
A HIGHER-ORDER METHOD IMPLEMENTED IN AN UNSTRUCTURED

PANEL CODE TO MODEL LINEARIZED SUPERSONIC FLOWS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Aerospace Engineering

by

Jake Daniel Davis

February 2019

c© 2019

Jake Daniel Davis

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: A Higher-Order Method Implemented in

an Unstructured Panel Code to Model Lin-

earized Supersonic Flows

AUTHOR: Jake Daniel Davis

DATE SUBMITTED: February 2019

COMMITTEE CHAIR: David D. Marshall, Ph.D.

Professor of Aerospace Engineering

COMMITTEE MEMBER: Paulo Iscold, Ph.D.

Assistant Professor of Aerospace Engineering

COMMITTEE MEMBER: Colleen M. Kirk, Ph.D.

Professor of Mathematics

COMMITTEE MEMBER: Robert A. McDonald, Ph.D.

Head of Vehicle Engineering, Uber Elevate, Uber

COMMITTEE MEMBER: Graham A. Doig, Ph.D.

Senior Aerodynamics Engineer, Evelozcity

iii

ABSTRACT

A Higher-Order Method Implemented in an Unstructured Panel Code to Model

Linearized Supersonic Flows

Jake Daniel Davis

Since their conception in the 1960s, panel codes have remained a critical tool in

the design and development of air vehicles. With continued advancement in com-

putational technologies, today’s codes are able to solve flow fields around arbitrary

bodies more quickly and with higher fidelity than those that preceded them. Panel

codes prove most useful during the conceptual design phase of an air vehicle, allowing

engineers to iterate designs, and generate full solutions of the flow field around a vehi-

cle in a matter of seconds to minutes instead of hours to days using traditional CFD

methods. There have been relatively few panel codes with the capacity to solve su-

personic flow fields, and there has been little recently published work done to improve

upon them.

This work implements supersonic potential flow methods into Cal Poly’s open

source panel code, CPanel. CPanel was originally developed to solve steady, subsonic

flows utilizing constant strength source and doublet panels to define the geometry,

and an unstructured geometry discretization; it was later extended to include viscous

vortex particle wakes and transient modeling. In this thesis, a higher-order method is

implemented in CPanel for use in solving linearized supersonic flows, where a higher-

order method is one that utilizes at least one singularity element whose order is higher

than constant. CPanel results are verified against analytical solutions, such as the

Taylor-Maccoll solution for supersonic conical flows and 2D shock-expansion theory,

and the PANAIR and MARCAP supersonic panel codes. Results correlate well with

the analytical solutions, and show strong agreement with the other codes.

iv

ACKNOWLEDGMENTS

My tenure at Cal Poly as both an undergraduate and graduate student has been

a formative one, and I would not have managed to overcome the various trials and

tribulations I encountered throughout this time without those who have supported

me along the way.

I must first thank my thesis advisor, Dr. Marshall, for originally sparking my

interest in numerics and taking me on as a graduate student as well as for his continued

guidance throughout this project, which was instrumental to the success I found with

this thesis. I am greatly appreciative of the many hours he gave in assisting me work

through problems and setting me on a course for success. I would also like to thank

Dr. Doig who had a large role in setting me on the path I am on now. Through

his undergraduate and graduate courses and his passion for education and hands-on

learning, I was able to realize my own passions both academically and professionally.

And thank you to my committee for your guidance and time throughout this project.

Chris Satterwhite and Connor Sousa created and maintained an easy to read and

use code base providing me a springboard from which to start my thesis, and for that

I would like to thank them both.

None of my accomplishments would have been possible without the support of my

family and friends. Thank you to my parents and siblings for their relentless support

and guidance through all of my endeavors. To my friends and roommates during my

time at Cal Poly, I thank you for good company and memorable experiences both in

and outside the classroom. And to my girlfriend, Sam, who has stood by my side

through it all and continually pushed me forward.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ALGORITHMS . xi

NOMENCLATURE . xii

CHAPTER

1 Introduction . 1

1.1 Motivation . 1

1.2 Approach . 3

1.3 Document Structure . 4

2 Theory and General Numerical Implementation 5

2.1 Prandtl-Glauert Equation for Linearized Compressible Flow 5

2.1.1 Limitations . 8

2.2 Boundary Integral Equation for Supersonic Flow 9

2.2.1 Preliminaries . 10

2.2.2 Boundaries . 12

2.2.3 The Supersonic BIE . 15

2.3 Singularity Elements . 18

2.4 Boundary Conditions . 19

3 General Numerical Methods . 22

3.1 Linear System of Equations . 22

3.2 Influence Coefficients . 23

3.3 Post Processing . 25

3.3.1 Velocity . 26

3.3.2 Pressure Coefficient . 28

4 CPanel Implementation . 30

4.1 Functional Flow Diagram . 30

4.2 Higher-Order Doublet Scheme . 31

4.3 Subsonic Linear Doublet Implementation 37

vi

4.3.1 Control Points . 37

4.3.2 Constructing the Linear System of Equations 41

4.3.3 Post Processing . 45

4.4 Supersonic Implementation Preprocessing 47

4.4.1 Domain of Dependence Check 47

4.4.2 Coordinate Transformation 50

4.5 Supersonic Influence Coefficients Calculation Procedure 52

4.5.1 Build Edge-Based Coordinate System 53

4.5.2 Compute Fundamental Integrals 57

4.5.3 Compute Influence Coefficients 62

5 Results . 64

5.1 Subsonic Higher-Order Method . 64

5.2 Supersonic Method . 67

5.2.1 Unit Testing . 68

5.2.2 Flows Around Cones . 74

5.2.3 Diamond Airfoil Rectangular Wings 81

5.2.4 Delta Wings . 86

6 Conclusion . 96

6.1 Summary . 96

6.2 Future Work . 96

BIBLIOGRAPHY . 99

APPENDICES

A Influence Coefficients . 103

A.1 Subsonic Implementation . 103

A.2 Supersonic Implementation . 105

A.2.1 Subsonic Edges . 106

A.2.2 Supersonic Edges . 108

A.2.3 Sonic Edges . 109

B Unit Testing State Descriptions . 110

C Outstanding Issues . 114

D Development Methodology . 121

E Input File Format . 123

vii

LIST OF TABLES

Table Page

4.1 Control point offset convergence study, doublet strengths 40

5.1 Subsonic test case flow conditions 65

5.2 Percent error of CPanel Cp against theoretical Cp for a diamond airfoil 82

5.3 Comparison of CPanel error with MARCAP and PANAIR for a di-
amond airfoil . 84

B.1 State descriptions for control point variation in the x-direction . . . 111

B.2 State descriptions for control point variation in the y-direction . . . 112

B.3 State descriptions for control point variation in the z-direction . . . 113

viii

LIST OF FIGURES

Figure Page

2.1 Solution spaces of different types of PDEs 8

2.2 Flow disturbance propagation with varying Mach number 13

2.3 Definition of Domain of Dependence and Domain of Influence . . . 14

2.4 Examples of superinclined surfaces [1] 17

2.5 Influence of wake on body in supersonic flow 21

3.1 Subpanel definition used in other supersonic panel codes [2] 24

4.1 CPanel v3.0 functional flow diagram 32

4.2 Example of nodal and control points 34

4.3 Control point definition . 39

4.4 Ellipsoid geometry for control point offset convergence study 39

4.5 Computing the node-based influence coefficient via its surrounding
panels . 44

4.6 Example panel-DOD intersection 49

4.7 Effect of panel transformation for different Mach numbers 51

4.8 Edge inclination examples with downstream Mach cones 54

4.9 Example edge coordinate systems 56

4.10 Example of the Mach wedge region [2] 61

5.1 Full range of velocity potential distributions for subsonic ellipsoid test 66

5.2 Narrowed range of velocity potential distributions for subsonic ellip-
soid test . 67

5.3 Example of geometry used during unit testing 69

5.4 Comparison of potentials against point singularity elements 70

5.5 Doublet and source potential influences as the control point varies
in the x-direction (State details in Table B.1) 72

5.6 Doublet and source potential influences as the control point varies
in the y-direction (State details in Table B.2) 73

5.7 Doublet and source potential influences as the control point varies
in the z-direction (State details in Table B.3) 74

ix

5.8 Examples of paneling at the tip of a cone 76

5.9 10◦ half-angle cone, Cp vs Mach . 77

5.10 Cone at Mach
√

2, Cp vs θ . 79

5.11 10◦ half-angle cone at Mach 1.5 and α = 5◦, Cp vs φ 80

5.12 Geometry and conditions for diamond airfoil test case 82

5.13 Diamond airfoil, Cp vs x/c – theoretical solution comparison 83

5.14 5◦ half-angle wedge, Cp and ∆s/R vs Mach 85

5.15 Wedge at Mach 2.0, Cp and ∆s/R vs θ 86

5.16 Delta wing test cases . 88

5.17 Delta wing 1 at Mach
√

2, Cp distribution 90

5.18 Delta wing 1 at Mach
√

2, Cp vs y/ymax at x = 0.9c 90

5.19 Delta wing 2 at Mach
√

2, Cp distribution 91

5.20 Delta wing 2 at Mach
√

2, Cp vs y/ymax at x = 0.9c 92

5.21 Delta wing 3 at Mach 1.62 and α = 0, Cp distribution 93

5.22 Delta wing 3 at Mach 1.62, CL and CD vs α 94

C.1 Present nodal and control point definition 115

C.2 Example of leading and trailing edge errors 116

C.3 Wing 1 bottom surface solution with and without modification . . . 117

C.4 Example of Wing 2 errors . 119

C.5 Example of proposed new nodal and control point definition 120

x

LIST OF ALGORITHMS

Algorithm Page

4.1 Domain of dependence check . 48

4.2 Construction of the influence coefficient matrices 52

4.3 Calculation of the fundamental integral solutions 59

xi

NOMENCLATURE

Acronyms

BIE Boundary Integral Equation

CAD Computer Aided Design

CFD Computational Fluid Dynamics

CHTLS Constrained Hermite Taylor Least-Squares

CSYS Coordinate System

DOD Domain of Dependence

DOI Domain of Influence

PDE Partial Differential Equation

VLM Vortex Lattice Method

English Symbols

A Transformation matrix

A Doublet influence coefficient matrix

a Speed of sound; Doublet influence coefficient

B Alternative form of Prandtl-Glauert factor

B Source influence coefficient matrix

b Source influence coefficient

Cp Pressure coefficient

c Wing chord

cr Wing root chord

H Subsonic fundamental integral

I Subsonic doublet influence fundamental integral solutions

J Subsonic source velocity fundamental integral solutions

J Vector of subsonic source velocity fundamental integral solutions

xii

Ja Supersonic source influence coefficient scaling factor

K Supersonic doublet influence fundamental integral solutions

k Control point offset factor

lavg Control point edge length average

M Mach number

m Edge slope

Nd Number of doublets

Nn Number of nodal points

Np Number of panels

Ns Number of sources

n̂ Unit normal vector

n̄c Conormal vector

P Position vector, influenced point

P0 Position vector, influencing point

Pn Position vector, nodal point

p Pressure

QI Supersonic fundamental integral component

R Generic hyperbolic distance; Gas constant

RB Hyperbolic distance for supersonic freestream Mach number

Rβ Hyperbolic distance for subsonic freestream Mach number

r Relative position vector

S Generic surface of integration

Sa Surface of object in potential flow

s Wing span; Entropy

t Time

U Freestream velocity magnitude; Prandtl-Glauert equation solutions

U Freestream velocity vector

xiii

u, v, w Perturbation velocity vector components

V Total velocity magnitude

V Total velocity vector

V– Generic volume of integration

v Perturbation velocity vector

voffset Control point offset vector

w0 Supersonic fundamental integral component

w Perturbation mass flux vector

xm, ym, zm Supersonic edge oblique coordinate system

x̂m, ŷm, ẑm Subsonic edge oblique coordinate system

Greek Symbols

α Angle of attack

αij Higher-order doublet panel influence coefficient expression

αij Vector of higher-order doublet panel influence coefficients

β Prandtl-Glauert factor

γ Ratio of specific heats

θ Subsonic edge inclination; Geometry half-angle

λ Reciprocal of edge slope

µ Doublet strength; Mach angle

µ Vector of doublet strengths

ξ, η, ζ Panel local coordinate system

Φ Total velocity potential

Φ Vector of total velocity potentials

φ Perturbation velocity potential; Cone azimuth angle

φ Vector of node-based influence coefficients

ρ Density

σ Source strength

xiv

σ Vector of source strengths

Subscripts

A Average

cp Quantity at control point

D Difference; Doublet

i Quantity interior of a body; Counter for influenced control points

j Counter for influencing panels

k Counter for influencing nodes

L Lower

l Quantity in local panel coordinate system

S Source

U Upper

∞ Freestream quantity

Superscripts

∗ Finite part

xv

Chapter 1

INTRODUCTION

1.1 Motivation

With today’s advancements in computational technologies, simulation tools have be-

come a staple in the engineering design process. The demands of the aerospace in-

dustry continue to diversify, requiring designers to create and use new tools in order

to work quickly and efficiently. Rapid iteration during the conceptual design process

of air vehicles necessitates the utilization of quick evaluation methods. This often

demands the use of potential-based panel methods as opposed to the more common

Navier-Stokes based Computational Fluid Dynamics (CFD) methods.

Panel methods are favorable over traditional CFD when computational speed is

necessary. They have the ability to assess the flow field around a three-dimensional

body using surface discretization as opposed to volumetric, resulting in run times on

the order of seconds to minutes instead of hours to days. Most panel methods use

a structured geometry discretization requiring substantial work up front by the user;

however, the implementation of unstructured paneling, similar to that seen in most

commercial CFD software packages, drastically cuts down the work required to set up

a simulation. Furthermore, with growing interest in supersonic flight in the defense

industry and commercial market, such tools could be utilized in the evaluation of new

aircraft configurations designed specifically for the flight regime.

Most potential-based panel codes have been built for the evaluation of incom-

pressible flow fields only, the first of which were developed in the early 1960s. Shortly

after these methods were developed and published, Woodward and Carmichael cre-

ated the first panel method to successfully model supersonic flow, referred to as

1

the Woodward-Carmichael method [3, 4]. Several methods followed featuring dif-

ferent types and applications of singularity elements all using lower-order methods;

however, each of them experienced numerical instabilities when modeling steady su-

personic flows. It was not until the development of PANAIR in the 1980s that a

supersonic panel method successfully modeled steady supersonic flow, while avoiding

the instability problems of its predecessors. The difference in PANAIR was the en-

forcement of continuous doublet strength over the entire surface of a body, ensured by

the use of quadratically varying doublets superimposed with linearly varying sources

onto a curved surface [5]. The use of higher-order methods to enforce doublet strength

continuity was found to be key in modeling supersonic flow using panel methods, and

was implemented by programs following PANAIR such as HISSS [6] and MARCAP

[7]. One other key common characteristic between all the aforementioned methods

is the use of a structured surface discretization, which places a large burden on the

user to correctly prepare geometry for evaluation. Vortex Lattice Methods (VLM),

such as VORLAX [8] and VSPAERO [9], have also been utilized to solve supersonic

flows, though these methods are lower fidelity than panel methods. There has yet to

be a publicly available panel code that utilizes the accuracy and stability of higher-

order methods for supersonic simulations paired with the convenience of unstructured

paneling.

The marriage of unstructured paneling with a higher-order panel method would

allow the designer to move seamlessly from a Computer Aided Design (CAD) model

to a complete flow profile of an arbitrary geometry in subsonic or supersonic flight

regimes. This capability would allow for rapid iteration and development of a diverse

range of aircraft configurations by streamlining the conceptual design process. The

development of such a capability is the subject of this paper.

2

1.2 Approach

CPanel is an unstructured panel code originally developed as v1.0 by Chris Satter-

white [10] and developed further as v2.0 by Connor Sousa [11] at Cal Poly, and is the

platform from which this work is building from. It is an open source program devel-

oped in ANSI C++ with an object oriented approach and uses a Dirichlet boundary

condition with constant strength sources and doublets representing body panels, and

a vortex sheet for wake modeling. The key aspect of CPanel v1.0 is the choice of

velocity formulation to handle unstructured paneling: a Constrained Hermite Taylor

Least-Squares (CHTLS) method as opposed to a viscous core model [10]. With v2.0,

a viscous vortex particle wake handling option was added to CPanel to allow for more

accurate modeling of wake shapes, which brought with it the ability to run unsteady

simulations [11]. The features implemented in v2.0 will not have bearing on this work.

The reader is directed to Chapter 2 of the thesis by Sousa for a high-level overview of

the original CPanel implementation, and to the thesis by Satterwhite for the detailed

theory and implementation [11, 10].

This thesis will further expand the capabilities of CPanel by including the ability

to model steady, supersonic flows around arbitrary bodies. Various modifications will

be made to CPanel to accomplish this. To solve compressible flows using potential

flow theory, the Prandtl-Glauert equation must be solved as opposed to the Laplace

equation. This solution yields a different integral equation than the one currently used

in CPanel; for the supersonic regime specifically, it introduces further difficulties to

the solution process that do not arise in the case of subsonic flow. Flow disturbance

propagation must be restricted to the Mach cone, whereas in subsonic flow, any

disturbance propagates throughout the entire flow field. Furthermore, to avoid the

numerical instability problems seen by early supersonic codes, a higher-order method

is implemented.

3

1.3 Document Structure

This document mimics the structure of the original CPanel documentation in an effort

to emphasize the differences in implementation required for the presented supersonic

panel method. Chapter 2 covers the theory of supersonic potential flows. Chapter 3

shows how the aspects of a typical panel code, and specifically CPanel, must change

to accommodate supersonic flows, and discusses the methods used by other codes.

The specifics of how these changes were implemented into CPanel are discussed in

Chapter 4. Lastly, the results of CPanel v3.0 are presented and discussed in Chapter 5

along with verification from exact theory and other supersonic panel codes. It should

be noted that when CPanel is referred to throughout this document, the version

including the implementation presented here is being referenced, unless otherwise

specified.

Since many of the methods used throughout this work were developed by others

for use in other codes, this paper focuses on how these methods were implemented in

CPanel rather than the in depth theory and derivations behind them. Though, what

has been determined to be essential background information in regard to these topics

is discussed. Furthermore, with the future development and expansion of CPanel in

mind, the content is structured and presented with the aim of providing the reader

an understanding of how various aspects of the code function, and of the physical

meaning behind some of the mathematics of these methods.

4

Chapter 2

THEORY AND GENERAL NUMERICAL IMPLEMENTATION

This chapter discusses the theory behind supersonic potential flow methods, then

moves into the development of the equations from which most supersonic panel codes

have been built, including the implementation of CPanel presented in this thesis.

The different boundary conditions that can be used to ensure a unique solution are

presented. Throughout the chapter, the theory and derivations are compared and

contrasted with their subsonic counterparts.

2.1 Prandtl-Glauert Equation for Linearized Compressible Flow

For further details of the following derivation, the reader is directed to Katz and

Plotkin [12] and Cummings et al. [13], as well as Ehlers et al. [2] for an alternate

approach.

To arrive at the linearized potential equation for compressible flow, commonly

known as the Prandtl-Glauert equation, one can begin with the Euler equations for

steady, inviscid, and irrotational flow.

∇×V = 0 (2.1)

∇ · (ρV) = 0 (2.2)

(ρV ·∇)V + ∇p = 0 (2.3)

Equation 2.2 can then be expanded and rewritten as

V ·∇ρ+ ρ∇ ·V = 0 (2.4)

and because this derivation must account for compressibility, the first term in this

equation is not zero as it would be for the incompressible case. Continuing this

5

derivation with the removal of all density terms in the Euler equations would result

in Laplace’s equation, as shown by Satterwhite [10].

