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Stochastic Control Foundations Of Autonomous Behavior

Abstract
The goal of this thesis is to develop a mathematical framework for autonomous behavior. We begin by
describing a minimum notion of autonomy, understood as the ability that an agent operating in a complex
space has to satisfy in the long run a set of constraints imposed by the environment of which the agent does
not have information a priori. In particular, we care about endowing agents with greedy algorithms to solve
problems of the form previously described. Although autonomous behavior will require logic reasoning, the
goal is to understand what is the most complex autonomous behavior that can be achieved through greedy
algorithms. Being able to extend the class of problems that can be solved with these simple algorithms can
allow to free the logic of the system and to focus it towards high-level reasoning and planning.

The second and third chapters of this thesis focus on the problem of designing gradient controllers that allow
an agent to navigate towards the minimum of a convex potential in punctured spaces. Such problem is related
to the problem of satisfying constraints since we can interpret each constraint as a separate potential that
needs to be minimized. We solve this problem first in the case where the information about the potential and
the obstacles is deterministic and complete and later, in Chapter \ref{chap_stochnf}, we consider the case
where this information is only available from a stochastic model. In both cases, we derive sufficient conditions
in which a Rimon-Koditschek artificial potential can be tuned into a navigation function and hence being able
to solve the problem. These conditions relate the geometry of the potential of interest and the geometry of the
obstacles.

Chapter \ref{chap_feasibility} considers the problem of satisfying a set of constraints when their temporal
evolution is arbitrary. We show that an online version of a saddle point controller generates trajectories whose
fit and regret are bounded by sublinear functions. These metrics are associated with online operation and they
are analogous to feasibility and optimality in classic deterministic optimization. The fact that these quantities
are bounded by sublinear functions suggests that the trajectories approach the optimal solution. Saddle points
have the advantage of providing an intuition on the relative hardness of satisfying each constraint. The limit
values of the multipliers are a measure of such relative difficulty, the larger the multiplier the larger is the cost
in which one incurs if we try to tighten the corresponding constraint. In Chapter \ref{chap_counterfactuals}
we exploit this property and modify the saddle point controller to deal with situations in which the problems
of interest are not feasible. The modification of the algorithm allows us to identify which are the constraints
that are harder to satisfy. This information can later be used by a high logic reasoning to modify the problem of
interest to make it feasible.

Before concluding remarks and future work we devote our attention to the problem of non-myopic agents. In
Chapter \ref{chap_rl} we consider the setting of reinforcement learning where the objective is to maximize
the expected cumulative rewards that the agent gathers, i.e., the $Q$-function. We model the policy of the
agent as a function in a Reproducing Kernel Hilbert Space since this class of functions has the advantage of
being quite rich and allows us to compute policy gradients in a simple way. We present an unbiased estimator
of the policy gradient that can be constructed in finite time and we establish convergence of the stochastic
gradient policy ascent to a function that is a critical point of the $Q$-function.
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ABSTRACT

STOCHASTIC CONTROL FOUNDATIONS OF AUTONOMOUS BEHAVIOR

Santiago Paternain

Alejandro Ribeiro

The goal of this thesis is to develop a mathematical framework for autonomous behavior.

We begin by describing a minimum notion of autonomy, understood as the ability that an

agent operating in a complex space has to satisfy in the long run a set of constraints

imposed by the environment of which the agent does not have information a priori. In

particular, we care about endowing agents with greedy algorithms to solve problems of the

form previously described. Although autonomous behavior will require logic reasoning, the

goal is to understand what is the most complex autonomous behavior that can be achieved

through greedy algorithms. Being able to extend the class of problems that can be solved

with these simple algorithms can allow to free the logic of the system and to focus it towards

high-level reasoning and planning.

The second and third chapters of this thesis focus on the problem of designing gradient

controllers that allow an agent to navigate towards the minimum of a convex potential in

punctured spaces. Such problem is related to the problem of satisfying constraints since we

can interpret each constraint as a separate potential that needs to be minimized. We solve

this problem first in the case where the information about the potential and the obstacles

is deterministic and complete and later, in Chapter 3, we consider the case where this

information is only available from a stochastic model. In both cases, we derive sufficient

conditions in which a Rimon-Koditschek artificial potential can be tuned into a navigation

function and hence being able to solve the problem. These conditions relate the geometry

of the potential of interest and the geometry of the obstacles.

Chapter 4 considers the problem of satisfying a set of constraints when their temporal

evolution is arbitrary. We show that an online version of a saddle point controller generates

trajectories whose fit and regret are bounded by sublinear functions. These metrics are

associated with online operation and they are analogous to feasibility and optimality in

classic deterministic optimization. The fact that these quantities are bounded by sublinear

functions suggests that the trajectories approach the optimal solution. Saddle points have

the advantage of providing an intuition on the relative hardness of satisfying each constraint.

The limit values of the multipliers are a measure of such relative difficulty, the larger the

multiplier the larger is the cost in which one incurs if we try to tighten the corresponding

constraint. In Chapter 5 we exploit this property, and modify the saddle point controller to

deal with situations in which the problems of interest are not feasible. The modification of
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the algorithm allows us to identify which are the constraints that are harder to satisfy. This

information can later be used by a high logic reasoning to modify the problem of interest

to make it feasible.

Before concluding remarks and future work we devote our attention to the problem of

non-myopic agents. In Chapter 6 we consider the setting of reinforcement learning where

the objective is to maximize the expected cumulative rewards that the agent gathers, i.e.,

the Q-function. We model the policy of the agent as a function in a Reproducing Kernel

Hilbert Space since this class of functions has the advantage of being quite rich and allows

us to compute policy gradients in a simple way. We present an unbiased estimator of the

policy gradient that can be constructed in finite time and we establish convergence of the

stochastic gradient policy ascent to a function that is a critical point of the Q-function. 1

1Work presented in this thesis has been published and submitted for review to IEEE Transactions on
Automatic Control and In Proceedings of the American Control Conference and the Decision and Control
Conference. Submissions available at [93,94,96–100]. Work in this thesis is supported by ARL DCIST CRA
W911NF-17-2-0181.
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Chapter 1

Introduction

Systems capable of exhibiting autonomous behavior and that are able to perform complex

tasks without human assistance are of importance, especially when deployed in environments

that are dangerous for humans, like collapsed buildings or zones with toxic or chemical waste

spills. Such systems can also be used in theory to perform complex medical procedures or

to simplify human tasks in domestic applications and transportation, and therefore it is not

surprising that creating autonomous systems has been an actively pursued goal.

While there are many different perspectives of autonomy, a minimal definition is that

an agent exhibits autonomous behavior if it can survive when deployed in a complex en-

vironment about which there is no information available a priori. Mathematically, we can

think of the environment as presenting the agent with a set of unknown functions and of

the agent as selecting an action that results in an equal number of payoffs. The agent has

the ability to sense the outcome of his actions and must select actions based on a policy

that makes the cumulative reward obtained along its trajectory close to a certain value. As

a reference problem that can be formulated in this language, consider a drone that is to be

positioned within range of a number of targets whose positions are unknown. The drone

has to do so with an energy budget and the space in which this task is to be accomplished

may be an open field or a wooded area. The drone survives in an environment if it is

endowed with an algorithm that allows it to place himself within range of the targets while

satisfying the energy constraint. We say that the drone exhibits autonomous behavior if

it can satisfy these constraints irrespectively of the environment in which it is deployed –

i.e., irrespectively of the position and number of targets and of whether the environment is

open or wooded.

A fundamental question that arises from the previous discussion is about the complexity

of the algorithms that are to endow an agent with autonomous behavior. It is more or less

an accepted consensus that autonomy algorithms have to rely on high-level decision-making

rules. While we do not disagree with this statement, our contentions here are that greedy
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stochastic control rules can solve a bigger class of problems than currently considered feasible

and, as a consequence of sorts, that the interface between low-level greedy rules and high-

level logical reasoning have to take a different form. The goal of this thesis is to expand the

foundations of stochastic gradient control to incorporate these problems into the class of

problems for which greedy algorithms have provable convergence certificates and to exploit

this expansion to propose novel methodologies to interface between low-level control and

high-level algorithmic reasoning.

To provide a more detailed explanation we adopt a taxonomy that classifies problems

with respect to three main properties, the complexity of the space in which the agent is

deployed, the amount of information that is available prior to deployment and the time

horizon of the operation. The (configuration) spaces in which the agent is deployed can be

assumed to be open, punctured or complex. An open environment is one in which there are

no restrictions in the configuration space, a punctured space is one that is characterized by

the presence of compact obstacles homeomorphic to a point, and a complex environment is

one in which the configuration space has an arbitrary shape. The information available a

priori is classified as complete, stochastic, viability, or none. Having complete information

means that the environment and the constraints to be satisfied are known. Stochastic

information means that a probabilistic model of the world is available. Viability means

that no information is given except for the knowledge that there is a strategy that would

permit satisfaction of all the constraints that specify the environment. In the extreme case,

not even this information is available and the agent has to discover whether the environment

is viable or not. If the environment is not viable, an autonomous agent has to be able to

fall back into a laxer notion of survivability. Finally, the time horizon of the operation

distinguishes between myopic operation, where the agent tries to solve the problem for the

current time instance, without taking into account the consequences that such actions could

have in the future, and farsighted operation, where the agent might make decisions that in

the short term are not optimal, but they imply better rewards in the future.

The current state of the start utilizes greedy control to solve myopic problems in open

environments with either complete information or stochastic models of environments. In-

deed, a problem of complete information in an open environment can be solved with a

saddle point controller [4]. These controllers compute gradients for all of the constraints

that the agent has to satisfy and moves along a weighted linear combination of them. The

coefficients of this linear combination are adapted according to how far from being satisfied

the respective constraint is. In that sense, the weights can be thought of as prices. If a

constraint is far from being satisfied it means that its satisfaction is relatively difficult and

that a large coefficient, i.e., a large price, is justified in the corresponding element of the

linear combination. If we keep the environment open but now assume that only a stochastic
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model of the environment is given a priori, the situation is much different but the solution

methodology is about the same. If the constraints and their gradients can be estimated lo-

cally without bias, a stochastic saddle point controller can be proven to converge to a point

at which the constraints are satisfied [65]. Do notice that in both cases we must require the

existence of a point at which the constraints are satisfied and that the functions that define

the environment are convex. This latter condition is not restrictive if we assume that the

agent is equipped with local sensors because in that case, a local solution is all that we can

hope for.

While greedy saddle point controllers and their stochastic approximations can solve

myopic problems in open environments when information is stochastic, this is not enough

for the minimal notion of autonomous behavior previously described. Problems in complex

environments are addressed with path planning tools which, in the case of stochastic or

viability specifications, are coupled with a preliminary mapping stage. Although there

are many different specific path planning methods, they can be broadly considered as a

decomposition approach because their overall goal is to separate trajectories in complex

environment into mesoscale pieces that are locally open and can be planned using tools that

work well in open environments. Problems in which it is necessary to discover a measure

of what sort of constraints can be satisfied in the environment are addressed heuristically

through trial and error. The second drawback about greedy saddle point controllers is that

they can only solve problems where the costs are myopic. This is, they offer a solution

for an optimization problem without taking into account the rewards –or payoffs– collected

along the trajectory. Operating in a regime where one looks at the future is part of the

requirements for autonomy. This means, that it is justified to select an action at a given

time that results in a low payoff, but it places the system in a state where better rewards

can be collected in the long run. Say for instance that an agent requires to place itself to

a given distance from a set of targets but it is running out of battery. A myopic controller

might prioritize to follow the targets to maximize the payoff without recharging the battery,

and thus failing to complete the mission in the future. On the other hand, stopping for

re-charging might produce smaller rewards in the short term, but allows the agent to be in

a state – high battery level– that allows him in the future to re-position close to the targets

for a longer time.

The objective of this thesis is to develop greedy algorithms that allow to bridge the gap,

between myopic operation with full information about the environment in open spaces and

farsighted operation with no information about the environment in complex spaces.
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1.1 Main Contributions

We next detail the thrusts motivated in the previous paragraphs by outlining the work that

is presented in this thesis and the particular questions that we address in each chapter.

1.1.1 Navigation functions in punctured spaces.

In the previous paragraphs the motivation of designing algorithms that allow a mobile robot

to avoid obstacles has been presented. Many efforts have been made in this direction in

situations in which a desired configuration xd is provided explicitly to the agent. Formally,

obstacles are defined as open sets Oi in the workspace. The set of valid configurations con-

sist of the set difference of the workspace and the obstacles and its termed the free space.

The objective is then to converge to xd while remaining on the free space at all times. A

way of greedily solving this problem is through artificial potentials, see e.g. [38, 49, 131].

These potentials are a superposition of an attractive potential – having its minimum at the

desired configuration– and repulsive potentials at the obstacles – taking maximum value

at their boundary. In some of these constructions convergence to xd cannot be ensured

because of the presence of local minima due to the superposition of several potentials.

However, the construction in [57] ensures convergence to the desired point from almost all

initial conditions, in a space with spherical obstacles. The potential build in [57] has some

defining properties that ensures convergence to xd and obstacle avoidance. These are that

the potential has a unique minimum that coincides with xd, that all critical points are

non degenerate and that the maximum of the potential coincides with the boundary of the

obstacles. A potential satisfying these properties define what the authors call a navigation

function. In [57] it is also shown that navigation from all initial positions is not possible,

and therefore almost sure navigation is the best that one can achieve. The ideas in [57] have

been extended to generic star obstacles in [106], yet to do so, a diffeomorphism mapping the

world into a spherical world needs to be constructed and to do so, complete information of

the environment is required beforehand. The first advantage of this framework compared

to some of the other path planning algorithms – such as visibility graphs [81] or cell de-

composition [22, 23, 69, 73] – is that it does not require the use of logic and can, therefore,

be programmed at a very low level. This can release the logic of these simple task and

be available to develop some high level reasoning. A second advantage of gradient descent

like algorithms is that they can be easily generalized to systems with intrinsic dynamics.

Other path planning algorithms do not take into account the dynamics of the system and

therefore may provide trajectories that are not feasible for the robot.

The drawback with the previous approach is that the attractive potential needs to be

spherically symmetric. This situation might arise in some problems of interest, but it is
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typically the result of knowing the desired destination xd beforehand. In other applications,

however, it is more reasonable to have the desired configuration given as the solution of an

optimization problem. As a reference example, think about a robot that is trying to reach

the top of a hill. It is more reasonable to assume that the agent can sense its way up the hill

using, for instance, an Inertial Measurement Unit (IMU) instead of requiring the location

of the top. Along the same lines, it might be of interest to be able the find the source of a

given signal, for example, the source of a gas leak which might be expressed as the position

for which the gas concentration is the highest. In this setting, it is not reasonable to assume

that the position xd is known and the agent needs to follow the gradient of the intensity of

the signal it receives to localize its source.

In Chapter 2 we generalize the artificial potentials from [57] to construct navigation

functions in situations in which the attractive potential is not necessarily rotationally sym-

metric. In particular, we provide sufficient conditions for the possibility of constructing

navigation functions of the form in [57]. These conditions relate the geometry of the poten-

tial with the geometry of the free-space and the intuition behind them are that the flatter

the obstacles are with respect to the level curves of the attractive potential, the hardest it

is to tune construct a navigation function.

1.1.2 Online observation of obstacles and environment.

The approach based on navigation functions requires some restrictive assumptions regarding

the gradient and the value of the objective function being known exactly at each location.

For instance, suppose that a terrestrial robot is trying to reach the top of a hill. The slope

of the hill is estimated using measures from onboard accelerometers. These sensors provide

noisy measure and hence the estimation cannot be exact. Likewise, it requires complete

knowledge of the obstacles, when it is more reasonable to assume that obstacles that are far

away from the current position should not influence the behavior of the agent. In addition,

the knowledge of the obstacles is inferred using sensors, e.g. LIDARs, and in that sense,

the estimates will be contaminated with measurement noise.

Measurements of the objective function f0(x) or its gradient ∇f0(x) can be used to

construct an estimator of the gradient of the objective function. This estimate is a random

variable denoted by ∇̂f0(xt, θt) which depends on the configuration of the agent at time

t and on a random variable θt that accounts for measurement noise. If the estimate is

unbiased it means that on average the estimate at a given location is equal to the gradient

of the function at that point. Formally, it means that the expectation of the noisy gradient

with respect to the noise is the gradient itself, i.e., Eθt
[
∇̂f0(xt, θt)

]
= ∇f0(xt). If we

consider the simpler version of the problem in which obstacles are not present, a stochastic

version of the gradient descent algorithm ensures convergence to the minimum of f0 with
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probability one (see e.g [107]).

The first question to answer is how to use inexact information to build estimates of the

obstacles. For instance, if obstacles are spherical, estimates of the radius and the distance

to an obstacle are the minimum information required to avoid them. A naive approach

could be to artificially enlarge the obstacles to take into account estimation errors. The

insights obtained in the deterministic setting (cf., Chapter 2) suggest that the larger the

obstacles and the closer they are to the desired position, make the navigation harder. This

has also been observed in [35, 57]. Hence, the previous solution could be over conservative

and yield unnecessary stiff trajectories and even make navigation impossible. A second issue

to consider is that the navigation function framework relies upon the complete knowledge

of the obstacles – shape, position, and size. It is clear that by considering a robot that

senses the obstacles as it moves in the space this assumption must be dropped. This fact

introduces a mismatch between local estimates the obstacle – obtained for instance by fitting

an osculating circle at the closest point of the obstacle from the agent – and the true world.

In Chapter 3 we show that if that said mismatch is not large as compared to the gradient

of the navigation function, safe navigation to a neighborhood of the desired configuration

is achieved from all initial positions with probability one.

1.1.3 Viability and strategic behavior

The third thrust is related to being able to perform tasks in environments that are time-

varying, meaning that the objective functions or the constraints could change over time. In

particular, we are interested in adversarial environments, where the change of the function

at time t, is such that the action decided at time t − 1 is the worst choice that we could

have selected. To illustrate this idea we can think of the robot as playing a game against

the environment. The game is as follows, at time t the agent is allowed to select an action

to play at time t+ 1, based on the information of the function that he is trying to minimize

at time t. The objective function now is a set of functions {f0,t(x), t ∈ N} of which the

agent only knows at time T the value of the functions f0,t(xt) for t = 0 . . . T . Because of

the adversarial nature of the environment and the lack of information about the evolution

of it, we cannot possibly expect that the agent minimizes the function f0,t at any time.

Therefore the success of an agent in this kind of environment is established through the

idea of regret. Regret is the difference between the total loss in which the agent incurs and

the loss in which a clairvoyant agent would have incurred if he was allowed to play always

the same action. Formally, regret at time T can be expressed as

RT =

T∑
t=0

f0,t(xt)− min
x∈Rn

T∑
t=0

f0,t(x). (1.1)
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If the above quantity is large, having known the evolution of the system we could have

chosen a strategy in which the cost incurred is smaller. In that sense, the above quantity

measures how much we regret not having that information available. This framework was

introduced first in [128] and it has been shown in [138] that an online version of gradient

descent achieves regret bounded by O(
√
T ). Having sublinear regret means that the action

that we are selecting is approaching the optimal solution. Further works show that by

changing the step size of the update can improve the bounds on regret. For instance, in [42]

it is shown that online gradient descent with diminishing step size for strongly convex

functions archives regret bounded by O(log(T )). In Chapter 4 we present a continuous

time version of this problem and establish regret bounded by a constant. We can think of

the problem of satisfying a set of constraint in an adversarial environment as well using a

similar concept to that of regret named Fit. The latter is the total constraint violation in

which an agent incurs

FT =

∫ T

0
f(t, x(t)) dx. (1.2)

This quantity measures – in the same sense that regret measures optimality– how far we

are from satisfying the constraints. If there is an action that satisfies the constraints for

all times, having known the evolution of the system we could determine this action and

have a negative Fit. By having a total constraint violation that grows sublinearly gives the

idea of approaching the action that is feasible for all times. In Chapter 4 it is shown that

an online version of the algorithm by Arrow Hurwicz proposed in [4] achieves bounded fit

irrespectively of the time horizon T . Furthermore, we show that if an optimality criterion

is added regret is still bounded by a constant but the fit now is bounded by a function that

grows as O(
√
T ).

1.1.4 Price interfaces

Our interest in variations of Arrow and Hurwicz algorithm in [4] is based in two of its

characteristics. First of all its simplicity allows it to be implemented in low level controllers.

Therefore, releasing the logical reasoning of tasks that up to date is in charge of performing,

and allowing it to devote its power to more sophisticated computations. On the other hand,

the algorithm provides a very useful way to identify the constraints that are not satisfiable.

Saddle point controllers updates the action by descending along a weighted combination

of the gradients of the constraints, so to push all the values towards satisfiablity. The

weights of the linear combinations are updated in operation time, they are increased if

the corresponding constraint is being violated and they are decreased if the constraint is

satisfied. The larger a multiplier is the harder it is to satisfy that particular constraint.

This observation is the keystone to the integration with logical reasoning. Notice that
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through a saddle point algorithm it is easy to identify if the problem is not feasible, because

the multipliers keep increasing. With this information the part of the system in charge

of the logical reasoning has the information about which constraints should be modified to

succeed on its goal or at least it has the information about which of the constraints does not

allows him to perform a given task. For instance, let us consider the surveillance problem

in which we are interested in tracking several obstacles. Suppose that there is no way of

being close to all of the targets, then a mechanism to identify which one of the constraints

is the hardest to satisfy can be used by the logical reasoning part of the system to decide

a different policy. For instance it could change the problem of being at a given distance of

all the targets for a new problem stated as being at a given distance of the target whose

multipliers are bounded and adding an optimality criteria given by being as close as possible

to the remaining targets. The problem of deciding the policy that must be accomplished

is the task of the logical reasoning part of the system, and as discussed the information

arising from the low level control is a fundamental piece of information to effectively chose

the strategy to follow.

In Chapter 5 we propose a modification of the saddle point algorithm for both the

deterministic setting and the setting where a probabilistic model of the constraints and the

objective function is available to the agent. This modification introduces adaptive slack

variables for each constraint and updates them by increasing its value if the corresponding

multiplier is positive and decreases the value if the slacks grows too much. The algorithm

is such that it converges to the primal-dual solution for a slack that is proportional to the

dual variable. By analyzing the slacks, and the value of the multipliers, we get a relative

measure of which constraints are harder to satisfy.

1.1.5 Non-myopic behavior

In the previous discussions, we always consider agents that aim to minimize a given function

or to satisfy a set of constraints for which it suffices to find the configuration that allows

the agent to get the minimum reward, without taking into account all the payoffs obtained

along the trajectory. The last thrust of interest is in situations where we care about non-

myopic decision making. This is cases where the agent cares about a policy that allows him

to maximize its expected cumulative reward. A common model for these behaviors is based

on Markov Decision Processes (MPD), where the state to which the system transitions at a

given time is a random variable, whose probability distribution depends on the current state

and the action selected by the decision maker. The actions selected by the agent determine

instantaneous rewards that can be aggregated over a trajectory to determine cumulative

rewards. Hence, the cumulative reward is a measure of the quality of the decision making

policy and the objective is therefore not to find the best action but the best policy, i.e.,
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the policy that maximizes the expectation of the cumulative reward, also known as the

Q-function of the MDP. A solution to these problems can be found in the reinforcement

learning literature. This is a model-free control framework for MDPs, where the transition

probabilities from one state to next one are not known but the decision policy is based on

the rewards obtained. When the state and action spaces are discrete, the solutions to these

problems can be divided among those that learn the Q–function to then chose for any given

state the action that maximizes the function [132] and those that attempt to directly learn

the optimal policy by running gradient ascent in the space of policies [27,120].

A major drawback of the previous algorithms for reinforcement learning is that they

suffer from the curse of dimensionality, this is, the complexity of the problem scales ex-

ponentially with the number of actions and states [37]. This is, in particular, the case

of continuous spaces, where any reasonable discretization leads to a very large number of

states and possible actions. Efforts to sidestep this issue assume that either the Q-function

or the policy admits some parametrization [13, 119], or that it belongs to a Reproducing

Kernel Hilbert Space (RKHS) [61, 71, 126]. The latter provides the ability to approximate

functions using nonparametric functional representations. Although the structure of the

space is determined by the choice of the kernel, the set of functions that can be represented

is sufficiently rich to permit a good approximation of a large class of functions.

In Chapter 6 we consider policy learning in RKHS and we show, that it is possible to

learn a policy that is a stationary point of the Q–function. To do so, we propose an estimate

of the gradient of the Q function that is unbiased and that can be computed in finite time.

With said estimate, by running stochastic gradient ascent in the space of functions one can

establish convergence with probability one.
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Chapter 2

Navigation Functions for Convex

Potentials in a Space with Convex

Obstacles

Given a convex potential in a space with convex obstacles, an artificial potential is used

to navigate to the minimum of the natural potential while avoiding collisions. The artifi-

cial potential combines the natural potential with potentials that repel the agent from the

border of the obstacles. This is a popular approach to navigation problems because it can

be implemented with spatially local information that is acquired during operation time.

Artificial potentials can, however, have local minima that prevent navigation to the mini-

mum of the natural potential. In this chapter we derive conditions that guarantee artificial

potentials have a single minimum that is arbitrarily close to the minimum of the natural

potential. The qualitative implication is that artificial potentials succeed when either the

condition number– the ratio of the maximum over the minimum eigenvalue– of the Hessian

of the natural potential is not large and the obstacles are not too flat or when the desti-

nation is not close to the border of an obstacle. Numerical analyses explore the practical

value of these theoretical conclusions.

2.1 Introduction

It is customary in navigation problems to define the task of a robot as a given goal in

its configuration space; e.g. [24, 68]. A drawback of this approach is the need for global

information to provide the goal configuration. In a hill climbing problem, for instance, this

means that the position of the top of the hill must be known, when it is more reasonable to

assume that the robot senses its way to the top [45,46]. In general, the ability to localize the
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source of a specific signal can be used by mobile robots to perform complex missions such

as environmental monitoring [92, 117], surveillance and reconnaissance [110], and search

and rescue operations [64]. In all these scenarios the desired configuration is not available

beforehand but a high level task is nonetheless well defined through the ability to sense the

environment.

These task formulations can be abstracted by defining goals that minimize a convex

potential, or equivalently, maximize a concave objective. The potential is unknown a priori

but its values and, more importantly, its gradients can be estimated from sensory inputs.

The gradient estimates derived from sensory data become inputs to a gradient controller that

drives the robot to the potential’s minimum if it operates in an open convex environment,

e.g [43,122]. These gradient controllers are appealing not only because they exploit sensory

information without needing an explicit target configuration, but also because of their

simplicity and the fact that they operate using local information only.

In this chapter we consider cases where the configuration space is not convex because

it includes a number of nonintersecting convex obstacles. The goal is to design a modified

gradient controller that relies on local observations of the objective function and local obser-

vations of the obstacles to drive the robot to the minimum of the potential while avoiding

collisions. Both, objective function and obstacle observations are acquired at operation

time. As a reference example think of navigation towards the top of a wooded hill. The hill

is modeled as a concave potential and the trunks a set of nonintersecting convex punctures.

The robot is equipped with an inertial measurement unit (IMU) providing the slope’s di-

rectional derivative, a GPS to measure the current height and a lidar unit giving range and

bearing to nearby physical obstacles [45, 46]. We then obtain local gradient measurement

from the IMU, local height measurements from the GPS and local models of observed ob-

stacles from the lidar unit and we want to design a controller that uses this spatially local

information to drive the robot to the top of the hill.

A possible solution to this problem is available in the form of artificial potentials, which

have been widely used in navigation problems, see e.g. [10,11,25,33–36,49–51,57,62,74,75,77,

78,80,91,106,109,131]. The idea is to mix the attractive potential to the goal configuration

with repulsive artificial fields that push the robot away from the obstacles. This combination

of potentials is bound to yield a function with multiple critical points. However, we can

attempt to design combinations in which all but one of the critical points are saddles with

the remaining critical point being close to the minimum of the natural potential. If this is

possible, a gradient controller that follows this artificial potential reaches the desired target

destination while avoiding collisions with the obstacles for almost all initial conditions (see

Section 2.2).

The design of mechanisms to combine potentials that end up having a unique minimum
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has been widely studied when the natural potential is rotationally symmetric. Koditschek-

Rimon artificial potentials are a common alternative that has long been known to work

for spherical quadratic potentials and spherical holes [57] and more recently generalized to

focally admissible obstacles [35]. In the case of spherical worlds local constructions of these

artificial potentials have been provided in [34]. Further relaxations to these restrictions

rely on the use of diffeomorphisms that map more generic environments. Notable examples

are Koditschek-Rimon potentials in star shaped worlds [105, 106] and artificial potentials

based on harmonic functions for navigation of topological complex three dimensional spaces

[77,78]. These efforts have proven successful but can be used only when the space is globally

known because that information is needed to design a suitable diffeomorphism. Alternative

solutions that are applicable without global knowledge of the environment are the use of

polynomial navigation functions [74] for n-dimensional configuration spaces with spherical

obstacles and [75] for 2-dimensional spaces with convex obstacles, as well as adaptations

used for collision avoidance in multiagent systems [28,109,124].

Perhaps the most comprehensive development in terms of expanding the applicability of

artificial potentials is done in [33, 35, 36]. This series of contributions reach the conclusion

that Koditschek-Rimon potentials can be proven to have a unique minimum in spaces

much more generic than those punctured by spherical holes. In particular it is possible to

navigate any environment that is sufficiently curved. This is defined as situations in which

the goals are sufficiently far apart from the borders of the obstacles as measured relative

to their flatness. These ideas provides a substantive increase in the range of applicability

of artificial potentials as they are shown to fail only when the obstacles are very flat or

when the goal is very close to some obstacle border. These curvature conditions seems to

be a fundamental requirement of the problem itself rather than of the solution proposed,

since it is present as well in other navigation approaches such as navigation via separating

hyperplanes [5–7].

Spherical quadratic potentials appear in some specific applications but are most often the

result of knowing the goal configuration. Thus, the methods in [10, 11, 25, 33–36, 49–51, 57,

62,74,75,77,78,80,91,106,109,131] are applicable, for the most part, when the goal is known

a priori and not when potential gradients are measured during deployment. To overcome

this limitation, this work extends the theoretical convergence guarantees of Koditscheck-

Rimon functions to problems in which the attractive potential is an arbitrary strongly

convex function and the free space is a convex set with a finite number of nonintersecting

smooth and strongly convex obstacles (Section 2.2) under mild conditions (Section 2.3).

The qualitative implication of these general conditions is that artificial potentials have a

unique minimum when one of the following two conditions are met (Theorem 2): (i) The

condition number of the Hessian of the natural potential is not large and the obstacles are
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not too flat. (ii) The distance from the obstacles’ borders to the minimum of the natural

potential is large relative to the size of the obstacles. These conditions are compatible with

the definition of sufficiently curved worlds in [33]. To gain further insight we consider the

particular case of a space with ellipsoidal obstacles (Section 2.3.1). In this scenario the

condition to avoid local minima is to have the minimum of the natural potential sufficiently

separated from the border of all obstacles as measured by the product of the condition

number of the objective and the eccentricity of the respective ellipsoidal obstacle (Theorem

3). The influence on the eccentricity of the obstacles had already been noticed in [33, 36],

however the results of Theorem 3 refine those of the literature by providing an algebraic

expression to check focal admissibility of the surface.

Results described above are characteristics of the navigation function. The construction

of a modified gradient controller that utilizes local observations of this function to navigate

to the desired destination is addressed next (Section 2.5). Convergence of a controller that

relies on availability of local gradient observations of the natural potential and a local model

of the obstacles is proven under the same hypothesis that guarantee the existence of a unique

minimum of the potential function (Theorem 4). The local obstacle model required for this

result assumes that only obstacles close to the agent are observed and incorporated into the

navigation function but that once an obstacle is observed its exact form becomes known.

In practice, this requires a space with sufficient regularity so that obstacles can be modeled

as members of a class whose complete shape can be estimated from observations of a piece.

In, e.g., the wooded hill navigation problem this can be accomplished by using the lidar

measurements to fit a circle or an ellipse around each of the tree trunks. The practical

implications of these theoretical conclusions are explored in numerical simulations (Section

2.6).

2.2 Problem formulation

We are interested in navigating a punctured space while reaching a target point defined as

the minimum of a convex potential function. Formally, let X ∈ Rn be a non empty compact

convex set and let f0 : X → R+ be a convex function whose minimum is the agent’s goal.

Further consider a set of obstacles Oi ⊂ X with i = 1 . . .m which are assumed to be open

convex sets with nonempty interior and smooth boundary ∂Oi. The free space, representing

the set of points accessible to the agent, is then given by the set difference between the space

X and the union of the obstacles Oi,

F := X \
m⋃
i=1

Oi. (2.1)
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The free space in (2.1) represents a convex set with convex holes; see, e.g., Figure 2.4. We

assume here that the optimal point is in the interior int(F) of free space.

Further let t ∈ [0,∞) denote a time index and let x∗ be the minimum of the objective

function, i.e. x∗ := argminx∈Rn f0(x). Then, the navigation problem of interest is to

generate a trajectory x(t) that remains in the free space at all times and reaches x∗ at least

asymptotically,

x(t) ∈ F , ∀t ∈ [0,∞), and lim
t→∞

x(t) = x∗. (2.2)

In the canonical problem of navigating a convex objective defined over a convex set with

a fully controllable agent, convergence to the optimal point as in (2.2) can be assured by

defining a trajectory that varies along the negative gradient of the objective function,

ẋ = −∇f0(x). (2.3)

In a space with convex holes, however, the trajectories arising from the dynamical system

defined by (2.3) satisfy the second goal in (2.2) but not the first because they are not

guaranteed to avoid the obstacles. We aim here to build an alternative function ϕ(x) such

that the trajectory defined by the negative gradient of ϕ(x) satisfies both conditions. It

is possible to achieve this goal, if the function ϕ(x) is a navigation function whose formal

definition we introduce next [57].

Definition 1 (Navigation Function). Let F ⊂ Rn be a compact connected analytic

manifold with boundary. A map ϕ : F → [0, 1], is a navigation function in F if:

Differentiable. It is twice continuously differentiable in F .

Polar at x∗. It has a unique minimum at x∗ which belongs to the interior of the free space,

i.e., x∗ ∈ int(F).

Morse. Its critical points on F are nondegenerate.

Admissible. All boundary components have the same maximal value, namely ∂F = ϕ−1(1).

The properties of navigation functions in Definition 1 are such that the solutions of the

controller ẋ = −∇ϕ(x) satisfy (2.2) for almost all initial conditions. To see why this is

true observe that the trajectories arising from gradient flows of a function ϕ, converge to

the critical points and that the value of the function along the trajectory is monotonically

decreasing,

ϕ(x(t1)) ≥ ϕ(x(t2)), for any t1 < t2. (2.4)

Admissibility, combined with the observation in (2.4), ensures that every trajectory whose

initial condition is in the free space remains on free space for all future times, thus satisfying
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the first condition in (2.2). For the second condition observe that, as per (2.4), the only

trajectory that can have as a limit set a maximum, is a trajectory starting at the maximum

itself. This is a set of zero measure if the function satisfies the Morse property. Furthermore,

if the function is Morse, the set of initial conditions that have a saddle point as a limit is

the stable manifold of the saddle which can be shown to have zero measure as well. It

follows that the set of initial conditions for which the trajectories of the system converge

to the local minima of ϕ has measure one. If the function is polar, this minimum is x∗ and

the second condition in (2.2) is thereby satisfied. We formally state this result in the next

Theorem.

Theorem 1. Let ϕ be a navigation function on F as per Definition 1. Then, the flow given

by the gradient control law

ẋ = −∇ϕ(x), (2.5)

has the following properties:

(i) F is a positive invariant set of the flow.

(ii) The positive limit set of F consists of the critical points of ϕ.

(iii) There is a set of measure one, F̃ ⊂ F , whose limit set consists of x∗.

Proof. See [55].

Theorem 1 implies that if ϕ(x) is a navigation function as defined in 1, the trajectories

defined by (2.5) are such that x(t) ∈ F for all t ∈ [0,∞) and that the limit of x(t) is

the minimum x∗ for almost every initial condition. This means that (2.2) is satisfied for

almost all initial conditions. We can therefore recast the original problem (2.2) as the

problem of finding a navigation function ϕ(x). Observe that Theorem 1 guarantees that

a navigation function can be used to drive a fully controllable agent [cf. (2.5)]. However,

navigation functions can also be used to drive agents with nontrivial dynamics as we explain

in Remark 1.

To construct a navigation function ϕ(x) it is convenient to provide a different charac-

terization of free space. To that end, let β0 : Rn → R be a twice continuously differentiable

concave function such that

X =
{
x ∈ Rn

∣∣β0(x) ≥ 0
}
. (2.6)

Since the function β0 is assumed concave its super level sets are convex, thus a function

satisfying (2.6) can always be found because the set X is also convex. The boundary ∂X ,

which is given by the set of points for which β0(x) = 0, is called the external boundary of free
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space. Further consider the m obstacles Oi and define m twice continuously differentiable

convex functions βi : Rn → R for i = 1 . . .m. The function βi is associated with obstacle

Oi and satisfies

Oi =
{
x ∈ Rn

∣∣βi(x) < 0
}
. (2.7)

Functions βi exist because the sets Oi are convex and the sublevel sets of convex functions

are convex.

Given the definitions of the βi functions in (2.6) and (2.7), the free space F can be

written as the set of points at which all of these functions are nonnegative. For a more

succinct characterization, define the function β : Rn → R as the product of the m + 1

functions βi,

β(x) :=
m∏
i=0

βi(x). (2.8)

If the obstacles do not intersect, the function β(x) is nonnegative if and only if all of the

functions βi(x) are nonnegative. This means that x ∈ F is equivalent to β(x) ≥ 0 and

that we can then define the free space as the set of points for which β(x) is nonnegative

– when obstacles are nonintersecting. We state this assumption and definition formally in

the following.

AS1 (Obstacles do not intersect). Let x ∈ Rn. If for some i = 1 . . .m we have that

βi(x) ≤ 0, then βj(x) > 0 for all j = 0 . . .m with j 6= i.

Definition 2 (Free space). The free space is the set of points x ∈ Rn where the function

β in (2.8) is nonnegative,

F = {x ∈ Rn : β(x) ≥ 0} . (2.9)

Observe that we have assumed that the optimal point x∗ is in the interior of free space.

We have also assumed that the objective function f0 is strongly convex and twice continu-

ously differentiable and that the same is true of the obstacle functions βi. We state these

assumptions formally for later reference.

AS2. The objective function f0, the obstacle functions βi and the free space F are such

that:

Optimal point. x∗ := argminx f0(x) is such that f0(x∗) ≥ 0 and it is in the interior of

the free space,

x∗ ∈ int(F). (2.10)

Twice differentiable strongly convex objective The function f0 is twice continuously

differentiable and strongly convex in X . The eigenvalues of the Hessian ∇2f0(x) are there-

fore contained in the interval [λmin, λmax] with 0 < λmin. In particular, strong convexity
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implies that for all x, y ∈ X ,

f0(y) ≥ f0(x) +∇f0(x)T (y − x) +
λmin

2
‖x− y‖2, (2.11)

and, equivalently,

(∇f0(y)−∇f0(x))T (y − x) ≥ λmin‖x− y‖2. (2.12)

Twice differentiable strongly convex obstacles The function βi is twice continuously

differentiable and strongly convex in X . The eigenvalues of the Hessian ∇2βi(x) are there-

fore contained in the interval [µimin, µ
i
max] with 0 < µimin.

The goal in this chapter is to find a navigation function ϕ for the free space F of the

form of Definition 2 when assumptions 1 and 2 hold. Finding this navigation function is

equivalent to attaining the goal in (2.2) for almost all initial conditions. We find sufficient

conditions for this to be possible when the minimum of the objective function takes the

value f(x∗) = 0. When f(x∗) 6= 0 we find sufficient conditions to construct a function

that satisfies the properties in Definition 1 except for the polar condition that we relax to

the function ϕ having its minimum within a predefined distance of the minimum x∗ of the

potential f0. The construction and conditions are presented in the following section after

two pertinent remarks.

Remark 1 (System with dynamics). If the system has integrator dynamics, then (2.5)

can be imposed and problem (2.2) be solved by a navigation function. If the system has

nontrivial dynamics, a minor modification can be used [56]. Indeed, let M(x) be the inertia

matrix of the agent, g(x, ẋ) and h(x) be fictitious and gravitational forces, and τ(x, ẋ) the

torque control input. The agent’s dynamics can then be written as

M(x)ẍ+ g(x, ẋ) + h(x) = τ(x, ẋ). (2.13)

The model in (2.13) is of control inputs that generate a torque τ(x, ẋ) that acts through

the inertia M(x) in the presence of the external forces g(x, ẋ) and h(x). Let d(x, ẋ) be a

dissipative field, i.e., satisfying ẋTd(x, ẋ) < 0. Then, by selecting the torque input

τ(x, ẋ) = −∇ϕ(x) + d(x, ẋ), (2.14)

the behavior of the agent converges asymptotically to solutions of the gradient dynamical

system (2.5) [56]. In particular, the goal in (2.2) is achieved for a system with nontrivial

dynamics. Furthermore the torque input above presents a minimal energy solution to the

obstacle-avoidance problem [121].
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Remark 2 (Example objective functions). The attractive potential f0(x) = ‖x− x∗‖2

is commonly used to navigate to position x∗. In this work we are interested in more general

potentials that may arise in applications where x∗ is unknown a priori. As a first example

consider a target location problem in which the location of the target is measured with uncer-

tainty. This results in the determination of a probability distribution px0(x0) for the location

x0 of the target. A possible strategy here is to navigate to the expected target position. This

can be accomplished if we define the potential

f0(x) := E [‖x− x0‖] =

∫
F
‖x− x0‖ px0(x0) dx0 (2.15)

which is non spherical but convex and differentiable as long as px0(x0) is a nonatomic

dsitribution. Alternatives uses of the distribution px0(x0) are possible. An example would

be a robust version of (2.16) in which we navigate to a point that balances the expected

proximity to the target with its variance. This can be formulated by the use of the potential

f0(x) := E [‖x− x0‖] + λvar [‖x− x0‖] for some λ > 0.

We can also consider p targets with location uncertainties captured by probability distri-

butions pxi(xi) and importance weights ωi. We can navigate to the expected position of the

weighted centroid using the potential

f0(x) :=

p∑
i=1

ωi

∫
F
‖x− xi‖ pxi(xi) dxi. (2.16)

Robust formulations of (2.16) are also possible.

2.3 Navigation Function

Following the development in [57] we introduce an order parameter k > 0 and define the

function ϕk as

ϕk(x) :=
f0(x)(

fk0 (x) + β(x)
)1/k . (2.17)

In this section we state sufficient conditions such that for large enough order parameter k,

the artificial potential (2.17) is a navigation function in the sense of Definition 1. These

conditions relate the bounds on the eigenvalues of the Hessian of the objective function λmin

and λmax as well as the bounds on the eigenvalues of the Hessian of the obstacle functions

µimin and µimax with the size of the obstacles and their distance to the minimum of the

objective function x∗. The first result concerns the general case where obstacles are defined

through general convex functions.

Theorem 2. Let F be the free space defined in (2.9) satisfying Assumption 1 and let
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ϕk : F → [0, 1] be the function defined in (2.17). Let λmax, λmin and µimin be the bounds in

Assumption 2. Further let the following condition hold for all i = 1 . . .m and for all xs in

the boundary of Oi
λmax

λmin

∇βi(xs)T (xs − x∗)
‖xs − x∗‖2

< µimin. (2.18)

Then, for any ε > 0 there exists a constant K(ε) such that if k > K(ε), the function ϕk

in (2.17) is a navigation function with minimum at x̄, where ‖x̄− x∗‖ < ε. Furthermore if

f0(x∗) = 0 or ∇β(x∗) = 0, then x̄ = x∗.

Proof. See Section 2.4.

Theorem 2 establishes sufficient conditions on the obstacles and objective function for

which ϕk defined in (2.17) is guaranteed to be a navigation function for sufficiently large

order k. This implies that an agent that follows the flow (2.5) will succeed in navigating

towards x∗ when f0(x∗) = 0. In cases where this is not the case the agent converges to

a neighborhood of x∗. This neighborhood can be made arbitrarily small by increasing k.

Of these conditions (2.18) is the hardest to check and thus the most interesting. Here we

make the distinction between verifying the condition in terms of design – understood as

using the result to define which environments can be navigated – and its verification in

operation time. We discuss the former next and we present a heuristic to do the latter in

Remark 5. Observe that even if (2.18) needs to be satisfied at all the points that lie in the

boundary of an obstacle, it is not difficult to check numerically in low dimensions. This

is because the functions are smooth and thus it is possible to discretize the boundary set

with a thin partition to obtain accurate approximations of both sides of (2.18). In addition,

as we explain next, in practice there is no need check the condition on every point of the

boundary. Observe first that, generically, (2.18) is easier to satisfy when the ratio λmax/λmin

is small and when the minimum eigenvalue µimin is large. The first condition means that

we want the objective to be as close to spherical as possible and the second condition that

we do not want the obstacle to be too flat. Further note that the left hand side of (2.18) is

negative if ∇βi(xs) and xs−x∗ point in opposite directions. This means that the condition

can be violated only by points in the border that are “behind” the obstacle as seen from

the minimum point. For these points the worst possible situation is when the gradient at

the border point xs is aligned with the line that goes from that point to the minimum x∗.

In that case we want the gradient ∇βi(xs) and the ratio (xs − x∗)/‖xs − x∗‖2 to be small.

The gradient ∇βi(xs) being small with respect to µimin means that we do not want the

obstacle to have sharp curvature and the ratio (xs−x∗)/‖xs−x∗‖2 being small means that

we do not want the destination x∗ to be too close to the border. In summary, the simplest

navigation problems have objectives and obstacles close to spherical and minima that are

not close to the border of the obstacles.
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The insights described above notwithstanding, a limitation of Theorem 2 is that it does

not provide a trivial way to determine if it is possible to build a navigation function with

the form in (2.17) for a given space and objective. In the following section after remarks

we consider ellipsoidal obstacles and derive a condition that is easy to check.

Remark 3 (Sufficiently curved worlds [33,35,36]). In cases where the objective func-

tion is rotationally symmetric for instance f0 = ‖x − x∗‖2 we have that λmax = λmin. Let

θi be the angle between ∇βi(xs) and ∇f0(xs), thus (2.18) yields

‖∇βi(xs)‖ cos(θi)

‖xs − x∗‖
< µimin. (2.19)

For a world to be sufficiently curved there must exist a direction t̂i such that

‖∇βi(xs)‖ cos(θi)t̂
T
i D

2f0(xs)t̂i
‖∇f0(xs)‖

< t̂Ti ∇2βi(xs)t̂i. (2.20)

Since the potential is rotationally symmetric the left hand side of the above equation is equal

to the left hand side of (2.19). Observe that, the right hand side of condition (2.19) is the

worst case scenario of the right hand side of condition (2.20). These curvature conditions

seems to be a fundamental requirement of the problem itself rather than of the solution

proposed, since it is present as well in other navigation approaches such as navigation via

separating hyperplanes [5–7].

