
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2018

The Role Of Molecular Motors In Peripheral Nerve
Regeneration
Melissa D. Priest
University of Pennsylvania, melissa.d.priest@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Cell Biology Commons, Molecular Biology Commons, and the Neuroscience and
Neurobiology Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3173
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Priest, Melissa D., "The Role Of Molecular Motors In Peripheral Nerve Regeneration" (2018). Publicly Accessible Penn Dissertations.
3173.
https://repository.upenn.edu/edissertations/3173

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F3173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=repository.upenn.edu%2Fedissertations%2F3173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=repository.upenn.edu%2Fedissertations%2F3173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=repository.upenn.edu%2Fedissertations%2F3173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=repository.upenn.edu%2Fedissertations%2F3173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3173?utm_source=repository.upenn.edu%2Fedissertations%2F3173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3173
mailto:repository@pobox.upenn.edu


The Role Of Molecular Motors In Peripheral Nerve Regeneration

Abstract
Following injury, axons of the peripheral nervous system have retained the capacity for regeneration. While it
is well established that injury signals require molecular motors for their transport from the injury site to the
nucleus, whether kinesin and dynein motors play additional roles in peripheral nerve regeneration is not well
understood. Here we use genetic mutants of motor proteins in a zebrafish peripheral nerve regeneration
model to visualize and define in vivo roles for kinesin and dynein. We find that both kinesin-1 and dynein are
required for zebrafish peripheral nerve regeneration. While loss of kinesin-1 reduced the overall robustness of
axonal regrowth, loss of dynein dramatically impaired axonal regeneration and also reduced injury-induced
Schwann cell remodeling. Chimeras between wild type and dynein mutant embryos demonstrate that dynein
function in neurons is sufficient to promote axonal regrowth. Finally, by simultaneously monitoring actin and
microtubule dynamics in regenerating axons we find that dynein appears dispensable to initiate axonal
regrowth, but is critical to stabilize microtubules, thereby sustaining axonal regeneration. These results reveal
two previously unappreciated roles for dynein during peripheral nerve regeneration, initiating injury induced
Schwann cell remodeling and stabilizing axonal microtubules to sustain axonal regrowth.
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ABSTRACT 

THE ROLE OF MOLECULAR MOTORS IN PERIPHERAL NERVE REGENERATION 

Melissa Ducommun Priest 

Michael Granato 

Following injury, axons of the peripheral nervous system have retained the capacity for 

regeneration. While it is well established that injury signals require molecular motors for their 

transport from the injury site to the nucleus, whether kinesin and dynein motors play additional 

roles in peripheral nerve regeneration is not well understood. Here we use genetic mutants of 

motor proteins in a zebrafish peripheral nerve regeneration model to visualize and define in vivo 

roles for kinesin and dynein. We find that both kinesin-1 and dynein are required for zebrafish 

peripheral nerve regeneration. While loss of kinesin-1 reduced the overall robustness of axonal 

regrowth, loss of dynein dramatically impaired axonal regeneration and also reduced injury-

induced Schwann cell remodeling. Chimeras between wild type and dynein mutant embryos 

demonstrate that dynein function in neurons is sufficient to promote axonal regrowth. Finally, by 

simultaneously monitoring actin and microtubule dynamics in regenerating axons we find that 

dynein appears dispensable to initiate axonal regrowth, but is critical to stabilize microtubules, 

thereby sustaining axonal regeneration. These results reveal two previously unappreciated roles 

for dynein during peripheral nerve regeneration, initiating injury induced Schwann cell remodeling 

and stabilizing axonal microtubules to sustain axonal regrowth. 
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CHAPTER 1: INTRODUCTION 

Peripheral nerve regeneration: a clinical concern 

Peripheral nerve degeneration results from injury or disease and is termed peripheral 

neuropathy. In both of these instances, axons undergo a highly stereotyped 

degeneration program known as Wallerian degeneration. The degeneration of peripheral 

axons leads to sensory and/or motor loss as these neurons lose the connection to their 

functional targets. Some peripheral neuropathies are inherited genetic conditions, 

including the most common form called Charcot-Marie-Tooth disease (CMT), affecting 1 

in 2,500 patients in the United States. Peripheral neuropathies can also be acquired, 

including causes such chemotherapy treatments, diabetes, and peripheral nerve injuries.  

While axons of the peripheral nervous system (PNS) have much greater capacity for 

regrowth than those of the central nervous system (CNS), it is still estimated that fewer 

than 10 percent of patients recover full function after peripheral nerve injury (1). There 

are a number of challenges that peripheral nerves encounter during the process of 

regeneration. First, the distances across which axons must regrow are typically quite 

large in an adult human, and the speed at which peripheral axons regrow is not often 

sufficient to reach the appropriate target organs. Additionally, this slow regrowth leaves 

Schwann cells in the distal stump denervated for prolonged periods of time, and without 

trophic signals from innervating axons this results in Schwann cell loss.  

In addition to the rate of regrowth, the direction of regrowth is also a concern for 

functional regeneration. During peripheral nerve regeneration, axons must navigate back 
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toward their original targets in an environment that is very different from that of the 

developing embryo, when axons initially find their targets. The ease of pathfinding 

depends on the nature of the injury–in crush injuries, the axons distal to the injury site 

degenerate but the nerve tube stays in place, leaving an existing pathway for the 

regrowing axons to follow back to their appropriate targets. In transection injuries, the 

axons, Schwann cells, and basal lamina of the nerve tube are all disrupted and an 

acellular transection gap must be traversed by axons in order for them to regrow in the 

proper direction. This pathfinding task is much more complex, requiring more active 

guidance of regrowing axons, and results in further reduced target innervation after this 

type of injury. Further studies elucidating the cellular and molecular mechanisms that 

promote axonal regrowth and guidance may reveal potential therapeutic targets for 

human peripheral neuropathies.  

While the field of peripheral nerve regeneration is far too large to be covered in single 

section here, I have included a collection of reviews that discuss the current state of the 

field (Table 1.1).  

Neuron-intrinsic mechanisms of nerve regeneration 

In recent years, several key neuron-intrinsic regulators of axonal regrowth have been 

identified. Some of these signals are positive regulators, such as DLK, which has been 

identified as critical in promoting axonal regrowth in both C. elegans motor neurons (2) 

and the mouse sciatic nerve (3). In the central nervous system, several negative 

regulators have been identified as intrinsic, inhibitory factors in axonal regrowth. Neuron-

specific deletion of either PTEN or SOCS3 was found to improve axonal regrowth in the 
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optic nerve (4,5), and co-deletion of these two factors further increased axonal regrowth 

after injury (6). These experiments demonstrate that intrinsic axonal regrowth potential 

can be modulated by both activation of positive regulators, as well as downregulation of 

pathways that inhibit axonal regrowth.  

Neuron-extrinsic mechanisms of nerve regeneration 

In addition to neuron intrinsic mechanisms, there are critical extrinsic mechanisms that 

also promote nerve regeneration. The difference in regenerative capacity between axons 

of the CNS and axons of the PNS was once largely attributed to the intrinsic growth 

capacity of the neuron (7).  Seminal experiments in which denervated peripheral nerve 

stumps were grafted into an injured spinal cord revealed that axons of the CNS have the 

capacity to regrow when surrounded by the environment of the PNS (7,8). This 

demonstrated that a combination of inhibitory factors in the CNS environment and 

growth promoting factors in the PNS environment contribute to the difference in 

regeneration observed in CNS and PNS axons. 

Many of the extrinsic factors involved in regeneration come from surrounding cell types 

in the nerve. Schwann cells are the primary glia of the peripheral nervous system, 

residing in close proximity to axons. The majority of Schwann cells associate with a 

single axon, ensheathing the axon in tight wraps of myelin in a process known as 

myelination (9). Schwann cells provide neighboring axons with trophic support important 

for axonal maintenance and repair. Mice lacking Schwann cells exhibit early-onset 

axonal neuropathy, indicating a requirement for Schwann cells in axonal maintenance 
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(10). In addition to myelinating Schwann cells, there are also non-myelinating (Remak) 

Schwann cells (11) and perineural ensheathing glia (12) in peripheral nerves.  

In response to injury, both myelinating and non-myelinating Schwann cells in the distal 

nerve stump dedifferentiate to a regeneration-promoting state and form bands of 

Bungner (13,14). Schwann cells in the bands of Bungner proliferate and provide growth-

promoting factors, such as NGF, BDNF, and FGF, to regrowing axons (15-17).  As 

regrowing axons enter the distal nerve stump, Schwann cells and their associated basal 

lamina serve as a scaffold to guide axons toward their original targets (18). Once these 

newly regrown axons arrive at their targets, Schwann cells stabilize and remyelinate 

them (19). In addition to promoting growth in the peripheral nervous system, Schwann 

cells transplanted into the central nervous system also promote axonal growth and 

remyelination, suggesting that Schwann cells have therapeutic applicability (20-22). 

Perineural glia have also recently been shown to play a role in nerve regeneration, 

helping to engulf axonal debris and bridging the transection gap to promote axonal 

regrowth (23). 

In addition to non-neuronal cell types, extracellular molecules are other neuron-extrinsic 

factors that help promote nerve regeneration. Our lab previously identified a pathway by 

which glycosylated collagens help to specifically scaffold signaling molecules in order to 

direct axonal regrowth in vivo (24). This highlights the value of studying nerve 

regeneration in a system in which the behavior of both axons and Schwann cells can be 

experimentally modified and visualized in a whole organism context, as such axonal 

regrowth occurs through a fully in vivo environment.  
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Microtubules and associated motors in nerve maintenance and regeneration 

Mutations in microtubule associated proteins and motors have widely been identified as 

causing neurodegenerative conditions, which highlights the importance of microtubules 

and associated transport functions in neuronal health (Table 1.2).  Microtubules are a 

key component of the cytoskeleton, and these filaments consist of α-tubulin and ß-

tubulin heterodimers arranged in a 13-protofilament lattice.   Axonal microtubules have 

uniform polarity, with the minus ends toward the cell body and the plus ends toward the 

synaptic terminals (25). As is the case in other cell types, microtubules in the neuron are 

nucleated at the centrosome, from which they are transported in a dynein-dependent 

manner into the axon (26-28). Microtubule organization is critical to axon formation and 

stability–microtubules demonstrate increased stability in axons and it was also found that 

microtubule stabilization is sufficient to induce axon formation (29). 

Microtubules serve not only to provide structural support to the cell, but also as tracks for 

active transport within the cell. Microtubule-associated motors move along microtubules 

in a polarity-dependent manner. Kinesins are a large family of microtubule-associated 

motors that move toward microtubule plus ends. Kinesin-1 is the conventional kinesin 

and is composed of two light chains and two heavy chains – the heavy chains make up 

the motor domain while the light chains are responsible for cargo binding and regulation 

(30). Cargos of kinesin include organelles, proteins and RNAs (31). Kinesin-1 is critical 

for neuronal maintenance, as mouse knockouts of various heavy chains cause neuronal 

loss and dysfunction (32,33). Furthermore, human mutations in the kinesin-1 heavy 

chain gene KIF5A have been found to cause a form of hereditary spastic paraplegia 

(34,35), as well as Charcot-Marie-Tooth type 2 (36).  
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In addition to its role in neuronal homeostasis, kinesin-1 is also involved in axonal 

outgrowth during both development and regeneration.  During development, kinesin-1 

binds and slides microtubules against one another, termed microtubule sliding (Figure 

1.2). This activity had been found to drive major cell shape changes, and to specifically 

drive both dendritic and axonal extension in neurons (37,38). After axonal injury, it was 

found that kinesin-1-powered microtubule sliding is similarly required for axonal regrowth 

(39). 

