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ABSTRACT

Amplifying the Prediction of Team Performance through Swarm Intelligence and

Machine Learning

Erick Harris

Modern companies are increasingly relying on groups of individuals to reach organiza-

tional goals and objectives, however many organizations struggle to cultivate optimal

teams that can maximize performance. Fortunately, existing research has established

that group personality composition (GPC), across five dimensions of personality, is

a promising indicator of team effectiveness. Additionally, recent advances in technol-

ogy have enabled groups of humans to form real-time, closed-loop systems that are

modeled after natural swarms, like flocks of birds and colonies of bees. These Arti-

ficial Swarm Intelligences (ASI) have been shown to amplify performance in a wide

range of tasks, from forecasting financial markets to prioritizing conflicting objectives.

The present research examines the effects of group personality composition on team

performance and investigates the impact of measuring GPC through ASI systems.

541 participants, across 111 groups, were administered a set of well-accepted and

vetted psychometric assessments to capture the personality configurations and social

sensitivities of teams. While group-level personality averages explained 10% of the

variance in team performance, when group personality composition was measured

through human swarms, it was able to explain 29% of the variance, representing a

19% amplification in predictive capacity. Finally, a series of machine learning models

were applied and trained to predict group effectiveness. Multivariate Linear Regres-

sion and Logistic Regression achieved the highest performance exhibiting 0.19 mean

squared error and 81.8% classification accuracy.
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Chapter 1

INTRODUCTION

In 2016 an artificial intelligence program called AlphaGo defeated the best Go player

in the world, Lee Sedol, 4 out of 5 games [63]. The program did not learn by mastering

the rules of the game, but instead by studying 30 million moves made by expert

players. It learned how humans make moves, what mistakes they make, and what

opportunities they miss. The AlphaGo system was able to correctly predict Lee

Sedol’s next move 57% of the time [53]. This is concerning because we will always be

at a disadvantage against artificial intelligences that are thoroughly trained to out-

perform us. Imagine if we could accurately predict what a person would do 57% of

the time while developing consumer products, negotiating business deals, or pushing

political agendas?

Moreover, these technologies will eventually be applied to industries that are more

significant to our lives than games, and humans need to stay one step ahead in the

intelligence ”arms race”. Various approaches to amplify our intelligence are being

explored, ranging from genetic modification to brain-computer interfaces. However,

other species in nature have faced similar challenges during their evolutionary develop-

ment where their survival required a boost in their collective intelligence. Species like

birds, ants, and honey bees have been able to amplify their intelligences by forming

closed-loop systems that tap their combined knowledge and instincts. The principle

behind these real-time systems is called Swarm Intelligence [55].

In recent years, technology has enabled groups of humans to form closed-loop systems

that are modeled after natural swarms. Referred to as Artificial Swarm Intelligence
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(ASI), these methods have been shown to amplify the collective intelligence of groups,

well beyond the capabilities of individual members [60]. This approach is sometimes

called ”blended intelligence” because it combines the computational efficiencies pro-

vided by AI systems with populations of real people [49]. Swarming keeps human

intuition as an integral part of the processes. As a result, this ”human-in-the-loop”

approach combines the benefits of technology with the unique values that humans

contribute like creativity, empathy, and morality.

1.1 Motivation

According to the Society for Industrial and Organizational Psychology, 13% of all

employers, including 89 of the Fortune 100 companies, use personality tests to make

hiring decisions and formulate business teams [16]. A modern organization’s ability

to quickly form effective groups to solve problems is critical to its success. The

purpose of this study is to advance the understanding of team diversity as it relates

to group performance and to investigate the potential advantages of measuring group

personality through human swarms.

Furthermore, this study can better inform supervisors about the effects of personality

composition on team performance. Two significant managerial benefits are evident.

The first is the ability to survey the personality traits of potential group members be-

fore the actual creation of the team. With this information, the coordinator would be

able to maximize the positive group characteristics identified in this study, and avoid

the negative combinations. Additionally, supervisors can use this research to under-

stand group personality compositions of existing project teams in order to manage

them more effectively.

2



1.2 Statement of Hypothesis

Extant research on group performance suggests that group personality composition,

measured through the aggregation of individual group members’ personalities, will

have a significant effect on team performance. Additionally, based on the predic-

tive amplification demonstrated by human swarming, we expect that group person-

ality composition, measured through swarm intelligence interfaces, will have an even

stronger relationship with team performance.

