric both in y and in z, resembling typical

parabolic profiles. The flow of the viscoelastic fluid, however, is very different. We find a

clear breaking of symmetry that occurs in z, where the inflow streams appear to misalign in

z and preferentially choose between the upper or lower streams. Moreover, the streamlines

are curved with a clear velocity component in z. In Fig. 5.2 (e,f) we explore the z velocity

component uz and indeed, we find the presence of converging and diverging flows in the

viscoelastic case. We see that compared with the Newtonian case, the streamlines for

the viscoelastic are significantly curved and the z velocity map showed that, as the flow

approaches the stagnation regions, it diverges and converges in z.

A closer inspection of Fig. 5.2(f) shows that, an additional symmetry breaking can be found

in z where the separatrix between the two streams appears to be “buckling”, i.e., the

boundary of the two impinging streams displays a curved mode, which we describe in detail

below.

5.3.2. Buckling of the Inflow Separatrix

To visualize the separatrix between the two impinging streams, we normalize the streamwise

uy by the local speed u along the y − z cut-plane that passes through the geometric center

of the cross-slot, shown in Fig. 5.3. This component is chosen since it clearly distinguishes

the two streams. We denote the stagnant region as the curve where the two incoming inlet

streams meet and where the uy velocity is zero. For Newtonian flows and viscoelastic flow

at low strain rates, the stagnant region remains vertical and the two streams are symmetric.

For ε̇ > ε̇c ≈ 4 s−1, however, we find that this stagnant region becomes irregular and switches

between various curved forms resembling that of the Euler mode in beam buckling. For

example, snapshot resembling the 2nd modes are shown in Fig. 5.3 (a,b). As the flow rate

further increases, higher order modes are excited more often in addition to the low order

modes, see Fig. 5.3 (c,d).
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Figure 5.3: “Buckling” modes of the separatrix between the two impinging inlet streams.
This boundary undergoes irregular transitions between various shape modes: (a,b) show
a second order mode while (c,d) show a third order mode. We find that these transitions
accompany the symmetry breaking events in the extensional x− y plane.

We can quantify the onset of symmetry breaking in the z direction by measuring the relative

strength of separatrix buckling modes. We define the amplitude of the nth mode as the

integral dot product with the sinusoidal modes:

A(n) =

∣∣∣∣∫ y∗ · sin (nπy∗/L) dz

∣∣∣∣, (5.1)

where y∗(z) is the profile for the separatrix. This amplitude can be averaged over all ob-

served samples and the first five modes are shown in Fig. 5.4 (a). We see that for Newtonian

flow even at high extensional rate, all mode amplitudes are close to zero on par with system

noise level, since the flow is steady and Stokesian. The viscoelastic fluid at low exten-

72



Figure 5.4: (a) Statistical mean amplitudes of the “buckling” modes. (b) The sum of
mean amplitudes of all modes as a function of strain rate. A clear transition from flat to
curved separatrix between the two streams occurs at around a critical strain rate of ε̇c ≈ 4
s−1. This coincides with the strain rate at which the flow becomes unsteady. (c) Onset of
flow fluctuation occurs at strain rate of 4 s−1, as measured by root mean square pressure
fluctuations upstream of the cross-slot.

sional rate is similar to the Newtonian case, without strong excitation of modes. Once

the extensional rate exceeds ε̇ & ε̇c, however, a sudden onset of buckling modes occurs.

The amplitudes increase significantly for all modes and are dominated by the second mode.

As extensional rate further increases, we see that the strength of the higher order modes,

particularly the third mode, increases drastically.

The onset of the transition can be seen clearly by the total amplitude summed across all
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modes in Fig. 5.4 (b). As extensional rate increases, the Newtonian total amplitude remains

close to zero as expected. For the viscoelastic fluid, however, we see a transition to a branch

with high level of mode amplitudes which saturates for ε̇ > 15 s−1.

Interestingly, this transition occurs at a critical extensional rate ε̇c that coincides with the

onset of flow unsteadiness as measured by pressure fluctuations. In Fig. 5.4 (c) the root mean

square (rms) of pressure fluctuations P ′ = P − 〈P 〉 is shown as a function of extensional

rate for both Newtonian and viscoelastic fluids. First we note that the rms fluctuation for

the Newtonian fluid remains close to 20 Pa for all ε̇. The viscoelastic case, on the other

hand, sees significant increase in pressure fluctuations for ε̇c ≈ 4 s−1, the onset of unsteady

flow in our system.

5.3.3. Pressure Fluctuations and Correlation

Next, we report evidence that the flow dynamics within the cross-slot can influence the flow

upstream. We find that even though the pressure is measured 50W upstream of the cross-

slot, the disturbance can still be felt. Indeed Fig. 5.5(a) shows large irregular fluctuations

in the pressure time signals measured upstream of the cross-slot for viscoelastic fluids. The

signals measured simultaneously at the two inlets are shown at ε̇ = 74 s−1.

Upon closer inspection of the pressure time series taken at both inlets, however, we observe

segments of strongly correlated behavior followed by anti-correlated behavior. The two

types of behavior alternates in time. We hypothesize that this pressure behavior can be

related to the flow switching found within the cross-slot.

To further quantify this temporal dynamics of the pressure signals at the two inlets, we di-

vide the signals into segments of 5s and compute the correlation factor between the segments

taken at the two inlets. The instantaneous correlation factor ρ(t) can thus be obtained to

characterize whether the flow is correlated or anti-correlated at a particular instant. In

Fig. 5.5 (b), we shown the time trace of ρ(t). Intervals where ρ ≥ 1/3 are labelled red

while those satisfying ρ ≤ −1/3 are labelled blue. We can see clear switching events from
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Figure 5.5: (a) Pressure signals measured upstream of the cross-slot. Alternating inter-
vals of strong correlation and strong anti-correlation are observed for viscoelastic fluids at
high strain rates. (b) Cross correlation coefficient between the two signals computed for
sequential intervals that are 5 seconds in duration. Intervals of strong correlation (ρ > 1/3)
are labelled by red bands, while intervals with strong anti-correlation (ρ <1/3) are labelled
blue. They are found to be interspersed by brief periods of uncorrelated signal (white).
(c) The probability distribution of the cross correlation coefficients for viscoelastic fluids at
increasingly high extensional strain rates and Newtonian fluids. As strain rate increases,
the two streams become more likely to either vary together or against each other.

correlated motion to anti-correlated motion.

The onset of such behavior can be quantified by varying the extensional rate. We can

compute the probability distribution of all sampled correlation factors, shown in Fig. 5.5 (c).