The complementary motor to kinesin is dynein, a minus end-directed motor protein that 

is responsible for all retrograde transport in neurons, carrying similar cargos such as 

mitochondria, signaling endosomes, and autophagosomes. Dynein is a large protein 

complex comprised of many subunits, with two homodimerizing heavy chains at the core 

of the complex. The heavy chain contains the microtubule binding domains, ATPase 

activity, as well as subunit interacting domains. The light and intermediate chains help 

confer cargo specificity and stabilization to the dynein complex (40). Previously, three 

mouse mutants with distinct dominant mutations in the singular dynein heavy chain, 

dync1h1 (Loa, Cra and Swl), were identified in forward genetic screens as having 

progressive motor or sensory neuron loss (41,42). Moreover, human patients with 

heterozygous mutations in DYNC1H1 experience progressive motor neuron loss, with 

multiple mutations now found to cause spinal muscular atrophy, lower extremity 

dominant (SMA-LED) and Charcot-Marie-Tooth disease (CMT) (43,44). These findings 

have underscored the importance of dynein-mediated transport in neuronal development 

and maintenance. Dynein has also been found to organize the cytoskeleton during 
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axonal outgrowth by transporting microtubules in a polarity-sorting manner to establish 

uniform microtubule polarity in the axon (45).  

In addition to its role in neuronal maintenance, dynein has also been found to have a 

critical role in the neuron after injury. Following injury, one of the most important cellular 

changes within the neuron is the cell body response. This response consists of structural 

changes to organelles in the soma, as well as an increase in transcription and translation 

(46,47). The cell body response is elicited by both negative and positive injury signals. 

Negative injury signals result from a lack of target-derived trophic factors from the 

disconnected, distal axon. For example, retrogradely transported NGF decreases 10-fold 

after transection (48).  

Conversely, positive injury signals are carried back to the cell body from the site of 

injury. One such signal is the phosphorylation of MAP kinases, Erk1 and Erk2. These 

activated MAPKs are carried retrogradely to the cell body linked to dynein through the 

intermediate filament vimentin (49). Once in the cell body, injury signals up-regulate 

regeneration associated genes, which promote axonal regrowth.  These studies 

demonstrate the importance of retrograde signaling within the neuron following nerve 

injury. 

While studies have previously demonstrated key roles for kinesin-1-powered microtubule 

sliding and dynein-dependent injury signaling after axonal injury, both of these motors 

bind many cargos and have multifaceted roles within the cell. This raises the possibility 

that kinesin-1 and dynein may have additional functions after injury. Furthermore, the 

studies of kinesin-1 and dynein function after axonal injury have lacked analysis of in 
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vivo dynamics in a multicellular environment, including the dynamics of regrowing axons 

themselves and the role of surrounding Schwann cells as my work demonstrates. 

Zebrafish as a model to study nerve regeneration in vivo 

In order to dissect the cellular and molecular mechanisms of peripheral nerve 

regeneration in vivo, we use the zebrafish larvae 5 days post-fertilization (dpf). At this 

stage, the larvae are optically clear which allows for in vivo imaging of nerves in the 

context of a live vertebrate animal. At 5 dpf, the nervous system is already fairly mature 

– motor axons have fully extended, formed functional connections with their muscle 

targets, and are myelinated by Schwann cells (50,51). Using combinations of transgenic 

lines in conjunction with live cell imaging, we can monitor interactions between relevant 

cell types, such as motor neurons and Schwann cells (Figure 1.3, 52). We use laser 

mediated axotomy to fully transect motor nerves, which is followed by Wallerian 

degeneration and functional regeneration, and combine this with the use of genetic 

mutants to assess the requirements of a cell type or signaling pathway. Using this 

approach, we previously described nerve-macrophage interactions in vivo, revealing a 

novel nerve scanning behavior (51). We have also used this approach to provide the first 

minute-by-minute account of interactions between motor axons and Schwann cells after 

injury in vivo, which revealed a requirement for Schwann cells in guiding axonal regrowth 

(52). Here, we use this system to assess the roles of the motor proteins kinesin-1 and 

dynein in peripheral nerve regeneration in vivo and reveal novel roles for dynein in the 

Schwann cell response to injury and microtubule modulation at the growth cone to 

promote sustained axonal regrowth.  
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Table 1.1: Useful reviews of peripheral nerve regeneration 

Review Notes 
Mechanisms of Disease: what factors limit 

the success of peripheral nerve 

regeneration in humans? (53) 

Summary of clinical challenges 

Retrograde signaling in axonal 

regeneration (54) 

Review of retrograde injury signaling 

Intrinsic control of axon regeneration 

(55) 

Review of neuron-intrinsic mechanisms of 

regrowth 

The repair Schwann cell and its function 

in regenerating nerves (56) 

Review of Schwann function after injury  
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Table 1.2: Human disease-causing mutations in microtubule-associated proteins 

Gene Disease Reference 

MAPT (microtubule-

associated protein tau) 

Alzheimer’s disease (57-60) 

SPAST/SPG4 (spastin, 

microtubule severing 

protein) 

Upper motor neuron 

diseases 

(61,62) 

DCTN1 (dynactin subunit 

1) 

Perry syndrome; lower 

motor neuron disease 

(63,64) 

KIF5A (kinesin heavy 

chain isoform 5A) 

Hereditary spastic 

paraplegia (SPG10) 

(34,65) 

KIF1Bß (mitochondrial 

transport kinesin) 

Charcot-Marie-Tooth 

Disease 

(66) 

DYNC1H1 (cytoplasmic 

dynein 1 heavy chain 1) 

Charcot-Marie-Tooth 2O; 

Spinal muscular atrophy 

(43,44) 
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Figure 1.1: Schematic of peripheral nerve injury and regeneration. (A) Anatomy of 

an uninjured peripheral nerve. A long axon extends from the cell body of the neuron to 

synapse with a target cell (target not shown). The axon is ensheathed in myelinating 

Schwann cells. Red dashed line indicates site of transection. (B) Peripheral nerve after 

injury and axon fragmentation. Distal section of the axon fragments and distal Schwann 

cells dedifferentiate to a repair cell state. (C) Proximal axon section sprouts a growth 

cone that navigates back towards the denervated distal nerve and original target.  
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Figure 1.2: Schematic of microtubule sliding by motors kinesin-1 and dynein. (A) 

Kinesin-1 slides microtubules with their minus ends out into the axon. (B) Dynein slides 

microtubules with their plus ends out into the axon, and can also slide minus end out 

microtubules back towards the cell body. 
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Figure 1.3: Zebrafish as a model for peripheral nerve regeneration in vivo. Adapted 

from Rosenberg et al., 2014 (A) 5 dpf zebrafish larvae with motor nerves labeled by 

Tg(mnx1:GFP) (green). White box magnified in panels B-E. (B-E) Motor nerve, with 

axons in green and Schwann cell membranes in magenta. Scale bar = 10 µm. Red box 

indicates site of transection. Motor nerve uncut (B), 6 hours post-transection (C), 24 

hours post-transection (D), and 48 hours post-transection (E).  
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CHAPTER 2: KINESIN-1 AND DYNEIN IN NERVE REGENERATION 

Axons of the mature peripheral nervous system have retained a remarkable ability for 

regeneration. Although simple in concept, peripheral nerve regeneration is a complex 

process that requires extrinsic as well as intrinsic mechanisms. Chief amongst the 

intracellular mechanisms that contribute to axonal regeneration are microtubule 

organization and dynamics as well as axonal transport. It has long been known that 

following injury the pool of dynamic microtubules at the lesion site, as well as axonal 

transport, increase (67-69). Given the central role of both microtubule dynamics and 

axonal transport in promoting axonal regeneration, factors that regulate both processes 

are prime candidates for regulating peripheral nerve regeneration.  

The molecular motor proteins kinesin-1 and dynein are key regulators of both 

microtubule organization and axonal transport, and have both been implicated in 

peripheral nerve regeneration. Kinesin-1 is an anterograde motor that is essential for 

maintaining neuronal homeostasis by transporting cargos, including organelles and 

mRNA, from the cell body toward synaptic terminals. Kinesin-1 has also been shown to 

drive axonal outgrowth during development and after injury (38,39). Dynein has similarly 

been studied for its role in maintaining homeostasis by transporting cargo, however 

dynein moves cargo retrogradely towards the cell body. Dynein also plays an important 

role in axonal injury by trafficking injury signals, including components of JNK and ERK 

MAPK pathways, which are generated at the lesion site and actively transported to the 

cell body (70,71). There these injury signals initiate a regenerative response, 

characterized first by upregulation of regeneration-associated genes that prevent 
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neuronal cell death, and by initiating a genetic program that promotes regrowth of injured 

axons back to their original targets (72,73).  

More recently it has become clear that in addition to its role in retrograde transport, 

dynein also functions in cytoskeletal organization and maintenance. For example, in C. 

elegans dynein regulates local microtubule dynamics in dendrites to promote 

microtubule stabilization (74). Additionally, in the axon dynein transports microtubules to 

establish and maintain microtubule polarity (28,45,75). Finally, besides its preeminent 

role in axonal homeostasis, dynein is also required for Schwann cell development and 

myelination (76). Yet despite dynein’s well documented roles in both axons and glial 

cells, the effects of dynein on the cellular behaviors of regenerating axons and their 

associated glial cells in intact animals have not been examined.  

In order to examine the diverse cellular functions of molecular motors in multiple cell 

types, we combined genetic mutants with live imaging of nerve regeneration in larval 

zebrafish, as previously described (51). This allowed us to study the real-time dynamics 

of regenerating axons and surrounding Schwann cells in a whole organism context. We 

find that the molecular motors kinesin-1 and dynein, albeit to different degrees, are both 

required for axonal regrowth in vivo and that dynein is also required to initiate injury-

induced morphology changes in Schwann cells. We show that wild type neurons 

transplanted into otherwise dynein mutant animals are able to regrow robustly, indicating 

that neuronal dynein is sufficient to promote axonal regrowth. Finally, we find that dynein 

is dispensable for initiation of axonal regrowth but is required to stabilize microtubules in 

injured axons to generate persistent, long-range regrowth. These findings elucidate 
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previously unknown roles for dynein in the initiation of injury-induced Schwann cell 

behaviors, and identify a distinct role for dynein in promoting axonal regeneration 

through persistent axonal regrowth via microtubule stabilization.  