Remark 4. The condition presented in Theorem 2 is sufficient but not necessary. In that

sense, and as shown by the numerical example presented after Thorem 3, it is possible that

the artificial potential is a navigation function even when the condition (2.18) is violated.

Furthermore, in the case of spherical potentials it has been show that the artificial potential

yields a navigation function for partially non convex obstacles and for obstacles that yield

degenerate criticals points [35,36]. In terms of the objective function it is possible to ensure

navigation by assuming local strict convexity at the goal. However under this assumption

condition (2.18) takes a form that is not as neat and thus we chose to provide a weaker

result in favor of simplicity.

2.3.1 Ellipsoidal obstacles

Here we consider the particular case where the obstacles are ellipsoids. Let Ai ∈ Mn×n

with i = 1 . . .m be n× n symmetric positive definite matrices and xi and ri be the center

and the length of the largest semi-axis of each obstacle Oi. Then, for each i = 1 . . .m we

define βi(x) as

βi(x) := (x− xi)T Ai (x− xi)− µiminr
2
i , (2.21)
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The obstacle Oi is defined as those points in Rn where βi(x) is not positive. In particular

its boundary, βi(x) = 0, defines an ellipsoid whose largest semi-axis has length ri

1

µimin

(x− xi)T Ai (x− xi) = r2
i . (2.22)

For the particular geometry of the obstacles considered in this section, Theorem 2 takes the

following simplified form.

Theorem 3. Let F be the free space defined in (2.9) satisfying Assumption 1, and ϕk :

F → [0, 1] be the function defined in (2.17). Let λmax, λmin, µimax and µimin be the bounds

from Assumption 2. Assume that βi takes the form of (2.21) and the following inequality

holds for all i = 1..m
λmax

λmin

µimax

µimin

< 1 +
di
ri
, (2.23)

where di := ‖xi − x∗‖ . Then, for any ε > 0 there exists a constant K(ε), such that if

k > K(ε), the function ϕk in (2.17) is a navigation function with minimum at x̄, where

‖x̄− x∗‖ < ε. Furthermore if f0(x∗) = 0 or ∇β(x∗) = 0, then x̄ = x̄∗.

Proof. See Appendix A.1.4.

Condition (2.23) gives a simple test to establish that in a given space with ellipsoidal

obstacles it is possible to build a Koditscheck-Rimon navigation function. If the inequality

is satisfied then it is always possible to select sufficiently large k to make (2.17) a navigation

function.

Observe that the more eccentric the obstacles and the level sets of the objective function

are, the larger the left hand side of (2.23) becomes and the more difficult it is to guarantee

successful navigation. In particular, for a flat obstacle – understood as an ellipse having

its minimum eigenvalue equal to zero– the considered condition is impossible to satisfy.

For a given eccentricity of the obstacles and the level sets of the objective, the proximity

of x∗ to the obstacles plays a role. Increasing the distance di between the center of the

obstacles and the objective, or, equivalently, by decreasing the size of the obstacles ri, we

increase the ratio in the right hand side of (2.23), thereby making it easier to navigate the

environment with the potential ϕk. Both of these observations are consistent with Theorem

2. We emphasize that, as is also the case with Theorem 2, the inability to guarantee that it

will work, does not mean a navigation function of the proposed form does not exist in the

given environment (cf., Remark 4). Conditions (2.18) and (2.23) are shown to be sufficient

but not necessary. If the conditions are violated it may nonetheless be possible to build a

world in which the proposed artificial potential is a navigation function.

To illustrate ideas, consider an example world in R2 with only one circular obstacle of
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(a) k = 2

(b) k = 10

Figure 2.1: The artificial potential fails to be a navigation function for k = 2 and k = 10 when (2.23)
is violated and the direction defined by the center of the obstacle and the goal is collinear to the
direction of the eigenvector corresponding to the smallest eigenvalue of the Hessian of the objective
function.
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Figure 2.2: For k = 2 the artificial potential is a navigation function even though (2.23) is violated
but the direction defined by the center of the obstacle and the objective is perpendicular to the
direction of the eigenvector corresponding to the smallest eigenvalue of the Hessian of the objective
function. Recall that when those directions are collinear (Figures 2.1(a) and 2.1(b)), the potential
ϕk fails to be a navigation function.
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radius 2 and objective function

f0(x) = xT

(
1 0

0 λmax

)
x. (2.24)

In this example, the minimum of the objective function is attained at the origin and the left

hand side of (2.23) takes the value λmax. In the first two simulations we consider the case in

which the direction xi − x∗ is aligned with the direction of the eigenvector associated with

the smaller eigenvalue of the objective function. This is achieved by placing the center of

the obstacle in the horizontal axis at (−4, 0). The right hand side of (2.23) takes therefore

the value 3. In the simulations depicted in figures 2.1(a)–2.2, λmax = 3, therefore violating

condition (2.23). As it can be observed in figures 2.1(a) and 2.1(b) a local minimum other

than x∗ is present to the left of the obstacle, to which the trajectory converges. Thus, the

potential defined in (2.17) fails to be a navigation function. Note that increasing the tuning

parameter does not turn the potential into a navigation function since it does not get rid of

the local minimum. On the contrary it makes the situation worst, since it pushes the local

minimum closer to the obstacle. In Figure 2.2 we observe an example in which the trajectory

converges to x∗ and condition (2.23) is violated at the same time. Here, the center of the

obstacle is placed at (0,−4), and therefore the direction xi−x∗ is no longer aligned with the

eigenvector of the Hessian of the objective function associated to the minimum eigenvalue.

Hence showing that condition (2.23) is loose when those directions are not collinear.

Notice that the problem of navigating a spherical world to reach a desired destination

x∗ [57] can be understood as particular case where the objective function takes the form

‖x − x∗‖2 and the obstacles are spheres. In this case ϕk is a navigation function for large

enough k for every valid world (satisfying Assumption 1), irrespectively of the size and

placement of the obstacles. This result can be derived as a corollary of Theorem 3 by

showing that condition (2.23) is always satisfied in the setting of [57].

Corollary 1. Let F ⊂ En be the set defined in (2.9) and let ϕk : F → [0, 1] be the function

defined in (2.17). Let F verify Assumption 1 and let f0(x) = ‖x − x∗‖2. Let the obstacles

be hyper spheres of centers xi and radii ri for all i = 1..m. Then there exists a constant K

such that if k in (2.17) is larger than K, then ϕk is a navigation function.

Proof. Since spherical obstacles are a particular case of ellipsoids the hypothesis of Theorem

3 are satisfied. To show that ϕk is a navigation function we need to show that condition

(2.23) is satisfied. For this obstacle geometry we have µimin = µimax for all i = 1 . . .m. On

the other hand, the Hessian of the function f0(x) = ‖x − x∗‖2 is given by ∇2f0(x) = 2I,

where I is the n × n identity matrix. Thus, all its eigenvalues are equal. This implies

that the left hand side of (2.23) takes the value one. On the other hand, since di and ri

are positive quantities the right hand side of (2.23) is strictly larger than one. Hence the
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condition is always satisfied and therefore ϕk(x) is a navigation function for some large

enough k.

2.4 Proof of Theorem 2

In this section we show that ϕk, defined in (2.17) is a navigation function under the hy-

potheses of Theorem 2 by showing that it satisfies Definition 1.

2.4.1 Twice Differentiability and Admissibility

The following lemma shows that the artificial potential (2.17) is twice continuously differ-

entiable and admissible.

Lemma 1 (Differentiability and admissibility). Let F be the set defined in (2.9) and

let ϕk : F → [0, 1] be the function defined in (2.17). Then, ϕk is admissible and twice

continuously differentiable on F .

Proof. Let us show first that ϕk is twice continuously differentiable. To that end we first

show that the denominator of (2.17) is strictly positive. For any x ∈ int(F) it holds that

β(x) > 0 (cf., (2.9)). Hence fk0 (x)+β(x) > 0 because f0 is nonnegative (cf., Assumption 2).

The same holds for x ∈ ∂F because the minimum of f0 is not in ∂F (cf., Assumption 2).

Therefore
(
fk0 (x) + β(x)

)−1/k
is twice continuously differentiable in the free space since f0

and β are twice continuously differentiable (cf., Assumption 2). Hence ϕk is twice continu-

ously differentiable since it is the product of twice continuously differentiable functions. To

show admissibility observe that on one hand for every x ∈ int(F) we have that β(x) > 0,

thus ϕk(x) < 1. On the other hand, if x ∈ ∂F we have that β(x) = 0, hence ϕk(x) = 1.

Thus, the pre image of 1 by ϕk is the boundary of the free space. This completes the

proof.

2.4.2 The Koditschek-Rimon potential ϕk is polar on F

In this section we show that the function ϕk defined in (2.17) is polar on the free space

F defined in (2.9). Furthermore we show that if f0(x∗) = 0 or if ∇β(x∗) = 0, then its

minimum coincides with the minimum of f0. If this is not the case, then the minimum of

ϕk(x) can be placed arbitrarily close to x∗ by increasing the order parameter k. In what

follows it is convenient to define the product of all the obstacle functions except βi

β̄i(x) :=

m∏
j=0,j 6=i

βj(x). (2.25)
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Then, for any i = 0 . . .m, the gradient of the obstacle function can be written as

∇β(x) = βi(x)∇β̄i(x) + β̄i(x)∇βi(x). (2.26)

The next lemma establishes that ϕk(x) does not have critical points at the boundary of the

free space.

Lemma 2. Let F be the set defined in (2.9) satisfying Assumption 1 and let ϕk : F → [0, 1]

be the function defined in (2.17). Then if Assumption 2 holds there are not critical points

of ϕk in the boundary of the free space.

Proof. For any x ∈ F the gradient of ϕk is given by

∇ϕk(x) =
(
fk0 (x) + β(x)

)−1− 1
k

(
β(x)∇f0(x)− f0(x)∇β(x)

k

)
. (2.27)

In particular, if x ∈ ∂F we have that β(x) = 0 (cf., (2.9)) and the above expression reduces

to

∇ϕk(x) = −f
−k
0 (x)

k
∇β(x). (2.28)

Since f0 is nonnegative and its minimum is not in the boundary of the free space (cf.,

Assumption 2), it must be the case that f0(x) > 0. It is left to show that ∇β(x) 6= 0 for

all x ∈ ∂F . In virtue of Assumption 1 the obstacles do not intersect. Hence if x ∈ ∂F , it

must be the case that for exactly one of the indices i = 0 . . .m we have that βi(x) = 0 (cf.,

(2.8)). Denote by i∗ this particular index. Then (2.26) reduces to

∇β(x) = β̄i∗(x)∇βi∗(x). (2.29)

Furthermore we have that for all j 6= i∗, βj(x) > 0 (cf., (2.21)) hence β̄(x)i∗ > 0. Since

the obstacles are non empty open sets and in its boundary βi∗(x) = 0 and in its interior

βi∗ < 0, because βi∗ is convex it must be the case that ∇βi∗(x) 6= 0 for any x ∈ ∂Oi∗ . An

analogous argument holds for the case of β0. This shows that ∇β(x) 6= 0 and therefore,

there are no critical points in the boundary of the free space.

In the previous lemma we showed that there are not critical points at the boundary of

ϕk(x), however we show next that these are either placed arbitrarily close to the boundary

of the free space or to x∗. We formalize this result next.

Lemma 3. Let F be the free space defined in (2.9) satisfying Assumption 1 and let ϕk :

F → [0, 1] be the function defined in (2.17). Then ϕk(x) has critical points xc ∈ int(F) for

all k > 0 and there exists ε0 > 0 such that for and any ε ∈ (0, ε0] there exits K0(ε) > 0

such that if k > K0(ε) either ‖∇f0(xc)‖ < ε or ‖βi(xc)‖ < ε for exactly one i = 1 . . .m.

26



Proof. See appendix A.1.1.

The previous lemma shows that the critical points of the navigation function can be

pushed arbitrarily close to the boundary of one of the obstacles or arbitrarily close to the

minimum of the objective function by selecting k sufficiently large. In the next Lemma

we show that for large enough k the critical points close to the boundary of the obstacles

cannot be local minima. The following lemma as well as Lemma 6 can be derived from

[33,35,36]. We report the proofs since they are shorter for the particular class of obstacles

here considered.

Lemma 4. Let F be the free space defined in (2.9) satisfying Assumption 1 and let ϕk :

F → [0, 1] be the function defined in (2.17). Let λmax, λmin and µimin be the bounds in

Assumption 2. Further let (2.18) hold for all i = 1 . . .m and for any x ∈ ∂Oi. Then, there

exists ε1 > 0 such that for any ε ∈ (0, ε1], there exists K1(ε) such that if k > K1(ε), no

critical point xc such that βi(xc) < ε is a local minimum.

Proof. See Appendix A.1.2.

In the previous Lemma we established that the critical points near the boundary of the

free space are not local minima. Therefore the critical points close to x∗ have to be. In the

next Lemma we formalize this result and we show that for large enough k there is only one

nondegenerate minimum.

Lemma 5. Let F be the free space defined in (2.9) satisfying Assumption 1 and let ϕk :

F → [0, 1] be the function defined in (2.17). Let λmax, λmin and µimin be the bounds in

Assumption 2. Further let (2.18) hold for all i = 1 . . .m and for all xs in the boundary of

Oi. Then, for any ε ∈ (0, ε1] there exists K2(ε) > 0 such that if k > K2(ε), ϕk is polar with

minimum x̄ such that ‖x̄− x∗‖ < ε. Moreover if f0(x∗) = 0 or ∇β(x∗) = 0, then x̄ = x∗.

Proof. See Appendix A.1.3.

The previous lemma establishes that ϕk is polar, with its minimum arbitrarily close to

x∗ hence we are left to show that the ϕk(x) is Morse which we do next.

2.4.3 Nondegeneracy of the critical points

In the previous section, we showed that the navigation function is polar and that the

minimum is nondegenerate. Hence, to complete the proof we need to show that the critical

points close to the boundary are not degenerate. We formalize this in the following lemma.

Lemma 6. Let F be the free space defined in (2.9) satisfying Assumption 1 and let ϕk :

F → [0, 1] be the function defined in (2.17). Let λmax, λmin and µimin be the bounds in
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Assumption 2. Further let (2.18) hold for all i = 1 . . .m and for all points in the boundary

of Oi. Then, for any ε ∈ (0, ε0) there exists K3(ε) such that if k > K3(ε) the critical points

xs of ϕk satisfying βi(xs) < ε for i = 1 . . .m are nondegenerate.

Proof. We showed in 4 that the Hessian of ϕk evaluated at the critical points satisfying

βi(xs) < ε < ε0 has n− 1 negative eigenvalues when k > K1(ε). In particular the subspace

of negative eigenvalues is the plane normal to ∇β(xs). Hence, to show that ϕk is Morse

it remains to be shown that the quadratic form associated to ∇2ϕk at the critical points

close to the boundary of the free space is positive when evaluated in the direction of v =

∇β(xs)/‖∇β(xs)‖. As previously argued vT∇ϕk(xs)v > 0 if and only if

vT
(
β(xs)∇2f0(xs) + (1− 1

k
)∇β(xs)∇fT0 (xs) − f0(xs)

k
∇2β(xs)

)
v > 0. (2.30)

Note that β(xs)v
T∇2f0(xs)v is positive since f0 is convex (cf., Assumption 2) and β(x) ≥ 0

for all x ∈ F (cf., (2.9)).

For any k > 1 the second term in the above equation is positive since∇f0(xs) and∇β(xs)

point in the same direction. Moreover since at the boundary of the obstacle ∇β(x) 6= 0 (see

Lemma 2), for any δ > 0, there exists K3′(δ) such that if k > K3(δ), then ‖∇β(xs)‖ > δ.

By virtue of Lemma 3 ‖∇f0(xs)‖ > ε0 hence the second term in the above equation is

bounded away from zeros by a constant independent of k. Finally since f0 and β are twice

continuously differentiable f0(x)∇2β(x) is bounded by a constant independent of k for all

x ∈ F . Hence there exists K3(ε) > 0 such that if k > K3(ε) (2.30) holds and therefore the

critical points are nondegenerate.

To complete the proof of Theorem 2 it suffices to choose K = max{K2(ε),K3(ε)}.

2.5 Practical considerations

The gradient controller in (2.5) utilizing the navigation function ϕ = ϕk in (2.17) succeeds

in reaching a point arbitrarily close to the minimum x∗ under the conditions of Theorem 2

or Theorem 3. However, the controller is not strictly local because constructing ϕk requires

knowledge of all the obstacles. This limitation can be remedied by noting that the encoding

of the obstacles is through the function β(x) which is defined by the product of the functions

βi(x) [cf., (2.8)]. We can then modify β(x) to include only the obstacles that have already

been visited. Let c > 0 be the a constant defining the range of the sensor that estimates the

obstacles and define the c-neighborhood of obstacle Oi as the set of points with βi(x) ≤ c.

For given time t, we define the set of obstacles of which the agent is aware as the set of
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obstacles of which the agent has visited their c-neighborhood at some time s ∈ [0, t],

Ac(t) :=
{
i : βi(x(s)) ≤ c, for some s ∈ [0, t]

}
. (2.31)

The above set can be used to construct a modified version of β(x) that includes only the

obstacles visited by the agent,

βAc(t)(x) := β0(x)
∏

i∈Ac(t)

βi(x). (2.32)

Observe that the above function depends on the time through the set Ac(t) however this

dependence is not explicit as the set is only modified when the agent reaches the neigh-

borhood of a new obstacle. In that sense Ac(t) behaves as a switch depending only of the

position of the agent. Proceeding by analogy to (2.17), we use the function βAc(t)(x) in

(2.32) to define the switched potential ϕk,Ac(t)(x) : FAc(t) → R taking values

ϕk,Ac(t)(x) :=
f0(x)(

fk0 (x) + βAc(t)(x)
)1/k . (2.33)

The free space FAc(t) is defined as in (2.1), with the difference that we remove only those

obstacles for which i ∈ Ac(t). Observe that FAc(t) ⊆ FAc(s) if t > s. We use this potential

to navigate the free space F according to the switched controller

ẋ = −∇ϕk,Ac(t)(x). (2.34)

Given that ϕk,Ac(t)(x) is a switched potential, it has points of discontinuity. The switched

gradient controller in (2.34) is interpreted as following the left limit at the discontinuities.

The solution of system (2.34) converges to the minimum of f0(x) while avoiding the obstacles

for a set of initial conditions whose measure is one, as we formally state next.

Theorem 4. Let F be the free space defined in (2.9) verifying Assumption 1 and let Ac(t)
for any c > 0 be the set defined in (A.46). Consider the switched navigation function

ϕk,Ac(t) : FAc(t) → [0, 1] to be the function defined in (2.33). Further let condition (2.18)

hold for all i = 1 . . .m and for all xs in the boundary of Oi. Then, for any ε > 0 there

exists a constant K(ε) > 0, such that if k > K(ε), for a set of initial conditions of measure

one, the solution of the dynamical system (2.34) verifies that x(t) ∈ F for all t ∈ [0,∞) and

its limit is x̄, where ‖x̄− x∗‖ < ε. Furthermore if f0(x∗) = 0 or ∇β(x∗) = 0, then x̄ = x̄∗.

Proof. See Appendix A.1.5.

Theorem 4 shows that it is possible to navigate the free space F and converge asymp-

totically to the minimum of the objective function f0(x) by implementing the switched
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dynamical system (2.34). This dynamical system only uses information about the obstacles

that the agent has already visited. Therefore, the controller in (2.34) is a spatially local

algorithm because the free space is not known a priori but observed as the agent navigates.

Do notice that the observation of the obstacles is not entirely local because their complete

shape is assumed to become known when the agent visits their respective c-neighborhoods.

Incremental discovery of obstacles is also considered in [34] for the case of spherical worlds

and the proof is similar to that of Theorem 4. We also point out that a minor modification

of (2.34) can be used for systems with dynamics as we formalize in the next proposition.

Corollary 2. Consider the system given by (2.13). Let ϕk,Ac(t)(x) be the function given by

(2.33) and let d(x, ẋ) be a dissipative field, then by selecting the torque input

τ(x, ẋ) = −∇ϕk,Ac(t)(x) + d(x, ẋ), (2.35)

the behavior of the agent converges asymptotically to solutions of the gradient dynamical

system (2.34).

Proof. From the proof of Theorem 4 it follows that there exists a finite time T > 0 such

that Ac(t) is constant for any t ≥ T [cf.(A.42)]. Then for any t ≥ T the dynamical system

given by (2.13) with the torque input (2.35) is equivalent to the system discussed in Remark

1 and the proof of [56] follows.

The above corollary shows that the goal in (2.2) is achieved for a system with nontrivial

dynamics when the obstacles are observed in real time.

Remark 5 (Selection of navigation function order k). Theorems 2 - 4 give condi-

tions for the existence of a constant K such that for all k ≥ K the function ϕk in (2.17)

enables successful navigation to the minimum of the potential function f0. The value of k

is, however, limited by implementation considerations. E.g., as k grows the weight of ∇β
relative to ∇f0 diminishes [cf., (A.44)], pushing trajectories closer to the obstacles. This is

unsafe because noise in sensor inputs and actuation might result in collisions. A pre-design

solution is to experiment on the type of environment in which the agent is to be deployed

and select a k that works in most configurations (Section 2.6). With this implementation

restriction Theorems 2 - 4 can not guarantee absence of local minima but rather assure that

it is possible to select a k that will make them rare for a given family of spatial geometries

– indeed, they vanish as k grows. Alternatively, and given that using a k that is as small

as possible is beneficial, algorithms to adapt k can be used. For a certain maximum allow-

able value of k, Theorems 2 - 4 do not guarantee absence of local minima but they indicate

that local minima are rare. In either case, the agent may get stuck in a local minimum of

the artificial potential ϕk – this may happen because k is not large enough or because the
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geometry of the problem is unworkable for any k. Practical deployments must be combined

with a decision making module to dislodge the agent from a local minimum when one is en-

countered. One possible approach to identifying local minima is to verify that the navigation

gradient is ∇ϕk(x) ≈ 0 but the potential gradient is ∇f0(x) 6≈ 0.

2.6 Numerical experiments

We evaluate the performance of the navigation function (2.33) in different scenarios. To do

so, we consider a discrete approximation of the gradient flow (2.34)

xt+1 = xt − εt∇ϕk,Ac(t)(xt). (2.36)

Where x0 is selected at random and εt is a diminishing step size. In Section 2.6.1 we

consider a free space where the obstacles considered are ellipsoids –the obstacle functions

βi(x) for i = 1 . . .m take the form (2.21). In particular we study the effect of diminishing the

distance between the obstacles while keeping the length of its mayor semi-axis constant. In

this section we build the free space such that condition (2.23) is satisfied. As already shown

through a numerical experiment in Section 2.3 navigation is still possible if (2.23) is violated

(cf., Figure 2.2). This observation motivates the study in Section 2.6.3 where we consider

worlds were (2.23) is violated. In 2.6.2 we consider egg shaped obstacles as an example

of convex obstacles other than ellipsoids. The numerical section concludes in Section 2.6.4

and 2.6.5 where we consider respectively a system with double integrator dynamics and a

wheeled robot.

2.6.1 Elliptical obstacles in R2 and R3

In this section we consider m elliptical obstacles in Rn, where βi(x) is of the form (2.22), with

n = 2 and n = 3. We set the number of obstacle to be m = 2n and we define the external

boundary to be a spherical shell of center x0 and radius r0. The center of each ellipsoid is

placed the position d (±1,±1, . . . ,±1) and then we perturb this position by adding a vector

drawn uniformly from [−∆,∆]n, where 0 < ∆ < d. The maximum semi-axis of the ellipse

–ri – is drawn uniformly from [r0/10, r0/5]. We build orthogonal matrices Ai for i = 1 . . .m

where their eigenvalues are drawn from the uniform distribution over [1, 2]. We verify that

the obstacles selected through the previous process do not intersect and if they do, we re

draw all previous parameters. For the objective function we consider a quadratic cost given

by

f0(x) = (x− x∗)T Q (x− x∗) , (2.37)
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d 10 9 9 6 6 5 5 3 3

k 2 2 5 5 7 7 10 10 15

Max. final dist. 0.0445 17.25 0.0445 21.61 0.0474 22.29 0.0473 14.28 0.0465

Min initial dist. 10.06 10.01 10.01 10.01 10.02 10.03 10.05 10.12 10.80

Colissions 0 0 0 0 0 0 0 0 0

a Results for the experimental setting described in Section 2.6.1. Observe that the smaller the value
of d – the closer the obstacles are between them – the environment becomes harder to navigate, i.e.
k must be increased to converge to the minimum of f0.

d 10 10 9 9 6 6 5 5 3

k 2 15 5 15 7 15 10 15 15

µr 1.07 1.01 1.03 1.01 1.19 1.03 1.06 1.05 1.06

σ2
r (×10−3) 6.53 0.07 2.10 0.77 10.1 1.59 6.14 2.57 6.60

b Mean and variance of the ratio between the path length and the initial distance to the minimum.
For each scenario 100 simulations were considered. Observe that the smaller the value of d the larger
the ratio becomes.

where x∗ = argmin f0(x) and Q ∈Mn×n is a positive symmetric n×n matrix. x∗ is drawn

uniformly over [−r0/2, r0/2]n and we verify that it is in the free space. Then, for each

obstacle we compute the maximum condition number, i.e, the ratio of the absolute value

of the maximum and minimum eigenvalues, of Q such that (2.18) is satisfied. Let Ncond be

the largest condition number that satisfies all the constraints. Then, the eigenvalues of Q

are selected randomly from [1, Ncond − 1], hence ensuring that (2.18) is satisfied. Finally

the initial position is also selected randomly over [−r0, r0]n and it is checked that it lies on

the free space.

For this experiments we set r0 = 20 and ∆ = 1. We run 100 simulations varying the

parameter d – controlling the proximity of the obstacles– and k. With this information

we build Table 2.1a, where we report the number of collisions, the maximal distance of

the last iterate to the minimum of f0 and the minimal initial distance to the minimum of

f0. As we can conclude from Table 2.1a, the artificial potential (2.33) provides collision

free paths. Notice that the smaller the distance between the obstacles the harder is to

navigate the environment and k needs to be further increased to achieve the goal. For

instance we observe that setting k = 5 is sufficient to navigate the world when d = 9,

yet it is not enough to navigate an environment where d = 6. The trajectories arising

from artificial potentials typically produce paths whose length is larger than the distance

between the initial position and the minimum. We perform a statistical study reporting in

Table 2.1b the mean and the variance of the ratio between these two quantities. We only

consider those values of d and k that always achieve convergence (cf., Table 2.1a). Observe

that when the distance d is reduced while keeping k constant the ratio increases. On the
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Figure 2.3: Trajectories for different initial conditions in an elliptical world in R3. As per Theorem 3
and 4 the trajectory converges to the minimum of the objective function while avoiding the obstacles.
In this example we have d = 10 and k = 25.

contrary if d is maintained constant and k is increased the ratio becomes smaller, meaning

that the trajectory approaches the optimal one. In Figure 2.3 we simulate one instance of

an elliptical world in R3, with d = 10 and k = 25. For four initial conditions we observe

that the trajectories reach the minimum of f0.

2.6.2 Egg shaped obstacles

In this section we consider the class of egg shaped obstacles. We draw the center of the

each obstacle, xi, from a uniform distribution over [−d/2, d/2]× [−d/2, d/2]. The distance

between the ”tip” and the ”bottom” of the egg, ri, is drawn uniformly over [r0/10; r0/5]

and with probability 0.5, βi is

βi(x) = ‖x− xi‖4 − 2ri

(
x(1) − x(1)

i

)3
, (2.38)
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Figure 2.4: Navigation function in an Egg shaped world. As predicted by Theorem 4 the trajec-
tory arising from (2.36) converges to the minimum of the objective function f0 while avoiding the
obstacles.

resulting in a horizontal egg. The superscript (1) refers to first component of a vector. With

probability 0.5 the egg is vertical

βi(x) = ‖x− xi‖4 − 2ri

(
x(2) − x(2)

i

)3
. (2.39)

Notice that the functions βi as defined above are not convex on R2, however their Hessians

are positive definite outside the obstacles. To be formal we should define a convex extension

of the function inside the obstacles in order to say that the function describing the obstacle

is convex. This extension is not needed in practice because our interest is limited to the

exterior of the obstacle. In Figure 2.4 we observe the level sets of the navigation function

and a trajectory arising from (2.36) when we set k = 25, r0 = 20 and d = 10. In this

example the hypotheses of Theorem 2 are satisfied, hence the function ϕk is a navigation

function and trajectories arising from the gradient flow (2.34) converge to the optimum of

f0 without running into the free space boundary (cf., Theorem 4).
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d 10 9 6 5 3

k 2 5 7 10 15

Success 99% 95% 81% 82% 82%

Table 2.2: Percentage of successful simulations when the condition guaranteeing that ϕk is a navi-
gation function is violated. We observe that as the distance between obstacles becomes smaller the
failure percentage increases.

2.6.3 Violation of condition (2.23)

In this section we generate objective functions such that condition (2.23) is violated. To do

so, we generate the obstacles as in Section 2.6.1 and the objective function is such that all

the eigenvalues of the Hessian are set to be one, except for the maximum which is set to be

maxi=1...mNcond+1, hence assuring that condition (2.23) is violated for all the obstacles. In

this simulation Theorem 3 does not ensure that ϕk is a navigation function so it is expected

that the trajectory fails to converge. We run 100 simulations for different values of d and

k and we report the percentage of successful simulations in Table 2.2. For each value of d

the selection of k was done based on Table 2.1a, where k is such that all the simulations

attain the minimum of the objective function. Observe that when the distance between the

obstacles is decreased the probability of converging to a local minimum different than x∗

increases.

2.6.4 Double integrator dynamics

In this section we consider a system with the following simplified version of the dynamics

(2.13)

ẍ = τ, (2.40)

and the following control law

τ = −∇ϕk(x)−Kẋ. (2.41)

In Figure 2.5 we observe the behavior of the system (2.40) when the control law (2.41) is

used (green trajectories) against the behavior of the gradient flow system (2.34) (orange

trajectory). Thee light green line correspond to a system where the damping constant

K = 4 × 103 and the dark green correspond to a damping constant of 5 × 103. As we

can observe the larger the damping constant the closer the trajectory is to the one of the

kinematic system.
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Figure 2.5: In orange we observe the trajectory arising from the system without dynamics (cf.,
(2.34)). In green we observe trajectories arising from the system (2.40) when we the control law
(2.41) is applied. The trajectory in dark green has a larger damping constant than the trajectory in
light green and therefore it is closer to the trajectory of the system without dynamics.
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2.6.5 Differential drive robot

In this section we consider a disk shaped differential drive robot (x, θ) ∈ R2 × (−π, π],

centered at x ∈ R2 with body radius r > 0 and orientation θ ∈ (−π, π]. Its kinematics are

given by

ẋ = v

[
cos θ

sin θ

]
, θ̇ = ω, (2.42)

where v and ω are the linear and angular velocity. The control inputs τv and τω actuate

respectively over their derivatives

v̇ = τv, ω̇ = τω. (2.43)

Observe that the robot described by (2.42) and (2.43) is an under actuated example of the

general robot (2.13). Because of the under actuation it is not possible to follow the exact

approach described in Remark 1. [125] presents a control law that guarantees theoretical

convergence to the minimum of the navigation function for the kinematic model of the

differential drive robot. Define the desired angle

θd = arg

(
∂ϕk(x, y)

∂x
+ i

∂ϕk(x, y)

∂y

)
, (2.44)

where arg(a + ib) is the argument of the complex number a + ib. Then the commanded

speed is

vc = −sgn
(
∂ϕk(x, y)

∂x
cos θ +

∂ϕk(x, y)

∂y
sin θ

)
{
kv

[(
∂ϕk(x, y)

∂x

)2

+

(
∂ϕk(x, y)

∂x

)2
]}

.

(2.45)

In the above equation sgn(x) is the sign function defined as sgn(x) = 1 if ≥ 0 and sgn(x) =

−1 otherwise. The commanded angular speed is then given by

ωc = kω (θd − θ) . (2.46)

We propose to extend the previous control law for the dynamic system by setting the linear

acceleration to be

τv = −vc − kv,dv, (2.47)

and the angular acceleration to be

τω = −ωc − kω,dω. (2.48)
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Figure 2.6: In green we depict the trajectories of the kinematic differential drive robot (2.42) , when
the control law is given by (2.45) and (2.46). In orange we depict the trajectories of the dynamic
differential drive robot (2.42) and (2.43) , when the control law is given by (2.47) and (2.48). In
both cases we select kv = kω = 1 and for the dynamic system kv,d = 4 and kω,d = 10 . As it can be
observed the agent reaches the desired configuration while avoiding the obstacles.

We emphasize that the proposed control does not provide stability guarantees and we are

presenting it as an illustration on how to extend the navigation function to systems with

dynamics. In Figure 2.6 we depict in green the trajectories of the kinematic differential

drive robot (2.42), when the control law is given by (2.45) and (2.46). In orange we depict

the trajectories of the dynamic differential drive robot (2.42) and (2.43), when the control

law is given by (2.47) and (2.48). In these examples we observe that for kv = kω = 1 and

kv,d = 4 and kω,d = 10 the wheeled robot succeeds in reaching the minimum of the objective

function while avoiding the obstacles.

2.7 Conclusions

We considered a set with convex holes in which an agent must navigate to the minimum

of a convex potential. This function is unknown and only local information about it was

used, in particular its gradient and its value at the current location. We defined an artificial
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potential function and we showed that under some conditions of the free space geometry

and the objective function, this function was a navigation function. Then a controller that

moves along the direction of the negative gradient of this function ensures convergence

to the minimum of the objective function while avoiding the obstacles. In order to avoid

knowing the environment beforehand, a switched controller based on the previous navigation

function is defined. This controller only takes into account information about the obstacles

that the agent has visited. Numerical experiments support the theoretical results.
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Chapter 3

Stochastic Artificial Potentials for

Online Safe Navigation

In this Chapter we consider the same type of problems than in Chapter 2. The main

difference, is that instead of constructing a navigation function using complete information

about the obstacles, we build a stochastic estimate of its gradient, with local information

only. The main theoretical contribution is to show that if the estimate available to the

agent is unbiased, convergence to the desired location while avoiding the obstacles present

in the environment is guaranteed with probability one under the same geometrical conditions

than in the deterministic case. Qualitatively these conditions are that the ratio between the

maximum and minimum eigenvalue of the Hessian of the objective function is not too large

and that the obstacles are not too flat or too close to the desired destination. Moreover, we

show that for biased estimates convergence to a point arbitrarily close to the goal is achieved

with probability one under assumptions on the bias. These assumptions are motivated by

the study of the estimate of the gradient of a Rimon-Koditschek navigation function for

sensor models that fit circles around the obstacles. Numerical examples explore the practical

value of these theoretical results.

3.1 Introduction

The main drawback of the navigation functions proposed in [57] and explored in part in

the previous chapter is that it assume the measurement of the obstacles to be of arbitrary

precision. In real robotic systems, however, information about potentials and obstacles is

gathered by sensors with noise figures that are not necessarily negligible. This results in

observations that are noisy and that, as we explain in Section 3.2.1, are likely to be biased

in the case of obstacle estimation. The main contribution of this chapter is to generalize the

results in Chapter 2 to stochastic scenarios, understood as settings in which the information
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available to the agent comes from a probability distribution instead of being deterministic

(Section 3.2). In particular, we show that if the agent is able to construct an unbiased

estimate of the gradient of the navigation function, non-collision and convergence to the

minimum of the objective function can be ensured with probability one (Theorem 5 Section

3.3).

In most cases, however, constructing an unbiased estimate is not possible, because there

exists a mismatch between the real world and the model the agent has of it. This mismatch

may be due to not being able to sense all obstacles, or because a simplified model of

the world is assumed. However, as long as the bias is not too large compared to the

gradient of the navigation function the same theoretical guarantees than in the unbiased case

can be provided (Theorem 5). The practical implications of these theoretical conclusions

are explored in numerical simulations (Section 3.6) in which we consider the problem of

reaching the minimum of non-rotational symmetric potentials in a space where the obstacles

are ellipses (Section 3.6.1) and where the obstacles are egg-shaped as an example of a

generic convex obstacle (Section 3.6.2). We also consider an artificial potential based on

a logarithmic barrier to show that the results of this work are not limited the Rimon-

Koditschek artificial potential.

3.2 Problem formulation

In this chapter, we are interested in navigating towards the minimum of a convex potential

in a space with convex holes in cases where the information available to the agent about the

potential and the free space is local and inexact. As discussed in Chapter 2, a solution to the

problem can be obtained through dynamics that follow the negative gradient of a navigation

function 1. In particular, in the last chapter we established sufficient conditions for a

navigation function of the Koditschek-Rimon form (cf., (2.17) to exists under Assumptions

1 and 2 (cf., Theorem 2). While the navigation function approach provides a provable

way of navigating towards the minimum of a convex potential in a cluttered workspace, its

drawbacks are twofold: (i) It requires complete characterization of the obstacles to construct

the function ϕk(x) defined in (2.17). (ii) The measurements of the objective function and

the obstacles need to be exact. The main contribution presented in this chapter is to relax

these assumptions by considering only local and stochastic information. We describe this

framework in the following section.

3.2.1 Navigable Estimates

To model the stochastic nature of the problem we introduce the following probability space

(Ω,G, P ) and we define the following filtration defined as a sequence of increasing sigma
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algebras {∅,Ω} = G0 ⊂ G1 ⊂ . . . ⊂ Gt ⊂ . . . ⊂ G. For each t ≥ 0, define a random vector

θt to be Gt measurable. This vector represents the noise of the system at time t ∈ N. The

effect of the noise is that of making the gradient of the navigation ∇ϕk(x) and its estimate

ĝ(xt, θt) not collinear. In expectation however, the estimate is related to the gradient of the

navigation function as follows

E
[
ĝ(xt, θt)

∣∣∣Gt] = α(x) (∇ϕk(x) + bk(x)) , (3.1)

where α : F → R is a strictly positive function and bk : F → Rn is piece-wise differentiable.

The bias bk(x) accounts for a mismatch between the free space and the belief that the agent

has of it. Ideally, if the model is perfect, the estimate ĝ(x, θ) is unbiased, i.e., bk(x) ≡
0. However, if one tries to estimate obstacles using simple models, this is a restrictive

assumption. This is observed for instance, in Appendix A.2.1 where we explore the case

when the agent assumes the obstacles to be spherical. The origin of the bias is therefore in

systematic errors in the estimation and it is not necessarily related to the stochastic nature

of the problem; even for noiseless measurements, i.e. ĝ(xt, θt) = ĝ(xt) the bias would be

present if the model assumed for the obstacles is not correct.

In what follows we introduce assumptions about the estimate ĝ(x, θ) and the bias bk(x)

that allow navigation towards the minimum of the objective function while avoiding the ob-

stacles (Theorems 5 and 6 which generalize Theorem 2 to the stochastic setting). Estimates

satisfying these assumptions are termed navigable estimates and the assumptions presented

are motivated in more detail in Appendix A.2.1 where we discuss the case of an agent whose

belief is that obstacles are spherical. In the deterministic setting, navigation functions en-

sure non-collision with the obstacles because in their vicinity, the negative of the gradient

of the navigation function is directed outwards the obstacles. Due to the stochastic nature

of the estimate ĝ(x, θ) – even if the estimate were to be unbiased – there is no guarantee

that this will be the case in general. However, for levels of noise that are not too high this

will hold. In order to show that the navigation is collision free the latter assumption along

with the boundedness of the estimator are required. We formalize these next.

AS3. The estimate of the gradient of the navigation function ĝ(xt, θt) satisfies the following

properties.

Bounded There exists a strictly positive constant B such that for all x ∈ F and for all θ

we have that

‖ĝ(x, θ)‖ ≤ B. (3.2)

Points outwards the obstacles Let di(x) be the distance between the agent and the ob-

stacle Oi, i.e.,

di(x) := min
z∈Oi∪∂Oi

‖x− z‖ . (3.3)
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For each obstacle Oi there exists a constant γi > 0 such that if di(x) < γi we have for all

θ,

−ĝ(x, θ)>∇βi(x) > 0. (3.4)

Omnidirectional There exists a constant ζ > 0 such that for all y ∈ Rn with ‖y‖ = 1 we

have that

|E
[
ĝ(x, θt)

>y
∣∣Gt] ≥ ζ. (3.5)

Biased Let α(x) : F → R++ be a piece-wise differentiable function bounded away from zero

and let bk(x) : F → Rn be piece-wise differentiable on the free space and let ϕk(x) be the

function defined in (2.17). Then the expected value of the estimate ĝ(xt, θt) with respect to

the sigma algebra Gt satisfies

E
[
ĝ(xt, θt)

∣∣∣Gt] = α(xt) (∇ϕk(xt) + bk(xt)) . (3.6)

The omnidirectional assumption is required to ensure that the noise is not driving the

system to a specific location. In particular, we use the latter to show that the system

does not converge to a saddle point of the navigation function. By Definition 1, navigation

functions are Morse in F , and therefore the vector field of its negative gradient is structurally

stable in F [108]. This ensures that if we perturb the vector field by a small quantity, then

the resulting flow is topologically equivalent to the original. And therefore the qualitative

behavior of the system persists. Since the free space is a manifold with boundary, we need

the perturbed vector field not to be tangential at the boundary [108]. This is ensured, for

instance, if the bias is zero at the boundary, because ∇ϕk(x) is perpendicular to it. The

following assumptions on the bias are sufficient to preserve the qualitative behavior of the

system and they are verified, for the most part, by the estimate based on the belief that

obstacles are spherical.

AS4. The bias defined in (3.1) is piece-wise differentiable on the free space and has the

following properties.

Unbiased at the boundary The bias bk(x) is such that for any x ∈ ∂F we have that

bk(x) = 0 for all k.

Dependence with k The scaled bias

b̃k(x) = bk(x)
(
f0(x)k + β(x))1+1/k

)
(3.7)

is such that for any point x in the interior of the free space F we have that

‖b̃k(x)‖ = O(1/k), (3.8)
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where O(1/k) is a function satisfying limk→∞O(1/k)k = M with M a positive constant.

Discontinuities away from the boundary There exists a constant D > 0 such that the

function bk(x) is differentiable for all x ∈ F satisfying βi(x) < D for every i = 1 . . .m.

bk(x) is also differentiable at x∗.

Regularity Assumption Let U ik be the set defined as

U ik =
{
x ∈ F

∣∣∇ϕk(x)> (∇ϕk(x) + bk(x)) ≤ 0
}
∩
{
x ∈ F

∣∣βi(x) ≤ D
}
. (3.9)

The flows of ẋ = −∇ϕk(x) and ẋ = −∇ϕk(x) + bk(x) are topologically equivalent in U ik.

The regularity assumptions can be interpreted as the bias not being large enough to

modify the qualitative behavior of the system. Indeed, topological equivalence can be

showed if the norm of the bias in the C1 sense1 is sufficiently small with respect to the

gradient of the navigation function. For instance, if the model of the world were to be

perfect, the bias would be zero and the regularity assumption would hold trivially. As we

start simplifying the model of the estimates, the bias will increase. In the case of an agent

that fits spheres around the obstacles (cf., Section A.2.1) we can show that the norm of

the bias is smaller than that of the gradient of the navigation function. Hence, it is not

unreasonable that the regularity assumption holds. An estimate satisfying assumptions 3

and 4 is termed a navigable estimate. We formally define the concept for future reference.

Definition 3 (Navigable Estimates). Let θ ∈ Rp be a random vector and let ĝ(x, θ) be

an estimate of the gradient of navigation function of the form (2.17) for the free space F
defined in (2.9). We say that ĝ(x, θ) is a Navigable Estimate if it satisfies assumptions 3

and 4.

Drawing inspiration from the deterministic scenario we propose a stochastic gradient

descent scheme to solve (2.2) using only local and stochastic information, based on navigable

estimates ĝ(x, θ), in which the agent updates its configuration recursively as

xt+1 = xt − ηtĝ(xt, θt), (3.10)

where ηt is a step size assumed to be not summable and square summable. A particular step

size that satisfies the previous conditions is ηt = η0/(1 + ζt), where η0 is the initial step size

and ζ controls the rate at which the step size is decreased. We formalize the assumption on

he step size for future reference.

1Given a vector field f(x) we denote its n-derivative by D(n)f(x). We define the Cn norm of a vector

field f(x) in a manifold M as ‖f(x)‖Cn = supx∈M

{
‖f(x)‖, ‖Df(x)‖, . . . , ‖D(n)f(x)‖

}
.
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AS5. The step size ηt for the update (3.10) is a positive and strictly decreasing sequence

that satisfies
∞∑
t=0

ηt =∞,
∞∑
t=0

η2
t <∞, η0 < min

i

γi
B
, (3.11)

where γi and B are the constants defined in Assumption 3.

The main contribution of this chapter is to show that an agent operating in a workspace

with convex holes, that is given a navigable estimate of the form (3.1) is able to reach the

minimum of an unknown convex function without running into the free space boundary

with probability one (Section 3.4). Before doing so, we present a preliminary result for

unbiased estimates (Section 3.3).

3.3 Unbiased Estimator

In this section we consider the particular case of an agent that has access to an unbiased

estimator of the gradient of the navigation function rather than the general model presented

in (3.1). This means that the bias is identically zero bk(x) ≡ 0. Notice that, such choise of

the bias satisfies Assumption 4 trivially. We show that, in this case, an agent that follows the

gradient update (3.10) converges to the minimum of the navigation function ϕk(x) defined

in (2.17) while avoiding the obstacles with probability one. Therefore solving problem (2.2).

We start by establishing obstacle avoidance in the following lemma.

Lemma 7. Let F be the free space defined in (2) verifying Assumption 1. Furthermore,

let ĝ(xt, θt) be an estimate of the gradient of the navigation function (2.17) satisfying As-

sumption 3. Then, the update (3.10), with step size satisfying Assumption 5, ensures that

{xt, t ≥ 0} ∈ F .

