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Abstract: A method for selecting a set of coupling and by-pass capacitors is presented. The approach uses short-circuit time-constant analysis 
and for a given −3 dB cut-off frequency minimises the total capacitance used. This study offers a derivation of design formulas and shows their 
use via examples. 
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1 Introduction 

The sum in (1) estimates the lower cut-off frequency of a 
multi-stage AC-coupled circuit. Here C1 through Cn are the 
values of the coupling capacitors and rC1 through rCn are the resis-
tances seen by each capacitor when all the other capacitors have 
infinite values [1–3]. The RC products are called short-circuit time-
constants (SCTCs) [2–5] 

1 1 1 + + · · · +  (1)v−3 dB  rC1C1 rC2C2 rCnCn 

The SCTC expression (1) has both analytic and design utility. 
Indeed, it allows us to select coupling and by-pass capacitors to 
meet a desired cut-off frequency [1–4]. The basic procedure, 
discussed elsewhere [2, 3], selects capacitors to satisfy (2) and 
obtains a particular solution by making one of the 1/RC terms 
dominant while giving equal and much lesser weight to the other 
terms. While assigning a dominant term is always possible, such 
assignment is not always meaningful. The next section clarifies 
this statement using examples 

1 1 1 spec+ + · · · +  = v (2) 
rC1C1 rC2C2 rCnCn 

−3 dB  

This paper describes an alternative design approach where the 
values of the coupling and the by-pass capacitors are computed 
without explicit use of a ‘one-term dominance’. They are obtained 
by solving (2) and (3) 

√���� √���� √���� = =  · · ·  =  C (3)C1 rC1 C2 rC2 n rCn 

Satisfying (3) is significant because it minimises the overall capa-
citance used as demonstrated in the last section of this paper. 

2 Design formulas and examples 

Despite the complexity of (2) and (3), their simultaneous solution is 
always possible. Indeed, using (2) and (3) we derive (4) and once 
one capacitor is known the others we decide using (5) � � ����� �����

1 rC1 rC1C1 = spec 1 + + · · · +  (4) 
rC1v−3 dB  rC2 rCn ����� 

rC1Cj = C1 for j = 2 to  n (5) 
rCj 

2.1 Example #1 

Consider the common-emitter amplifier circuit depicted in Fig. 1. 
The design goal is a corner frequency not exceeding 100 Hz set 
             
          

            
         

           
               

         
       

            
          

        

       

       

      

            

  
   

     
    

              
  

 
 

      
 

 
 

       
 

           
            

         
          
            
          

          
  

by the proper choice of C1, C2, and C3. This problem is solved 
in [2] page 502 using the one-term dominance approach. The 
authors assign an 80% weight to the term related to the emitter 
node (capacitor C2) and divide the leftover 20% between 
the other two capacitors. The procedure yields C1 = 2.1 µF, 
C2 = 27.6 µF, C3 = 1.2 µF and a cut-off frequency of 89.8 Hz 
according to Spice. While successful, the solution seems contrived 
due to the arbitrarily assigned percentage values. 

Next, we solve the design problem using (4) and (5). The starting 
point is the same: numeric values for the small-signal resistances 
seen by each capacitor. They are below listed: 

rC1 = R + RB||r ≃ 7.44 kVs p 

RB||Rs = r + ≃ 72 VrC2 e b + 1 

rC3 = R + RL = 13 kVc 

Then, according to (4), the base coupling capacitor must be 2.55 µF. 

� ������� �������� 
1 7440 7440 

C1 = 1 + + = 2.55 mF 
7440 (2p100) 72 13000 

For the values of the other capacitors, C2 and C3, we have 25.9 and 
1.93 µF 

������� 
7440 

C2 = 2.55 mF × = 25.9 mF 
72 �������� 
7440 

C3 = 2.55 mF × = 1.93 mF 
13000 

In practice, all values are rounded up the next standard one. 
Assuming 10% tolerance rating those would be 2.7, 27, and 2.2 µF. 

We remark that minimising of the overall capacitance gives 
greater weight to the low impedance nodes. Indeed, here the 
1/C2rC2 term evaluates to 536 rad/s and accounts for 85% of the 
specified 200π rad/s (100 Hz). This means that the proposed tech-
nique does not prevent term dominance but eliminates the need 
for guessing. 
   