First, we note that for the Newtonian fluid at high strain rates ε̇ = 37 s−1 the distribution
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follows a Gaussian distribution centered around 0, since the two signals are mostly steady

and randomly correlated. A similar distribution is also found for the viscoelastic fluids at

low strain rates ε̇ = 7.4 s−1 (blue) where the flow is mostly steady. As we further increase ε̇,

however, the distribution for viscoelastic fluid changes drastically. The distribution becomes

increasingly bimodal and is heavily distributed near 1 and -1, indicating the two signals are

either correlated or anti-correlated, at ε̇ = 75 s−1. This behavior suggests that the two

input streams are competing and interacting with each other, similar to the switching in

separatrix buckling modes.

5.4. Summary

In summary, using novel holographic particle tracking, we showed the presence of three-

dimensional structure in the classic cross-slot flow instability of a viscoelastic fluid. We

identified a tertiary flow instability and a “buckling” instability of the stagnation region in

the direction perpendicular to the plane of extension. The onset of these tertiary structures,

however, does not seem to coincide with the symmetry breaking in the extensional plane.

Rather, it occurs when the flow becomes unsteady. Further, the disturbances generated by

the cross slot flow instability propagate far upstream. The inlet stream pressure signals

alternate between periods of correlation and anti-correlation.
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Part II

Biological Systems: Transport in

Complex Fluids & Flows
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CHAPTER 6 : Flagellar Kinematics and Algal Swimming in Viscoelastic

Fluids

6.1. Introduction: Swimming in Viscoelastic Fluids

The motility of microorganisms and organelles through micro-structured fluids plays an

important role in many biological processes such as fertilization [165–168], respiratory health

[117, 169], development of disease [170] and bio-degradation in soil [171]. Disruption of

normal motility can occur due to unexpected changes in the nature of the surrounding

fluids. For instance, the beating of filamentous cilia that pump mucus in the respiratory

tract [168,172,173] and the flagella driven swimming of spermatozoa through cervical mucus

[174, 175] are both affected by the properties of the mucus such as water content and

viscoelasticity. At larger scales, the undulatory motion of C. elegans in wet soil [176] or

through polymer networks [177] is influenced by the rheology of the mud as it moves.

Many microorganisms move in the realm of low Reynolds number Re ≡ ρ`U/µ� 1 because

of either small length scales `, low swimming speeds U or both. In a Newtonian fluid

with constant density ρ and viscosity µ, the lack of inertia implies linear fluid kinematics

that is fully reversible in the swimmer configurations. To swim, therefore, organisms must

execute non-reversible, asymmetric strokes to break free of the curse set by the so-called

“scallop theorem” [105]. In many instances, however the ambient fluid environment is far

from Newtonian due to the presence of macromolecules such as biopolymers and proteins,

which impart complex rheological characteristics such as shear rate dependent viscosity

and viscoelasticity. In a viscoelastic fluid, elastic stresses are strain and time dependent.

Consequently, kinematic reversibility can break down.

The consequences of fluid elasticity on the details of swimming while clearly important,

are not well understood, and have recently received growing attention [120, 121, 123–126,

168, 178–180]. Most recent work has been theoretical in nature relying on detailed sim-

ulations [122, 124, 125] or asymptotic solutions to idealized models [121, 178, 179]. Taken
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together, current studies paint a complicated and sometimes contradictory picture. For in-

stance, theories on the small amplitude swimming of infinitely long wave-like sheets suggest

that elasticity can reduce swimming speed [121, 178] and these predictions are consistent

with experimental observations of undulatory swimming in C. elegans. [123]. Similar trends

were found recently [122] on studies of the motility of both idealized “pullers” (such as C.

reinhardtii) and “pushers” (such as E. coli). On the other hand, simulations of finite-sized

moving [124] filaments or large amplitude undulations [125] suggest that fluid elasticity can

increase the propulsion speed - consistent this time with experiments on propulsion due to

rotating rigid mechanical helices. [126] The emerging viewpoint is that fluid microstructure

and swimming kinematics together impact motility in a non-linear manner [125].

Here, by systematically modifying the elasticity of the fluid, we studied the variation of

the flagellar beat pattern, beat frequency, and swimming velocity for the bi-flagellated

swimmer Chlamydomonas reinhardtii. We find that fluid elasticity can modify the beating

pattern (i.e. shape) and enhance the alga’s beating frequency and wave speed. Despite

this enhancement, the alga’s swimming speed is overall hindered (as much as 50%) by fluid

elasticity due to the elastic stresses in the fluid. Numerical simulations using swimming

strokes gathered in the experiments reveal that the minimization of elastic stresses may

be at the root of the change in swimming gait and effect of fluid elasticity is asymmetric

between the power stroke and recovery stroke.

6.2. Experimental and Numerical Methods

6.2.1. Active Swimmer: Bi-flagellated Algae

We experimentally investigate the effects of fluid elasticity on the swimming behavior of the

bi-flagellated green alga, Chlamydomonas reinhardtii. With an ellipsoidal cell body roughly

10 µm in size and two anterior flagella each of length ` ∼ 10 µm, the alga C. reinhardtii is a

model system in biology and has been widely used in studies of motility and phototaxis [181].

The two flagella possess the same conserved “9+2” microtubule arrangement seen in other
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eukaryotic axoneme [181] such as those seen in sperm tails and airway cilia. As a pair, these

flagella execute cyclical beating patterns resembling breast-stroke with asymmetric recovery

and power strokes. Figure 6.1(b,c) show two snapshots of C. reinhardtii swimming at Re

∼ 10−3 in a water-like M1 buffer solution.

Figure 6.1: (a) thin fluid film (20µm thickness) stretched across custom made wire-frame
device. (b) swimming of C. reinhardtii at the start of recovery stroke (top) and power stroke
(bottom). Scale bar is 10µm.

6.2.2. Working Fluid and Experimental Apparatus

Two types of fluids are used in the experiments – Newtonian and viscoelastic. Newtonian

fluids are prepared by dissolving low molecular weight Ficoll (Sigma-Aldrich) in M1 buffer

solution with viscosities ranging from 1 cP to 10 cP. Viscoelastic fluids are prepared by

adding flexible polyacrylamide polymers (PAA, MW=18×106, Polysciences) to water. The

polymer concentration ranges from 5 to 80 ppm resulting in fluid relaxation times λ that

range from 6 ms to 0.12 s. This solution is considered dilute since the overlap concentration

is approximately 350 ppm. An effective viscosity µ = [η(γ̇body) + η(γ̇flag)] /2 is used to

facilitate comparison at similar viscosity but different elasticity. Here γ̇body and γ̇flag is the

shear rate at the body and the flagella, respectively.