1.3 Contributions

The research presented in this paper offers three primary contributions. First, the

study advances the budding understanding of human swarming and demonstrates

novel predictive capabilities of collective behavior. Second, this research heeds calls

from previous studies to further examine the effects of group personality composition

on team performance. Finally, this study explores the effectiveness of several widely-

used machine learning techniques and compares their performance within a specific

domain.
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Chapter 2

BACKGROUND

2.1 Swarm Intelligence

Swarm Intelligence is an emerging field of biologically-inspired Artificial Intelligence

based on the behavioral models of social animals like colonies of ants, flocks of birds,

and schools of fish. These groups, or swarms, make a unified effort to amplify their col-

lective intelligence by working together in real-time, closed-loop systems that converge

on optimal solutions in synchrony. For example, honey bees use swarm intelligence to

amplify their decision-making abilities while ants use swarm intelligence to improve

their search and foraging efficiency.

2.1.1 Swarms in Nature

Artificial Intelligence research started in the 1950’s by modeling intelligences found

in nature. The first biologically inspired model was the Perceptron which led to the

Artificial Neuron which lead to Neural Networks. It wasn’t until 1989 when ”Swarm

Intelligence” was first coined by Gerardo Beni and Jing Wang. They defined it as ”the

collective behavior of decentralized, self-organized systems, natural or artificial” [1]

[43]. Swarm Intelligence algorithms are modeled after social species found in nature.

Evolved species like ants, birds, and bees have been able to amplify their collective

intelligence by forming unique systems that tap their combined knowledge, wisdom,

and instincts.
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2.1.1.1 Colonies of Ants

One of the most well-known examples of swarm intelligences found in nature are

colonies of ants. These nearly-blind insects work together to form a collective intelli-

gence that is able to effectively determine the shortest path to nearby sources of food

(F) as illustrated in Figure 2.1. Hundreds of ants disperse from the nest (N) and

search for nourishment in separate directions. As the ants explore the surrounding

area they leave a volatile chemical substance on the ground called pheromone. After

the ants discover food sources they begin to travel back to the nest. The ants that

discover the shortest path are able to make more trips between the source of food

and the colony, leaving a denser trail of chemicals along the way. The other ants will

begin to detect the heavy buildup of pheromone and they will redirect their foraging

efforts accordingly [1].

The combined efforts of the colony have allowed ants to efficiently search for sources

of food for tens of millions of years. This has allowed the species to survive and

adapt to changing and often harsh environments in a manner that is incomparable to

an individual ant. After studying the behavior of natural ant colonies Marco Darigo

proposed the first Ant Colony Optimization (ACO) algorithm in 1991. This algorithm

and its variants have been used to solve the Traveling Salesman Problem as well as

other optimization, scheduling, and routing challenges [1] [43].

2.1.1.2 Flocks of Birds

Another social species that demonstrates collective intelligence in nature are flocks

of birds. These animals work together to maneuver in a unified, cooperative manner

in order to evade predators and migrate long distances. For example, high speed

feedback-control enables thousands of starlings to make precision hairpin turns in

5



Figure 2.1: Shortest Path for Ant Colony Optimization

[14]

winds gusting 40 miles per hour [51]. The local interactions among birds, as illustrated

in Figure 2.2, are based on the nearest neighbor principle, where birds follow certain

flocking rules to adjust their motion (i.e., position and velocity) without any central

coordination. In 1986, bird flocking behaviour was first simulated by Craig Reynolds

where he proposed three simple flocking rules [47]:

• Separation - flock members avoid collisions with nearby flockmates based on

their relative position.

• Alignment - flock members steer towards the average heading of nearby flock-

mates.

• Cohesion - flock members attempt to stay close to nearby flockmates by flying

in a direction that keeps them closer to the centroid.

Researchers have also found that pelicans fly in a V-shaped pattern to conserve energy

during long and difficult journeys [43]. As illustrated in Figure 2.3, when birds lift

their wings to fly, the wind that flows over their wing tips gives the birds in the back

6



Figure 2.2: Bird Flocking Social Rules

[3]

extra lift, reducing the amount of energy they need to fly. When the bird at the

head of the V becomes tired, it falls to the rear of the formation where there is the

least amount of wind resistance. This rotation through various positions in the V

maximizes the use of each bird’s energy, allowing the flock to fly for longer periods

without taking breaks.