          
              

2.2 Example #2 

The problem with the dominant term approach becomes clear when 
we try to set the corner frequency of the passive circuit in Fig. 2. 
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Fig. 1 Schematic of a simplified common-emitter amplifier where C1, C2, 
and C3 are selected to achieve a −3 dB cut-off not exceeding 100 Hz 

Fig. 2 Three-stage passive high-pass filter where C1, C2, and C3 are 
selected to achieve a −3 dB cut-off not exceeding 1 kHz 
         

        

       

        

          
           

          
            

    
   

     
    

 
 

   
 
 
 

   
 

           
       

       

        
             

  
            

         
             

        
   

           
            
           
          

3 

The resistances experienced by each capacitor are below listed. 

rC1 = 1 kV + 10 kV||10 kV||22 kV = 5.07 kV 

rC2 = 1 kV||10 kV+10 kV||22 kV = 7.78 kV 

rC3 = 1 kV||10 kV||10 kV + 22 kV = 22.83 kV 

Since these resistances are comparable in value, we cannot justify 
enforcing a dominant term. The good news is the proposed strategy 
does not call for pre-assigned percentages. For the targeted cut-off 
of 1 kHz, with the aid of (4) and (5), we get 

� ������� �������� 
1 5070 5070 

C1 = 1 + + = 71.5 nF  
5070 (2p1000) 7780 22830 �������� 

5070 
C2 = 71.5 nF  × = 57.7 nF  

22830 �������� 
5070 

C3 = 71.5 nF  × = 33.7 nF  
22830 

Similar to the earlier example one would need to choose standard 
values by rounding up the calculating values. 

Specified versus actual −3 dB frequency 

The proposed approach for determining coupling and by-pass 
capacitors is based on the premise that setting the sum in (1) to 
Spec actual v−3 dB  produce v−3 dB  with a similar value. At 92.4 and 796 Hz, 

according to SPICE, the actual cut-off frequencies for both 
designs are lower than the specified values of 100 Hz and 1 kHz. 

1 1 1actual specv + + · · · +  = v (6)−3 dB  , −3 dB  rC1C1 rC2C2 rCnCn 

This finding concurs with the theory developed in [5] where the 
authors prove the sum in (1) is an upper-bound for the cut-off fre-
quency. A strict inequality exists for systems with two or more 
coupling capacitors (see expression (27) in [5]). This property is 
         
   

     

           
           

        
      
            

  

    

   
 

 
 

 
   

 

   

            
           

             
            

    

  
       

  
 

          

 
        

   

            
           

        
            

    

  

         
          

           
       

          
           
          
          

          
           

          
       

  

          
        

         
      

        
      

            
          
    

            
         

        

desirable because it leads to conservative solutions with a 
‘built-in’ design margin. 

4 Origin of expression (3) 

As stated in Section 1, (3) stems from minimising the total capa-
citance while meeting (2). So, the task is a classic constrained 
optimisation problem solved using the method of Lagrange multi-
pliers; the details are presented next. 

We start by defining three functions: f ( )c , g c( )  and F(c, l)
as follows: 

f ( ) =c C1 + C2 + · · · + C (7)n 

1 1 1 specg( ) = + − v−3 dB  (8)c + · · · +  
rC1C1 rC2C2 rCnCn 

F(c,l) = f ( ) + lg( )c (9)c 

The function we want to optimise is f ( )c while g c( ) here accounts 
for the imposed constraint. According to theory, to find the vector 
( ) that optimises f ( ) we must solve n + 1 equations obtained by c c
partial differentiation of F (c, l). The first n equations have the 
same structure captured as 

∂ 1 
F(c, l) = 1 − l = 0 for all j (10)2∂Cj rCjCj 

The above simplifies to (11) which is recognised as (3) 

√�� 
C1 rC1 = C2 rC2 = · · · = C2 rC2 = l (11)

√���� √���� √���� 
Differentiating F(c, l) with respect to λ and equating the result to 0 
returns g c( ) = 0 which is recognised as the original constraint (2). 
This development proves the earlier assertion that simultaneous 
solution of (2) and (3) gives the desired optimum set of coupling 
and by-pass capacitor values. 

5 Conclusion 

This study benefits analogue circuits and systems designers by 
enhancing their ability to apply DC blocking and by-pass capacitors 
in the signal chain. The presented approach builds upon a classic 
design strategy involving the so-called short-circuit time-constants. 
This study shows that imposing the requirement for least total capa-
citance turns an under constrained design problem into one with a 
unique solution. The optimum capacitor values obey a very specific 
relation to one another and to their respective resistances. Namely, 
the products of capacitor value and the square-root of the corre-
sponding resistance are fixed, same for all capacitors in the set. 
The derivation is straight forward and the design formulas quite 
simple as shown in the provided examples. 
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