Proof. Denote by di(x) the euclidean distance betwen x ∈ F and the set Oi and note that

the triangle inequality implies

di(xt+1) ≥ di(xt)− ηt‖ĝ(xt, θt)‖. (3.12)

Because the estimate of the gradient of the navigation function satisfies that ‖ĝ(xt, θt)‖ ≤ B
(cf., Assumption 3) and ηt is a decreasing sequence with η0 ≤ mini γi/B (cf., Assumption

5), we have that ηt‖ĝ(xt, θt)‖ < mini {γi} for all t. Therefore, for cases in which di(xt) ≥ γi
(3.12) can be lower bounded by

di(xt+1) > γi −min
i
γi ≥ 0. (3.13)

Which shows that if the distance between the iterate xt and the obstacle Oi is larger
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than γi, then xt+1 ∈ F . In the opposite case, by virtue of Assumption 3, we have that

−ĝ(xt, θt)
>∇βi(xt) > 0 and therefore non-collision with obstacle Oi is ensured trivially.

The previous lemma shows that the sequence generated by (3.10) avoids the obstacles.

We turn to showing convergence to the minimum of ϕk(x) starting by showing convergence

to the set of its critical points with probability one. To do so, we use a supermartingale

convergence result. A supermartingale is a sequence of random variables that decreases in

expectation. In a way, it is a stochastic generalization of a decreasing sequence. If such

sequence is bounded below, then the convergence of the supermartingale can be established

[29, Theorem 5.2.9]. This result is hence a generalization of the deterministic result stating

that a decreasing sequence that is bounded below converges.

Lemma 8. Let F be the free space defined in (2) verifying Assumption 1 and let (2.18)

hold. Denote by ĝ(xt, θt) an unbiased navigable estimate as in definition 3 of the gradient

of the artificial potential (2.17) and let ηt be a sequence satisfying Assumption 5. Then, for

any x0 ∈ F the sequence generated by (3.10) is such that

lim
t→∞

xt = Xc a.e., (3.14)

where Xc is a random variable taking values on the set of the critical points of ϕk(x).

Proof. Let us write ϕk(xt+1) in terms of the previous iterate using its Taylor expansion

around xt and the update (3.10)

ϕk(xt+1) = ϕk(xt)− ηt∇ϕk(xt)ĝ(xt, θt) +
η2
t

2
ĝ(xt)

>∇2ϕk(z)ĝ(xt), (3.15)

where z is a point in the segment xt−µηtĝ(xt) with µ ∈ [0, 1]. Said segment lies in the free

space by virtue of Lemma 7. The free space being a compact set and ϕk(x) being a twice

differentiable function (cf., Definition 1), implies that the maximum eigenvalue of ∇2ϕk(x)

is upper bounded by a positive constant L. Then using the bound on the norm of the

estimate of the gradient (cf., Assumption 3) the quadratic term in (3.15) can be bounded

by

ĝ(xt, θt)
>∇2ϕk(z)ĝ(xt, θt) ≤ LB2. (3.16)

Consider the expectation with respect to the sigma field Gt on both sides of (3.15). Using

the linearity of the expectation, the fact that ϕk(xt) is Gt measurable and the bound derived

in (3.16) we have that

E
[
ϕk(xt+1)

∣∣∣Gt] ≤ ϕk(xt)− ηtE [∇ϕk(xt)>ĝ(xt, θt)
∣∣∣Gt]+ η2

t

LB2

2
. (3.17)

46



We next show that the following sequence is a nonnegative supermartingale

St = ϕk(xt) +
∞∑
s=t

η2
s

LB2

2
. (3.18)

Since ϕk(x) is a navigation function it is nonnegative and bounded (cf., Definition 1),

therefore St is a nonnegative sequence and bounded because ηt is square summable (cf.,

Assumption 5). St is also adapted to Gt since xt is. Thus, in order to show that St is a

nonnegative supermartingale it suffices to prove that E
[
St+1

∣∣Gt] ≤ St, which we do next.

Using the linearity of the expectation and the bound for E
[
ϕk(xt+1)

∣∣Gt] derived in (3.17)

we have that

E
[
St+1

∣∣∣Gt] ≤ ϕk(xt) +
∞∑
s=t

η2
s

LB2

2
− ηtE

[
∇ϕk(xt)>ĝ(xt, θt)

∣∣∣Gt] . (3.19)

Since the estimator is navigable and it is unbiased, we have that E
[
ĝ(xt, θt)

∣∣Gt] = α(xt)∇ϕk(xt)
and therefore

E
[
∇ϕk(xt)>ĝ(xt, θt)

∣∣∣Gt] = α(x)‖∇ϕk(xt)‖2 ≥ 0, (3.20)

where the las inequality holds because α(x) is strictly positive (cf., Assumption 3). Thus

St is nonnegative supermartingale and it holds that (see e.g. Theorem 5.2.9 in [29])

lim
t→∞

St = S a.e., (3.21)

where S is a random variable such that E [S] ≤ E [S0] and

∞∑
t=0

ηtα(xt)‖∇ϕk(xt)‖2 <∞ a.e.. (3.22)

Since the sequence of step sizes {ηt, t ≥ 0} is not summable and α(x) is bounded away from

zero (cf., Assumption 3) the convergence of the above series implies that

lim inf
t→∞

‖∇ϕk(xt)‖2 = 0 a.e.. (3.23)

We are left to show that lim supt→∞ ‖∇ϕk(xt)‖ = 0 almost everywhere. Before doing so,

observe that if this is the case there exists a subsequence {xts , s ∈ N ∪ {0}} that converges

to the set of critical points of the navigation function ϕk(x). Since the limit of St exists we

have that

lim
s→∞

Sts = lim
s→∞

ϕk(xts) = S a.e. (3.24)

Then, observe that the critical points of the navigation function are nondegenerate (cf.,

47



Definition 1), and therefore the limit of the sequence xt generated by the update (3.10) is

either the minimum of ϕk(x) or one of the saddles of ϕk(x). To complete the proof of the

Lemma we show by contradiction that lim supt→∞ ‖∇ϕk(xt)‖ = 0 almost everywhere.

Assume that lim supt→∞ ‖∇ϕk(xt(ω))‖ = δ > 0 for some ω ∈ Ω. That being the case,

there exists sequences {Ts} and {T ′s} such that Ts < T ′s < Ts+1 and

δ

3
< ‖∇ϕk(xt)‖ for Ts ≤ t < T ′s and ‖∇ϕk(xt)‖ ≤

δ

3
for T ′s ≤ t < Ts+1. (3.25)

Then choose T ∈ {Ts, . . . , T ′s}. Using the fact that ∇2ϕk(x) is bounded by L for all x ∈ F ,

it is possible to bound the norm of the difference of the gradients of ϕ(x) evaluated at t = T

and t = T ′s by

∥∥∇ϕ(xT )−∇ϕ(xT ′s)
∥∥ ≤ L∥∥xT − xT ′s∥∥ = L

∥∥∥∥∥∥
T ′s−1∑
t=T

ηtα(xt)ĝ(xt, θt)

∥∥∥∥∥∥ . (3.26)

Define the error e(xt, θt) = ĝ(xt, θt)−α(xt)∇ϕk(xt) and use the triangle inequality to further

upper bound the difference of gradients by

∥∥∇ϕ(xT )−∇ϕ(xT ′s)
∥∥ ≤ L

∥∥∥∥∥∥
T ′s−1∑
t=T

ηtα(xt)∇ϕk(xt)

∥∥∥∥∥∥+ L

∥∥∥∥∥∥
T ′s−1∑
t=T

ηte(xt, θt)

∥∥∥∥∥∥ (3.27)

We next show that
∑T

t=0 ηtα(xt)e(xt, θt) is a square integrable martingale. First of all,

{e(xt, θt)} is addapted to the sequence of sigma-algebras {Gt}, since ĝ(xt, θt) ∈ Gt for all

t ≥ 0. Next write the expectation of
∑u

t=0 ηtα(xt)e(xt, θt) with respect to Gu as

E

[
u∑
t=0

ηte(xt, θt)
∣∣∣Gu] =

u−1∑
t=0

ηte(xt, θt) + ηuE
[
e(xu, θu)

∣∣Gu] =

u−1∑
t=0

ηte(xt, θt), (3.28)

where the first equality follows from the fact that e(xt, θt) is measurable with respect to

Gu for all t < u and the second one from the fact that ĝ(xt, θt) is an unbiased estimate

of ∇ϕk(xt). Hence
∑T

t=0 ηtα(xt)e(xt, θt) is a margingale. We are left to bound its second

moment. To do so,take its the expectation with respect to Gu

E

∥∥∥∥∥
u∑
t=0

ηte(xt, θt)

∥∥∥∥∥
2 ∣∣∣Gu

 =

∥∥∥∥∥
u−1∑
t=0

ηte(xt, θt)

∥∥∥∥∥
2

+ η2
uE
[
‖e(xu, θu)‖2

∣∣Gu]
+2E

[
ηue
>
u

∣∣Gu] u−1∑
s=0

ηses.

(3.29)
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Observe that, because ĝ(xt, θ) is an unbiased estimate of ∇ϕk(xt) for all t the expectation in

the last term is equal to zero. Using the fact, that ĝ(xt, θt) is bounded (cf., Assumption 3)

and that ∇ϕk(x) is bounded as well, it follows that there exists σ > 0 such that ‖e(xt, θt)‖ <
σ for all t ≥ 0. Thus, the previous inequality can be upper bounded by

E

∥∥∥∥∥
u∑
t=0

ηte(xt, θt)

∥∥∥∥∥
2 ∣∣∣Gu

 ≤ u−1∑
t=0

η2
t ‖e(xt, θt)‖

2 + η2
uσ

2. (3.30)

By recursively conditioning with respect to previous sigma algebras we can upper bound

the expectation of ‖
∑u

t=0 ηte(xt, θt)‖
2 by

E

∥∥∥∥∥
u∑
t=0

ηte(xt, θt)

∥∥∥∥∥
2
 ≤ u∑

t=0

η2
t σ

2. (3.31)

The latter shows that the martingale is square integrable because ηt are square summable

(cf., Assumption 5). Hence, it converges almost everywhere [29, Theorem 5.4.9.] and we

can chose s large enough so
∥∥∥∑T ′s

t=T ηte(xt, θt)
∥∥∥ < δ

6L . Combining this fact with the fact

that for all Ts < t < T ′s we have that ‖∇ϕk(xt)‖ > δ/3, we can upper bound (3.27) by

∥∥∇ϕk(xT )−∇ϕk(xT ′s)
∥∥ ≤ 3L

δ

T ′s−1∑
t=T

ηtα(xt) ‖∇ϕk(xt)‖2 +
δ

6
. (3.32)

Likewise, chose s large enough so that
∑T ′s−1

t=T ηtα(xt) ‖∇ϕk(xt)‖2 ≤ δ2/(18L), then the

previous expression means that

∥∥∇ϕk(xT )−∇ϕk(xT ′s)
∥∥ ≤ δ

3
. (3.33)

Which means that ‖∇ϕk(xT )‖ < 2δ/3 which contradicts the fact that the limit superior is

larger than zero.

The previous lemma states that with probability one, the update (3.10) results in a

sequence that converges to either the minimum of the navigation function ϕk(x) or to one

of its saddle points. In the deterministic framework, the stable manifold of the saddles has

zero measure and therefore, convergence to the minimum is guaranteed for almost every

initial condition. The next lemma is the stochastic counterpart of this result, where we

claim that the probability of converging to a saddle is zero. We state the result in its

generic form for any Morse function.

Lemma 9. Let V (x) : F → R be a Morse function and let ĝ(x, θt) satisfy Assumption 3
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such that

E
[
ĝ(x, θt)

>∇V (x)
∣∣∣Gt] > 0, (3.34)

for every x ∈ F satisfying ∇V (x) 6= 0. Then for any x0 ∈ F , the probability of the sequence

{xt, t ≥ 0}, generated by the update (3.10), converging to a saddle point of V (x) is zero.

Proof. See [101].

Notice that in the specific case where V (x) is ϕk(x) and ĝ(x, θ) is an unbiased estimator

of the gradient of the navigation function, the left hand side of (3.34) yields α(xt)‖ϕk(xt)‖2

which is strictly positive unless xt is a critical point of ϕk(x). In this case, the previous

lemma states that the probability of the limit of sequence {xt ∈ Rn, t ∈ N ∪ {0}}, given by

the update (3.10), being a saddle point of ϕk(x) is zero. Thus, by combining lemmas 8 and

9 we can show convergence to the minimum of the navigation function with probability one.

Combining these facts with the result of Theorem 2, convergence to x∗ if f0(x∗) = 0 or to

a point that is arbitrarily close to it if f0(x∗) 6= 0 can be guaranteed with probability one.

We formalize this result in the next Theorem.

Theorem 5. Let F be the free space defined in (2.9) verifying Assumption 1 and let f0 :

X → R be a function satisfying Assumption 2 with minimum at x∗. Consider the artificial

potential ϕk : F → [0, 1] defined in (2.17) and let ĝ(xt, θt) be an unbiased navigable estimate

of ∇ϕk(x) as per Definition 3. Also let (2.18) hold for all i = 1 . . .m. Let {xt, t ≥ 0} be the

sequence generated by the update (3.10) with a step size satisfying Assumption 5. Then, for

every ε > 0, there exists a constant K(ε) such that if k > K(ε), we have that {xt, t ≥ 0} ∈ F
and limt→∞ xt = x̄ a.e., where ‖x̄ − x∗‖ < ε. Furthermore, if f0(x∗) = 0 it holds that

x̄ = x∗.

Proof. From Theorem 2 it follows that for every ε > 0 there exists some K(ε) > 0 such that

for any k > K(ε) the artificial potential ϕk(x) is a navigation function with minimum at x̄

satisfying ‖x̄−x∗‖ < ε if f0(x∗) 6= 0 and x̄ = x∗ if f0(x∗) = 0. The fact that {xt, t ≥ 0} ∈ F
follows from Lemma 7 and the convergence to x̄ is a consequence of lemmas 8 and 9.

The previous theorem states that by following an unbiased estimate of the gradient of

a Rimon-Koditschek navigation function, with probability one, the robot converges to a

neighborhood of the minimum of the objective function. We generalize the previous result

in two forms. In the following section, we consider the case of biased estimates, and in

Section 3.5, we study the case of arbitrary spaces – and suitable navigation functions.
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3.4 Biased Estimator

In this section, we generalize Theorem 5 to the case of biased estimators satisfying assump-

tions 3 and 4. The main difference is that, due to the bias, the estimate ĝ(xt, θt) is not

a descent direction in expectation for the navigation function ϕk(x). However, it can be

shown that it is a descent direction for a different Morse function whose critical points are

close to those of ϕk(x) and have the same index. We formalize this result next.

Lemma 10. Let F be the free space defined in (2.9) verifying Assumption 1 and let f0 :

X → R be a function satisfying Assumption 2 with minimum at x∗. Consider the artificial

potential ϕk : F → [0, 1] defined in (2.17) and let ĝ(x, θ) be a navigable estimate of ∇ϕk(x)

as per Definition 3. Also let (2.18) hold for all i = 1 . . .m. Then, for every δ > 0 there

is a constant K such that if k > K, there exists a twice differentiable Morse function

Vk : F → R+ satisfying:

(i) All critical points x̃c of Vk are such that ‖x̃c − xc‖ < δ, where xc is a critical point of

of ϕk(x)

(ii) ind(xc) = ind(x̃c)

(iii) for every x that is not a critical point of Vk(x)

E
[
ĝ(x, θt)

>∇Vk(x)
∣∣∣Gt] > 0, (3.35)

Proof. See Appendix A.2.2.

In the previous lemma we established the existence of an energy function for which

the estimate of the gradient of the navigation function ĝ(xt, θt) is a descent direction in

expectation. Hence, similarly to Lemma 8 we can show that a sequence generated by a

biased estimate converges to the critical points of the energy function Vk(x) with probability

one. Since the indices of the latter are the same as those of ϕk(x), the convergence is, with

probability one, to the unique minimum of the energy function which is arbitrarily close to

that of ϕk(x). This is the subject of the following theorem.

Theorem 6. Let F be the free space defined in (2.9) verifying Assumption 1 and let f0 :

X → R be a function satisfying Assumption 2 with minimum at x∗. Consider the artificial

potential ϕk : F → [0, 1] defined in (2.17) and let ĝ(x, θ) be a navigable estimate of ∇ϕk(x)

as per Definition 3. Also let (2.18) hold for all i = 1 . . .m. Let {xt, t ≥ 0} be the sequence

generated by the update (3.10) with a step size satisfying Assumption 5. Then for every

ε > 0, there exists a constant K(ε) > 0 such that if k > K(ε), we have that {xt, t ≥ 0} ∈ F
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and that exists x̄ ∈ F satisfying ‖x̄− x∗‖ < ε and

lim
t→∞

xt = x̄ a.e. (3.36)

Proof. Observe that non collision is ensured by virtue of Lemma 7. Notice that Lemma

10 ensures existence of an energy function such that its critical points are arbitrarily close

to those of ϕk(x) and the indices of said critical points are the same for both functions.

Since for k large enough ϕk(x) is a navigation function (cf., Theorem 2), Vk(x) has only one

minimum at x̄ that satisfies ‖x̄− x∗‖ < ε and the other critical points are nondegenerate

saddles (cf., Lemma 10). Hence, lemmas 8 and 9 ensure convergence to x̄ with probability

one.

The above theorem states that under the same conditions on the free space and the

objective function than in the deterministic case, by following the update (3.10) the agent

is able, with probability one, to reach a point arbitrarily close to the minimum of the

objective function f0(x) without running into the free space boundary. The main advantage

as compared to the results presented in Chapter 2 is that it allows the agents to perform an

update using only local information. The mismatch between the real world and the local

estimator, based on a given belief that the agent has, may result in a biased estimator.

Yet, the bias does not affect the qualitative behavior of the agent. Furthermore, instead of

requiring exact information about both the objective function and the obstacles, stochastic

measurements suffice to solve the problem of interest.

A second difference between the results in Theorem 2 – complete and deterministic

information– and Theorems 5 and 6 – local and stochastic information– is in the sense in

which the navigation is almost surely. In the deterministic case, this means that except for

a set of initial configurations of measure zero –the stable manifold of the saddle points of

ϕk(x) – the solutions of the dynamical system ẋ = −∇ϕk(x) converge to the minimum of

the objective function; while in the stochastic case the goal is achieved with probability one

for every initial position.

3.5 Alternative Artificial Potentials

Throughout this chapter, we focused on navigation functions that are of the Rimon-Koditschek

form, however the results here presented can be generalized to any artificial potentials, hence

extending the stochastic navigation framework to more complex spaces. For instance, if one

can construct an unbiased estimate of harmonic navigation functions, then navigating topo-

logically complex spaces [77, 78] becomes possible with noisy information. The following

corollary generalizes this result.
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Corollary 3. Let F be a free space and let ϕ : F → [0, 1] be a navigation function (cf.,

Definition 1) with minimum at the agent’s goal x∗. Let ĝ(xt, θt) be an unbiased estimate

of the gradient of the navigation function satisfying Assumption 3. Then the update rule

(3.10) generates a sequence {xt, t ≥ 0} ∈ F such that limt→∞ xt = x∗.

Proof. The non-collision proof is a direct consequence of 7 and the convergence to the

minimum of the navigation function follows from lemmas 8 and 9. Observe that these do

not depend on the specific form of the free space nor the navigation function selected.

The previous result generalizes Theorem 5 for any free space geometry. This is, by

following the negative direction of an unbiased stochastic gradient of a suitable navigation

function, one can succeed in navigating towards the minimum of the objective function

without running into the free space boundary. If the estimates are biased similar guarantees

could be proved but the form of the assumption about the bias (Assumption 4) should be

adapted to the specific navigation function, since the ones considered here, are highly related

to Rimon-Koditschek potentials. However, with the same assumptions we can extend the

result of Theorem 6 for a different class of artificial potentials, that of logarithmic barriers.

Inspired in the optimization literature we define the following barrier function

φk(x) = f0(x)− 1

k
log(β(x)). (3.37)

The previous potential is not a navigation function since it is not bounded and it is not

defined in the boundary of the free space. However its supremum is at the boundary of the

free space and it is possible to show that all the critical points of the previous equation are

nondegenerate and it has a unique minimum. Differentiate (3.37) to get

∇φk(x) = ∇f0(x)− ∇β(x)

kβ(x)
. (3.38)

Observe that the previous expression is similar to that of the direction of the gradient of

the Rimon-Koditschek artificial potential. In particular, the same fundamental properties

of the critical points hold, i.e., nondegeneracy and presence of a unique minimum follow

from analogous proofs to those in Chapter 2. Since ∇β(x) is not zero in the boundary of

the free space (see proof of Lemma 2) the critical points can be pushed by increasing k

either arbitrarily close to the minimum of f0(x) or arbitrarily close to β(x). In particular,

the first one can be showed to be a unique local minimum and the rest to be saddle points.

Furthermore the eigenvalues of the Hessian of these critical points depend on k with the

same order as in the case of Rimon-Koditschek artificial potentials. Hence, Assumptions 3
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and 4 are appropriate in this case too for the following estimate of the gradient of φk(x)

ĝ(xt, θ) = β̂(xt, θt)∇̂f0(xt, θt)−
∇̂β(xt, θt)

k
. (3.39)

Hence by following the negative direction of the gradient of φk(x) the agent converges to a

point arbitrarily close to the minimum of f0(x). We formally state this result next.

Theorem 7. Let F be the free space defined in (2.9) verifying Assumption 1 and let f0 :

X → R be a function satisfying Assumption 2 with minimum at x∗. Consider the artificial

potential φk : F → R defined in (3.37) and let ĝ(xt, θt), the estimate defined in (3.39) be

navigable as per Definition 3. Also let (2.18) hold for all i = 1 . . .m. Let {xt, t ≥ 0} be the

sequence generated by the update (3.10) with a step size satisfying Assumption 5. Then for

every ε > 0, there exists a constant K(ε) such that if k > K(ε), we have that {xt, t ≥ 0} ∈ F
and

lim
t→∞

xt = x̄ a.e., (3.40)

where x̄ is satisfies ‖x̄− x∗‖ < ε.

Proof. Observe that non-collision is ensured by virtue of Lemma 7. The proof that the

critical points of φk(x) are nondegenerate and that only one of them is a minimum and it

can be pushed arbitrarily close to the minimum of f0(x), is analogous to that of Lemmas

2–6. Hence by virtue of Lemma 10, there exists an energy function such that its critical

points are arbitrarily close to those of φk(x) and the indexes of said critical points are

the same for both functions. Thus Lemma 8 holds for the energy function. The proof is

completed by virtue of Lemma 9 and because all critical points but one are nondegenerate

saddles for large enough k.

The previous Theorem extends the result of the biased estimate of the Rimon-Koditschek

navigation function to a new class of artificial potentials under the same conditions over

the geometry of the free space and the bias. In the next section we study the implications

of Theorems 6 and 7 numerically.

3.6 Numerical Examples

We evaluate the performance of the local stochastic approximation of the gradient of the

Rimon-Koditschek potential in two different scenarios in which condition (2.18) is satisfied.

Each obstacle is estimated as the osculating circle at the closest point of the obstacle from

the agent’s position as in Appendix A.2.1. In sections 3.6.1 and 3.6.2 we consider ellipsoidal

and egg-shaped obstacles respectively. The performance of the local approximation of the
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logarithmic barrier (3.37) is evaluated in Section 3.6.3. In all three cases, the external

boundary of the free space is a spherical shell of center c0 and radius r0.

3.6.1 Elliptical obstacles

In this section we consider m elliptical obstacles in R2. For i = 1 . . .m, let Ai ∈ M2×2 be

symmetric and positive definite matrices, and let µimin > 0 be the minimum eigenvalue of

matrix Ai and define the following obstacle functions

βi(x) = (x− ci)>Ai(x− ci)− µiminr
2
i . (3.41)

where ci ∈ X is the center of the i-th ellipse and ri > 0 is the length of its largest axis.

Each obstacle is then defined as

Oi =
{
x ∈ X

∣∣βi(x) < 0
}
. (3.42)

In these experiments we place the center of each ellipsoid in a different orthant. In particular,

each center is set to be in the position L(±1,±1) and then we add a random variation

drawn uniformly from [−∆,∆]2, where 0 < ∆ < L. The maximum axis of the ellipse – ri–

is drawn uniformly from [r0/10, r0/5] and the matrices Ai for i = 1 . . .m are such that they

are orthogonal and their eigenvalues are random and uniformly selected from the interval

[1, 2]. We verify that the obstacles resulting of the previous process do not intersect. If they

do, we re draw all previous parameters. For the objective function we consider a quadratic

cost given by f0(x) = (x− x∗)>Q(x− x∗), where x∗ is drawn uniformly over [−r0/2, r0/2]2

and we verify that it is in the free space. The matrix Q ∈ M2×2 is a random positive

definite symmetric matrix whose eigenvalues are selected as follows. For each obstacle we

compute the maximum condition number that Q could have in order to satisfy condition

(2.18). Let Ncond be the maximum among these admissible condition numbers. Then,

the eigenvalues of Q are selected randomly from [1, Ncond − 1], hence ensuring that (2.18)

is satisfied. For the estimates of the objective function, its gradient, the distance to the

obstacles, the direction defined by the position of the agent and its projection onto the

obstacles and their curvature we consider independent gaussian additive noise with mean

zero and standard deviation σq. The step size selected for the update (3.10) is of the form

ηt = η0/(1 + ζt) and the initial position is selected randomly over [−r0, r0]2.

For this experiment we set the parameters to be c0 = 0, r0 = 20, L = 6, ∆ = 1,

σf0 = σ∇f0 = 1 and σdi = σRi = σni = di(x)/10. The selection of a variance that depends

on the the distance is done so to ensure that the closer the agent is to the boundary of

the free space the better the estimation of the obstacle is. In particular, at the boundary

we have that σdi = σRi = σni = 0. We set the constant at which the agent is able to
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(a) Trajectories with k = 7

(b) Trajectories with k = 12.

Figure 3.1: The trajectories resulting of the navigation function approach – solid line– and its
stochastic approximation given in (3.10) –stars–succeed in driving the agent to the goal configuration
for five different initial positions as expected in virtue of Theorem 6. We observe that for the same
world (cf., Figures 3.1(a) and 3.1(b)) the larger the order parameter k is, the closer the trajectory
resulting from stochastic approximation is to the trajectory resulting of descending along the gradient
of the navigation function (2.17). 56



Figure 3.2: The trajectories resulting of the navigation function approach with k = 15 – solid line–
and its stochastic approximation given in (3.10) –stars–succeed in driving the agent to the goal
configuration for five different initial positions as expected in virtue of Theorem 6.
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(a) Local estimation of the obstacle with perfect measures.

(b) Stochastic estimation of the obstacle.

Figure 3.3: Estimation of the obstacles by the hallucinated osculating circle for a particular position
in the free space with exact and stochastic information. Obstacles are sensed if di(x) < 7. Noise is
Gaussian, additive, mean zero and with variance σdi

= σRi
= σni

= di(x)/10.
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Figure 3.4: Evolution of the distance to the goal in a world with elliptical obstacles. We set the
order parameter of the navigation function to k = 12, and the step size to satisfy Assumption 5 with
the following parameters η0 = 1× 10−7, ζ = 5× 10−5.
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measure an obstacle [cf., (A.46)] to be c = 7. Finally, the parameters of the step size are

η0 = 5 × 10−2 and ζ = 5 × 10−3 and we run each simulation 100 steps with a normalized

estimate.

In Figure 3.1 we observe the behavior of the system that follows the local and stochastic

update (3.10) – marked with stars – and that of the system following the gradient dynamical

system ẋ = −∇ϕk(x)– solid lines – for five different initial conditions. In Figure 3.1(a) the

order parameter is set to be k = 7 while in 3.1(b) it is set to be 12. In both cases it can

be observed that the local and stochastic update succeeds in generating a sequence that

remains in the free space and that converges to the minimum of the objective function. It is

also observed that the direction in which the agent moves while following the local update

differs from that of the agent following the gradient of the navigation function. This result

is not surprising in virtue of the fact that as discussed in Section 2.2 the model selected

results in a biased estimate of the gradient of the navigation function. However notice

that by increasing k the two trajectories become closer to each other. This effect can be

observed by comparing the trajectories depicted in figures 3.1(a) and 3.1(b) where the order

parameter k is set to be 7 and 12 respectively. This result is expected because the norm

of the bias decreases with 1/k. This is an Assumption in Section 3.2.1 but in Appendix

A.2.1 we show that it is indeed the case for circular estimates of the obstacles. In particular

by selecting k large enough the bias could be reduced arbitrarily. Another effect of having

larger k is that of diminishing the relative weight of the ∇β(x) as compared to ∇f0(x) in

the gradient of the navigation function. Hence in a sense having large k is equivalent to

follow only the direction −∇f0(x) and neglect the obstacles. Thus yielding shorter paths.

Since in the stochastic approximation we only consider nearby obstacles a similar effect is

expected. This is what we observed in Figure 3.1(b).

The effect of the standard deviations of the noise in the estimation of the obstacles

is illustrated in Figure 3.3. In particular, for the initial position of one of the trajectories

depicted in Figure 3.1(a) we observe the estimation of the closest obstacle to that position in

the noiseless case 3.3(a) and the estimate with noise 3.3(b). The fact that even for noiseless

cases the estimation is not perfect is what yields a biased estimate.

In Figure 3.4 we consider the evolution of the distance between the agent and the

destination with k = 12 for the same five initial conditions than in figures 3.1(a) and 3.1(b).

For this simulation, we do not consider a normalized gradient and we take smaller step

sizes. In particular we set η0 = 1×10−7, ζ = 5×10−5. Observe that the speed at which the

agent advances differs considerably depending on its position. The main reason for this to

happen is that the number of obstacles considered for the estimate is not constant and in

depends on the position of the agent. This results in a piece-wise continuous scaling α(x)

with large differences of its value at the points of discontinuity (cf., (3.1)).
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3.6.2 Egg shaped world obstacles

In this section we consider egg shaped obstacles as an example of convex obstacles other

than ellipses. We draw the center of each obstacle, ci, from a uniform distribution over

[−L/2, L/2] × [−L/2, L/2]. The distance between the ”tip” and the ”bottom” of the egg,

ri, is drawn uniformly over [r0/10; r0/5] and with equal probability the egg is horizontal

or vertical. The obstacle being horizontal translates into the fact that the function βi(x)

representing the obstacle takes the following form

βi(x) = ‖x− ci‖4 − 2ri

(
x(1) − c(1)

i

)3
, (3.43)

where the superscript (1) refers to first component of a vector. Likewise, for vertical eggs

the function βi(x) takes the form

βi(x) = ‖x− ci‖4 − 2ri

(
x(2) − x(2)

c

)3
. (3.44)

Notice that the functions βi as defined above are not convex on R2, however since their

Hessians are positive definite outside the obstacles one could define a convex extension of

βi inside the obstacles. Yet, this is not needed because the agent operates in the free space.

In particular, for this experiment we set r0 = 20 and L = 6. The selection of the noises

standard deviations σq and the distance at which the obstacles can be measured are the

same as in Section 3.6.1.

In Figure 3.2 we observe the level sets of the navigation function (2.17) and the tra-

jectories resulting from the stochastic approximation (3.10) –marked with stars– and from

following the negative gradient of the navigation function for k = 15. It can be observed

that the update (3.10) succeeds in driving the agent to the goal configuration given by the

minimum of the objective function f0(x) while remaining in the free space at all times.

3.6.3 Logarithmic barrier

In this section we evaluate the performance of the descent along the direction of the negative

gradient of the logarithmic barrier artificial potential in (3.39). For these experiments the

obstacles and the boundary of the workspace are selected as in Section 3.6.1 with the

following values of the parameters c0 = 0, r0 = 20, L = 6, ∆ = 1, σf0 = σ∇f0 = 1,

σdi = σRi = σni = di(x)/10 and k = 10. In Figure 3.5 we depict the trajectory of an agent

starting at different initial positions. As it can be observed the agent succeeds in reaching

the minimum of the objective function f0(x) while avoiding the obstacles. By comparing

these trajectories to those in figures 3.1(a) and 3.1(b) –coming from Rimon-Koditschek

potentials– we observe that the logarithmic barrier artificial potential results in paths that
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Figure 3.5: Trajectories resulting of following the negative gradient of the logarithmic barrier given
in (3.37) for k = 10 in an elliptical world. The trajectories resulting from the update (3.10) succeed
in driving the agent to the goal configuration for five different initial positions as expected in virtue
of Theorem 7.

pass closer to the obstacles.

3.7 Conclusions

We considered a set with convex holes in which an agent must navigate to the minimum

of a convex function. The objective function and the obstacles are unknown to the agent

and the only information available to him about these is gathered through sensors. Thus,

making the available information local and stochastic. With this information at hand, the

robot is able to construct an estimate of the gradient of a navigation function of the Rimon-

Koditschek form. In the case where the the full gradient of the navigation function can

be constructed without noise it has been shown that; by following said gradient a robot

can converge to the desired goal while avoiding the obstacles present in the workspace as
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long as the following conditions are satisfied. (i) The obstacles are not too flat and the

condition number of the Hessian of the convex potential is not large. (ii) The distance from

the obstacles’ boundary to the minimum of the convex potential is large relative to the size

of the obstacles.

We show that, by following the negative of the estimate of the gradient of the naviga-

tion function and under the same conditions than in the deterministic case – even when the

estimate constructed is biased – the agent succeeds in avoiding the obstacles and in con-

verging to a arbitrarily small neighborhood of the goal with probability one. The origin of

the bias is in the mismatch between the real world and the belief the agent has about it, in

particular navigation is possible as long as the bias is small as compared to the gradient of

the navigation function. We extend the previous result to the case of an artificial potential

based on a logarithmic barrier and to arbitrary geometries of the free space and suitable

navigation functions as long as the estimates are unbiased. Numerical experiments support

the theoretical results.
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Chapter 4

Online Learning of Feasible

Strategies

Define an environment as a set of convex constraint functions that vary arbitrarily over time

and consider a cost function that is also convex and arbitrarily varying. Agents that operate

in this environment intend to select actions that are feasible for all times while minimizing

the cost’s time average. Such action is said optimal and can be computed offline if the cost

and the environment are known a priori. An online policy is one that depends causally

on the cost and the environment. To compare online policies to the optimal offline action

define the fit of a trajectory as a vector that integrates the constraint violations over time

and its regret as the cost difference with the optimal action accumulated over time. Fit

measures the extent to which an online policy succeeds in learning feasible actions while

regret measures its success in learning optimal actions. In this chapter we learn online

policies computed from a saddle point controller which are shown to have fit and regret that

are either bounded or grow at a sublinear rate. These properties provide an indication that

the controller finds trajectories that are feasible and optimal in a relaxed sense. Concepts

are illustrated throughout with the problem of a shepherd that wants to stay close to all

sheep in a herd. Numerical experiments show that the saddle point controller allows the

shepherd to do so.

4.1 Introduction

In this chapter the objective is for an agent to succeed in adapting to a time varying convex

environment defined as a set of convex constraints that an agent must satisfy at all times.

The constraints are unknown a priori, vary arbitrarily in time in a possibly discontinuous

manner, and are observed locally in space and causally in time. The goal of the agent is

to find a feasible strategy that satisfies all of these constraints. This chapter shows that
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an online version of the saddle point algorithm of Arrow and Hurwicz [4] executed by the

agent succeeds in finding such a strategy. If the agent wants to further minimize a convex

cost, we show that the same algorithm succeeds in finding an strategy that is feasible at all

times and optimal on average.

To understand the contribution presented in this chapter it is important to observe that

the navigation problem outlined above can be mathematically formulated as the solution of

a convex program whose solution is progressively more challenging when we progress from

deterministic settings to stochastic and online settings. Indeed, in a deterministic setting

the cost and constraints are fixed. This yields a canonical convex optimization problem that

can be solved with extremum seeking controllers based on gradient descent [3, 43, 63, 123],

primal-dual methods [4, 32, 84, 87, 127], or interior point methods [16, Chapter 11]. In a

stochastic setting cost and constraints vary randomly according to a stationary distribution.

The agent’s goal is then expressed as the selection of an action that minimizes the expected

value of the objective function while satisfying constraints in an average sense [8,9,76]. This

problem is more complicated than its deterministic counterpart but it can be solved using,

e.g., stochastic gradient descent [58,107,111].

Here, we consider online formulations in which cost and constraints can vary arbitrarily,

perhaps strategically, and where the goal is to find an action that is good on average and

that satisfies the constraints at all times – assuming such an action exists, which, when

functions change strategically, restricts adversarial actions. In this case, unconstrained cost

minimization can be formulated in the language of regret [14, 113, 128] whereby agents

operate online by selecting plays that incur a cost selected by nature. The cost functions

are revealed to the agent ex post and used to adapt subsequent plays. The goodness of

these online policies are determined by comparing to the optimal action chosen offline by

a clairvoyant agent that has prescient access to the cost. Regret is defined as the difference

of the accumulated cost attained online and the optimal offline cost. It is a remarkable

fact that an online version of gradient descent is able to find plays whose regret grows at a

sublinear rate when the cost is a convex function [42, 138] – therefore suggesting vanishing

per-play penalties of online plays with respect to the clairvoyant play.

The constrained optimization equivalent of gradient descent is the saddle point method

applied to the determination of a saddle point of the Lagrangian function [4]. This method

interprets each constraint as a separate potential and descends on a linear combination

of their gradients. The coefficients of this linear combination are multipliers that adapt

dynamically so as to push the agent to the optimal solution in the feasible region. Saddle

point algorithms and variations have been widely studied [18, 32, 84, 87, 127] and used in

various domains such as decentralized control [21, 79], power systems [72, 137] and image

processing, see e.g. [17]. Our observation is that since an online version of gradient descent
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succeeds in achieving small regret, it is not unreasonable to expect an online saddle point

method to succeed in finding feasible actions with small regret. Inded in [83] an agent that is

subject to constraints that do not evolve over time is able to find trajectories with sublinear

regret and constraint violation by considering a saddle point algorithm of the augmented

Lagrangian.

The main contribution of this chapter is to prove that the latter holds as well when

constraints evolve over time. We show that an online saddle point algorithm that observes

costs and constraints ex post succeeds in finding policies that are feasible and have small

regret. Central to this development is the definition of a viable environment as one in

which there exist an action that satisfies the time varying constraints at all times and the

introduction of the notion of fit (Section 4.2). The latter is defined as a vector that contains

the time integrals of the constraints evaluated across the trajectory and is the analogous of

regret for the satisfaction of constraints. In the same way in which the accumulated payoff

of the online trajectory is compared with the payoff of the offline trajectory, fit compares

the accumulation of the constraints along the trajectory with the feasibility of an offline

viable strategy. As such, a trajectory can achieve small fit by becoming feasible at all times

or by alternating periods in which the constraints are violated with periods in which the

constraints are satisfied with slack. This notion of fit is appropriate for constraints that

have a cumulative nature. For cases where this is not appropriate we introduce the notion

of saturated fit in which only violations of the constraint are accumulated. A trajectory

with small saturated fit is one in which the constraints are violated by a significant amount

only for a short period of time.

Technical developments begin with the derivation of a projected gradient controller to

limit the growth of regret in an environment without constraints (Section 4.3). The purpose

of this section is to introduce tools and to clarify connections with existing literature in

discrete time [42,138] and continuous time regret minimization [67,116,130]. An important

conclusion here is that regret in continuous time can be bounded by a constant that is

independent of the time horizon, as opposed to the sublinear growth that is observed in

discrete time.

We then move onto the main part of the chapter in which we propose to control fit and

regret growth with the use of an online saddle point controller that moves along a linear

combination of the negative gradients of the instantaneous constraints and the objective

function. The coefficients of this linear combination are adapted dynamically as per the

instantaneous constraint functions (Section 4.4). This online saddle point controller is a

generalization of (offline) saddle point in the same sense that an online gradient controller

generalizes (offline) gradient descent. We show that if there exists an action that satisfies the

environmental constraints at all times, the online saddle point controller achieves bounded
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fit if optimality is not of interest (Theorem 9). When optimality is considered, the controller

achieves bounded regret and a fit that grows sublinearly with the time horizon (Theorem

10). Analogous results are derived for saturated fit. I.e., it is bounded by a constant

when optimality is not of interest and grows sublinearly otherwise (corollaries 5 and 6).

Throughout this chapter we illustrate concepts with the problem of a shepherd that has

to stay close to his herd (Section 4.2.2). A numerical analysis of this problem closes the

chapter (Section 4.5) except for concluding remarks (Section 4.6).

4.2 Viability, feasibility and optimality

We consider a continuous time environment in which an agent selects actions that result in

a time varying set of penalties. Use t to denote time and let X ⊆ Rn be a closed convex

set from which the agent selects action x ∈ X. The penalties incurred at time t for selected

action x are given by the value f(t, x) of the vector function f : R×Rn → Rm. We interpret

the vector penalty function f as a definition of the environment. Our interest is in situations

where the agent is faced with an environment f and must choose an action x ∈ X – or

perhaps a trajectory x(t) – that guarantees nonpositive penalties f(t, x(t)) � 0 for all times

t not exceeding a time horizon T . Since the existence of this trajectory depends on the

specific environment we define a viable environment as one in which it is possible to select

an action with nonpositive penalty for times 0 ≤ t ≤ T as we formally specify next.

Definition 4 (Viable environment). We say that an environment f : R × Rn → Rm

is viable over the time horizon T for an agent that selects actions x ∈ X if there exists a

feasible action x† ∈ X such that

f(t, x†) ≤ 0, for all t ∈ [0, T ]. (4.1)

The set X† := {x† ∈ X : f(t, x†) � 0, for all t ∈ [0, T ]} is termed the feasible set of actions.

Since for a viable environment it is possible to have multiple feasible actions it is desirable

to select one that is optimal with respect to some criterion of interest. Introduce then the

objective function f0 : R×Rn → R, where for a given time t ∈ [0, T ] and action x ∈ X the

agent suffers a loss f0(t, x). The optimal action is defined as the one that minimizes the

accumulated loss
∫ T

0 f0(t, x) dt among all viable actions, i.e.,

x∗ := argmin
x∈X

∫ T

0
f0(t, x) dt (4.2)

s.t. f(t, x) � 0, for all t ∈ [0, T ].

For the definition in (4.2) to be valid the function f0(t, x) has to be integrable with respect
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to t. In subsequent definitions and analyses we also require integrability of the environment

f as well as convexity with respect to x as we formally state next.

AS6. The functions f(t, x) and f0(t, x) are integrable with respect to t in the interval [0, T ].

AS7. The functions f(t, x) and f0(t, x) are convex with respect to x for all times t ∈ [0, T ].

If the environment f(t, x) and functions f0(t, x) are known beforehand, finding the action

in a viable environment that minimizes the total aggregate cost is equivalent to solving the

convex optimization problem in (4.2) for which a number of algorithms are known. Here, we

consider the problem of adapting a strategy x(t) when the functions f(t, x) and f0(t, x) are

arbitrary and revealed causally. I.e., we want to choose the action x(t) using observations

of viability f(t, x) and cost f0(t, x) in the open interval [0, t). This implies that f(t, x(t))

and f0(t, x(t)) are not observed before choosing x(t). The action x(t) is chosen ex ante

and the corresponding viability f(t, x(t)) and cost f0(t, x(t)) are incurred ex post. Further

observe that the constraints and objective functions may change abruptly if the number of

discontinuities in these are finite for finite T . This makes the problem different from time

varying optimization in which the goal is to track the optimal argument of f0(t, x) subject

to the constraint f(t, x) ≤ 0 under the assumption that these functions change continuously

and at a sufficiently small rate [30,31,95,103,134].

4.2.1 Regret and fit

We evaluate the performance of trajectories x(t) through the concepts of regret and fit. To

define regret we compare the accumulated cost
∫ T

0 f0(t, x(t)) dt incurred by x(t) with the

cost incurred by the optimal action x∗ defined in (4.2),

RT :=

∫ T

0
f0(t, x(t)) dt−

∫ T

0
f0(t, x∗) dt. (4.3)

Analogously, we define the fit of the trajectory x(t) as the accumulated penalties f(t, x(t))

incurred for times t ∈ [0, T ],

FT :=

∫ T

0
f(t, x(t)) dt. (4.4)

The regret RT and fit FT can be interpreted as performance losses associated with online

causal operation as opposed to offline clairvoyant operation. If FT is positive in a viable

environment we are in a situation in which, had the environment be known a priori, we

could have selected an action x† with f(t, x†) ≤ 0. The fit measures how far the trajectory

x(t) comes from achieving that goal. As in the case of the fit, if the regret RT is large we

are in a situation in which prior knowledge of environment and cost would had resulted in
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the selection of the action x∗ – and in that sense RT indicates how much we regret not

having had that information available.

Because of the cumulative nature of fit, it is possible to achieve small fit by alternating

between actions for which the constraint functions take positive and negative values. This is

valid when cumulative constraints are an appropriate model, which happens for quantities

that can be stored or preserved in some sense – such as energy budgets enforced through

average power constraints. For situations where this is not appropriate, we define the

saturated fit in which constraint slacks are saturated to a small constant δ. Formally, let

δ > 0 be a positive constant and define the function f̄δ(t, x)) = max {f(t, x),−δ}. Then,

the δ-saturated fit is defined as

F̄T =

∫ T

0
f̄δ(t, x(t)) dt. (4.5)

Since f̄δ(t, x) is the pointwise maximum of two convex functions with respect to the actions,

it is a convex function itself and F̄T is not different than the fit for the environment defined

by f̄δ(t, x). By taking small values of δ we can reduce the negative portion of the fit to be

as small as desired. Observe that it could be desirable to set δ = 0 in order to ensure that

the saturated fit is not decreased when the constraints are satisfied. However, constraint

qualification conditions prevent the use of such δ since there would not exist any feasible

x ∈ X satisfying the constraint f̃(t, x) < 0.

A good learning strategy is one in which x(t) approaches x∗. In that case,the regret

and fit grow for small T but eventually stabilize or, at worst, grow at a sublinear rate.

Considering regret RT and fit FT separately, this observation motivates the definitions of

feasible trajectories strongly feasible trajectories, and strong optimal trajectories that we

formally state next.