In 1995 James Kennedy and Russel Berhart developed the Particle Swarm Optimiza-

tion (PSO) algorithm based on the natural behaviors of flocks of birds and schools of

fish [1] [43]. Within the algorithm, artificial particles are constructed to ”fly” inside

the search space of optimization problems, mimicking the physical behaviors of flock-

ing birds. PSO algorithms are able to avoid local minimums and accurately search

for globally optimal solutions.

7



Figure 2.3: Wind Resistance in Flocks of Birds

[23]

2.1.1.3 Swarms of Honey Bees

The final and most relevant example of a natural swarm intelligence is formed by

colonies of honey bees. These evolved creatures use their collective intellect to amplify

their decision-making abilities, specifically in the selection of a new hive location

every Spring. From hollow trees to abandoned sheds, the colony considers dozens of

sites within a 30-mile area, each with their own tradeoffs. They must factor in size,

ventilation, insulation, predators, nearest sources of pollen and water, and dozens of

other variables. Although the individual bees lack the capacity to make a decision

that is this complex, when hundreds of bees pool their knowledge and experience, they

evoke a collective intelligence that not only makes a decision, but finds an optimal

solution 80% of the time [55].

First, hundreds of scouter bees are sent out to locate potential hive sites. The bees

assess the benefits and risks and return to the hive to make a collective decision. The

most experienced bees communicate to each other through a series of body movements
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called ”waggle dances”. They are able to exchange information through signals that

are embedded in the bodily vibrations. As illustrated in Figure 2.4, the signals can

even tell another bee the exact location of a site 3 miles away. The angle of the waggle

dance indicates the direction of the new hive location, and the speed and intensity

with which they vibrate indicates their level of support. The honey bees will even

physically butt heads if they disagree with one another.

Figure 2.4: Honey Bee Waggle Dance

[9]

By combining these signals, hundreds of bees will vibrate together and engage in a

multi-directional tug of war. Factions will form in support of different options until

finally, a certain threshold of support is met within the group, and the entire colony

converges on the optimal solution for the swarm.

2.1.2 Human Swarming

Bees, fish, and birds developed a swarm intelligence over millions of years of evolution.

Human beings have not yet been able to establish the subtle connections that other

swarm animals use to form closed feedback loops. Schooling fish detect vibrations in

the water, flocking birds feel motions propagating through the air, and honey bees

use a complex body movement called a waggle dance. Human communication, while

9



powerful, is too slow to achieve similar real-time, closed-loop systems necessary for

swarming. We speak about 40-60 bits of information per second, but our brains are

capable of processing information at 400 billion bits per second. Human beings can

swarm only if we develop technologies to fill in the missing pieces that evolution has

not yet provided. More specifically, swarming can occur among groups of online users

by closing the loop around populations of networked individuals [51].

Figure 2.5: Human Swarm using Swarm AI

[58]

2.1.2.1 Swarm AI

Swarm AI is a real-time online environment for human swarming developed by Unan-

imous A.I and modeled after the behavior of honey bees [50]. It is the computational

glue that allows people to work together in real-time swarms that can integrate noisy

evidence, weigh competing alternatives, and converge on final decisions. Swarms of

online users can answer questions by collaboratively moving a graphical puck to select

from a set of possible answers as illustrated in Figure 2.5. The puck is generated by

a central server and modeled as a physical system with a defined mass, damping, and

friction [52]. Each participant in the swarm connects to the server and is provided a

10



controllable magnet that allows users to apply force vectors on the puck simultane-

ously. Through the collaborative control of the puck, a real-time physical negotiation

emerges among the members of the swarm. This occurs because all of the participants

are able to push and pull on the puck at the same time, collectively exploring the

decision-space, and converging upon the most agreeable answer, as depicted in Figure

2.6.

The puck moves in response to a dynamic feedback loop that is closed around all

swarm participants. In this way, real-time synchronous control is enabled across all

users, allowing them to negotiate and reach decisions in parallel. In the Swarm AI

interface, as the magnet gets closer to the puck it applies a stronger force vector. If

an individual wants to maintain a strong signal, it must closely follow the puck with

its magnet. Participants who are confident in their answer will work harder to keep

their magnets close, while others who aren’t as confident may let their magnets drift

away. All of this information is combined with Artificial Intelligence algorithms to

drive the puck and make decisions [50].