Equation 2.3 can be expanded to write the momentum equation in the x-, y-, and

z-directions. Then multiplying each by the differential in their respective directions,

substituting in the conditions for irrotationality, and adding them together yields

dp = −ρ
2
d(V 2) = −(ρV)dV (2.5)

With the condition of irrotational flow, a scalar function called the total velocity

potential, Φ, is defined such that

V = ∇Φ (2.6)

and can be substituted into Equation 2.5 giving

dp = −ρ
2
d(V 2) = −ρ

2
d(|∇Φ|2) (2.7)

The pressure differential on the left hand side of the above equation can be replaced

with a density differential using the definition of speed of sound, a, in an isentropic

fluid,

a2 =
dp

dρ
(2.8)

Rewriting Equation 2.7 as

dρ = − ρ

2a2
d(|∇Φ|2) (2.9)

and taking the partial derivative of the density with respect to the x-, y-, and z-

directions, combining them back into Equation 2.2 and collecting terms yields(
1− Φ2

x

a2

)
Φxx +

(
1−

Φ2
y

a2

)
Φyy +

(
1− Φ2

z

a2

)
Φzz

−
(

2ΦxΦy

a2

)
Φxy −

(
2ΦxΦz

a2

)
Φxz −

(
2ΦyΦz

a2

)
Φyz = 0

(2.10)

where

a2 = a2∞ −
γ − 1

2
(Φ2

x + Φ2
y + Φ2

z) (2.11)

6

This equation is the full potential equation. It can be used to describe any inviscid,

adiabatic, and irrotational flow, but because it is non-linear in its current form, it is

difficult to solve and would likely require a numerical solution. Instead, this equation

can be linearized, and in its linearized form, an analytic solution can be obtained. To

do this, perturbation velocity and perturbation velocity potential are introduced and

defined such that

∇Φ = U + ∇φ (2.12)

∇φ = v = (u, v, w) (2.13)

where U is freestream velocity magnitude, the vector of which is assumed to be only in

the x-direction. Equation 2.10 can now be rewritten in terms of perturbation velocity

potential, multiplied through by a in terms of the perturbation velocity potentials,

and terms collected to find

(1−M2
∞)φxx + φyy + φzz =

M2
∞

[
(γ + 1)

φx
U

+

(
γ + 1

2

)
φ2
x

U2
+

(
γ − 1

2

)(
φ2
y + φ2

z

U2

)]
φxx

+M2
∞

[
(γ − 1)

φx
U

+

(
γ + 1

2

)
φ2
y

U2
+

(
γ − 1

2

)(
φ2
x + φ2

z

U2

)]
φyy

+M2
∞

[
(γ − 1)

φx
U

+

(
γ + 1

2

)
φ2
z

U2
+

(
γ − 1

2

)(
φ2
x + φ2

y

U2

)]
φzz

+2M2
∞

[
φy
U

(
1 +

φx
U

)
φxy +

φz
U

(
1 +

φx
U

)
φxz +

φyφz
U2

φyz

]

(2.14)

Assuming the perturbations are small relative to the freestream and that the Mach

number of the freestream flow is not near unity, i.e. the flow field is entirely subsonic

or supersonic, each term on the right hand side of the equation is much less than

one and can be neglected. This leaves the Prandtl-Glauert equation for linearized

compressible flow,

(1−M2
∞)φxx + φyy + φzz = 0 (2.15)

7

For supersonic flows specifically, the negative of this equation is often used,

(M2
∞ − 1)φxx − φyy − φzz = 0 (2.16)

As discussed by Cummings et al. [13], Equation 2.15 takes the form of the wave

equation in a supersonic flow field and requires that the onset flow is in the x-direction.

This is a Partial Differential Equation (PDE) of hyperbolic type where the charac-

teristic surface is the Mach cone which defines the solution space, as illustrated by

Figure 2.1(a); this will be discussed further in the following chapters. For subsonic

flow regimes, Equation 2.15 is a PDE of elliptic type, thus the solution space resembles

Figure 2.1(b).

Figure 2.1: Solution spaces of different types of PDEs

2.1.1 Limitations

The key to the Prandtl-Glauert equation is that it is linearized, allowing the use

of the principle of superposition to arrive at solutions. However eliminating higher

order terms via the small perturbation assumption in the derivation of Equation 2.15

of course introduces limitations to its use.

8

All compression shocks present in a supersonic flow field must be weak such that

the entropy change across any shock is small; thus, a solution to this equation with a

high freestream Mach number will be in error, as well as that for a configuration with

a high angle of attack or a thick body [1]. The same applies for expansion waves. The

freestream Mach number also cannot be near unity, thus there can be no transonic

flow, as this introduces a singularity into the solution of the Prandtl-Glauert equation

that is not handled.

2.2 Boundary Integral Equation for Supersonic Flow

To compute the flow field around an arbitrary body in steady supersonic flow, the

Prandtl-Glauert equation derived in the previous section, Equation 2.15, is solved

analytically using an indirect formulation of the Boundary Integral Equation (BIE).

This requires the integration of discrete singularity elements over a discretized sur-

face. Each singularity element is given a strength using influence functions to satisfy

boundary conditions applied on the surface.

This BIE, for a constant subsonic Mach number, can be obtained two primary

ways as explained by Erickson [1]. For compressible flows, one can find the solution of

the more general Prandtl-Glauert equation derived earlier using a mass-flux boundary

condition applied to the true geometry. For incompressible flows, the Prandtl-Glauert

transformation is used to convert Equation 2.15 to Laplaces’s equation which is then

solved using a velocity boundary condition [1]. The solution of the Prandtl-Glauert

equation in the form of Laplace’s equation, as well as its implementation into CPanel,

is shown by Satterwhite [10]. To arrive at the BIE for a constant supersonic Mach

number, the method of finding a solution for the general Prandtl-Glauert equation

must be used.

This process for a constant supersonic Mach number is much more involved than

9

that for its subsonic counterpart. There are fundamental differences in the charac-

teristics of subsonic and supersonic flow fields that must be addressed, as well as

complications in the mathematics of the supersonic case that do not arise in the sub-

sonic case. The following sections go through this process, which is adapted from

Ehlers et al. [2]; for a more thorough derivation and discussion, the reader is directed

to their presentation of the material.

2.2.1 Preliminaries

The derivation of the boundary integral equation for supersonic flow starts with the

more general case for that of compressible flows, but begins similarly to the BIE

derivation for incompressible flow, which is shown by Satterwhite [10].

Two scalar functions, U1 and U2, and two vector functions, w1 and w2 are defined

where

w = (β2u, v, w) (2.17)

β2 = 1−M2 (2.18)

and the subscripts 1 and 2 indicate two different solutions to Equation 2.15, which

can be written in terms of w, the linear perturbation mass flux vector, as

∇ ·w = 0 (2.19)

Note that when M = 0 in Equation 2.18, then w = v = ∇φ, and so ∇·w = ∇2φ = 0,

which is the governing equation to model incompressible flow. Both U and w are

defined to be continuous and twice continuously differentiable within the volume of

interest, V– . Thus, the divergence theorem can be written in terms of these functions

as ∫
V–

(U1∇ ·w2 + U2∇ ·w1)d V– =

∫
S

(U1w2 · n̂)dS (2.20)

10

where S is the boundary of V– . According to Green’s theorem, the right hand side of

Equation 2.20 is equal to zero. The same holds true if the subscripts of U and w,

respectively, are switched, leading to Green’s second identity,∫
V–

(U1∇ ·w2 − U2∇ ·w1)d V– =

∫
S

[
(U1w2 − U2w1) · n̂

]
dS = 0 (2.21)

The integral on the right hand side of Equation 2.21 is what needs to be solved, where

U1 and U2 are both solutions to the Prandtl-Glauert equation. U1 and U2 are then

defined as

U1 =
1

R

U2 = φ

(2.22)

which are both solutions to the Prandtl-Glauert equation. Note that these functions

are defined as they are by Satterwhite [10], which is the opposite of the definitions

given by Ehlers et. al. [2].

To this point, this derivation applies to both subsonic and supersonic flows. Mov-

ing forward, the difference in solutions comes with the definition of R, more specif-

ically, the sign of the Prandtl-Glauert factor squared, β2. For subsonic flow, β2 is

positive which yields the first term of Equation 2.15 to be positive and the equation

itself to be a PDE of elliptic type. For U1 to be a solution of this PDE, R must be

Rβ =
√

(x− ξ0)2 + β2
[
(y − η0)2 + (z − ζ0)2

]
(2.23)

where

P = (x, y, z) (2.24)

P0 = (ξ0, η0, ζ0) (2.25)

Here and for the following discussions, P is defined as the influenced point and P0 is

the influencing point. For supersonic flow, β2 is negative. This yields the first term

of Equation 2.15 to be negative and the equation itself to be a PDE of hyperbolic

11

type. For U1 to be a solution in this case, R must now be

RB =
√

(x− ξ0)2 −B2
[
(y − η0)2 + (z − ζ0)2

]
(2.26)

where

B =
√
M2 − 1 (2.27)

The key difference between the quantities Rβ and RB is the singularities they each

introduce when substituted back into Equation 2.21, and integration is performed. In

the subsonic case with Rβ, just one singularity occurs at P0, which is easily handled in

the integration process. For the supersonic case withRB, there remains the singularity

at P0, but there is now also a singularity along the surface defined by

x− ξ0 = ±Br (2.28)

where

r =
√

(y − η0)2 + (z − ζ0)2 (2.29)

This extra singularity creates difficulties in carrying out the integrals of Equation

2.21, the details of which will be discussed shortly.

2.2.2 Boundaries

Before continuing to develop the BIE for supersonic flow, the boundaries over which

the integrals are to be evaluated must be specified. There are of course fundamental

differences in the phenomena that occur in subsonic and supersonic flow fields, which

have direct bearing on the formulation of the BIEs.

Figure 2.2 shows how a flow disturbance propagates in flow fields of increasing

Mach number. In the case of a subsonic freestream velocity as illustrated by Figures

2.2(a) and 2.2(b), when a flow disturbance occurs at time t = 0, the wave front

generated by this disturbance propagates throughout the flow field at the speed of

12

Figure 2.2: Flow disturbance propagation with varying Mach number

sound, a; the disturbance is also convected by the freestream flow. As time approaches

infinity, this disturbance will fill the entirety of the flow domain. In the case of

a supersonic freestream velocity as depicted by Figure 2.2(c), the flow disturbance

still propagates throughout the flow field at the speed of sound, but it is now also

convected at a speed greater than the speed of sound. Thus, at a time t > 0, the

disturbance will have traveled further due to the freestream than it will have traveled

due to its propagation at the speed of sound. What results is a conical region that

defines the envelope in which the flow disturbance propagates, called the Mach cone.

13

The sine of the cone half angle, µ, yields the ratio of speed of sound to freestream

velocity, which is the reciprocal of Mach number.

There is both an upstream Mach cone and a downstream Mach cone for a given

point P0, as illustrated in Figure 2.3, and the surfaces of which are defined by the two

forms of Equation 2.28. The upstream Mach cone, also called the Domain of Depen-

dence (DOD), is the region that influences the point P0. Similarly, the downstream

Mach cone, called the Domain of Influence (DOI), is the region that is influenced by

the point P0. Any flow disturbance within the domain of dependence will influence

this point, and the state of the flow at this point has influence on the volume enclosed

by the domain of influence.

Figure 2.3: Definition of Domain of Dependence and Domain of Influence

Going back to equation 2.21 and the derivation of the supersonic BIE, it can now

be seen from Figure 2.3 that the surface over which integration is to be performed

to solve for the flow state at P as influenced by P0 is the surface of the DOD, any

surfaces within this region that may cause perturbations in the flow field, and the

surface Sδ as it approaches the point P0.

14

2.2.3 The Supersonic BIE

With the BIE defined in the form of Green’s second identity and the boundaries

defined, integration can be performed to solve the BIE. First, the singularity that

occurs on the Mach cone boundaries must be handled. Simply put, this is done

by taking the finite part of the divergent integral that arises in integrating U1 over

the Mach cone boundary. As explained by Ehlers et al. [2], this was first shown by

Hadamard [14] and subsequently used by many others. The details of this formulation

are not discussed here; the reader is directed to Ehlers et al. [2] for discussion and

derivation of this concept.

Now noting that φ is constant along any characteristic surface and that the finite

part of the divergent integral cancels over the upstream Mach cone boundary, any

integration that is performed over the Mach cone boundary will cancel [2]. This leaves

the surface Sδ, and any surfaces that may be within the Mach cone boundaries which

cause flow perturbations, to be defined here as Sa where P0 is some point on Sa.

Substituting Equation 2.22 into the right hand side of Equation 2.21 and using

RB in place of R, the BIE can now be written as∫ ∗
Sa+Sδ

[(1

RB

w2(P0)− φ(P0)w1

)
· n̂
]
dS = 0 (2.30)

where the asterisk denotes the finite part of the integral. First, the integration over

Sδ alone is addressed. Taking the limit as the surface Sδ approaches zero where the

unit normal of this surface points upstream away from P0, it is found that

lim
Sδ→0

∫
Sδ

[(1

RB

w2(P0)− φ(P0)w1

)
· n̂
]
dS = 2π(x− ξ0)w1 · n̂/B − 2πφ(P) (2.31)

This is a convergent integral so the asterisk is removed here. Noting that the term

(x − ξ0) goes to zero as Sδ approaches P0 in Figure 2.3, substituting Equation 2.31

15

back into Equation 2.30 and rearranging yields

φ(P) =
1

2π

∫ ∗
Sa

[(1

RB

w2(P0)− φ(P0)w1

)
· n̂
]
dS (2.32)

It is known that

w1 · n̂ = n̂ ·
(
−B2 ∂

∂ξ0
,
∂

∂η0
,
∂

∂ζ0

)(
1

RB

)
=
B2(P0 −P) · n̂

(RB)3
(2.33)

and redefining w2 as

w2 = w (2.34)

Equation 2.32 becomes

φ(P) =
1

2π

∫
Sa

w(P0) · n̂
RB

dS − B2

2π

∫ ∗
Sa

φ(P0)
(P0 −P) · n̂

(RB)3
dS (2.35)

The right hand side of this equation can be rewritten in terms of the conormal giving

φ(P) =
1

2π

∫
Sa

w(P0) · n̂
RB

dS − 1

2π

∫ ∗
Sa

φ(P0)
∂

∂n̄c

(
1

RB

)
dS (2.36)

where n̂ is the unit normal pointing away from the surface into the flow and n̄c is the

conormal vector defined as, respectively,

n̂ = (nx, ny, nz)

n̄c = (−B2nx, ny, nz)

(2.37)

Note the similarities between Equation 2.36 and its subsonic counterpart given by

Satterwhite [10], primarily in the general form of the equation and a coefficient that

is a factor of 1
cπ

where c is some positive integer.

At this point in the derivation of the BIE for supersonic flow, a distinction must

be made between what are referred to as superinclined and subinclined surfaces. A

subinclined surface is that which is inclined at an angle less than the Mach angle, and

a superinclined surface is that which is inclined at an angle greater than the Mach

angle. Examples of superinclined surfaces are shown in Figure 2.4.

16

Figure 2.4: Examples of superinclined surfaces [1]

Superinclined surfaces can be used to model various flows such as that through a

nacelle, or the exhaust from an engine by applying specific boundary conditions to

the downstream side of superinclined surfaces, and they can only be applied to the

downstream side. Boundary conditions for subinclined surfaces, however, must be

applied to both sides of the surface to give a well-posed problem. This difference in

boundary condition application is why a distinction in the BIE derivation is needed.

Superinclined surfaces behave as subinclined in the special case of a subsonic leading

edge, meaning it is swept such that the entire edge is within the Mach cone emanating

from the root of the leading edge, as identified in Figure 2.4. The ability to apply

boundary conditions to the downstream side of superinclined surfaces as mentioned

above is not implemented with this work, so the remainder of the BIE derivation is

specifically for subinclined panels.

As Equation 2.35 is currently written, it only accounts for integration over the

upper surface of Sa, or the side that is submerged in the flow; the lower surface, the

surface which is not exposed to the flow, must also be accounted for in the integration

over a subinclined surface. Similar to what is done by Satterwhite [10] in deriving

17

the subsonic implementation of CPanel, an inner potential, φi, is now defined at an

interior point, Pi. Since this point is outside of the flow domain, the potential here

is zero, and the normal is pointing in the opposite direction. Writing Equation 2.32

for this point gives

0 = − 1

2π

∫
Sa

wi(P0) · n̂
RB

dS − 1

2π

∫ ∗
Sa

φi(P0)
∂

∂n̄c

(
1

RB

)
dS (2.38)

Finally, adding this to Equation 2.35 yields the complete BIE,

φ(P) =
1

2π

∫
Sa

[w(P0)−wi(P0)] · n̂
RB

dS − 1

2π

∫ ∗
Sa

[φ(P0)− φi(P0)]
∂

∂n̄c

(
1

RB

)
dS

(2.39)

2.3 Singularity Elements

With the BIE for supersonic flow now defined, it must be written in terms of funda-

mental singularity elements. The perturbation mass flux vectors and the perturbation

velocity potentials of Equation 2.39 can be expressed in terms of two useful fundamen-

tal singularity elements. As explained by Ehlers et. al., it can be seen from Equation

2.39 that the discontinuity in perturbation mass flux with a continuous perturbation

potential across the surface produces sources of strength

σ = w(P0) · n̂−wi(P0) · n̂ (2.40)

Furthermore, a discontinuity in velocity potential with continuous normal mass flux

across a surface produces doublets of strength

µ = φ(P0)− φi(P0) (2.41)

Substituting Equations 2.40 and 2.41 into Equation 2.39 then gives the final form of

the BIE for supersonic flow in terms of source and doublet strengths as

φ(P) =
1

2π

∫
Sa

σ

RB

dS − 1

2π

∫ ∗
Sa

µ
∂

∂n̄c

(
1

RB

)
dS (2.42)

18

The two integrals of this equation each represent the potential influence of a dis-

tribution of sources over a surface and the distribution of doublets over a surface,

respectively, which can then be summed to find the perturbation potential at a point

in the flow field. Before doing this, however, a few more items must be handled.

First is setting the order of the singularity strengths and determining the order

of the discretized elements over which integration is to be performed. CPanel utilizes

an unstructured discretization of flat triangular panels, so the order of the elements

used in integration is predetermined for this implementation. The original implemen-

tation of CPanel uses a distribution of constant sources and constant doublets. This

decision was made in part because of the use of unstructured paneling, and the ability

to quickly generate high fidelity surface meshes while maintaining computational effi-

ciency through the use of constant singularity elements. As discussed in the previous

chapter, for supersonic modeling via panel methods, the order of the doublet elements

must be at least one order higher than constant to enable the enforcement of doublet

strength continuity across the body surface. The order of the doublet distribution

that was eventually chosen and implemented will be discussed in Chapter 4.

Independent of the order of the singularity elements and discretized elements,

boundary conditions must be applied to the surface to ensure a unique solution can

be obtained.

2.4 Boundary Conditions

As discussed by Satterwhite [10], there are three different boundary conditions that

must be considered: far field boundary conditions, boundary conditions on the body

in the flow field, and the Kutta condition to ensure the smooth transition of flow over

sharp trailing edges. Since in supersonic flow fields, the boundary of the flow field

is defined by the Mach cone, the far field condition was already handled in the BIE

19

derivation. For boundary conditions of the body, there are two different approaches

that may be used: application of the Neumann or Dirichlet boundary conditions.