Dilute C. reinhardtii suspensions are made by suspending motile algae in either Newtonian

or viscoelastic fluids. A small volume of this suspension is then stretched to form a thin film
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Figure 6.2: (a) Steady shear viscosity of the polymeric fluids used in the experiments. (b)
Fluid relaxation time versus polymer concentration, as measured using stress relaxation
test on a cone-and-plate rheometer and microfluidic rheometer.

(thickness ≈ 20 µm) using custom wire-frame device, shown in Fig. 6.1(a). The cell motion

in the thin film, along with the flagellar contours are then imaged using bright field and

phase contrast microscopy and then recorded using high speed camera. The shapes of the

flagella, shown by the red curves in Fig. 6.1(b), as well as the centroids of the cell body are

tracked simultaneously for cells that exhibit periodic symmetric strokes only. Motile modes

such as synchronous waving of the two flagella and “wobbling” where the two flagella are

de-synchronized, are not included in the kinematics statistics.

The shapes of the flagella as well as the trajectory of the cell centroid are tracked simulta-

neously. Instantaneous swimming speeds are then calculated by differentiating the centroid

position and the sign determined from the cell orientation. The speed of the swimmer mea-

sured in the thin liquid film set-up are consistent with that in the bulk fluid reported by

other researchers [182]. We note that the swimming gait generates far-field flows similar to

that of a negative force dipole for idealized “puller” [19,122].

6.2.3. Numerical Techniques

Numerical simulations of the experimental flagellar kinematics are conducted in full three-

dimensions using the Oldroyd-B model where the polymer stress tensor is related to the
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conformation tensor as:

τ p =
ηp
λ

(σ − I) (6.1)

where I is the identity tensor. The conformation tensor reflects the orientation and stretch-

ing of the polymer molecules and evolves with:

∂σ

∂t
+ u · ∇σ −

(
σ · ∇u+∇uT · σ

)
= − 1

λ
(σ − I) + ε∆σ, (6.2)

note here that an artificial stress diffusion term ε∆σ is added for numerical regularization

[143]. Since ε ∝ (∆x)2, we note that in the limit ∆x→ 0, this regularized model converges

to the Oldroyd-B model. The elastic strain energy density is defined by the trace of the

stress tensor Tr(τ p).

Immersed boundary method is used to couple the flagellar motion to the surrounding fluid.

In this method, Lagrangian coordinates are used to describe the swimmers position, velocity

and forces, and Eulerian coordinates to describe the fluid velocity, stress and pressure. We

use ideas from the immersed boundary method to couple the Eulerian and Lagrangian

variables. The flagellar contour locations obtained from the experiments are discretized

and the Lagrangian points on the flagella boundary are mapped to the Eulerian flow field.

Specifically, the force density on the swimmer is related to the force applied to the fluid via

spreading function.

In each time step of the simulation, we alternately advance the conformation tensor, update

the fluid velocity and pressure, and then the translational velocity and fluid forces on the

swimmer. We require that the swimmer moves with the local fluid velocity (i.e. there is

no slip on the body surface), and that the swimmer is force free. Lastly, the fluid domain

is taken as a periodic cube with side lengths 40 µm (about 4 body diameters), which is

discretized with 128 points in each direction. Each flagellum is discretized with 27 grid

points along its centerline.
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6.3. Results Part A: Experiments

6.3.1. Beating Frequency and Net Swimming Speed

We begin by investigating the effects of fluid viscosity on the beat frequency (Fig. 6.3a) and

on the cycle averaged net swimming speed (Fig. 6.3b). In Newtonian fluids, for viscosities

µ ∼ 2 cP and lower, the frequency is roughly around 56 Hz. Increasing the viscosity further

(µ > 2 cP) results in a monotonically decreasing frequency. Here, the decay is well captured

by ω ∼ 1/
√
µ consistent with models suggesting that emergent frequencies are selected based

on a balance of internal active processes, the elastic properties of the flagellum and external

viscosity [183]. For polymeric fluids with low viscosities (low PAA concentration), the

frequencies are consistent with the Newtonian values. At higher concentrations of polymer,

however, significant deviation from the Newtonian trend is observed, even though the fluid

has comparable viscosity. Surprisingly, the beating frequency increases with increasing fluid

viscosity (elasticity) and then seems to saturate.

The observed increase in beating frequency, however, does not translate into an increase in

overall swimming speed. Figure 6.3(b) shows that the average net swimming speed U of

the C. reinhardtii cell body decreases as the fluid viscosity increases for both Newtonian

and polymeric solutions. For low viscosity values (µ < 2 cP), the swimming speeds are very

similar for the algae cells in Newtonian and polymeric liquids. As polymer concentration

increases, however, we find that fluid elasticity consistently hinders self-propulsion compared

to Newtonian fluid at comparable viscosity. For both Newtonian and polymeric fluids, we

find the data consistent with the relationship U ∼ µ−1, which suggests that the algae are

operating at nearly constant thrust. Such a relationship has also been observed for free

swimming C. reinhardtii in low viscosity Newtonian fluids (1 < µ < 2 cP) [184].

The data shown in Fig.6.3(a,b) suggests the increasing importance of elasticity at higher

polymer concentrations. To quantify the level of elasticity experienced by the swimmer, we

introduce the Deborah number, defined here as De ≡ ωλ where ω is the mean frequency of a
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Figure 6.3: Effect of viscosity and elasticity on swimming kinematics: elasticity increases
frequency but hinders motility. (a) The beating frequency ω for Newtonian and viscoelas-
tic fluids. Dashed line represents power law, ω ∼ 1/

√
µ. (b) The net swimming speed U

averaged over many oscillations is shown as a function of µ. (c,d) Experimental data replot-
ted to emphasize the role of elasticity encapsulated by the Deborah number (c) Frequency
contrast ωVE/ωN as a function of the the relaxation time λ. The Newtonian value is based
on the mean beating frequency in a fluid with the same viscosity. (Inset) The frequency
contrast replotted as a function of the Deborah number. (d) The speed ratio UVE/UN as a
function of De - here, UVE is the speed in viscoelastic fluids and UN is the swimming speed
in the Newtonian counterpart.

representative sample of cells and λ is the fluid relaxation time from rheometry; we note that