Kinesin-1 and dynein are critical for peripheral nerve regeneration in vivo 

To determine the in vivo roles of molecular motors in peripheral nerve regeneration, we 

first assessed regeneration in mutants lacking kif5aa, which encodes the neuron-specific 

Kif5A heavy chain of the conventional anterograde motor kinesin-1. We have previously 

shown that laser mediated transection of motor nerves in larval zebrafish initiates a 

Schwann cell dependent peripheral nerve regeneration program reminiscent of what is 

observed in adult vertebrate (52). Following their complete transection at 5 days post-

fertilization (dpf), ventral motor nerves exhibit Schwann cell dependent functional 

regeneration by 48 hours post- transection (hpt) (Figure 2.1, A-B, 52). Prior to 

transection, kif5aa-/- motor nerves were indistinguishable from wild type nerves (Figure 

2.1, C). By 48 hpt, motor axons in kif5aa-/- mutants had regrown across the full extent of 

the ventral myotome, although when compared to wild type siblings the number of 

fascicles that reached their ventral targets was reduced (Figure 2.1, D-E). Using a 

previously established semi-quantitative scoring index (for details see materials and 

methods and (52) we confirmed that compared to wild type siblings, motor axons in 

kif5aa mutants exhibited reduced regeneration (p=0.0487, Fisher’s exact test).  

We next assessed motor axon regeneration in genetic mutants for the dynein heavy 

chain gene (dync1h1) which encodes a core component of the retrograde motor dynein. 

These mutants survive through development due to maternally deposited dynein, which 
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persists until 4 dpf (77). This allows the fish to develop normally but have minimal levels 

of dynein at 5 dpf when we perform nerve transection assays. Importantly, this 

dync1h1hi3684 allele is a presumed null, unlike human mutations in DYNC1H1 which have 

been found to be dominant gain of function alleles (43,44).  

Prior to injury at 5 dpf, dync1h1-/- motor axons exhibit normal architecture, presumably 

due to the large maternal load sufficient to promote axonal development ((77), Figure 

2.1, F). In contrast, following transection, motor axons in dync1h1-/- mutant animals 

frequently failed to extend beyond the transection site (Figure 2.1, G; quantified in Figure 

2.1, H). Analysis of dynein heterozygotes revealed a less severe defect in axonal 

regrowth (p=0.0745), demonstrating a dose-dependent requirement for dynein in 

promoting axonal regrowth. The severity of the regeneration phenotype we observed in 

homozygous dync1h1-/- mutants was significantly stronger than that present in kif5aa-/- 

mutants (p<0.0001 and p=0.0487, respectively). This is consistent with the notion that 

other heavy chains of kinesin-1 as well as other kinesin family motors might compensate 

for the absence of kif5aa (78). In contrast, dynein is the sole protein responsible for 

microtubule-associated retrograde transport, and therefore the regeneration phenotype 

we observe in homozygous mutants likely represents a complete block of retrograde 

transport. We therefore focused on further defining the role of dynein in peripheral nerve 

regeneration.  

Dynein mutant motor neurons persist in 5 dpf larvae 

After finding that dynein mutants have impaired axonal regrowth when injured at 5 dpf, 

we next wondered whether this was truly a result of decreased regenerative capacity of 
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the dynein mutant axons, or whether there was a reduction in the number of motor 

neurons in a 5 dpf mutant larvae that caused fewer motor axons to regrow. It is possible 

that the lack of dynein in motor neurons is lethal to the cells, so we performed TUNEL 

staining in uninjured larvae at 5 dpf to determine whether there was increased cell death 

of motor neurons in the dynein mutants (Figure 2.2, A). In the wild type siblings, very few 

TUNEL positive cells were observed across the spinal cord, and no TUNEL positive cells 

were labeled in the ventral spinal cord where the motor neurons reside (Figure 2.2, B). In 

dynein mutant larvae, an increased number of TUNEL positive cells were observed in 

the spinal cord, indicating that there is some general increase in cell death in the 

mutants. To determine whether any of this cell death was in motor neurons, we 

quantified the number of TUNEL positive cells in the ventral spinal cord and found that 

this number was minimal (4 TUNEL+ cells across 36 hemisegments). Additionally, none 

of the TUNEL+ cells colocalized with the motor neuron label (tg(mnx1:GFP)), so we 

concluded that while the dynein mutants exhibited an increase in cell death at 5 dpf, this 

does not affect the motor neuron population (quantified in Figure 2.2, D). This indicates 

that rather than a lack of viable motor neurons to regrow axons, motor neurons persist in 

dynein mutant larvae at 5 dpf and the decreased regeneration observed in dynein 

mutants is in fact a defect specific to the process of axonal regrowth.  

Dynein is required for injury-induced Schwann cell remodeling  

In addition to its well-studied function in neurons, dynein is also required for proper 

differentiation and myelination of Schwann cells during development (14). Furthermore, 

in zebrafish lacking Schwann cells, regenerating axons sprout from the proximal nerve 

stump but fail to grow across the injury gap (20), somewhat reminiscent of the 
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phenotype we observe in dynein mutants. Given the importance of Schwann cells for 

peripheral nerve regeneration and the role of dynein in Schwann cell development, we 

sought to determine whether dynein is also required for the Schwann cell response to 

injury, characterized by stereotyped changes in Schwann cell morphology.  

We have previously shown that before injury, Schwann cell membranes ensheathe 

individual motor axons, and that following post-injury axonal fragmentation, Schwann cell 

membranes reorganize, changing from a smooth, tube-like appearance to a more 

rounded and granular morphology (20), indicative of their transition to an activated, 

dedifferentiated state—known as the repair cell state—that promotes axonal 

regeneration. Previous studies revealed that in dynein mutants, Schwann cells 

development prematurely arrests at the promyelinating stage (14). We therefore first 

wanted to determine whether immature Schwann cells are able to respond appropriately 

to injury. For this we examined a mutant for the G-protein coupled receptor GPR126, in 

which Schwann cells also arrest at the promyelinating stage (21), similar to what has 

been reported for dync1h1 mutants. Analysis of gpr126 mutants revealed that Schwann 

cells respond to injury by extending their membranes dramatically compared to their pre-

injury state, indistinguishable from wild type Schwann cells (Figure 2.3, A-D). This 

demonstrates that developmentally arrested Schwann cells are still able to respond 

appropriately to nerve injury.  

Having determined that promyelinating Schwann cells are competent to respond 

appropriately to nerve injury, we next examined the behavior of dync1h1-/- mutant 

Schwann cells. Unlike wild type and gpr126 mutant Schwann cells, we find that following 



20 

 

nerve transection dync1h1-/- mutant Schwann cells fail to initiate any morphological 

changes, and instead retain their pre-injury morphology and membrane position for the 

duration of the imaging period (up to five hours), arguing against a delay in onset but 

rather for a complete lack to initiate a Schwann cell injury response (Figure 2.3, E-F). To 

quantify this phenotype, we measured the changes in Schwann cell width following 

nerve transection as a simpler proxy for the complex changes in Schwann cell 

morphology (Figure 2.3, G). This revealed that while wild type and gpr126-/- Schwann 

cells significantly increase in width after injury, dync1h1-/- Schwann cells show no 

significant change. Thus, while dync1h1-/- mutant axons initiate fragmentation following 

injury, their associated Schwann cells fail to respond, consistent with the idea that 

dynein is critical for injury-induced Schwann cell remodeling.  

Neuronal dynein is sufficient to promote axonal regrowth  

Our results reveal injury-induced phenotypes in two cell types after injury in dynein 

mutants, and we therefore wondered whether dynein functions in neurons or Schwann 

cells to promote axonal regrowth. To determine the cell type in which dynein functions to 

promote axonal regrowth, we generated blastula stage chimeras (27) that contained wild 

type motor neurons and axons in otherwise dync1h1-/- larvae (Figure 2.4, A-B). Control 

transplantations have previously shown that wild type cells transplanted into wild type 

embryos generate motor neurons that are morphologically and functionally unaffected by 

transplantation (22). Following development and subsequent transection in a dync1h1-/- 

environment, wild type axons were able to regenerate robustly for the first 9 hours after 

sprouting (Figure 2.4, C-F), in a manner indistinguishable from wild type axons in a fully 
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wild type environment. This indicates that restoring dynein specifically in neurons in a 

dynein mutant is sufficient to promote axonal regrowth, demonstrating a neuron-intrinsic 

role for dynein during peripheral nerve regeneration. While technical considerations 

prevented us from visualizing Schwann cells in chimeric nerves, it is unlikely that wild 

type axonal regrowth would rescue dynein mutant Schwann cell response to injury, as 

these processes are temporally distinct—Schwann cells respond to injury between 2 and 

4 hours post transection, while axons do not begin to regrow until about 9 hours after 

transection.  

Interestingly, we found that dync1h1-/- axons that had wild type axons in the same nerve 

regrew more robustly than dync1h1-/- axons in nerves with no transplanted cells (14.23 

± 2.06 μm growth in dync1h1-/- larvae without transplants, see below; 39.33 ± 4.72 μm 

growth in dync1h1-/- larvae with transplants; Figure 2.4, F). In several instances, we 

observed dync1h1-/- axons growing along previously extended wild type axons (Figure 

2.4, G-I). This indicates that the presence of wild type axonal regrowth is able to partially 

rescue the dync1h1-/- axonal regrowth defects. Thus, while dynein acts intrinsically in 

neurons to promote axonal regrowth, it may also play a role in inter-neuronal interactions 

during regeneration. 

Dynein stabilizes axonal growth during regeneration  

We next asked how dynein promotes axonal regeneration within peripheral nerves. 

Peripheral nerve regeneration is a dynamic process composed of several defined 

stages, starting with growth cones emerging from the proximal stump and probing the 

injury gap environment. This is followed by stabilization of axonal regrowth across the 
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injury gap and along the correct trajectory, and finally rapid, sustained axonal regrowth 

towards their original targets (23). We used live cell imaging after nerve transection to 

quantify axonal dynamics in dynein mutants and determine which of these stages 

require dynein. In wild type siblings, we observed growth cones emerging from the 

proximal stump extending (3.54 events per 8 hours) and retracting (1.08 events per 8 

hours) repeatedly, consistent with the idea that these growth cones are probing the 

injury gap for a path towards their original targets (Figure 2.5, A-B). We found that 

dync1h1-/- axons exhibit similar frequencies of axonal extensions and retractions (Figure 

2.5, C-D), suggesting that they probe the injury gap as actively as their wild type siblings 

(Figure 2.5, E).  

We next examined the second stage of axonal regeneration when axons become 

stabilized and then extend toward their original targets. To quantify this process, we 

measured the overall displacement of regenerating growth cones over the first ~8 hours 

after sprouting began. We found that the majority of regenerating wild type axons grew 

beyond the transection site within 8 hours of sprouting (Figure 2.5, F), travelling an 

average of 41.49 μm (SEM ± 5.84) over this time period. In contrast, regenerating 

dync1h1-/- axons rarely extended beyond the transection site (Figure 2.5, G), travelling 

an average of 14.23 μm (SEM ± 2.06) and never exceeding 21.94 μm in growth. 

Moreover, quantification of growth cone displacement at 8 hours post transection 

revealed that compared to regenerating wild type axons, dync1h1-/- axons exhibited a 

significant decrease in axonal extension (Figure 2.5, H). Combined these results argue 

that rather than initiating growth cone sprouting and short range axonal extensions, 

dynein predominantly acts early during axonal regeneration to stabilize regenerating 
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axons thereby promoting persistent, long-range regrowth.  