The Neumann approach involves the direct implementation of boundary condi-

tions, as conditions are applied directly to the surface of the body. This type of

condition is also sometimes referred to as a velocity boundary condition. The other

approach is to use a Dirichlet type condition, which is applied in an indirect manner

and involves the specification of the function value itself on the surface [10]. This

is the type that is currently used in CPanel and will also be utilized for this imple-

mentation. It was specified earlier in the development of the BIE that the potential

internal to the body and outside the flow domain, φi, is zero. Generally, this potential

simply needs to be constant such that it has no contribution to computed perturba-

tion velocities. However for supersonic flow, the internal potential must be zero to

prevent spurious vortices from propagating down Mach lines and introducing non-

physical perturbations on the upper surface of the body [2]. Applying this condition

to Equation 2.42 gives

1

2π

∫
Sa

σ

RB

dS − 1

2π

∫ ∗
Sa

µ
∂

∂nc

(
1

RB

)
dS = 0 (2.43)

which can be written numerically as

1

2π

[Ns∑
j=1

1

RB

σ −
Nd∑
i=1

µ
∂

∂nc

(
1

RB

)]
= 0 (2.44)

At this point, Equation 2.44 represents a linear system of equations with at least

2N unknowns and N equations, where the unknowns are the source and doublet

strengths. Thus the condition that no mass flux may cross the boundary of the body

in the flow field is applied.

w · n̂ = −U · n̂ (2.45)

This in turn sets the strengths of the sources distributed over the surface as

σ = −U · n̂ (2.46)

20

leaving only the doublet strengths distributed over the body as the unknowns, and

ensuring a unique solution can be obtained. This type of condition is also often

referred to as a mass flux boundary condition or Morino’s scheme [15].

The final condition to be addressed is the Kutta condition. In subsonic lifting

flows, this must always be applied to ensure the smooth transition of flow over sharp

trailing edges, and that the rear stagnation point remains at the trailing edge. With

supersonic lifting flows, the application of the Kutta condition is needed only in the

case of so-called subsonic trailing edges–where the trailing edge is swept such that

the entire edge is within the Mach cone emanating from the root of the edge. When

a lifting surface in supersonic flow has a so-called supersonic trailing edge, no part

of the surface will be within the downstream Mach cone of the wake, so the wake

has no influence on the body and the Kutta condition does not need to be applied.

This concept is illustrated in Figure 2.5. For this thesis, the ability to model wakes

in supersonic flow was not implemented, so only wings with supersonic trailing edges

can be modeled accurately and the Kutta condition does not need to be applied.

Figure 2.5: Influence of wake on body in supersonic flow

21

Chapter 3

GENERAL NUMERICAL METHODS

The following chapter outlines the methods by which generic BIEs are solved, as well

as the one specific to this implementation. The different methods and approaches

to computing influence coefficients and velocities in other supersonic panel codes are

discussed. Lastly, the various formulations of the pressure coefficient for compressible

flows is presented. Parallels and differences between the original subsonic CPanel

implementation and this implementation will again be noted throughout the chapter.

3.1 Linear System of Equations

The majority of potential-based panel codes, regardless of the order of singularity

elements or the order of the surface discretization, utilize the same general process

of building and solving a linear system of equations. The crux of this process, and

of panel codes themselves, is the construction of the influence coefficient matrices

where each coefficient is found by computing the potential influence of a unit strength

element onto a point in the solution domain. A source influence coefficient matrix and

a doublet influence coefficient matrix are both built by solving the two integrals of

a BIE with unit strength singularities. In this implementation, the expression of the

supersonic BIE given in Equation 2.44 can be written as a linear system of equations

as

Aµ = Bσ (3.1)

In the subsonic implementation of CPanel, there remained a far field potential

term and an internal potential in this expression. As discussed in Chapter 2, the

far field term does not arise here since the influence domain in which integration is

22

performed is restricted to the Mach cone, and the internal potential is set to zero,

which leaves only the terms in the expression above.

Since the source strengths are prescribed from Equation 2.46, and influence co-

efficient matrices are determined from geometry and Mach number, the right hand

side of Equation 3.1 is known and A is known, just leaving the system

Aµ = RHS (3.2)

to be solved for the vector of doublet strengths, µ. Though this generic method of

solving for the unknown doublet strengths does not depend on the order of the method

employed, the construction and composition of the influence coefficient matrices does

in fact depend on method order.

3.2 Influence Coefficients

In CPanel v1.0, constant doublet and constant source distributions are implemented.

This same methodology is adopted in v2.0. For subsonic schemes and with mod-

ern computational speeds, this is arguably the best approach since what constant

singularity methods used to lack in accuracy can now be made up by using finely dis-

cretized, automatically generated meshes [10]. Using constant doublets and constant

sources results in greatly simplified solutions to the BIEs which in turn simplifies

the construction of the influence coefficient matrices. The same control points can

be used for both singularities, and the dimensions of the two matrices, which will

both be square, will always be the same as one another. However if used with an

unstructured mesh as is done in CPanel, one can not simply use finite differencing to

compute velocity from velocity potential, and must use a more involved method such

as CHTLS [16].

Clearly, this method cannot be used in implementing a supersonic scheme into

23

CPanel as doublet continuity cannot be enforced with a constant doublet distribution.

Since PANAIR and its pilot code were first published in the late 1970s and early 1980s

[5, 2], the majority of potential-based supersonic panel codes have adopted the same

methodology, which was first applied to subsonic flows by Johnson and Rubbert

[17]. This technique involves using a quadratic approximation for curved panels,

quadratically varying doublets, and linearly varying sources. The curved panels are

then broken up into eight flat, triangular subpanels like that shown in Figure 3.1. A

splining method is used to describe the singularity distributions over each panel, then

the subpanels are integrated over and summed to find the influence coefficients for

a given panel [17]. This method first applied to modeling supersonic flow by Ehlers

et al. [2], when it was then discovered that all panel edges must be contiguous and

that a more strict splining method was needed to enforce doublet strength continuity,

which then led to the development of PANAIR.

Figure 3.1: Subpanel definition used in other supersonic panel codes [2]

As noted above, most potential-based supersonic panel methods have adopted this

methodology. One exception is MARCAP [7], which uses linearly varying doublets

and constant sources on flat, triangular panels. The advantages and disadvantages

of these different approaches will be discussed in the next chapter. Regardless of the

24

order of singularities used in modeling supersonic potential flows, there remains the

method by which the influence coefficients themselves are computed.

As discussed by Epton and Magnus [18], no matter the influence coefficient calcula-

tion method, all will yield the same results in computing the influence of a singularity

element on a point, given the same problem. The approach adopted by PANAIR [18]

is to establish a cylindrical coordinate system to be used for subsonic flow problems

or with superinclined panels in supersonic flow, and a hyperbolic coordinate system

for use with subinclined panels in supersonic flow. In working in these disparate co-

ordinate systems, the developer can manipulate the solution to the BIE specific to

the problem at hand, and simplify the implementation as well as the computations

themselves. This was adopted by most supersonic panel codes following PANAIR.

Another approach implemented by Ehlers et al. [2], based on the methods of Johnson

[19], is to develop a small set of fundamental integrals which only need to be computed

once per influence calculation; then the remaining computations are all performed in

terms of these fundamental integrals. This is done in rectilinear coordinates.

Most of the intricacies of supersonic panel methods relative to subsonic methods

lie in the influence coefficient calculations, as can be seen in the variation and com-

plexities of the methods mentioned above. Thus the majority of the work for this

thesis revolved around the understanding, development, and testing of the influence

coefficient computations, as well as how to best implement the required changes and

additions to the existing CPanel architecture. Chapter 4 focuses on these specific

implementations, so the detailed discussion on the topic is reserved for said chapter.

3.3 Post Processing

The power of potential-based panel methods lies in the definition of velocity potential

itself stated by Equation 2.6. Once velocity potential all over a body is known, which

25

is easily calculated directly from the defined source strengths and computed doublet

strengths, one simply needs to take the gradient of the potential to find velocity. And

once velocity is known, the pressure coefficients all over the body can be found, which

then leads to the ability to compute force and moment coefficients, giving a complete

aerodynamic profile for the body of interest.

Because all supersonic panel codes, since PANAIR at least, are higher order meth-

ods, and whether or not they use a structured or unstructured surface discretization,

the gradient of the potential can be taken without the need for more advanced meth-

ods such as using vortex filaments or methods like CHTLS [10]. This is a relatively

trivial process and essentially the same approach has been used by all published codes.

3.3.1 Velocity

In a general panel method regardless of the flow regime or boundary conditions that

are used, the velocity on the upper surface of a body (the side that is exposed to

the flow field) and the lower surface of a body (the side that is not in the flow field,

internal to the body), can be computed. This then yields itself to a definition of

average velocity written as

vA = (vU + vL)/2 (3.3)

and a difference velocity written as

vD = vU − vL (3.4)

Now the upper and lower velocities, respectively, can be written in terms of the

average and difference velocities as

vU = vA + vD/2 (3.5)

vL = vA − vD/2 (3.6)

26

The average and difference velocities can be split into tangential and normal com-

ponents, but a distinction must first be made for the calculation of these quantities

for use in subsonic or supersonic flow regimes. In the subsonic case as shown by

Johnson [19], vA and vD are found to be, respectively,

vA = ∇φA + σn̂ (3.7)

vD = ∇µ+ σn̂ (3.8)

For the supersonic case, both of these quantities are also functions of the conormal

defined in Equation 2.37, and the normal component of vA is found via the average

perturbation mass flux rather than from source strength. As expressed by Epton and

Magnus [18], they are then written as

vA = ∇φA +
wA · n̂
n̂ · n̄c

n̂ (3.9)

vD = ∇µ+
σ

n̂ · n̄c
n̂ (3.10)

As shown in Equations 3.8 and 3.10, the difference velocity is purely a function

of the singularity strengths, and so can be computed as is without the need for any

more information. Prior to computing the average velocity however, the applied

boundary conditions must be considered since it is a function of potential, as well

as perturbation mass flux in the supersonic case. If the boundary conditions of this

implementation are applied, that is

φL = 0

σ = −U · n̂
(3.11)

then it can be shown that for both the subsonic and supersonic cases,

φA = µ/2 (3.12)

and for the supersonic case specifically,

wA · n̂ = σ/2 (3.13)

27

Thus, like the difference velocity, the average velocity can be computed directly from

the singularity strengths. The same can be done if the normal perturbation mass flux

is specified as some non-zero quantity.

If a different type of boundary condition is applied or the internal potential is

non-zero, then vA cannot be reduced to singularity strengths, and it must be com-

puted using influence coefficients similar to how the influence coefficient matrix is

constructed. Rather than computing the coefficients from the solution to the BIE

however, they are computed from the gradient of the BIE which can be found ana-

lytically.

3.3.2 Pressure Coefficient

With velocities computed, the pressure coefficients across the surface of the body

in the flow field can be found, from which other aerodynamic coefficients of interest

easily follow. The pressure coefficient for compressible flow can be expressed in various

ways depending on the applied simplifying assumptions. The following equations are

adapted from Epton and Magnus [18].

The theoretically exact pressure coefficient expression, called the isentropic pres-

sure coefficient formula, is written as

Cp =
2

γM2
∞

[
1 +

γ − 1

2

(
1− |V|

2

|U|2

)
M2
∞

] γ
γ−1

− 1 (3.14)

This equation contains terms that are multiple orders higher than the linearized

equations used to compute the velocities discussed earlier. Simplifying assumptions

can be applied to arrive at expressions for Cp that are more appropriate for the

circumstances.

Neglecting all third-order and higher terms gives the second-order pressure coef-

28

ficient formula.

Cp = − 2u

|U|
− (1−M2

∞)u2 + v2 + w2

|U|2
(3.15)

It is worth noting that as M∞ approaches zero in Equations 3.14 and 3.15, the ex-

pression for Cp becomes that for incompressible flow, which is more easily seen by

rewriting Equation 3.15 as

Cp = 1− |V|
2

|U|2
+M2

∞
u2

|U|2
(3.16)

To simplify the expression for Cp even further, the slender body assumption may

be made which eliminates the quadratic expression of u yielding

Cp = − 2u

|U|
− v2 + w2

|U|2
(3.17)

If all terms of a higher order than linear are neglected, this then leaves the linear

pressure coefficient formula.

Cp = − 2u

|U|
(3.18)

These different expressions of Cp vary in correctness depending on the conditions

of the simulation; this will be discussed further in Chapter 5. It should be noted here

that these three methods of computing the pressure coefficient will be referred to as

the 2nd order, Slender, and Linear approximations in future discussions. Once the

pressure coefficient has been found, any manner of methods can be used to compute

other aerodynamic coefficients and quantities of interest.

29

Chapter 4

CPANEL IMPLEMENTATION

This work was implemented in two distinct stages. First, after developing a higher-

order doublet scheme to enforce doublet strength continuity, a higher-order subsonic

method was implemented with the goal of validating the proper functionality of the

new doublet scheme; this had the added benefit of providing another method by

which subsonic simulations may be carried out in CPanel. Once the higher-order

subsonic method was validated, the supersonic implementation began using the same

higher-order doublet scheme. Throughout the process of both implementation stages,

extensive unit testing was performed to ensure each individual component was work-

ing properly prior to bringing them together for final implementation and testing.

This and the more general development methodology of this work is discussed in

Appendix D.

Chapter 4 presents the new CPanel functional flow diagram reflecting the new

options the user has in using CPanel. A brief overview of the subsonic implementation

is given, with a focus on the aspects relevant to both implementations. The supersonic

implementation is then presented in detail.

4.1 Functional Flow Diagram

With the implementation of the higher-order subsonic scheme and the supersonic

scheme, the user now has an expanded range of options to choose from in running

CPanel. Similar to how the vortex particle implementation of CPanel was done [11],

these new schemes were implemented in such a way that preserved the original code

architecture, flow, and functionality wherever possible; it was also ensured that the

30

inherent expandability of CPanel designed into its original development was preserved

[10]. The new functional flow diagram of CPanel is depicted in Figure 4.1. It should

be noted that the vortex particle wake option is not included in this diagram for

brevity, and because this scheme cannot be used in conjunction with the new higher-

order schemes as of this work, though this is something that could be pursued in the

future.

Just as extra options were added to the CPanel input file format for the vortex

particle wake implementation, an extra option has been added to control whether the

original or the new higher-order scheme is to be used for subsonic simulations. The

option for running a subsonic or supersonic simulation is simply controlled through

the definition of Mach number. Further specifics of the new input file format are

given in Appendix E.

Walking through the diagram of Figure 4.1, the first fork in the code occurs in

determining whether or not a higher-order method is to be used. If not, then the

original lower-order method is used, in which case a vortex particle wake and other

associated options may be utilized. If one of the two higher-order methods is chosen,

then new control points must be computed. The details and rationale behind this

are discussed in the following sections. Next, the input freestream Mach number is

checked and depending on whether it is subsonic or supersonic, the corresponding

path is taken. The specifics of these two paths are the primary topic of this chapter.

4.2 Higher-Order Doublet Scheme

As discussed previously, it was found in early codes that to achieve a stable solution for

supersonic flow fields using panel methods, enforcement of doublet strength continuity

across the surface of the body must be implemented. This requires a higher-order

doublet representation, where higher-order refers to any order higher than constant[1].

31

Figure 4.1: CPanel v3.0 functional flow diagram

32

Of the supersonic codes that enforce doublet strength continuity, most have used

quadratically varying doublets with curved panels, all for various reasons.

In general, there are a few clear advantages to doing this. First, it provides a

more accurate representation of the body of interest with less panels. As a result, a

relatively coarse geometry can be used while still achieving amply accurate results.

Furthermore, it allows for the implementation of boundary layer models since the

solved velocities vary linearly across the body [6]. The primary downside of using

quadratically varying doublets is the complexity introduced in the solution to the

BIEs, which in turn results in substantially longer computation times relative to

using a lower-order doublet distribution.

If applied to the same surface discretization, a linear doublet implementation will

generally give less accurate results than a quadratic doublet implementation, though

the linear doublet implementation will have a quicker computation time. However

using an unstructured discretization provides the same advantage as a quadratic dou-

blet implementation in giving an accurate representation of the body, but also with

the benefit of minimal work required by the user. Furthermore if linearly varying

doublets are implemented with an unstructured surface discretization as is used in

CPanel, and a finer mesh is utilized than would be with quadratic doublets, then

accurate results can be obtained with both little work up front by the user, and with

reduced computation time. For these reasons, a linearly varying doublet distribution

was chosen for this work.

In regard to the order of the source distribution, it can been shown that there

should only be a one order difference between the doublet and source distributions

for codes that utilize the superposition of both, such as CPanel. This is due to the

dependence of the velocity discontinuity between the upper and lower surfaces of a

body on the doublet gradient and source strength [18], the expressions for which were

33

shown in Chapter 3. So a constant strength source distribution was chosen for this

implementation.

As discussed by Satterwhite [10], one of the primary downsides of using unstruc-

tured meshes is the inability to control the orientation of the panels relative to the

flow direction. Panels that are aligned with the local velocity vector fields will yield

less numerical error than randomly generated panels. Specifically in the case of mod-

eling supersonic flows, one could use a structured mesh to deliberately align panels

with the anticipated shocks in the flow field which would result in a more accurate

solution in regions near these shocks. However as noted, performing such an exercise

requires substantial work up front by the user. Utilizing modern computational speed

in conjunction with a properly fine unstructured mesh is shown to be a satisfactory

alternative.

To enforce doublet continuity, a method similar to that used by MARCAP [7]

is implemented in CPanel. Control points are placed just below nodal points, as

illustrated in Figure 4.2. Nodal points are the points that make up the vertices of the

triangular panels, and control points are the points at which boundary conditions are

applied. If the doublet strengths at the panel nodal points are solved for, as opposed

to at the center of the panel as is most commonly done, then it is ensured that there

will be continuity in doublet strength across the body surface. Since adjacent panels

share edges, nodes, and control points, they also share the same linear variation in

Figure 4.2: Example of nodal and control points

34

doublet strength along their edges, ensuring doublet strength continuity across the

entire body.

The following demonstrates the method by which doublet strength continuity is

enforced. The panel local coordinate system is defined in (ξ, η, ζ) coordinates with

the origin at the center of a given panel, and where the panel is in the ζ = 0 plane.

Thus the equation for the linear doublet on a panel is

µ(ξ, η) = µ0 + µξξ + µηη (4.1)

The potential influence of a panel with a linear doublet distribution on a point, using

a form of the equation presented by Johnson [19], is found by computing

φ(P) = µ(x, y)I0 + µx(x, y)I1 + µy(x, y)I2 (4.2)

where

µ(x, y) = µ0 + µxx+ µyy

µx(x, y) = µξ

µy(x, y) = µη

(4.3)

The I terms of Equation 4.2 are the three coefficients found by solving the BIE with

a unit strength linear doublet and unit strength constant source, which can be done

with the BIE for any flow regime. Thus the I’s are functions of panel geometry,

the location of the point P relative to the panel, and Mach number in the case of

compressible flows. The processes by which these terms are found for their use in

CPanel are given in Appendix A. Substituting Equation 4.3 into Equation 4.2 yields

φ(P) = (µ0 + µξx+ µηy)I0 + µξI1 + µηI2 (4.4)

Collecting terms,

φ(P) = µ0I0 + µξ(xI0 + I1) + µη(yI0 + I2) (4.5)

35

and writing in vector form,

φ(P) = [I0, (xI0 + I1), (yI0 + I2)]

µ0

µξ

µη

 (4.6)

Now doublet strengths at the three nodes of a panel are defined as

µ1 = µ0 + µξξ1 + µηη1

µ2 = µ0 + µξξ2 + µηη2

µ3 = µ0 + µξξ3 + µηη3

(4.7)

In matrix form,
µ1

µ2

µ3

 =

1 ξ1 η1

1 ξ2 η2

1 ξ3 η3

µ0

µξ

µη

 (4.8)

Thus µ0, µξ, and µη for a panel can be expressed in terms of the doublet strengths

at the panel nodes as,
µ0

µξ

µη

 =

1 ξ1 η1

1 ξ2 η2

1 ξ3 η3

−1

µ1

µ2

µ3

 (4.9)

Substituting Equation 4.9 back into Equation 4.6, rewriting the vector of I’s as a

column vector, and dropping the vector of node-based doublet strengths since these

are of unit strength in computing influence coefficients, now gives

φ(P) =

φ1(P)

φ2(P)

φ3(P)

 =

I0

xI0 + I1

yI0 + I2

1 ξ1 η1

1 ξ2 η2

1 ξ3 η3

−1

(4.10)

where the elements of φ(P) are the influence coefficients for each node-based doublet

on the point P.