Prior studies have shown that human swarms comprised of online participants have

been able to produce significantly more accurate predictions than traditional methods

like votes, surveys, and polls. For example, one study formed a human swarm of 75

amateur football fans and tested their ability to successfully predict the outcomes of

college football games, as illustrated in Figure 2.7. The individuals by themselves

averaged about 50% accuracy, but together as a swarm, they were able to achieve

70% accuracy against the Las Vegas spread, outperforming top football experts at

ESPN [54]. Another study formed a human swarm using a group of volunteer soc-

cer enthusiasts and analyzed their ability to predict English Premiere League soccer

matches over a 5-week period. The results were compared to predictions made by the

Sports Analytics Machine (SAM), a supercomputer developed by University of Sal-

11



Figure 2.6: Step by Step Swarm Convergence

[22]

ford that uses 10 years of data and extensive mathematical formulas to forecast EPL

games. The individual participants averaged 55% accuracy and the supercomputer

SAM averaged 64% accuracy [57]. However, the individuals were able to amplify their

collective accuracy to 72% by forming real-time swarms, as shown in Figure 2.8.

In 2016 Unanimous A.I. was challenged to predict the Kentucky Derby. They gathered

50 horse-racing enthusiasts and had them form an artificial swarm online. Astonish-

ingly the swarm correctly predicted the first four horses in order, a feat famously

known as the Superfecta. Going off at 550 to 1 odds, anyone who placed a $20 bet

won $11,000 [12]. Interestingly, not a single individual in the swarm got more than

12



Figure 2.7: Human Swarm predicting the Rose Bowl

[54]

Figure 2.8: Human Swarm predicting the EPL

[57]

1 of the 4 horses correct, but as a unified, coherent system, they were perfect. More

recently, Unanimous AI used their Swarm Intelligence technology to predict the 2018

13



Oscars. A swarm of random movie-goers correctly predicted 15 of the 16 category

winners. At 94% accuracy, this swarm comprised of average individuals out-predicted

experts, movie critics, and a number of magazines [8]. While not a single participant

had seen all of the movies, forming an artificial swarm intelligence allowed the group

to pool their collective knowledge, experience, and intuition.

2.1.3 Wisdom of the Crowd

People are smart, but groups of people are even smarter. There has been over 100

years of research dating back to 1906 where Francis Gaulden famously studied the

Wisdom of the Crowd (WOC) [50]. He attended a county fair in London and asked

hundreds of farmers to estimate the weight of an ox. The individuals were wildly

all over the place, but when he took the average of the responses it was remarkably

accurate.

Typically, groups take a poll or a vote to capture the Wisdom of the Crowd. Votes

and polls are valuable when it comes to characterizing populations, but they don’t

allow a group to express itself as a unified entity. Polls offer no means for populations

to explore options and find consensus. Swarms, on the other hand, allow users to

continuously update their intent in real-time, enabling groups to find commonality

and converge on solutions that optimize support.

There’s an old saying that says if one sheep jumps off a cliff, the entire herd will

follow. This phenomenon has been observed in nature. If one member of the herd is

startled and runs away, often the rest will run too. These types of herding systems

amplify noise because one sheep can heavily influence the decisions made by the rest

of the group. This instinctual behavior is designed to protect against predators, but

it fails to breed intelligence. The decision-making process in herds is sequential -

14



one member makes a decision and others follow suit. The scientific name for this

group characteristic is social influence bias. Social influence bias is the idea that the

aggregated opinions of others will have a significant influence on your own beliefs

and actions [39]. Modern tools used for capturing the sentiments of a population,

like online polling, amplify social influence bias and turn what could be a collective

intelligence into a herd.

For example, product ratings on Amazon from other customers are visible to indi-

viduals leaving a new rating. If someone notices that hundreds of people have given

a great review, it might influence how they rate the product. Facebook likes, Red-

dit up-votes, and Yelp reviews are all examples of online polls that exemplify social

influence bias. A study at MIT created a voting system like Reddit where users can

up-vote and down-vote in response to different posts. They found that the first vote

had a 30% influence on how the next person would respond. By the end of the pro-

cess, even after thousands of votes, the very first vote influenced the final decision by

25% [50]. While online polling is asynchronous and leads to herding, swarming is syn-

chronous and nearly eliminates social influence bias. This is because every member of

the swarm answers together, in real-time. Swarms capture the collective intelligence

of the group, as opposed to capturing the intelligence of the first person to answer a

poll.