Definition 5. Given an environment f : R × Rn → Rm, a cost f0 : R × Rn → R, and a

trajectory x(t) we say that:

Feasibility. The trajectory x(t) is feasible in the environment if the fit FT grows sublinearly

with T . I.e., if there exist a function h(T ) with lim supT→∞ h(T )/T = 0 and a constant

vector C such that for all times T it holds,

FT :=

∫ T

0
f(t, x(t)) dt ≤ Ch(T ). (4.6)

Strong Feasibility. The trajectory x(t) is strongly feasible in the environment if the fit FT
is bounded for all T . I.e., if there exists a constant vector C such that for all times T it
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holds,

FT :=

∫ T

0
f(t, x(t)) dt ≤ C. (4.7)

Strong optimality. The trajectory x(t) is strongly optimal in the environment if the regret

RT is bounded for all T . I.e., if there exists a constant C such that for all times T it holds,

RT :=

∫ T

0
f0(t, x(t)) dt−

∫ T

0
f0(t, x∗) dt ≤ C. (4.8)

Having the regret satisfy RT ≤ C irrespectively of T is an indication that f0(t, x(t)) is

close to f0(t, x∗) so that the integral stops growing. This is not necessarily so because we

can also achieve small regret by having f0(t, x(t)) oscillate above and below f0(t, x∗) so that

positive and negative values of f0(t, x(t))−f0(t, x∗) cancel out. In general, the possibility of

having small regret by a trajectory that does not approach x∗ is a limitation of the concept

of regret. Alternatively, we can think of the optimal offline policy x∗ as fixing a budget for

cost accumulated across time. An optimal online policy meets that budget up to a constant

C – perhaps by overspending at some times and underspending at some other times.

Likewise, when the fit satisfies FT ≤ C irrespectively of T , it suggests that x(t) ap-

proaches the feasible set. This need not be true as it is possible to achieve bounded fit

by having f(t, x(t)) oscillate around 0. Thus, as in the case of regret, we can interpret

strongly feasible trajectories as meeting the accumulated budget
∫ T

0 f(t, x(t)) dt ≤ 0 up

to a constant term C. This is in contrast with feasible actions x† that meet the budget

f(t, x†) ≤ 0 for all times. Feasible trajectories differ from strongly feasible trajectories in

that the fit is allowed to grow at a sublinear rate. This means that feasible trajectories

do not meet the accumulated budget within a constant C but do meet the time averaged

budget (1/T )
∫ T

0 f(t, x(t)) dt ≤ 0 within that constant. The notion of optimality – as op-

posed to strong optimality – could have been defined as a case in which regret is bounded

by a sublinear function of T . This is not necessary here because our results state strong

optimality.

In this chapter we solve three different problems: (i) Finding strongly optimal trajecto-

ries in unconstrained environments, (ii) finding strongly feasible trajectories and (iii) finding

feasible, strongly optimal trajectories. We develop these solutions in sections 4.3, 4.4.1, and

4.4.2, respectively. Before that, we present pertinent remarks and we clarify concepts with

the introduction of an example.

Remark 6 (Not every trajectory is strongly feasible). In definition (4.7) we consider

the integral of a measurable function in a finite interval, hence it is always bounded by a

constant. Yet if the latter depends on the time horizon T , the trajectory is not strongly

feasible, because it is not uniformly bounded for all time horizons T . The same remark is
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valid for the definitions of strongly optimal and feasible trajectories.

Remark 7 (Connection with Stochastic Optimization). One can think about the

online learning framework as a generalization of the stochastic optimization setting (see

e.g. [15, 65, 107]). In the latter, the objective and constraint functions depend on a random

vector θ ∈ Rp. Formally, the cost is a function f0 : Rn × Rp → R and the constraints are

given by a multivalued function f : Rn×Rp → Rm. The constrained stochastic optimization

problem can be then formulated as

x∗ := argmin E [f0(x, θ)]

s.t. E [f(x, θ)] � 0,
(4.9)

where the above expectations are with respect to the random vector θ. When the process that

determines the temporal evolution of the random vector θt is stationary, the expectations

can be replaced by time averages. In that sense problem (4.9) is equivalent to the problem

of generating trajectories that are feasible and optimal in the sense of Definition 5.

Remark 8 (Sleeping Experts). Observe that we are considering situations in which

there exits a fixed action such that it satisfies the constraints for all times t ∈ [0, T ]. An

alternative to this problem is to consider situations in which there is no such action, and

hence the viable set X†t = {x ∈ X : f(t, x) � 0} is time dependent. This is the situation

considered in the sleeping-expert framework [47,48,53,90]. The notions of regret considered

in this framework are such that they take into account explicitly these hard constraints as

opposed with our setting where we accumulate the constraint violation, thus treating them

as soft constraints.

4.2.2 The shepherd problem

Consider a target tracking problem in which an agent – the shepherd – follows a group of

m targets – the sheep. Specifically, let z(t) = [z1(t), z2(t)]> ∈ R2 denote the position of

the shepherd at time t. To model smooth paths for the shepherd introduce a polynomial

parameterization so that each of the position components zk(t) can be written as

zk(t) =
n−1∑
j=0

xkjpj(t), (4.10)

where pj(t) are polynomials that parameterize the space of possible trajectories. The ac-

tion space of the shepherd is then given by the vector that stacks the coefficients of the

parameterization in (4.10), i.e., x = [x10, . . . , x1,n−1, x20, . . . , x2,n−1]> ∈ R2n.

Further define yi(t) = [yi1(t), yi2(t)]> as the position of the i–th sheep at time t for

i = 1, . . . ,m and introduce a maximum allowable distance ri between the shepherd and
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each of the sheep . The goal of the shepherd is to find a path z(t) that is within distance ri

of sheep i for all sheep. This can be captured by defining an m-dimensional environment f

with each component function fi defined as

fi(t, x) = ‖z(t)− yi(t)‖2 − r2
i for all i = 1 . . .m. (4.11)

That the environment defined by (4.11) is viable means that it is possible to select a vector

of coefficients x so that the shepherd’s trajectory given by (4.10) stays close to all sheep

for all times. To the extent that (4.10) is a loose parameterization – we can approximate

arbitrary functions with sufficiently large index n, if the time horizon is fixed and not

allowed to tend to infinity –, this simply means that the sheep are sufficiently close to each

other at all times. E.g., if ri = r for all times, viability is equivalent to having a maximum

separation between sheep smaller than 2r.

As an example of a problem with an optimality criterion say that the first target – the

black sheep – is preferred in that the shepherd wants to stay as close as possible to it. We

can accomplish that by introducing the objective function

f0(t, x) = ‖z(t)− y1(t)‖2. (4.12)

Alternatively, we can require the shepherd to minimize the work required to follow the

sheep. This behavior can be induced by minimizing the integral of the acceleration which

in turn can be accomplished by defining the optimality criterion [cf. (4.2)],

f0(t, x) =
∥∥z̈(t)∥∥ =

∥∥∥∥∥
[ n−1∑
j=0

x1j p̈j(t),

n−1∑
j=0

x2j p̈j(t)

]∥∥∥∥∥. (4.13)

Trajectories x(t) differ from actions in that they are allowed to change over time, i.e., the

constant values xkj in (4.10) are replaced by the time varying values xkj(t). A feasible or

strongly feasible trajectory x(t) means that the shepherd is repositioning to stay close to all

sheep. An optimal trajectory with respect to (4.12) is one in which he does so while staying

as close as possible to the black sheep. An optimal trajectory with respect to (4.13) is one

in which the work required to follow the sheep is minimized. In all three cases we apply the

usual caveat that small fit and regret may be achieved with stretches of underachievement

following stretches of overachievement.

4.3 Unconstrained regret in continuous time.

Before considering the feasibility problem we consider the following unconstrained mini-

mization problem. Given an unconstrained environment f(t, x) ≡ 0 our goal is to generate
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strong optimal trajectories x(t) in the sense of Definition 5, selecting actions from a closed

convex set X, i.e., x(t) ∈ X for all t ∈ [0, T ]. Given the convexity of the objective function

with respect to the action, as per Assumption 7, it is natural to consider a gradient descent

controller. To avoid restricting attention to functions that are differentiable with respect to

x, we work with subgradients. For a convex function g : X → R a subgradient gx satisfies

the inequality

g(y) ≥ g(x) + gx(x)>(y − x) for all y ∈ X. (4.14)

In general, subgradients are defined at all points for all convex functions. At the points

where the function f is differentiable the subgradient and the gradient coincide. In the

case of vector functions f : Rn → Rm we group the subgradients of each component into a

matrix fx(x) ∈ Rn×m defined as

fx(x) =
[
f1,x(x) f2,x(x) · · · fm,x(x)

]
, (4.15)

where fi,x(x) is a subgradient of fi(x). In addition, since the action must always be selected

from the set X we define the controller in a way that the actions are the solution of a

projected dynamical system over the set X. The solution has been studied in [135] and we

define the notion as follow.

Definition 6. Let X be a closed convex set.

Projection of a point. For any z ∈ Rn, there exits a unique element in X, denoted PX(z)

such that

PX(z) = argmin
y∈X

‖y − z‖. (4.16)

Projection of a vector at a point. Let x ∈ X and v a vector, the projection of v over

the set X at the point x is

ΠX(x, v) = lim
δ→0+

(PX(x+ δv)− x) /δ. (4.17)

Projected dynamical system. Given a closed convex set X and a vector field F (t, x)

which takes elements from R×X into Rn the projected differential equation associated with

X and F is defined to be

ẋ(t) = ΠX (x, F (t, x)) . (4.18)

In the above projection if the point x is in the interior of X then the projection is not

different from the original vector field, i.e., ΠX(x, F (t, x)) = F (t, x). On the other hand if

the point x is in the border of X, then the projection is just the component of the vector

field that is tangential to the set X at the point x. Let’s consider for instance the case

73



where the set X is a box in Rn. Let X = [a1, b1]× . . .× [an, bn] where a1 . . . an and b1 . . . bn

are real numbers. Then for each component of the vector field we have that

ΠX (x, F (t, x))i =


0 if xi = ai and F (t, x)i < 0,

0 if xi = bi and F (t, x)i > 0,

F (t, x)i otherwise.

(4.19)

Therefore, the proposed controller takes the form of the following projected dynamical

system:

ẋ = ΠX (x,−Kf0,x(t, x)) , (4.20)

where K > 0 is the gain of the controller. Before stating the first theorem we need a Lemma

concerning the relation between the original vector field and the projected vector field. This

lemma is used in the proofs of theorems 8, 9 and 10.

Lemma 11. Let X be a convex set and let x0, x ∈ X. Then

(x0 − x)>ΠX(x0, v) ≤ (x0 − x)>v. (4.21)

Proof. See Appendix A.3.1.

Let’s define an Energy function Vx̄ : Rn → R as

Vx̄(x) =
1

2
(x− x̄)>(x− x̄). (4.22)

Where x̄ ∈ X ⊂ Rn is an arbitrary fixed action. We are now in conditions to present the

first theorem, which states that the solution of the gradient controller defined in (4.20) is a

strongly optimal trajectory, i.e., with bounded regret for all T .

Theorem 8. Let f0 : R × X → R be cost function satisfying assumptions 1 and 2, with

X ⊆ Rn convex. The solution x(t) of the online projected gradient controller in (4.20) is

strongly optimal in the sense of Definition 5. In particular, the regret RT can be bounded

by

RT ≤
Vx∗ (x(0))

K
, for all T (4.23)

where Vx̄ is the Energy function in (4.22).

Proof. Consider an action trajectory x(t), an arbitrary given action x̄ ∈ X, and the corre-

sponding energy function Vx̄(x(t)) as per (4.22). The time derivative V̇x̄(x(t)) is given by

V̇x̄(x(t)) = (x(t)− x̄)>ẋ(t). (4.24)
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If the trajectory x(t) follows from the online projected gradient dynamical system in (4.20)

we can substitute the trajectory derivative ẋ by the vector field value and reduce (4.24) to

V̇x̄(x(t)) = (x(t)− x̄)>ΠX (x(t),−Kf0,x(t, x(t))) . (4.25)

Use now the result in Lemma 11 with v = −Kf0,x(t, x(t)) to remove the projection operator

from (4.25) and write

V̇x̄(x(t)) ≤ −K(x(t)− x̄)>f0,x(t, x(t)). (4.26)

Using the defining equation of a subgradient (4.14), we can upper bound the inner product

−(x(t)− x̄)>f0,x(t, x(t)) by the difference f0(t, x̄)− f0(t, x(t)) and transform (4.26) into

V̇x̄(x(t)) ≤ K (f0(t, x̄)− f0(t, x(t))) . (4.27)

Rearranging and integrating the above inequality yields∫ T

0
f0(t, x(t)) dt−

∫ T

0
f0(t, x̄) dt ≤ − 1

K

∫ T

0
V̇x̄(x(t)) dt. (4.28)

Since the primitive of V̇x̄(x(t)) is Vx̄(x(t)) we can evaluate the integral on the right hand

side of (4.28) and further use the fact that Vx̄(x) ≥ 0 for all x ∈ Rn to conclude that

−
∫ T

0
V̇x̄(x(t))dt = Vx̄(x(0))− Vx̄(x(T )) ≤ Vx̄ (x(0)) . (4.29)

Combining the bounds in (4.28) and (4.29) we have that∫ T

0
f0(t, x(t)) dt−

∫ T

0
f0(t, x̄) dt ≤ Vx̄(x(0))/K. (4.30)

Since the above inequality holds for an arbitrary point x̄ ∈ Rn it holds for x̄ = x∗ in

particular. When making x̄ = x∗ in (4.30) the left hand side reduces to the regret

RT associated with the trajectory x(t) [cf. (4.3)] and in the right hand side we have

Vx̄(x(0))/K = Vx∗(x(0))/K. Eq. (4.23) follows because (4.30) is true for all times T . This

implies that the trajectory is strongly optimal according to (4.8) in Definition 5.

The strong optimality of the online projected gradient controller in (4.20) that we claim

in Theorem 8 is not a straightforward generalization of the optimality of gradient controllers

in constant convex potentials. The functions f0 are allowed to change arbitrarily over time

and are not observed until after the cost f0(t, x(t)) has been incurred.

Since the initial value of the Energy function Vx∗(x(0)) is the square of the distance
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between x(0) and x∗, the bound on the regret in (4.23) shows that the closer we start to

the optimal point the smaller the accumulated cost is. Likewise, the larger the controller

gain K, the smaller the bound on the regret is. Theoretically, we can make this bound

arbitrarily small. This is not possible in practice because larger K entails trajectories with

larger derivatives which cannot be implemented in systems with physical constraints. In the

example in Section 4.2.2 the derivatives of the state x(t) control the speed and acceleration

of the shepherd. The physical limits of these quantities along with an upper bound on the

cost gradient f0,x(t, x) can be used to estimate the largest allowable gain K.

Another observation regarding the bound on the regret is that it does not depend on

the function that we are minimizing –except for the location of the point x∗. For instance

by scaling a function the bound on the regret is kept constant if the same gain K can be

selected. This is not surprising since a scaling in the function implies a bigger cost but it

also entails a larger action derivative, which allows to track better changes on the function.

However, if a bound on the maximum allowed gain exists then the regret bound cannot be

invariant to scalings.

Remark 9. In discrete time systems where t is a natural variable and the integrals in

(4.3) are replaced by sums, online gradient descent algorithms can be used to reduce regret;

see e.g. [42,138]. The online gradient controller in (4.20) is a direct generalization of online

gradient descent to continuous time. This similarity notwithstanding, the result in Theorem

8 is stronger than the corresponding bound on the regret in discrete time which states a

sublinear growth at a rate not faster than
√
T if the cost function is convex [138], and log T

if the cost function is strictly convex [42]. The key where this difference lies is in the fact

that discrete time algorithms have to ”pay” to switch from the action at time t to the action

at time t + 1. In the proofs of [42, 138] a term related to the norm square of the gradient

is present in the upper bound on the regret while in continuous time this term is absent.

The bound on the norm of the gradient is related to the selecting a different action. As in

the case of fictitious plays that lead to no regret in the continuous time but not in discrete

time (see e.g. [41,130,133]) the bounds on the regret in continuous time are tighter than in

its discrete counterpart for online gradient descent.

4.4 Saddle point algorithm

Given an environment f(t, x) and an objective function f0(t, x) verifying assumptions 6 and

7 we set our attention towards two different problems: design a controller whose solution

is a strongly feasible trajectory and a controller whose solution is a feasible and strongly

optimal trajectory. As already noted, when the environment is known beforehand the

problem of finding such trajectories is a constrained convex optimization problem, which

76



we can solve using the saddle point algorithm of Arrow and Hurwicz [4]. Following this

idea, let λ ∈ Λ = Rm+ , be a multiplier and define the time-varying Lagrangian associated

with the online problem as

L(t, x, λ) = f0(t, x) + λ>f(t, x). (4.31)

Saddle point methods rely on the fact that for a constrained convex optimization problem,

a pair is a primal-dual optimal solution if and only if it is a saddle point of the Lagrangian

associated with the problem; see e.g. [16]. The idea of the algorithm is then to generate

trajectories that descend in the opposite direction of the gradient of the Lagrangian with

respect to x and that ascend in the direction of the gradient with respect to λ. Since

the Lagrangian is differentiable with respect to λ, we denote by Lλ(t, x, λ) = f(t, x) the

derivative of the Lagrangian with respect to λ. On the other hand, since the functions

f0(·, x) and f(·, x) are convex, the Lagrangian is also convex with respect to x. Thus, its

subgradient with respect to x always exist, let us denote it by Lx(t, x, λ). Let K be the

gain of the controller, then following the ideas in [4] we define a controller that descends in

the direction of the subgradient with respect to the action x

ẋ = ΠX (x,−KLx(t, x, λ))

= ΠX (x,−K(f0,x(t, x) + fx(t, x)λ)) , (4.32)

and that ascends in the direction of the subgradient with respect to the multiplier λ

λ̇ = ΠΛ (λ,KLλ(t, x, λ)) = ΠΛ (λ,Kf(t, x)) . (4.33)

The projection over the set X in (4.32) is done to assure that the trajectory is always in the

set of possible actions. The operator ΠΛ(λ, f) is a projected dynamical system in the sense

of Definition 6 over the set Λ. This projection is done to assure that λ(t) ∈ Rm+ for all times

t ∈ [0, T ]. An important observation regarding (4.32) and (4.33) is that the environment is

observed locally in space and causally in time. The values of the environment constraints

and its subgradients are observed at the current trajectory position x(t) and the values

of f(t, x(t)) and fx(t, x(t)) affect the derivatives of x(t) and λ(t) only. Notice that if the

environment function satisfies f(t, x) ≡ 0 we recover the algorithm defined in (4.20) as a

particular case of the saddle point controller.

A block diagram for the controller in (4.32) - (4.33) is shown in Figure 4.1. The controller

operates in an environment to which it inputs at time t an action x(t) that results in a

penalty f(t, x(t)) and cost f0(t, x(t)). The value of these functions and their subgradients

fx(t, x(t)) and f0,x(t, x(t)) are observed and fed to the multiplier and action feedback loops.

77



Gradient descent on actions

Gradient ascent on multipliers

Environment

ΠX

(
x(t),−K [f0,x(t, x(t)) + fx(t, x(t))λ(t)]

)

ΠΛ

(
λ(t),Kf(t, x(t))

)

∫

∫

f(t, x(t)), fx(t, x(t)), f0,x(t, x(t))

ẋ(t)

λ̇(t)

x(t)

λ(t)

Figure 4.1: Block diagram of the saddle point controller. Once that action x(t) is selected at time
t, we measure the corresponding values of f(t, x(t)), fx(t, x(t)) and f0,x(t, x(t)). This information is
fed to the two feedback loops. The action loop defines the descent direction by computing weighted
averages of the subgradients fx(t, x(t)) and f0,x(t, x(t)). The multiplier loop uses f(t, x(t)) to update
the corresponding weights.

The action feedback loop behaves like a weighted gradient descent controller. We move in

the direction given by a linear combination of the the gradient of the objective function

f0,x(t, x(t)) and the constraint subgradients fi,x(t, x(t)) weighted by their corresponding

multipliers λi(t). Intuitively, this pushes x(t) towards satisfying the constraints and to the

minimum of the objective function in the set where constraints are satisfied. However, the

question remains of how much weight to give to each constraint. This is the task of the

multiplier feedback loop. When constraint i is violated we have fi(t, x(t)) > 0. This pushes

the multiplier λi(t) up, thereby increasing the force λi(t)fi,x(t, x(t)) pushing x(t) towards

satisfying the constraint. If the constraint is satisfied, we have fi(t, x(t)) < 0, the multiplier

λi(t) being decreased, and the corresponding force decreasing. The more that constraint i

is violated, the faster we increase the multiplier, and the more we increase the force that

pushes x(t) towards satisfying fi(t, x(t)) < 0. If the constraint is satisfied, the force is

decreased and may eventually vanish altogether if we reach the point of making λi(t) = 0.
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4.4.1 Strongly feasible trajectories

We begin by studying the saddle point controller defined by (4.32) and (4.33) in a problem

in which optimality is not taken into account, i.e., f0(t, x) ≡ 0. In this case the action

descent equation of the controller (4.32) takes the form

ẋ = ΠX (x,−KLx(t, x, λ)) = ΠX (x,−Kfx(t, x)λ) , (4.34)

while the multiplier ascent equation (4.33) remains unchanged. The bounds to be derived

for the fit ensure that the trajectories x(t) are strongly feasible in the sense of Definition

5. To state the result consider an arbitrary fixed action x̄ ∈ X and an arbitrary multiplier

λ̄ ∈ Λ and define the energy function

Vx̄,λ̄(x, λ) =
1

2

(
||x− x̄||2 + ||λ− λ̄||2

)
. (4.35)

We can then bound fit in terms of the initial value Vx̄,λ̄(x(0), λ(0)) of the energy function

for properly chosen x̄ and λ̄ as we formally state next.

Theorem 9. Let f : R × X → Rm, satisfying assumptions 6 and 7, where X ⊆ Rn is

a convex set. If the environment is viable, then the solution x(t) of the dynamical system

defined by (4.34) and (4.33) is strongly feasible for all T > 0. Specifically, the fit is bounded

by

FT,i ≤ min
x†∈X†

1

K
Vx†,ei(x(0), λ(0)), (4.36)

where ei with i = 1 . . .m form the canonical base of Rm.

Proof. Consider action trajectories x(t) and multiplier trajectories λ(t) and the correspond-

ing energy function Vx̄,λ̄(x(t), λ(t)) in (4.35) for arbitrary given action x̄ ∈ X and multiplier

λ̄ ∈ Λ. The derivative V̇x̄,λ̄(x(t), λ(t)) of the energy with respect to time is then given by

V̇x̄,λ̄(x(t), λ(t)) = (x(t)− x̄)>ẋ(t) + (λ(t)− λ̄)>λ̇(t). (4.37)

Substitute the action and multiplier derivatives by their corresponding values given in (4.34)

and (4.33) to reduce (4.37) to

V̇x̄,λ̄(x(t), λ(t)) =(x(t)− x̄)>ΠX (x,−Kfx(t, x(t))λ(t))

+ (λ(t)− λ̄)>ΠΛ (λ,Kf(t, x(t))) . (4.38)
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Then, using the result of Lemma 11 for both X and Λ, the following inequality holds

V̇x̄,λ̄(x(t), λ(t)) ≤ K(x̄− x(t))>fx(t, x(t))λ(t)

+K(λ(t)− λ̄)>f(t, x(t)). (4.39)

Notice that f(t, x)λ(t) is a convex function with respect to the action, therefore we can

upper bound the inner product (x̄ − x(t))>fx(t, x(t))λ(t) by the quantity f(t, x̄)>λ(t) −
f(t, x(t))>λ(t) and transform (4.39) into

V̇x̄,λ̄(x(t), λ(t)) ≤ K (f(t, x̄)− f(t, x(t)))> λ(t)

+K(λ(t)− λ̄)>f(t, x(t)). (4.40)

Further note that in the above equation the second and the third term are opposite. Thus,

it reduces to

V̇x̄,λ̄(x(t), λ(t)) ≤ K
[
λ(t)>f(t, x̄)− λ̄>f(t, x(t))

]
. (4.41)

Observe that the integral of the left hand side of the above equation can be written as∫ T

0
V̇x̄,λ̄(x(t), λ(t))dt = Vx̄,λ̄(x(T ), λ(T ))− Vx̄,λ̄(x(0), λ(0)). (4.42)

Then using the fact that Vx̄,λ̄(x(t)), λ(t)) ≥ 0 for all t, yields

∫ T

0
V̇x̄,λ̄(x(t), λ(t))dt ≥ −Vx̄,λ̄ (x(0), λ(0)) . (4.43)

Then, integrating both sides of (4.42) and using the bound in (4.43), we have that∫ T

0
λ̄>f(t, x(t))− λ(t)>f(t, x̄)dt ≤

Vx†,λ̄(x(0), λ(0))

K
. (4.44)

Since the environment is viable, there exist a fixed action x† such that f(t, x†) � 0 for all

t ≥ 0. Then choosing x̄ = x†, since λ(t) � 0 for all t, we have that

λ(t)>f(t, x†) ≤ 0 ∀t ∈ [0, T ]. (4.45)

Therefore the left hand side of (4.44) can be lower bounded by

λ̄>
∫ T

0
f(t, x(t))dt ≤

Vx†,λ̄(x(0), λ(0))

K
. (4.46)

Choosing λ̄ = ei where ei is the i–th element of the canonical base of Rm, we have that for
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all i = 1 . . .m: ∫ T

0
fi(t, x(t))dt ≤

Vx†,ei(x(0), λ(0))

K
. (4.47)

Notice that since the above inequality holds for any x† ∈ X† it is also true for the particular

x† that minimizes the right hand side. The left hand side of the above inequality is the i–th

component of the fit. Thus, since the m components of the fit of the trajectory generated

by the saddle point algorithm are bounded for all T , the trajectory is strongly feasible with

the specific upper bound stated in (4.36).

Theorem 9 assures that if an environment is viable for an agent that selects actions over

a set X, the solution of the dynamical system given by (4.34) and (4.33) is a trajectory

x(t) that is strongly feasible in the sense of Definition 5. This result is not trivial, since

the function f that defines the environment is observed causally and can change arbitrarily

over time. In particular, the agent could be faced with an adversarial environment that

changes the function f in a way that makes the value of f(t, x(t)) larger. The caveat is that

the choice of the function f must respect the viability condition that there exists a feasible

action x† such that f(t, x†) � 0 for all t ∈ [0, T ]. This restriction still leaves significant

leeway for strategic behavior. E.g., in the shepherd problem of Section 4.2.2 we can allow

for strategic sheep that observe the shepherd’s movement and respond by separating as

much as possible. The strategic action of the sheep are restricted by the condition that the

environment remains viable, which in this case reduces to the not so stringent condition

that the sheep stay in a ball of radius 2r if all ri = r.

Since the initial value of the energy function Vx†,ei(x(0), λ(0)) is the square of the dis-

tance between x(0) and x† added to a term that depends on the distance between the initial

multiplier and ei, the bound on the fit in (4.36) shows that the closer we start to the feasible

set the smaller the accumulated constraint violation becomes. Likewise, the larger the gain

K, the smaller the bound on the fit is. As in section 4.3 we observe that increasing K

can make the bound on the fit arbitrarily small, yet for the same reasons discussed in that

section this can’t be done.

Further notice that for the saddle point controller defined by (4.34) and (4.33) the action

derivatives are proportional not only to the gain K but to the value of the multiplier λ.

Thus, to select gains that are compatible with the system’s physical constraints we need

to determine upper bounds in the multiplier values λ(t). An upper bound follows as a

consequence of Theorem 9 as we state in the following corollary.

Corollary 4. Given the controller defined by (4.34) and (4.33) and assuming the same

hypothesis of Theorem 9, if the set of actions X is bounded in norm by R, then the multipliers
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λ are bounded for all times by

0 ≤ λi(t) ≤
(
4R2 + 1

)
, for all i = 1, . . . ,m. (4.48)

Proof. First of all notice that according to (4.33) a projection over the positive orthant

is performed for the multiplier update. Therefore, for each component of the multiplier

we have that λi(t) ≥ 0 for all t ∈ [0, T ]. On the other hand, since the trajectory of the

multipliers is defined by λ̇(t) = ΠΛ(λ(t),Kf(t, x(t)), while λ(t) > 0 we have that λ̇(t) =

Kf(t, x(t)). Let t0 be the first time instant for which λi(t) > 0 for a given i ∈ {1, 2, . . . ,m},
i.e.,

t0 = inf {t ∈ [0, T ], λi(t) > 0} . (4.49)

In addition, let T ∗0 be the first time instant greater than t0 where λi(t) = 0, if this time is

larger than T we set T ∗0 = T

T ∗0 = max {inf {t ∈ (t0, T ], λi(t) > 0} , T} . (4.50)

Further define ts+1 = inf {t ∈ [T ∗s , T ], λi(t) > 0} , and

T ∗s = max {inf {t ∈ (ts, T ], λi(t) > 0} , T} . (4.51)

From the above definition it holds that in any time in the interval (T ∗s , ts+1], λi(t) = 0. And

therefore in those intervals the multipliers are bounded. In the case where τ ∈ (ts, T
∗
s ]∫ τ

ts

λ̇i(t)dt =

∫ τ

ts

Kfi(t, x(t))dt. (4.52)

Notice that the right hand side of the above equation is, proportional to the i–th component

of the fit restricted to the time interval [t0, τ ]. In Theorem 9 it was proved that the i–th

component of the fit is bounded for all time horizons by Vx†,ei(x(ts), 0)/K. In this particular

case we have that

Vx†,ei(x(ts), 0) =
1

2

(
(x(ts)− x†)2 + (0− ei)2

)
, (4.53)

and since for any x ∈ X we have that ‖x‖ ≤ R, we conclude

Vx†,ei(x(ts), 0) ≤ 1

2

(
(2R)2 + 12

)
. (4.54)

Therefore, for all τ ∈ (tsT
∗
s ] λi(τ) ≤ 1

2

(
4R2 + 12

)
. This completes the proof that the

multipliers are bounded.
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The bound in Corollary 4 ensures that action derivatives ẋ(t) remain bounded if the

subgradients are. This means that action derivatives increase, at most, linearly with K and

is not compounded by an arbitrary increase of the multipliers. Observe as well, tat the

cumulative nature of the fit does not guarantee that the constraint violation is controlled.

This is because time intervals of constraint violations can be compensated by time intervals

where the constraints are negative. To overcome this issue, we next show that the saddle

point controller archives bounded saturated fit for all time horizon.

Corollary 5. Let the hypothesis of Theorem 9 hold. Let δ > 0 and let F̄T be the saturated fit

defined in (4.5). Then, the solution of the dynamical system (4.34) and (4.33) when f(t, x)

is replaced by f̄δ(t, x)) = max {f(t, x),−δ} archives a bounded saturated fit. Furthermore

the bound is given by

F̄T,i ≤ min
x†∈X†

1

K
Vx†,ei(x(0), λ(0)), (4.55)

where ei with i = 1 . . .m form the canonical base of Rm.

Proof. Since f̄δ(t, x) is the pointwise maximum of two convex functions, it is a convex

function itself. As a consequence of Theorem 9 the fit for the environment f̄δ(t, x) satisfies∫ T

0
f̄δ,i(t, x(t)) dt ≤ min

x†∈X†
1

K
Vx†,ei(x(0), λ(0)). (4.56)

The fact that the left hand side of the above equation corresponds to the saturated fit [cf.,

(4.5)] completes the proof.

The above result establishes that a trajectory that follows the saddle point dynamics

for the environment defined by f̄δ(t, x) achieves bounded saturated fit. This means that it

is possible to adapt the controller (4.34) and (4.33), so that the fit is bounded while not

alternating between periods of large under and over satisfaction of the constraints.

4.4.2 Strongly optimal feasible trajectories

This section presents bounds on the growth of the fit and the regret of the trajectories x(t)

that are solutions of the saddle point controller defined by (4.32) and (4.33). These bounds

ensure that the trajectory is feasible and strongly optimal in the sense of Definition 5. To

derive these bounds we need the following assumption regarding the objective function.

AS8. There is a finite constant γ independent of the time horizon T such that for all t in

the interval [0, T ].

γ ≥ f0(t, x∗)−min
x∈X

f0(t, x), (4.57)

where x∗ is the solution of the offline problem (4.2).
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The existence of the bound in (4.57) is a mild requirement. Since the function f0(t, x)

is convex, for any time t it is lower bounded if the action space is bounded, as is the case in

most applications of practical interest. The only restriction imposed is that minx∈X f0(t, x)

does not become progressively smaller with time so that a uniform bound γ holds for all

times t. The bound can still hold if X is not compact as long as the span of the functions

f0(t, x) is not unbounded below. A consequence of Assumption 8 is that the regret cannot

decrease faster than a linear rate as we formally state in the following lemma.

Lemma 12. Let X ⊂ Rn be a convex set. If Assumption 8 holds, then the regret defined in

(4.3) is lower bounded by −γT where γ is the constant defined in (4.57), i.e.,

RT ≥ −γT. (4.58)

Proof. Let x(t) be the action at time t when the agent follows the dynamics defined by

(4.32) and (4.33), because of Assumption 8, we have that

f0(t, x(t))− f0(t, x∗) ≥ −γ, (4.59)

Integrating both sides of the above equation yields∫ T

0
f0(t, x(t))dt−

∫ T

t=0
f0(t, x∗)dt ≥ −γT. (4.60)

Since the left hand side of the above equation is the regret up to time T defined in (4.3),

the proof is completed.

Observe that regret is a quantity that we want to make small and, therefore, having

negative regret is a desirable outcome. The result in Lemma 12 puts a floor on how much

we can succeed in making regret negative. Using the bound in (4.58) and the definition

of the energy function in (4.35) we can formalize bounds on the regret and the fit, for an

action trajectory x(t) that follows the saddle point dynamics in (4.32) and (4.33).

Theorem 10. Let X ⊂ Rn be a compact convex set and let f : R × X → Rm and f0 :

R ×X → R, be functions satisfying assumptions 6, 7 and 8. If the environment is viable,

then the solution of the system defined by (4.32) and (4.33) is a trajectory x(t) that is

feasible and strongly optimal for all time horizons T > 0 if the gain K > 1. In particular,

the fit is bounded by

FT,i ≤ O
(√

γT ,K0
)
, (4.61)

and the regret is bounded by

RT ≤
1

K
Vx∗,0 (x(0), λ(0)) , (4.62)
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where Vx̄,λ̄(x, λ) is the energy function defined in (4.35), x∗ is the solution to the problem

(4.2) and γ is the constant defined in (4.57). The notation O
(
K0
)

refers to a function that

is constant with respect to the gain K.

Proof. Consider action trajectories x(t) and multiplier trajectories λ(t) and the correspond-

ing energy function Vx̄,λ̄(x, λ) in (4.35), for arbitrary given action x̄ ∈ Rn and multiplier

λ̄ ∈ Λ. The derivative V̇x̄,λ̄(x(t), λ(t)) is given by

V̇x̄,λ̄(x(t), λ(t)) = (x(t)− x̄)>ẋ(t) + (λ(t)− λ̄)>λ̇(t). (4.63)

If the trajectories x(t) and λ(t) follow from the saddle point dynamical system defined by

(4.32) and (4.33) respectively we can substitute the action and multiplier derivatives by

their corresponding values and reduce (4.63) to

V̇x̄,λ̄(x(t), λ(t)) = (x(t)− x̄)>ΠX(x,−KLx(t, x(t), λ(t)))

+ (λ(t)− λ̄)>ΠΛ(λ,KLλ(t, x(t), λ(t))). (4.64)

Then, use Lemma 11 for both X and Λ to write

V̇x̄,λ̄(x(t), λ(t)) ≤ −K(x(t)− x̄)>Lx(t, x(t), λ(t)) (4.65)

+K(λ(t)− λ̄)>Lλ(t, x(t), λ(t)).

Since L(t, x(t), λ(t)) is a convex function, (4.14) takes the form

−(x(t)− x̄)>Lx(t, x(t), λ(t)) ≤ L(t, x̄, λ(t))− L(t, x(t), λ(t)). (4.66)

From the linearity of the Lagrangian with respect to λ we have

(λ(t)− λ̄)>Lλ(t, x(t), λ(t)) = L(t, x(t), λ(t))− L(t, x(t), λ̄). (4.67)

Combine expressions (4.66) and (4.67) to reduce (4.65) to

V̇x̄,λ̄(x(t), λ(t)) ≤ K
(
L(t, x̄, λ(t))− L(t, x(t), λ̄)

)
. (4.68)

Substituting the Lagrangians by the expression (4.31)

V̇x̄,λ̄(x(t), λ(t)) ≤ K[f0(t, x̄) + λ>(t)f(t, x̄)

−f0(t, x(t))− λ̄>f(t, x(t))]. (4.69)

Rewriting the above inequality and integrating both sides with respect to the time from
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time t = 0 to t = T , we obtain∫ T

0
f0(t, x(t))− f0(t, x̄) + λ̄>f(t, x(t))− λ(t)>f(t, x̄)dt

≤ − 1

K

∫ T

0
V̇x̄,λ̄(x(t), λ(t))dt. (4.70)

Using the result (4.43) the above equation reduces to∫ T

0
f0(t, x(t))− f0(t, x̄) + λ̄>f(t, x(t))− λ(t)>f(t, x̄)dt

≤ 1

K
Vx̄,λ̄(x(0), λ(0)). (4.71)

Since (4.71) holds for any x̄ ∈ X and any λ̄ ∈ Λ, it holds for x̄ = x∗, λ̄ = 0. Since

λ(t)>f(t, x∗) dt ≤ 0 ∀t ∈ [0, T ] we can lower bound the left hand side of (4.71) to obtain:∫ T

0
f0(t, x(t))− f0(t, x∗)dt ≤ 1

K
Vx∗,0(x(0), λ(0)). (4.72)

Notice that the left hand side of the above equation is the definition of regret given in (4.3).

Thus, we have showed that (4.62) holds and since the right hand side of the above equation

is a constant for all T we proved that the trajectory generated by the saddle point controller

is strongly optimal. It remains to prove that the trajectory generated is feasible. Choosing

x̄ = x∗ in (4.71) and using the result of Lemma 12 yields∫ T

0
λ̄>f(t, x(t))−λ(t)>f(t, x∗) dt

≤ 1

K
Vx∗,λ̄(x(0), λ(0)) + γT. (4.73)

Since λ(t)>f(t, x∗) dt ≤ 0 ∀t ∈ [0, T ] the left hand side of the above equation is lower

bounded by λ̄>
∫ T

0 f(t, x(t)), yielding

λ̄>
∫ T

0
f(t, x(t))dt ≤

Vx∗,λ̄(x(0), λ(0))

K
+ γT. (4.74)

Now let’s choose λ̄ = [FT ]+ =
[∫ T

0 f(t, x(t)) dt
]+

and define the following set of indices

I = {i = 1 . . .m|
∫ T

0
fi(t, x(t)) dt ≥ 0)}. (4.75)

Notice that if i 6∈ I, then λ̄i
∫ T

0 fi(t, x(t)) dt = 0. On the other hand, if i ∈ I, λ̄i
∫ T

0 fi(t, x(t)) dt =
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(∫ T
0 fi(t, x(t)) dt

)2
≥ 0. Thus,

λ̄>
∫ T

0
f(t, x(t))dt =

∥∥[FT ]+
∥∥2
. (4.76)

Write then inequality (4.74) for the particular choice of λ̄ as

∥∥[FT ]+
∥∥2 ≤ 1

K
Vx∗,[FT ]+(x(0), λ(0)) + γT. (4.77)

Use the definition of the energy function Vx̄,λ̄ (x, λ) given in (4.35) to write the above

inequality as

∥∥[FT ]+
∥∥2 ≤ 1

K

(
‖x(0)− x∗‖2 +

∥∥[FT ]+ − λ(0)
∥∥2
)

+ γT. (4.78)

Expand the second square in the right hand side of the above expression and re arrange

terms to write

∥∥[FT ]+
∥∥2

+ λ(0)> [FT ]+
2

K − 1
≤ 1

K − 1

(
‖x(0)− x∗‖2 + ‖λ(0)‖2

)
+ γT

K

K − 1
. (4.79)

Adding in both sides of the above inequality ‖λ(0)‖2
(

1
K−1

)2
, then factorizing the left hand

side the above inequality yields∥∥∥∥[FT ]+ + λ(0)
1

K − 1

∥∥∥∥2

≤ 1

K − 1
‖x(0)− x∗‖2+γT

K

K − 1
+
‖λ(0)‖2

K − 1

(
1 +

1

K − 1

)
. (4.80)

Since the term λ(0)/ (K − 1) is constant with respect to T it is the case that the norm of

[FT ]+ is bounded by a function that grows like
√
T . On the other hand it also holds that

‖ [FT ]+ ‖ is bounded by a constant function of the gain K. These observations lead to the

conclusion that

‖ [FT ]+ ‖ ≤ O
(√

γT ,K0
)
. (4.81)

The above inequality implies that for any i ∈ I it is the case that FT,i ≤ O
(√
γT ,K0

)
.

If i 6∈ I it means that FT,i < 0 and it trivially satisfies (4.61). Which proves that the

trajectories that are solution of the saddle point controller defined by (4.32) and (4.33) are

feasible since they are bounded by a sublinear function of the time horizon for all T .

Theorem 10 assures that if the environment is viable for an agent selecting actions from

a bounded set X, the solution of the saddle point dynamics defined in (4.32)-(4.33) is a

trajectory that is feasible and strongly optimal. The bounds on the fit in theorems 9 and

10 prove a trade off between optimality and feasibility. If optimality of the trajectory is
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not of interest it is possible to get strongly feasible trajectories with fit that is bounded

by a constant independent of the time horizon T (cf. Theorem 9). When an optimality

criterion is added to the problem, its satisfaction may come at the cost of a fit that may

increase as
√
T . An important consequence of this difference is that even if we could set the

gain K to be arbitrarily large, the bound on the fit cannot be made arbitrarily small. This

bound would still grow as
√
γT . The result in Theorem 10 also necessitates Assumption 8

as opposed to Theorem 9.

As in the cases of theorems 8 and 9 it is possible to have the environment and objective

function selected strategically. Further note that, again, the initial value of the energy

function used to bound regret is related with the square of the distance between the initial

action and the optimal offline solution of problem (4.2). It also follows from the proof that

this distance is related to the bound on the fit. Thus, the closer we start from this action

the tighter the bounds will be. We next show that similar results holds for the saddle point

dynamics if we consider the notion of saturated fit in lieu of fit.

Corollary 6. Let the hypothesis of Theorem 10 hold. Let δ > 0 and let F̄T be the saturated

fit defined in (4.5). Then, the solution of the dynamical system (4.32) and (4.33), when

f(t, x) is replaced by f̄δ(t, x)) = max {f(t, x),−δ} achieves a regret satisfying (4.62) and

saturated fit that is bounded by

F̄T,i ≤ O
(√

KT,K0
)
. (4.82)

Proof. Same as Corollary 5.

The above result establishes that a trajectory that follows the saddle point dynamics

for the environment defined by f̄δ(t, x) achieves bounded saturated fit. This means that

it is possible to adapt the controller (4.32) and (4.33), so that the growth of the fit is

controlled while not alternating between periods of large under and over satisfaction of the

constraints. In the next section we evaluate the performance of the saddle point controller,

after a pertinent remark on the selection of the gain.

Remark 10 (Gain depending on the Time Horizon). If it were possible to select

the gain as a function of the time horizon T , fit could be bounded by a constant that does

not grow with T . Take (4.74) and choose λ̄ = eiT , where ei is the i-th component of the

canonical base of Rm we have that

T

∫ T

0
fi(t, x(t))dt ≤

Vx∗,T ei(x(0), λ(0))

K
+KT. (4.83)

With this selection of λ̄ the function Vx∗,T ei (x(0), λ(0))) grows like T 2. Dividing both sides
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of the above equation by T we have that the i-th component of the fit is bounded by

FT,i ≤
O(T )

K
+K. (4.84)

If the gain is set to have order Ω(T ), the right hand side of (4.84) becomes of order O(T 0).

This means that fit can be bounded by a constant that does not depend on T .

4.5 Numerical experiments

We evaluate performance of the saddle point algorithm defined by (4.32)-(4.33) in the

solution of the shepherd problem introduced in Section 4.2.2. We determine sheep paths

using a perturbed polynomial characterization akin to the one in (4.10). Specifically, letting

pj(t) be elements of a polynomial basis, the path yi(t) = [yi,1(t), yi,2(t)]> of the i–th sheep

is given by

yi,k(t) =

ni−1∑
j=0

yi,k,jpj(t) + wi,k(t), (4.85)

where k = 1, 2 denotes different path components, ni the dimension of the base that param-

eterizes the path followed by sheep i, and yi,k,j represent the corresponding ni coefficients.

The noise terms wi,k(t) are Gaussian white with zero mean, standard deviation σ and

independent across components and sheep. Their purpose is to obtain more erratic paths.

To determine yi,k,j we make wi,k(t) = 0 in (4.85) and require all sheep to start at

yi(0) = [0, 0]> and finish at yi(T ) = [1, 1]>. A total of L random points {ỹl}Ll=1 are then

drawn independently and uniformly at random in the unit box [0, 1]2. Sheep i = 1 is

required to pass through points ỹl at times lT/(L+ 1), i.e., y1(lT/(L+ 1)) = ỹl. For each of

the other sheep i 6= 1 we draw L random offsets {∆ỹi,l}Ll=1 uniformly at random from the

box [−∆,∆]2 and require the i–th sheep path to satisfy yi(lT/(L+ 1)) = ỹl + ∆ỹi,l. Paths

yi(t) are then chosen as those that minimize the path integral of the acceleration squared

subject to the constraints of each path

y∗i = argmin

∫ T

0
‖ÿi(t)‖2dt,

s.t. yi(0) = [0, 0]>, yi(T ) = [1, 1]>,

yi(lT/(L+ 1)) = ỹl + ∆ỹi,l, (4.86)

where, by construction ∆ỹ1,l = 0. The paths in (4.86) can be computed as solutions of a

quadratic program [85]. Let y∗i (t) be the trajectory given by (4.85) when we set yi,k,j = y∗i,k,j .

We obtain the paths yi,k(t) by adding wi,k(t) to y∗i (t).

In subsequent numerical experiments we consider m = 5 sheep, a time horizon T = 1,
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and set the proximity constraint in (4.11) to ri = 0.3. We use the polynomial basis pj(t) = tj

in both, (4.10) and (4.85). The number of basis elements in both cases is set to n = ni = 30.

To generate sheep paths we consider a total of L = 3 randomly chosen intermediate points,

set the variation parameter to ∆ = 0.1, and the perturbation standard deviation to σ = 0.1.

These problem parameters are such that the environment is most likely viable in the sense

of Definition 4. We check that this is true by solving the offline feasibility problem. If the

environment is not viable a new one is drawn before proceeding to the implementation of

(4.32)-(4.33).

We emphasize that while the path of the sheep is known to us, the information is not

used by the controller. The latter is only fed information of the position of the sheep at the

current time, which it uses to evaluate the environment functions fi(t, x), their gradients

fix(t, x) and the gradient of f0(t, x). In this example we do not assume any constraints on

the maximum speed that the agent can achieve, therefore the gain K in (4.32)-(4.33) can

be set to have any value.