36

This method works independent of the I terms found by solving the BIE, so it

can be used for subsonic and supersonic flows. The way this is used to construct the

doublet influence coefficient matrix, A, is discussed in the next section.

4.3 Subsonic Linear Doublet Implementation

Though this work set out with the ultimate goal of developing a higher-order su-

personic panel method, a higher-order subsonic method was first developed and im-

plemented in CPanel. This was done for a variety of reasons. First, it allowed an

avenue through which familiarity with the code base could be gained, while avoid-

ing the complexities brought about in developing a supersonic panel method. Next,

in developing the higher-order doublet scheme discussed in the previous section, it

was found that this new method would require substantial architectural updates in

the CPanel code base that could be used by both subsonic and supersonic methods.

Thus these changes could be developed generally, then applied and validated with a

subsonic method first prior to tackling the more complex supersonic method. This

guaranteed a relatively advanced minimum level of functionality when the supersonic

implementation began, allowing focus to be given to the intricacies of the supersonic

method. Lastly, the higher-order subsonic scheme gives the CPanel user the option

to use a higher fidelity method for subsonic simulations if desired.

Since the subsonic implementation was only a stepping stone toward the final

goal of this thesis, only the aspects relevant to the supersonic implementation are

discussed in detail in the following sections, while other aspects are briefly noted.

4.3.1 Control Points

Looking back at the new CPanel functional flow diagram in Figure 4.1 and following

the path that is taken if either of the two higher-order methods is chosen, the first

37

process to be encountered is the computation of node-based control points. The

control points, where boundary conditions are applied, are placed just beneath the

nodal points, as illustrated in Figure 4.2. They are computed based on the geometries

of the panels around them, and a predetermined offset factor.

A given node in the geometry discretization could be shared among any number

of panels, so the calculation of a control point based off its node takes all of the panels

that the node is connected to into account. This process, which is illustrated in Figure

4.3, starts with obtaining the location of the node that the control point will be based

off of. Once this is found, all of the panels and edges that are connected to the node

are identified. Then the direction that the control point will be offset relative to the

node is computed by taking the average of the normals of all the panels the node is

connected to. This gives a unit vector pointing from the body into the flow, but since

the control points need to be defined inside the body, the negative of this vector is

taken. Lastly, the offset of the control point relative to the nodal point is computed

from the average length of all the edges the node is connected to; this quantity is

then scaled by a predetermined factor, k. A control point is thus computed as

Pcp = Pn + (klavg)voffset (4.11)

The quantity, k, is predetermined and defined within the code itself. This factor

is the primary control over how far offset a control point is from its corresponding

nodal point. A study was performed to find at what value of k CPanel solutions

began to converge. Using the higher-order subsonic method and running a simple

ellipsoid shape, for which the geometry is shown in Figure 4.4, doublet strength was

assessed with changing k values. These cases were run with M∞ ≈ 0, and no angle of

attack or side slip. Doublet strength was chosen as the benchmark value because it is

the first representation of the results that is computed; all other quantities of interest

are computed downstream of doublet strength and will likely have been impacted by

38

Figure 4.3: Control point definition

Figure 4.4: Ellipsoid geometry for control point offset convergence study

inevitable computational errors. Even though these errors are essentially negligible

at the macro level, they can have an impact on a study such as this, but assessing

doublet strength minimizes this impact.

The results of this study are shown in Table 4.1. The data presented here was

taken at the z = 0 plane of the ellipsoid shown in Figure 4.4, at the forward and

aft-most points (the stagnation points), and at the center-plane, which are marked in

red. Only one side was taken since the results are symmetric. Higher fidelity position

data relative to that presented was assessed, and the same trend was seen everywhere.

39

Table 4.1: Control point offset convergence study, doublet strengths

k Values

x-Position (ft) 100 10−1 10−2 10−3 10−4 10−5 10−6

0.0 diverges 7.469 7.749 7.749 7.729 7.729 7.729

2.0 diverges -0.145 -0.513 -0.513 -0.611 -0.611 -0.611

4.0 diverges -7.541 -8.157 -8.157 -8.223 -8.223 -8.223

The value of k in Equation 4.11 was varied from 100 to 10−6 as shown in the table.

What was found is that for values of k ≥ 100, the solution diverges. Furthermore,

doublet strengths converged near k = 10−4.

The convergence of quantities that are functions of doublet strength were also

assessed, such as velocity and coefficient of pressure, and it was found that the vari-

ations in doublet strength with k ≤ 10−2 shown in Table 4.1 have a negligible effect

on these downstream quantities. Maruyama et al. [7] arrived at a similar finding,

leading to the conclusion that as long as k is not unreasonably large, an accurate

solution can be found.

Regardless of this conclusion, it would seem that setting k to be as small as

possible would be the best course of action in order to obtain the best accuracy,

however this is not the case. As the control point approaches the node from which

it is based, singularities in the influence coefficient calculations will occur from two

different sources. One occurs when the control point is in the plane of the panel, and

another when it is on the line extending from an edge of the panel. So if k is too small,

then these singularities will occur and must be handled, and they can be handled as

shown by Johnson [19]. Though if k is kept large enough, then these singularities can

be avoided completely and an accurate solution can be obtained. Ultimately, k was

set to be 10−5.

40

4.3.2 Constructing the Linear System of Equations

The linear system of equations that is built to solve for the unknown doublet strengths

was reviewed in Chapter 3, and the influence coefficient matrices were introduced.

Now that the order of the method being used here has finally been determined, that

is a linearly varying doublet distribution and a constant strength source distribu-

tion, and the control points defined, the construction process and composition of the

influence coefficient matrices is presented.

Since this is for the case of subsonic flow, the far field potential and the interior

potential, which is non-zero in the subsonic scheme, need to be accounted for in the

linear system of equations. This system is shown by Satterwhite [10] to be

Aµ−Bσ + Φ∞ = Φcp (4.12)

Φ∞ =

U ·P1

U ·P2

...

U ·PNn

(4.13) Φcp =

Φcp1

Φcp2

...

ΦcpNn

(4.14)

The vector of control point potentials, Φcp, is then set equal to Φ∞ yielding the

system

Aµ = Bσ (4.15)

which is the same as the system given in Equation 3.1.

The doublets, for which the strengths need to be solved, are defined at panel

nodal points. The sources, for which the strengths are assigned by Equation 2.46, are

defined at each panel. So it is known that there are Nn doublets and Np sources, and

µ and σ can be written as, respectively,

41

µ =

µ1

µ2

...

µNn

(4.16) σ =

σ1

σ2
...

σNp

=

U · n̂1

U · n̂2

...

U · n̂Np

(4.17)

The influence coefficient matrices are constructed by computing the potential in-

fluence of a panel on a control point, with unit strength singularity elements prescribed

on the panel, for all the panel-control point pairings in the geometry. Even though

the doublet strengths are defined at the nodal points of the geometry, the doublet

influence coefficients still must be computed by finding the influence of a panel on a

control point. The scheme presented in Section 4.2 is then used to convert the panel’s

linear doublet influence to node-based influences. The source influence coefficients

are computed in the exact same manner as in the lower-order subsonic scheme since

constant strength sources are still used. The influence coefficient matrices are written

as

A =

a11 a12 · · · a1Nn

a21 a22 · · · a2Nn
...

...
. . .

...

aNn1 aNn2 · · · aNnNn

(4.18) B =

b11 b12 · · · b1Np

b21 b22 · · · b2Np
...

...
. . .

...

bNn1 bNn2 · · · bNnNp

(4.19)

Note that these matrices are different dimensions: A is Nn x Nn and B is Nn x

Np. Each coefficient of B, bij, represents the unit potential influence of the jth source

panel on the ith control point, and is found by solving

bij = −
∫
S

σ

(
1

4π|rij|

)
dS (4.20)

42

This is the same scheme as is used in the original lower-order method of CPanel, except

that the control points are located just under nodal points rather than just under

panel centroids. Each coefficient of A, aik, represents the unit potential influence of

the kth doublet point on the ith control point. In determining the doublet influence

coefficients for each node-control point pair, the influence of all the panels that share

the given node must first be found. The process to compute aik from the influence of

each of these panels is shown in Figure 4.5 and discussed below.

Starting at just one of the panels that contains the kth control point and denoting

it the jth panel, the influence of the jth linear doublet panel on the ith control point is

computed. This scenario is illustrated in Figure 4.5(a). The equation that is solved

to compute this influence is

αij = −
∫
S

µ

(
n̂j · rij
4π|rij|3

)
dS (4.21)

which is the same as that used for the lower-order method, except that the doublet

strength term, µ, is of the form of Equation 4.1 rather than a constant. When solved,

Equation 4.21 can be written as

αij = µ(x, y)I0 + µx(x, y)I1 + µy(x, y)I2 (4.22)

Equation 4.22 is the same form as Equation 4.2, thus the process laid out in Equations

4.4-4.10 to convert this panel-based doublet influence coefficient expression to node-

based doublet influence coefficients can be used here. As illustrated in Figure 4.5(b),

this gives the influence coefficients for the three nodes of the jth panel on the ith

control point, based on only the jth panel, which can be expressed as

αij =

αij1

αij2

αij3

 (4.23)

The same process is then followed for all the panels that share the kth node, as

identified in Figure 4.5(c), and αij is found for each of these panels. With the αij

43

Figure 4.5: Computing the node-based influence coefficient via its sur-
rounding panels

vector from each identified panel in Figure 4.5(c) found, the element from each vector

which corresponds to the kth nodal point is summed. This summation then finally

gives the influence coefficient for the unit influence of the kth nodal point on the ith

control point, aik.

The full solutions to the integrals of Equations 4.21 and 4.20 are given in Appendix

A; the expressions for the various I terms of Equation 4.22 are also given. The vector

of doublet strengths can then be found by solving the linear system of equations.

44

4.3.3 Post Processing

All other aerodynamic quantities of interest can be found once the doublet strengths

have been solved for. The method that is used to compute velocity for this higher-

order subsonic scheme is now presented; the computation of other aerodynamic quan-

tities is not discussed here since once velocity is found, these quantities are computed

using the same methods as given in the original CPanel documentation [10].

The first quantity to be found once the nodal doublet strengths are known is the

total velocity potential, Φ, at the nodal points. The method presented in Section

3.3 could be used here, however an even simpler approach is used, which is the same

approach used to compute total velocity potential in the lower-order subsonic method.

Similar to how a difference velocity was defined in Equation 3.4, a difference

potential can be written in terms of the upper and lower surface potentials as

ΦD = ΦU − ΦL (4.24)

The upper potential, ΦU , is the potential that is being solved for at the nodal points;

the lower potential, ΦL, is the potential at the control points just below the surface

of the nodal points, which is the same as the potentials expressed in Equation 4.14.

The lower potential was defined to be equal to the far field potential,

ΦLk = U ·Pk (4.25)

Furthermore, nodal doublet strength, µk, represents the potential difference between

the upper and lower surfaces at the nodal points, so

ΦDk = −µk (4.26)

Now the upper potential at a nodal point can be written in terms of the known lower

and difference potentials as

ΦUk = U ·Pk − µk (4.27)

45

This is the calculation used to compute potential for a panel in CPanel’s lower-order

subsonic method. However in this case, the potentials are defined at nodal points.

To compute velocity from this, a potential equation must be written for the entire

panel.

Using the formulation of Equation 4.27, for the jth panel in a given surface dis-

cretization, the upper potential at the nodal points of this panel can be computed

and written in the form of Equation 4.23 as

Φj =

Φj1

Φj2

Φj3

 (4.28)

In the same way that the nodal doublets of a panel were each written as linearly

varying functions in terms of the nodal local coordinates in Equation 4.7, the same

can be done for the nodal potentials. Thus the linear variation of potential for the

jth panel can be written in the form of Equation 4.9 as
Φ0j

Φξj

Φηj

 =

1 ξ1 η1

1 ξ2 η2

1 ξ3 η3

−1

Φj1

Φj2

Φj3

 (4.29)

With the coefficients on the left hand side of Equation 4.29 known, the potential

at a point on the jth panel can now be found by computing

Φj(ξ, η) = Φ0j + Φξjξ + Φηjη (4.30)

Taking the gradient of this equation in the panel local coordinate system then gives

the local tangential velocity for the jth panel,

Vlj =
[
(Φξj)ξ, (Φηj)η, 0

]
(4.31)

Transforming this vector to the global coordinate system then gives the total velocity

vector at the jth panel, Vj.

46

4.4 Supersonic Implementation Preprocessing

Looking back at the functional flow diagram of Figure 4.1 and following the path for

the supersonic scheme, there are two processes that are encountered prior to calcu-

lating the influence coefficients. A domain of dependence check must be performed

for each panel-control point pairing, and each panel is transformed in a way which

greatly simplifies the integration process. These two processes are together catego-

rized as the supersonic implementation’s preprocessing operations since these are the

two operations that read the geometry discretization and other input data, and gen-

erate the new data that is used to ultimately compute the influence coefficients, and

construct the linear system of equations.

4.4.1 Domain of Dependence Check

In Chapter 2, the Mach cone was defined and the definitions of the domain of de-

pendence and the domain of influence were given. Also discussed in this chapter is

the fact that a given point in a supersonic flow field can only be influenced by flow

perturbations that occur inside this point’s domain of dependence. Given a surface

discretization with a supersonic flow field, this concept can be directly applied to

determining whether or not the jth panel is inside the domain of dependence of the

ith control point.

Performing a domain of dependence check for each panel-control point pair prior to

computing influence coefficients enables the program to completely skip the influence

coefficient calculation for the given pair if the jth panel is found to be outside the

domain of dependence of the ith control point. A panel outside the domain of influence

of a point has no influence on the point. Calculating the influence coefficients is easily

the most computationally intensive process shown in the diagram of Figure 4.1, so

47

skipping the process entirely when it is known from this check that there is no influence

greatly enhances the computational efficiency of the supersonic scheme.

The process for checking whether the jth panel is inside the domain of dependence

of the ith control point is given in Algorithm 4.1. This algorithm’s form and function

was influenced by those of Ehlers et. al. and Epton and Magnus [2, 18]. The inputs

are shown, and the output is a flag that is defined to be true if the panel is either

completely inside the DOD, or if it intersects the DOD, and the flag is false if neither

of these cases are met.

Quickly walking through this algorithm, Lines 1-4 compute and assign the various

Algorithm 4.1: Domain of dependence check

Input: Panel data, Control point, Mach number, Freestream direction
Output: DOD flag

1 DOD flag ← false;
2 RBcntr ← hyperbolic distance from control point to panel center;
3 d← shortest distance from Mach cone to panel center;
4 rp ← radius of panel;

5 if control point is downstream from panel center then
6 if d > rp then
7 if RBcntr ≥ 0 then
8 return DOD flag ← true;
9 end

10 else
11 for each panel nodal point do
12 RBn ← hyperbolic distance from control point to panel nodal point;
13 if RBn ≥ 0 and control point is downstream from nodal point then
14 return DOD flag ← true;
15 end

16 end

17 end

18 end
19 if d < rp then
20 return DOD flag ← true;
21 end

22 return DOD flag ;

48

entities needed for the subsequent checks. Then it is checked whether or not the

control point is downstream from the panel center. If it is not, then either the panel

has no influence on the control point, or the DOD intersects the panel without the

panel center being inside the DOD, as depicted in Figure 4.6. Line 19 checks for the

latter case. This condition could be true even if the DOD does not intersect the panel;

however, it cannot be trivially determined at this point in the program whether or

not this is the case. So, the flag is set as true and it is checked more closely later in

the program, which will be discussed further in the chapter.

If the conditions of Lines 5 and 6 are true, then it is known that the panel is either

completely inside or completely outside the DOD, which is then checked in Line 7. If

the condition of Line 6 is not met, then each node is checked for whether it is inside

the DOD or not, and returns true if any of them are since this indicates a panel-DOD

intersection.

Figure 4.6: Example panel-DOD intersection

49

4.4.2 Coordinate Transformation

All panel methods use some version of a coordinate transformation when computing

influence coefficients, since the assessment is always how a given singularity element

influences a given point. So it is easiest to isolate the problem and work in a coordi-

nate system specific to the case at hand. This can be approached multiple different

ways. Many panel codes have inherited what was first done by Hess and Smith [20]

and transform the panel and control point into a panel local reference frame for the

influence coefficients to be computed in. Another approach developed my Maskew

[21] and implemented into CPanel’s lower-order subsonic method [10] is to work in

terms of vector products, thus avoiding the need to perform a direct coordinate trans-

formation.

Supersonic panel codes often use a coordinate transformation for an additional

benefit which is to simplify the BIE of Equation 2.43 thus also simplifying the solution

to the BIE and its implementation. Along with transforming the panel and control

point into a panel local reference frame, the coordinate system is also scaled such that

the problem is reduced to the case of M∞ =
√

2. Looking back at the definition of B

in Equation 2.27, when
√

2 is substituted in for M here, then B = 1. This removes

all instances of B in the BIE which greatly simplifies its evaluation. The panel is also

transformed such that it is parallel to the freestream direction, and the origin of the

system is at the panel center.

This method has been used by the PANAIR pilot code, PANAIR, and HISSS

[2, 18, 6]. The former two present derivations of this transformation and go through

the properties of the transformation matrix, which are both fairly involved and are

not presented here. The form of the matrix used in this implementation is given by

Epton et. al. [18](App. E).

Any given point can be transformed into this local, scaled coordinate system by

50

computing

Pl = [A](P−P0) (4.32)

where A is the transformation matrix. The physical effect of this transformation is

shown in Figure 4.7 for a single panel and control point, with two different Mach

numbers. Note that the same two DOD curves shown in Figure 4.6 are shown here,

but from a viewing point perpendicular to the plane of the panel.

Figure 4.7: Effect of panel transformation for different Mach numbers

Figure 4.7(a) shows the original panel geometry before the panel and control

point have been transformed, and it shows the upstream Mach cones for M =
√

2

and M = 3. Notice that the Mach cone intersection with the plane of the control

point for the M =
√

2 case, represented by the blue dashed lines, forms a 90◦ degree

angle–this is twice the Mach angle, as expected. For the M = 3 case, the Mach angle

is clearly less. Figure 4.7(b) shows the panel and control point for the M =
√

2 case

after they have been transformed using Equation 4.32. The geometry is completely

unchanged since the case is already that for M =
√

2. In Figure 4.7(c) however, since

M = 3 for this case, the panel geometry is scaled to reduce the problem to that for

51

M =
√

2. It can be validated that the panel has in fact been transformed correctly

by observing that the half angle of the Mach cone is now 45◦.

4.5 Supersonic Influence Coefficients Calculation Procedure

Even though the domain of dependence check is shown to occur prior to the panel

transformation in Figure 4.1, this is not exactly the order in which these processes are

executed. However it is shown this way in the functional flow diagram to emphasize

that the domain of dependence check is performed on panel-control point pairs before

they are transformed. The actual order of operations for this portion of the program

is shown in Algorithm 4.2.