De = 0 for Newtonian fluids. The normalized beating frequency and net algal swimming

speed as a function of De are shown in Fig. 6.3(c) and Fig. 6.3(d), respectively. For ease

of presentation, we normalize the measured frequency and net swimming speed with the

Newtonian value at comparable viscosity. Figure Fig. 6.3(c) shows the monotonic increase

in the frequency as the relaxation time of the fluid increases from around 20 to 120 ms. The

transition from a Newtonian-like response (De . 1) to a clear viscoelastic regime occurs at

around De ∼ 2.5, where the frequency is on the order of the fluid relaxation time, suggesting
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that elastic fluid stresses are modifying kinematics. The ratio of swimming speeds plotted

in Fig. 6.3(d) is consistently less than unity demonstrating that fluid elasticity hinders net

locomotion. The decrease is quite substantial even for relatively low values of De. For

example, fluid elasticity hinders the cell swimming speed, relative to Newtonian fluids, by

as much as 50% for De ≈ 2. We also observe that the ratio plateaus to approximately

0.4 for De > 2. This asymptotic behavior has been previously observed in theoretical

studies [121, 178] and also in experiments with worms. [123] The reduction in motility is

also consistent with recent simulations [122] of steady flow of weakly elastic fluid around

idealized pullers. This plateau may indicate an upper bound on the generated elastic stress

around the organism.

6.3.2. Elasticity Impacts Power and Recovery Stroke Asymmetrically

The net frequency and swimming speed while central to the alga’s overall motility, do

not distinguish between the highly asymmetric power and recovery strokes. Therefore, we

next calculate the mean speed during the power stroke U+ and the mean speed during the

recovery stroke U− for Newtonian and viscoelastic fluids. Figures 4(a) and 4(b) summarize

our observations. For Newtonian fluids, both the power U+ and recovery U− stroke speeds

decrease as µ increases, following the trend observed earlier for the Newtonian net swimming

speed in Fig. 3(b). For viscoelastic fluids, however, we observe a sharp difference between

power and recovery strokes. While the dependence of U+ is similar to the Newtonian

case, the recovery speed U− in viscoelastic fluids remains relatively unchanged, and in fact

modestly increases with viscosity. This raises the possibility that fluid elasticity affects

power and recovery strokes very differently - a view supported by plots of the normalized

power and recovery stroke speeds shown in Fig 4(c) and 4(d). We observe a minimum in

the values of U+
VE/U

+
N and U−VE/U

−
N at very low values of De. For larger values of De (> 2),

the speed ratio during power stroke, U+
VE/U

+
N starts from values less than unity, but then

increases and in fact exceeds unity at De = 6.4. On the other hand, the speed ratio during

the recovery stroke, U−VE/U
−
N is consistently greater than unity and increases with De. The
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Figure 6.4: Effect of viscosity and elasticity power and recovery strokes within a cycle.
(a) The average speed U+ during the execution of a power stroke. (b) The average speed
U− during the recovery stroke. As before, the error bars denote standard error from 10-
20 sample individuals. As viscosity increases, the Newtonian swimming speed decreases
monotonically during both the power and recovery strokes. This contrasts significantly with
two opposing trends seen in viscoelastic case. While U+ during the power stroke reduces
with increasing viscosity similar to the Newtonian case, the speed during the recovery
stroke, U−, is nearly constant and in fact increases for large viscosities. (c) Viscoelastic
power stroke swimming speed normalized by the Newtonian counterpart of comparable
viscosity, as a function of Deborah number. (d) The corresponding normalized speed for
the recovery stroke.

bias of fluid elasticity in power and recovery strokes, as explored later using the numerical

simulations, originates from the elastic stresses near the distill end.

We hypothesize that the proximal elastic stress concentration has opposing effects for the

power and the recovery stroke. During the power phase, signed speed data show that the cell

body is pulled forward by the flagella. This forward motion is resisted by the proximally

located elastic stresses in the fluid, hence the motion will be impeded compared to the

Newtonian case - i.e, U+
VE/U

+
N < 1 as seen for 2 < De < 6 in Figure 4(c). Added to this,

fluid stretching at the hyperbolic flow points [182] in the anterior of the cell body results in
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enhanced extensional viscosity that hinders this forward motion. On the other hand, when

the cell body recoils during the recovery phase, the relaxing polymer stress amplifies the

backward motion, augmenting the speed - and thus U+
VE/U

+
N > 1. The increase and build

up of elastic stresses at the distal end may also separately enhance the power and recovery

strokes by preventing the swimmer from slipping backwards as observed in simulations [124].

Consistent with this picture, we observe in Fig. 6.4(d) that as De increases, the backward

speed during the recovery stroke increases. For the forward stroke, however, we do not see

a monotonic drop in U+
VE/U

+
N with Deborah number, as one would expect by considering

elastic stress alone. Rather, the ratio increases for De ≥ 2 and eventually attains values

greater than unity.

Figure 6.5: Instantaneous velocity tracer and Newtonian and viscoelastic fluids. (a) In-
stantaneous speed as a function of time scaled with the period, t/T for swimming in two
Newtonian fluids - moderate viscosity 2.6 cP (black, circles) and high viscosity 6 cP (blue,
squares). (b) Instantaneous speed in a viscoelastic fluid corresponding to De = 6.5 and
µ = 5.7 cP (red, circles) and a Newtonian fluid of comparable viscosity µ = 6 cP (blue,
squares).

A closer examination of the time scales of the beat cycle provides clues to a possible ex-

planation. We note that the increase in ωVE/ωN at De ≈ 2 coincides with the increase in

the power stroke speed. For beating at constant stroke pattern - thus constant amplitude

- the speed may be expected to increase with the frequency in a manner similar that for

idealized swimming sheets [106, 179]. Together, these have striking effects on the temporal

composition of the beat cycle and resultant cell body displacements. In Fig. 6.5(a), we show

instantaneous speeds in Newtonian fluids with two different viscosities plotted as a function
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of t/T , where T is the respective beating period. We observe the expected self-similarity

where the instantaneous speed profiles collapse up to an amplitude scaling. Peak speeds

of the recovery stroke occur at integer values of t/T ; zero speed points coincide indicating

equal proportion of power phase and recovery phase for beat patterns. Comparison of the

Newtonian case with its viscoelastic analogue reveals a richer picture, c.f. Fig. 6.5(b). The

viscoelastic case has slightly higher amplitudes for both power and recovery stroke. This is

possibly due to polymer stretching “overshoot” that occurs at the switch between the power

and recovery stroke, as observed in the transient extensional flows in dilute polymers [185].