Dynein stabilizes microtubules to promote persistent regrowth  

Dynein has recently been shown to play a critical role in generating and maintaining 

microtubule organization, both processes central to axonal growth (10,11,24,25). To 

determine whether dynein regulates microtubule dynamics in axons during regeneration, 

we used a transgenic line that simultaneously labels actin and microtubules in motor 

neurons (mnx1:Gal4; UAS:lifeact-GFP-v2a-EB3-RFP). Growth cone extension occurs in 

three stages: first, protrusion driven by F-actin, then engorgement driven by microtubule-

based transport of organelles and vesicles, and finally consolidation in which the growth 

cone contracts and stabilizes to form a cylindrical axon shaft (26). In regenerating wild 

type axons, filopodia extend at the growth cone and microtubules follow behind, 

stabilizing and consolidating newly formed protrusions (Figure 2.6, A- D). The majority of 

regenerating dync1h1-/- axons (n=30/37) displayed one of two phenotypes characteristic 

for microtubule disruption. In 59 percent (n=22/37) we observed filopodia extension 

followed briefly by microtubule extension (Figure 2.6, E-F) and then arrest at the 

engorgement stage before finally retracting (Figure 2.6, G-H). In 22 percent (n=8/37) of 

regenerating dync1h1-/- axons, microtubules faithfully followed filopodia extending at 

growth cones. However, rather than consolidating in the proximal growth cone, they 

adopted a looped conformation at the leading edge of the growth cone, leading to 

stalling and retraction (Figure 2.6, I-M). This demonstrates that lack of dynein leads to 

loss of microtubule organization at regenerating growth cones and stalling of 

regenerating axons early during the regeneration process. Combined, these findings 
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support a model by which dynein plays a critical role in regulating microtubule dynamics, 

thereby stabilizing growth of regenerating axons as they initiate their trajectory across 

the injury gap and towards their original targets. Our data reveal a critical role for dynein 

in promoting axonal extension via microtubule stabilization, as well as a previously 

uncharacterized role in initiating Schwann cell response to injury.  

Dynein is required for cytoskeletal maintenance in axons 

Given that dynein regulates microtubule dynamics in the axon during regeneration, we 

wondered if dynein was also required for long term maintenance of the axonal 

cytoskeleton. While the homozygous dync1h1 mutants are only viable until 8 dpf, the 

heterozygotes are fully viable into adulthood. This gave us the opportunity to examine 

axons in animals with a reduction in functional dynein levels and determine how this 

effects the cytoskeleton long-term.   

In collaboration with Clara Franzini-Armstrong, we fixed dync1h1 heterozygotes at 2 

months of age (wild type n=2 fish, dync1h1+/- n=2 fish) and performed electron 

microscopy on cross sections of ventral motor nerves. Dissections, fixation and 

sectioning were all performed in parallel across samples. In the wild type siblings, we 

found nicely organized cytoskeletal components within most axons. Elongated 

intermediate filaments were highly ordered and microtubules were apparent in the 

majority of axon sections. In the dync1h1 heterozygotes, most axons contained 

disordered intermediate filaments and many sections lacked apparent microtubules 

(Figure 2.7, quantified in Figure 2.8). This suggests that dynein is required to maintain 

cytoskeletal structure in motor axons.  
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There are several key experiments that should follow up on these preliminary findings – 

first, the initial experiment should be repeated to confirm that the disrupted cytoskeleton 

in dync1h1 heterozygotes is not simply an artifact from fixation and sectioning. While this 

is unlikely due to the number of samples in the first experiment, it would also be an 

extremely surprising finding that adult axons can function with a severely disrupted 

cytoskeleton. Mutations in various cytoskeletal proteins have been found to cause 

severe neurodegeneration in humans, indicating that cytoskeletal structure is critical to 

neuronal maintenance and function (79). 

Another critical question regarding the cytoskeletal defects observed in dync1h1 

heterozygote adults is whether the cytoskeletal structure degenerates over time, or 

whether it is improperly established during development. To distinguish between these 

possibilities, electron microscopy should be performed on dync1h1 heterozygote larvae 

at between 3-5 dpf, after the axonal cytoskeleton is established but likely before any 

cytoskeletal degeneration could occur.  If the axonal cytoskeleton is intact and properly 

organized in the heterozygous larvae, this would suggest that the cytoskeleton develops 

properly despite reduced dynein levels but subsequently degenerates over time, 

indicating that dynein is required for cytoskeletal maintenance. If the axonal cytoskeleton 

is already disordered in the heterozygote larvae, this would indicate that dynein is 

required to establish the cytoskeleton rather than to maintain it.  

Dynein promotes axonal degeneration after injury 

Wallerian degeneration is both a highly stereotyped and highly conserved process, 

occurring in organisms from insects to mammals. Axonal degeneration is initially marked 
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by membrane beading and swelling, followed by rapid breakdown of the cytoskeleton. 

After the axon fragments, surrounding cells, such as Schwann cells and macrophages in 

the peripheral nervous system, engulf and digest cellular debris. While debris clearance 

is dependent on surrounding cell types, axon fragmentation is a neuron-intrinsic event 

(80). It was originally thought that the loss of trophic support following injury caused 

axonal degeneration. However, expression of a novel fusion protein in a spontaneous 

mouse mutant, WldS, was found to protect injured axons from degeneration (81). This 

suggests that axonal death is an active process, rather than a passive, wasting process 

resulting from loss of trophic factors. Furthermore, a more recent study found that a loss 

of function mutation in the protein dSarm results in delayed axonal degeneration. This 

finding demonstrates that there are specific pro-death signals involved in axonal 

degeneration (82). However, axonal death is distinct from apoptotic death as it is 

caspase-independent and localized to the axon, leaving the soma intact (83).   

The cytoskeletal events that occur during axonal degeneration have been well 

characterized. Cytoskeletal breakdown is initiated by both the ubiquitin-proteasome 

system (UPS) and calpain-mediated proteolysis (84,85). These processes are calcium-

dependent and therefore upregulated after injury due to an initial increase in intracellular 

calcium levels. Inhibiting UPS and calpain either directly or through calcium chelation 

delays cytoskeletal breakdown, although it does not prevent initial beading and swelling 

of the axonal membrane (83,84,86). This indicates that there must be additional 

mechanisms of cellular breakdown involved in initiating axon fragmentation that are still 

unknown. 
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To determine whether the motor protein dynein is involved in the process of axonal 

degeneration, we transected nerves in 5 dpf dynein mutant larvae and performed 

timelapse imaging of the distal nerve stump beginning shortly after injury. We found that 

compared to their wild type siblings, dynein mutant larvae exhibited a dramatic increase 

in the time to first axonal fragmentation (Figure 2.9). Given that the time to axonal 

fragmentation increases in the absence of dynein, this demonstrates that dynein 

promotes axonal degeneration in vivo. There are several possibilities of how dynein may 

promote axonal degeneration. Interestingly, when axonal fragmentation begins, the 

entire length of the axon fragments simultaneously (87), suggesting spatial and temporal 

coordination of the fragmentation process. As dynein carries signaling endosomes 

throughout the axon, it is possible that some of these active death signals required for 

Wallerian degeneration may be transported by dynein to properly localize throughout the 

axon after injury and coordinate the initiation of fragmentation. 

Alternatively, it is possible that dynein coordinates some of the mechanical breakdown 

required for the process of fragmentation and degeneration. Dynein is required for 

axonal autophagy as it transports autophagosomes, which are intracellular vesicles that 

form a double membrane that engulfs cytoplasmic contents and delivers them to 

lysosomes for degradation. In neurons, autophagosomes initially form and sequester 

cytoplasmic contents at the distal end of the axon and move retrogradely as they mature 

and ultimately fuse with lysosomes, which are then termed autolysosomes (88). 

Retrograde transport by dynein is critical in mediating encounters between 

autophagosomes and lysosomes to allow for fusion and acidification of autolysosomes 

(89). Though there is evidence for increased autophagy in degenerating neurons 



28 

 

(90,91), the transport and function of autophagosomes during axonal degeneration 

remains unclear. Given that dynein mutants exhibit delayed degeneration after injury and 

autophagosomes are a direct cargo for dynein, future experiments should examine 

autophagy in dynein mutant axons to determine whether dynein-dependent transport of 

autophagosomes contributes to axonal degeneration in vivo. 

Taken together, the studies in this chapter reveal for the first time an in vivo requirement 

for the motor proteins kinesin-1 and dynein in nerve regeneration. We also identified 

novel roles for dynein in the process of nerve regeneration, including involvement in 

axonal extension via modulation of microtubule dynamics and initiation of Schwann cell 

morphology changes after injury. Preliminary studies suggest involvement of dynein in 

cytoskeletal maintenance of axons as well as an active role in the initiation of axonal 

fragmentation after injury. Here we have identified that in vivo, dynein promotes axonal 

degeneration, regrowth, and maintenance.  
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Figure 2.1: Dynein and Kinesin-1 are required for peripheral nerve regeneration in 

vivo. (A) Wild type motor nerve pre-lesion (red box, transection site; scale bar = 20 µm). 

(B) By 48 hpt, several fascicles have regrown fully across the ventral myotome (green 

arrowheads, regrown axons, strong regeneration). (C) kif5aa-/- motor nerve pre-lesion. 

(D) At 48 hpt, some axons have extended across the myotome (blue arrowheads, 

regrown axons, moderate regeneration). (E) Quantification of kif5aa mutant regeneration 

at 48 hpt (wild type siblings, n=66 nerves; kif5aa-/-, n=20 nerves, p=0.0487, Fisher’s 

exact test). 

 (F) dync1h1-/- motor nerve pre-lesion. (G) By 48 hpt, regrowing axons have extended 

slightly but failed to reach the ventral extend of the myotome (red arrowheads, stalled 

axons, no/weak regeneration). (H) Quantification of dync1h1 mutant regeneration at 48 

hpt (dync1h1+/+, n=59 nerves; dync1h1+/-, n=21 nerves; dync1h1-/-, n=25 nerves; 

p=0.007; p=0.0006; p<0.0001, respectively, Fisher’s exact test).  
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Figure 2.2: Dynein mutant motor neurons persist in 5 dpf larvae. (A) Schematic of 5 

dpf larvae. Motor neuron cell bodies shown in green, red box indicates area imaged for 

TUNEL quantification. (B-C) TUNEL staining of spinal cord of uninjured larvae at 5 dpf. 

Motor neuron cell bodies labeled in green (mnx1:GFP), TUNEL + cells labeled in red. (B) 

Wild type larvae and (C) dync1h1-/- larvae. (D) Quantification of TUNEL + cells in the full 

spinal cord and ventral spinal cord across 36 hemisegments (n= 3 larvae). 
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Figure 2.3: Dynein is required for injury-induced Schwann cell morphology 

changes. (A-F) Schwann cells in 5 dpf larvae labeled by Tg(sox10:mRFP). (A) Prior to 

injury, wild type Schwann cells have smooth, straight membranes that are tightly 

associated with the axonal track (scale bar = 5 µm). (B) After axonal fragmentation, 

Schwann cell membranes change morphology and widen to accommodate axonal 

debris. (C) Prior to injury, gpr126-/- Schwann cells are loosely associated with axons as 

they do not myelinate. (D) After axonal fragmentation, gpr126-/- Schwann cells are able 

to change morphology and widen. (E) Prior to injury, dync1h1-/- Schwann cells are 

loosely associated with axons as they also do not myelinate. (F) After axonal 

fragmentation, dync1h1-/- Schwann cell membranes maintain an elongated 

conformation and do not dramatically change morphology, indicating a disrupted injury 

response. (G) Quantification of Schwann cell width pre- and post-fragmentation in 

gpr126 and dync1h1 mutants. 