Every panel is guaranteed to be inside of or to intersect at least one control point’s

domain of dependence; this would not be the case if superinclined panels were used,

however they are not allowed in this implementation. So the transformation matrix

Algorithm 4.2: Construction of the influence coefficient matrices

Result: Influence coefficient matrices

1 for each panel do
2 compute and store transformation matrix;
3 transform panel;

4 end

5 for kth node do
6 get ith control point;
7 for jth panel do
8 DOD flag ← Algorithm 4.1;
9 if DOD flag is true then

10 A(i, k)← doublet influence coefficient for node-control point pair;
11 B(i, j)← source influence coefficient for panel-control point pair;

12 else
13 A(i, k)← 0;
14 B(i, j)← 0;

15 end

16 end

17 end

52

of each panel is computed and stored–since it will be used more than once throughout

the program–and each panel is transformed; this is all done first in Algorithm 4.2.

Since the domain of dependence check must be done for each panel-control point

pair, the check is actually performed in a nested loop with the influence coefficient

calculations.

The following sections of this chapter present the procedures which are performed

as part of the influence coefficient calculation process, which all occur in Lines 10 and

11 of Algorithm 4.2. The methods of Ehlers et al. [2] are used for these calculations;

since these methods are presented in great detail in their paper, these sections focus on

the general characteristics of the procedures and how they are implemented in CPanel,

rather than the equation formulations. The logical flow of how these methods are

implemented in CPanel is also discussed since this aspect of the method may be unique

to CPanel, and because its understanding is important to the future expandability of

the program.

4.5.1 Build Edge-Based Coordinate System

In computing an influence coefficient, the integrals of Equation 2.43 are carried out

over the panel geometry. However it is easiest to break down the integration over the

panel into individual integrations over each edge, and to then sum the results. To

further simplify these calculations, Ehlers et al. [2] developed an edge-based oblique

coordinate system in which the quantities needed for the influence coefficient calcu-

lations are computed. Before discussing this oblique coordinate system, a distinction

must be made between three different categories of panel edge orientations.

Edges are defined to be subsonically inclined, supersonically inclined, or sonically

inclined, where the edge inclination is relative to freestream direction. When panels

are transformed, part of the transformation is to change the orientation of the panel

53

such that it is parallel to the freestream direction, which allows the direct comparison

of panel edge inclination with the freestream direction since they are in the same

plane. An example of each edge inclination type, as well as the downstream Mach

cones emanating from the endpoints of each edge, is shown in Figure 4.8. A subsonic

edge is that which is inclined at an angle less than the freestream Mach angle; a

supersonic edge is at an inclination that is greater than the freestream Mach angle;

and a sonic edge is at the same inclination as the freestream Mach angle.

The reason these distinctions must be made is that how an edge may influence a

point depends on its orientation relative to the freestream direction. Notice in Figure

Figure 4.8: Edge inclination examples with downstream Mach cones

54

4.8(a) that for a subsonic edge, any point inside the domain of influence of point 2

is also inside the domain of influence of point 1. For the supersonic edge in Figure

4.8(b), this is not the case and there are regions where a point can be in one of the

end point’s domain of influence, but not the other. The sonic edge in Figure 4.8(c)

is similar to the supersonic edge; however, because it is inclined at the Mach angle,

a singularity occurs in the integration over this edge, which is handled in the process

of computing the influence coefficients once the edge-based coordinate systems have

been defined.

With the types of edge orientation defined, the oblique coordinate systems built

from panel edges can now be discussed. Three different examples of the oblique edge-

based coordinate systems are shown in Figures 4.9(b)-(d), and the panel these edges

are a part of is shown in Figures 4.9(a); the counterclockwise direction of integration

around the panel is also shown. For supersonic edges, the x-direction is denoted xm,

where there is an xm direction based at both end points of an edge. The y-direction

is denoted ym. For subsonic edges, the nomenclature is essentially the same except

x̂m and ŷm are instead used for the two coordinate directions. It should be noted that

the xm− ym system can also be applied to subsonic edges, but in actually computing

influence coefficients for subsonic edges, the x̂m − ŷm system is used.

For any edge, the ym or ŷm directions are always defined as the axis of the edge

itself. The ym direction is further defined to always point toward the positive η-

direction of the panel coordinate system, and the ŷm direction is defined to always

point toward the negative ξ-direction of the panel coordinate system. It should be

noted that the ξ-direction is always parallel to the freestream direction. As can be

seen in comparing the ym directions in Figures 4.9(b) and 4.9(d), this axis always

points toward the positive η-direction regardless of the integration direction. The

same is true of the ŷm-direction in pointing toward the negative ξ-direction, though

it is not shown here.

55

Figure 4.9: Example edge coordinate systems

What does change based on integration direction are the xm and x̂m axes. Again

comparing the supersonic edges of Figures 4.9(b) and 4.9(d), notice that the xm axes

point opposite to the direction of integration across each respective edge. In either

case, the xm axes are furthermore defined as the axes of the downstream Mach cones

emanating from each respective edge endpoint. Thus as is shown in the Edge 1 and

3 diagrams, the angle of each axis with respect to the freestream direction is the

freestream Mach angle, µ, which is always true for any supersonic edge. For subsonic

edges, the positive x̂m-direction points toward the direction of integration, contrary

56

to supersonic edges. The axis itself is defined by a rotation of θ from the panel’s η-

direction about the panel’s ζ axis which points out of the page; θ here is the angle of

the edge relative to the freestream. For a sonically inclined edge, the two coordinate

systems are identical.

With these new edge-based coordinate systems, the location of any point can be

defined in terms of (xm, ym), or (x̂m, ŷm). The third direction for these respective

coordinate systems are defined similarly to the y-directions and are denoted zm and

ẑm; the exact definitions of these axes are not shown here. The benefit of this system

is immediately apparent in the supersonic edge xm-ym system by observing that when

a given point is written in both (xm, ym,1) and (xm, ym,2) coordinates, only the signs

of these coordinates are needed to determine where the point is relative to the two

endpoint downstream Mach cones. This is very useful and easily attainable informa-

tion which is used in part to compute the influence coefficients. The details of this

utility is discussed in the next section.

4.5.2 Compute Fundamental Integrals

The method used by Ehlers et al. [2] to compute influence coefficients uses the idea

of fundamental integrals and is done in rectilinear coordinates, as was discussed in

Chapter 3, and this is the method that is implemented here. The fundamental in-

tegrals are developed such that they can be computed once per panel edge-control

point pair, then the remaining calculations can be performed in terms of the solu-

tions of these integrals. For higher-order panel methods, this methodology is very

advantageous since the BIE solutions can quickly become complex and computation-

ally expensive, and doing this helps in alleviating some of the computational cost of

higher-order methods.

Even though the methods of Ehlers et al. [2] were developed for use with a

57

quadratically varying doublet distribution and a linearly varying source distribution,

they can be easily modified for use with a linearly varying doublet distribution, and

constant source distribution. Furthermore, the exact same fundamental integrals can

be used.

Since the expression for the source potential influence of an edge on a point is

written for a linearly varying source in Ehlers et al., all that needs to be done to

arrive at the same expression for a constant source is to drop all higher-order terms,

which leaves

φS =
σ

2π

(
xmw0 − zQI

)
(4.33)

where w0 and QI are two of a handful of fundamental integrals developed by Ehlers

et al. A similar procedure can be followed to arrive at the expression for the doublet

influence of an edge on a point for a linearly varying doublet from a quadratically

varying doublet. Dropping all terms that are higher than first order from the original

expression for a quadratic doublet from Ehlers et al. leaves

φD = − 1

2π

(
µQI − µxzw0 − µyzw0/m

)
(4.34)

which uses the same two fundamental integrals as Equation 4.33, w0 and QI . Thus

these are the only two fundamental integrals which need to be computed in finding

the influence coefficients.

Computing the solutions of these two integrals, w0 and QI , is the core of the

influence coefficient calculation process, and in turn, the core of this implementation.

The way this process is implemented in CPanel is laid out in Algorithm 4.3. As noted

earlier, the fundamental integrals are computed for each edge, so this algorithm is

used for each edge of a panel, then summed at the end to find the fundamental integral

solutions for the panel itself.

The first process of Algorithm 4.3, which is represented in Lines 7-18, is to compute

the hyperbolic distances from the control point to each edge point, which is only

58

carried out for each respective end point if the control point is downstream from the

given end point. After the hyperbolic distances have been computed, it is checked

whether or not they have imaginary parts. If one does, this indicates that the control

point is outside the DOI of the given end point, in which case the hyperbolic distance

is set to zero. If the control point is inside the DOI, then it is positive.

Once the two end point hyperbolic distances have been computed, it is checked if

Algorithm 4.3: Calculation of the fundamental integral solutions

Input: Transformed panel edge, Transformed control point
Result: Fundamental integral solutions

1 check edge orientation and compute corresponding edge-based control point
coordinates;

2 pcp ← control point;
3 p1 ← edge point one;
4 p2 ← edge point two;
5 R1 ← 0 ; // pcp to p1 hyperbolic distance in panel local CSYS

6 R2 ← 0 ; // pcp to p2 hyperbolic distance in panel local CSYS

7 if pcp is downstream of p1 then
8 compute R1;
9 if R1 is imaginary then

10 R1 ← 0;
11 end

12 end
13 if pcp is downstream of p2 then
14 compute R2;
15 if R2 is imaginary then
16 R2 ← 0;
17 end

18 end

19 if R1 > 0 or R2 > 0 then
20 compute fundamental integrals based on edge orientation;
21 else if the edge is supersonic then
22 if xm > 0 and sign(ym,1) ! = sign(ym,2) and zm > 0 then
23 compute Mach wedge fundamental integrals;
24 end

25 else
26 the fundamental integral solutions are set to zero;
27 end

59

at least one of them is greater than zero. The logical ’or’ is used in this scenario since

the DOD only needs to intersect the edge for it to have an influence on the control

point. If at least one of the end points is inside the control point DOD, which indicates

the edge either intersects the DOD or is completely inside it, then the fundamental

integral solutions are computed.

If neither of the conditions of Line 19 are met, this leaves two remaining options.

The first option is that the edge has no influence on the control point. Remember that

in the domain of dependence check of Algorithm 4.1, there was a scenario where the

DOD flag could be set as true even if this could not be determined to be the case at

the time. When this occurs in that algorithm, this is where it is finally determined,

though each edge is checked individually instead of the panel itself. If Line 26 of

Algorithm 4.3 is reached, then the edge has no influence on the control point.

The other scenario that could result in neither condition of Line 19 being met is

that the control point is in the Mach wedge region of the edge. The Mach wedge is

defined as the region between the Mach cones emanating from the end points of an

edge, as illustrated by Ehlers et al. in Figure 4.10. When a control point is in this

region, the two edge hyperbolic distances are imaginary and are thus set to zero in

Algorithm 4.3.

When both edge hyperbolic distances are zero, to check whether the control point

is inside the Mach wedge region or not, it is first checked if the edge is supersonic.

Looking back at the 2D edges and Mach cones of Figure 4.8, it can be seen that only

a supersonic edge can have a Mach wedge, which is the triangular region of Figure

4.8(b) enclosed by the edge and two edge Mach cones. If the edge is supersonic,

then to check if the control point is inside the Mach wedge region of the edge, the

edge-based (xm, ym, zm) coordinate system is used. As alluded to at the end of the

previous section, this is where the edge-based coordinate system proves most useful.

60

By checking just the signs of the edge-based coordinates for the control point, it can

be determined whether or not the control point is inside the edge Mach wedge. If it

is, then the fundamental integrals must be treated accordingly to find their solutions;

if it is not then the edge has no influence on the point.

Figure 4.10: Example of the Mach wedge region [2]

61

4.5.3 Compute Influence Coefficients

After computing the fundamental integral solutions for a given panel-control point

pair, w0 and QI , the source and doublet influence coefficients for the panel-control

point pair are computed using Equations 4.33 and 4.34, respectively. Unit strength

singularities are used in these calculations. Before storing these influence coefficients

in their respective influence coefficient matrices and moving on to the next panel-

control point pair, one last operation is required for each computed coefficient.

As explained by Ehlers et al. [2], the influence coefficients were computed in the

panel local-scaled coordinate system, but only the panel nodal points and control

point were transformed, thus there remain parts of the integral equations that have

yet to be transformed. Looking back at the integrals of Equation 2.43, RB is the only

term in this equation that has been transformed; the derivative of the conormal in the

freestream direction and the elemental area terms also need to be transformed. The

transformation of the elemental area, dS, manifests itself in multiplying the results

of Equations 4.33 and 4.34 by a scaling factor, which is derived by Ehlers et al. to be

Ja = 1/

(
B
√

1−M2n2
x∞

)
(4.35)

n̂∞ = (nx∞ , ny∞ , nz∞) (4.36)

where n̂∞ is the panel normal in the wind frame coordinate system. So the final

source influence coefficient is computed as

bij = JaφS (4.37)

For the doublet influence coefficient, it is shown by Ehlers et al. that the scaling

factor, Ja, actually does not need to be applied to Equation 4.34 if the conormal

derivative in the left hand doublet integral of Equation 2.43 is replaced with the

derivative of the panel local z-coordinate, ζ. This is in fact done in deriving Equation

62

4.34, though it is not shown. So Equation 4.34 gives the expression for the doublet

influence coefficient of the jth panel on the ith control point,

αij = φD (4.38)

which is a linearly varying equation.

Notice that Equation 4.34 has the same form as Equation 4.22, so it can be written

as

αij = µ(x, y)K0 − µx(x, y)K1 − µy(x, y)K2 (4.39)

with

K0 = − 1

2π
QI

K1 = − 1

2π
zw0

K2 = − 1

2π
zw0/m

(4.40)

Furthermore, following the process of Section 4.2, the node-based influence coefficients

for a given panel-control point pair are found as

φD = αij =

αij1

αij2

αij3

 =

K0

xK0 −K1

yK0 −K2

1 ξ1 η1

1 ξ2 η2

1 ξ3 η3

−1

(4.41)

Then, just as was done for the subsonic implementation described in Section 4.3, the

node-based doublet influence coefficients are finally found using the process of Figure

4.5.

63

Chapter 5

RESULTS

Since this work was developed and implemented in two distinct phases as discussed

in Chapter 4, it was also tested, validated, and verified as such. The higher-order

subsonic method utilizing a linearly varying doublet distribution was validated against

the original lower-order method of CPanel, which itself has been validated against

other widely used codes [10]. This was done only for the case of non-lifting flows

since the ability to use a wake with the linear doublet method was not implemented

as a part of this work.

The supersonic implementation was extensively unit tested throughout its devel-

opment to ensure the proper functionality of the implemented methods, and to char-

acterize the behavior of the fundamental integrals and influence coefficients for various

panel-control point relationships. The key results from this unit testing are discussed

in this chapter. Geometries that resemble common supersonic aircraft shapes were

then tested and results compared with theoretical and analytical solutions, solutions

from the MARCAP and PANAIR codes, and wind tunnel test data.

5.1 Subsonic Higher-Order Method

As has been stated, the logic of the higher-order method that was developed and

implemented for this thesis can be applied to both subsonic and supersonic flows,

though the ultimate goal for this work was to implement it for use in supersonic

modeling. However if applied to subsonic flow, the functionality of the higher-order

method could be validated, while avoiding the complexities of modeling supersonic

flow. Because the crux of the panel code process is the calculation of the influence co-

64

efficients, which is completely different between subsonic and supersonic applications,

the subsonic results assessment presented here is more qualitative than quantitative

since it was purely the successful enforcement of doublet strength continuity that was

of interest.

To demonstrate the functionality of the higher-order method, results from the

simple test case of non-lifting subsonic flow over an ellipsoid are presented below.

The geometry used for this test is the same as that used for the control point offset

study which is shown in Figure 4.4. The flow conditions are given in Table 5.1.

Table 5.1: Subsonic test case flow conditions

Mach 0.1

V∞ (ft/s) 20

α (degrees) 15

β (degrees) 10

Before discussing the results of this test case, the methods by which data is output

from CPanel and visualized should be noted. Data is written to .vtu files where it

can be associated with the panels or nodes of the geometry. For example, doublet

strength and velocity potentials are associated with panels for the lower-order method,

while they are associated with nodes for the higher-order method. Other quantities

like source strength or velocity are associated with panels for both methods. For

this work, the program ParaView was used to read the output data and visualize

the results. To visualize node-based data across the surface of a given geometry,

ParaView performs linear interpolation of the data across panels, which can be used

to demonstrate the linear variation of doublet strength or velocity potential.

Using this visualization method, the successful enforcement of doublet strength

continuity is demonstrated by Figure 5.1(b) via velocity potential distributions. Fig-

65

ure 5.1(a) shows the distributions for the lower-order solution. These figures show

the full range of the solved velocity potentials, where the magnitude of the minimum

and maximum was found to be 48.4 using an exact ellipsoid solution generated by

McDonald in MATLAB (Rob McDonald, personal communication, September 28,

2018). The continuity of velocity potential in Figure 5.1(b) is easily observed in

comparison to Figure 5.1(a). The lower-order solution shows that velocity potential

discontinuously changes from panel to panel; in supersonic flow, each one of these

discontinuities would introduce error to the solution and possibly lead to divergence

of the solution.

Figure 5.2 shows a narrower range of velocity potentials for the same solution

using both subsonic methods. The difference in methods is more easily observed

here. Figure 5.2(b) shows a near constant width band of velocity potential values

about zero. It also shows a smooth transition into and out of this band on either

side of zero. This band is not as distinguished in Figure 5.2(a). The location of zero

Figure 5.1: Full range of velocity potential distributions for subsonic el-
lipsoid test

66

Figure 5.2: Narrowed range of velocity potential distributions for subsonic
ellipsoid test

velocity potential waivers back and forth, and the transitions on either side of zero are

ragged. These results show the necessity of doublet strength continuity enforcement

in supersonic modeling, as well as that higher-order methods can more accurately

model a geometry given the same surface discretization.

5.2 Supersonic Method

Besides the unit testing that was done, test cases for the supersonic scheme were

chosen based on both the availability of solution data and the generality of the test

cases; generality of test cases meaning that the tested geometries are generally rep-

resentative of common supersonic aerodynamic shapes. Since MARCAP is the code

that most resembles the methods implemented here, the solution data presented by

Maruyama et al. [7] acted as the primary source of verification. A few of the generic

geometries tested there–cones and rectangular wings–were generated and also tested

in CPanel. Maruyama et al. compared their results with analytical solutions and

67

solutions from PANAIR; this same data is also shown and discussed here.

Various delta wing geometries were also tested. CPanel results in the form of

pressure, lift, and drag coefficient are compared against results from the PANAIR

pilot code, theoretical solutions, and wind tunnel test data. Wing-body combinations

were not tested since, as of this work, CPanel does not properly handle wing-body

intersections. This causes spurious vortices to occur at these intersections. The affect

of these vortices dies out in the subsonic solution, however they propagate downstream

and are magnified in a supersonic flow field which can blow up the solution. However

when this issue is resolved, such modeling will be possible with supersonic flows; this

specific topic is discussed in more detail in Appendix C.

There is no dedicated discussion in relation to mesh fineness or mesh convergence

since it was found that CPanel solutions for supersonic flows were accurate using rel-

atively coarse meshes, so long as the mesh properly represented the geometry. Since

the test cases presented in this chapter–as well as supersonic geometries in general–

have either no or shallow curvature, relatively few panels are needed to correctly

represent the geometries. Furthermore, because a higher-order method is used, veloc-

ity potential variation across geometries is accurately captured with few panels, and

increasing the number of panels negligibly improves the solution. Similar conclusions

were found by Ehlers et al. and Maruyama et al. [2, 7]. Brief discussions in regard

to meshes are given for each geometry.