4.5.1 Strongly feasible trajectories

We consider a problem without optimality criterion in which case (4.32)-(4.33) simplifies to

(4.34)-(4.33) and the strong feasibility result in Theorem 9 applies. The system’s behavior

is illustrated in Figure 4.2 when the gain is set to K = 50. In this problem the average and

maximal speed of the sheep is 5.1km/h and 14.8km/h respectively while for the shepherd

these are 6.1km/h and 18.3km/h for the selected gain. This speeds are in he range of

reasonable velocities for this particular problem. A qualitative examination of the sheep and

shepherd paths shows that the shepherd succeeds in following the herd. A more quantitative

evaluation is presented in Figure 4.3 where we plot the instantaneous constraint violation

fi(t, x(t)) with respect to each sheep for the trajectories x(t). Observe the oscillatory

behavior that has the constraint violations fi(t, x(t)) hovering at around fi(t, x(t)) = 0.

When the constraints are violated, i.e., when fi(t, x(t)) > 0, the saddle point controller

drives the shepherd towards a position that makes him stay within ri of all sheep. When

a constraint is satisfied we have fi(t, x(t)) < 0. This drives the multiplier λi(t) towards

0 and removes the force that pushes the shepherd towards the sheep (cf,. Figure 4.3).

The absence of this force makes the constraint violation grow and eventually surpass the

maximum tolerance fi(t, x(t)) = 0. At this point the multipliers start to grow and, as a

consequence, to push the shepherd back towards proximity with the sheep.

The behavior observed in Figure 4.3 does not contradict the result in Theorem 9 which

gives us a guarantee on fit, not on instantaneous constraint violations. The components

of the fit are shown in Figure 4.4(a) where we see that they are indeed bounded. Thus,

the trajectory is feasible in the sense of Definition 5, even if the instantaneous problem’s
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Figure 4.2: Path of the sheep and the shepherd for the feasibility-only problem (Section 4.5.1) when
the gain of the saddle point controller is set to be K = 50. The shepherd succeed in following the
herd since its path – in red – is close to the path of all sheep.

constraints are being violated at specific time instances. Further note that the fit is not

only bounded but actually becomes negative. This is a consequence of the relatively large

gain K = 50 which helps the shepherd to respond quickly to the sheep movements. The fit

for a second experiment in which the gain is reduced to K = 5 is shown in Figure 4.4(b). In

this case the fit stabilizes at a positive value. This behavior is expected because reducing

K decreases the speed with which the shepherd can adapt to changes in the sheep paths.

More to the point, the bound on the fit in Theorem 9 is inversely proportional to the gain

K. The paths and instantaneous constraints violations for K = 5 are not shown but they

are qualitatively similar to the ones shown for K = 50 in figures 4.2 and 4.3.

4.5.2 Preferred sheep problem

Besides satisfying the constraints in (4.11), the shepherd wishes to follow the first (black)

sheep as close as possible. This translates into the optimality criterion (4.12). Since the

sheep trajectories are viable the hypotheses of Theorem 10 hold. Thus, for a shepherd

following the dynamics (4.32) and (4.33), the resulting trajectory is feasible and strongly

optimal.

Given that the trajectory is guaranteed to be feasible, we expect to have the fit bounded

91



Time (h)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
on

st
ra

in
t
V

io
la

ti
on

(k
m

2 )

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Sheep 1
Sheep 2
Sheep 3
Sheep 4
Sheep 5

(a) Instantaneous constraint value.
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(b) Temporal evolution of the multipliers.

Figure 4.3: Relationship between the instantaneous value of the constraints and their corresponding
multipliers for the feasibility-only problem (Section 4.5.1). At the times in which the value of a
constraint is positive, its corresponding multiplier increases. When the value of the multipliers is
large enough a decrease of the value of the constraint function is observed. Once the constraint
function is negative the corresponding multiplier decreases until it reaches zero.

92



Time (h)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
it

(k
m

2 h
)

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

Sheep 1
Sheep 2
Sheep 3
Sheep 4
Sheep 5

(a) Experiment with gain K = 50.
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(b) Experiment with gain K = 5.

Figure 4.4: Fit FT for two different controller gains in the feasibility-only problem (Section 4.5.1).
Fit is bounded in both cases as predicted by Theorem 9. As is also predicted by Theorem 9, the
larger the value of the gain K the smaller the bound on the fit of the shepherd’s trajectory.
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by a sublinear function of T . This does happen, as can be seen in the fit trajectories

illustrated in Figure 4.5 where a gain K = 50 is used. In fact, the fit does not grow

and is bounded by a constant for all time horizons T . The trajectory is therefore not

only feasible but strongly feasible. This does not contradict Theorem 10 because strong

feasibility implies feasibility. The reason why it’s reasonable to see bounded fit here is that

the objective function pushing the shepherd closer to the sheep is, in a sense, redundant

with the constraints that push the shepherd to stay closer to all sheep. This redundancy

can be also observed in the fact that the fit in this problem (cf., Figure 4.5) is smaller than

the fit in the problem of Section 4.5.1 (cf., Figure 4.4(a)). To explain why this may happen,

focus on the value of the multipliers in Figure 4.3(b) between, e.g., times 0.07h < t < 0.21h.

During this time the multipliers are equal to zero because all constraints are satisfied. As

a consequence, the Lagrangian subgradient with respect to the action is identically zero in

the time interval. In turn, this implies that the action is constant and no effort is made to

reduce the value of the constraints. If the optimality criterion was present, the shepherd

would be pushed towards the black sheep and fit would be further reduced.

The regret in this experiment when K = 50 is shown in Figure 4.6. Since the trajectory

is strongly optimal as per Theorem 10, we expect regret to be bounded. This is the case in

Figure 4.6 The path of the shepherd is not shown for this experiment as it is qualitatively

analogous to the one in Figure 4.2 for the feasibility-only problem considered in Section

4.5.1.

4.5.3 Minimum acceleration problem

We consider, an environment defined by the distances between the shepherd and the sheep

given by (4.11), with the minimum acceleration objective defined in (4.13). Since the

construction of the target trajectories gives a viable environment we satisfy, again, the

hypotheses of Theorem 10. Hence, for a shepherd following the dynamics given by (4.32)

and (4.33), the action trajectory is feasible and strongly optimal. In this section the gain

of the controller is set to K = 50.

A feasible trajectory implies that the fit must be bounded by a function that grows

sublinearly with the time horizon T . Notice that this is the case in Figure 4.8. Periods of

growth of the fit are observed, yet the presence of inflection points is an evidence of the

growth being controlled. The fit in this problem is larger than the one in problem 4.5.2

(cf., figures 4.5 and 4.8). This result is predictable since the constraints and the objective

function push the action in different directions. For instance, suppose that all constraints

are satisfied and that the Lagrange multipliers are zero. Then, the subgradient of the

Lagrangian is equal to the subgradient of the objective function. Hence the action will be

modified trying to minimize the acceleration without taking the constraints (distance with
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Figure 4.5: Fit FT for the preferred sheep problem (Section 4.5.2) when the gain of the saddle point
controller is set to be K = 50. As predicted by Theorem 10 the trajectory is feasible since the fit
is bounded, and, in fact, appears to be strongly feasible. Since the subgradient of the objective
function is the same as the subgradient of the first constrain the fit is smaller than in the pure
feasibility problem (cf., Figure 4.4).

the sheep) into account. Hence, pushing the action to the boundary of the feasible set. In

this problem, this translates into the fact that the shepherd does not follow the sheep as

closely as in the problems in sections 4.5.1 and 4.5.2 (cf., Figure 4.7).

Since the trajectory is strongly optimal, we should observe a regret bounded by a con-

stant. This is the case in Figure 4.9, where in fact we observe negative regret for some

time intervals. Negative regret implies that the trajectory of the shepherd is incurring a

total cost that is smaller than the one associated with the optimal solution. Notice that

while the optimal fixed action minimizes the total cost as defined in (4.2) it does not mini-

mize the objective at all times. Thus, by selecting different actions the shepherd can suffer

smaller instantaneous losses than the ones associated with the optimal fixed action. If this

is the case, regret – which is the integral of the difference between these two losses – can be

negative.
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Figure 4.6: Regret RT for the preferred sheep problem (Section 4.5.2) when the gain of the saddle
point controller is set to be K = 50. The trajectory is strongly optimal, as predicted by Theorem
10, since the regret is bounded by a constant. The initial increment in the regret is due to the fact
that the shepherd starts away from the first sheep while in the optimal offline trajectory would start
close to it.
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Figure 4.7: Path of the sheep and the shepherd for the minimum acceleration problem (Section
4.5.3) when the gain of the saddle point controller is set to be K = 50. Observe that the shepherd
path – in red – is not as close to the path of the sheep as in Figure 4.2. This is reasonable because
the objective function and the constraints push the shepherd in different directions.

97



Time (h)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
it

(k
m

2 h
)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Sheep 1
Sheep 2
Sheep 3
Sheep 4
Sheep 5

Figure 4.8: Fit FT for the minimum acceleration problem (Section 4.5.3) when the gain of the saddle
point controller is set to K = 50. Since the fit is bounded, the trajectory is feasible in accordance
with Theorem 10. Since the gradient of the objective function and the gradient of the feasibility
constraints tend to point in different directions, the fit is larger than in the preferred sheep problem
(cf., Figure 4.5).
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Figure 4.9: Regret RT for the minimum acceleration problem (Section 4.5.3) when the gain of the
saddle point controller is set to be K = 50. The trajectory is strongly optimal as predicted by
Theorem 10. Observe that regret is negative due to the fact that the agent is allowed to select
different actions at different times as opposed to the clairvoyant player that is allowed to select a
fixed action.
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Figure 4.10: Path of the sheep and the shepherd for preferred sheep problem when saturated fit
is considered (Section 4.5.4) and the gain of the saddle point controller is set to be K = 50. The
shepherd succeed in following the herd since its path – in red – is close to the path of all sheep.

4.5.4 Saturated Fit

We apply the modified saddle point algorithm in the setting of Section 4.5.2 so to consider

the saturated fit [cf., (4.5)] in lieu of the fit. Since the construction of the target trajectories

gives a viable environment the hypotheses of Corollary 6 are satisfied. Hence for a shepherd

following the dynamics given by (4.32) and (4.33), the trajectories are such that have

saturated fit bounded by a function that grows sub linearly and bounded regret. For the

simulation in this section the gain of the controller is set to K = 50. Observe that the

shepherd succeeds in following the herd, since his path remains close to the sheep (cf., Figure

4.10). As predicted by the Corollary 6 the fit of the trajectory is bounded by a function

that grows sub linearly and the regret is bounded by a constant as it can be observed in

figures 4.11 and 4.12 respectively. Further notice that the regret in this scenario is similar

to the regret of the trajectory in the preferred sheep problem (cf., Section 4.5.2).

4.6 Conclusion

We considered a continuous time environment in which an agent must select actions to

satisfy a set of constraints that are time varying and unknown a priori. We defined a viable
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Figure 4.11: Saturated fit Fsat
T for the preferred sheep problem (Section 4.5.4) when the gain of the

saddle point controller is set to K = 50. Since the saturated fit grows sublinearly in accordance with
Corollary 6, the trajectory is feasible.
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Figure 4.12: Regret RT for the preferred sheep problem when saturated fit is considered (Section
4.5.4)and the gain of the saddle point controller is set to be K = 50. The regret is bounded as
predicted by Corollary 6 and therefore the trajectory is strongly optimal. Notice that regret in this
case is identical to regret in the preferred sheep problem when regular fit is considered (cf., Figure
4.6).
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environment as one in which there is a fixed action that satisfies the constraints at all

times. We defined the fit as the cumulated constraint violation and the notions of feasible

and strongly feasible trajectories. Feasible trajectories are such that the fit is bounded by

a constant independent of the time horizon, and strongly feasible trajectories are such that

the fit is bounded by a sublinear function of the time horizon. An objective function was

considered to select a strategy that meets an optimality criterion and we defined regret in

continuous time as the difference between the cumulative costs of the agent and the best

clairvoyant agent. We then defined strongly optimal trajectories as those for which the

regret is bounded by a constant that is independent of the time horizon.

We proposed an online version of the saddle point controller of Arrow-Hurwicz to gen-

erate trajectories with small fit and regret. We showed that for any viable environment

the trajectories that follow the dynamics of this controller are: (i) Strongly feasible if no

optimality criterion is considered. (ii) Feasible and strongly optimal when an optimality

criterion is considered. Numerical experiments on a shepherd that tries to follow a herd of

sheep support these theoretical results. Algorithms inspired in the online saddle point have

extended the applicability of such concepts to distributed settings [19,20,70].
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Chapter 5

Lagrange Multipliers as price

interfaces

Define an environment as a set of convex constraint functions and a cost function that is

also convex. An agent operating in such environment intend to select optimal actions that

are feasible. In cases where the problem is feasible, such action can be found via the Arrow

Hurwicz algorithm, that consists in finding the saddle point of the Lagrangian associated to

the optimization problem. This controller and its variations – stochastic models or viability

(Chapter 4) operate by computing the gradient of all the constraints and updating the

action along the negative of a weighted combination of these gradients. The coefficients of

this linear combination are increased when the constraints are violated and decreased when

they are satisfied. If a constraint is far from being satisfied it means that its satisfaction

is relatively difficult and the corresponding multiplier will be large. In that sense, weights

can be thought of as prices for satisfying a given constraint. In this chapter, we consider

the situation where the optimization problem is not feasible and hence, the multipliers for

such algorithm would diverge. To overcome this limitation, we modify the saddle point

algorithm by introducing a slack variable that is increased when the constraints are being

violated and reduced if the slack grows too much. We show that this modification converges

to a point for which the limit of the slack gives us a measure of the relative hardness of

satisfying each constraint.

5.1 Introduction

As we discussed in the previous chapter, saddle point algorithms [4] and their stochastic

versions [65] allows us to solve convex constrained optimization problems in cases where

the agent can measure the constraints and the objective functions exactly or when it there

is a probabilistic model for such functions. The main contribution of Chapter 4 is to show
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that an online version of such algorithm succeeds in doing the same in settings where the

only information available to the agent is that there exists an action for which the problem

is solvable. In this chapter, we consider the situation in which the latter information is not

available to the agent and it is his task to identify whether the problem is feasible or not. In

cases where it is not the case, we would like to identify which of the constraints are harder

to satisfy so that the agent can remove it and fall back into a laxer notion of feasibility.

In all three cases, the algorithms are such that they compute gradients for all of them.

The coefficients of this linear combination are adapted according to how far from being

satisfied the respective constraint is. In that sense, the weights can be thought of as prices.

If a constraint is far from being satisfied it means that its satisfaction is relatively difficult

and that a large coefficient, i.e., a large price, is justified in the corresponding element of

the linear combination. For instance, let us consider the surveillance problem in which we

are interested in tracking several obstacles. Suppose that there is no way of being close

to all of the targets, then at least one of the multipliers will increase for all times. The

logical reasoning part of the system can use this information to decide a different policy, for

instance it could change the problem of being at a given distance of all the targets for a new

problem stated as being at a given distance of the target whose multipliers are bounded and

adding an optimality criteria given by being as close as possible to the remaining targets.

The problem of deciding the policy that must be accomplished is the task of the logical

reasoning part of the system, and as discussed the information arising from the low-level

control is a fundamental piece of information to effectively chose the strategy to follow.

In particular, we propose a modification to the saddle point algorithm, where we in-

troduce a slack for every constraint. The slack is updated in the following way; they are

increased when the multipliers are positive, i.e., when constraints are violated and they are

decreased if the slack increases much (Section 5.2) The algorithm is such that it converges to

the primal-dual optimal solution for a relaxed problem, this slack is such that proportional

to the gradient of the optimal cost with respect to the slack. Larger slacks mean then, that

if we try to reduce the slack, the cost in which we incur is large and hence it is a measure of

the difficulty in satisfying such constraints (Section 5.3). In Section 5.4 we instead of having

deterministic objective functions and constraints a stochastic model is available and we are

interested in solving the problem in expectation. The solution proposed in Section 5.5 is

a stochastic approximation of the deterministic case and the same convergence guarantees

can be provided with probability one.
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5.2 Problem Formulation

Let f0 : Rn → R and f : Rn → Rm and let us define the following optimization problem.

p∗ := min
x∈Rn

f0(x)

s.t. f(x) � 0.
(5.1)

The objective of this work is to determine whether the previous problem is feasible or not,

i.e., if there exists x† ∈ Rn such that f(x†) � 0. In cases where the latter does not hold we

would like to solve a relaxed version of the problem, where we can allow for some constraint

violation. But most importantly, we want to identify which of the constraints is the hardest

to satisfy, so the agent can decide which constraints should be removed from the problem

and fall back into a laxer notion of feasibility. A possibility to understand the relative

difficulty of satisfying different constraints is trhough Duality Theory. Each dual variable

can be interpreted as “cost” or “price” associated to satisfying a given constraint and hence,

the larger the value of the dual variable associated to a constraint, the harder it is to satisfy

it. To formalize these ideas, introduce the following slack variable s ∈ Rm+ and consider the

following relaxation of the problem (5.1)

p∗(s) := min
x∈Rn

f0(x)

s.t. f0(x)− s � 0,
(5.2)

and its associated Lagrangian

L(x,λ, s) := f0(x) + λ> (f(x)− s) , (5.3)

where λ ∈ Rm+ . Likewise, let us define the dual function g(λ, s)

g(λ, s) := min
x∈Rn

L(x,λ, s). (5.4)

The dual function is a lower bound for the primal function [16, Section 5.1.3], this is, for

all λ and s, we have that

g(λ, s) ≤ p∗(s). (5.5)

The dual problem is then defined as the best lower bound for the previous problem

d∗(s) := max
λ∈Rm+

g(λ, s). (5.6)
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Notice that for s = 0 we recover the original primal problem (5.1). Duality Theory can allow

us to establish whether a problem is feasible or not by looking at the dual problem. Indeed,

if the the dual problem is unbounded above, i.e., d∗ =∞ it implies that p∗(s) =∞, hence

the primal problem is infeasible. Because the dual function is concave – it is the point-wise

minimum of linear functions– when the dual problem is unbounded it means that the dual

solution λ∗(s)

λ∗(s) := argmax
λRm+

g(λ, s). (5.7)

is also unbounded. The converse holds when strong duality does, i.e., when d∗(s) = p∗(s).

Conditions for strong duality to hold are that f0(x) and f(x) are convex functions and

that there exists a strictly feasible point (see e.g., [16, Section 5.3.2]). We formalize this

assumptions next for future reference.

AS9. We assume f : Rn → Rm is convex and f0 : Rn → R is µ-strongly convex.

AS10. There exists x† ∈ Rn and s† ∈ Rm+ such that f(x†)− s† ≺ 0.

Under Assumptions 9 and 10, for any s � s†, it also holds that the primal-dual solution

(x∗(s),λ∗(s)) is a saddle point of the Lagrangian (5.3) [16, Section 5.4.2]. The latter means,

that for all x ∈ Rn and λ ∈ Rm+ it holds that

L(x∗(s),λ, s) ≤ L(x∗(s),λ∗(s), s) ≤ L(x,λ∗(s), s). (5.8)

The latter can be found via the Arrow-Hurwicz algorithm [4]. For a fixed s, the algorithm

is such that it descends in x along the direction of the negative gradient of the Lagrangian

with respect to x

ẋ = −∇xL(x,λ, s) = −

(
∇f0(x) +

m∑
i=1

λi∇f(x)

)
, (5.9)

and it ascends in λ along the direction of the gradient of the Lagrangian with respect to λ

λ̇ = ΠRm+ (λ,∇λL(x,λ, s)) = ΠRm+ (λ, f(x)− s) , (5.10)

where ΠRm+ (·, ·) refers to a projected dynamical system over the positive orthant of Rm. This

projection is introduced to ensure that the Lagrange multipliers are always non-negative.

The intuition behind the previous algorithm is that as long as a constraint i is satisfied,

its corresponding Lagrangian multiplier is zero, i.e., λi = 0. However, if said constraint is

being violated, then fi(x)−s > 0 and the value of the corresponding multiplier is increased.

The intuition behind the update of the primal variable is that it descends along a weighted

combination of the gradients of the objective function and the constraints, so to reduce the
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value of all the functions. The specific values of the weights are given by each λi. Hence,

the relative strength that each gradient has is related with how much the constraint is being

violated.

The main drawback with Arrow-Hurwciz algorithm in this context is that the value s†

that makes the problem (5.2) feasible, is not known beforehand. To overcome this limitation,

we propose to update x and λ as in the classic Arrow-Hurwicz algorithm (5.9)–(5.10), with

the following update in the slack variable s

ṡ = K (Kλ− s) , (5.11)

where K � 0 is a matrix gain. The intuition behind the previous update is that as long

as the constraints in the relaxed problem (5.2) are satisfied, i.e. λi = 0 the value of

the slack can be reduced. However, if a constraint is no longer satisfied, we will have

λi > 0 which will increase the slack of the corresponding constraint. In the next section

we show that the solutions of (5.9)–(5.11) are such that limt→∞ s(t) = s∞ and such that

limt→∞ x(t) = x∗(s∞) and limt→∞ λ(t) = λ∗(s∞). For the slack variable to converge it

must hold that ṡ = 0, which can only happen if (cf., (5.11))

λ = K−1s. (5.12)

To understand the importance of the previous condition, we need to refer back to the idea

that dual variables are costs associated to satisfying a constraint. Formally, we have that

(cf., [16, Section 5.6.2.])

∇sp
∗(s)

∣∣∣
s=s∞

= −λ∗(s∞). (5.13)

The latter relationship, combined with the equilibrium condition (5.12) implies that the

slack variable in the limit satisfies

∇sp
∗(s)

∣∣∣
s=s∞

= −K−1s∞. (5.14)

The latter condition allows us to analyze the relative hardness of satisfying given constraints.

Notice that the gain Matrix K can be used to assign relative importance to the different

constraints, however, if they are all equally important, we could think of having K being

the identity matrix. In this case, the larger the slack it means that the derivative is larger

in absolute value. Hence, a reduction of the slack produces a higher increase in the optimal

cost.

In the next section we formalize the convergence results outlined here and in Section

5.4 we generalize these results to settings in which we are not able to evaluate the functions

and their gradients, but we have access to a stochastic model about them.
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5.3 Convergence of the modified saddle point algorithm

We start the convergence analysis by showing that the solutions of the modified saddle point

(5.9)–(5.11) are bounded for all time.

Proposition 1. Let f0 : Rn → R and f : Rn → Rp satisfy assumptions 9 and 10. Then,

the solutions of the dynamics (5.9)–(5.11) are bounded for all t ∈ [0,∞).

Proof. From Lemma 18 it follows that it is possible to chose s∗ with bounded norm such

that the optimal dual variable for the optimization problem (5.2) with slack variable s∗

satisfies

λ∗(s∗) = K−1s∗. (5.15)

Let x∗(s∗) be the optimal primal variable for said problem and define the following function

U(x,λ, s) =
1

2

(
‖x− x∗(s∗)‖2 + ‖λ− λ∗(s∗)‖2 + ‖s− s∗‖2K−2

)
, (5.16)

where for a vector ν the norm is ‖ν‖K−2 is defined as

‖ν‖K−2 =
∥∥K−1ν

∥∥2
. (5.17)

Because U(x,λ, s) is radially unbounded, to show that the solutions are bounded, it suffices

to show that U(x,λ, s) is non-increasing along the dynamics (5.9)–(5.11). To do so, take

the time derivative of (5.16) with respect to time

U̇(x,λ, s) = (x− x∗(s∗))> ẋ + (λ− λ∗(s∗))> λ̇+ (s− s∗)>K−2ṡ. (5.18)

Substituting ẋ, λ̇ and ṡ for their respective expressions (5.9)–(5.11) in the previous deriva-

tive yields

U̇(x,λ, s) =− (x− x∗(s∗))>∇xL(x,λ, s) + (λ− λ∗(s∗))>ΠRm+ (λ, f(x)− s)

+ (s− s∗)>K−1 (Kλ− s) .
(5.19)

Because both, λ and λ∗(s∗) belong to Rm+ it follows from Lemma 1 [98] that the inner prod-

uct (λ− λ∗(s∗))>ΠRm+ (λ, f(x)− s) is upper bounded by (λ− λ∗(s∗))> (f(x)− s). Thus,

the previous derivative can be in turn upper bounded by

U̇(x,λ, s) ≤− (x− x∗(s∗))>∇xL(x,λ, s) + (λ− λ∗(s∗))> (f(x)− s)

+ (s− s∗)>K−1 (Kλ− s) .
(5.20)
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Notice that the gradient of the Lagrangian with respect to x is independent of the slack

variable s (cf., (5.9)), hence it holds that ∇xL(x,λ, s) = ∇xL(x,λ, s∗). Then, adding and

subtracting (λ− λ∗(s∗))> s∗ to the previous expression yields

U̇(x,λ, s) = − (x− x∗(s∗))>∇xL(x,λ, s∗) + (λ− λ∗(s∗))> (f(x)− s∗)

+ (s− s∗)>
(
λ−K−1s− (λ− λ∗(s∗))

)
.

(5.21)

Because the Lagrangian is convex in x the inner product − (x− x∗(s∗))>∇xL(x,λ, s) can

be upper bounded by

− (x− x∗(s∗))>∇xL(x,λ, s) ≤ L(x∗(s∗),λ, s∗)− L(x,λ, s∗). (5.22)

Likewise, from (5.3) it follows that

(λ− λ∗(s∗))> (f(x)− s∗) = L(x,λ, s∗)− L(x,λ∗(s∗), s∗). (5.23)

Substituting (5.22) and (5.23) in (5.21) yields the following upper bound

U̇(x,λ, s) ≤ L(x∗(s∗),λ, s∗)− L(x,λ∗(s), s∗) + (s− s∗)>
(
λ∗(s∗)−K−1s

)
. (5.24)

Because x∗(s∗) and λ∗(s∗) are primal dual solutions of the optimization problem (5.2)

with slack s∗, it follows from the saddle point property (cf., (5.8)) that L(x∗(s∗),λ, s∗) −
L(x,λ∗(s), s∗) ≤ 0. Hence, we have that

U̇(x,λ, s) ≤ (s− s∗)>
(
λ∗(s∗)−K−1s

)
. (5.25)

Substituting λ∗(s∗) for its expression (5.15), the previous inequality can be re written as

U̇(x,λ, s) ≤ (s− s∗)>K−1 (s∗ − s) ≤ 0. (5.26)

The latter shows that U(x,λ, s) is non-increasing along the solutions of (5.9)–(5.11), hence

completing the proof of the proposition.

To show convergence of the dynamics to the point satisfying (x∗(s∗),λ∗(s∗)) with

λ∗(s∗) = K−1s∗ we definite the following function V (x,λ, s) inspired on the analysis in [32]

V (x,λ, s) =
1

2

(
‖∇xL(x,λ, s)‖2 +

∑
i/∈σ

|fi(x)− si|2
)

+
1

2
‖s−Kλ‖2 . (5.27)
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where the set σ includes the inactive constraints

σ =
{
i = 1 . . .m

∣∣λi = 0, fi(x)− si < 0
}
. (5.28)

In the next proposition we show that the function defined in (5.27) is also nonincreasing

along the dynamics (5.9)–(5.11).

Proposition 2. Let f0 : Rn → R and f : Rn → Rp satisfy assumptions 9 and 10. Then, the

function V (x,λ, s) defined in (5.27) is non-increasing along the solutions of (5.9)–(5.11).

Proof. Observe that the function V (x,λ, s) is not always differentiable due to the presence

of the projection in λ̇. However, as long as there are no changes in the set σ the previous

function is differentiable. We start by considering this case. Taking the derivative of

V (x,λ, s) along the dynamics (5.9)–(5.11) yields

V̇ = ∇xL(x,λ, s)>
(
∇2

xxL(x,λ, s)ẋ +∇2
xλL(x,λ, s)λ̇

)
+
∑
i/∈σ

∇λiL(x,λ, s)
(
∇2

λix
L(x,λ, s)>ẋ +∇2

λis
L(x,λ, s)>ṡ

)
+ (s−Kλ)> (ṡ−Kλ̇).

(5.29)

Notice that in the previous expression we have used the fact that ∇2
λλL(x,λ, s) = 0 and

that ∇2
xsL(x,λ, s) = 0 (cf., (5.3)). We will next show that

∇xL(x,λ, s)>∇2
xλL(x,λ, s)λ̇+

∑
i/∈σ

∇λiL(x,λ, s)∇2
λix
L(x,λ, s)>ẋ = 0. (5.30)

Notice that the product ∇xL(x,λ, s)>∇2
xλL(x,λ, s) yields

∇xL(x,λ, s)>∇2
xλL(x,λ, s)λ̇ =

m∑
i=1

λ̇i∇xL(x,λ, s)>∇fi(x). (5.31)

Replacing λ̇ in the previous expression for that in (5.10) yields

∇xL(x,λ, s)>∇2
xλL(x,λ, s)λ̇ =

∑
i/∈σ

(fi(x)− s)∇xL(x,λ, s)>∇fi(x). (5.32)

Notice that the second term in (5.30) can be written as∑
i/∈σ

∇λiL(x,λ, s)∇2
λix
L(x,λ, s)>ẋ =

∑
i/∈σ

(fi(x)− si)∇fi(x)>ẋ (5.33)

Replacing ẋ in (5.33) for the expression in (5.9) yields the negative of (5.32). Hence, (5.30)
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holds. Likewise, replacing λ̇ and ṡ by their expressions in (5.10) and (5.11) follows that∑
i/∈σ

∇λiL(x,λ, s)∇2
λis
L(x,λ, s)>ṡ− (s−Kλ)>Kλ̇ = 0. (5.34)

Taking into account the previous cancellations (5.29) reduces to

V̇ = −∇xL(x,λ, s)>∇2
xxL(x,λ, s)∇xL(x,λ, s)− (s−Kλ)>K (s−Kλ) ≤ 0. (5.35)

The latter shows that V (x,λ, s) is non-increasing as long as there are no changes in the set

of inactive constraints σ. We are left to analyze the cases where one constraint is either

added or removed from the set σ. Observe that if a constraint is added to the set, the sum

in (5.27) loses one term, and hence V (x,λ, s) cannot increase. We will next show that if a

constraint leaves the set σ at time t it must be the case that fi(x(t))− si(t) = 0 and thus

V (x(t+),λ(t+), s(t+)) = V (x(t−),λ(t−), s(t−)), where the times t− and t+ correspond to

the directional limits of the time before and after the discontinuity happens. By definition

of the set σ (cf., (5.28)) a constraint can only leave the set if either λi goes from zero to

positive or if fi(x)− si goes from negative to positive. Observe that as long as λi = 0 and

fi(x)− si < 0 from the dual dynamics (5.10) we have that λ̇i = 0. Hence, no constraint can

leave the set σ by λi becoming positive. Hence, it must be the case that fi(x)− si becomes

positive. At the precise moment of the constraint leaving the set, we have that fi(x)−si = 0

and therefore even if there is one more term in the summation
∑

i/∈σ |fi(x(t+) − si(t
+) its

value is zero. Thus V (x(t+),λ(t+), s(t+)) = V (x(t−),λ(t−), s(t−)). The latter completes

the proof that V (x,λ, s) is non-increasing along the dynamics (5.10)–(5.11).

Based on the previous proposition, where we established that the function V (x,λ,µ)

(5.27), is non-increasing along the modified saddle point dynamics, we claim convergence

of the algorithm to the optimal solution for the relaxed problem (5.2) with slack variable

satisfying λ∗(s∗) = K−1s∗.

Proposition 3. Let f0 : Rn → R and f : Rn → Rm satisfy assumptions 9 and 10. Then,

there exists s∗ such that the dual optimal (5.7) satisfies

λ∗(s∗) = K−1s∗. (5.36)

In addition, the dynamics (5.9)–(5.11) converge to (x∗(s∗),λ∗(s∗), s∗), where x∗(s∗) is the

solution of (5.2) with slack s∗.

Proof. The proof of (5.36) follows from the result of Lemma 18. To show convergence ob-

serve that, from proposition 1 and 2 that there exists a compact positively invariant set
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Ω for the dynamics (5.9)–(5.11) and a function V (x,λ, s) that decreases along trajecto-

ries in Ω. Then, the LaSalle invariance principle for hybrid systems [82] establishes, that

every trajectory in Ω converges to M , the largest positively invariant set within Ω with

trajectories satisfying V̇ (x,λ, s) if σ is constant and such that V (x(t−),λ(t−), s(t−)) =

V (x(t+),λ(t+), s(t+)) if σ changes. Formally, the previous conditions define the following

set for which V (x,λ, s) is constant

E1 =
{

x ∈ Rn,λ ∈ Rm+ , s ∈ Rm
∣∣∣∇xL(x,λ, s) = 0,Kλ = s

}
, (5.37)

for fixed σ and

E2 =
{

x ∈ Rn,λ ∈ Rm+ , s ∈ Rm
∣∣∣fi(x)− si = 0

}
, (5.38)

if i enters or leaves the set σ. Observe that λ, s ∈ E1 means that Kλ = s. Hence, ṡ = 0

(cf., (5.11)) at intervals in which σ is constant. The latter implies that s is in equilibrium,

hence there exists s∞ such that

lim
t→∞

s(t) = s∞. (5.39)

Likewise we have that

lim
t→∞

λ(t) = λ∞ = K−1s∞. (5.40)

To complete the proof, we need to show that the limit of the primal and dual variable indeed

converge to the primal dual solution of (5.2) with slack s∞. Notice that (x,λ, s) ∈ E1 implies

as well that ∇xL(x,λ, s) = 0. From (5.9) it follows then that the limit of x(t) exists and

moreover and it is to the minimizer of the Lagrangian for (λ∞, s∞), i.e.,

lim
t→∞

x(t) = argmin
x
L(x,K−1s∞, s∞) := x∞. (5.41)

From the KKT conditions [16, Section 5.5.3] it remains to be shown that the point x∞ is

feasible and that complementary slackness holds. Notice that there cannot be any i = 1 . . .m

for which fi(x∞)−(s∞)i > 0. If that were the case, λi would diverge (cf., (5.10)). Therefore,

x∞ is a feasible point. Notice that because fi(x∞) − (s∞)i ≤ 0 for all i = 1 . . .m, if

(λ∞)i = 0, then there cannot be a change in the set σ. If there is a change in the set it has

to be the case where (λ∞)i > 0 and (x∞, s∞) ∈ E2. Then complementary slackness holds

and the proof of the proposition is completed.

The previous result implies that the modified saddle point controller is such that it

converges to the primal dual solution of the relaxed optimization problem (5.2) with slack

s∗ satisfying the relationship K−1s∗ = λ∗(s∗). As previously discussed, the implication of

the result is that it allows us to evaluate which one of the constraints is the hardest to

satisfy by observing that the dual optimum is the derivative of the optimal value p∗(s).
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And in that sense, large multipliers, means that reducing the value of the corresponding

slack entails a large increase in the cost of the problem. In the next section we generalize

the previous result to settings in which the objective function and the constraints are not

known but only a probabilistic model of them is available.

5.4 Stochastic Formulation

The main difference with the previous scenario is that instead of having access to the

constraints and the objective function we assume some probabilistic model for them. As-

sume now, that we are given objective and constraint functions f0 : Rn × Rp → R and

f : Rn × Rp → Rm then the problem of interest, is to to minimize the objective while

satisfying the set of constraints in expectation

p∗ := min
x∈Rn

Eθ [f0(x,θ)]

s.t. Eθ [f(x,θ)] � 0,
(5.42)

where θ is a random vector. As in the deterministic scenario (cf., Section 2.2) we are

interested in determine whether the previous problem is feasible or not, i.e., if there exists

x† ∈ Rn such that Eθ

[
f(x†,θ)

]
� 0 and to identify which of the constraints are harder to

satisfy. Notice that, if the functions f0(x,θ) and f(x,θ) are convex in the first argument,

then problem (5.42) is not different than (5.1). And thus the methodology proposed here

will be very similar to that employed in Section 2.2. We start by defining a slack variable

s and the following relaxation of (5.42)

p∗(s) := min
x∈Rn

Eθ [f0(x,θ)]

s.t. Eθ [f(x,θ)]− s � 0,
(5.43)

and its associated Lagrangian

L(x,λ, s) := Eθ [f0(x,θ)] + λ> (Eθ [f(x,θ)]− s) . (5.44)

As in the previous section the objective is to find the saddle point of the Lagrangian for

a given slack that results interesting in the sense that can allows to understand which

constraints are more difficult to satisfy. The main difference, is that in the stochastic setting,

the Lagrangian – and its gradients– cannot be estimated directly and at each iteration we

can only sample from the underlying distribution of θ. Hence, what we are doing is a

stochastic approximation [66,107] of the algorithm (5.9)–(5.11).

In such settings is custumary to assume that the estimates available are unbiased and
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with bounded moments. To be formal define a probability space (Ω,G, P ) and the following

filtrarion as a sequence of increasing sigma algebras {∅,Ω} = G0 ⊂ . . . ⊂ Gt ⊂ . . .G∞ = G.

We next formalize the assumptions regarding the estimate of the gradient of the Lagrangian

along with convexity assumptions and constraint qualifications as in Section 2.2.

AS11. The estimates of the gradient of the Lagrangian are unbiased, i.e., for all x,λ and

s it holds that

E
[
∇xL(x,λ, s,θt)

∣∣Gt] = ∇xL(x,λ, s), (5.45)

and

E
[
∇λL(x,λ, s,θt)

∣∣Gt] = ∇λL(x,λ, s). (5.46)

In addition the estimates have second moments bounded, i.e., there exist constants σx and

σλ such that

E
[
‖∇xL(x,λ, s,θt)−∇xL(x,λ, s)‖2

∣∣Gt] ≤ σ2
x, (5.47)

and

E
[
‖∇λL(x,λ, s,θt)−∇λL(x,λ, s)‖2

∣∣Gt] ≤ σ2
λ, (5.48)

AS12. We assume f : Rn×Rp → Rm is convex and f0 : Rn×Rp → R is µ-strongly convex

with respect to the first argument.

AS13. There exists x† ∈ Rn and s† ∈ Rm+ such that Eθ

[
f(x†,θ)

]
− s† ≺ 0.

We are now in conditions of presenting the stochastic approximation of the modified

saddle point (5.9)–(5.10), where we update the primal variable x by descending along the

direction of the negative graident of the Lagrangian with respect to x

xt+1 = [xt − ηt∇xL(xt,λt, st,θt]X = [xt − ηt (∇xf0(xt,θt) +∇xf(xt,θt)λt)]X , (5.49)

it ascends in λ along the direction of the gradient of the Lagrangian with respect to λ

λt+1 =
[
λt + ηt∇̂λL(xt,λt, st)

]
Λ

= [λt + ηt (f(xt,θt)− st)]Λ , (5.50)

and the slack variable is updated as in the deterministic case

st+1 = [st + ηtK (Kλt − st)]Λ , (5.51)

where the step-size of the algorithm ηt is a decreasing sequence satisfying

∞∑
t=0

ηt =∞, and

∞∑
t=0

η2
t <∞, (5.52)
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and [·]X and [·]Λ are projections over the sets X and Λ respectively. The former is a compact

convex set contained in Rn and Λ is a compact convex subset of Rm+ . The projection of

the multipliers over the positive orthant is required to ensure that the multipliers remain

non-negative, however the projection over bounded sets are technical requirements for the

convergence proof. We formalize this assumptions for future reference.

AS14. The sets X and Λ are convex and there exist positive constants Bx and Bλ such that

for all x ∈ X and for all λ, s ∈ Λ it holds that ‖∇xL(x,λ, s)‖2 ≤ Bx, ‖∇λL(x,λ, s)‖2 ≤ Bλ

and ‖Kλ− s‖2 ≤ Bs.

In the next section we derive the analogous result to Proposition 3 where we establish

convergence to the saddle point of the Lagrangian (5.44) for a slack variable satisfying

λ∗(s∗) = K−1s∗ (5.53)

with probability one. In this setting the interpretation of such point is not different than

in the deterministic counterpart. The larger the slack, the larger it is the cost in which we

incur when trying to force the value of the slack down. Hence, giving us a notion of the

relative hardness of satisfying the different constraints in the stochastic setting.

5.5 Stochastic Analysis

Notice that the problem (5.43) is also convex under Assumption 12 and it has zero duality

gap when Assumption 13 hodls. Hence, by virtue of Lemma 18 it is possible to chose s∗

with bounded norm such that the optimal dual variable for the optimization problem (5.43)

with slack variable s∗ satisfies

λ∗(s∗) = K−1s∗. (5.54)

Let x∗(s∗) be the optimal primal variable for said problem and define the following sequence

of random variables

Vt =
1

2

(
‖xt − x∗(s∗)‖2 + ‖λt − λ∗(s∗)‖2 + ‖st − s∗‖2K−2

)
, (5.55)

In order for the aglorithm (5.49)–(5.51) to converge we require that the points s∗,λ∗(s∗)

to be in the set Λ and x∗(s∗) to be in the set X . We formalize this assumption for future

reference.

AS15. The gain Matrix K and the sets X and Λ are such that s∗,λ∗(s∗) ∈ Λ and x∗(s∗) ∈
X .
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We start the analysis by defining the following sequence of random variables

St = Vt +
∞∑
s=t

η2
sB, (5.56)

where Vt is the sequence defined in (5.55) and B is defined as

B = Bx + σ2
x +Bλ + σ2

λ +Bs, (5.57)

with σ2
x and σ2

λ being the constants defined in Assumption 11 and Bx, Bλ and Bs being the

constants defined in Assumption 14. We next show that St is a non-negative supermartin-

gale.

Lemma 13. Let f0 : Rn × Rp → R f : Rn × Rp → Rm satisfy assumptions 11–15. Then,

the sequence St defined in (5.56) is a non-negative supermartingale.

Proof. Notice that xt,λt, st ∈ Gt, hence St is adapted to Gt. St is also non-negative because

is the sum of non-negative terms. To show that St is a supermartingale it remains to be

shown that E [St+1|Gt] ≤ St. To do so, use the update rule (5.49) to upper bound the norm

‖xt+1 − x∗(s∗)‖2 ≤ ‖xt − η∇xL(xt,λt, st,θt)− x∗(s∗)‖2 , (5.58)

where we have used the fact that because x∗(s∗) ∈ X (cf., Assumption 15) the projection

cannot increase the norm. Expanding the squares yields

‖xt+1 − x∗(s∗)‖2 ≤ ‖xt − x∗(s∗)‖2 + η2
t ‖∇xL(xt,λt, st,θt)‖2

−2ηt (xt − x∗(s∗))>∇xL(xt,λt, st,θt).
(5.59)

Because xt,λt and st are measurable with respect to Gt and ∇xL(xt,λt, s,θt) is an unbiased

estimate of the gradient, when conditioning the previous expression with respect to Gt it

follows that

Eθ

[
‖xt+1 − x∗(s∗)‖2

∣∣Gt] ≤ ‖xt − x∗(s∗)‖2 + η2
tEθ

[
‖∇xL(xt,λt, st,θt)‖2

]
−2ηt (xt − x∗(s∗))>∇xL(xt,λt, st).

(5.60)

Using the convexity of the Lagrangian with respect to x and the fact that ∇xL(xt,λt, st) =

∇f0(xt)+
∑m

i=1 λi∇fi(xt) = ∇xL(xt,λt, s
∗), the inner product (x∗(s∗)− xt)

>∇xL(xt,λt, st)

can be upper bounded by

(x∗(s∗)− xt)
>∇xL(xt,λt, st) ≤ L(x∗(s∗),λt, s

∗)− L(xt,λt, s
∗). (5.61)

117



Using assumptions 11 and 14 one can bound the second moment of ∇xL(xt,λt, st,θt) by

Eθ

[
‖∇xL(xt,λt, st,θt)‖2

]
≤ Bx + σ2

x. (5.62)

Replacing the previous bound and the one in (5.61) in (5.60) yields

Eθ

[
‖xt+1 − x∗(s∗)‖2

∣∣Gt] ≤ ‖xt − x∗(s∗)‖2 + η2
t (σ

2
x +Bx)

+2ηt (L(x∗(s∗),λt, s
∗)− L(xt,λt, s

∗)) .
(5.63)

Likewise, we can upper bound the expectation of the square of the norm of the difference

λt+1 − λ∗(s∗) as

Eθ

[
‖λt+1 − λ∗(s∗)‖2

∣∣Gt] ≤ ‖λt − λ∗(s∗)‖2 + η2
t (σ

2
λ +Bλ)

+2ηt (λt − λ∗(s∗))>∇λL(xt,λt, st).
(5.64)

Observe that by adding and subtracting (λt − λ∗(s∗))>s∗ to (λt − λ∗(s∗))>∇λL(xt,λt, st)

yields

(λt − λ∗(s∗))>∇λL(xt,λt, st) = (λt − λ∗(s∗))> (s∗ − st)

+ L(xt,λt, s
∗)− L(xt,λ

∗(s∗), s∗).
(5.65)

Hence, (5.64) reduces to

Eθ

[
‖λt+1 − λ∗(s∗)‖2

∣∣Gt] ≤ ‖λt − λ∗(s∗)‖2 + η2
t (σ

2
λ +Bλ)

+2ηt (L(xt,λt, s
∗)− L(xt,λ

∗(s∗), s∗)) + 2ηt(λt − λ∗(s∗))> (s∗ − st) .
(5.66)

Using similar arguments, one can upper bound the expected value of the difference ‖st+1 − s∗‖
by

Eθ

[
‖st+1 − s∗‖2K−2

∣∣Gt] ≤ ‖st − s∗‖2K−2 + η2
tBs + 2ηt (st − s∗)>K−1 (Kλt − st) . (5.67)

Combining the upper bounds for the expectation of the three squares (5.63), (5.66) and

(5.67), and using the definition of the constant B in (5.57) allows us to upper bound

E[Vt+1

∣∣Gt] by

E
[
Vt+1

∣∣Gt] ≤ Vt + η2
tB + ηt (st − s∗)>

(
λ∗(s∗)−K−1st

)
+ ηt (L(x∗(s∗),λt, s

∗)− L(xt,λ
∗(s∗), s∗)) ,

(5.68)

Because the step size is square summable (cf., (5.52)) we can add
∑∞

s=t+1Bη
2
s on both sides
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of previous expression. This allows us to upper bound E[St+1

∣∣Gt] by

E
[
St+1

∣∣Gt] ≤ St + ηt (st − s∗)>
(
λ∗(s∗)−K−1st

)
+ ηt (L(x∗(s∗),λt, s

∗)− L(xt,λ
∗(s∗), s∗)) .