Additionally, groups often fall victim to the Tragedy of the Commons - an economic

theory where individuals who act according to their own self-interest behave contrary

to the common good of all. For example, as an individual fisherman, it’s entirely

rational and moral to maximize the size of your catch. But, if all fishermen follow

this prescription, the shared river gets depleted and is ruined for all. A demonstration

was performed at the University of Maryland by social psychologist Dylan Selterman

[56]. He posed an extra-credit challenge to his class, allowing each of his students
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to indicate privately how many points of extra credit they wanted on their exam - 2

points or 6 points. The only catch was that if more than 10% of the class asked for

6 points, then nobody would get any bonus. Clearly, it was in the best interest for

everyone in the class to individually ask for 2 points, but that’s not what happened.

Instead, far too many students asked for 6 points and no one received extra credit.

A similar study was conducted by Unanimous A.I. in which 18 randomly selected

users were asked to choose a cash bonus, the awarding of which was dependent upon

the collective behavior of the group. The participants were asked to indicate on a

blind survey whether they wanted a bonus of $0.30 or $0.90, but if more than 25%

of the group asked for $0.90, then none of the participants would get anything. As

expected, 67% of the group asked for a $0.90 bonus, well beyond the 25% threshold.

However, the test was repeated by forming a real-time swarm, rather than taking

a survey. The swarm configured itself such that 24% of the total pull on the puck

was towards $0.90, with 70% of the total pull towards $0.30, and 6% abstaining [56].

The participants, while functioning as a unified swarm, avoided the Tragedy of the

Commons, and instead converged on the solution that was best for the group as a

whole. The Wisdom of the Crowd, while effective at fostering collective intelligence,

appears to face some challenges that swarms naturally overcome.

2.2 Group Performance

Humans have been working in teams and organizing group tasks for thousands of

years, as evidenced by the hundreds of miles of mounds stretching from Wisconsin to

Florida built by Native American tribes around 2000 BC [10]. These elaborate man-

made structures required moving millions of pounds of soil by teams using only small

hand-held baskets. In the modern world, the use of teams in organizations has become
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so common that they are considered ubiquitous [61]. Companies increasingly rely on

groups of individuals to reach organizational goals and objectives. However, many

organizations struggle to cultivate optimal teams that can maximize performance [10].

Regardless of all the promise shown by utilizing groups, research has only seen mod-

erate progress in understanding the reasons why some teams succeed and others

fail. This challenge has led to broad research on group diversity traits including de-

mographics, intelligence, and personality. One promising area of research in team

performance is group personality composition (GPC) which concentrates on the con-

figuration of personality traits in individual team members and the corresponding

effect on group performance [10]. The current method of capturing GPC involves

the adoption of the well-established Five-Factor Model of personality. Several studies

have indicated a significant and considerable relationship between this set of person-

ality traits and the resulting groups’ performance [7] [21] [42] [6]. Prior research has

also indicated that the average social sensitivity of the group is a strong predictor of

team performance [70].

2.2.1 Group Personality Composition

Team diversity can be broken down into two dimensions: demography and process

[64]. Demography includes the aggregated external characteristics of the group such

as ethnicity, gender, and size. Process focuses on the teams’ interactions and psycho-

logical dimensions, such as personality. The most popular personality model in both

research and industry is the Five Factor Model (FFM). It originated in 1976 when

Costa and McCrae used cluster analysis to identify three main categories of person-

ality: extraversion, neurotisicm, and openness [11]. Conscientiousness and agreeable-

ness were later added in 1997 by Pervin and John [26]. Over time, the Five Factor

Model has become the most accepted personality taxonomy among researchers and
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clinical psychologists [10]. The five traits are characterized in the following manner

[65]:

• Extraversion - Highly extraverted individuals are assertive and sociable, rather

than quiet and reserved.

• Agreeableness - Agreeable individuals are cooperative and polite, rather than

antagonistic and rude.

• Conscientiousness - Conscientious individuals are task-focused and orderly,

rather than distractible and disorganized.