5.2.1 Unit Testing

Each of the algorithms presented in Chapter 4 were tested independently and together

in a simplified routine built in MATLAB which was specifically developed for such

testing. Of specific interest during these tests was how a panel singularity element

influences a control point as the control point’s domain of dependence intersects the

68

panel in different ways. Assessing this behavior served multiple purposes. Along

with acting as a means of validation for the influence coefficient calculation routines,

it made clear the relationship between the computed influence coefficients and the

geometry of a given panel-control point pair, as will be shown in the following figures.

The results of this testing also motivated the eventual layout of the algorithms them-

selves primarily in regard to ensuring robustness. An example of the geometry that

was used through out all unit testing is shown in Figure 5.3. As previously noted,

the integration direction around the panel is counterclockwise. The edge numbering

shown here will be referenced in the following discussions.

Figure 5.3: Example of geometry used during unit testing

The first test was a simple comparison of panel singularity element influence

against the equivalent point singularity element influence for both a source and dou-

blet. In all scenarios, as illustrated in Figure 5.4(a), the control point was moved away

from the panel in the x-direction and the potential influence was computed as the

control point moved. For both the linear doublet panel and the constant source panel

as shown in Figures 5.4(b) and 5.4(c), respectively, the panel and point singularity

influences converge to each other and toward zero as the control point moves away,

69

Figure 5.4: Comparison of potentials against point singularity elements

which acts as validation for each respective calculation.

Notice that in Figure 5.4(a), the panel is inside the domain of dependence of the

control point for the entire span of the test. This was done intentionally since the

point singularity element calculation cannot be compared with the panel calculation if

the domain of dependence was to intersect the panel. With the scenario for the panel

entirely inside the DOD of the control point validated, cases for the DOD intersecting

the panel were then tested three different ways. Each of these tests were performed in

very similar manners. For each case, the control point starts at a point in space such

that the panel is completely outside its DOD, and thus the panel has no influence

70

on it. Then, similar to the test of Figure 5.4, the control point moves in a single

coordinate direction with respect to the panel, and stops once the DOD is no longer

intersecting the panel. This is done for each coordinate direction.

For the purposes of this unit testing study, different ’States’ of panel-DOD in-

tersections are defined where each state represents how the DOD is intersecting the

panel. A different set of states is used for each of the three tests, which are defined in

Tables B.1, B.2, and B.3, respectively. The states are defined because the behavior of

a panel’s influence on a control point directly depends on the state of the panel-DOD

intersection, which is shown in the results presented in the following figures.

The results of the first two tests are shown in Figures 5.5 and 5.6, which involved

moving the control point in the x- and y-directions, respectively. Both doublet and

source potential influences are shown, with the axis for the former on the left of the

figures, and the axis for the latter on the right. First assessing the doublet potential

influence of Figure 5.5, there is a sudden jump in potential at the transition from

State 1 to 2. A jump in potential occurs and not a gradual increase because the

control point is immediately inside the Mach wedge of Edge 1 when the DOD first

intersects the panel. This is in contrast to the transition from State 1 to 2 in Figure

5.6 where the doublet potential influence gradually and continuously increases as the

control point moves through State 2. As the control point in Figure 5.5 moves into

State 3, where the shared vertex of Edges 1 and 2 is now inside the DOD, a small

change in the doublet influence curve is observed.

Moving from State 3 to 4 in Figure 5.5, there is again an instantaneous jump in

doublet potential influence. This jump occurs because the third edge has entered the

DOD of the control point, and since the direction of integration across this edge is

the opposite of Edges 1 and 2 with respect to the y-axis, the sign of its influence is

switched. This same phenomenon is observed in Figure 5.6 in the transition from

71

State 2 to 3. The remaining states of both Figures 5.5 and 5.6 are similar in that the

rest of the changes simply involve the panel vertices going into and out of the control

point DOD. The two tests do however end differently. The final state shown in Figure

5.6 is the same as the starting state, where the panel is completely outside the DOD,

though this is not shown in Table B.2. For Figure 5.5, the panel never leaves the DOD

and thus the doublet potential influence approaches zero as the control point moves

away. Now assessing the source potential influence, its behavior in these two tests is

very similar. In both cases, it gradually increases from zero as the panel enters the

DOD, and gradually approaches zero as the control point moves away from the panel.

It is also seen that the source potential influence peaks at the same state change in

both instances, which is when Edge 3 enters the DOD. This makes intuitive sense

Figure 5.5: Doublet and source potential influences as the control point
varies in the x-direction (State details in Table B.1)

72

Figure 5.6: Doublet and source potential influences as the control point
varies in the y-direction (State details in Table B.2)

because this is the instant that the balance of control point proximity to the panel

and the area of the panel inside the DOD is at its maximum.

The final test shown here is the case of moving the control point purely in the

z-direction relative to the panel, for which the states are shown in Table B.3 and

the results in Figure 5.7. In this test, the control point started below the panel and

moved in the positive z-direction. The doublet and source influence curves are seen to

behave similarly to the prior two tests, except that there is now also symmetry in their

behaviors as the control point moves. The doublet influence curve is antisymmetric

across the y-axis of the plot, while the source influence curve is symmetric across the

y-axis. This behavior is expected since the only difference in geometry between the

left and right sides of the plot is the sign of the control point z-coordinate.

73

Figure 5.7: Doublet and source potential influences as the control point
varies in the z-direction (State details in Table B.3)

5.2.2 Flows Around Cones

The ability to model the aerodynamic characteristics of a cone is a staple for any

supersonic flow modeling code. The geometry of a cone resembles the shape of com-

mon supersonic vehicle fuselage designs, such as fighter aircraft, and is thus a simple

benchmark test case for the code’s ability to model a generic supersonic fuselage

shape.

It was found in early supersonic tests of CPanel that high quality paneling is es-

sential to solution accuracy. This is generally the case for all codes but for supersonic

panel codes specifically, if the paneling of a model inaccurately represents the true

geometry, then there is a risk that non-physical flow perturbations will occur and

propagate downstream, causing errors in the results. Such errors were found to oc-

74

cur when the unstructured paneling methods conventionally used with CPanel were

used to panel cones. The two methods of mesh generation used for the developments

of CPanel v1.0 and v2.0 were through OpenVSP and a MATLAB program called

DistMesh developed by two UC Berkeley faculty members [22]. Both of these pro-

grams were first used to generate paneling for cones to be tested here, however both

were found to struggle in paneling the surface near the tip of the cone, an example of

which is shown in Figure 5.8(a). Since this is the forward most point of the geometry,

the resulting solutions were substantially in error.

This same issue is likely to be seen when meshing other pointed and slender

bodies, so when utilizing unstructured mesh generating programs for such bodies

in supersonic flows, the CPanel user must be cognizant of this. For more complex

geometries where this may be an issue, it is recommended that more advanced meshing

programs are used than the ones conventionally used with CPanel.

In order to construct a surface mesh of a cone of acceptable quality for the purposes

of testing CPanel here, a MATLAB routine was created whose specific function is

to generate high quality triangular paneling of cones. An example of the paneling

generated by this program at the tip of a cone is shown in Figure 5.8(b). Given a cone

length and half angle, the routine generates what could be considered a structured

mesh based on the desired number of azimuthal slices and longitudinal slices input

by the user. It then outputs the surface discretization in a .tri file format which is

the standard file format used by CPanel.

Using this specialized cone paneling program to generate meshes, three different

test cases were run involving cone geometries, all of which were also run by MARCAP

and PANAIR. The first test is of a cone with a 10◦ half-angle at no angle of attack or

sideslip, and at varying freestream Mach numbers. Figure 5.9 shows the results from

this test in the form of Cp vs Mach number. The three different approximations of

75

Figure 5.8: Examples of paneling at the tip of a cone

Cp presented in Section 3.3 are all plotted where the ’2’, ’S’, and ’L’ in the legend

correspond to the 2nd order, Slender, and Linear approximations, respectively. This

nomenclature is used throughout the chapter. The same three Cp approximations

presented in Maruyama et al. [7] for MARCAP are shown.

Both the 2nd order and Slender approximations from CPanel trend closely with

those of MARCAP. The Linear approximation is the only one that would be consid-

ered to not match the results of MARCAP. However, there appears to be an unex-

plained shift for the center portion of the Linear Cp data from MARCAP relative to

the other MARCAP data points, and relative to the shape of the curve created by

the CPanel data. A similar shift is seen in the last two points of the MARCAP 2nd

order data. The exact reason for this phenomenon in the MARCAP data is unknown;

76

it is hypothesized that it is mesh related. If this shift is disregarded for the Linear

data, then the CPanel and MARCAP data would be considered to match one another

with the CPanel results being slightly less accurate. The Slender Cp approximation is

clearly the most accurate in this instance. The CPanel results nearly match and are

actually slightly more accurate than the MARCAP results, which both trend almost

exactly with the results of PANAIR. As expected, the results of all three programs

begin to diverge away from the analytical solution as Mach number increases and the

linearized assumption begins to become invalid. This occurs around Mach 2.5 in this

test case.

One final observation to be made from Figure 5.9 is that the error bars for the

first two CPanel data points are of substantial span. These error bars represent three

standard deviations of the Cp data taken across the length of the cone. Since the

cone is at no angle of attack or sideslip, Cp should be the same all over the surface

Figure 5.9: 10◦ half-angle cone, Cp vs Mach

77

of the cone, so any variation here is captured by the error bars. Appreciable error

is observed only at the two lower Mach numbers of this test. This is because these

Mach numbers are approaching the transonic flow regime which linear theory does

not properly model, so the solution becomes unstable as Mach number approaches

unity.

The second test case involving flows around cones presented here is similar to

the first except now Mach number is held constant while cone half-angle is varied,

represented as the variable, θ. The test is run at Mach
√

2 and again with no angle

of attack or sideslip. Figure 5.10 shows the results of this test case as well as the

results of MARCAP and CPanel just as was done in Figure 5.9. Similar conclusions

can be drawn from this plot as were drawn before. The Slender Cp approximation

is again clearly the most accurate, and the results of all three programs using this

approximation trend together as θ increases. Furthermore, the Linear and 2nd order

approximations from CPanel and MARCAP also trend together and are again the

less accurate Cp approximations.

Three standard deviations are again shown via error bars for each data point from

CPanel. For reference, the standard deviation at θ = 10◦ here is approximately the

same as that for the Mach 1.5 case of Figure 5.9. As θ increases, the standard deviation

also increases as expected. At the higher θ values, the error bars span a substantial

range of Cp values, even though the mean value that is plotted remains spot on with

the MARCAP and PANAIR data. This indicates that if specific surface data of

a case such as this is desired, it may be in error, while the averaged aerodynamic

characteristics remain accurate.

The results of the two above test cases presented in Figures 5.9 and 5.10 provide

the future CPanel user a handful of key insights in regard to modeling cone like

geometries at supersonic speeds. As already discussed, the paneling must be of a

78

Figure 5.10: Cone at Mach
√

2, Cp vs θ

high quality, and specifically so in the forward-most regions of the geometry. The

user must also be aware of the combination of body thickness and Mach number,

since if either is too large, the linear assumptions of the method begin to break down

yielding inaccurate results; however, the data has been shown to be inaccurate in

a somewhat predictable manner so insight can still be gained from results at high

Mach numbers or from modeling thick bodies. Lastly, the Slender Cp approximation

is without a doubt the most accurate of the three approximations in these test cases,

and should thus always be used in assessing flows involving conical shocks.

Modeling a cone at an angle of attack is the third and final test case to be presented

in this section. The same geometry and paneling as was used for the first test case

with varying Mach number is also used here. This test is run at Mach 1.5 and with

the cone at an angle of attack of 5◦. Figure 5.11 shows the results of this test in a

plot of Cp vs φ, where φ here represents azimuth angle around the cone, as illustrated

79

Figure 5.11: 10◦ half-angle cone at Mach 1.5 and α = 5◦, Cp vs φ

at the top of Figure 5.11.

CPanel results for this test again match the results of MARCAP, and the Slender

Cp approximation matches PANAIR and the analytic solution. Through these tests,

CPanel has been shown to have the ability to properly model supersonic flows around

cones, and can thus be extended for use on generic supersonic fuselage shapes. There

are limitations in regard to paneling quality, geometry thickness, and freestream Mach

number, but these limitations are expected, and CPanel behaves appropriately as

these limits are approached.

Furthermore, it was found that the cone solutions retained the same level of

80

accuracy, such as that shown in Figure 5.11, regardless of the fineness of the mesh

so long as the discretization reasonably represented the cone. Accurate solutions

were found with as few as 100 panels with nearly negligible gains in accuracy with

finer meshes for the reasons discussed at the beginning of Section 5.2, which is in

contrast to CPanel’s lower-order method as shown by Satterwhite [10]. To obtain

high resolution data however, a finer mesh is needed.

5.2.3 Diamond Airfoil Rectangular Wings

The next set of test cases used to verify the results of the supersonic implementation

of CPanel was the modeling of flows over rectangular wings with diamond airfoils.

This is a favorable geometry to test with for multiple reasons. Modeling a rectangular

wing in supersonic flow guarantees that no part of the wing will be influenced by its

wake, as was illustrated in Figure 2.5(a). Since wake modeling was not implemented

as a part of this work, this is necessary in acquiring accurate results for these test

cases. Furthermore, a diamond airfoil wing is representative of generic supersonic

wing designs, which are often derivative of this basic shape. Lastly, modeling this

geometry allows for the computed solution to be compared with 2D shock-expansion

theory, since the flow over any region of the wing that is outside the influence of the

wing tips will behave two-dimensionally.

The specific wing geometry used for the first test case in this section matches

a geometry for which results are published by both MARCAP and PANAIR. As

illustrated in Figure 5.12, this is a diamond airfoil with a half-angle of 6◦. Also shown

in the figure is the span location where data is taken, relative to the tip of the wing,

which is outside the influence of the wing tip and can thus be treated as a 2D airfoil

at this location. The wing was modeled at no angle of attack or sideslip for this test.

Results of CPanel are compared against the theoretical shock-expansion solution

81

Figure 5.12: Geometry and conditions for diamond airfoil test case

for this airfoil in Table 5.2 and Figure 5.13. The 2nd order and Linear Cp approxima-

tions yielded the same results for this test case, so only the results from the Linear

approximation are shown and discussed here for clarity. All assessments of the Linear

approximation also apply to the 2nd order approximation. Figure 5.13 shows that

there is no discernible variation in Cp across the forward or aft ramps of the diamond

airfoil. This observation was true independent of the number of panels that spanned

Table 5.2: Percent error of CPanel Cp against theoretical Cp for a diamond
airfoil

Cp % Error

x/c 0.0-0.5 0.5-1.0 0.0-0.5 0.5-1.0

CPanel Slender Avg. 0.158 -0.136 4.9 5.6

CPanel Linear Avg. 0.173 -0.128 4.3 0.9

Theoretical 0.166 -0.129

82

Figure 5.13: Diamond airfoil, Cp vs x/c – theoretical solution comparison

each respective ramp, as long as that number was at least three panels. For the case

discussed here, five panels spanned each half-chord ramp of the airfoil.

Table 5.2 and Figure 5.13 also show that the Linear approximation of Cp is more

accurate than the Slender approximation. Recall from Section 3.3 that the Slender Cp

approximation gives the most weight to the v and w components of the perturbation

velocity. Since these results are being compared with the 2D theoretical solution, if

the v component of the perturbation velocity computed by CPanel is non-zero, then

the results will be in error relative to the theoretical solution, which is what occurs

here. Considering there will always be imperfections in any surface discretization

and that CPanel uses unstructured paneling, it is expected that some non-physical

y-component of velocity is found in a test case such as this.

The results of CPanel are compared against that of MARCAP and PANAIR in

Table 5.3. The solutions from all codes show percent errors less than 6% relative to

83

Table 5.3: Comparison of CPanel error with MARCAP and PANAIR for
a diamond airfoil

Cp % Error

x/c 0.0-0.5 0.5-1.0 0.0-0.5 0.5-1.0

Slender

CPanel 0.158 -0.136 4.9 5.6

MARCAP 0.157 -0.134 5.5 3.8

PANAIR 0.174 -0.125 4.6 2.8

Linear

CPanel 0.173 -0.128 4.3 0.9

MARCAP 0.172 -0.125 3.6 3.3

PANAIR 0.168 -0.123 1.3 4.5

Theoretical 0.166 -0.129

2D shock-expansion theory. This level of accuracy is as expected of panel codes, and

CPanel is shown to give similar degrees of accuracy as the other two codes.

Similar to the studies that were done with the cone geometries, the effects of

increasing Mach number and half-angle for a diamond wing airfoil were assessed.

Even though no other codes have published the results for a study such as this, it

is performed here to provide understanding of the limitations of CPanel in modeling

generic supersonic wings. A diamond airfoil rectangular wing is again used, so the

corresponding shock-expansion solutions can be computed and compared against;

however, only the forward ramp of the airfoil is evaluated for these studies. Along

with the pressure coefficients on the forward ramp, the theoretical entropy change,

non-dimensionalized by the gas constant, across the compression shock at the leading

edge of the airfoil is also plotted. The linearized equations from which panel methods

are derived assume no entropy change throughout the flow field, so computing and

plotting entropy change here enables a quantitative assessment of why the CPanel

solutions become less accurate as Mach number and half-angle increase.

84

The first test is of a 5◦ half-angle diamond airfoil at increasing freestream Mach

numbers and no angle of attack or sideslip, for which the results are shown in Figure

5.14. As was found earlier, the 2nd order and Linear Cp approximations turn out to

be the same, and it is now seen that this is regardless of Mach number. However

they both begin to diverge away from the exact solution as Mach number increases,

though they diverge slowly. The Slender approximation is less accurate than the

other two for the lowest Mach numbers, but then consistently tracks closely with the

exact solution through all the following test points. What this shows is that with a

sufficiently thin airfoil, CPanel can give acceptably accurate results for a wide range

of Mach numbers; the reason for this is shown by the plotted entropy change values,

which are all small.

The results for the next test are plotted in Figure 5.15. This was run at Mach

2.0 and again with no angle of attack or sideslip. It is shown that in modeling wings,

Figure 5.14: 5◦ half-angle wedge, Cp and ∆s/R vs Mach

85

Figure 5.15: Wedge at Mach 2.0, Cp and ∆s/R vs θ

CPanel is much more sensitive to thickness than it is to Mach number when they are

varied independently. The results here are accurate up until an airfoil half-angle of

around 7.5◦. Looking at the entropy change, it is already greater at θ = 10◦ than

it was at Mach 3.5 in Figure 5.14, which explains the rapid divergence away from

the theoretical solution. This same behavior would be expected from any linearized

solution process.

5.2.4 Delta Wings

The final set of test cases for this work was the modeling of various delta wing geome-

tries. Delta wings were chosen because, like the diamond airfoil rectangular wing, they

are representative of a wide range of supersonic wing designs; there are even entire

aircraft designs that are delta wings or that are derived from them. Unlike rectangular

wings however, the flow fields around delta wings are more complex in that there is

86

three-dimensionality to them. Due to their ubiquitous use in supersonic aerodynam-

ics, they have been studied and tested extensively, providing a plethora of resources

to compare results against. Through prior tests, the Slender Cp approximation was

found to be the most generally appropriate approximation, so this is what is used for

the following tests.

Figure 5.16 shows the delta wing geometries that were chosen to be tested in

CPanel. Delta wings 1 and 2 shown in Figures 5.16(a) and 5.16(b), respectively, are

geometries that were modeled by the PANAIR pilot code and results presented by

Moran et. al. [23]. These wings were modeled at Mach
√

2, and with the bottom

surfaces of the wings at no angle of attack. With a freestream Mach number of
√

2,

the Mach angle is 45◦ for these two tests, which means Wing 1 has a subsonic leading

edge and Wing 2 has a supersonic leading edge. Delta wing 3 in Figure 5.16(c) is

modeled after a geometry that was used in a series of wind tunnel tests by Love [24].