 



35 

 

 

  



36 

 

Figure 2.4: Neuronal dynein is sufficient to promote axonal regrowth. (A) ~10 

rhodamine-labeled cells were transplanted from wild type blastulas to dync1h1-/- 

blastulas. (B) At 5 dpf, nerves contained wild type neurons (transplanted cells labeled by 

rhodamine-dextran, magenta) in a dync1h1-/- larva (host motor neurons labeled by 

Tg(mnx1:GFP), green; scale bar = 10 µm). (C-E) After transection, wild type axons 

(magenta arrowheads) are able to regrow robustly in the dync1h1-/- embryo, while 

dync1h1-/- host axons regrow significantly less (green arrowheads; scale bar = 10 µm). 

(F) Quantification of growth cone displacement in dync1h1-/- host axons and 

transplanted wild type axons. Open circles indicate dync1h1-/- mutant axons that grew 

along transplanted wild type axons. (G-I) Some dync1h1-/- axons demonstrated 

improved regeneration in the presence of wild type axons in the same nerve. Here, a 

dync1h1-/- axon (green arrowheads) follows along a previously regrown wild type axon 

(magenta arrowheads; scale bar = 5 µm).  
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Figure 2.5: Dynein stabilizes axonal extensions during regeneration. (A-B) In wild 

type animals, regenerating axons begin probing the environment by extending and 

retracting (green and red arrowheads, respectively; scale bar = 5 µm). (C-D) dync1h1-/- 

axons also extend and retract after injury. (E) Quantification of extension and retraction 

events in wild type siblings (n=13 axons) and dync1h1-/- axons (n=13 axons). (F-G) 

Measurement of overall growth cone displacement from transection site ~16 hpt in wild 

type siblings (F; blue arrowheads, growth cones; scale bar = 10 µm) and dync1h1-/- (G; 

red arrowheads, growth cones). (H) Quantification of growth cone displacement ~16 hpt 

(wild type siblings, n=15; dync1h1-/-, n=10; p=0.0005, unpaired t-test). 
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Figure 2.6: Dynein stabilizes microtubules to promote persistent regrowth. (A-D) 

Regenerating wild type axons first extend actin protrusions then extended microtubules, 

leading to stable growth (scale bar=5 µm; green arrowheads, actin; magenta 

arrowheads, microtubules). (E-H) dync1h1-/- axons extend actin protrusions followed by 

microtubule growth that arrests during growth cone engorgement and leads to axon 

retraction (G,H). (I-L) dync1h1-/- axons extend actin protrusions but microtubules form 

aberrant loop structures (magenta arrowheads), leading to axonal retraction. (M) 

Quantification of microtubule organization in regrowing axons of dync1h1 mutants 

(siblings, n=19 axons; dync1h1-/-, n=37 axons; p<0.0001, Fisher’s exact test). 
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Figure 2.7: Dynein maintains cytoskeletal structure in motor axons of adult 

zebrafish. (A-D) Cytoskeletal structure of large caliber axon (red outline), scale bar = 

500 nm. Wild type sibling (A,C) and dync1h1+/- (B,D). Red arrows, microtubules; blue 

arrows, intermediate filaments. 
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Figure 2.8: Quantification of cytoskeletal structure in motor axons of adult 

dync1h1+/- zebrafish. (A) Quantification of intermediate filament organization in wild 

type (n=43 axons) and dync1h1+/- (n=33 axons) motor axons. (B) Quantification of 

microtubules present in wild type (n=43 axons) and dync1h1+/- (n=33 axons) axons.  
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Figure 2.9: Dynein promotes axonal degeneration after injury. Time to first axonal 

fragmentation after injury in wild type and dync1h1-/- mutant axons. 

 

 

 

 

 



43 

 

CHAPTER 3: NOVEL IN VIVO IMAGING APPROACHES 

In vivo imaging of cytoskeletal dynamics in Schwann cells 

Schwann cells are critical in promoting axonal regrowth and nerve regeneration. 

Following nerve injury, Schwann cells distal to the lesion site respond dynamically by 

breaking down their myelin and dramatically altering their morphology. These 

morphological changes are accompanied by changes in transcriptional profile – 

Schwann cells dedifferentiate to a state similar to the immature Schwann cell, termed 

the repair cell, during regeneration. In this pro-regenerative state, Schwann cells can 

engulf axonal debris, migrate, proliferate, and ultimately remyelinate regrown axons. 

Previous work from our lab found that Schwann cells are required for proper axonal 

regrowth in vivo (92). Furthermore, studies transplanting denervated Schwann cells from 

peripheral nerves into CNS injury sites found that Schwann cells are able to promote 

axonal regrowth of CNS axons (7). Despite their therapeutic potential, many questions 

remain regarding the morphological and molecular changes in Schwann cells that 

promote neural repair. Though factors have been identified that initiate Schwann cell 

dedifferentiation after injury (93-95), a comprehensive description of the changes in 

Schwann cell morphology and cytoskeletal organization in vivo is missing, mainly due to 

the technical challenges of imaging regeneration in live intact animals. Similarly, if and to 

what extent changes in the Schwann cell cytoskeleton are critical for axonal 

regeneration is currently unknown. 

Current understanding of the Schwann cell cytoskeleton comes predominantly from 

immunohistochemistry in cultured Schwann cells (96-99). While this has provided some 
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structural information, static images lack dynamic information and indication of 

microtubule polarity. Furthermore, the morphology of Schwann cells in culture can vary 

widely, and these Schwann cells lack association with axons which is a primary 

determinant of morphology in vivo. 

In order to visualize the Schwann cell cytoskeleton in vivo, I specifically examined 

microtubules which are critical in directing and maintaining cell shape. I expressed 

fluorescently labeled EB3, a microtubule plus-end binding protein which marks the 

growing ends of microtubules, in Schwann cells. This allowed me to observe microtubule 

dynamics in Schwann cells live, in real time and importantly also relative to their 

associated axons, which are critical to the complex, three-dimensional morphology of 

Schwann cells in vivo. The in vivo Schwann cell cytoskeleton has not previously been 

described, even in cells before injury, due to the technical challenges of visualizing such 

components in a live animal. I similarly encountered many technical challenges in this 

pursuit, the details of which I will report here. 

The major challenge in visualizing microtubules in Schwann cells of zebrafish larvae was 

expressing this marker in Schwann cells at all. Initially, I tried to use the sox10(7.2kb) 

promoter to drive expression of EB3 in Schwann cells transiently so that I could observe 

individual Schwann cells using the mosaic labeling that results from transient 

expression. When injecting the construct (sox10(7.2kb):EB3-GFP) and looking for 

transient expression, I frequently saw expression in other cell types labelled by sox10, 

as this is a broad marker of neural crest lineage. Across the thousands of fish I have 
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examined for transient Schwann cell expression using the sox10(7.2kb) promoter, I still 

to this day have never seen a Schwann cell labeled transiently.  

My next approach was to generate stable transgenic lines using the sox10(7.2kb) 

promoter, as this promoter has previously been used to successfully generate lines 

labeling Schwann cells in zebrafish (100). I injected the sox10(7.2kb):EB3-GFP 

construct and raised ~100 embryos to adulthood. I then screened for lines that labeled 

microtubules in Schwann cells and identified two separate lines. The first, line 4, labeled 

microtubules at a high enough expression level to easily see comets but not so high as 

to fill the cell with free EB3 (Figure 3.1A). Unfortunately, when I tried to raise this 

identified larvae (and several of its siblings with similar expression patterns) to adulthood 

to maintain the line, they all died. It is possible that even with levels of EB3 that were 

ideal for visualizing microtubules, this still may have negatively impacted microtubule 

dynamics in the neural crest cells of these individuals, causing lethality.  

The second line, line 8, had a slightly lower level of EB3 expression, although comets 

could still be easily visualized before injury (Figure 3.1B). An important point here for the 

purpose of visualizing microtubules after injury is that we use a laser commonly used for 

FRAP analysis to perform our nerve transections. This laser causes photobleaching of 

GFP, which with cytosolic GFP can recover over time as more GFP diffuses from parts 

of the axon that were not cut. It seems, however, that the photobleaching of EB3-GFP 

was much more severe and long-lasting, preventing the visualization of microtubules in 

Schwann cells for a few hours after injury, exactly when the critical morphological 

changes are occurring in Schwann cells.  
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I was able to successfully raise two identified line 8 larvae to adulthood, and outcrossed 

them to a wildtype stain to maintain the line. Unfortunately, when these adults were then 

incrossed, the level of labeled EB3 in Schwann cells was too low to image and quantify. 

This raises another important point about generating transgenic lines in zebrafish: using 

the Tol2 transposase greatly increases the rate of transgenesis, however it does not 

always generate the most reliable stable lines. With Tol2 transgenesis, concatamers of 

the transgene can be formed, meaning that multiple copies of the desired gene may 

integrate into the genome. While this can be helpful for expression levels initially, this 

also means that with subsequent outcrossing, some of these copies are lost, and 

expression level can decrease.  

Given the difficulty of identifying stable transgenic lines with an EB3 expression level 

suitable for imaging before and after injury, I turned to another Schwann cell promoter, 

Claudin K. Claudin K is a myelin-associated protein and thus labels only myelinating 

Schwann cells and oligodendrocytes. Using the CldnK promoter, I was able to see good 

transient expression of EB3 in Schwann cells (Figure 3.1C). The expression pattern 

tends to be clonal for a single nerve, so if one Schwann cell was labeled in a nerve, it 

also usually labeled all of the Schwann cells in that nerve. I also compared this structure 

to acetylated tubulin staining in 5 dpf fixes larvae (Figure 3.1D) and found the live 

images to provide a more defined structure. 

While CldnK was a much more reliable promoter and allowed me to successfully 

express many proteins both transiently and in stable transgenic lines, the most ideal 

levels of EB3 for live imaging in Schwann cells came from expression using stable lines 
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generated with the Gal4/UAS system. I crossed a sox10:Gal4 stable line and with a 

UAS:EB3-GFP line and this yielded bright labeling in most Schwann cells (Figure 3.1E). 

Interestingly, levels of EB3-GFP occasionally varied greatly between Schwann cells of 

the same nerve, allowing for some single cell resolution. The levels of EB3-GFP were 

strong enough to prevent photobleaching after laser transection, which allowed me to 

image cytoskeletal dynamics after injury (Figure 3.1F). 

Going forward, these lines can be used to visualize dynamics of the Schwann cell 

cytoskeleton first in wild type larvae, both before and after nerve injury. This will 

determine how the cytoskeleton changes after injury, as Schwann cells transition from 

their mature, myelinating state into a repair cell state. The lines have also already been 

crossed into a dynein mutant background which will allow us to assess if and how the 

Schwann cell cytoskeleton differs in dynein mutant nerves, both before and after injury. 

One unique challenge for assessing the Schwann cell cytoskeleton in vivo is the 

complex cellular morphology. This dramatically increases the complexity of automatically 

tracking and measuring individual EB3 comets, as many more comets are present 

simultaneously than in a single section of an axon. I have previously used the Imaris 

software to automate the tracking of EB3 particles, and have had moderate success with 

the automatic “track particles” feature. It is likely that a more specific protocol will be 

needed to accurately track and measure the microtubule dynamics in Schwann cells. 