Furthermore, the zero speed points coincide only at the start of the recovery stroke and the

consistent delay in the start of the power stroke shows that the alga is experiencing a more

extended recovery and a shortened power phase.

6.3.3. Elasticity Modified Swimming Gait

Seeking signatures and origin of this complex coupling between cell motion and flagellar

strokes, we investigate the flagellar beat patterns, as illustrated in Fig. 6.6. The beating

pattern of C. reinhardtii over one cycle in Newtonian and polymeric solutions of similar

viscosity µ ≈ 6 cP are presented in Fig. 6.6 (a,c). The difference in shapes is striking

and illustrates the effects of fluid elasticity on swimming. In the Newtonian case (a), the

flagellum seems more mobile and significant changes in curvatures are attained over the

whole cycle. In the viscoelastic case (c), lateral displacements of almost a third of the

flagellum close to the cell body (green) appear to be severely restricted (less mobile) or

bundled together with most of the bending occurring over the remainder of the length.

Furthermore, we observe localized bending at the distal tip in the initial stages of the power

stroke. The differences in the shapes can be quantified by plotting the spatio-temporal

evolution of the scaled flagellum curvature κ(s, t) = κ̃(s, t) · ` along the flagellar arc length s

and over many cycles (Fig. 6.6 b,d). These kymographs show that regions of high curvature

are found to distribute diagonally and periodically, characteristic of propagating bending

waves. In the elastic fluid, (Fig. 6.6 d) flagella attain larger curvatures (dark blue regions)
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Figure 6.6: Fluid elasticity modifies swimming strokes. (a) Typical contours for one com-
plete cycle illustrating the shapes during power (blue) and recovery strokes (red) for New-
tonian fluid (De = 0, µ = 6.0 cP) and (b) viscoelastic fluid (De = 6.5, µ = 5.7 cP). (c,d)
The corresponding kymographs of the spatio-temporal normalized curvature, κ(s, t) along
a flagellum. We see that increasing the elasticity results in larger curvature magnitudes
(darker blue regions), significant differences in curvatures at the proximal end s ≈ 0, and
an increase in the frequency of bending waves (diagonally oriented lines - direction shown
by arrow).

and an increase in the frequency of bending waves (diagonally oriented lines - direction

shown by arrow). We also observed that for very low viscosities (1 < µ < 2.6 cP), the

distal tip gets closer to the cell body than for higher viscosity fluids. We can quantify this

difference in curvature by computing the normalized curvature averaged over time t (≈ 6

cycles) and dimensionless arc length s/`, here denoted by 〈κ〉. We find that at µ ≈ 6 cP,

the value of 〈κ〉 is -1.44 and -2.72 for the Newtonian and viscoelastic fluids, respectively.

To further understand the asymmetric influence of elasticity on power and recovery strokes

separately, we inspect the curvature profiles at particular phases within the cycle. Figure
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Figure 6.7: Fluid elasticity modifies power and recovery strokes separately. (a,b) Mean
curvature profiles averaged over the power (blue) stroke, recovery (red) stroke and full beat
cycle (black) for (a) Newtonian fluid, and (b) Polymeric fluid at comparable viscosity.

6.7(a,c) compares the normalized curvature averaged over the recovery stroke and the power

stroke respective for (a) Newtonian and (c) viscoelastic fluids at compared viscosity. The

most striking distinction for the viscoelastic fluid is the drastic change in curvature during

the recovery phase near the proximal end. For the viscoelastic case (Fig. 6.7 c), the curvature

is relatively fixed at s ≈ 0 throughout the cycle (same sign as power stroke), while for the

Newtonian case (Fig. 6.7 a), the curvatures vary significantly and in fact flip signs over a

beat cycle. This agrees well with the apparent “bundling” near the proximal end shown in

the flagellar contours in the insets.

Overall, our experiments show that during the recovery stroke, the changes in flagellar gait,

the increase in beating frequency and the increase in the proportion of recovery stroke work

in concert to enhance the speed during recovery stroke. In contrast, during the power stroke,

the three effects compete with each other. The net result ultimately yields a reduction in

speed of the alga. However, the origin of the change in the swimming gait as well as the role

of elastic stresses remain unknown. In the next section, we will attempt to answer these

questions using numerical simulations.
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6.4. Results Part B: Simulation

6.4.1. Elastic Stress and Velocity for Viscoelastic Stroke

Figure 6.8: (a) Snapshots of strain energy density in the central plane for De = 2 using
the viscoelastic stroke; the time points for these images are marked in (b) and (d) with the
labels 1-6. (b) Root mean square of the strain energy density in the mid-plane as a function
of time for different De normalized by maximum values. (c) Maximum values of root mean
square of the strain energy density in the mid-plane, used to normalize (b). (d) Velocity
over one stroke for different De. The power and return boosts are marked for De = 2.

Polymeric stresses are an important quantity that is difficult to obtain in experiments, but

can be resolved in simulations. In this section we use the viscoelastic stroke obtained from

experiments (µ = 2.5 cP, De = 2) and vary the fluid relaxation time λ and consequently

De in simulations. In Fig. 6.8 (a) we show snapshots of the fluid strain energy density in
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the central swimming plane at De = 2 (the Deborah number of the experiment from which

this stroke was extracted). The strain energy density– the trace of the elastic stress tensor–

gives a measure of the size of the elastic stress. It is notable that high stress is concentrated

only near the distal tips of flagella, contrary to our previous conjecture that high stress

regions develop near both ends of the flagella as well as near the body.

In Fig. 6.8 (b) we show the time trace of the spatially averaged strain energy density, nor-

malized by the cycle maximum, throughout the entire stroke for different De. The elastic

stress is generally lower during the power stroke than during the return stroke for all Debo-

rah numbers. The lowest stresses occur near the middle of the power stroke, and the highest

stresses occur towards the end of the return stroke. Moreover, the magnitude of the stress

increases monotonically with Deborah number, as shown in Fig. 6.8 (c).

Next, we investigate the effects of accumulated stresses on the cell propulsion speed. The

instantaneous velocity of the swimmer in a complete beating cycle is shown in Fig. 6.8 (d)

for different De. We see that fluid elasticity boosts the speed of both the power and return

strokes and produces a phase shift in which the peak velocities occur later in time. The

size of the boosts and the extent of the phase shifts both increase with De. However, the

speed of return stroke where the cell moves backwards is enhanced by a greater extent

than the speed of the power stroke where the cell is moving forwards. This confirms the

previous conjecture that the elastic stress increases both power and return strokes, as seen

in the experiments, but the elastic slow-down in the net swimming speed results from the

fact that the return stroke experiences a stronger speed boost (going backwards) than the

power stroke (Fig. 6.8 d). As De increases, the net slow-down intensifies.