One may notice that the aft ends of Wings 1 and 2 in Figures 5.16(a) and 5.16(b),

respectively, are closed with a blunt trailing edge–in other words, the aft ends are

closed with superinclined panels. It has been discussed that superinclined panels are

not allowed as of this implementation of CPanel; however, an exception is made for

special cases such as this. Because the trailing edge of both wings is a supersonic

trailing edge and no part of the wing is downstream of the trailing edge in either case,

the superinclined panels have no influence on the flow fields over either wing. Thus,

the superinclined panels can be disregarded for the solutions of these wings, and the

trailing edge treated as open. CPanel checks for such cases to allow the modeling of

geometries like these; this is discussed further in Appendix E.

During preliminary delta wing tests, two different but related issues were found in

regard to CPanel. Solutions were found to be in error when modeling geometries with

sharp supersonic trailing edges at an angle of attack or with 3D flow phenomena–the

87

Figure 5.16: Delta wing test cases

88

diamond airfoil rectangular wings discussed before do not encounter this error at no

angle of attack for regions outside the wingtip Mach cones. Furthermore, the solutions

of any wing with a subsonic leading edge were discovered to be in error. Both of

these errors were found to stem from the improper enforcement of doublet strength

continuity at these edges, where doublet strength is supposed to be discontinuous.

The solution to these issues is a non-trivial one and was not implemented as a part

of this thesis, though temporary workarounds were implemented to still allow for

the geometries of Figure 5.16 to be assessed and results verified. These issues, their

proposed future solutions, and the present temporary workarounds are all discussed

in detail in Appendix C.

Since Wing 1 has a sharp subsonic leading edge, a temporary adjustment in the

solution process was made such that the flow field over the top surface of the wing

could still be solved. Refer to Appendix C for details of this modification. The

pressure distribution for the top surface of Wing 1 solved in CPanel is shown in

Figure 5.17. Pressure coefficients were taken at a cross-section of the top surface at

x = 0.9c, and plotted in Figure 5.18 with results from the PANAIR pilot code and

the theoretical solution, both obtained from Moran et. al. [23].

CPanel results track well with PANAIR results and the theoretical solution in Fig-

ure 5.18 until a y/ymax of approximately 0.75. The inaccuracy of CPanel relative to

PANAIR near the leading edge is attributed to two sources. The first is the difference

in method order between the codes where PANAIR is one order higher than CPanel

which gives PANAIR an inherent accuracy advantage, and the second is CPanel’s

use of an unstructured surface discretization. As has been discussed, unstructured

paneling will always introduce error that may not arise in a comparable structured

paneling. An indication that error due to unstructured paneling is occurring in this

solution is the wavering of the CPanel data points in Figure 5.18. The further down-

stream data is taken, the more prominent this error becomes which can be observed

89

Figure 5.17: Delta wing 1 at Mach
√

2, Cp distribution

in Figure 5.17, specifically along the centerline of the geometry.

Figure 5.18: Delta wing 1 at Mach
√

2, Cp vs y/ymax at x = 0.9c

90

Though Wing 2 has a supersonic leading edge and a blunt supersonic trailing edge,

there were still issues in modeling this geometry, however unrelated to the issues in

modeling Wing 1. In the case of Wing 2, the solution is in error due to what seems to

be an inability to accurately model the bottom surface of the wing, which is parallel

to the freestream direction. The exact source of this error is unclear, though it has

been determined that it is most likely due to either a mesh which does not accurately

represent a perfectly flat bottom surface, or the unavoidable error introduced with

unstructured paneling is of a large enough magnitude in this test to result in the

entire solution being in error. Both of these possibilities are discussed in more detail

in Appendix C.

For this paper, a small temporary adjustment was made to the code to give the

proper solution for the top surface, similar to what was done with Wing 1. The pres-

sure distribution for this surface is shown in Figure 5.19. This distribution distinctly

shows the region of the surface which is within the Mach cone emanating from the tip

of the wing. There are similarities between this distribution inside the tip Mach cone

and the pressure distribution for Wing 1 in Figure 5.17, for which the entire wing

is inside the tip Mach cone. The lowest pressure region for both wings is along the

Figure 5.19: Delta wing 2 at Mach
√

2, Cp distribution

91

centerline, which then gradually increases moving outboard. However instead of the

pressure approaching infinity like with Wing 1, it approaches the constant pressure

of the surface that is outside the tip Mach cone.

As was done with Wing 1, pressure coefficients were taken at the x = 0.9c cross-

section, and plotted with the PANAIR pilot code results and theoretical solution,

which is shown in Figure 5.20. CPanel results are shown to match both PANAIR

and the theoretical solution. The similarities between the solutions of these wings

discussed above is also observed in comparing the plots of Figure 5.18 and Figure

5.20.

Figure 5.20: Delta wing 2 at Mach
√

2, Cp vs y/ymax at x = 0.9c

The final delta wing test case is that of Wing 3 shown in Figure 5.16(c). This

geometry is one of many for which CL and CD data from wind tunnel tests are given

by Love [24]. Of Love’s tested wings, Wing 3 was chosen because it has a supersonic

leading edge at the test Mach number of 1.62; and because it does not have any

92

flat surfaces that are parallel to the freestream direction, neither of the modifications

made for the previous two tests needed to be made here. A small modification in

the post-processing at the trailing edge panels was needed however, since it has a

sharp trailing edge in 3D flow and so CPanel incorrectly enforces doublet strength

continuity here. The details of this modification are discussed in Appendix C.

Wing 3 was tested at Mach 1.62 and varying angles of attack, and CL and CD

computed using CPanel’s existing methods of summing each panel’s contribution to

the respective force coefficients. The pressure distribution of the top surface of Wing

3 at α = 0◦ is shown in Figure 5.21. This shows the Mach cone emanating from the

tip of the wing, as well as the Mach cone emanating from the tip of the expansion

turn at the maximum thickness location of the wing. Though it is not shown here,

the pressure distribution on the bottom surface appears identical.

Figure 5.21: Delta wing 3 at Mach 1.62 and α = 0, Cp distribution

CL and CD computed by CPanel are plotted against the results of Love in Figure

5.22. CPanel matches the wind tunnel test results of Love for the lower angles of

attack in the range shown. At higher angles of attack, CPanel underpredicts CL,

93

which is expected of a linearized method. As the angle of attack increases, the

bottom surface leading edge shock increases in strength. Since linearized methods

assume no entropy change in the flow field, as this shock strength increases, CPanel

becomes less accurate and is predicting the shock as weaker than it actually is. An

underpredicted shock strength indicates an overpredicted velocity over the bottom

surface, and thus underpredicted bottom surface pressures. This yields a decreased

pressure differential between the top and bottom surfaces which is captured by the

underpredicted CL results in Figure 5.22. The drag coefficient is not as affected by

this shock strength underprediction since the geometry is relatively slender, so the

contribution of this error in the direction of the drag force is small.

Figure 5.22: Delta wing 3 at Mach 1.62, CL and CD vs α

For the delta wing test cases presented here, CPanel gave accurate results so long

as the regions across which shocks and expansions emanated were finely discretized;

the mesh could remain relatively course away from these regions for the reasons

94

discussed in Section 5.2. As mentioned in reference to the Cp distribution shown in

Figure 5.17 and the plot of Figure 5.18, error due to the use of unstructured meshes

was observed. Thus if an overly fine unstructured mesh is used, there will likely be

higher error in the downstream-most regions of the geometry relative to a coarser

mesh, assuming both meshes properly represent the geometry. This error may be of

concern if high resolution and high accuracy pressure data, for example, is of interest;

however, it has been shown that this error is generally low and does not take away

from the utility that is most often needed of a panel code.

95

Chapter 6

CONCLUSION

6.1 Summary

A higher-order method was successfully implemented in CPanel for use in modeling

supersonic flows. Application of the higher-order method to subsonic flows was also

implemented. The doublet strength continuity enforcement scheme developed with

this work has been shown to function properly and consistently with CPanel’s existing

code architecture designed for solving unstructured meshes. A strong base has been

laid to allow for the future enhancement of CPanel’s supersonic modeling capabilities,

and of CPanel as a whole.

Results from CPanel were compared with those from other codes and theoretical

solutions, showing strong correlation with both. Limits to solution accuracy were

found in relation to higher Mach numbers or thicker geometries, as observed with

other codes and as expected of linearized solution methods. As of this work, certain

types of geometries can not be modeled accurately; however, partial solutions to these

geometries were still shown to be accurate with small code modifications.

6.2 Future Work

CPanel is designed to be a continually developing tool, acting as a platform for stu-

dents to perform research and to contribute to the field of computational fluid dynam-

ics. With this in mind, as well as the unaddressed issues with the supersonic scheme

discussed in this paper, the list below was put together as possible modifications and

enhancements to be made to CPanel. The list is ordered in what was deemed highest

96

priority to lowest priority in regard to the supersonic modeling abilities of CPanel,

and each item will be briefly discussed.

• Fix issue of shared nodes at subsonic leading edges

• Fix issue of shared nodes at trailing edges

• Implement the ability to model wakes with the new higher-order methods

– Incorporate vortex particle wake modeling

• Address spurious vortex formation at wing-body intersections

• Perform more rigorous testing with more complex geometries. A method of

characteristics code can be used to validate

– Detailed assessment of solution accuracy and stability as a function of

paneling quality

• Include the ability to use superinclined panels to model inlet and exhaust flows

• Add off-body calculations for use in streamline tracing

• Implement wave drag calculations

• Allow use of velocity boundary conditions and compare solution accuracy with

mass flux boundary conditions

• Extend supersonic solution for use at high subsonic Mach numbers, compare

with simply using Prandtl-Glauert transformation on the current subsonic so-

lution processes

• Implement transonic modeling to work in conjunction with the present subsonic

and supersonic modeling schemes

97

• Implement a linear source/quadratic doublet solution

• Include the ability to use integral boundary layer methods to model viscous

effects

In order for CPanel to be able to model any geometry, the issues discussed in Ap-

pendix C need to be addressed, which manifests itself in creating disparate upper and

lower nodes on leading and trailing edges. The issue of shared nodes at these edges is

also the primary source of the problem of spurious vortices forming at wing-body in-

tersections. Seperate nodes are needed for the wing and body at the intersection, and

extra boundary conditions applied, similar to the panel network scheme of PANAIR

[1]. The first four items of this list are all related to the issue of shared nodes.

Once the above items have been completed, more testing can be performed to

better understand CPanel’s sensitivity to paneling, and to specifically find the issue

in modeling flat surfaces that are parallel to the freestream flow. Adding superin-

clined panels, off-body calculations, wave drag calculations, and velocity boundary

conditions are all non-essential additions, but would broaden the range of geome-

tries and flows the CPanel user could model, as well as give more insightful results.

Using the base architecture for higher-order methods that was implemented, the full

Prandtl-Glauert subsonic solution could be implemented, to allow for accurate model-

ing at high subsonic Mach numbers. If this is done, CPanel could be further extended

to modeling transonic flows by implementing a transonic modeling method to work

in conjunction with CPanel’s existing methods [25]. A linear source/quadratic dou-

blet scheme could be implemented, and accuracy compared with the present method.

Lastly, an integral boundary layer method could be included in CPanel.

98

BIBLIOGRAPHY

[1] Larry L. Erickson. Panel Methods – An Introduction. Technical Report NASA

TR 2995, National Aeronautics and Space Administration, 1990.

[2] F. Edward Ehlers, Michael A. Epton, Forrester T. Johnson, Alfred E. Magnus,

and Paul E. Rubbert. A Higher Order Panel Method for Linearized Supersonic

Flow. Contractor Report NASA CR 3062, National Aeronautics and Space

Administration, 1979.

[3] Ralph L. Carmichael and Frank A. Woodward. An Integrated Approach to the

Analysis and Design of Wings and Wing-Body Combinations in Supersonic

Flow. Technical Note NASA TN D-3685, National Aeronautics and Space

Administration, 1966.

[4] Frank A. Woodward. Analysis and Design of Wing-Body Configurations at

Subsonic and Supersonic Speeds. Journal of Aircraft, 5(6):528–534, 1968.

[5] Ralph L. Carmichael and Larry L. Erickson. PANAIR – A Higher Order Panel

Method for Predicting Subsonic or Supersonic Linear Potential Flows about

Arbitrary Configurations. In AIAA 14th Fluid and Plasma Dynamics

Conference, Palo Alto, California, June 1981.

[6] L. Fornasier. HISSS – A Higher-Order Subsonic/Supersonic Singularity

Method for Calculating Linearized Potential Flow. In AIAA 17th Fluid,

Plasma Dynamics, and Lasers Conference, Snowmass, Colorado, June 1984.

[7] Yuichi Maruyama, Sadao Akishita, and Akihito Nakamura. Numerical

Simulations of Supersonic Flows about Arbitrary Configurations Using a New

99

Panel Method Program. In Astrodynamics Conference, Williamsburg, Virginia,

1986.

[8] Luis R. Miranda, Robert D. Elliot, and William M. Baker. A Generalized

Vortex Lattice Method for Subsonic and Supersonic Flow Applications.

Contractor Report NASA CR 2865, National Aeronautics and Space

Administration, 1977.

[9] Brandon L. Litherland. Using VSPAERO.

http://openvsp.org/wiki/doku.php?id=vspaerotutorial, July 2015. [cited

February 2, 2019].

[10] Christopher R. Satterwhite. Development of CPanel, an Unstructured Panel

Code, Using a Modified TLS Velocity Formulation. Master’s thesis, California

Polytechnic State University, San Luis Obispo, 2015.

[11] Connor Sousa. Unsteady Panel Code Utilizing a Vortex Particle Wake.

Master’s thesis, California Polytechnic State University, San Luis Obispo, 2016.

[12] Joseph Katz and Allen Plotkin. Low-Speed Aerodynamics, volume 13.

Cambridge University Press, 2001.

[13] Russel M. Cummings, William H. Mason, Scott A. Morton, and David R.

McDaniel. Applied Computational Aerodynamics. Cambridge University Press,

2015.

[14] J. Hadamard. Lectures on Cauchy’s Problem in Linear Partial Differential

Equations. Yale University Press, 1928.

[15] Luigi Morino, Lee-Tzong Chen, and Emil O. Sucio. Steady and Oscillatory

Subsonic and Supersonic Aerodynamics around Complex Configurations. AIAA

Journal, 13(3):368–374, 1975.

100

http://openvsp.org/wiki/doku.php?id=vspaerotutorial

[16] Rob A. McDonald and Alejandro Ramos. Constrained Hermite Interpolation

for Mesh-Free Derivitive Estimation Near and on Boundaries. AIAA Journal,

49(10), 2011.

[17] Forrester T. Johnson and Paul E. Rubbert. Advanced Panel-Type Influence

Coefficient Methods Applied to Subsonic Flows. In AIAA 13th Aerospace

Sciences Meeting, Pasadena, California, January 1975.

[18] Michael A. Epton and Alfred E. Magnus. PANAIR–A Computer Program for

Predicting Subsonic or Supersonic Potential Flows About Arbitrary

Configurations Using a Higher Order Panel Method. Contractor Report NASA

CR 3251, National Aeronautics and Space Administration, 1990.

[19] Forrester T. Johnson. A General Panel Method for the Analysis and Design of

Arbitrary Configurations in Incompressible Flows. Contractor Report NASA

CR 3079, National Aeronautics and Space Administration, 1980.

[20] John L. Hess and A.M.O Smith. Calculation of Non-Lifting Potential Flow

about Arbitrary Three-Dimensional Bodies. Technical report, Douglas Aircraft

Division, 1962.

[21] Brian Maskew. Program VSAERO Theory Document. Contractor Report

NASA CR 4023, National Aeronautics and Space Administration, 1987.

[22] Per-Olof Persson and Gilbert Strang. A Simple Mesh Generator in MATLAB.

SIAM Review, 46(2):329–345, June 2004.

[23] Jack Moran, Edward N. Tinoco, and Forrester T. Johnson. User’s manual:

Subsonic/Supersonic Advanced Panel Pilot Code. Contractor Report NASA

CR 152047, National Aeronautics and Space Administration, 1978.

101

[24] Eugene S. Love. Investigations at Supersonic Speeds of 22 Triangular Wings

Representing Two Airfoil Sections for each of 11 Apex Angles. Research

Memorandum NACA RM L9D07, National Advisory Committee for

Aeronautics, 1949.

[25] Gino Moretti and Gary Bleich. Three-Dimensional Flow Around Blunt Bodies.

In AIAA 5th Aerospace Sciences Meeting, New York, New York, January 1967.

[26] David D. Marshall and Eric A. Mehiel. Introduction of Software Development

Practices into Aerospace Engineering Curriculum. In 46th AIAA Aerospace

Sciences Meeting and Exhibit, Reno, Nevada, January 2008.

102

APPENDICES

Appendix A

INFLUENCE COEFFICIENTS

The influence coefficient formulations used for this thesis were primarily adopted from

other published works. Nearly all of these works involved the implementation of a

linearly varying source distribution and a quadratically varying doublet distribution,

while CPanel’s higher-order methods use a constant source distribution and a linearly

varying doublet distribution. The following sections show how one arrives at the

influence coefficient formulations implemented in CPanel from those presented by

other codes.

A.1 Subsonic Implementation

Since constant strength sources were used with the higher-order subsonic implemen-

tation, no changes were needed in the source influence coefficient calculations, and the

original CPanel scheme is used. A new scheme was however needed for the doublet

influence coefficient calculations, which was adopted from Johnson [19].

The influence coefficient expression for a linearly varying doublet can be found

two different ways from the expressions given by Johnson. The first is to start from

the influence coefficient solution for a linearly varying source. This begins with the

integral given in Equation 4.20, which is rewritten below.

φS(P) = −
∫
S

σ

(
1

4π|rij|

)
dS (A.1)

Differentiating and solving this equation gives the expression for source-induced per-

103

turbation velocity as

vS(P) = σ(x, y)J0 + σx(x, y)J1 + σy(x, y)J2 (A.2)

where

σ(x, y) = σ0 + σxx+ σyy

σx(x, y) = σξ

σy(x, y) = ση

(A.3)

Note that this is the same form as Equations 4.2-4.3. In Equation A.2, each J

represents different solutions to a single fundamental integral. This fundamental

integral will be discussed in greater detail shortly. Each of the three fundamental

integral solutions can be written in vector form as

J = [Jx, Jy, Jz] (A.4)

Katz and Plotkin [12] show that the expression for the doublet-induced potential

is the same as that for the source-induced velocity in the z-direction, which is a

function of the Jz fundamental integral solutions. The source-induced velocity in the

z-direction is

vS,z = σ(x, y)J0,z + σx(x, y)J1,z + σy(x, y)J2,z (A.5)

thus the influence coefficient for a linearly varying doublet is

φD = µ(x, y)J0,z + µx(x, y)J1,z + µy(x, y)J2,z (A.6)

The fundamental Jz expression, using the nomenclature of Johnson, is written as

Jz(M,N) = − 1

4π

[
− zH(M,N, 3) + higher order terms

]
(A.7)

H(M,N,K) =

∫
S

(ξ − x)M−1(η − y)N−1[√
(ξ − x)2 + (η − y)2 + z2

]K dS (A.8)

104

In Equation A.7, the higher order terms are for curved paneling, and so are dropped

for CPanel’s implementation. The J terms of Equation A.6 can be rewritten in the

form of A.7 as

J0,z = Jz(1, 1)

J1,z = Jz(2, 1)

J2,z = Jz(1, 2)

(A.9)

The Jx and Jy fundamental integral solutions used just for computing source-induced

velocity are similar to Equation A.7, except they are functions of H(M + 1, N, 3) and

H(M,N + 1, 3), respectively, instead of H(M,N, 3).