This preliminary data represents the first visualization of the Schwann cell cytoskeleton 

in a live, whole organism context.  
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In vivo imaging of nerve regeneration in midlarval zebrafish 

The early larval zebrafish is an excellent system for studying nerve regeneration, as the 

larvae are optically clear at 5 dpf, allowing for in vivo imaging of cellular interactions after 

injury. Motor nerves in 5 dpf larvae demonstrate stable branching patterns and a degree 

of myelination roughly equal to that of a one week postnatal mouse (87,101,102). While 

this stage of larval development has many of the hallmarks of a mature motor nerve, it 

would also be useful to assess nerve regeneration in an even more mature animal. In 

our current experimental paradigm, nerves are transected in 5 dpf larvae and 

regeneration is assessed 48 hours later, when the larvae are 7 dpf. The ability to image 

older larvae would also allow us to assess nerve regeneration beyond 48 hours after 

transection. This would be useful for examining aspects of nerve regeneration that take 

longer than 48 hours, such as Schwann cell remyelination. 

As larvae mature from the early to the mid-larval stages, this is accompanied by 

substantial growth in terms of both length and thickness. At 5 dpf, the average length of 

a larva is 4 mm and by 15 dpf, the length increases to an average of 15 mm. This 

predominantly affects the number of fish that can be imaged simultaneously in a single 

imaging dish (Figure 3.2A). The greater consideration for imaging, however, is the 

thickness of the fish. As the fish grows, there is more tissue between the microscope 

objective and the spinal motor nerves, making it more difficult to image clearly. The 

larvae also have a more fully inflated swim bladder in the midlarval stages, making the 

trunk section substantially thicker than the tail section.  
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To determine how late the spinal motor nerves of midlarval zebrafish can be imaged 

using standard spinning disk confocal live imaging techniques, I raised larvae expressing 

mnx1:GFP to 21 dpf and imaged periodically from 5 dpf forward. I imaged motor nerves 

in both the midtrunk section (Figure 3.2B, box 1) as well as the tail (Figure 3.2B, box 2). I 

also transected these nerves at each timepoint to see in the laser could penetrate the 

tissue sufficiently in each location.  

At all timepoints (14, 16 and 19 dpf) nerves were successfully imaged and transected in 

both the midtrunk section as well as the tail (Figures 3.3, 3.4, 3.5). One challenge of 

nerve regeneration as an animal grows is that the distance across which an axon must 

regrow becomes much larger. The motor nerves of the trunk in the midlarval stages are 

much greater in length while the motor nerves of the tail are much shorter, and therefore 

a less useful tool to study more mature nerve regeneration. Surprisingly nerves in the 

midtrunk could be successfully imaged out to 19 days, after which point the full depth of 

the nerve could no longer be observed or imaged. This demonstrates that regeneration 

studies can be performed using the spinal motor nerves of the trunk in midlarval 

zebrafish until 19 dpf. 

Repeated nerve lesioning in vivo 

Another useful experimental paradigm enabled by the ability to image longer into the 

midlarval stages is a repeated lesioning model. The idea of conditioning lesions has 

been studied extensively in DRG neurons, which contain both CNS and PNS projecting 

axons. It has been found that if the PNS projection is first injured and allowed to recover, 

then the CNS projection is subsequently injured, the CNS axon will then regrow much 
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more robustly than typical CNS regeneration (103). This is thought to be caused by cell 

body changes in transcription that occur after the PNS injury, thus priming the cell body 

for regeneration and aiding in the regrowth of the CNS projection when it is subsequently 

injured. Conditioning lesions have also been seen to promote growth after subsequent 

lesions in the mouse rat peripheral nerves (104,105). Typically, a conditioning crush will 

be performed several days before the test crush, after which increased regeneration is 

observed.  

It is currently unknown whether conditioning lesions may promote subsequent regrowth 

of motor axons in the zebrafish. Furthermore, lesioning a nerve repeatedly may cause 

extra stress to the system and provide a sensitized condition in which to assay 

regeneration. In this case, if a particular gene has a milder contribution to axonal 

regrowth, we may be unable to see an effect on regeneration in our standard single 

transection assay but may see an effect in the repeated lesioning paradigm after 

transecting the same nerve multiple times.  

In order to determine whether motor nerves in larval zebrafish can regenerate in 

response to multiple lesions, I transected nerves in 5 dpf larvae, allowed them to regrow 

for 6 days, then transected the nerves again (Figure 2.6, A-D). I then assayed regrowth 

in response to the second lesion (Figure 2.6, E-H). I altered the site of transection from 

our standard single lesion assay, cutting more distally so that there would be sufficient 

regrowth to lesion a second time. This did in fact lead to robust regrowth 5 days after the 

first lesion, and again 4 days after the second lesion. Given that the animal grows quite 

dramatically in overall size throughout the course of this experiment (5 dpf, ~4 mm long 
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to 15 dpf, ~15 mm long), it is difficult to qualitatively compare the appearance of the 

nerve regrowth and determine whether regeneration is improved after a conditioning 

lesion. Experiments following up on this preliminary result should compare this regrowth 

to control animals that receive a single lesion at 11 dpf, without the conditioning lesion at 

5 dpf. These initial results demonstrate that larval zebrafish can survive, be imaged and 

have nerves transected throughout a 10 day assay in which both a conditioning lesion 

and test lesion are administered.  

Taken together, these experiments demonstrate an expanded potential of the zebrafish 

for assessing nerve regeneration in vivo, allowing us to examine later time points than 

before, as well as visualize subcellular components in Schwann cells.  
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Figure 3.1: Microtubule structure in Schwann cells in vivo. Schwann cell 

cytoskeletal structure in zebrafish larvae. (A) Tg(sox10:EB3-GFP) line 4, uninjured motor 

nerve of 2 dpf larvae; images taken every 5 seconds for 2 minutes and time projected 

(B) Tg(sox10:EB3-GFP) line 8, uninjured motor nerve 5 dpf larvae; images taken every 5 

seconds for 2 minutes and time projected (C) Tg(NBT:dsRed) labels axons in red, 

injected CldnK:EB3-GFP labels microtubule plus ends in green, uninjured motor nerve of 

5 dpf larvae; images taken every 10 mins for 5 hours and time projected. (D) Acetylated 

tubulin (green, microtubules) and znp1 (red, motor axons) stains in fixed 5 dpf larvae). 

(E-F) Tg(sox10:Gal4;UAS:EB3-GFP) in 5 dpf larvae, images taken every 10 seconds for 

2 minutes and time projected; in uninjured motor nerve (E) and 10 minutes post 

transection (F). 
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Figure 3.2: Schematic of mounting and imaging early and mid-larval zebrafish. (A) 

Placement of early (5 dpf) and midstage (14-19 dpf) larvae in glass bottom imaging 

dishes. (B) Enlargement of 5 dpf larvae; red box indicates imaging region of the ventral 

motor nerve in the midtrunk section, the standard nerve for transection in our 

regeneration studies. (C) Enlargement of a ~14-19 dpf larvae; red box 1 indicates ventral 

nerve imaging region in the midtrunk section, red box 2 indicates ventral motor nerve 

imaging region in the tail section. 
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Figure 3.3: Midlarval imaging in 14 dpf zebrafish. Tg(Hb9:GFP) labeling ventral motor 

nerves. (A-B) Motor nerve in mid-trunk section before (A) and immediately after (B) laser 

transection. (C-D) Motor nerve in tail section before (C) and immediately after (D) laser 

transection. Motor nerves can be imaged and transected successfully in both areas.  
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Figure 3.4: Midlarval imaging in 16 dpf zebrafish. Tg(Hb9:GFP) labeling ventral motor 

nerves. (A-B) Motor nerve in mid-trunk section before (A) and immediately after (B) laser 

transection. (C-D) Motor nerve in tail section before (C) and immediately after (D) laser 

transection. Motor nerves can be imaged and transected successfully in both areas. 
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Figure 3.5: Midlarval imaging in 19 dpf zebrafish. Tg(Hb9:GFP) labeling ventral motor 

nerves. (A-B) Motor nerve in mid-trunk section before (A) and immediately after (B) laser 

transection. (C-D) Motor nerve in tail section before (C) and immediately after (D) laser 

transection. Motor nerves can be imaged and transected successfully in both areas. 
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Figure 3.6 Repeated nerve lesioning in zebrafish larvae. Wild type larvae, motor 

axons labeled with Tg(mnx1:GFP). (A) Pre-lesion motor nerve at 5 dpf, red box shows 

site of transection. (B) Motor nerve at 5 dpf, 6 hours after first lesion. (C) Motor nerve at 

8 dpf, 72 hours after first lesion. (D) Motor nerve at 11 dpf, 120 hours after first lesion; 

red box shows site of second transection. (E) Motor nerve at 11 dpf, 0 hours after 

second lesion. (F) Motor nerve at 11 dpf, 6 hours after second lesion. (G) Motor nerve at 

13 dpf, 48 hours after second lesion. (H) Motor nerve at 15 dpf, 96 hours after second 

lesion.  
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CHAPTER 5: MATERIALS AND METHODS 

Ethics statement  

All experiments were conducted according to an Animal Protocol fully approved by the 

University of Pennsylvania Institutional Animal Care and Use Committee (IACUC) on 

January 24, 2014, protocol number 803446. Veterinary care is under the supervision of 

the University Laboratory Animal Resources (ULAR) of the University of Pennsylvania.  

Zebrafish genetics and transgenes  

All transgenic lines were maintained in the Tübigen or Tupfel long fin genetic 

background and raised as previously described(106). Transgenic lines used are listed in 

Table 5.1. Mutant lines used are listed in Table 5.2. Genotyping primers are listed in 

Table 5.3. 

Table 5.1: Transgenic lines. 

Transgenic Lines Population labeled Source 

Tg(mnx1:GFP)ml2 Spinal motor neurons (107) 

Tg(sox10(7.2):mRFP)vu234 Schwann cell membranes (12) 

Tg(UAS:lifeact-GFP-v2a-

EB3-RFP) 

Microtubule plus ends 

(red) and actin (green) 

Bremer et. al., in 

preparation 
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Tg(sox10:EB3-GFP) line 4 Microtubule plus ends generated 

Tg(sox10:EB3-GFP) line 8 Microtubule plus ends generated 

Tg(Xla.Tubb:dsRed) Pan-neuronal (108) 

 

Table 5.2: Mutant lines. 

Mutant Mutation Source 

dync1h1hi3684Tg Viral intronic insertion, 

presumed null from 

nonsense-mediated decay 

(109) 

gpr126stl47 Indel causing frameshift 

and early truncation 

(110) 

kif5Aasa7168  Point mutation in essential 

splice site donor 

(111) 
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Table 5.3: Genotyping primers. 

Mutant Genotyping primers Reference 

dync1h1hi3684Tg F1: 5’-AAACCTACAGGTGGGGTCTTTC-3’ 

F2: 5’-CATGAACGTGGCGCTGGTAC-3’ 

R: 5’-GFTACAACTACGAGCAAGTCAACC-3’ 

(109) 

gpr126stl47 F: 5’-GTCTTTGTCTCTGTCGATGC-3’ 

R: 5’:-GCTTGTAACTGATATGGAAGCC-3’ 

(110) 

kif5Aasa7168 F: 5’-TGGAGAAACGTCTTCGTTCTACG-3’ 

R1: 5’-GTGTGTGAATGTGAATGCAGTGCACAGTGT-3’ 

R2: 5’-GTGTGTGAATGTGAATGCAGTGCACCAGCGT-3’ 

(111) 

 

Nerve transection and live imaging  

Nerve transection and live imaging were performed as previously described (51,52).  