6.4.2. Comparing Performance of Newtonian and Viscoelastic Strokes

To further isolate the effect of fluid elasticity on swimming and provide a mechanism for

the observed changes in flagellar gait, we conduct numerical simulation for two separate

strokes observed in the experiment: (i) viscoelastic stroke at De0 ∼ 2, µ = 2.5 cP versus
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(a)

(d) (e) (f)

(b) (c)

Figure 6.9: Simulation results showing the comparison of Newtonian stroke versus viscoelas-
tic stroke, see text for methods of comparison. (a) Net swimming speed comparison shows
Newtonian stroke produces much larger net speed for all De. (b,c) elastic strain energy
around the flagella for the (b) Newtonian and (c) viscoelastic strokes at the same simula-
tion De. The phase for both is the beginning of the power stroke. (d) Newtonian stroke
(blue) generates significantly higher elastic stress compared to the viscoelastic stroke (red),
as expected from the strain energy in (b,c). (e) Swimming efficiency comparison for the
two strokes. (f) Power output comparison for the two strokes.

(ii) Newtonian stroke at De0 = 0, µ = 2.6 cP. These two strokes are then executed in

the exact same viscoelastic fluid at varying relaxation times and hence De. Various cycle

averaged quantities are computed to assess the swimming performance of the two strokes.

First, we find that the Newtonian stroke yields swimming speeds 60% faster than those of the

viscoelastic stroke (Fig. 6.9 a), with both speeds decreasing with increasing Deborah number

at about the same rate. The tradeoff of the faster swimming speed, however, is that the

Newtonian stroke generates significantly higher polymer strains and expends more energy

compared to its elastic stroke counterpart. Fig. 6.9 (b,c) shows the distribution of elastic

strain energy around the swimmer. We see that the regions of high elastic strain energy

are gathered near the distal tip and are much more extended in space for the Newtonian

stroke than for the viscoelastic stroke. In fact, the zones of high elastic stresses extend

93



to the cell body in the Newtonian case. When averaged over the swimming cycle, the

viscoelastic stroke, on the other hand, sees consistently less field-averaged elastic stress

than the Newtonian stroke, as shown in Fig. 6.9 (d).

This increased expenditure of energy into straining the polymers has severe consequences in

swimming efficiency and power. In Fig. 6.9 (e), we compute the swimming efficiency, defined

as the ratio of average speed to average power (distance travelled per energy dissipated).

In a Newtonian fluid (De=0), the two strokes have comparable efficiencies. As we increase

fluid elasticity, however, the viscoelastic stroke consistently yields higher displacements per

unit energy input than the Newtonian stroke. Moreover, the power required to execute

the viscoelastic stroke, as shown in Fig. 6.9 (f), increases only mildly with De. This is in

stark contrast to the Newtonian stroke, where power need increased significantly. Note

that the highest power output of the viscoelastic stroke is still below the lowest power

output of the Newtonian stroke. The low energy requirement is particularly advantageous

if micro-swimmer is power limited.

Hence, we find that in viscoelastic fluids, cells employing the viscoelastic gait swim slower

but generates less stresses and use less power, and as a result the viscoelastic gait is more

efficient.

6.4.3. Speed Enhancements by Fluid Memory
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Figure 6.10: (a) Initial coasting velocity when the stroke is suddenly stopped, for various
stroke phases. (b) Peak initial coasting velocity and “speed boost” for increasing De.
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Both the experimental and simulation results reveal that the power and recovery speeds are

enhanced for elastic fluids. But how are the speed enhancements related to accumulated

elastic stresses? We address this question by conducting coasting numerical experiments

where we fix the flagellar stroke and monitor the subsequent coasting velocity of the cell

body.

In a Newtonian fluid (at zero Reynolds number), cell body stops instantly once the stroke is

frozen since all forces are equilibrated instantaneously. In a viscoelastic fluid, however, once

the flagella’s shape is suddenly fixed, the swimmer continues to translate with a coasting

velocity that is driven by the accumulated elastic stresses which is slowly relaxing. Hence,

we can quantify the effect of fluid memory and elastic stress on the swimming speed by

recording the initial coasting velocity (the initial velocity of the swimmer after the stroke is

frozen) as a function of the stroke phase as shown in Fig. 6.10 (a). We find that indeed, the

coasting velocity is significantly higher during return stroke compared to power stroke. At

De = 2, for example, the peak coasting speed during the return stroke is 30 − 35% higher

than that during the power stroke.

Also, increasing fluid elasticity (larger De) leads to larger initial coasting velocities. In

Fig. 6.10 (b), we plot the peak values of coasting velocity (dashed red) as a function of De,

as well as the so-called “speed boost” (solid black line, defined by the difference between

Newtonian and viscoelastic peak power or return velocities, seen in Fig. 6.8 d). These two

quantities show a similar dependency on De that strongly suggests that the accumulated

stress is a significant factor in the speed boost. Further, from Fig. 6.8 (d), we see that the

peak power and return enhancements occur with a time lag (phase shift) from the peak

velocities in the Newtonian fluid, indicating that as the stroke is beginning to slow down,

fluid elasticity continues to accelerate the swimmer. Hence, the increased velocity and the

tendency of the swimmer to continue to move when the flagellar motion is suddenly stopped,

are the result of the accumulated elastic stress which provides a memory effect.
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Figure 6.11: (a) The viscoelastic stroke (De = 2) with the tip of the flagellum highlighted.
(b) Angle between the tangential direction of the flagellar tip and the axis perpendicular to
the swimming direction for the same viscoelastic stroke. (c,d) Fluid strain energy density
induced by a rod traveling (c) tangential and (d) normal to its long axis with Wi = 7.5; (e)
Ratio of elastic stress to viscous stress induced by traveling rods with different orientations;
(f) ratio of stresses of the tangentially moving rod to the normally moving rod.

6.4.4. Mechanism of Asymmetric Speed Enhancements

Yet the question still remains: why does the return stroke saw a larger speed enhancement

by fluid memory? In Fig. 6.11 (a) we plot the flagellum contours for the viscoelastic stroke

with the distal tip orientation highlighted. We find that the tip orientation is less aligned
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with the direction of motion during the power stroke than during the return stroke. This

is clearly seen when the tip orientation angle with the transversal axis θ in plotted in

Fig. 6.11(b), where θ is significantly larger than the power stroke.