The second means of arriving at the influence coefficient expression for a lin-

early varying doublet is to simply start with the influence coefficient expression for a

quadratically varying doublet which is

φD = µ(x, y)I0 + µx(x, y)I1 + µy(x, y)I2 + higher order terms (A.10)

where

I(M,N) =
1

4π

[
zH(M,N, 3) + higher order terms

]
(A.11)

I0 = I(1, 1)

I1 = I(2, 1)

I2 = I(1, 2)

(A.12)

and drop the higher order terms, which are for the quadratically varying components

of the doublet expression in A.10 and curved panels in A.11.

A.2 Supersonic Implementation

The influence coefficients used for the supersonic implementation were adopted from

Ehlers et. al. [2]. Section 4.5 gave the constant source influence coefficient expression

105

and linear doublet influence coefficient expression as, respectively

φS =
σ

2π

(
xmw0 − zQI

)
(A.13)

φD = − 1

2π

(
µQI − µxzw0 − µyzw0/m

)
(A.14)

which were derived from the original expressions of Ehlers et. al. by dropping higher

order terms. Equations A.13 and A.14 give the influence coefficient for the edge of a

panel on a control point, so they must be computed for each edge of a given panel and

summed to find the influence coefficients for a given panel-control point pair. The

fundamental integrals in these equations are w0 and QI , for which there are different

solutions depending on the inclination of the given edge: subsonic, supersonic or

sonic. Their solutions also depend on which parts of the edge are inside the DOD of

the control point.

A.2.1 Subsonic Edges

For a subsonic edge,

w0 =
m

2
√

1−m2
ln

[
−ŷm +R

√
1−m2

−ŷm −R
√

1−m2

]∣∣∣∣∣
2

1

(A.15)

QI = sign(z)tan−1
[
x̂mR

−|z|ŷm

]∣∣∣∣2
1

(A.16)

where 1 and 2 indicate the two end points of the edge being evaluated. In these

equations and all following, m is edge slope. Taking the natural log and inverse

tangent as shown above is quite computationally expensive, considering they must

be taken for every edge endpoint for every panel-control point pair in the geometry.

Some computational efficiency can be gained by combining the log and inverse tangent

terms for each expression, giving

w0 =
m√

1−m2
ln

[
−ŷm,2 +R2

√
1−m2

−ŷm,1 −R1

√
1−m2

]
(A.17)

106

QI = tan−1

[
zx̂m

[
(−ŷm,1)R2 − (−ŷm,2)R1

]
z2(−ŷm,1)(−ŷm,2) + x̂2mR1R2

]
(A.18)

Equations A.17 and A.18 are the most efficient means of computing the funda-

mental integrals for an edge that is completely inside the DOD. When an edge is

intersected by the DOD and one of the endpoints is outside the DOD, the endpoint’s

corresponding R term will have an imaginary part and its real part will be zero. Only

the real part of R is taken which is zero, so the fundamental integral solutions can

be simplified even further. For an edge intersection, the fundamental integrals are

computed as

w0 = w0,2 − w0,1 (A.19)

QI = QI,2 −QI,1 (A.20)

where the terms corresponding to the endpoint outside the DOD are zero, and the

other terms are computed from Equations A.15 and A.16.

For panel edges that are parallel to the panel local coordinate system x-direction,

m = 0 so the expression

ŵ0 = w0/m (A.21)

is instead used. This simplifies Equation A.15 to

w0 =
1

2
ln

[
−ŷm +R

−ŷm −R

]∣∣∣∣2
1

(A.22)

A similar simplification can be made to Equation A.17. No special form of QI is

needed when m = 0. Note that subsonic edges are always entirely inside the down-

stream Mach cone emanating from the leading endpoint of the edge, so there is never

a Mach wedge for subsonic edges.

107

A.2.2 Supersonic Edges

For a supersonic edge,

w0 =
1√

1− λ2
tan−1

[
ym

R
√

1− λ2

]∣∣∣∣2
1

(A.23)

QI = tan−1
[
zym
xmR

]∣∣∣∣2
1

(A.24)

where λ = 1/m, which is used instead of m to keep singularities from occurring in

Equation A.23 when the edge is parallel to the panel local y-direction where m =∞.

Just like with the subsonic edges, terms can be combined to give more computationally

efficient expressions.

w0 =
1√

1− λ2
tan−1

[√
1− λ2

[
(−ym,1)R2 − (−ym,2)R1

]
(−ym,1)(−ym,2) + (1− λ2)R1R2

]
(A.25)

QI = tan−1

[
zxm

[
(−ym,1)R2 − (−ym,2)R1

]
x2mR1R2 + z2(−ym,1)(−ym,2)

]
(A.26)

These equations can be further simplified when the edge is intersected by the

DOD as with subsonic edges, though with a supersonic edge, it can be intersected

by the DOD without either endpoint being inside the DOD. This means the control

point is inside the Mach wedge of the edge, in which case these equations can be

simplified even further. First addressing the case of an edge-DOD intersection with

one endpoint inside the DOD, Equations A.19 and A.20 are used to compute the

fundamental integrals where the terms for the endpoint outside the DOD simplify to

w0 = sign(ym)
π

2
√

1− λ2
(A.27)

QI = sign(zym)
π

2
(A.28)

These same expressions are used for the Mach wedge calculations, except they are

used for both endpoints.

108

A.2.3 Sonic Edges

When an edge is inclined at the Mach angle, or |m| = 1, it is a sonic edge, and a

singularity occurs in any of the above expressions for w0. So it is expanded by powers

of
√

1− λ2 giving,

w0 = zr

[
1− (1− λ2)z2r

3
+

(1− λ2)2z4r
5

− (1− λ2)3z6r
7

+ · · ·
]

(A.29)

where

zr =
ym,1R2 − ym,2R1

ym,1ym,2 + (1− λ2)R1R2

(A.30)

Either the subsonic or supersonic edge expression for QI can be used since |m| = 1

makes them identical, and no singularities are introduced.

109

Appendix B

UNIT TESTING STATE DESCRIPTIONS

The tables on the following pages give illustrations and descriptions of the states used

with the supersonic unit testing results in Chapter 5. Note that the images shown

for the geometries of each state are just snapshots, and are simply representative of

each respective state. As shown in the results, a certain state can exist for various

ranges of control point locations with respect to a panel.

Note that the possible state of two edge intersections and no vertices inside the

DOD is not included in this unit testing study. This state behaves similarly to State

4 of Table B.1, so it was not included to improve the clarity of the results.

110

Table B.1: State descriptions for control point variation in the x-direction

State Geometry Description

1 Panel completely outside DOD

2 One edge intersection, no vertices inside DOD

3 Two edge intersections, one vertex inside DOD

4 Three edge intersections, one vertex inside DOD

5 One edge completely inside DOD

6 Panel completely inside DOD

111

Table B.2: State descriptions for control point variation in the y-direction

State Geometry Description

1 Panel completely outside DOD

2 Two edge intersections, one vertex inside DOD

3 Three edge intersections, one vertex inside DOD

4 One edge completely inside DOD

5 Two edge intersections, one vertex inside DOD

112

Table B.3: State descriptions for control point variation in the z-direction

State Geometry Description

1 Panel completely outside DOD

2 Two edge intersections, one vertex inside DOD

3 Three edge intersections, one vertex inside DOD

4 One edge completely inside DOD

5 Panel completely inside DOD

113

Appendix C

OUTSTANDING ISSUES

A single fundamental aspect of how CPanel processes input geometries is the source

of the present inability to model geometries in supersonic flow with any one of the

following characteristics:

• Sharp subsonic leading edges

• Sharp trailing edges

• Wing-body intersections

• Wake panels

CPanel uses the .tri file format for mesh files, the format for which is shown below:

nVerts nTris
x 1 y 1 z 1
x 2 y 2 z 2
x 3 y 3 z 3
.
.
.
x nVerts y nVerts z nVerts
v1 t1 v2 t1 v3 t1
v1 t2 v2 t2 v3 t2
v1 t3 v2 t3 v3 t3
.
.
.
v1 nTris v2 nTris v3 nTris
surfID 1
surfID 2
surfID 3
.
.

114

.
surfID nTris

When meshes are generated using this format, the triangular panels throughout

the geometry are all connected via shared vertices, i.e. nodes. This means that

with sharp leading or trailing edges, a single node on one of these edges will belong

to both upper and lower panels that are connected to the edge. Figure 4.2 depicts

this scenario, which is again shown below. The same situation occurs at wing-body

intersections–a single node will belong to both body and wing panels that are at the

intersection.

Figure C.1: Present nodal and control point definition

In these scenarios, there needs to be a doublet strength discontinuity. This means

there must be a doublet strength at the panels’ shared point that is associated with

the panel on one side of the intersection, and a different doublet strength associated

with the panel on the other side of the intersection. Since only one node is defined at

these intersections in CPanel currently, and doublet strength is defined and solved at

these nodes, only one doublet strength can be associated with the panels on either side

of the intersection. So doublet strength is forced to be continuous, where it should be

discontinuous. This is the source of the problem which prevents the accurate modeling

of the geometries with the characteristics listed above. The ability to model wakes is

inhibited by this issue because there also needs to be upper and lower wake panels,

where each set is associated with the upper and lower sets of nodes on the trailing

115

edge.

An example of this issue’s effect on the leading and trailing edges is shown in

Figure C.2. This wing has the same airfoil as Wing 3 in Figure 5.16(c), but with more

sweep such that the leading edge is subsonic. It is clear in the doublet distribution of

Figure C.2: Example of leading and trailing edge errors

116

Figure C.2(a) and in the pressure distribution of Figure C.2(b) that there is error on

the leading and trailing edges. Notice in Figure C.2(b) that only the panels that have

nodes which are part of the respective edges are clearly in error. Though because

there are errors at the leading edge, there will be error in all panels downstream of

the leading edge also. This is not the case for the trailing edge since it is downstream

of all other panels.

Despite these issues, accurate results for the top surfaces of Delta wings 1 and 2,

and for the entirety of Delta wing 3, were given by CPanel. This was accomplished via

small code modifications for each test case. Wing 1 of Figure 5.16(a) has a subsonic

leading edge; it also has a flat bottom surface which is parallel to the freestream

direction, so the doublet strength across the entirety of the bottom surface should

be zero. To acquire the correct solution for the top surface of this wing, the top

and bottom surfaces are essentially decoupled by forcing the doublet strengths on the

bottom surface panels that are not on leading or trailing edges to zero. The bottom

surface is forced to the correct solution thus allowing the top surface to be naturally

solved and yield accurate results. Figure C.3 shows the doublet strength distribution

of the bottom surface with and without this modification. Since there is only one set

Figure C.3: Wing 1 bottom surface solution with and without modification

117

of nodes on the leading edge, ParaView interpolates the doublet strengths there onto

the leading lower surface panels as seen in Figure C.3(b), however this does not affect

the solution of the top surface.

Delta wing 2 in Figure 5.16(b) has a supersonic leading edge, so doublet strength

can actually be continuous here since it is zero at supersonic leading edges. There

were however other issues in modeling this wing, which were traced to what seems

to be CPanel’s inability to model a flat surface which is parallel to the freestream

direction in supersonic flow. The source of this issue was not exactly determined

though two likely culprits were identified.

The first is that the bottom surface of the geometry is not actually being modeled

as perfectly flat, thus introducing error into the solution. A modification in the code

was made to force the z-coordinates of the bottom surface panels to zero which did

show a slight improvement in the results, but the solution was still substantially in

error. The second and most likely culprit is that the errors are simply due to the

unavoidable errors introduced with unstructured paneling. Since this geometry is so

thin and the scale at which the pressure coefficient is being measured is so small, even

a small error in the forward region of the wing could cause the entire solution to be in

error. Once the leading edge error has been resolved, Wing 1 can be tested again to

see if the same errors occur as are presently occurring with Wing 2. An example of

this error is shown in Figure C.4. To acquire the correct solution for the top surface

of Wing 2, the same scheme of forcing the doublet strengths to zero on the bottom

surface was used.

Delta wing 3 in Figure 5.16(c) has a supersonic leading edge, so no modification

was needed in that regard. A small temporary post-processing step was added how-

ever to fix the incorrect trailing edge panels such as those shown in Figure C.2. All

that was done was when computing pressure coefficients for each panel, in computing

118

Figure C.4: Example of Wing 2 errors

this for trailing edge panels, the pressure found at the panels just upstream of the

trailing edge was given to the trailing edge panels, which is shown to be an appropri-

ate approximation. Using this method gave the results presented in Figures 5.21 and

5.22.

The permanent solution to these various issues could be approached different

ways. One is to modify the methods of mesh generation to recognize sharp edges

and wing-body intersections, and for them to then create disparate nodes associated

with the panels on either side of the edges or intersections. This kind of approach is

119

used by PANAIR [18] and similar codes; PANAIR requires the user to define paneling

networks on the geometries for this purpose. Such an approach is not favorable for

CPanel since one of its greatest strengths is its ease of use, specifically in regard to

users being able to quickly generate unstructured meshes. Another approach is to

apply line vortices at sharp edges and intersections, though this would not work with

trailing edges that shed wakes.

The approach that is proposed as the best solution is to implement algorithms

which identify leading edges, trailing edges, and wing-body intersections in CPanel.

These identifications should be made purely from processing the .tri data, and before

CPanel constructs and stores its own version of the geometry data for use throughout

the program. This allows the raw .tri data to be read, new nodes created and triangles

modified to include the new nodes, and an updated .tri file to be created with this

new data. Then the same geometry processing schemes already used in CPanel can

again be used here. There will likely need to be a user input controlling what angle

between two panels is defined as a sharp edge. Lastly in regard to this proposed

solution, for nodal points that exist at the same location but are different (as in one

belongs to an upper surface and the other belongs to a lower surface), the control

points cannot exist at the same location, so they will have to be moved away from

each other, such as is depicted in Figure C.5.

Figure C.5: Example of proposed new nodal and control point definition

120

Appendix D

DEVELOPMENT METHODOLOGY

Implementing an entirely new solution scheme within CPanel’s existing code archi-

tecture brought with it the risk of introducing bugs to the previously implemented

schemes. There was also the risk that parts of the original code base would intro-

duce bugs to the newly implemented schemes, even when such bugs did not occur for

the existing schemes. To mitigate these risks, modern software development practices

were exercised throughout the work of this thesis, like was done with CPanel’s original

implementation [10].

A version control system was used to both preserve previous versions of CPanel,

and to catalog the progress of the present work. The process of functional decom-

position was utilized, specifically in the early development stages. This process of

reducing complex tasks to smaller less complex tasks [26] proved instrumental in

identifying and isolating algorithms unique to the other CPanel solution schemes, as

well is in identifying which parts of these schemes could be used with the present

implementation. The functional flow diagram in Figure 4.1 demonstrates a high level

functional decomposition of CPanel. More specific processes, such as the algorithms

shown in Chapter 4, were decomposed similarly to facilitate their development and

implementation.

As discussed in Chapter 5, unit level testing was utilized extensively for this work.

For both the subsonic and supersonic implementations, some of the more complex

tasks, such as the influence coefficient calculations, were broken down and developed

independently in MATLAB where they were tested prior to their implementation in

CPanel. Specifically for the supersonic scheme, processes like the domain of depen-

dence check and the coordinate transformation were first developed and tested in

121

MATLAB independently and together. Though it may seem repetitive and inefficient

to write and test these schemes on two different platforms, this process proved critical

to the success of this thesis. It enabled steady and incremental implementations to

be performed, and allowed direct comparisons to be made between the MATLAB

and CPanel software units, accelerating what easily could have been a tedious and

painstaking validation process.

One of the many examples in which this development methodology facilitated the

tracking down of a bug is when CPanel’s supersonic solutions were in error due to

CPanel’s default direction of integration around a panel, which was the opposite of

that needed for the supersonic computations. This is a case where a part of CPanel

that is used for all solution schemes didn’t introduce a bug in CPanel v1.0 and v2.0,

but it did in the supersonic solution scheme. Partially automated testing was used

to track down bugs such as these, where a case is run in CPanel which would then

output sets of panel-control point pairs that could be run in MATLAB, and results

compared. This process substantially accelerated debugging efforts such as this one,

and was used during all stages of code development.

122

Appendix E

INPUT FILE FORMAT

In regard to the CPanel input file entries and options, they are nearly unchanged

from the format given in the original CPanel documentation [10]. The only change

is the addition of a solver option added to control whether the user would like to

use the higher-order method for subsonic flow. An example input file is shown below

with this additional solver option. As before, the variable names and spacing must

be exactly as shown below, and comments can be added using a %.

There are now however additional restrictions that must be adhered to in running

supersonic models. The control for modeling supersonic flow is simply via the Mach

number input. A warning will be given if the input Mach number is between 0.6 and

1.3 since these approach the transonic regime which can not be presently modeled in

CPanel. If the ’Subsonic Higher Order Method’ option is turned on, and the input

Mach number is supersonic, the user will be warned that the subsonic option will

be ignored and asked to continue in modeling supersonic flow, or exit. The user will

also be warned if superinclined panels are found since the existence of such panel

will cause errors in the solution if they are not downstream of all other panels in the

geometry. Since wakes cannot be modeled as of this implementation, the user will

also be warned if wake panels are included in the geometry and that they will be

ignored.

Lastly, cases can not be used in supersonic modeling. In subsonic modeling, the

influence coefficient matrices are constructed using purely geometric data, allowing

the user to model different velocities, angles of attack, etc. in one run. However in

modeling supersonic flow, the influence coefficient matrices are dependant on these

quantities, and so the matrices change if the inputs change. If the user inputs multiple

123

cases with a supersonic Mach number, they will be warned that only the first entry

of each input will be used, and the remaining cases will be ignored.

%% CPanel Input File %%

% Reference Geometry (ft) %
GeomFile = diamondWing.tri
S ref = 16.0
b ref = 8.0
c ref = 2.0
X cg = 0.0
Y cg = 0.0
Z cg = 0.0

% Cases %
Velocity (ft/s)
1
1600.0
Angle of Attack (degrees)
1
10.0
Angle of Sideslip (degrees)
1
0.0
Mach Number
1
1.5

% Solver Options (0 = OFF, 1 = ON) %
Subsonic Higher Order Method
0
Surface Streamlines
1
Stability Derivatives
0
Write Influence Coefficients
0

124

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	NOMENCLATURE
	Introduction
	Motivation
	Approach
	Document Structure

	Theory and General Numerical Implementation
	Prandtl-Glauert Equation for Linearized Compressible Flow
	Limitations

	Boundary Integral Equation for Supersonic Flow
	Preliminaries
	Boundaries
	The Supersonic BIE

	Singularity Elements
	Boundary Conditions

	General Numerical Methods
	Linear System of Equations
	Influence Coefficients
	Post Processing
	Velocity
	Pressure Coefficient

	CPanel Implementation
	Functional Flow Diagram
	Higher-Order Doublet Scheme
	Subsonic Linear Doublet Implementation
	Control Points
	Constructing the Linear System of Equations
	Post Processing

	Supersonic Implementation Preprocessing
	Domain of Dependence Check
	Coordinate Transformation

	Supersonic Influence Coefficients Calculation Procedure
	Build Edge-Based Coordinate System
	Compute Fundamental Integrals
	Compute Influence Coefficients

	Results
	Subsonic Higher-Order Method
	Supersonic Method
	Unit Testing
	Flows Around Cones
	Diamond Airfoil Rectangular Wings
	Delta Wings

	Conclusion
	Summary
	Future Work

	BIBLIOGRAPHY
	Influence Coefficients
	Subsonic Implementation
	Supersonic Implementation
	Subsonic Edges
	Supersonic Edges
	Sonic Edges

	Unit Testing State Descriptions
	Outstanding Issues
	Development Methodology
	Input File Format