Axon growth extent quantification  

Axon growth extent quantification was performed as previously described (52). 

Transected nerves in which axons failed to regrow or did not extend through the entire 
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length of the ventral myotome are categorized as “no/weak regeneration.” Nerves with at 

least one fascicle that extended through the entire length of the ventral myotome are 

categorized as “moderate regeneration.” Finally, nerves with two or more fascicles 

extending through the entire length of the ventral myotome are categorized as “strong 

regeneration.”  

Axon extension and retraction quantification  

Axons were imaged every 15 minutes from ~7 to ~16 hpt. Extensions and retractions 

were defined as growth or retraction of >1 μm between timelapse frames and number of 

extension and retraction events was counted. Continued movements of the same 

direction in a subsequent frame were not counted as new events. Measurements were 

performed on each visibly distinct axon in a nerve.  

Growth cone displacement quantification  

Axons imaged at ~16 hpt were measured by drawing a line from the spinal cord exit 

point to the growth cone. Measurements were performed on each visibly distinct axon in 

a nerve.  

Schwann cell width quantification  

Axons and Schwann cells were imaged before transection and every 15 minutes from ~1 

to ~5 hpt. Schwann cell width was measured at the widest point in pre- and post-

transection images. Using ImageJ, a line was drawn from one edge of the Schwann cell 

membrane to the other in an orientation perpendicular to the motor nerve and was 

measured in microns.  
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Cell transplantation for chimera analysis 

Cell transplantations were performed as previously described (32). Wild type cells were 

transplanted into dync1h1-/- embryos in areas known to develop into motor neurons. 

Larvae were screened at 5 dpf to identify nerves that contained transplanted motor 

neurons and no other transplanted cell types along the path of the ventral motor nerve. 

Transection, imaging, and quantification of growth cone displacement in identified 

nerves were performed as described above.  

Image processing  

Image stacks were compressed into maximum intensity projections (MIPs) in Slidebook 

6 then processed using ImageJ and Photoshop to normalize brightness and contrast. 

Statistical analysis  

Fisher’s exact and Student’s t tests were performed on all applicable datasets.  
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CHAPTER 6: DISCUSSION 

Molecular motors Kinesin-1 and Dynein are required for nerve regeneration in vivo 

Microtubule-associated motors are critical for cellular maintenance, transporting 

important cargos throughout a cell and also helping to modulate the dynamics of the 

microtubules that they travel along. Previous studies have demonstrated a role for both 

the anterograde motor kinesin-1 and the retrograde motor dynein in establishing 

microtubule organization in developing axons. Additionally, many previous studies have 

found that dynein is critical in transporting signaling complexes from the axon to the cell 

body after injury. While this role for dynein in axonal regrowth has previously been 

described, kinesin-1 and dynein have many cellular cargos and functions, raising the 

possibility that these motors may be involved in nerve regeneration in multiple 

capacities. Furthermore, studies of the dynein-dependent retrograde injury signal have 

focused exclusively on the requirement for dynein in the axon. While neurons are known 

to be particularly dependent on active transport for cellular maintenance due to their 

length and highly polarized morphology, kinesin-1 and dynein are also critical in many 

other cell types. As such, we sought to evaluate the role of kinesin-1 and dynein in a 

multicellular context, using live-imaging in the zebrafish larvae to assess nerve 

regeneration in a live, whole organism.  We took advantage of homozygous zebrafish 

mutants for the kif5aa and dync1h1 genes, since their motor nerves developed normally 

due to maternal contribution. By transecting these nerves and imaging the regeneration 

48 hours later, we showed for the first time a requirement for both kinesin-1 and dynein 

in peripheral nerve regeneration in vivo.  
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Dynein stabilizes axonal extensions during regeneration  

Nerve injury induces a local signaling cascade that leads to the production of axon 

intrinsic signals at the lesion site (112). There is overwhelming evidence that dynein is 

critical to transport these injury signals from the lesion site to the cell body where they 

initiate a neuronal injury response (113-115). We find that in presumptive dynein null 

mutants, injured neurons robustly respond to the injury and within ~8-10 hours, 

regenerating axons sprout from the proximal stump, indistinguishable from what we 

observe in wild type animals. This raises the question whether axonal sprouting can 

occur independently of dynein-dependent injury dependent signals, or whether in our 

zebrafish model dynein-mediated retrograde transport is less important to mount an 

injury response. One clear difference between rodent models and our model is the 

distance between the injury site and the neuronal cell bodies. In rodent sciatic nerve 

models lesions are introduced millimeters away from neuronal cell bodies (115), while in 

larval zebrafish – due to the smaller animal size – lesions are generated about 10-50 μm 

away from neuronal cell bodies (51) Thus, it is conceivable that due to the almost 100-

fold reduction in distance between lesion site and cell body, injury signal propagation 

from the lesion site to the cell body is less dependent on dynein function. Although it 

remains unclear how injury signal propagation can occur independent of dynein, this 

provided us with the unique opportunity to examine dynein’s role in peripheral nerve 

regeneration beyond its role in injury signal transport.  

Endpoint analyses at 48 hpt uncovered a clear role for dynein in peripheral nerve 

regeneration, with clear effects on both axonal regrowth and Schwann cell injury 
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response (Figures 2.1 and 2.3). Using live-imaging to visualize the early stages of the 

regeneration process, we found that dynein promotes the stabilization and growth of 

long-range axonal projections, providing compelling evidence that apart from its well-

documented role in retrograde injury signal transport, dynein also plays a critical role in 

sustaining axonal regrowth.  

Dynein is required for Schwann cell remodeling after injury 

In addition to the axonal regrowth defects observed in dynein mutants, simultaneously 

visualizing the cellular behavior of both axons and Schwann cells revealed that loss of 

dynein also prevented injury-induced Schwann cell remodeling. The transition of 

Schwann cells from their fully differentiated state to a repair cell state is a well-

documented and integral aspect of peripheral nerve regeneration (95,116), accompanied 

by dramatic morphological changes to the Schwann cell, as the cell breaks down its 

myelin and extends its membrane to engulf axonal debris (117,118). Dynein regulates 

several steps of membrane trafficking, including ER to Golgi transport, as well as 

endosomal trafficking (119), so it is conceivable that dynein plays a direct, cell-

autonomous role in this process. Alternatively, the inability of Schwann cells to initiate 

the remodeling process might be a consequence of strongly reduced axonal regrowth, 

and future experiments will be required to test a possible Schwann cell-specific role for 

dynein in the remodeling process. Of these two possibilities, however, it seems most 

likely that dynein is playing a role specifically in the Schwann cell to promote remodeling 

after injury. This is due to the timing of Schwann cell remodeling, which occurs at the 

time of axonal fragmentation, hours before axonal regrowth begins. It is, however, 
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possible that axon-Schwann cell communication before injury is critical to prime 

Schwann cells to respond to injury, and this communication may be disrupted by the 

absence of dynein and a potential impairment in signaling endosome transport, etc.  

The absence of Schwann cell remodeling in dynein mutants also reveals novel insights 

into the mechanism of Schwann cell injury response. It has previously been thought that 

the morphological changes occurring in Schwann cells after injury result simply from the 

loss of axonal tension as the distal axons fragment. However, we observe in dynein 

mutants that even as distal axons fragment following injury, the Schwann cells do not 

respond with characteristic morphological changes. This indicates that mechanical 

forces alone are insufficient to induce the morphology changes observed in Schwann 

cells after injury, and suggests that molecular and genetic mechanism drive this repair 

cell transition both transcriptionally and morphologically.  

This raises another interesting question regarding the relationship between Schwann cell 

differentiation state and morphology changes after injury – does a change in Schwann 

cell morphology after injury necessarily indicate that the transcriptionally regulated repair 

cell transition has occurred, and vice versa? One way to address this question is to 

assess the transcriptional state of dynein mutant Schwann cells after injury. While we 

know that dynein mutant Schwann cells do not respond morphologically to injury, it is 

possible that the appropriate transcriptional response towards the repair cell state still 

occurs. The repair cell state is characterized by both dedifferentiation and activation 

processes. Difficulties arise when trying to assess the repair cell transition 

transcriptionally in dynein mutants, however, as these mutants also have defects that 
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prevent full differentiation during development. As a result, many of the markers of the 

repair cell transition are developmental marker that become re-expressed during the 

transition to the repair cell state, such as Sox2 (120). Unfortunately, these markers never 

actually become downregulated in the 5 dpf dynein mutant Schwann cells as the animal 

matures. Thus, it will be critical to use transcriptional markers that are unique to the 

repair cell state and are not simply developmental markers that are re-expressed after 

injury, but rather distinct markers of Schwann cell activation after injury. One candidate 

marker is c-Jun and its downstream targets, which are expressed at low levels in 

Schwann cells developmentally but become highly expressed after injury (95,116).  

In addition to further characterizing the repair cell transition by assessing transcriptional 

changes that occur in Schwann cells after injury, it will also be useful to examine 

cytoskeletal changes that occur after injury in both wild type and mutant animals. Using 

the tools and techniques developed in Chapter 3, we can first assess the cytoskeletal 

changes that drive Schwann cell remodeling in wild type animals. We can subsequently 

assess the cytoskeleton in dynein mutant Schwann cells and determine whether any 

cytoskeletal changes are initiated after injury, though the gross morphology does not 

change appreciably. Together, these experiments will help determine to what extent the 

cytoskeletal and morphological changes in Schwann cells after injury dictate the 

transition to the repair cell state.  

Neuronal dynein is sufficient to promote axonal regrowth after injury 

Given that dynein mutants exhibit defects in axonal regrowth and Schwann cell 

morphology, we performed chimeric analysis experiments to determine in which cell type 
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dynein is required to promote nerve regeneration in vivo. These experiments revealed 

that dynein function in injured neurons is sufficient to sustain axonal regeneration. 

Importantly in our chimera experiments, of the roughly 60 axons contributing to an 

individual motor nerve (121), on average only 1-3 transplanted wild type axons were 

present. This low level of chimerism was critical to evaluate regrowth capacity of 

individual wild type axons. This also revealed that the presence of individual wild type 

axonal regrowth facilitated regrowth of individual, neighboring dynein deficient axons 

(Figure 2.4, G-I). At the same time, the low level of chimerism precluded us from asking 

whether neuronal dynein restored all aspects of peripheral nerve regeneration, including 

injury-induced Schwann cell remodeling. Thus, while neuronal dynein plays a critical role 

in sustaining axonal regrowth, we cannot exclude the possibility that dynein function in 

Schwann cells also contributes to peripheral nerve regeneration.  