Hence, can the higher elastic stress accumulated during the return stroke be attributed to

this tip orientation asymmetry? In order to gain insight into the effects of flagellar tip

orientation in a viscoelastic fluid on swimming, we simulate a thin cylindrical rod traveling

at a constant velocity both tangential and normal to its long axis and measure the elastic

stress as a function of fluid elasticity. We use a rod length of 8 µm, and drag it at a

constant velocity of 100 µm/s (characteristic lengths and speeds of a free swimming alga)

until the elastic stress is equilibrated. To characterize the strength of elasticity, we define

a dimensionless Weissenberg number for this problem as Wi = λU∞/L, where λ is the

polymer relaxation time, U∞ is the velocity of the rod, and L is the length of the rod.

The elastic strain energy density for a rod that is tangential and normal to a viscoelastic

flow at Wi = 7.5 is shown in Fig. 6.11(c) and (d) respectively. A region of very high elastic

stress is found near the trailing tip of the rod moving in the tangential direction, while

lower elastic stress is found near the rod moving in the normal direction. Indeed, when

we compute the ratio of elastic to viscous stress in Fig. 6.11(e), we find that the elastic

stress difference between the two rod orientations separates quickly with increasing Wi

(growing elasticity). Moreover, viscous stress and elastic stress have significantly different

trends as the Weissenberg number increases, as shown in Fig. 6.11(f). The viscous stress

ratio (tangential to normal) is always less than one which agrees qualitatively with what

we expect from viscous fluid theory. The elastic stress ratio, however, is strikingly different.

As Wi increases, this ratio increases and for sufficiently large Wi this ratio exceed unity.

Hence, we now have a possible mechanism for the asymmetric speed boost for the return

stroke versus power stroke, observed both in experiment and in simulation. During the

return stroke, the flagellum is more tangentially aligned with the flow and hence generates

much larger elastic stresses, which strongly affect the swimming speed via the coasting
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effect by fluid memory. Although such stresses are not instantaneously equilibrated, the

difference in orientation of the tips of the flagella on power and return strokes contributes

substantially to the higher elastic stress observed during the return stroke.

6.5. Summary

In this work, we focus on the swimming of green algae C. reinhardtii in viscoelastic fluids,

yet the feedback we observe between fluid elasticity and such swimming strokes can be a

more general principle. Our experimental results show that fluid elasticity enhanced the

beating frequency and the wave speed characterizing the cyclical bending. Despite these

enhancements, the net swimming speed of the alga is hindered for fluids that are sufficiently

elastic and the flagellar stroke pattern is observed to be modified by fluid elasticity. The

details of this investigation are published in [186].

Simulations using experimental data attempt to isolate the effect of elastic stresses and pro-

vide a possible explanation for the changes in stroke pattern based on the energy spend to

overcome elastic stresses. We identified an elastic memory effect by measuring the coasting

speed driven by elastic stresses. A possible mechanism of the asymmetric speed enhance-

ment between the power and recovery strokes is proposed. The origin of the complex

swimming speed behavior lies in the asymmetric drag experienced by thin rods with dif-

ferent orientation to the flow in viscoelastic fluids. The drag forces contrast strongly with

that expected from viscous fluid theory. Furthermore, we show that fundamental principles

of swimming in viscoelastic fluids are not captured by viscous fluid theory: larger elastic

stress accumulates around flagella moving tangent to the swimming direction, rather than

normal. The details of this investigation are published in [187].
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CHAPTER 7 : Concluding Remarks

7.1. Summary

Understanding how complex fluids flow and the consequence of non-linear rheology on mi-

croscale swimmers has broad significance in technology and human health. From plastic

melts extruded though pipes to mucociliary clearance in airways, the complex rheologi-

cal behaviors, in particular viscoelasticity, can give rise to flow anomalies and intriguing

transport dynamics not found in simple Newtonian fluids.

In this thesis, we have investigated the flow instability and micro-swimmer motility in

viscoelastic fluids. We examined two broad questions regarding complex fluids: namely

how does viscoelastic fluid flow and how to operate in such fluid. These two questions are

examined using both physical systems such as micro-channel and biological systems with

active micro-swimmers.

In the first part, I studied the flow anomaly of viscoelastic fluids in three flow geometries that

reveal three distinct aspects of elastic instability, including (i) the turbulent characteristics

and mechanism of the subcritical transition in parallel channel flow, (ii) the characteristics

and mechanism of disturbance propagation upstream in elastic instability, and (iii) three-

dimensional symmetry breaking in the cross-slot flow.

In Chapter 3, we have investigated the flow of viscoelastic fluid in a straight channel flow.

The flow is perturbed by an array of cylinders far upstream the parallel shear region. First,

using high speed velocimetry, we have found evidence for turbulent-like flow behavior in a

parallel shear geometry of a viscoelastic fluid at low Re, namely the presence of irregular

flow structures activated at many times scales and a decay law in the velocity power spectra.

Further, these features, including power spectra scaling, intermittency statistics, and flow

space-time structures are distinct from with those near the curved cylinders in the same

system. These results suggest the emergence of a new type of elastic turbulent state in
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parallel shear flows. Second, we establish the law of resistance and the coherent structures

organizing the elastic turbulence in channel flows. We find two regimes: (i) a transitional

regime (5 .Wi . 9) in which the (viscous) friction factor fη ∼Wi1/3, and (ii) a turbulent-

like regime (Wi . 9) in which a sudden reduction of fη is observed followed by a weaker

dependence on flow rate that leads to fη ∼Wi1/10. This behavior is analogous to Newtonian

pipe flows in which a sudden increase in drag is followed by a weaker dependence on Re.

Dye injections and particle tracking data show the presence of weak flow structures far

downstream in the parallel shear region (200W ). In particular, we find small but finite

particle lateral (spanwise) movement and modulations not found in the Newtonian case.

These particle trajectories have enough curvature and speed to generate hoop stresses that

can sustain flow instabilities. Our results provide strong evidence for the “instability upon

an instability” mechanism proposed for the finite amplitude transition of viscoelastic fluids

in parallel flows [15, 16] and provide new insights into the flow of polymeric solutions in

channels and pipes.