(5.69)

To show that St is a supermartingale, we will show that (st − s∗)>
(
λ∗(s∗)−K−1st

)
≤ 0

and that (L(x∗(s∗),λt, s
∗)− L(xt,λ

∗(s∗), s∗)) ≤ 0. To see why the first term is negative

write it as

(st − s∗)>
(
λ∗(s∗)−K−1st

)
= (st − s∗)>K−1 (Kλ∗(s∗)− st) , (5.70)

and observe that Kλ∗(s∗) = s∗ (cf., (5.15)). Hence we can write

(st − s∗)>
(
λ∗(s∗)−K−1st

)
= − (st − s∗)>K−1 (st − s∗) ≤ 0, (5.71)

because K � 0. The proof is completed by noticing that the definition of a saddle point

(cf., (5.8)) implies that the difference of Lagrangians (L(x∗(s∗),λt, s
∗)− L(xt,λ

∗(s∗), s∗))

is negative.

The previous lemma establishes the the sequence of random variables St defined in

(5.56) is a non-negative supermartingale. Because it is a sequence whose expected value is

non-increasing it converges with probability one. Hence, to show that the algorithm (5.49)–

(5.51) we need to show that the limit of St is zero with probability one. This is the subject

of the following proposition.

Proposition 4. Let assumptions 11–15 hold. Then, the sequence (xt,λt, st) that arises

from the update (5.9),(5.10) and (5.11) with step-size ηt satisfying (5.52) converges to

(x∗(s∗),λ∗(s∗), s∗) with probability one.

Proof. Using the fact that St is a non-negative supermartingale (cf., Lemma 14) we have

that with probability one limt→∞ St = S, where S is a random variable satisfying E[S] ≤
E[S0] <∞ (see e.g., [29, Theorem 5.2.8]). Likewise, observe that

S = lim
t→∞

St = lim
t→∞

Vt, (5.72)

because the limit of the tail of the series
∑∞

s=t η
2
sB is zero. Let us define the following

sequence for simplicity

αt = −L(xt,λ
∗(s∗), s∗)− L(x∗(s∗),λt, s

∗)− ‖st − s∗‖2K−1/2 . (5.73)

Notice that for all t ≥ 0 we have that αt ≥ 0 (cf., Proof of Lemma 14). We will show at the
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end of this proof that αt satisfies

∞∑
t=0

ηtαt <∞ a.e. (5.74)

This being the case, because the sequence ηt is non sumable it follows that

lim inf
t→∞

αt = 0 a.e. (5.75)

Because of the saddle point property of the solution (x∗(s∗),λ∗(s∗)) (cf., (5.8)), (5.75)

implies that there exists a subsequence {ts} such that

lim
s→∞

‖xts − x∗(s∗)‖ = 0, (5.76)

lim
s→∞

‖λts − λ∗(s∗)‖ = 0, (5.77)

lim
s→∞

‖sts − s∗‖ = 0. (5.78)

Notice that the three previous conditions imply that lims→∞ Vts = 0 with probability one.

Since, the limit, limt→∞ Vt exists it has to be the case that limt→∞ Vt = 0 almost everywhere.

To complete the proof we need to show that (5.74) holds. To do so, observe that the sequence

T∑
t=0

ηtαt (5.79)

is monotonically increasing with T because both ηt and αt are positive for all t ≥ 0. Hence,

the Monotone Convergence Theorem (see e.g., [29, Theorem 1.6.6]) allows us to write that

E

[ ∞∑
t=0

ηtαt

]
=
∞∑
t=0

E [ηtαt] . (5.80)

Use recursively the result from Lemma 14

E[Vt+1

∣∣Gt] ≤ Vt − ηtαt, (5.81)

and the towering property of the conditional expectation to write

E[Vt+1] ≤ E[V0]−
t∑

s=0

E[ηsαs]. (5.82)
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Re arranging the terms of the previous expression and taking limit with t going to infinity

yields

lim
t→∞

t∑
s=0

E[ηsαs] ≤ lim
t→∞

E[V0]− E[Vt+1] ≤ E[V0], (5.83)

where the last inequality follows from the fact that Vt ≥ 0 for all t. Combining the previous

upper bound with the result in (5.80), we can write

E

[ ∞∑
t=0

ηtαt

]
=
∞∑
t=0

E [ηtαt] ≤ E[V0] <∞ (5.84)

Because the random variable
∑∞

t=0 ηtαt is nonnegative, to have bounded expectation it is

required that the set where the sum diverges has measure zero. Which completes the proof

of the proposition.

5.6 Numerical Experiments

Here we consider a simple example with three constraints of the form fi(x) = ‖x− xi‖2.

Where x1 = [−3,−1], x2 = [−3, 1] and x3 = [3, 0]. From the definition of the constraints

there is no point in space that can satisfy the three at the same time. However, the intuition

is that the first two should be easier to satisfy because the minimum of f1(x) and f2(x) are

closer than togheter than that of f3(x). In that sense, if we give all the constraints the same

importance, i.e., K = I we would expect the slack corresponding to the third constraint to

be larger. This is confirmed by the slack plot in Figure 5.1 where in yellow we observe the

evolution of the third slack µ3, whose final value is larger than that of the other two.

5.7 Conclusion

In this chapter we considered situations in which there is no information about the problem

of interest being feasible or not. We proposed a modified saddle point algorithm in which

we introduce a slack variable to solve the problem in cases where the constraints and the

objective function can be measured exactly and a stochastic approximation of the previous

algorithm in cases where the model of the functions is probabilistic. We showed in both cases

convergence to the primal dual optimal solution for a specific slack. The slack obtained is

proportional to the gradient of the optimal cost with respect to the slack. The latter provides

a relative measure of the hardness in satisfying the constraints, because reducing a slack

that is large translates into a large cost. The information obtained through the modified

Arrow-Hurwicz algorithm can be used by a high level reasoning to decide modifications of

the optimization problem.
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Figure 5.1: We observe the evolution of the slacks for the solutions of the dynamical system (5.9)–
(5.11). In blue and red we observe the evolution of the slacks µ1 and µ2 corresponding to the

constraints fi(x) = ‖x− xi‖2, with x1 = [−3,−1] and x2 = [−3, 1]. In yellow we observe the slack
µ3 for the constraint with center x3 = [3, 0]. Because the centers of the first two solutions are closer
between them as compared to the third center. It is not surprising that the slack required to satisfy
those constraints is smaller.
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Chapter 6

Stochastic Policy Gradient Ascent

in Reproducing Kernel Hilbert

Spaces

In this chapter we consider the problem of policy optimization in the context of reinforce-

ment learning, with the goal of maximizing an expected cumulative reward (ECR). In order

to avoid discretization, we select the optimal policy to be a continuous function belonging to

a reproducing Kernel Hilbert Space (RKHS). We design a policy gradient algorithm (PGA)

in this context, deriving the gradients of the functional ECR and learning the unknown

state transition probabilities on the way. In particular, we propose an unbiased stochastic

approximation for the gradient that requires a finite number of steps. This unbiased esti-

mator is the key enabler for a novel stochastic PGA, which provably converges to a critical

point of the ECR. However, the RKHS approach increases the model order per iteration by

adding extra kernels, which may render the numerical complexity prohibitive. To overcome

this limitation, we prune the kernel dictionary using an orthogonal matching pursuit proce-

dure, and prove that the modified method keeps the model order bounded for all iterations,

while ensuring convergence to a neighborhood of the critical point.

6.1 Introduction

Markov decision Processes (MDPs) [44] provide a mathematical framework for modeling

decision making in situations where outcomes are partly random and partly under the

control of a decision maker. This general framework has been used to study divers systems

such as robotics [54], control [114], and finance [104]. More precisely, an MDP is a discrete

time stochastic control process, where the state of the system at the next time is a random
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variable, whose probability distribution depends on the current state and the action selected

by decision maker. Because these transition probabilities do not depend on the history of

the system they are also called memoryless systems. The actions selected by the agent

determine instantaneous rewards that can be aggregated over a trajectory to determine

cumulative rewards. The instantaneous rewards depend on both the state and the actions

and thus, the reward along a trajectory depends on the policy under which the actions are

selected based on the current state. In that sense, cumulative rewards are a measure of the

quality of the decision making policy, and the objective of the agent is to find a policy that

maximizes the expectation of the cumulative rewards, also known as the Q-function of the

MDP [118].

In this chapter we consider reinforcement learning problems, in which the transition

probabilities and the rewards are unknown and can only be accessed trough experiments that

permit observation of realized transitions and rewards [118]. Solutions to these problems can

be roughly divided among those that learn the Q-function to then chose for any given state

the action that maximizes the function [132] and those that attempt to directly learn the

optimal policy [27, 120]. Among the former, Q-learning is the most celebrated algorithm

[132], its drawback, is that in general is difficult to maximize to determine the optimal

policy. Algorithms that attempt to learn the optimal policy directly are based on computing

(stochastic) gradients of the Q-function with respect to the policy and run gradient ascent

[27,120].

A major drawback of the previous algorithms for reinforcement learning is that they

suffer from the curse of dimensionality, this is, the complexity of learning scales exponentially

with the number of actions and states [37]. This is in particular the case of continuous

spaces, where any reasonable discretization leads to a very large number of states and

possible actions. Efforts to sidestep this issue assume that either the Q-function or the

policy admits finite linear parametrization [119] or nonlinear basis expansion [13], is defined

by a neural network [86] or that it belongs to a Reproducing Kernel Hilbert Space (RKHS)

[61, 71, 126]. The latter provide the ability to approximate functions using nonparameteric

functional representations. Although the structure of the space is determined by the choice

of the kernel, the set of functions that can be represent is sufficiently rich to permit a good

approximation of a large class of functions.

Here, we consider policy learning in RKHS as in [71] and we show, that it is possible

to learn a policy that is a stationary point of the Q-function (Theorem 11). To do so, we

construct an estimate of the gradient of the expected cumulative reward (Section 6.3) and

we run stochastic gradient ascent. In the estimation of the gradient there are two main

challenges that are addressed. The first one is related to the fact that the expression of the

policy gradient depends on the Q-function itself and thus, it needs to be estimated. This
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can be solved using a stochastic estimator of said function (Algorithm 1) that is unbiased

(Proposition 5). The second difficulty when computing the gradient of the Q-function is that

it depends on a state-action distribution that is not that of sample trajectories. Meaning

that if one were to consider a trajectory of the system as a sample to compute the stochastic

gradient, this estimate would be biased. This issue is typically reinforced by other policy

gradient algorithms which consider a fixed horizon as estimate of the infinite sequence of

state and action pairs. The biases introduced by the mentioned algorithms prevent to

show convergence of stochastic gradient ascent to a stationary point of the Q-function. To

overcome these issues, we propose to use as stopping time a random variable drawn from

a geometric distribution. Such stopping time defines a horizon that is representative of

the infinite time horizon problem and hence yields an unbiased estimate (Proposition 6).

Whereas the setting considered in this chapter is the same as in [71], showing that the

estimate of the policy gradient proposed is unbiased and the convergence of the algorithm

are some of the contributions here presented.

Desipite the theoretical relevance of the previous algorithm, it has two issues of practical

importance that we also address: (i) Reducing the variance of policy gradient stochastic

approximations. (ii) Controlling the memory explosion of RKHS representations. To reduce

the variance of stochastic policy gradient estimates we show that multiple samples from a

Gaussian random policy can be related to numerical differentiation of the Q-function (Sec-

tion 6.3.3). This idea has been used in the zero-th order optimization literature [39, 88].

This is, when the gradient of the function one is trying to minimize cannot be directly com-

puted, one can estimate it by considering random samples in a neighborhood of the iterate

and evaluating the objective function at those points. The problem of memory explosion

has its origin in the fact that each sample used in the estimation of the stochastic gradient

results in adding a kernel element. Hence, we require as many kernel elements as stochas-

tic gradient iterations we perform. Since the convergence of stochastic gradient ascent is

asymptotic we would need an infinite number of elements to represent the optimal policy.

To control memory explosion [129] of RKHS representations we follow the ideas in [61] to

propose the use of orthogonal matching pursuit to construct sparse kernel representations

(Section 6.5). By doing so, we ensure that the model order of the representation remains

bounded for all iterates at the cost of achieving convergence only to a neighborhood of a

critical point of the Q-function (Theorem 12). The size of the neighborhood depends both

on the learning rate – step size– selected and the error that one allows in the construction

of sparse representations. Other than concluding remarks the chapter ends with numerical

experiments where we consider the mountain car problem (Section 6.7).
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6.2 Problem Formulation

Here, we are interested in the problem of finding a policy that maximizes the expected

reward of an agent that chooses actions sequentially. Formally, let us denote the time by

t ∈ {{0},N} and let S be a compact set denoting the state space of the agent and A = Rp

be its action space. The transition dynamics are governed by a conditional probability

P atst→st+1
(s) := p(st+1 = s|(st, at) ∈ S × A) satisfying the Markov property, i.e., p(st+1 =

s
∣∣(su, au) ∈ S ×A, ∀u ≤ t) = p(st+1 = s|(st, at) ∈ S ×A). The policy of the agent is a map

h : S → A and we assume it to be a vector-valued function in a vector-valued RKHS H.

We formally define this notion next, with comments ensuing.

Definition 7. A vector valued RKHS H is a Hilbert space of functions h : S → Rp such

that for all c ∈ Rp and x ∈ S, (κxc) (y) = κ(x,y)c ∈ H for all y ∈ S, where κx(y)

is a symmetric function that is a positive definite matrix for any x,y ∈ S and it has the

reproducing property

< h, κxc >H= h(x)>c. (6.1)

Without loss of generality we will assume that the Hilbert norm of κ(x, ·) is equal to one.

If κ(x,y) is a diagonal matrix-valued function with diagonal elements κ(x,y)ii, and

c is the i-th canonical vector in Rp, then (6.1) reduces to the standard one-dimensional

reproducing property per coordinate hi(x) =< hi, κ(x, ·)ii > .

Instead of choosing the action deterministically as a = h(s), we randomly draw it from a

multivariable Gaussian distribution with mean h(s). A random policy helps the exploration

of the state space and it is a good approximation of the deterministic policy as we show in

Proposition 7. The conditional probability of the action is defined as πh(a|s) : S×A → R+,

with

πh(a|s) =
1

det(2πΣ)
e−(a−h(s))>Σ−1(a−h(s)). (6.2)

The latter means that given a policy h ∈ H and the current state s ∈ S, the agent selects

an action a ∈ A from a multivariate normal distribution N (h(s),Σ). The actions selected

by the agent result in a reward defined by a function r : S × A → R. We assume these

rewards to be uniformly bounded as we formally state next.

AS16. There exists Br > 0 such that ∀(s, a) ∈ S × A, the reward function r(s, a) satisfies

|r(s, a)| ≤ Br.

The objective is then to find a policy h∗ ∈ H such that it maximizes the expected

discounted reward

h∗ := argmax
h∈H

U(h) = argmax
h∈H

E

[ ∞∑
t=0

γtr(st, at)
∣∣∣h] , (6.3)
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where the expectation is taken with respect to all states s0, s1, . . . and all actions a0, a1, . . . ,

and γ ∈ (0, 1) is a discount factor that gives relative weights to the reward at different

times. Values of γ close to one imply that rewards in the present are as important as

future rewards, whereas smaller values of γ give origin to myopic policies that prioritize

maximizing immediate rewards. It is also noticeable that U(h) is indeed a function of the

policy h, since policies affect the joint probabilities of the trajectories {st, at}∞t=0.

Conceivably, problem (6.3) could be solved iteratively by running a gradient ascent

iteration on the space of functions. In parametric problems where variables lie in a finite

space, gradient ascent converges to a critical point of U(h) – if U(h) is upper bounded –

under constant and diminishing step size [12, pp 43-45]. The same will be proved here in

the case of maximizing a functional where the decision variable is a function in H. When

the functional is a convex function these results have been established in [59,60].

The importance of this theoretical result notwithstanding, is limited by the computation

of the gradient of U(h) with respect to h being intractable. To see why this is the case,

define the discounted long-run probability distribution ρ(s, a)

ρ(s, a) := (1− γ)
∞∑
t=0

γtp(st = s, at = a) (6.4)

where p(st = s, at = a) defines the probability of reaching state s and action a at time t,

and is given by

p(st, at) =

∫
πh(at|st)

t−1∏
u=0

p(su+1|su, au)πh(au|su)p(s0)dsda (6.5)

and where ds = ds0 . . . dst−1 and da = da0 . . . dat−1 imply integration over the previous

states and actions.

Let Q(s, a;h) be the expected discounted reward for a policy h that at state s selects

action a, formally defined as

Q(s, a;h) := E

[ ∞∑
t=0

γtr(st, at)
∣∣∣h, s0 = s, a0 = a

]
. (6.6)

With these functions defined, the gradient of the discounted rewards with respect to h

yields [71,120]

∇hU(h, ·) = (6.7)

1

1− γ
E(s,a)∼ρ(s,a)

[
Q(s, a;h)κ(s, ·)Σ−1 (a− h(s))

∣∣∣h] ,
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where the dot in (h, ·) substitutes the second variable of the kernel, belonging to S, which is

ommited to simplify notation. Observe that the expectation with respect to the distribution

ρ(s, a) is an integral of an infinite sum over a continuous space. In addition, the system

transition density p(st+1|st, at) is not known. Therefore, computing (6.7) in closed form is

intractable and a large number of samples might be needed to obtain an accurate Monte

Carlo approximation even if (pt+1|st, at) was known. An alternative to overcome this draw-

back is the use of stochastic approximation methods (see [52,102,107,136]), where the main

idea is to compute an unbiased estimate of the policy gradient by evaluating the expression

inside the expectation for one sample of a pair (s, a) ∼ ρ(s, a), thus reducing the cost of

each iteration. Observe however, that in this particular case the evaluation of the stochastic

gradient requires the Q-function defined in (6.6), which presents the same challenges that

computing the gradient of the expected discounted reward, i.e., an intractable closed-form

expression and a computationally prohibitive approximation. In Section 6.3.1 we present an

efficient subroutine to find an unbiased estimate of the Q function which is used in Section

6.3.2 to define the stochastic gradient of the expected discounted reward. If one were to

work with a deterministic policy, rather than needing an estimate of the Q-function, one

needs an estimate of its derivative as we explain in Section 6.3.3. In Section 6.4, we show

that by updating the policy with the stochastic estimate of ∇hU(h, ·), convergence to a

stationary point of U(h) is achieved with probability one.

6.3 Stochastic Policy Gradient

In order to compute a stochastic approximation of ∇hU(h) we need to sample from ρ(s, a)

given in (6.4). The intuition behind ρ(s, a) is that it weights the probability of the system

being at a specific state-action pair (s, a) at time t by a factor of (1 − γ)γt. Notice that

this factor is equal to the probability of a geometric distribution of parameter γ to take the

value t. Thus, for the k-th policy update, one can interpret the distribution ρ(s, a) as the

probability of running the system for T steps, with T randomly drawn from a geometric

distribution of parameter γ. This supports steps 2-7 in Algorithm 2 which describes how to

obtain a sample (sk, ak) ∼ ρ(s, a). Latter, in Proposition 6 it is claimed that an unbiased

estimate of ∇hU(h) is obtained by substituting the sample (sk, ak) in the stochastic gradient

∇̂hU(h, ·) =
1

1− γ
Q̂(sk, ak;h)κ(sk, ·)Σ−1(ak − h(sk)), (6.8)

with Q̂(sk, ak;h) being an unbiased estimate of Q(sk, ak;h). The previous expression reveals

a second challenge in computing of the stochastic gradient, namely the need of computing

the function Q – or an estimate– at the state-action pair (sk, ak). We deal with this

in Section 6.3.1, providing an unbiased estimate of Q(sk, ak;h) that yields an unbiased
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estimate of ∇hU(h, ·) when substituted in (6.8).

Thus, we construct an unbiased estimate ∇̂hU(h, ·) in a finite number of steps. Using

this estimate we propose to update the policy iteratively following the rule

hk+1 = hk + ηk∇̂hU(hk, ·), (6.9)

where ηk > 0 is the step size of the algorithm. Under proper conditions stochastic gra-

dient ascent methods can be shown to converge with probability one to the local max-

ima [101]. This approach has been widely used to solve parametric optimization problems

where the decision variables are vectors in Rn. In this chapter we extend these results to

non-parametric problems in RKHSs. First, we describe the algorithm to obtain the unbi-

ased estimate Q̂(sk, ak;h) in a finite number of steps, which is instrumental for our overall

non-parametric stochastic approximation strategy.

6.3.1 Unbiased Estimate of Q

A theoretically conceivable but unrealizable form of estimating the value of Q(s, a;h) is

to run a trajectory for infinite steps stating from (s0, a0) = (s, a) and then compute the

following infinite sum q̂h =
∑∞

t=0 γ
tr(st, at). Despite being an unbiased estimate, a major

drawback of this approach is the need to consider an infinite number of steps. In contrast,

we present the subroutine Algorithm 1 that allows to compute an unbiased estimate of

Q(s, a;h) by considering a representative future reward obtained after a finite number of

steps. As with U(h), a parameter γ closer to zero assigns similar weights to present and

future rewards, and γ close to zero prioritizes the present. In that sense, when γ is very

small, we do not need to let the system evolve for long time to get a representative reward.

Likewise, for γ close to one we need to look far away into the future. Again, the geometric

distribution allows us to represent this idea. Specifically, let TQ be a geometric random

variable with parameter γ, i.e., P (TQ = t) = (1− γ)γt, which is finite with probability one.

Then define the estimate of Q(s, a;h) as the sum of rewards collected from step t = 0 until

t = TQ

Q̂(s, a;h) := (1− γ)

TQ∑
t=0

r(st, at) (6.10)

Algorithm 1 summarizes how to obtain Q̂(s, a;h) as in (6.10), and Proposition 1 states that

it is unbiased.

Proposition 5. The output Q̂(s, a;h) of Algorithm 1 is an unbiased estimate of Q(s, a;h).

Proof. To show that the estimate is unbiased we start by computing the expectation of the
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Algorithm 1 estimateQ

Input: s, a, h
1: Initialize: Q̂ = 0, s0 = s, a0 = a
2: Draw an integer TQ form a geometric distribution with parameter γ, P (TQ = t) =

(1− γ)γt

3: for t = 0, 1, . . . TQ − 1 do

4: Collect reward and add to estimate Q̂ = Q̂+ r(st, at)
5: Let system advance st+1 ∼ P atst→st+1

6: Select action at+1 ∼ πh(a|st+1)
7: end for
8: Collect last reward Q̂ = Q̂+ r(sm′ , am′)
9: Scale Q̂ = (1− γ)Q̂

10: return Q̂, sTQ

estimate conditioning on h and the initial state–action pair

E
[
Q̂(s, a;h)

∣∣∣h, s0 = s, a0 = a
]

= E

[
(1− γ)

∞∑
t=0

1(TQ ≥ t)r(st, at)
∣∣∣h, s0 = s, a0 = a

]
,

(6.11)

where we substituted ∞ for the TQ as the last index of the sum, but added null summands

for t > TQ by using the indicator function 1.

With the estimate written as in (6.11) we argue that Q̂(s, a;h) can be obtained equiva-

lently by letting the system evolve towards infinity, and then keeping in the sum only those

rewards for t ≤ TQ. Notice that according to Algorithm 1 TQ is drawn independently of

the system evolution. Furthermore, it will be argued below that the sum and expectation

can be exchanged. With all this in mind we rewrite (6.11) as in

E
[
Q̂(s, a;h)

∣∣∣h, s0 = s, a0 = a
]

= (1− γ)
∞∑
t=0

E [1(TQ ≥ t)]E
[
r(st, at)

∣∣∣h, s0 = s, a0 = a
]

= (1− γ)
∞∑
t=0

γtE
[
r(st, at)

∣∣∣h, s0 = s, a0 = a
]

= Q(s, a;h) (6.12)

where we used that TQ ∼Geom(γ) so that E [1(TQ ≥ t)] = γt.

It remains to proof that it is possible to exchange the sum and the expectation in the

previous expression. To do so, using Assumption 16 and the triangle inequality observe

that for all N > 0 we have that∣∣∣∣∣
N∑
t=0

1(TQ ≥ t)r(st, at)

∣∣∣∣∣ ≤
N∑
t=0

1(TQ ≥ t)Br. (6.13)
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Which by virtue of the monotonicity and the linearity of the expectation implies that

E

[∣∣∣∣∣
N∑
t=0

1(TQ ≥ t)r(st, at)

∣∣∣∣∣
]
≤ BrE

[
N∑
t=0

1(TQ ≥ t)

]
. (6.14)

Observe that the random variable on the right is a monotonic increasing random variable

and thus, by virtue of the monotone convergence theorem we have that

E

[ ∞∑
t=0

1(TQ ≥ t)

]
=
∞∑
t=0

E [1(TQ ≥ t)] =
∞∑
t=0

P (TQ ≥ t) =
∞∑
t=0

γt =
1

1− γ
. (6.15)

Notice that the sequence
∣∣∣∑N

t=0 1(TQ ≥ t)r(st, at)
∣∣∣ is dominated by

∑∞
t=0 1 (TQ ≥ t)Br for

all N ≥ 0 and that the latter has bounded expectation. Then, the Dominated Convergence

Theorem applies (see e.g., [29, Theorem 1.6.7]), and guarantees that indeed the expectation

and sum can be exchanged in (6.11), concluding the proof.

6.3.2 Unbiased Estimate of the Stochastic Gradient

In this section we present a subroutine that uses the estimate Q̂(s, a;h) produced by Al-

gorithm 1 to obtain an unbiased estimate of ∇hU(h). As discussed before, a sample from

ρ(s, a) can be obtained by sampling a time T from a geometric distribution of parameter γ

and running the system T times. Although the resulting estimate in (6.8) can be shown to

be unbiased, which would be enough for the purpose of stochastic approximation, we chose

to introduce symmetry with respect to h(s) as it is justified in Section 6.3.3. Instead of

computing the approximation only at the state-action pair (sT , aT ) we average said value

with Q̂(sT , āT ), where āT = h(sT )− (aT − h(sT ) is the action that is symmetric to aT with

respect to h(sT ) (steps 8–11 in Algorithm 2). Hence, the proposed estimate is

∇̂hU(h, ·) =
1

2(1− γ)

(
Q̂(sT , aT ;h)− Q̂(sT , āT ;h)

)
κ(sT , ·)Σ−1(aT − h(sT )). (6.16)

The subroutine presented in Algorithm 2 summarizes the algorithm to compute our stochas-

tic approximation in (6.16). We claim that it is unbiased in the following proposition.

Proposition 6. The output ∇̂hU(h, ·) of Algorithm 2 is an unbiased estimate of ∇hU(h, ·)
in (6.7).

Proof. To show that the estimate is unbiased we compute the expectation of ∇̂hU(h, ·)
conditioned to h, which in turn can be written as

E
[
∇̂hU(h, ·)

∣∣∣h] = E
[[
∇̂hU(h, ·)

∣∣∣sT , aT ] ∣∣∣h] (6.17)
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Algorithm 2 StochasticGradient

Input: h, s
1: Initialize: s0 = s
2: Draw an integer T form a geometric distribution with parameter γ, P (T = t) = (1−γ)γt

3: Select action a0 ∼ πh(a|s)
4: for t = 0, 1, . . . T − 1 do
5: Advance system st+1 ∼ P atst→st+1

6: Select action at+1 ∼ πh(a|st+1)
7: end for
8: Get estimate of Q(sT , aT ;h) as in Algorithm 1:

Q̂(sT , aT ;h) = estimateQ(sT , aT ;h)

9: Given aT , find symmetric āT = h(sT )− (aT − h(sT ))
10: Get estimate of Q(sT , āT ;h) as in Algorithm 1:

Q̂(sT , āT ;h) = estimateQ(sT , āT ;h)

11: Compute the stochastic gradient ∇̂hU(h, ·) as in (6.16) return ∇̂hU(h, ·)

Using the linearity of the expectation and the fact that κ(sT , ·)Σ−1(aT−h(sT )) is measurable

with respect of the sigma algebra generated by s0 . . . sT and a0 . . . aT we have that

E
[
∇̂hU(h, ·)

∣∣∣h] = E
[
E
[
Q̂(sT , aT ;h)− Q̂(sT , āT ;h)

∣∣∣sT , aT ] κ(sT , ·)
2(1− γ)

Σ−1(aT − h(sT ))
∣∣∣h] .

(6.18)

Using the result of Proposition 5 the previous expression reduces to

E
[
∇̂hU(h, ·)

∣∣∣h] = E
[
(Q(sT , aT ;h)−Q(sT , āT ;h))

κ(sT , ·)
2(1− γ)

Σ−1(aT − h(sT ))
∣∣∣h] . (6.19)

Since aT is normally distributed with mean h(sT ) we have that aT − h(sT ) and h(sT )− aT
are both normally distributed with zero mean. Moreover, āT has the same distribution as

aT . Hence the two expectations on the right hand side of the previous equality are the

same. Adding them yields

E
[
∇̂hU(h, ·)

∣∣∣h] =
1

1− γ
E
[
Q(sT , aT ;h)κ(sT , ·)Σ−1(aT − h(sT ))

∣∣∣h] . (6.20)

The previous expression is equivalent to

E
[
∇̂hU(h, ·)

∣∣∣h] =
1

1− γ
E

[ ∞∑
t=0

1(T = t)Q(st, at;h)κ(st, ·)Σ−1(at − h(st))|h

]
. (6.21)
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Next, we argue that it is possible to exchange the infinity sum and the expectation in the

previous expression. Observe that only one of terms inside the sum can be different than

zero. Denote by t∗ the index corresponding to that term and upper bound the norm of

∇̂hU(h) by

(1− γ)
∥∥∥∇̂hU(h)

∥∥∥ ≤ |Q(st∗ , at∗ ;h)| ‖κ(st∗ , ·)‖
∥∥Σ−1(at∗ − h(st∗))

∥∥ . (6.22)

Using that ‖κ(st, ·)‖ = 1 (cf., Definition 7) and |Q(s, a;h)| ≤ Br/(1 − γ) (cf., Lemma 19),

we can upper bound the previous expression by∥∥∥∇̂hU(h)
∥∥∥ ≤ Br

(1− γ)2

∥∥Σ−1(at∗ − h(st∗))
∥∥

≤ Br

(1− γ)2 λmin(Σ−1/2)

∥∥∥Σ−1/2(at∗ − h(st∗))
∥∥∥ , (6.23)

Notice that Σ−1/2 (at − h(st)) are identically distributed mutlivariate normal distributions,

and thus the expectation of its norm is bounded. The Dominated Convergence Theorem

can be hence used to exchange the sum and the expectation in (6.21). In addition, the draw

of the random variable T is independent of the evolution of the system until infinity. Hence

(6.21) yields

E
[
∇̂hU(h, ·)

∣∣∣h] =
∞∑
t=0

P (t = T )

1− γ
E
[
Q(st, at;h)κ(st, ·)Σ−1(at − h(st))|h

]
=

∞∑
t=0

γtE
[
Q(st, at;h)κ(st, ·)Σ−1(at − h(st))|h

]
= ∇hU(h, ·).

(6.24)

where the last equality coincides with that in (6.7). To be able to write the last equality

we need to justify that it is possible to exchange the sum with the expectation. We do so

next in order to complete proof that the stochastic gradient estimated by Algorithm 2 is

unbiased. Let us define the following sequence of random variables

Sk =

k∑
t=0

γtQ(st, at;h)κ(st, ·)Σ−1(at − h(st)). (6.25)

Use the triangle inequality along with the bounds on Q(st, at;h) and κ(st, ·) from (6.23) to

bound the norm of Sk by

‖Sk‖ ≤
Br

1− γ

k∑
t=0

γt
∥∥Σ−1(at − h(st))

∥∥ . (6.26)
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Observe that the sum in the right is an increasing random variable because all terms in

the sumands are positive. Hence, by virtue of the Monotone Convergence Theorem (see

e.g., [29, Theorem 1.6.6]) we have that

E

[ ∞∑
t=0

γt
∥∥Σ−1(at − h(st))

∥∥] =

∞∑
t=0

γtE
[∥∥Σ−1(at − h(st))

∥∥] . (6.27)

Because Σ−1/2((at − h(st)) is normally dsitributed, its norm has bounded expectation. Use

in addition the fact that the geometric series converges to ensure that the right hand side of

the previous expression is bounded. Sk is therefore dominated by a random variable with

finite expectation. Thus, the Dominated Convergence Theorem allows us to write that

lim
k→∞

E[Sk] = E[ lim
k→∞

Sk]. (6.28)

The latter corresponds to exchanging the sum and the expectation in (6.24).

Now we are in conditions of presenting the complete algorithm for policy gradient in

RKHSs. Each iteration consists of the estimation of ∇̂hU(hk, ·) as described in Algorithm

2 – which uses Algorithm 1 as a subroutine to get unbiased estimates of Q(s, a;h) – and of

the updated

hk+1 = hk + ηk∇̂hU(hk, ·), (6.29)

where ηk is non-summable and square summable, i.e.

∞∑
k=0

ηk =∞ and
∞∑
k=0

η2
k <∞. (6.30)

Algorithm 3 Stochastic Policy Gradient Ascent

Input: step size η0

1: Initialize: h0 = 0
2: for k = 0 . . . do
3: Draw an initial state s0 for Algorithm 2
4: Compute the stochastic gradient:

∇̂hU(hk, ·) = StochasticGradient(hk, s0)

5: Gradient ascent step hk+1 = hk + ηk∇̂hU(hk, ·)
6: end for

Theorem 11. Let {hk, k ≥ 0} be the sequence of functions given by (6.29), where ηk is as

step size satisfying (6.30) and ∇̂hU(hk, ·) is an unbiased estimator of the gradient of the
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functional. With probability one we have that limk→∞ hk = H∗, where H∗ is a random

variable taking values in the set of critical points of the functional U(h) defined in (6.3).

Proof. The proof of this result is the matter of Section 6.4.

The previous result establishes that hk converges with probability one to a critical point

of the functional U(h). A major drawback of Algorithm 3 is that at each iteration the

stochastic gradient ascent iteration will add a new element to the kernel dictionary. Indeed,

for each iteration ∇̂hU(hk, ·) introduces an extra kernel centered at a new sT (cf., (6.16)).

Hence for any k > 0 in order to represent hk we require k dictionary elements. This

translates into memory explosion and thus Algorithm 3, while theoretically interesting, is

not practical. To overcome this limitation, we introduce in the next section a projection on

a smaller Hilbert space so that we can control the model order. Before that, we introduce

a discussion regarding the use of random policies. .

6.3.3 Gaussian policy as an approximation

Our reason to use a randomized Gaussian policy is two-fold: it yields a good approxima-

tion of the gradient of the q-function that would result from a deterministic policy as we

show in Proposition 7, and it effects numerical derivatives when the gradients are handled

via stochastic approximation (see also [89]). Building on these hints, we will propose al-

ternative estimates for faster convergence. In this direction, we consider the Gaussian bell

πh(a|s) with covariance Σ as an approximation to the Dirac’s impulse [112], and its gradient

∇aπh(a|s) = Σ−1(a − h(s))πh(a|s) as an approximation of the impulse’s gradient. Then,

the next proposition follows

Proposition 7. Consider a family of Gaussian policies with Σand let UΣ(s;h) and QΣ(s, a;h)

be the cumulative rewards and q-functions that results from such policies, respectively. Cor-

respondingly, let Q0(s, a;h) := E
[∑∞

t=0 γ
tr(st, at)

∣∣∣h, s0 = s, a0 = a
]

be the q-function that

results from a deterministic policy at = h(st). If ∇aQΣ(s,Σ1/2η + h(s), h) is bounded for

all s, a, h and Σ, then

lim
Σ→0

∫
QΣ(s, a;h)Σ−1(a− h(s))πh(a|s)da = ∇aQ0(s, a;h) (6.31)

and

lim
Σ→0
∇hUΣ(h, ·) =

1

1− γ

∫
∇aQ0(s, a;h)ρ(s)κ(s, ·)ds

where ρ(s) is defined such that ρ(s, a) = ρ(s)πh(a|s).
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Proof. Integrating by parts the expression (6.31) yields∫
QΣ(s, a;h)Σ−1(a− h(s))πh(a|s)da = −QΣ(s, a;h)πh(a|s)

∣∣∣∞
−∞

+

∫
∇aQΣ(s, a;h)πh(a|s) da.

(6.32)

The first term is zero because QΣ(s, a, h) is bounded for all s, a, h and Σ (cf., Lemma 19) and

the Gaussian goes to zero at infinity. To work with the second integral, consider the following

variable η = Σ−1/2 (a− h(s)). By introducing this change of variable πh(a|s)da = φ(η)dη,

where φ(η) is the multivariate normal distribution. Hence, it follows that∫
QΣ(s, a;h)Σ−1(a− h(s))πh(a|s)da =

∫
∇aQΣ(s, a;h)πh(a|s) da

=

∫
∇aQΣ(s,Σ1/2η + h(s), h)φ(η) dη.

(6.33)

Because ∇aQΣ(s,Σ1/2η+h(s), h) is bounded for all s, a, h and Σ we can use the Dominated

Convergence Theorem to exchange the limit and the integral in (6.31) . Hence, it follows

that

lim
Σ→0

∫
QΣ(s, a;h)Σ−1(a− h(s))πh(a|s)da =

∫
lim
Σ→0
∇aQΣ(s,Σ1/2η + h(s);h)φ(η) dη.

(6.34)

We will show afterwards that indeed limΣ→0QΣ(s, a;h) = Q0(s, a; ) the q-function that

results from a deterministic policy at = h(st). This being the case the previous integral

reduces to

lim
Σ→0

∫
QΣ(s, a;h)Σ−1(a− h(s))πh(a|s)da =

∫
∇aQ0(s, h(s);h)φ(η) dη

= ∇aQ0(s, h(s);h),

(6.35)

where in the previous expression we had swaped the derivative with respect to a and the

limit. The proof of this is analogous to the proof that limΣ→0QΣ(s, a;h) = Q0(s, a; ) the

q-function that results from a deterministic policy at = h(st). We do this next to complete

the proof. Observe that for any Σ the q-function can be written as

QΣ(a0, s0;h) =

∞∑
t=0

γt
∫
r(st, at)

t−1∏
u=0

p(su+1|su, au)πh(au+1, su+1) dsda. (6.36)

Taking the limit with Σ → 0, we have that πh(a|s) = δ(a − h(s)). Hence, the previous
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expression yields

lim
Σ→0

QΣ(a0, s0;h) = r(s0, a0) +
∞∑
t=1

γt
∫
r(st, at)

t−1∏
u=0

p(su+1|su, au)δ(au+1 − h(su+1) dsda.

= r(s0, a0) +
∞∑
t=1

γt
∫
r(st, h(st))p(s1|s0, a0)

t−1∏
u=1

p(su+1|su, h(su)) ds.

(6.37)

Which shows that that limΣ→0QΣ(s, a;h) is indeed the q-function that results from a de-

terministic policy at = h(st). The proof of the second part of the proposition follows

analogously.

The assumption of ∇aQΣ(s, a;h) being bounded is satisfied if for instance the deriva-

tives of r(s, a) and p(st+1|s, a) with respect to a are bounded. This interpretation of the

integral in (6.31) as the gradient of Q(s, a;h) can be seen from the perspective of stochastic

approximation. For notational brevity we define Iπ :=
∫
Q(s, a;h)∇aπh(a|s)da, and express

it in terms of expectations

Iπ = Ea∼πh [Q(s, a;h)Σ−1(a− h(s))] (6.38)

Then, an unbiased stochastic approximation can be obtained by sampling two (or more)

instances a and a′ from πh(a|s) and averaging as in Îπ = 1
2Q(s, a;h)Σ−1(a − h(s)) +

1
2Q(s, a′;h)Σ−1(a′ − h(s)). Furthermore, if a′ is the symmetric action of a with respect

to the mean h(s), then the estimator is still unbiased. Define the zero-mean Gaussian vari-

able η = a − h(s) to be the deviation of a from h(s). Thus by symmetry, a′ − h(s) = −η,

and we can rewrite the symmetric estimate as the finite difference

Îπ =
Σ−1η

2
(Q(s, h(s) + η;h)−Q(s, h(s)− η;h)), (6.39)

revealing the gradient structure hidden in (6.38). The interpretation of (6.39) as a derivative

is relevant to our policy method because it reveals the underlying reinforcement mechanisms,

in the sense that the policy update favors directions that improve the reward. Fig.6.1 (left)

represents the field Q(s, a;h) as a function of a ∈ R2, and the gradient estimate Îπ in (6.39)

that is obtained by weighting two opposite directions with the corresponding rewards. Since

the reward in the direction η is relatively higher Îπ(Q) points in this direction.

Fig. 6.1 (right) shows that the direction of ∇aQ(s, a;h) can be approximated more

accurately at the expense of sampling the reward at 2d points in quadrature.
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Figure 6.1: Numerical gradient via stochastic approximation; (left) two-sample approximation,
(right) full-dimension. Red levels represents higher values of Q(s, a;h).

6.4 Convergence Analysis for Unbiased Stochastic Gradient

Ascent

This section contains the proof of Theorem 11. For this purpose let us introduce a proba-

bility space (Ω,F , P ) and define the following filtration defined as a sequence of increasing

sigma-algebras {∅,Ω} = F0 ⊂ F1 ⊂ . . . ⊂ Fk ⊂ . . . ⊂ F∞ ⊂ F , where for each k we have

that Fk is the sigma algebra generated by the random variables h0, . . . , hk. Then, define a

sequence the following sequence of random variables

Vk = U(hk)−B
∞∑
j=k

η2
j (6.40)

where B =
(
L1σ

2 + L2η0σ
3
)
, σ is the constant defined in Lemma 22 and L1 and L2 are

those defined in Lemma 21. Since the sequence ηk is square summable and the expected

discounted reward U(h) is bounded (cf., Lemma 19), the random variable Vk is bounded

for all k ≥ 0. We next show that the sequence (6.40) is a bounded submartingale.

Lemma 14. The sequence Vk defined in (6.40) is a bounded submartingale and it verifies

that

E [Vk+1|Fk] ≥ Vk + ηk ‖∇hU(hk)‖2H . (6.41)

Proof. According to Lemma 19 the value function U(hk) in (6.40) is upper-bounded. Thus
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Vk is also upper bounded since the stepsizes are square-summable according to (6.30).

Observe as well that by definition hk ∈ Fk for all k and therefore Vk is adapted to the

sequence of sigma-algebras. To show that Vk is a submartingale it suffices to show (6.41)

which we do next. Writing the Taylor expansion of U(hk+1) around hk, yields

Vk+1 = U(hk+1)−B
∞∑

j=k+1

η2
j = U(hk) + 〈∇hU(fk), hk+1 − hk〉H −B

∞∑
j=k+1

η2
j , (6.42)

where fk = λhk+(1−λ)hk+1 with λ ∈ [0, 1]. Adding and subtracting 〈∇hU(hk), hk+1 − hk〉H
to the previous expression, using the Cauchy-Schwartz inequality and the result of Lemma

21 we can rewrite the previous expression as

Vk+1 = U(hk) + 〈∇hU(hk), hk+1 − hk〉H + 〈∇hU(fk)−∇hU(hk), hk+1 − hk〉H −B
∞∑

j=k+1

η2
j

≥ U(hk) + 〈∇hU(hk), hk+1 − hk〉H − L1 ‖hk+1 − hk‖2H − L2 ‖hk+1 − hk‖3H −B
∞∑

j=k+1

η2
j .

(6.43)

Let us consider the conditional expectation of the random variable Vk+1 with respect to

the sigma-field Fk. Combine the monotonicity and the linearity of the expectation with the

fact that hk is measurable with respect to Fk to write

E [Vk+1|Fk] ≥ U(hk) + 〈∇hU(hk),E [hk+1 − hk|Fk]〉H − L1E
[
‖hk+1 − hk‖2H |Fk

]
− L2E

[
‖hk+1 − hk‖3H |Fk

]
−B

∞∑
j=k+1

η2
j .

(6.44)

Substitute hk+1 by its expression in (6.9) to write the expectation of the quadratic term as

L1E
[
‖hk+1 − hk‖2H |Fk

]
= η2

kL1E
[
‖∇hU(hk, ·)‖2H |Fk

]
≤ η2

kL1σ
2, (6.45)

where the inequality follows from the bound on the second moment of the stochastic gradient

derived in Lemma 22. Likewise, using the bound for the third moment of the stochastic

gradient, also in Lemma 22 and the fact that ηk is a non increasing sequence, we can write

L2E
[
‖hk+1 − hk‖3H |Fk

]
≤ η3

kL2E
[
‖∇hU(hk, ·)‖3H |Fk

]
≤ η2

kη0L2σ
3. (6.46)
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Substituting and in (6.44) with η2
kL1σ

2 + η2
kη0L2σ

3 = B denoting their sum, it results

E [Vk+1|Fk] ≥ U(hk)−
∞∑
j=k

η2
k(L1σ

2 + η0L2σ
3) + 〈∇hU(hk),E [hk+1 − hk|Fk]〉H (6.47)

= Vk + 〈∇hU(hk),E [hk+1 − hk|Fk]〉H . (6.48)

To complete the proof observe that according to (6.9) hk+1−hk = ηk∇̂hU(hk) and that the

stochastic gradient is an unbiased estimate of the gradient (cf. Proposition 6).