Dynein promotes axonal regeneration by modulating microtubule dynamics 

Cytoskeletal dynamics are critical to growth cone formation (122), axonal outgrowth 

during development (123), and axonal regeneration (124). Previous studies have 

revealed that microtubule stabilization promotes axonal regrowth after injury both in vitro 

and in vivo (125-127). Interestingly, studies of C. elegans dynein heavy chain mutants 

recently revealed that dynein acts locally in dendrites to stabilize microtubules (74). This 

raised the possibility that dynein may also act locally in regenerating axons to stabilize 

microtubules. We assessed cytoskeletal dynamics during regeneration using a 

transgene that allowed us to visualize actin and microtubules simultaneously in live, 

regenerating axons. This revealed that while actin dynamics were grossly unaffected in 

dynein mutant axons, microtubules often appeared unstable and disordered, with some 
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axons exhibiting looping microtubule configurations reminiscent of those seen in the 

dendrites of C. elegans dynein heavy chain mutants (74). Thus, our results provide 

compelling evidence that besides its well-documented role in retrograde transport, 

dynein also promotes microtubule stability critical for growth cone advancement (128), 

providing a potential mechanism for the rapid and sustained extension observed during 

wild type axonal regrowth, and deficient in dynein mutants (Figure 2.6).  

Dynein is also known to play a role in microtubule sliding (129), providing an alternative 

mechanism through which dynein may modulate axonal microtubule dynamics during 

regeneration. This may be a direct effect of dynein specifically interacting with 

microtubules, as it has previously been shown that dynein slides microtubules in a 

polarity-sorting manner during axon outgrowth. It is conceivable that dynein has this 

same role during axonal regrowth after injury and that in the absence of dynein, the 

polarity of microtubules in the axon is not established properly and eventually leads to 

retraction of the axonal extension. This idea is consistent with the axonal extension 

phenotype we observe in the dynein mutants, in which axonal extension proceeds for a 

short distance before becoming destabilized and retracting.  

Another possibility is that dynein may affect microtubule sliding indirectly via modulation 

of kinesin-1, as these motors have been shown to transport each other directly (130). 

Some studies in culture have shown that severe disruption of the anterograde motor 

kinesin-1 can disrupt dynein-dependent transport, and vice versa. Further studies will be 

required to determine whether dynein’s role in promoting axonal outgrowth specifically 

affects microtubule sliding, and whether this effect is through a direct microtubule 
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interaction or the modulation and transport of the anterograde motor, kinesin-1, which 

has previously been found to power microtubule sliding during axonal outgrowth. 

One remaining question regarding the role of dynein in modulating microtubule dynamics 

after injury is whether dynein is a direct effector of microtubule dynamics, or whether 

microtubule dynamics are simply a downstream effector of the retrograde injury signals  

activated after injury. As discussed previously, we have not yet been able to determine 

whether critical retrograde injury signals arrive at the cell body in the absence of dynein. 

While the scale of the injury model in the zebrafish suggests that activated retrograde 

injury signals can likely reach the cell body without active transport by dynein, it is still 

possible that critical signals, such as p-JNK, are disrupted in the dynein mutant. It has 

previously been shown that microtubules are downstream effectors of JNK signaling to 

promote neurite outgrowth (131,132). In order to determine whether dynein is directly 

affecting microtubule dynamics, it will be important to determine whether critical 

retrograde injury signals such as p-ERK and p-JNK are detected in the cell bodies of 

dynein mutant motor neurons after injury. Experiments are underway to visualize p-JNK 

and p-ERK via antibody staining, and I have also obtained a construct for fluorescently 

tagged p-JNK that can be used to visualize p-JNK in motor neurons after injury (133). 

Experiments to test the direct interaction between dynein and microtubules in the 

regrowing axon will be challenging, as dynein interacts with microtubules in its 

microtubule binding domain for all cargo transport functions, as well as microtubule 

sliding. An interesting experiment to further probe dynein’s role in modulating 

microtubule dynamics during axonal regrowth is to use taxol to stabilize microtubules in 

dynein mutant larvae. If the critical role for dynein in promoting axonal regrowth is in fact 
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modulation of microtubule dynamics, we would expect that stabilization of microtubules 

by taxol could rescue the axonal regrowth defects observed in dynein mutant nerves.  

If it is confirmed that dynein is directly affecting microtubule dynamics in the regrowing 

axon after injury, the nature of its interaction with microtubules should be examined. One 

possibility is that dynein impacts microtubule stability, while another is that dynein is 

critical for establishing appropriate microtubule polarity during axon outgrowth, as in 

development. To distinguish between these functions, microtubule polarity should be 

examined in regrowing axons. If dynein is indeed acting to slide microtubules in a 

polarity-dependent manner, we would expect to see disrupted microtubule polarity in the 

regrowing axons of dynein mutants. These experiments will help determine the specific 

nature of dynein’s role in modulating axonal microtubule dynamins after injury. 

Dynein in cytoskeletal maintenance: insight for human disease 

Multiple mutations in the dynein heavy chain, DYNC1H1, have been found to cause 

neurodegenerative conditions in human patients, indicating a critical role for the motor 

dynein in neuronal homeostasis and maintenance. First, a dominant point mutation in 

the homodimerization domain of DYNC1H1 was found to cause axonal Charcot-Marie-

Tooth disease in a large family pedigree (44). Additionally, two dominant mutations in 

the tail domain of DYNC1H1 have been found to cause spinal muscular atrophy (SMA) 

(43), and biochemical analysis revealed that these mutations disrupted complex stability 

and function.  

Thus far, insights into the disease mechanism of these human mutations have come 

from biochemical analysis in vitro as well as endpoint analysis of mouse mutants. The 
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heterozygous dync1h1 mutants may provide another unique entry point into studying the 

role of dynein in neuronal maintenance in vivo. The zebrafish dync1h1hi3684 mutation is 

an intronic viral insertion in the motor domain of the dynein heavy chain, which is 

expected to disrupt function and stability of the dynein complex (77). These 

heterozygous dynein mutants are fully viable into adulthood, however our preliminary 

results have revealed that cytoskeletal organization of the axon is severely disrupted in 

these mutants (Figures 2.7, 2.8). This cytoskeletal disruption suggests a potential 

mechanism for the axonal degeneration observed as a result DYNC1H1 mutations in 

humans.  

Interestingly, there are no obvious defects in the motor function of the heterozygous 

dynein mutant zebrafish, despite their disrupted cytoskeletal structure. One possibility is 

that these cytoskeletal defects do not disrupt axonal function, however this seems 

unlikely since relatively minor mutations in cytoskeletal proteins can lead to severe 

axonal degeneration in human and mouse mutants (Table 1.1). Another possibility is that 

these adult heterozygotes have motor defects that are imperceptible without a closer 

method of study. To determine whether dync1h1 heterozygotes have any functional 

motor deficits, we can examine the startle response at larval, juvenile, and adult stages 

as previously described by and developed in our lab. This will reveal whether there is 

any developmental deficit in these animals, and additionally determine whether motor 

function degenerates over time.  

To complement these studies, we can also perform electron microscopy on motor 

nerves at each of these stages and quantify the number of axons in a given nerve. This 
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should be another indication of whether axonal degeneration is occurring in these 

animals, as we would expect the number of axons per nerve to decrease over time as a 

result of degeneration. As mentioned previously, we can also examine cytoskeletal 

structure in the axons at each of these stages to determine whether the cytoskeleton is 

disrupted during development or degenerates over time, and additionally correlate this to 

any functional deficits or axonal loss that is observed.  

To further assess the cytoskeletal structure in axons of dynein heterozygotes, we can 

use the fluorescently tagged cytoskeleton line described in Chapter 2 (Figure 2.6; 

Tg(mnx1:Gal4) x Tg(UAS:EB3-RFP-lifeact-GFP)) combined with the midlarval imaging 

techniques described in Chapter 3. This will allow us to monitor the axonal cytoskeleton 

from the time of axon outgrowth in development through the midlarval stages, and 

should reveal whether the axonal cytoskeleton in dynein heterozygotes is established 

correctly in development, and also whether it degenerates over time. These experiments 

may provide new insights into the disease mechanism of degenerative diseases caused 

by dynein mutations, and may reveal that in addition to directing transport, dynein helps 

establish and/or maintain cytoskeletal structure in axons. 

Dynein promotes axonal degeneration after injury 

While studies in human and mouse have revealed a role for dynein in neuronal 

maintenance at homeostasis, our experiments revealed an additional role for dynein in 

the active process of Wallerian degeneration. Following nerve injury, we observed that 

dynein mutant axons in the distal stump show an extended lag phase prior to axonal 

fragmentation, indicating that dynein promotes Wallerian degeneration. Previous studies 
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of axonal degeneration have found that upon nerve crush or transection, cargos 

traveling retrogradely in the axon accumulate just distal to the site of injury as they can 

no longer pass into the proximal axon segment. This phenomenon has often been 

considered from the perspective of the cell body and proximal axon – that this 

accumulation of cargos distally subsequently results in a lack of these cargos and 

signals in the proximal nerve segment. Given that dynein affects the timing of axonal 

fragmentation in the distal stump, it seems it may have a more active function in the 

distal part of the nerve than previously thought.  

One possibility is that cargo accumulation at the end of the distal nerve segment 

somehow induces Wallerian degeneration. In the absence of dynein, we would expect 

that cargo distribution is already disrupted and the change after injury would be less 

pronounced. Given that Wallerian degeneration is a process initiated by active death 

signals in the axon, it is also possible that dynein-mediated transport is required for the 

distribution of relevant signals through the axon to coordinate axonal fragmentation. 

Notably, when axonal fragmentation occurs, the entire length of the axon fragments at 

the same time, suggesting tight temporal and spatial regulation of the fragmentation 

process. Given dynein’s key role in controlling the spatial distribution of critical cellular 

cargos, it is tempting to speculate that dynein’s role in promoting Wallerian degeneration 

is related to this function. 

One specific cargo of dynein that may be particularly critical for Wallerian degeneration 

is the autophagosome. In neurons, autophagosomes initiate distally and enclose cellular 

contents to be degraded. They then complex with dynein and travel retrogradely where 
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they fuse with lysosomes and degrade their contents. The process of autophagy is likely 

disrupted in that axons of dynein mutants, and this could be one explanation for the 

disrupted axonal fragmentation that is observed. It is conceivable that in addition to 

engulfment by macrophages and Schwann cells, the axonal debris generated upon 

fragmentation is also in part degraded by the neuron itself. This would process would 

likely occur prior to fragmentation while the axons are still intact, and could represent 

one functional benefit of the lag phase observed in Wallerian degeneration. Further 

studies will be required to determine whether autophagosome distribution and function is 

observed in dynein mutant axons. Additionally, it will be important to determine whether 

specifically disrupting autophagy affects the timing of axonal fragmentation after injury.  

The preliminary studies described here are the first demonstration that the molecular 

motor dynein promotes the process of Wallerian degeneration following injury in vivo. 

Follow up studies will reveal more about the specific mechanism by which dynein 

controls the precise timing of axonal fragmentation. 

Conclusions 

The work in this thesis demonstrates novel roles for the motor proteins kinesin-1 and 

dynein in peripheral nerve regeneration in vivo. It identifies additional mechanisms, 

beyond the transport of retrograde injury signals, by which dynein promotes axonal 

regrowth. It also provides preliminary evidence that dynein promotes cytoskeletal 

maintenance in axons as well as degeneration after injury, and suggests potential 

mechanisms of these roles. Taken together, these studies reveal previously unknown 

functions of dynein in peripheral nerve de- and regeneration.  
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