In Chapter 4, we have shown that the elastic instability due to the cylinder can propagate

upstream. In particular, we report three main discoveries of the elastic instability upstream

of a single cylinder in confined channel flow. First, we report the onset of upstream instabil-

ity in the form of corner vortices in front of the cylinder, whose size grows with increasing

flow rate. Second, beyond a critical flow rate, the vortex becomes unsteady and switches

between two bi-stable configurations that lead to symmetry breaking perpendicular to the

cylinder axis. The flow is highly 3-dimensional in nature. Lastly, we show that the distur-

bance of the elastic instability propagates far upstream in the form of an elastic wave, yet

remains relatively isolated from the flow in the cylinder wake. The elastic wave speed is

found to increases with Weissenberg number. Our results suggest that the downstream flow

of a viscoelastic fluid may play a huge role far upstream in the long pipes in industries like

oil extraction where fluid containing polymers is flown through geometries with obstruction.

In Chapter 5, we have investigated the flow of viscoelastic fluid in cross-slot geometry.
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Using novel holographic particle tracking, we showed evidence for three-dimensional struc-

tures in the classic cross-slot flow instability of a viscoelastic fluid. We identified a tertiary

flow instability and a “buckling” instability of the stagnation region in the direction per-

pendicular to the plane of extension. The onset of the tertiary structures, however, does

not seem to coincide with the symmetry breaking in the extensional plane, but rather with

the initiation of the flow unsteadiness. Further, the disturbances generated by the cross

slot flow instability propagate far upstream. The inlet stream pressure signals alternate

between periods of correlation and anti-correlation. These results provide insight into the

mechanism of the elastic instability in strongly elongational flows, which are commonly

found in industry and technology.

In Part II of the thesis, I have studied the motility and transport of active swimmers in

viscoelastic fluids that is relevant to biological systems and human health. The system

under study is the swimming of green algae in a viscoelastic fluid film.

In Chapter 6, we have studied the swimming of bi-flagellated algae C. reinhardtii in vis-

coelastic fluids. Our experimental results show that fluid elasticity enhanced the beating

frequency and the wave speed characterizing the cyclical bending. Despite these enhance-

ments, the net swimming speed of the alga is hindered for fluids that are sufficiently elastic

and the flagellar stroke pattern is observed to be modified by fluid elasticity. Simulations

using experimental data attempt to isolate the effect of elastic stresses and provide a pos-

sible explanation for the changes in stroke pattern based on the energy spend to overcome

elastic stresses. We identified an elastic memory effect by measuring the coasting speed

driven by elastic stresses. A possible mechanism of the asymmetric speed enhancement

between the power and recovery strokes is proposed. The origin of the complex swimming

speed behavior lies in the asymmetric drag experienced by thin rods with different orienta-

tions to the flow in viscoelastic fluids. Furthermore, we show the fundamental principles of

swimming in viscoelastic fluids are not captured by traditional viscous fluid theory: larger

elastic stress accumulates around flagella moving tangent to the swimming direction, rather
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than normal. Although we focused on the swimming of bi-flagellated algae C. reinhardtii in

polymeric solution, the feedback we observe between fluid elasticity and the flagellar strokes

can be a more general principle.

7.2. Future Perspectives

In this section we briefly discuss two future projects that continue our investigation of the

flow behavior and instabilities in viscoelastic fluids. We propose two research directions in

the physical system and the biological system.

7.2.1. Drag on a Sphere in the Elastic Turbulence Regime

The drag on geometries as simple as the sphere in viscoelastic fluid is not fully understood,

despite considerable efforts. Experimental measurements of drag coefficient of sphere in

Boger fluids are often at odds even on qualitative questions such as whether elasticity in-

creases or decreases drag [66]. Reports of drag coefficients range from monotonic decreasing

with Weissenberg number Wi [188], monotonic increasing [189], and trends in-between [190].

Additionally, just like the laminar to turbulent transition of the Newtonian flow around a

sphere at high Reynolds number, does there exist a similar transition to the so-called elastic

turbulent state? Our previous experiments reported highly irregular flow structures in the

flow of viscoelastic fluids around an array of cylinders, see Fig. 3.4(b,c). How would these

irregular flow structures, typically observed in elastic turbulence, affect the drag on blunt

objects like a sphere or cylinder? A new approach that measures the coupling between

irregular flow kinematics and the force dynamics will provide insights.

Using custom viscoelastic “wind tunnel”, load cells, and holographic particle velocimetry,

we measure the drag coefficient on blunt objects such as spheres, ellipsoids, and cylinders

in both the elastic turbulent regime and the elasto-inertial turbulent regime. Using a glass

tube as the test section, we measure the drag force, dye mixing, and flow field associated

with blunt objects in the two turbulent regimes. This is achieved using two separate flu-

ids, namely a Boger type polyacrylamide polymer solution in viscous solvent and a dilute
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polymer solution with water-like viscosity. The forces experienced by the object can be

measured using load cells fixed far upstream of the test section. The flow is pressure-driven

and the volume flow rate is measured via weight balance. By varying the flow rate and fluid

elasticity, we determine the drag coefficient scaling versus Weissenberg number in the elastic

regime and versus the Reynolds number in the drag reduction regime. In addition, the tran-

sition via elastic instabilities will be quantified using holographic particle tracking. Various

confinement levels (glass tube to specimen diameter ratio) will be used. The experimental

study will provide additional insights on classical problems like turbulence modification by

polymers and purely elastic turbulence.

7.2.2. Collective Swimming of Algae in Viscoelastic Fluids

The effect of fluid viscoelasticity on the collective dynamics of active swimming has been

rarely studied despite its ubiquity in biological systems. Using a thin fluid-film device, we

seek to understand the dynamics of densely spaced cilia in complex fluids. In particular,

we will measure the collective ciliary beating dynamics (frequency, amplitude, waveform) of

densely packed algae C. reinhardtii and the induced transport of passive particles to gain

insight into mucociliary clearance. The collective ciliary dynamics in complex viscoelastic

fluids, while key to biological processes like mucociliary clearance, has not been previously

investigated. The proposed experimental setup consists of a thin film of viscoelastic fluid,

in which a dense population of algal cells is immersed and brought close to each other via

phototaxis, the biased swimming towards light [191].

We expect several phenomena that can be used to induce flow and transport, namely the

emergence of patterns of aggregation (circles and bi-layers), enhanced beating synchroniza-

tion, and a ciliary waveform different from that of a lone cilium or simple viscous fluids.

This is because (i) mechanical stress can develop on the cilia due to the “memory of the

viscoelastic fluid as well as the proximity with their neighboring cilia, and (ii) cilia are ca-

pable of mechanosensation, namely the sensing of mechanical stress and fluid flow. In order

to gain insight into the associated transport such as that in mucus clearance, we conduct
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flow velocimetry using in-house tracking methods. The experimental results will shed light

on many biological process produced by collective cilia behavior and directly facilitate the

control of material transport and mucociliary clearance.
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