• Neuroticism - Neurotic individuals are prone to experiencing negative emo-

tions, such as anxiety, depression, and irritation, rather than being emotionally

resilient.

• Openness - Highly open individuals have a broad range of interests, are sensi-

tive to art and beauty, and prefer novelty to routine.

Group personality composition (GPC) is measured by the group-level averages of each

of the five personality factors as well as the individual-level minimum and maximum

scores [10]. In 1998, a study was conducted that examined the correlation between

all five GPC traits and team performance. Data was collected from 51 existing work

teams, averaging roughly 13 employees per group. Team performance was captured

by supervisor ratings over several dimensions of team effectiveness. The findings sug-

gested that group-level means for conscientiousness, agreeableness, and neuroticism

all had a significant relationship with team performance [6]. In another study, 82

teams of retail associates were observed in different product category departments

within a large retail chain. Group performance was measured by the number of cus-

tomer complaints per month and evaluations from managers and supervisors. The
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authors found that all five personality factors were effective predictors of team perfor-

mance. Together, the GPC traits explained 29% of the difference in team effectiveness

between groups [42]. The breakdown of the variances explained by each category is

listed in Table 2.1 [41]. In this study, group personality composition will be calcu-

lated through the group-level averages of the Big Five Inventory (BFI) personality

test, which is a widely-accepted measure of the Five Factor Model [27] [25] [24].

Agreeableness, Conscientiousness, and Extraversion are the personality dimensions

that are expected to have the strongest relationship with group performance.

Factor R2

Extraversion 0.09

Conscientiousness 0.17

Agreeableness 0.18

Neuroticism 0.08

Openness 0.10

Table 2.1: Performance Variance Explained by Neuman, Wagner, and
Christiansen (1999)

2.2.2 Social Sensitivity

Reading the Mind in the Eyes (RME) is a psychological assessment that measures the

emotional intelligence, or ”social sensitivity”, of the respondent. Social sensitivity is

often described as the ability to perceive, interpret, and respond to the intentions,

dispositions, and behaviors of others [59]. These skills are extremely important for

effective decision-making and problem-solving in groups, as understanding the needs,

goals, and beliefs of others is a fundamental requirement of any collaborative team.

The RME assessment includes 36 questions, each showing a cropped facial image

restricted to a region around the eyes, and a set of four options that describe the
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emotion expressed. Participants are tasked with reading the emotional state of the

facial image based on visual cues provided by the eyes [5]. Prior studies have shown

that the RME test is a reliable measure of social sensitivity, with strong internal

consistency and test-retest stability [59]. For example, in a study of 699 subjects,

working in teams of two to five, average social sensitivity accounted for roughly 7%

of the group’s collective intelligence [70]. Based on these findings, the present study

additionally measures the social sensitivities of groups as well as the personality com-

positions and analyzes the corresponding effects on team performance.

Figure 2.9: Reading the Mind in the Eyes Sample Question

[31]

2.3 Machine Learning

Artificial Intelligence (AI) is a broad discipline that encompasses several fields of

study including machine learning, natural language processing, and computer vision.

Machine Learning (ML) is a subset of AI that uses complex learning algorithms to

discover patterns in large data sets, usually in order to make predictions or classifica-

tions about new observations. One of the earliest definitions of machine learning came

from Arthur Samuel in 1959, who described it as a ”field of study that gives comput-

ers the ability to learn without being explicitly programmed” [69]. Samuel created
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a program that played thousands of games of checkers against itself. The program

started to recognize patterns that led to wins and patterns that led to losses. Ma-

chine learning algorithms, like Samuel’s, construct a framework for learning. The

training process commonly includes some method of trial and error with the ability

to measure that error and make changes to improve the framework. Machine learning

is divided into three distinct categories: supervised learning, unsupervised learning,

and reinforcement learning.

Supervised learning is task driven and in supervised learning problems, the training

data is labeled [37]. This means that every set of input features has an associated

output value. As the model trains, it can measure the error in its predictions and

make adjustments to the model. A well-known supervised learning problem involves

predicting the value of a house based on features like age, size in square feet, and num-

ber of bedrooms. On the other hand, unsupervised learning is data driven, and the

training data is not labeled [37]. Input features have no corresponding output values.

Unsupervised learning algorithms are used to discover hidden structure or complex

patterns within data sets. A well-known unsupervised learning task is called customer

segmentation, where customers are clustered together based on high-dimensional sim-

ilarities.