The previous Lemma establishes that Vk is a submartingale. A submartingale is in a

sense a generalization of an increasing function and because it is bounded above it is ex-

pected that it converges. In fact this can be formalized (cf., [29, Theorem 5.2.8]). Moreover,

the expression in (6.41) and the convergence of Vk suggest that the norm of the gradient

‖∇hU(hk, ·)‖ goes to zero as k goes to infinity. We show that this is the case in what fol-

lows. By virtue of Lemma 14 it follows that the sequence Vk defined in (6.40) is a bounded

submartingale and therefore it converges almost everywhere to a limiting random variable

V := limk→∞ Vk such that E|V | < ∞ (cf., [29, Theorem 5.2.8]). Continuing the proof of

Theorem 11, consider the conditional expectation of Vk+1 with respect to the sigma algebra

Fk−1. Since Fk−1 ⊂ Fk it holds that

E
[
Vk+1

∣∣Fk−1

]
= E

[
E
[
Vk+1

∣∣Fk] ∣∣Fk−1

]
. (6.49)

Then, substitute (6.41) (6.49) to obtain

E
[
Vk+1

∣∣Fk−1

]
≥ E

[
Vk + ηk ‖∇hU(hk, ·)‖2

∣∣Fk−1

]
= E

[
Vk
∣∣Fk−1

]
+ ηkE

[
‖∇hU(hk, ·)‖2

∣∣Fk−1

]
,

(6.50)

Next, use again (6.41) to lower bound the first term on the right hand side of the previous

equation

E
[
Vk+1

∣∣Fk−1

]
≥ Vk−1 + ηk−1 ‖∇hU(hk−1, ·)‖2 + ηkE

[
‖∇hU(hk, ·)‖2

∣∣Fk−1

]
. (6.51)

Repeating this procedure of conditioning on the previous sigma algebras recursively one

obtains

E [Vk+1] ≥ V0 + η0 ‖∇hU(h0, ·)‖2 +
k∑
j=1

ηjE
[
‖∇hU(hj , ·)‖2

]
. (6.52)

Since Vk is a sequence of bounded random variables, then by virtue of the Dominated

Convergence Theorem we have that E [V ] = limk→∞ E [Vk]. This result applied to the
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previous inequality results in

E [V ] ≥ V0 + η0 ‖∇hU(h0, ·)‖2 +
∞∑
j=1

ηjE
[
‖∇hU(hj , ·)‖2

]
, (6.53)

with E|V | <∞, hence
∞∑
j=1

ηjE
[
‖∇hU(hj , ·)‖2

]
<∞. (6.54)

The monotone convergence theorem applied to the sum
∑k

j=1 ηj ‖∇hU(hj , ·)‖2 implies that

lim
k→∞

E

 k∑
j=1

ηk ‖∇hU(hj , ·)‖2
 = E

 ∞∑
j=1

ηk ‖∇hU(hj , ·)‖2
 . (6.55)

Since the left hand side of the previous expression is bounded by virtue of (6.54) the latter

implies that

lim
k→∞

k∑
j=0

ηj ‖∇hU(hj , ·)‖2 <∞ a.e. (6.56)

Because the sequence of step sizes ηj is non-summable (cf., (6.30)) the previous expression

implies that

lim inf
k→∞

‖∇hU(hk, ·)‖2 = 0. (6.57)

We are left to show that lim supk→∞ ‖∇hU(hk, ·)‖ = 0 almost everywhere, which we do

by contradiction. Assume that lim supk→∞ ‖∇hU(hk(ω), ·)‖ = ε > 0 for some ω ∈ Ω. Then,

there exist subsequences {mj} and {nj} such that mj < nj < mj+1 and

‖∇hU(hk, ·)‖ >
ε

3
(6.58)

for mj ≤ k < nj and

‖∇hU(hk, ·)‖ ≤
ε

3
(6.59)

for nj ≤ k < mj+1, where we have dropped the ω to simplify the notation, but hereafter

we argue for a specific sample point in the probability space. It is proved in Lemma 23 in

the appendix, that the sequence

Sk =
k∑
j=0

ηj

(
∇̂hU(hj)−∇hU(hj)

)
=

k∑
j=0

ηjej (6.60)

converges to a finite limit with probability one. By virtue of this result and (6.56) there
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exists j̄ such that

∞∑
k=mj̄

ηk ‖∇hU(hk, ·)‖2 < min

{
ε2

36L1
,
ε3/2

6
√

6L2

}
(6.61)

and ∥∥∥∥∥∥
∞∑

k=mj̄

ηkek

∥∥∥∥∥∥ < min

{
ε

12L1
,
ε1/2

2
√

6L2

}
(6.62)

For any j ≥ j̄ and any m with mj ≤ m < nj , by virtue of Lemma 21, we have

∥∥∇hU(hnj , ·)−∇hU(hm, ·)
∥∥ ≤ L1

∥∥hnj − hm∥∥+ L2

∥∥hnj − hm∥∥2
, (6.63)

Recall that the difference hnj − hm can be written as

hnj − hm =

nj−1∑
k=m

ηk∇̂hU(hk, ·) =

nj−1∑
k=m

ηk∇hU(hk, ·) +

nj−1∑
k=m

ηk

(
∇̂hU(hk, ·)−∇hU(hk, ·)

)
.

(6.64)

Thus, defining the error ek = ∇̂hU(hk, ·)−∇hU(hk, ·), the following upper bound holds

∥∥hnj − hm∥∥ ≤ nj−1∑
k=m

ηk ‖∇hU(hk, ·)‖+

∥∥∥∥∥
nj−1∑
k=m

ηkek

∥∥∥∥∥ ≤ 3

ε

nj−1∑
k=m

ηk ‖∇hU(hk, ·)‖2 +

∥∥∥∥∥
nj−1∑
k=m

ηkek

∥∥∥∥∥ ,
(6.65)

where in the last inequality we used that that according to (6.58) for all k such m ≤ k < nj

we have that (3/ε) ‖∇hU(hk, ·)‖ ≥ 1. Using the bounds on the tails (6.61) and (6.4) it holds

that ∥∥hnj − hm∥∥ ≤ 3

ε

ε2

36L1
+

ε

12L1
=

ε

6L1
(6.66)

and that ∥∥hnj − hm∥∥ ≤ 3

ε

ε3/2

6
√

6L2
+

ε1/2

2
√

6L2
=

√
ε

6L2
. (6.67)

Replacing the previous bounds in (6.63) yields
∥∥∇hU(hnj , ·)−∇hU(hm)

∥∥ ≤ ε/3. The latter

together with (6.59) implies that ‖∇hU(hm, ·)‖ < 2ε/3 for all m such mj ≤ m < nj , which

contradicts (6.59) and therefore the assumption that lim supk→∞ ‖∇hU(hk, ·)‖ > 0. Hence,

it must hold that limk→∞ ‖∇hU(hk, ·)‖ = 0.
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6.5 Sparse Projections in the Function Space

As observed before, the update (6.9) requires the introduction of a new element κ(sTk , ·) of

the kernel dictionary at each iteration, thus resulting in memory explosion. To overcome

this limitation we modify the stochastic gradient ascent by introducing a projection over a

RKHS of lower dimension as long as the induced error remains below a given compression

budget. This algorithm is known as Orthogonal Match and Pursuit [129] and we summarize

and adapt it to policy gradient ascent it in Algorithm 4. Starting with the policy h0 ≡ 0,

each stochastic gradient ascent iteration defines a new policy

h̃k+1 = hk + η∇̂hU(hk, ·), (6.68)

where ∇̂hU(hk, ·) is that in (6.16). The difference between the updates (6.68) and (6.29)

is that in (6.68) hk =
∑Mk

j=1w
(k)
j κ(s

(k)
j , ·) is represented by a reduced Mk ≤ k number of

states s
(k)
j and weights w

(k)
j , as it results from the pruning procedure below, (cf., Mk = k

for hk+1 in (6.29)).

With state sTk being sT in step 8 of Algorithm 2, and

w̃k := η
Q̂(sTk , aTk ;hk)− Q̂(sTk , āTk ;hk)

2(1− γ)
Σ−1(aTk − hk(sTk)), (6.69)

h̃k+1 =

Mk∑
j=1

w
(k)
j κ(s

(k)
j , ·) + w̃kκ(STk , ·). (6.70)

Hence, hk is represented by dictionary Dk = [s
(k)
1 , . . . , s

(k)
Mk

] and associated weights wk =[(
w

(k)
1

)>
, . . . ,

(
w

(k)
Mk

)>]>
, and h̃k+1 is represented by the updated D̃k+1 = [Dk, sTk ] and

w̃k+1 = [w>k , w̃
>
k ]>, which has model order M̃k+1 = Mk + 1. Then, to avoid memory

explosion, we prune the dictionary as long as the induced error stays below a prescribed

bound ε > 0. We start by storing copies of the previous dictionary, i.e., define Dk+1 = D̃k+1

and wk+1 = w̃k+1. Let H
Djk+1

be the space spanned by all the elements of Dk+1 except for

the j-th one. For each j = 1 . . .Mk+1 we identify the less informative dictionary element

by solving

ej = min
h∈H

D
j
k+1

∥∥∥h− h̃k+1

∥∥∥2

H
= cj + min

w∈RpMk+1−1
w>K

Djk+1,D
j
k+1

w − 2w>K
Djk+1,D̃k+1

w̃k+1,

(6.71)

which results from expanding the square after substituting h and h̃k+1 by their representa-
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tions as weighted sums of kernel elements, and upon defining the block matrices K
Djk+1,D

j
k+1

and K
Djk+1,D̃k+1

whose (l,m)-th blocks of size p × n are κ(s
(k)
l , s

(k)
m ) and κ(s

(k)
l , s̃

(k)
m ), re-

spectively, with s
(k)
l and s

(k)
m being the l-th and m-th elements of Dj

k+1, and with s̃
(k)
l

correspondingly in D̃k+1. Problem (6.71) is a least-squares problem with the following

Algorithm 4 Kernel Orthogonal Matching Pursuit (KOMP)

Input: function h̃k defined by Dictionary D̃k ∈ Rn×M̃k weights w̃k ∈ Rp×M̃k and compres-
sion budget ε > 0

1: Initialize: Dk = D̃k, Wk = W̃k, Mk = M̃k, e
∗ = 0

2: while e∗ < ε and Mk > 0 do
3: for j = 1 . . .Mk do
4: Find minimal error ej by solving (6.71)
5: end for
6: Less informative element j∗ = argminj ej
7: Save error e∗ = ej∗

8: if Error smaller than compression budget e∗ < ε then
9: Prune Dict., Dk ← Dj∗

k , Mk ←Mk − 1
10: Update Weights as in (6.72)

wk = K†
Djk,D

j
k

K
Djk,D̃k

w̃k

11: end if
12: end while
13: return Dk,wk

closed-form solution

w∗j = K†
Djk+1,D

j
k+1

K
Djk+1,D̃k+1

w̃k+1, (6.72)

where, (·)† denotes the Moore-Penrose pseudo-inverse. After computing all compression er-

rors ej we chose the dictionary element that yields the smallest error j∗ = argminj=1...Mk+1
ej ,

we remove the j∗-th column from the dictionary Dk+1, i.e., we redefine Dk+1 = Dj∗

k+1 and

the model order Mk+1 = Mk+1 − 1 and update the corresponding weights as wk+1 = w∗j∗ .

We repeat the process as long as the minimum compression error remains below the com-

pression budget, i.e., minj=1...Mk+1
ej < ε. The output of the pruning process is a function

hk+1 that is represent by at most the same number of elements than h̃k+1 and such that the

error introduced in this approximation is, by construction, smaller than the compression

budget ε. This output can be interpreted as a projection over a RKHS of smaller dimension.

Let Dk+1 be the dictionary that Algorithm 4 outputs. Then, the resulting policy can be

expressed as

hk+1=PHDk+1

[
h̃k+1

]
=PHDk+1

[
hk + η∇̂hU(hk, ·)

]
, (6.73)
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where the operation PHDk+1
[·] refers to the projection onto the RKHS spanned by the

dictionary Dk+1. The algorithm described by (6.68) and (6.73) is summarized in Algorithm

5. By projecting over a smaller subspace we control the model order of the policy hk.

However, the induced error translates into an estimation bias on the estimate of ∇hU(h, ·)
as we detail in the next proposition

Algorithm 5 Projected Stochastic Policy Gradient Ascent

Input: step size η0, compression budget ε
1: Initialize: h0 = 0
2: for k = 0 . . . do
3: Compute ∇̂hU(hk, ·) = StochasticGradient(hk)
4: Update policy via stochastic gradient ascent

h̃k+1 = hk + η∇̂hU(hk, ·)

5: Reduce model order hk+1 = KOMP(h̃k+1, ε)
6: end for

Proposition 8. The update of Algorithm 5 is equivalent to running biased stochastic gra-

dient ascent, with bias

bk = PHDk+1

[
hk + η∇̂hU(hk, ·)

]
−
(
hk + η∇̂hU(hk, ·)

)
. (6.74)

bounded by the compression budget ε for all k.

This proposition allow us to rewrite (6.73) as

hk+1 = hk + η∇̂hU(h, ·) + bk, (6.75)

with ‖bk‖ ≤ ε.

Proof. From (6.73) and adding and subtracting η∇̂hU(hk, ·), it is possible to write the

difference hk+1 − hk as

hk+1 − hk = PHDk+1

[
hk + η∇̂hU(hk, ·)

]
−
(
hk + η∇̂hU(hk, ·)

)
+ η∇̂hU(hk, ·). (6.76)

Using the definition of the bias (6.74) the previous expression can be written as

hk+1 = hk + η∇̂hU(h, ·) + bk. (6.77)

To complete the proof, notice that by definition bk is the error of the compression and thus

its norm is bounded by the compression budget ε.
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As stated by the previous proposition the effect of introducing the KOMP algorithm is

that of updating the policy by running gradient ascent, where now the estimate is biased.

Hence, we claim in the following result that Stochastic Policy Gradient Ascent (Algorithm

5) converges to a neighborhood of a critical point of the expected discounted reward, whose

size depends on the step-size of the algorithm as well as on compression error allowed.

However, whereas the model order of the function obtained via stochastic gradient ascent

without projection (Algorithm 3) could grow without bound, for the projected version we

can ensure that the model order obtained is always bounded. We formalize these results

next.

Theorem 12. Let η > 0 and ε > 0 for all k ≥ 0. Then there exists a constant C :=

C(γ, η, ε,Σ, Br, ) such that

lim inf
k→∞

‖∇hU(hk, ·)‖H ≤
ε

2η
+

√
ε2 + 4η3C

2η
, (6.78)

with probability one. Moreover, there exists a constant M := M(ε) > 0 such that for every

k ≥ 0 the model order Mk needed to represent the function hk is such that Mk ≤M .

Proof. The proof of this result is the matter of Section 6.6.

Observe that the optimal selection is ε = O(η3/2) in the sense that selecting a smaller

compression factor, the total error bound is of O(η3/2). In that sense, such selection is not

optimal, because we force a small compression error – which entails larger model order –

and there is no benefit in terms of the convergence error. Then the parameter η is to be

chosen trading-off accuracy for speed of convergence.

6.6 Convergence Analysis of Sparse Policy Gradient

This section contains the proof of Theorem 12. It starts by providing a lower bound on the

expectation of random variables U(hk+1) conditioned to the sigma field Fk

Lemma 15. The sequence of random variables U(hk) satisfies the following inequality

E [U(hk+1)|Fk] ≥ U(hk)− η2C + η ‖∇hU(hk)‖H
(
‖∇hU(hk)‖H −

ε

η

)
, (6.79)

where C is the following positive constant

C = L1

(
σ2 + 2

ε

η
σ +

ε2

η2

)
+ ηL2

(
σ2 + 2

ε

η
σ +

ε2

η2

)3/2

, (6.80)
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where L1 and L2 are the constants defined in Lemma 21 and σ is the constant defined in

Lemma 22.

Proof. Consider the Taylor expansion of U(hk+1) around hk,

U(hk+1) = U(hk) + 〈∇hU(fk, ·), hk+1 − hk〉H . (6.81)

where fk = λhk + (1− λ)hk+1 with λ ∈ [0, 1]. Adding and subtracting

〈∇hU(hk, ·), hk+1 − hk〉H (6.82)

to the previous expression, using the Cauchy-Schwartz inequality and the result of Lemma

21 we can rewrite (6.81) as

U(hk+1) = U(hk) + 〈∇hU(hk, ·), hk+1 − hk〉H + 〈∇hU(fk, ·)−∇hU(hk, ·), hk+1 − hk〉H
≥ U(hk) + 〈∇hU(hk, ·), hk+1 − hk〉H − L1 ‖hk+1 − hk‖2H − L2 ‖hk+1 − hk‖3H .

(6.83)

Let us consider the conditional expectation of the random variable U(hk+1) with respect

to the sigma-field Fk. Combine the monotonicity and the linearity of the expectation with

the fact that hk is measurable with respect to Fk to write

E [U(hk+1)|Fk] ≥ U(hk) + 〈∇hU(hk, ·),E [hk+1 − hk|Fk]〉H
− L1E

[
‖hk+1 − hk‖2H |Fk

]
−L2E

[
‖hk+1 − hk‖3H |Fk

]
. (6.84)

Substitute (6.75) for hk+1 to write the expectation of the quadratic term in the right hand

side of (6.84) as

L1E
[
‖hk+1 − hk‖2H |Fk

]
= L1E

[∥∥∥η∇̂hU(h, ·) + bk

∥∥∥2

H
|Fk
]

(6.85)

≤ L1

(
η2E

[∥∥∥∇̂hU(hk, ·)
∥∥∥2

H
|Fk
]

+ 2ηεE
[∥∥∥∇̂hU(hk, ·)

∥∥∥
H
|Fk
]

+ ε2
)
, (6.86)

where we have used that ‖bk‖ ≤ ε as stated in Proposition 8. Using the bounds provided

in Lemma 22, the previous expression can be upper bounded by

L1E
[
‖hk+1 − hk‖2H |Fk

]
≤ η2L1

(
σ2 + 2

ε

η
σ +

ε2

η2

)
. (6.87)
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With a similar procedure we obtain

L2E
[
‖hk+1 − hk‖3H |Fk

]
≤ η2η0L2

(
σ2 + 2

ε

η
σ +

ε2

η2

)3/2

(6.88)

Observe that the sum of (6.87) and (6.88) is equal to η2C in (6.80). Then, substitute (6.87)

and (6.88) in (6.84) to obtain

E [U(hk+1)|Fk] ≥ U(hk)− Cη2 + 〈∇hU(hk),E [hk+1 − hk|Fk]〉H . (6.89)

Finally, (6.79) results from applying the Cauchy-Schwartz inequality to the inner product

in (6.89) and then substituting (6.75) for hk+1, with ‖bk‖ ≤ ε.

The previous Lemma establishes a lower bound on the expectation of U(hk+1) condi-

tioned to the sigma algebra Fk. This lower bound however, is not enough for U(hk) to

be a submartingale, since the sign of the term added to U(hk) in the right hand side of

(6.79) depends on the norm of ∇hU(hk). This is in contrast with the situation in Lemma

14, where the term was always positive. The origin of this issue lies on the bias introduced

by the sparsification. However, when the norm of the gradient is large the term is negative

and we have a submartingale while a neighborhood of the critical point is not reached. To

formalize this idea let us define the neighborhood as

‖∇hU(hk, ·)‖H ≤
ε

2η
+

√
ε2 + 4η3C

2η
, (6.90)

and the corresponding stopping time

N = min
k≥0

{
‖∇hU(hk, ·)‖H ≤

ε

2η
+

√
ε2 + 4η3C

2η

}
. (6.91)

In order to prove (6.78) we will argue that either the limit exists and satisfies the

bound in (6.78), or P (N < ∞) = 1, in which case (6.90) must be recursively satisfied

after a finite number of iterations so that (6.78) holds. In this direction we define Vk =

(U(h∗)− U(hk))1(k ≤ N), with 1(·) being the indicator function, and prove that Vk is

a non-negative submartingale. Indeed, since U(h∗) maximizes U(h), Vk is always non-

negative. In addition Vk ∈ Fk since U(hk) ∈ Fk and 1(k − 1 ≤ N) ∈ Fk. To show that

E[Vk+1|Fk] ≤ Vk start by using that 1(k ≤ N) ∈ Fk and write

E [Vk+1|Fk] = 1(k + 1 ≤ N)E [U(h∗)− U(hk+1)|Fk] (6.92)
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Using (6.79) we can upper bound E [Vk+1|Fk] as

E [Vk+1|Fk] ≤ 1(k + 1 ≤ N) (U(h∗)−U(hk))− 1(k + 1 ≤ N)Wk. (6.93)

with

Wk := η ‖∇hU(hk, ·)‖2H − ε ‖∇hU(hk, ·)‖H − η
2C (6.94)

Notice that the bound in (6.90) is root of (6.94) as a polynomial in the variable

‖∇hU(hk, ·)‖. It follows that Wk > 0 as long as k < N , so that 1(k + 1 ≤ N)Wk ≥ 0

for all k. Also notice that the indicator function 1(k ≤ N) is non-increasing with k, so

that 1(k + 1 ≤ N) ≤ 1(k + 1 ≤ N). Using these two facts, it follows from (6.93) that

E[Vk+1|Fk] ≤ Vk. Thus, Vk is a nonnegative submartingale and therefore it converges to

random variable V such that E[V ] ≤ E[V0] (see e.g., [29, Theorem 5.29]). Rearranging the

terms in (6.93) and considering the total expectation in both sides of the inequality we have

that

E

 k∑
j=0

1(j < N)Wk

 ≤ E[V0]− E [Vk+1] . (6.95)

Again, by definition of the stopping time N , 1(k < N)Wk is nonnegative, and thus the

sequence of random variables

Sk =
k∑
j=0

1(j < N)Wj , (6.96)

is monotonically increasing. Hence, use the Monotone Convergence Theorem (see e.g., [29,

Theorem 1.6.6]) to write

lim
k→∞

E

 k∑
j=0

1(j < N)Wj

 = E

 ∞∑
j=0

1(j < N)Wj

 . (6.97)

On the other hand, U(hk) is bounded according to Lemma 19, thus Vk is a bounded sequence

and then we use the Dominated Convergence Theorem (see e.g. [29, Theorem 1.6.7]) to

obtain

E[V ] = E[ lim
k→∞

Vk] = lim
k→∞

E[Vk]. (6.98)

Taking the limit of k going to infinity in both sides of (6.95) and using (6.97) and (6.98)
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we have that

E

 ∞∑
j=0

1(j < N)Wj

 ≤ E[V0]− E[V ] <∞. (6.99)

Observe that the expectation on the left hand side of the previous expression can be com-

puted as

P (N<∞)E

N−1∑
j=0

Wj

∣∣∣
N<∞

+P (N =∞)E

 ∞∑
j=0

Wj

∣∣∣
N=∞

 . (6.100)

By virtue of Lemma 20, ‖∇hU(h, ·)‖ is uniformly bounded for all h ∈ H. Thus, the first

sum in the previous expression is finite. Hence,

P (N =∞)E

 ∞∑
j=0

Wj

∣∣∣N =∞

 <∞. (6.101)

The latter can only hold if P (N = ∞) = 0 or if the expectation of the sum is bounded.

If the former happens it means that infinitely often ‖∇hU(h, ·)‖ visits the neighborhood

(6.90), and thus (6.78) holds. It remains to analyze the case where the expectation of the

sum is finite. Using the Monotone Convergence Theorem one can exchange the expectation

with the sum and therefore we have that

∞∑
j=0

E
[
Wj

∣∣∣N =∞
]
<∞, (6.102)

which implies that limk→∞ E[Wk|N =∞] = 0. Thus

lim
k→∞

E
[(
η ‖∇hU(hk, ·)‖2 − ‖∇hU(hk, ·)‖ ε− η2C

)]
= 0. (6.103)

Moreover, because the norm of the gradient is bounded, the Dominated Convergence The-

orem allows us to write

E
[

lim
k→∞

(
η ‖∇hU(hk, ·)‖2 − ‖∇hU(hk, ·)‖ ε− η2C

)]
= 0. (6.104)

Because the random variable is nonnegative it must hold that

lim
k→∞

‖∇hU(hk, ·)‖H =
ε

2η
+

√
ε2 + 4η3C

2η
. (6.105)

Thus, (6.78) holds as well if P (N = ∞) > 0. It remains to be shown that the model
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order of the representation is bounded for all k. The proof of this result is identical to that

in [60, Theorem 3].

6.7 Numerical Experiments

We benchmarked Stochastic Projected Stochastic Policy Gradient Ascent on a classic control

problem, the Continuous Mountain Car [2], which is featured in OpenAI Gym [1]. In this

problem, the state space is n = 2 dimensional, consisting of position and velocity, bounded

within [−1.2, 0.6] and [−0.07, 0.07], respectively. The action space is a scalar representing

the real valued force on the car. The reward function is 100 when the car reaches the goal

at position 0.6, and in every episode it substract 0.1
∑tf

t=t0
a2
t , where at are the actions

selected. Because of the penalization of the actions, in the space of policies there are local

maxima around policies that keep the car stationary in order to realize roughly zero reward.

In order to avoid converging to such policy, we set h0 to have kernels at (0.65,−0.02) and

(−0.35, 0.02) with respective weights 0.5 and −0.5. In particular, we work with Gaussian

kernels, that are nonsymmetric due to the difference in the scales of position and velocities

attained by the mountain cart. Their covariance matrix is given by diag([0.15, 0.015]).

The results obtained with Algorithm 5 for the following paramters: γ = 0.001, Σ = 1.0,

η = 0.0005 and ε = 0.005 are given in figures 6.2 and 6.3. In the former, we plot the

average reward during training (top figure), and the model order (bottom figure). The

policy learned from this experiment is given in Figure 6.3, where we plot the policy learned

after after 50,000 iterations. From 6.2 we can observe that the policy converges to a solution

that allows to solve the problem in about 15000 training examples with the exception of

the two dips that can be observed around 10,000 and 30,000 iterations. These are probably

the result of using a step size that is too large since due to the sensitivity of the reward

function – which incurs a positive reward only when the objective is reached – small changes

in the policy might entail large changes in the reward. The challenge in the mountain car

is that by just accelerating to the right it is not possible to escape the valey. Hence, the

optimal policy needs to be such that it increases its velocity. In particular, in Figure 6.3 we

can observe that for positive velocities the acceleration is mostly positive, while when the

velocity is negative the force is also negative.

In contrast to other Kernel based RL algorithms, such as [126], ours manages to sig-

nificantly reduce the computational complexity by only updating the dictionary after a

sequence of actions. In practice, our algorithm performs cheap actions (as measured by

time and computational complexity) in order to perform relatively few computationally

intensive learning steps. In particular, the most costly subroutine is KOMP (Algorithm 4)

and we resource to it only once per episode.
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Figure 6.2: Result of representative run of Algorithm 5 over 50,000 Continuous Mountain Car
episodes. The top figure shows the average reward obtained by the policy –showed in Figure 6.3–
after each training step (episode). An average reward over 90 (green) indicates that we have solved
the problem, reaching the goal location. The bottom figure shows the model complexity (number of
Dictionary elements) during training remains bounded.
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Figure 6.3: Learned policy for Continuous Mountain Car after 50,000 episodes.
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6.8 Conclusion

We have considered the problem of learning a policy that belongs to a RKHS in order

to maximize the functional defined by the expected discounted cumulative reward that an

agent receives. In particular, we presented an algorithm that allows to obtain an unbiased

estimate of the gradient of the functional with respect to the policy. By running stochastic

gradient ascent in the RKHS we were able to show convergence of the algorithm to a critical

point of the functional. This algorithm, of theoretical interest, is not practical since the

number of kernel elements that requires grows unbounded. To overcome this limitation,

we combined the previous algorithm with destructive Kernel Orthogonal Matching Pursuit

to ensure that the model order remains bounded. The later comes at the price of loosing

accuracy in the solution and thus, the convergence is to a neighborhood of the critical

points. We tested this algorithm in the mountain car problem and its online version in a

navigation problem in an environment with obstacles.
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Chapter 7

Future Work

The taxonomy presented in Chapter 1 takes into account three mayor characteristics of a

minimum definition of autonomy. These are related to the complexity in which the agent

operates, the type of information available about the environment and whether the agent is

myopic or farsighted. In Chapters 2 through 6 we provide solutions for different situations

in which different levels of complexity in each of these characteristics where present. The

philosophy of all these solutions is to always use greedy controllers, which due to their

simplicity do not require the involvement of logic. The reason for doing so, is to reduce at

the minimum the logic required in a complex system to perform relatively simple tasks, so it

can be fully devoted to the high level thinking and reasoning. While we provided solutions

for some of those problems, there are scenarios that still need to be addressed. We briefly

describe these and its possible solutions in what follows.

7.1 Saddle Point algorithms in punctured spaces

The solutions of unconstrained optimization problems in punctured spaces developed for

complete and deterministic information in Chapter 2 and for local and stochastic infor-

mation in Chapter 3 suggest that such approaches could be combined with Saddle Points

algorithms as the one described in Chapter 4. Such approach would allow the agent to

achieve sublinear regret and fit in a space with obstacles. In the case where the information

about the constraints is either deterministic or stochastic, if we were given the optimal La-

grange multiplier for the problem λ∗, we could find the solution of the system by minimizing

the Lagrangian evaluated at λ∗. This is

x∗ = argmin
x∈Rn

L(x, λ∗). (7.1)
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Because, the Lagrangian is a convex function in x, the previous problem is not different

than the problems studied in Chapters 2 and 3. And it can be solved by descending along

the negative gradient of the Lagrangian with respect to x. It is clear on the other hand, that

having the value of λ∗ is not a realistic scenario in most applications, where the constraints

are measured in operation time. In that sense a posibility – similar to the classic Saddle

Point algorithm– would be to run gradient descent along a potential of the Koditscheck-

Rimon form, where the attractive potential is now L(x, λ). The multipliers, in turn could

be updated by runing gradient ascent with respect to the dual variables, yielding an update

that is proportional to the constraint violation.

7.2 Reinforcement Learning with constraints

Similarly to the problem with punctured spaces, in the current formulation of non-myopic

agents discussed in Chapter 6 we do not take into account constraints that need to be

satisfied but just one functional that needs to be maximized. The hope in this case is that

under some problem restrictions, we could be able to generalize the saddle point algorithm to

find a policy that is able to satisfy a set of constraints, in the same sense that the stochastic

policy gradient ascent discussed in Chapter 6 generalizes stochastic gradient ascent. In

this setting the agent would be faced with a set of m + 1 rewards ri(s, a) with i = 0 . . .m

that represent each one of the constraints to be satsified in the long run and the objective

function. Defining

Ui(h) = E

[ ∞∑
t=0

γtri(st, at)

]
, (7.2)

where the expectations are with respect to the probability distribution of the trajectories

of the system. The optimization problem would be therefore, to find a policy h ∈ H such

that

h∗ := argmax U0(h)

s.t. Ui(h) ≥ 0 for all i = 1 . . .m
(7.3)

As in the case of the parametric optimization, we could think about constructing a La-

grangian for the previous optimization problem, by definining a set of multipliers λ ∈ Rm+
and weighting each constraint by its multiplier

L(h, λ) = U0(h) +
m∑
i=1

λiUi(h). (7.4)
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Then, a possible solution to the problem (7.3) would be to update the policy by running

gradient ascent

hk+1 = hk + ηk∇hL(hk, λk, ·), (7.5)

and the weights of the multipliers by running gradient descent

λik+1 =
[
λik − ηkUi(hk, λk)

]+
. (7.6)

In the previous setting the problems of of the form (7.3) are not necessarily convex, so the

aim would be to get local convergence results.
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Appendix A

Appendix

A.1 Proofs of the results in Chapter 2

A.1.1 Proof of Lemma 3

Since ϕk is twice continuously differentiable and its maximum is attained in the boundary of

the compact set F (cf., Lemma 1) it must be the case that there exists xc ∈ int(F) such that

∇ϕk(xc) = 0. In Lemma 1 it was argued that for all x ∈ F it holds that fk0 (x) + β(x) > 0.

Hence ∇ϕk(xc) = 0 (cf., (A.44)) if and only if

kβ(xc)∇f0(xc) = f0(xc)∇β(xc) (A.1)

In cases where ∇β(x∗) = 0 or f0(x∗) = 0 then the previous equation is satisfied for xc = x∗

and x∗ is a critical point. By virtue of Lemma 2 there are not critical points in the boundary

of the free space, hence the left hand size of the above equation is not zero for any xc 6= x∗.

Since x∗ ∈ int(F) (see Assumption 2) there exists δ0 > 0 such that for any δ ∈ (0, δ0] we

have {
x ∈ F

∣∣β(x) < δ
}
∩
{
x ∈ F

∣∣‖∇f0(x)‖ < δ
}

= ∅ (A.2)

Since f0 is non negative and both f0, β are twice continuously differentiable (see Assumption

2) and F is a compact set, there exists C > 0 such that f0(x)‖∇β(x)‖ < C for all x ∈ F .

Hence, from (A.1) we have that for any δ1 ∈ (0, δ0] there exists K1 > 0 such that if k > K1

then

β(xc)‖∇f0(xc)‖ < δ2
1 . (A.3)

By construction both β(xc) and ‖∇f0(xc)‖ cannot be smaller than δ1 and if they are both

larger than δ1 then the above inequality is violated. Hence, either β(xc) < δ1 or ‖∇f0(xc)‖ <
δ1. Moreover, using the same argument for the individual functions βi(x), since the obstacles

do not intersect (cf., Assumption 1) there exists ε′0 > 0 such that for any ε ∈ (0, ε′0] there
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exists K0′(ε) > 0 such that if k > K0′(ε) then xc is such that either ‖∇f0(xc)‖ < ε or for

exactly one i we have that βi(xc) < ε. We next show that the critical points cannot be

pushed towards the external boundary of the free space. Assume that for all ε ∈ (0, ε′0] there

exists K0′(ε) such that for all k > K0′(ε) there is a critical point xc satisfying β0(xc) < ε.

Let us write the gradient of ∇β(xc) as in (2.26)

∇β(xc) = β̄0(xc)∇β0(xc) + β0(xc)∇β̄0(xc) (A.4)

Since the workspace is a convex set, it is the super level set of a concave function (cf., (2.6)).

Thus it holds that ∇β0(xs)
>(xs−x∗) < 0. Since ∇β̄0 is continuous (cf. Assumption 1), over

the compact set F it is bounded. Then, choose ε0 < ε0′ such that ∇β(xs)
>(xs−x∗) < 0. It

follows from (A.1) that at a critical point ∇β(xs) and ∇f0(xs) point in the same direction

and therefore there exists K0(ε0) > 0 such that if k > K0(ε0) then ∇f0(xs)
>(xs − x∗) < 0.

The latter however contradicts the first order condition of convexity (see e.g. [16]). Hence,

for any ε < ε0 there exists K0(ε) > 0 such that if k > K0(ε) for any critical point we have

that β0(xc) > ε0.

A.1.2 Proof of Lemma 4

Let xs be a critical point such that βi(xs) < ε0 for some i = 1 . . .m where ε0 is that of

Lemma 3 and let v be a unit vector normal to ∇β(xs). If we prove that v>∇2ϕk(xs)v < 0

for some direction v, then xs is not a local minimum. Differentiating (A.44) and using the

fact that for a critical point (A.1) holds, we can write

∇2ϕk(xs) =
(
fk0 (xs) + β(xs)

)−1− 1
k

(
β(xs)∇2f0(xs) + (1− 1

k
)∇f0(xs)∇β(xs)

>

−f0(xs)∇2β(xs)

k

)
.

(A.5)

In Lemma 1 we argued that ∀x ∈ F it holds that fk0 (x) +β(x) > 0. Thus, along a direction

v satisfying v>∇β(xs) = 0, we have that v>∇2ϕk(xs)v < 0 if and only if

kβ(xs)v
>∇2f0(xs)v − f0(xs)v

>∇2β(xs)v < 0. (A.6)

Since x∗ := argmin f0(x), then∇f0(x∗) = 0 and we can use (2.12) to lower bound∇f0(xs)
>(xs−

x∗) as

λmin‖xs − x∗‖2 ≤ ∇f0(xs)
>(xs − x∗). (A.7)
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Since xs is a critical point (A.1) holds. Multiply both sides of the equation by (xs − x∗) to

write

kβ(xs)∇f0(xs)
>(xs − x∗) = f0(xs)∇β(xs)

>(xs − x∗). (A.8)

From Lemma 3 we have that ‖∇f0(xs)‖ > ε0 which is independent of k, hence ‖xs − x∗‖
is bounded away from zero by a constant independent of k. Therefore we can upper bound

kβ(xs) by

kβ(xs) ≤ f0(xs)
∇β(xs)

>(xs − x∗)
λmin‖xs − x∗‖2

. (A.9)

Substituing ∇β(xs) in (A.9) by its expression in (2.26) yields

kβ(xs) ≤
f0(xs)

λmin‖xs − x∗‖2
β̄i(xs)∇βi(xs)>(xs − x∗)

+
f0(xs)

λmin‖xs − x∗‖2
βi(xs)∇β̄i(xs)>(xs − x∗).

(A.10)

We argue next that the second term of (A.10) is bounded by a constant. As argued in the

previous paragraph ‖xs − x∗‖ is bounded away from zero by a constant independent of k.

In addition the remaining factors are the product of continuous functions in a bounded set,

thus they are uniformly bounded as well. Let B > 0 be a constant bounding the terms

multiplying βi(xs) in the second term of (A.10), i.e,

f0(xs)

λmin‖xs − x∗‖2
∇β̄i(xs)>(xs − x∗) ≤ B. (A.11)

Now, let us focus on the second term of (A.6), in particular the Hessian of β(xs) can be

computed by differentiating (2.26)

∇2β(xs) = βi(xs)∇2β̄i(xs) + β̄i(xs)∇2βi(xs) + 2∇βi(xs)∇>β̄i(xs).

It follows from the result of Lemma 3 and the non negativity of the objective function (cf.,

Assumption 2) that both f0(xs) and β̄i(xs) are bounded away form zero. Then, combine

(2.26) and (A.1) to express the gradient of ∇βi(xs) as

∇βi(xs) = kβi(xs)
∇f0(xs)

f0(xs)
− βi(xs)

∇β̄i(xs)
β̄i(xs)

. (A.12)

Recall from (A.1) that at a critical point∇β(xs) and∇f0(xs) are collinear, thus v>∇f0(xs) =

0 since v is perpendicular to ∇β(xs). Hence

v>∇βi(xs) = −βi(xs)v>
∇β̄i(xs)
β̄i(xs)

. (A.13)

160



Combine (A.12) and (A.13) to evaluate the quadratic form associated with the Hessian of

β(xs) along the direction v

v>∇2β(xs)v = v>∇2βi(xs)vβ̄i(xs) + βi(xs)

(
v>∇2β̄i(xs)v − 2

‖v>∇β̄i(xs)‖2

β̄i(xs)

)
. (A.14)

In the above equation the absolute value of the function multiplying βi(xs) is upper bounded

by a constant independent of k. Let B′ > 0 be this constant. Then, the second term of

(A.6) is upper bounded by

−f0(xs)v
>∇2β(xs)v ≤ −v>∇2βi(xs)vβ̄i(xs)f0(xs) + βi(xs)B

′. (A.15)

Use the bounds (A.10), (A.11) and (A.15) and the fact tht v>∇f0(xs)v ≤ λmax to bound

the left hand side of (A.6) by

v>
(
kβ(xs)∇2f0(xs)− f0(xs)∇2β(xs)

)
v ≤ v>∇2f0(xs)v

f0(xs)β̄i(xs)

λmin‖xs − x∗‖2
∇βi(xs)>(xs − x∗)

−v>∇2βi(xs)vf0(xs)β̄i(xs) + βi(xs)
(
Bλmax +B′

)
.

(A.16)

As argued previously βj(xs) is bounded away from zero by a constant independent of k for

all j 6= i. The same holds for f0(xs). Then, we have that v>∇2ϕk(xs)v < 0 if

v>∇2f0(xs)v
∇βi(xs)>(xs − x∗)
λmin‖xs − x∗‖2

− v>∇2βi(xs)v ≤ −βi(xs)B′′, (A.17)

where B′′ > 0 is a bound for (Bλmax + B′)/(β̄i(xs)f0(xs)). From Assumption 2 we have

that v>∇2f0(xs)v ≤ λmax and v>∇2βi(xs)v ≥ µimin, then v>∇2ϕ(xs)v < 0 if

λmax

λmin

∇βi(xs)>(xs − x∗)
‖xs − x∗‖2

− µimin ≤ −βi(xs)B′′. (A.18)

By hypothesis the left hand side of the above equation is strictly negative in the boundary

of the obstacle, and the right hand side takes the value zero. Therefore there exists ε1 > 0

such that for any ε ∈ (0, ε1] if βi(xs) < ε the above inequality is satisfied. Thus, from the

result in Lemma 2 there exists some K1(ε) > K0(ε) such that for any k > K1(ε) the critical

point is not a minimum.

A.1.3 Proof of Lemma 5

Since ϕk(x) is a twice continuously differentiable function and it attains its maximum at

the boundary of a compact set (see Lemma 1) it must have a minimum in the interior of
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F . In virtue of Lemma 4 for any ε < ε1 there exists K1(ε) > 0 such that if k > K1(ε) the

critical points xc such that βi(xc) < ε are not local minima. Hence the minimum for ϕk(x)

is such that ‖∇f0(xc)‖ < ε. We next show that any critical point satisfying ‖∇f0(xc)‖ < ε

is a nondegenerate minimum. Using the same arguments as in Lemma 4 we have that

∇2ϕk(xc) � 0 if and only if

β(xc)∇2f0(xc) + (1− 1

k
)∇β(xc)∇f>0 (xc)−

f0(xc)

k
∇2β(xc) � 0. (A.19)

Since ‖∇f0(xc)‖ < ε < ε0 it follows from Lemma 3 that each βi(xc) > ε0 and therefore

β(xc) > εm+1
0 . Hence the first term in the previous equation satisfies

β(xc)∇2f0(xc) � λminε
m+1
0 I � 0. (A.20)

From (A.1) it follows that ∇f0(xc) and ∇β(xc) point in the same direction, thus the second

term in (A.19) is a positive semi definite matrix for any k > 1. Therefore for ∇2ϕk(xc) to

be positive definite it suffices that

f0(xc)

k
∇2β(xc) ≺ λminε

m+1
0 I. (A.21)

Since f0 and β are twice continuously differentiable (see Assumption 2) f0(xc)∇2β(xc) is

bounded by a constant independent of k because the free space is compact. Therefore there

exists K2′(ε0) > 1 such that if k > K2′(ε0), the above equation holds and therefore any

critical point satisfying ‖∇f0(xc)‖ < ε is a minimum. We are left to show that the minimum

is unique. Let c > f0(x∗) be such that for any x ∈ F if f0(x) < c, then ‖∇f0(x)‖ < ε0

and define the set Ωc =
{
x ∈ F

∣∣f0(x) < c
}

. By definition of the previous set and because

the previous discussion all critical points in Ωc are minima. We show next that for large

enough k, Ωc is positively invariant for the flow ẋ = −∇ϕk(x). Compute the derivative of

f0(x) along the trajectories of the flow and evaluate at the boundary of Ωc

ḟ0(x) = −∇f0(x)>∇ϕk(x). (A.22)

The previous inner product is negative if and only if

β(x)‖∇f0(x)‖2 −∇f0(x)>∇β(x)
f0(x)

k
> 0. (A.23)

Observe that first term in the above equation is lower bounded by a constant independent

of k in ∂Ωc since c > f0(x∗) and βi(x) > ε0. Moreover since β and f0 are twice continuously

differentiable the second term in the previous equation is lower bounded by −C/k, where

C is independent of k. Therefore there exists K2′′(ε0) > 1 such that if k > K2′′(ε0),
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then Ωc is positively invariant, hence the limit set of the flow ẋ = −∇ϕk(x) restricted

to Ωc converges to a local minimum. If there were more than one degenerate minimum

in Ωc, since the stable manifold of minimums are open sets, then it would be possible to

write ∂Ωc as a disjoint union of open sets – in the topology relative to the boundary of

Ωc. This contradicts the connexity of the boundary. Hence, for any ε > 0 there exists

K2(ε) = max {K1(ε),K2′(ε),K2′′(ε)} such that if k > K2(ε), ϕk is polar with minimum at

x̄, where ‖x̄ − x∗‖ < ε. Finally from the discussion in Lemma 2 we have that x̄ = x∗ if

f0(x∗) = 0 or ∇β(x∗) = 0.

A.1.4 Proof of Theorem 3

In the particular case where the functions βi take the form (2.21), condition (2.18) of

Theorem 2 yields
λmax

λmin

(xs − xi)>Ai(xs − x∗)
‖xs − x∗‖2

− µimin < 0. (A.24)

Since Ai is positive definite, there exists A
1/2
i such that

Ai =
(
A

1/2
i

)>
A

1/2
i . (A.25)

Consider the change of variables z = A
1/2
i x, and write

(xs − xi)>Ai(xs − x∗)
‖xs − x∗‖2

=
(zs − zi)>(zs − z∗)
‖A−1/2

i (zs − z∗) ‖2
. (A.26)

Denote by µimax the maximum eigenvalue of the matrix Ai

1

µimax

‖ (zs − z∗) ‖2 ≤ ‖A−1/2
i (zs − z∗) ‖2. (A.27)

Use the above inequality to bound the left hand side of (A.24)

λmax

λmin

(xs − xi)>Ai(xs − x∗)
‖xs − x∗‖2

− µimin ≤
λmax

λmin

(zs − zi)>(zs − z∗)
‖zs − z∗‖2

µimax − µimin. (A.28)

The change of coordinates transforms the elliptical obstacle into a sphere of radius ri(µ
i
min)1/2

since the function βi takes the following form for the variable z

βi(z) = ‖z − zi‖2 − r2
i µ

i
min. (A.29)

Since the obstacle is, after considering the change of coordinate, a sphere we define for

convenience the radial direction êr, with ‖êr‖ = 1. Let θ be the angle between êr and the
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direction zi − z∗. Further define r̃ to be the distance between the critical point zs and zi.

Notice that if |θ| ≤ π/2 then

(xs − xi)>(xs − x∗)
‖xs − x∗‖2

≤ 0, (A.30)

and in that case the right hand side of (A.28) is negative which completes the proof of the

lemma. However if |θ| > π/2 then the term under consideration is positive. In particular

the larger the norm of r̃ the larger the value. Hence define r̃max = ri(µ
i
min)1/2 + ε, and the

following bound holds

(zs − zi)>(zs − z∗)
‖zs − z∗‖2

≤ r̃max(r̃max − di cos θ)

d̃i
2

+ r̃2
max − 2d̃ir̃max cos θ

, (A.31)

where d̃i is the distance between zs and z∗. Differentiating the right hand side of the above

equation with respect to θ we conclude that its critical points are multiples of π. Notice

that for multiples of π of the form 2kπ, with k ∈ Z will correspond to negative values and

and for multiples of π of the form (2k + 1)π with k ∈ Z, we have that

RHS(2kπ + π) =
r̃max(r̃max + d̃i)(
d̃i + r̃max

)2 =
r̃max

d̃i + r̃max

(A.32)

Combine the previous bound with (A.28) to upper bound (A.24)

λmax

λmin

(xs − xi)>Ai(xs − x∗)
‖xs − x∗‖2

µimax − µimin ≤
λmax

λmin

r̃max

d̃i + r̃max

µimax − µimin. (A.33)

Notice that a lower bound for that distance is given by d̃i ≥ µimindi. Aince zs can be placed

arbitrarily close to the boundary of the obstacle Oi we have that r̃ ≤ ri(µ
i
min)1/2 + ε. To

complete the proof observe that

r̃max

d̃i + r̃max

=
ri + ε

µimin

di + ri + ε
µimin

, (A.34)

hence since ε can be made arbitrarily small by increasing k we have that (A.24) holds if

λmax

λmin

µimax

µimin

< 1 +
di
ri
. (A.35)

Thus condition (2.18) takes the form stated in the theorem.
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A.1.5 Proof of Theorem 4

Let us consider the evolution of the dynamical system (2.34) from some time t0 > 0. Notice

that if (2.18) holds, then in virtue of Theorem 2 for large enough k the function ϕk,Ac(t0)(x)

defined in (2.33) is a navigation function for the set FAc(t0) = X \
⋃
iOi∈Ac(t0). On one

hand, this ensures the avoidance of the obstacles Oi with i ∈ Ac(t0), furthermore it ensures

convergence to x∗ – or to a point arbitrarily close to x∗– unless a new obstacle is visited. If

the first happens the proof is completed. In the second case, we need to show that the time

lapsed until the agent reaches the neighborhood of a new obstacle is finite. This being the

case it would take a finite time T ≥ 0 to visit all obstacles before having ϕk,Ac(t)(x) = ϕk(x)

for all x ∈ F . Then for any t ≥ T we are in the situation where the obstacles are known

and Theorem 2 holds, which completes the proof. Let tf be the first instant in which the

agent reaches the c-neighborhood of an obstacle of which he is not aware. Formally, this is

tf = min
{
t > t0

∣∣βj(x(t)) ≤ c for some j /∈ Ac(t0)
}
. (A.36)

Notice that by the definition of the time tf we have that Ac(t) = Ac(t0) for all t ∈ [t0, tf ).

And therefore ϕk,Ac(t)(x) = ϕk,Ac(t0)(x) is a navigation function for the free space FAc(t0) =

X \
⋃
i∈Ac(t) for all t ∈ [t0, tf ). Therefore the critical points of the function (2.33) are

arbitrarily close to x∗ or arbitrarily close to the obstacles Oi with i ∈ Ac(t0) (cf., lemma

3). Thus the norm of the gradient of the partial navigation function is bounded below for

any x(t) with t ∈ [t0, tf ) for a set of initial conditions of measure one. Hence, there exists

a constant L > 0 such that

∥∥∇ϕk,Ac(t0)(x(t))
∥∥ ≥ L,∀t ∈ [t0, tf ). (A.37)

From the fundamental theorem of calculus we can write

ϕk,Ac(t0)(x(tf ))− ϕk,Ac(t0)(x(t0)) =

∫ tf

t0

ϕ̇k,Ac(t0)(x(s))ds. (A.38)

Write the right hand side of the above equation as∫ tf

t0

ϕ̇k,Ac(s)(x(s))ds =

∫ tf

t0

∇ϕ>k,Ac(t0)(x(s))ẋds (A.39)

and substitute ẋ by the expression in (2.34)∫ tf

t0

ϕ̇k,Ac(s)(x(s))ds = −
∫ tf

t0

∥∥∇ϕk,Ac(t0)(x(s))
∥∥2
ds. (A.40)
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Finally combine the above expression with (A.38) and the bound in (A.37) to write

ϕk,Ac(tf )(x(tf ))− ϕk,Ac(t0)(x(t0)) ≤
∫ tf

t0

L2ds. (A.41)

By integrating the right hand side of the above expression we get the following upper bound

for tf

tf ≤ t0 +
ϕk,Ac(t0)(x(t0))− ϕk,Ac(t0)(x(tf ))

L2
. (A.42)

Since the navigation function is always bounded (cf., Definition 1) the time until the agent

visits a new obstacle if finite, which completes the proof of the theorem.
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A.2 Proofs of the results in Chapter 3

A.2.1 An estimator of the navigation function

In this section we analize a possible estimate of the gradient of a Rimon-Koditschek navi-

gation function based on local and stochastic observations of the objective function and the

obstacles that motivates Assumptions 3 and 4. The estimate proposed is based on the fact

that the gradient of the potential defined in (2.17) is collinear to

β(x)∇f0(x)− f0(x)∇β(x)

k
. (A.43)

Indeed, by differentiating (2.17) one has that (cf., (A.44))

∇ϕk(x) =
(
fk0 (x) + β(x)

)−1− 1
k

(
β(x)∇f0(x)− f0(x)∇β(x)

k

)
. (A.44)

By virtue of assumptions 1 and 2 and the definition of the function β(x) in (2.8) one has

that the factor that distinguishes the expressions in (A.43) and (A.44) is strictly positive.

Since the objective function is typically a physical magnitude that must be minimized

or maximized one can assume that the robot has estimates of the value of the function f0(x)

and its gradient at the current location. For instance, in the problem of climbing a forested

hill, the function f0(x) represents the height profile of the hill. The value of such function

can be estimated with a GPS whereas its gradient – the slope of the hill –can be inferred

with an inertial measurement unit (IMU). Denote these estimates at time t by f̂0(xt, θt) and

∇̂f0(xt, θt) respectively, where θt is a random vector, representing the measurement noise,

measurable with respect to the sigma algebra Gt. We assume the estimates to be unbiased,

i.e.,

E
[
f̂0(xt, θt)

∣∣∣Gt] = f0(xt), E
[
∇̂f0(xt, θt)

∣∣∣Gt] = ∇f0(xt). (A.45)

In order to estimate the obstacles – the trees – the agent may have information available

gathered by a rangefinder. Due to physical limitations like the range of the sensor or the

fact that obstacles can be “hidden” behind others the agent is not able to sense all the

obstacles at a given position x. The set obstacles that can be estimated is composed by

those that are at a distance smaller than a given limit c > 0

Ac(x) =
{
i = 1 . . .m

∣∣∣di(x) ≤ c
}
, (A.46)

where di(x) is the euclidean distance to the i–th obstacle defined as in Assumption 3.

Depending on the belief that the agent has about the world, the “obstacle function” will be

different. We discuss the case where the obstacle model is spherical [26]. To describe such
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obstacles three estimations are needed: distance to the obstacle, direction from the obstacle

to the agent and curvature of the obstacle. Denote these quantities for the i–th obstacle by

di(x), ni(x) and Ri(x), and describe the obstacle with the function

β̃i(x) = d2
i (x) + 2Ri(x)di(x), (A.47)

and corresponding gradient

∇̃βi(x) = 2 (di(x) +Ri(x)) ni(x). (A.48)

Observe that the previous expression is a representation of what the gradient would be if

the obstacle were indeed a sphere and it is not the derivative of (A.47). Indeed, notice that

if an obstacle is a sphere of center xi and radius Ri one has that

βi(x) = ‖x− xi‖2 −R2
i = (di(x) +Ri)

2 −R2
i = di(x)2 + 2Ridi(x). (A.49)

and by differentiating the previous expression we get

∇βi(x) = 2(x− xi) = 2(di(x) +Ri)ni(x). (A.50)

Hence, the model of obstacles (A.47)–(A.48) corresponds to spherical obstacles. Denoting

the noisy estimates of distance, direction and curvature of the i-th obstacle by d̂i(xt, θt),

n̂i(xt, θt) and R̂i(xt, θt) respectively, a natural estimation for it, is

β̂i(xt, θt) = d̂2
i (xt, θt) + 2R̂i(xt, θt)d̂i(xt, θt), (A.51a)

∇̂βi(xt, θt) = 2
(
d̂i(xt, θt) + R̂i(xt, θt)

)
n̂i(xt, θt). (A.51b)

Observe that if the estimates of distance, direction and curvature are independent and

unbiased we have that

E
[
β̂i(xt, θt)

∣∣∣Gt] = d2
i (xt) + σ2

di
+ 2Ri(xt)di(xt) = β̃i(xt) + σ2

di
(xt), (A.52)

where σ2
di

(xt) the variance of the estimate of the distance. This variance needs not be

constant, but a function of the position since for instance, it could become smaller the

closer the robot is to the obstacle. Likewise

E
[
∇̂βi(xt, θt)

∣∣∣Gt] = 2Ri(xt)di(xt)ni(xt) = ∇̃βi(xt). (A.53)
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With these estimates and inspired by (A.43) a possible estimate of the direction of the

gradient of the navigation function is

ĝ(xt, θt) := ∇̂f0(xt, θt)
∏

iAc(xt)

β̂i(xt, θt)−
f̂0(xt, θt)

k

∑
i∈Ac(xt)

∇̂βi(xt, θt)
∏

j∈Ac(xt),j 6=i

β̂j(xt, θt).

(A.54)

By taking the expectation of the estimate with respect to Gt and assuming independence

across estimates it is possible to show that the estimate (A.54) satisfies (3.1). Indeed, write

E
[
ĝ
∣∣∣Gt] = E

[
∇̂f0

∣∣∣Gt]∏
iAc

E
[
β̂i

∣∣∣Gt]− E
[
f̂0

∣∣∣Gt]
k

∑
i∈Ac

E
[
∇̂βi

∣∣∣Gt] ∏
j∈Ac,j 6=i

E
[
β̂j

∣∣∣Gt] , (A.55)

where we dropped the variables xt and θt to simplify the notation. Substituting (A.45),

(A.52) and (A.53) in the previous expression yields

E
[
ĝ(xt, θt)

∣∣∣Gt] = ∇f0(xt)
∏

iAc(xt)

(β̃i(xt) + σ2
di

(xt))

− f0(xt)

k

∑
i∈Ac(xt)

∇̃βi(xt)
∏

j∈Ac(xt),j 6=i

(β̃j(xt) + σ2
dj

(xt)).
(A.56)

Let α : Rn → R++ be defined as

α(x) =

∏
iAc(x)(β̃i(x) + σ2

di
(x))

β(x)

(
f0(x)k + β(x)

)1+1/k
, (A.57)

Observe that the previous function is continuous at the boundary of the free space if the

variance of the distance vanishes fast when approaching it. Then, the discontinuities in

α(x) are due to the inclusion or removal of an obstacle from the set Ac(x). Moreover, α(x)

is strictly positive. With this definition, one can write (A.56) as

E
[
ĝ(xt, θt)

∣∣∣Gt] =
α(xt)

(f0(xt)k + β(xt))
1+1/k

∇f0(xt)β(xt)

−f0(xt)β(xt)

k

∑
i∈Ac(xt)

∇̃βi(xt)
β̃i(xt) + σ2

di
(xt)

 .

(A.58)

Adding and substracting (f0(xt)β(xt)/k)
∑m

i=0∇βi(xt)/βi(xt) inside the parenthesis of the
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previous expression, substituting (A.44) and defining

bk(x) =
f0(x)β(x)

k (f0(x)k + β(x))
1+1/k

×

 m∑
i=0

∇βi(x)

βi(x)
−

∑
i∈Ac(x)

∇̃βi(x)

β̃i(x) + σ2
di

(x)

 , (A.59)

yields

E
[
ĝ(xt, θt)

∣∣∣Gt] = α(xt) (∇ϕk(xt) + bk(xt)) . (A.60)

Which shows that the proposed estimate is of the form (3.1). We next analyze some

properties of the estimate ĝ(xt, θt) proposed. These properties inspire the assumptions

of navigable estimates in Section 3.2.1. The first one if this properties is that the estimate

is bounded. Observe that (A.54) has bounded norm as long as the individual estimates

are since the computation only involves products and sums. Further notice, that when an

agent is close to the obstacle Oi we have that βi(xt) ≈ 0. Therefore, the direction ĝ(xt, θt)

is approximately given by

ĝ(xt, θt) ≈ −
f̂0(xt, θt)

k

∏
j∈Ac(xt),j 6=i

β̂j(xt, θ)∇̂βi(xt, θt). (A.61)

Since the update of the position is in the direction of −ĝ(xt, θt) (cf., (3.10)), the previous

expression shows that this update pushes the agent outwards the obstacle nearby. These

observations made for this particular estimator correspond to Assumption 3 in Section

3.2.1 for the general case. We next devote our attention to the properties of the bias bk(x)

defined in (A.59). The bias depends on three main factors as we detail next. These do not

have an origin in the stochastic nature of the measurements but on the fact that we are

making systematic errors in the estimation of the obstacles. The limitation in the number

of obstacles that can be measured is one of the factors and it translates in the fact that

the two sums in (A.59) are not over the same indices. The second one is the difference

between the free space and the belief of the agent, this translates into the fact that in one

of the sums in (A.59) we have terms corresponding to the real obstacles, while in the other

one we have terms corresponding to the hallucinated obstacles. The closer the belief the

agent to the reality the smaller the bias is. The third element is due to non-linearity in the

estimation of the obstacles which translates in the presence of the standard deviation in

the estimation of the distance to the obstacle. We show in what follows that the difference

of the sums in (A.59) is bounded in the free space. Observe that it could be unbounded

only at the boundary of the free space, where β(x) = 0. Let us consider the limit of the

difference of the sum when x → ∂Oi. If the agent approaches the i–th obstacle it means

that βj(x) is bounded away from zero for any j 6= i (cf., Assumption 1). Hence, it suffices
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to show that the following limit is bounded

lim
x→∂Oi

∇βi(x)

βi(x)
− ∇̃βi(x)

β̃i(x) + σ2
di

(x)
. (A.62)

The previous expression can be re-written as

lim
x→∂Oi

(β̃i(x) + σ2
di

(x))∇βi(x)− βi(x)∇̃βi(x)

βi(x)
(
β̃i(x) + σ2

di
(x)
) . (A.63)

Let us write the Taylor’s expansion of the function βi(x) and its gradient at the projection

x̃ of a point x in the boundary of the obstacle.

βi(x) = ∇βi(z)>(x− x̃) = ∇βi(z)>n(x)di(x), (A.64)

where z ∈ {y ∈ Rn : y = λx+ (1− λ)x̃, λ ∈ [0, 1]}

∇βi(x) = ∇βi(x̃) +∇2βi(z
′)(x− x̃) = ∇βi(x̃) +∇2βi(z

′)n(x)di(x), (A.65)

where z′ ∈ {y ∈ Rn : y = λx+ (1− λ)x̃, λ ∈ [0, 1]}. From (A.64) and (A.47) one can observe

that both β̃i(x) and βi(x) are functions that depend linearly on the distance nearby the

obstacles. Therefore, as long as the variance of the estimation vanishes as we approach the

obstacle faster than the function β̃i, the denominator in (A.63) is of the order of O(di(x)2).

Thus, the limit in (A.63) exists if the numerator is O(di(x)2) as well. We next work

towards proving the latter. Using the definition of (A.47) and the expansion of the gradient

of ∇βi(x), the first term in the numerator of (A.63) when x→ ∂Oi, yields

lim
di(x)→0

2Ri(x)di(x)∇βi(x̃) +O(di(x)2). (A.66)

Likewise the second term in the numerator yields

∇βi(z)>n(x)di(x) (2(Ri(x) + di(x))n(x)) , (A.67)

and its limit is

lim
di(x)→0

2Ri(x)di(x)∇βi(z)>n(x)n(x) +O(di(x)2). (A.68)

Combining this two terms we have that the limit of the numerator can be written as

lim
di(x)→0

2Ri(x)di(x)
(
∇βi(x̃)−∇βi(z)>n(x)n(x)

)
+O(d2

i (x)). (A.69)
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To complete this proof observe that ∇βi(x̃) and n(x) are collinear, hence the first term in

the previous expression is zero when multiplied by a perpendicular vector of n(x). Thus,

in that direction the previous limit is a function of order O(di(x)2). Along the direction of

n(x) the difference in the brackets yields ‖∇βi(x̃)−∇βi(z)‖ , which goes to zero at least

linearly when x→ ∂Oi. Hence we have showed that the numerator of (A.63) is of the order

of di(x)2 and thus there exists a constant B′ > 0 such that for all x ∈ F it holds that∥∥∥∥∥∥
m∑
i=0

∇βi(x)

βi(x)
−

∑
i∈Ac(x)

∇̃βi(x)

β̃i(x) + σ2
di

(x)

∥∥∥∥∥∥ ≤ B′, (A.70)

Since the gradient of ϕk(x) has a factor of 1/
(
f0(x)k + β(x)

)1+1/k
it is more convenient to

work with the following scaling of the bias

b̃k(x) =
(
f0(x)k + β(x)

)1+1/k
bk(x), (A.71)

and the following scaling of the gradient of ϕk(x)

∇̃ϕk(x) =
(
f0(x)k + β(x)

)1+1/k
∇ϕk(x), (A.72)

A first consequence of the bias being bounded in the free space is that for any x ∈ ∂F
we have b̃k(x) = bk(x) = 0 since β(x) = 0. Further observe that the norm of b̃k(x) is

decreasing at the rate 1/k for any point in the interior of the free space and in particular

limk→∞ b̃k(x) = 0. As in the case of the function α(x), the function b̃k(x) is piece-wise twice

differentiable and the discontinuities are due to changes in the set Ac(x). Therefore, the

discontinuities occur away from the obstacles. Furthermore, since limk→∞ ‖b̃k(x)‖ = 0 we

have that for large enough k the region where ∇ϕk(x)> (∇ϕk(x) + bk(x)) ≤ 0 are disjoint

regions around the critical points of ϕk(x).

In what follows we argue that near the saddle points of ϕk(x) the bias is smaller than

∇ϕk(x) in the C1 sense. Notice that the saddle points xc of∇ϕk(x) satisfy that β(xc) ≤ L/k
where L is a non-negative constant (see the proof of Lemma 3) and therefore the scaled bias

(cf., (A.59) and (A.72)) satisfies
∥∥∥b̃k(xc)∥∥∥ = O(1/k2). The Jacobian of the bias however is

at least of norm O(1/k) and thus the C1 norm of the bias is defined by the Jacobian. To

see why this is the case let us compute the Jacobian of the bias

Jb̃k(x) =
1

k
D(x) (f0(x)∇β(x) + β(x)∇f0(x)) +

f0(x)β(x)

k
JD(x), (A.73)
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where for simplicity we defined D(x) to be

D(x) =
m∑
i=0

∇βi(x)

βi(x)
−

∑
i∈Ac(x)

∇̃βi(x)

β̃i(x) + σ2
di

(x)
, (A.74)

and JD(x) is

JD(x) =
m∑
i=1

∇2βi(x)

βi(x)
−

∑
i∈Ac(x)

J∇̃βi
(x)

β̃i(x) + σ2
di

(x)
−

m∑
i=1

∇βi(x)∇βi(x)>

βi(x)2

+
∑

i∈Ac(x)

∇̃βi(x)∇
(
β̃i(x) + σ2

di
(x)
)>

(
β̃i(x) + σ2

di
(x)
)2 .

(A.75)

Let v = ∇β(xc)/‖∇β(xc)‖ and v⊥ a unit vector satisfying v>v⊥ = 0. Since at the critical

points ∇β(xc) is collinear with ∇f0(x) (cf., A.44) we have that

v>Jb̃k(xc)v =
v>D(xc)

k
(f0(xc)‖∇β(xc)‖+ β(x)‖∇f0(xc)‖) +

f0(xc)β(xc)

k
v>JD(xc)v.

(A.76)

Notice that the norm of D(xc) is bounded (cf., (A.70)). By an analogous analysis one can

show that β(xc)JD(xc) is bounded as well. Therefore the right hand side of the previous

equality is of the order of 1/k. On the other hand the quadratic form associated to the

Hessian of ϕk(xc) can be shown to be of the order of (k0) along the direction of v (cf., proof

of Lemma 6). These facts combined imply that∥∥∥∥∥ v>Jbk(xc)vv>J∇̃ϕk(xc)
v

∥∥∥∥∥ = O(1/k), (A.77)

Observe that in the boundary of the free space ∇β(x) is collinear with ∇βi(x), thus D(xc) is

almost perpendicular to v⊥ The same holds for part of the expression of v>⊥JD(xc)v⊥. And

thus, the quadratic form of the Jacobian of the bias evaluated at v⊥ can be approximated

by

v>⊥Jbk(xc)v⊥ ≈
f0(xc)β(xc)

k
v>⊥

 m∑
i=1

∇2βi(x)

βi(x)
−

∑
i∈Ac(x)

J∇̃βi
(x)

β̃i(x) + σ2
di

(x)

 v⊥. (A.78)

The second factor of the previous expression can be show to be bounded by an analysis

similar to that of the bound of D(x). Since the critical points satisfy β(xc) = O(1/k) the

previous expression is of the order of 1/k2. On the other hand the eigenvalues of the Hessian
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of the navigation function are of the order of 1/k along the directions v⊥. To observe the

latter, evaluate the derivative of (A.43) along the direction v⊥, i.e.,

v>⊥J∇̃ϕk(xc)v⊥ = β(xc)v
>
⊥∇2f0(xc)v⊥ −

f0(xc)

k
v>⊥∇2β(xc)v⊥. (A.79)

And therefore along the direction v⊥ it holds as well that∥∥∥∥∥ v>⊥Jbk(xc)v⊥v>⊥J∇̃ϕk(xc)
v⊥

∥∥∥∥∥ = O(1/k). (A.80)

The previous analysis shows that the C1 norm of the gradient of the navigation function

dominates by a factor of k that of the bias. Because ϕk(x) is a Morse function, the gradient

vector field is structurally stable [108]. Thus, this suggests that adding the bias will result

in a topologically equivalent flow. These observations about the bias for the particular

estimate here presented motivate Assumption 4 for a generic estimate.

A.2.2 Proof of Lemma 10

Let us start by defining a gradient-like vector field and by stating a result that is a direct

consequence of Theorem B [115].

Definition 8 (Gradient like vector field [40]). Let x ∈ Rn and let g : Rn → Rn be

a smooth function, we say that g(x) is a gradient like vector field if its non-wandering set

consists of finitely many hyperbolic equilibrium states and the stable and unstable manifolds

of singular points intersect transversally.

Theorem 13 ( [40]). Let Mn be a smooth closed orientable manifold and let g(x) : Mn →
[0, n] be a gradient-like vector field, then, there exists a function V : Mn → R such that

(i) is twice differentiable and Morse

(ii) its critical points coincide with the set of the critical points of g(x)

(iii) V̇ (x) = ∇V (x)>g(x) < 0, for any x such that g(x) 6= 0

(iv) V(x) = ind(x) for x such that g(x) = 0.

Proof. See Theorem B in [115].

In what follows we will show that there exists a function satisfying (i)–(iv) for g(x) =

−E
[
ĝ(x, θt)

∣∣Gt]. Equivalently we show that such function exists for a positive scaling of

g(x). Define then,

g̃(x) = −
(
β(x)∇f0(x)− f0(x)∇β(x)/k + b̃k(x)

)
= −

(
∇̃ϕk(x) + b̃k(x)

)
. (A.81)
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Because the bias is not differentiable, g̃(x) cannot be a gradient-like vector field and The-

orem 13 cannot be applied directly. Hence, we will define a continuously differentiable

approximation of the bias and show that said approximation is gradient like. To be precise,

for every ε > 0 and for every k > 0 define the following neighborhood of the critical points

of ϕk(x)

N (ε, k) :=
{
x ∈ F ,

∥∥∥∇̃ϕk(x)
∥∥∥ < ε

}
. (A.82)

Since the bias is differentiable at x∗ (cf., Assumption 4) and the minimum of the navigation

function can be placed arbitrarily close to x∗ (cf., Theorem 2) we can choose ε′0 > 0 and

K0(ε′0) > 0 such that the artificial potential is a navigation function and such that the bias

is differentiable in a neighborhood of its minimum for any k > K0(ε′0). Likewise, since the

discontinuities of the bias occur at distance D > 0 of the obstacles (cf., Assumption 4) there

exists ε′′0 > 0 such that if ε < min{ε′0, ε0′′} = ε0 then b̃k(x) is C1 in N (ε, k). Define then,

for any ε < ε0 the function b̃diffε,k : Rn → Rn to be C1 and to satisfy∥∥∥b̃diffε,k (x)
∥∥∥ < O(1/k), b̃diffε,k (x) = b̃k(x)∀x ∈ N (ε, k). (A.83)

In the following lemma we show that a perturbation of ∇ϕk(x) by an approximation of the

bias satisfying (A.83) is gradient-like.

Lemma 16. Under the Hypothesis of Lemma 10, for all ε < ε0 and large enough k, the

vector field g̃diff (x) = −
(
∇̃ϕk(x) + b̃diffk,ε (x)

)
, with b̃diffk,ε (x) satisfying (A.83) is gradient-

like.

Proof. We start by showing that the Lie derivative of ϕk(x) along g̃diff (x) is negative for

any x /∈ N (ε, k) and therefore no point in F \N (ε, k) can belong to the non-wandering set

of g̃diff (x).

Lg̃diff (x)ϕk(x) = −∇ϕk(x)>
(
∇̃ϕk(x) + b̃diffε,k (x)

)
. (A.84)

Since ∇̃ϕk(x) is a scaling of ∇ϕk(x) we have that

Lg̃diff (x)ϕk(x) < −‖∇ϕk(x)‖
(
‖∇̃ϕk(x)‖ − ‖b̃diffε,k (x)‖

)
. (A.85)

Because
∥∥∥b̃diffε,k (x)

∥∥∥ < O(1/k) there exists K0(ε) > 0 such that for any k > K0(ε) we have

that ‖b̃diffε,k (x)‖ < ε. Then, by definition of N (ε, k) we have that
∥∥∥∇̃ϕk(x)

∥∥∥ > ε which shows

that Lg̃diff (x)ϕk(x) < 0 in x /∈ N (ε, k) for ε < ε0 and k > K0(ε). We are therefore left

to show that in the neighborhood of the critical points the vector field is gradient-like. In

particular, observe that in the neighborhood of the saddle points the field is topologically

equivalent to that of ∇ϕk(x) because of Assumption 4. Since ϕk(x) is Morse, the set of

non-wandering points in each one of the neighborhoods is one hyperbolic equilibrium state
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and the stable and unstable manifolds intersect transversally. We are thus left to show that

in the same holds in the neighborhood of the minimum of ϕk(x). Since the norm of the bias

can be made arbitrarily small by increasing k, it suffices to show that the C1 norm of ∇̃ϕk
is constant with respect to k in the neighborhood of the minimum of ϕk(x). We proceed to

show the latter by analyzing the Jacobian of ∇̃ϕk(x)

J∇̃ϕk(x) = β(x)∇2f0(x) +

(
1− 1

k

)
∇β(x)∇f0(x)> − f0(x)

k
∇2β(x). (A.86)

Observe that the last term goes to zero as k goes to infinity and so does the second one.

The reason for the latter is that the larger k the closer the local minimum of ∇ϕk(x) is to

that of ∇f0(x). So we are left to analyze the first term. Since the minimum of ϕk(x) is

away from the obstacles, the function β(x) is bounded away from zero for all k. In addition

f0(x) is strongly convex (cf., Assumption 2) hence its Hessian is bounded away from zero.

This two facts together imply that the norm of the Jacobian of ∇̃ϕk(x) is O(k0). Since

the original vector field ∇̃ϕk(x) is gradient-like the vector field g̃diffε,k (x) is it as well in the

neighborhood of the minimum of ∇ϕk(x). The latter completes the proof that g̃diff (x) is

gradient-like in F .

Since g̃diff (x) is gradient like, by virtue of Theorem 13 there exists a function Vε,k(x)

satisfying (i)–(iv). We show next that (ii)–(iv) also hold for g̃(x). Let us define the following

set

N ′(k, ε, ε′) =
{
∇Vε,k(x)>g̃diff (x) > −ε′

}
. (A.87)

Since the norms of both b̃diffε,k (x) and b̃k(x) decrease at a rate of 1/k, for every ε′ > 0 there

exists K1(ε, ε′) such that for every k > K1(ε, ε′) we have for all x that∣∣∣∇Vε,k(x)>
(
b̃diffε,k (x)− b̃k(x)

)∣∣∣ < ε′. (A.88)

Hence, for any x /∈ N ′(k, ε, ε′) we have that

∇Vε,k(x)>g̃(x) = ∇Vε,k(x)>
(
g̃diff (x)− b̃diffε,k (x) + b̃k(x)

)
≤ −ε′ +

∣∣∣∇Vε,k(x)>
(
b̃diffε,k (x)− b̃k(x)

)∣∣∣ , (A.89)

which shows that the Lie derivative of Vε,k(x) along the flow ẋ = g̃(x) is negative for

all x /∈ N ′(k, ε, ε′). Thus (iii) holds outside N ′(k, ε, ε′) and since there are no critical

points of g̃(x) in said neighborhood (ii) and (iv) hold trivially. Next choose ε′ to satisfy

N ′(k, ε, ε′) ⊂ N (k, ε). For any x ∈ N ′(k, ε, ε′) ⊂ N (ε, k) we have that b̃k,ε(x) = b̃diffk,ε (x).

Thus, because (ii)– (iv) hold for g̃diff (x) they also do for g̃(x).

To complete the proof we are left to show that the critical points of Vk(x) are arbitrarily
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close to those of ϕk(x) and that they have the same indices. The critical points of Vk(x)

satisfy

g̃(x) = ∇̃ϕk(x) + b̃k(x) = 0. (A.90)

Since we have that ‖b̃k(x)‖ = O(1/k) the critical points of g̃(x) satisfy that
∥∥∥∇̃ϕk(x)

∥∥∥ =

O(1/k) which shows that the critical points can be placed arbitrarily close to those of ϕk(x).

The fact that their indices are the same is a consequence that in the neighborhood of the

critical points ∇̃ϕk(x) and g̃(x) are topologically equivalent as it was shown in the proof of

Lemma 16.
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A.3 Proofs of the results in Chapter 4

A.3.1 Proof of Lemma 11

In order to develop this proof we need to define the tangent cone and to state Lemma 17

relating the projection of a vector over it and the projection over a convex set

Definition 9 (Tangent cone). Let X ⊂ Rn be a closed convex set. We define the tangent

cone to X at x0 as

TX(x0) =
⋃

θ>0,x∈X
θ(x− x0). (A.91)

The above union is over all the points of the set X and over all the positive reals θ.

Notice that the
⋃
θ>0 θ(x − x0) is the ray from x0 and intersecting the point x. Thus, the

tangent cone is the closure of the cone formed by all rays emanating from x0 and intersecting

at least one point x ∈ X with x 6= x0.

Lemma 17. Let X ∈ Rn be a closed convex set, let x0 ∈ X and let v ∈ Rn. Then the

projection of v over the set X at x0 defined in (4.16) is

ΠX(x0, v) = PTX(x0)(v). (A.92)

Proof. The proof follows from Lemma 4.6 in [135].

Proof of Lemma 11. Consider the case in which x0 ∈ int(X). Then, for any v there exits

a small enough δ > 0 such that x0 + δv ∈ X. Hence PX(x0 + δv) = x0 + δv and it holds

that PX(x0 + δv)− x0 = vδ. Thus ΠX(x, v) = v and (4.21) is verified. When x0 ∈ ∂X two

cases are possible; either x0 + δv ∈ TX(x0) for small enough δ > 0 or x0 + δv /∈ TX(x0) for

all δ > 0. In the first case because of Lemma 17 it is verified that

ΠX(x0, v) = PTX(x0)(v) = v. (A.93)

And therefore (4.21) holds. Let us now consider the last case in which x0 ∈ ∂X and

x0 + δv /∈ TX(x0). Because X is a convex set there exists a vector a ∈ Rn with ‖a‖ = 1

defining a supporting hyperplane at x0 H = {x ∈ Rn : a>(x− x0) = 0}, and for all x ∈ X
we have that

a>(x− x0) ≤ 0. (A.94)

If the set X is smooth at x0 then the border of the tangent cone at the point x0 is contained

in the hyperplane H, therefore ΠX(x0, v) ⊂ H. Thus, a>ΠX(x0, v) = 0 and we have as

well that a>v ≥ 0, otherwise there must exists a δ > 0 such that x0 + δv ∈ TX(x0).

On the other hand if there is a corner at x0 there are infinite supporting hyperplanes.
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One of them verifies that a>v ≥ 0 and contains the boundary of the tangent cone, thus

a>ΠX(x0, v) = 0. Since ΠX(x0, v) is the projection of v over the tangent cone, we have

that: ΠX(x0, v) = PTX(x0)(v) = (a>⊥v)a⊥, where a⊥ ∈ Rn and verifies that a>a⊥ = 0 and

‖a⊥‖ = 1. Projecting the vectors x0 − x and v over a and a⊥, we have

(x0 − x)>v = (x0 − x)>av>a+ (x0 − x)>a⊥v
>a⊥. (A.95)

From the previous discussion the above equation reduces to

(x0 − x)>v = (x0 − x)>av>a+ (x0 − x)>ΠX(x0, v). (A.96)

By combining the fact that v>a ≥ 0 and (A.94) the left hand side of the above equality can

be lower bounded by

(x0 − x)>v ≥ (x0 − x)>ΠX(x0, v). (A.97)

Hence we have proved the lemma for all posible cases.

179



A.4 Proofs of the results in Chapter 5

Lemma 18. Let f0 : Rn → R and f : Rn → Rm be convex functions. Then, for every

matrix K � 0, there exists s∗ ∈ Rm such that

λ∗(s∗) = K−1s∗ and ‖s∗‖ <∞, (A.98)

where λ∗(s∗) is the dual variable of problem (5.2) with s = s∗.

Proof. Because both f0(x) and f(x) are convex functions, the primal probem p∗(s) defined

in (5.2) is a convex function on s [16, Section 5.6.1]. Let us next define the following

regularized function

q∗(s) = p∗(s) +
1

2
‖s‖2K−1 , (A.99)

where K � 0. By introducing the regularizer, q∗(s) is a strongly convex function. Hence

its minimum s∗ := argmins∈Rm q
∗(s) is such that ‖s∗‖ < ∞. Likewise, s∗ satisfies that

∇q∗(s∗) = 0. The latter is equivalent to

∇q∗(s∗) = ∇p∗(s∗) + K−1s∗ = 0. (A.100)

The proof is then completed by using the fact that λ∗(s) = −∇p∗(s) for all s ∈ Rm [16,

Section 5.6.3].

180



A.5 Proofs of the results in Chapter 6

In this appendix we present some properties of the expected discounted reward and its

gradient which are needed in the convergence analysis of functional stochastic gradient

ascent.

Lemma 19. Under Assumption 16 the expected discounted reward defined in (6.3) and the

q-function defined in (6.6) satisfy

|U(h)| < Br
1− γ

and |Q(s, a;h)| < Br
1− γ

∀ h ∈ H. (A.101)

Proof. The triangle inequality applied to |U(h)|, with U(h) defined in (6.3), yields

|U(h)| ≤ E

[∣∣∣∣∣
∞∑
t=0

γtr(st, at)

∣∣∣∣∣ ∣∣∣h
]
≤ E

[ ∞∑
t=0

γt|r(st, at)|
∣∣∣h] , (A.102)

Since the absolute value of the reward function r(s, a) is bounded by Br for all (s, a) ∈ S×A
(cf., Assumption 16) it follows that

|U(h)| ≤ Br
∞∑
t=0

γt =
Br

1− γ
. (A.103)

The proof of the result for Q(s, a;h) is analogous.

Lemma 20. Let Assumption 16 hold, then ∇hU(h, ·) defined as in (6.7) is bounded for all

h ∈ H.

Proof. Staring from (6.7) and considering ‖k(s, ·)‖ = 1 (cf., Definition 7), one can write

‖∇hU(h, ·)‖ ≤ 1

1− γ
E(s,a)∼ρ(s,a)

[
|Q(s, a;h)|

∥∥Σ−1 (a− h(s))
∥∥] . (A.104)

And then use the result of Lemma 19 to further upper bound the norm of the gradient by

‖∇hU(h, ·)‖ ≤ Br
(1− γ)2

E(s,a)∼ρ(s,a)

[∥∥Σ−1 (a− h(s))
∥∥] . (A.105)

By construction Σ−1/2(a−h(s) is a multivariate normal distribution, hence the expectation

of its norm is bounded.

Lemma 21. Let Assumption 16 hold, with constant Br. Then the gradient of the expected

discounted reward satisfies

‖∇hU(h1, ·)−∇hU(h2, ·)‖H ≤ L1‖h1 − h2‖H + L2‖h1 − h2‖2H, (A.106)
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for all h1, h2 ∈ H with L1 and L2 given by

L1 = Br
(1− γ + p(1 + γ))

λmin(Σ)(1− γ)3
, L2 = Br

(1 + γ)
√
p

(λmin(Σ))3/2 (1− γ)3
.

Proof. Consider the following bound to be used later

‖h(s)‖ = |〈h, κ(s, ·)〉H| ≤ ‖h‖ . (A.107)

due to the Cauchy-Scwartz inequality and with ‖κ(s, .)‖ = 1 (cf., Definition 7). Substituting

(6.6) for Q(s, a;h) in (6.24) it holds

∇hU(h, ·)=
∞∑
t=0

∞∑
u=0

γt+uEph
[
r(st+u, at+u)κ(st, ·)ζht

]
(A.108)

where we have defined the Gaussian variable ζht := Σ−1 (at − h(st)) for notational brevity.

The expectation in (A.108) is integrated with

ph(s,a) := pt+u(s,a)
t+u∏
r=0

πh1(ar|sr) (A.109)

with s and a collecting states and actions up to time t+u, and with pt+u(s,a) := p(s0)
∏t+u−1
r=0 p(sr+1|sr, ar).

Expanding the expectation as an integral and adding and subtracting

Eph2

[
r(st+u, at+u)κ(st, ·)ζh1

t

]
, (A.110)

yields

∇hU(h1, ·)−∇hU(h2, ·) =

∞∑
t=0

∞∑
u=0

γt+u
∫
r(st+u, at+u)ζh1

t κ(st, ·)pt+u(s,a)

×

(
t+u∏
r=0

πh1(ar|sr)−
t+u∏
r=0

πh2(ar|sr)

)
dsda

+
∞∑
t=0

∞∑
u=0

γt+u
∫
r(st+u, at+u)Σ−1 (h2(st)− h1(st))× κ(st, ·)ph2(s,a)dsda.

(A.111)

Using that |r(st+u, at+u)| ≤ Br and ‖κ(st, ·)‖ = 1 (cf., Assumption 16 and Definition 7
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repsectively) we can bound

‖∇hU(h1, ·)−∇hU(h2, ·)‖ ≤
∞∑
t=0

∞∑
u=0

γt+uBr(I1 + I2) (A.112)

with

I1 :=

∫ ∥∥∥ζh1
t

∥∥∥ |∆π(h1, h2, s, a)| pt+u(s,a)dsda (A.113)

I2 :=

∫ ∥∥Σ−1 (h2(st)− h1(st))
∥∥ ph2(s,a)dsda, (A.114)

∆π(h1, h2, s, a) :=

t+u∏
r=0

πh2(ar|sr)−
t+u∏
r=0

πh1(ar|sr). (A.115)

To obtain a bound for I1 in (A.112) define hλ = λh1 + (1− λ)h2 with λ ∈ [0, 1]. Next,

consider the Taylor expansion of
∏t+u
r=0 πh(ar|sr) as a function of h, which yields

∆π(h1, h2, s,a) =
t+u∑
r=0

〈
ζhλr

t+u∏
r=0

πhλ(ar|sr)κ(sr, ·), h1 − h2

〉
(A.116)

Thus, the absolute value of ∆π can be bounded via the Cauchy-Schwartz inequality

|∆π(h1, h2, s, a)| ≤ ‖h1 − h2‖
t+u∑
r=0

∥∥∥ζhλr ∥∥∥ t+u∏
r=0

πhλ(ar|sr). (A.117)

With this in mind we bound the first integral in (A.112). The following inequalities are

explained below.

I1 =

∫
pt+u(s,a)

∥∥∥ζh1
t

∥∥∥ |∆π(h1, h2, s, a)| dsda

≤ ‖h1 − h2‖
∫
phλ(s,a)

∥∥∥ζh1
t

∥∥∥ t+u∑
r=0

∥∥∥ζhλr ∥∥∥ dsda
≤ ‖h1 − h2‖Ephλ

[∥∥∥ζh1
t

∥∥∥ t+u∑
r=0

∥∥∥ζhλr ∥∥∥
]

= ‖h1 − h2‖Ephλ

[∥∥∥ζhλt +Σ−1(hλ(st)− h1(st))
∥∥∥ t+u∑
r=0

∥∥∥ζhλr ∥∥∥
]

≤ ‖h1 − h2‖
t+u∑
r=0

Ephλ
[∥∥∥ζhλt ∥∥∥∥∥∥ζhλr ∥∥∥]+ ‖h1 − h2‖

t+u∑
r=0

‖hλ − h1‖Ephλ
[∥∥∥Σ−1ζhλr

∥∥∥]
≤ (t+ u+ 1)

(
p ‖h1 − h2‖
λmin(Σ)

+

√
p ‖h1 − h2‖2

(λmin(Σ))3/2

)
(A.118)
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The first inequality results from substituting (A.117) and using the definition of phλ in

(A.109). Then write the integral as an expectation. The third one states that ζh1
t =

ζhλt + Σ−1(hλ(st) − h1(st). The next one combines the triangle inequality with the bound

(A.107) applied to h(s) = hλ(s)− h1(s). Finally, we used that Σ−1/2ζhλt and Σ−1/2ζhλr are

multivariate independent white Gaussian variables first order moment bounded by
√
p.

To bound I2 in (A.112), apply again (A.107) to h(s) = h2(s) − h1(s). It follows that

the norm of the second integral is bounded by (λmin(Σ))−1‖h1 − h2‖, which together with

(A.118) can be substituted in (A.112) to conclude the proof, after adding the geometric

sum
∞∑
t=0

∞∑
u=0

(t+ u+ 1)γt+u =
1 + γ

(1− γ)3
. (A.119)

Lemma 22. The second and third moments of the estimate ∇̂hU(h, ·) are bounded by

E
[∥∥∥∇̂hU(h, ·)

∥∥∥2
]
≤ σ2 and E

[∥∥∥∇̂hU(h, ·)
∥∥∥3
]
≤ σ3, (A.120)

with

σ =
(3γ)1/3

(1− γ)2

1

λmin

(
Σ1/2

) (4
Γ(2 + p/2)

Γ(p/2)

)1/4

. (A.121)

where Γ(·) is the Gamma function.

Proof. Let us start by bounding the cube the norm of the stochastic gradient defined in

(6.16).∥∥∥∇̂hU(h, ·)
∥∥∥3
≤ 1

8(1− γ)3

∥∥∥Q̂(sT , aT ;h)− Q̂(sT , āT ;h)
∥∥∥3
‖κ(sT , ·)‖3

∥∥Σ−1(aT − h(sT ))
∥∥3
.

(A.122)

Using the fact that ‖κ(st, ·)‖ = 1 (cf., Definition 7) and the fact that the difference between

estimates of Q is bounded by Br(TQ + T ′Q), (A.122) is upper bounded by

∥∥∥∇̂hU(h, ·)
∥∥∥3
≤ B3

r

8(1− γ)3
(TQ + T ′Q)3

∥∥Σ−1(aT − h(sT ))
∥∥3
. (A.123)

From the independence of TQ and T ′Q with respect to the state evolution, and the mono-

tonicity of the expectation, it results

E
[∥∥∥∇̂hU(h, ·)

∥∥∥3
]
≤ B3

r

8(1− γ)3
E
[(
TQ + T ′Q

)3]E [∥∥Σ−1(aT − h(sT ))
∥∥3
]
. (A.124)
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The sum of two independent geometric variables satisfies

P (TQ + T ′Q = k) = (1− γ)2(k + 1)γk. (A.125)

Thus, the third moment is upper bounded by

E
[
(TQ + T ′Q)3

]
=
∞∑
k=0

k3(1− γ)2(k + 1)γk =
γ(1 + 14γ + 8γ2)

(1− γ)3
≤ 23γ

(1− γ)3

where the last inequality follows from the fact that γ < 1. On the other hand observe that∥∥Σ−1/2aT − h(sT )
∥∥2

is Chi-squared with parameter p since it is a sum of squares of normal

random variables. Hence, the second expectation in (A.124) can be bounded using Jensen’s

inequality by,

E
[∥∥Σ−1(aT − h(sT ))

∥∥3
]
≤ 1

λmin(Σ1/2)3
E
[
χ3/2
p

]
≤ 1

λmin(Σ1/2)3
E
[
χ2
p

]3/4
=

1

λmin(Σ1/2)3

(
4

Γ(2 + p/2)

Γ(p/2)

)3/4

(A.126)

Substituting (A.126) and (A.126) in (A.124) yields the the bound for the third moment of

the stochastic gradient in (A.120). To validate the bound on the second moment consider

x =
∥∥∥∇̂hU(h, ·)

∥∥∥3
and observe that since x2/3 is a concave function one can reverse Jensen’s

inequality to obtain

E

[(∥∥∥∇̂hU(h, ·)
∥∥∥3
)2/3

]
≤ E

[∥∥∥∇̂hU(h, ·)
∥∥∥3
]2/3

≤
(
σ3
)2/3

which completes the proof.

Lemma 23. Let ej = ∇̂hU(hj)−∇hU(hj) and let ηj be such that it satisfies (6.30). Then,

the sequence

Sk =
k∑
j=0

ηjej , (A.127)

converges to a finite limit with probability one.

Proof. By virtue of Theorem 5.4.9 [29]), it suffices to show that Sk is a square integrable

margingale and that

lim
n→∞

n∑
m=1

E
[
(Sm − Sm−1)2

∣∣Fm] <∞ a.e. (A.128)
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Recall that the estimate of the gradient is unbiased, i.e. E
[
∇̂hU(hk, ·)

∣∣Fk] = ∇hU(hk, ·),
hence we have that E

[
ek
∣∣Fk] = 0. This allows us to write

E
[
Sk
∣∣Fk] = Sk−1 + E

[
ηkek

∣∣Fk] = Sk−1. (A.129)

Thus Sk is a martingale. To show that it is square integrable, observe that we can compute

squared norm of Sk as

‖Sk‖2 =

∥∥∥∥∥∥
k∑
j=0

ηjej

∥∥∥∥∥∥
2

= η2
k‖ek‖2 + 2ηke

>
k

k−1∑
j=0

ηjej +

∥∥∥∥∥∥
k−1∑
j=0

ηjej

∥∥∥∥∥∥
2

= η2
k‖ek‖2 + 2ηke

>
k Sk−1 + ‖Sk−1‖2 .

(A.130)

Take the expectation with respect to the sigma field Fk and use the fact that E
[
ek
∣∣Fk] = 0

to write

E
[
‖Sk‖2

∣∣Fk] = η2
kE
[
‖ek‖2

∣∣Fk]+ ‖Sk−1‖2 . (A.131)

The previous expression implies that

E
[
‖Sk‖2

]
= η2

kE
[
‖ek‖2

]
+ E

[
‖Sk−1‖2

]
. (A.132)

Recursively we have that

E
[
‖Sk‖2

]
=

k∑
j=0

η2
jE
[
‖ej‖2

]
. (A.133)

Since the step sizes are square summable and the second moment of the error is bounded

(cf., lemmas 20 and 22) the second moment of Sk is bounded for all k. We next show that

(A.128) holds. Observe that by definition of Sk (cf., (A.127)) one can write

n∑
m=1

E
[
‖Sm − Sm−1‖2

∣∣Fm] =

n∑
m=1

E
[
‖ηmem‖2

∣∣Fm] =

n∑
m=1

η2
mE
[
‖em‖2

∣∣Fm] . (A.134)

Which is bounded for all n as it was previously argued. This completes the proof that

limk→∞ Sk converges to a finite random variable with probability one.
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