Finally, reinforcement learning algorithms are designed for agents that take actions

within an environment. Over time these agents can learn to maximize reward signals

and avoid negative feedback, eventually developing an optimal policy, or strategy, for

interacting in that environment. Reinforcement learning algorithms are well suited

for learning behavioral patterns. This study, however, is primarily concerned with

supervised learning.
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2.3.1 Regression

In supervised learning, the algorithm’s goal is not to memorize the data, but instead to

generalize it and develop a model that accurately reflects the underlying relationships

within the observations. The first type of supervised learning, called Regression,

uses input features to predict continuous independent variables, like the price of a

house. Three common regression algorithms include Multivariate Linear Regression,

K-Nearest Neighbor Regression, and LASSO Regression.

2.3.1.1 Multivariate Linear Regression

Multivariate linear regression (MLR) is one of the most widely used statistical tech-

niques in academia and industry. It was defined in 1982 as a technique for determining

the correlation between a response variable Y , and some combination of two or more

predictor variables Xi [38]. MLR provides an estimate of both magnitude and statis-

tical significance of relationships between variables. A multivariate linear regression

model is defined by the equation: Y = β0 + β1X1 + β2X2 + ...+ βkXk where Y is the

response variable, X represents the predictor variables, and β delineates the popula-

tion regression coefficients [15]. The regression equation, illustrated by the red line in

Figure 2.10, can be used to make predictions which can be compared with the true

value of the observation to produce an error. The model then adjusts the population

regression coefficients β in a way that minimizes future error. With enough examples,

the learning agent can eventually develop a formula that effectively models the true

relationship between predictors and response variables.

One of the primary challenges with multivariate linear regression and other supervised

learning techniques is determining which variables to include in the model and which

to leave out. Clearly, all potential predictor variables could be included, but that often
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Figure 2.10: Linear Regression

[18]

results in a cumbersome model that is difficult to interpret. On the other hand, a

model that only includes a handful of predictor variables often provides substantially

more accurate predictions [34]. The correlation coefficient, R, describes the strength

of the relationship between two variables, and is often used to determine the best

input features for the model [34].

2.3.1.2 K-Nearest Neighbor

K-Nearest Neighbor (KNN) Regression is a relatively simple supervised learning al-

gorithm that utilizes feature similarity to develop its models. New observations are

evaluated on their resemblance to previous observations, as illustrated in Figure 2.11.

The distances between the new observation, which is denoted by the blue star, and

the K-closest data points are measured, and averaged to produce a new prediction

[33].

The performance of KNN regression is strongly dependent on the parameter K, as

locality is defined in terms of the K samples nearest the input vector. Finding the

best values of K is essential, as large K values can decrease the effect of noise and

minimize prediction loss. However, small K values allow for simple implementation
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Figure 2.11: K-Nearest Neighbor Regression

[28]

and efficient queries [17]. Grid search cross validation is an optimization technique

that can be used to determine the best K value for the training set. KNN is one

of the most influential regression algorithms with over 18,000 publications and has

been successfully applied to time series forecasting in finance, climatology, and other

domains [2].

2.3.1.3 LASSO Regression

LASSO is another regression method that performs both feature selection and regu-

larization simultaneously. It was first formulated by Robert Tibshirani in 1996 and

stands for Least Absolute Shrinkage Selector Operator [67]. This is because the algo-

rithm applies a penalty to some of the input features and ”shrinks” their coefficients

to zero, effectively removing them from the model (regularization). Variables that

still have a non-zero coefficient after the shrinking process are selected to be part

of the model (feature selection) [36]. This helps reduce variance without substantial

increase in bias which is especially useful in problems with a small number of ob-
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servations but a large number of features. LASSO also eliminates irrelevant features

that are not associated with the response variable which helps improve performance

and reduce over-fitting [19].

2.3.2 Classification

The second type of supervised learning, called Classification, uses input features to

classify categorical variables, like a ”benign” or ”malicious” tumor. Three common

classification algorithms include logistic regression, decision trees, and naive bayes

classifiers.

2.3.2.1 Logistic Regression

Logistic Regression is used for the analysis and prediction of dichotomous outcomes.

It was proposed as an alternative to Ordinary Least Squares regression in the late

1960s and early 1970s [45]. Logistic regression is well suited for modeling relationships

between a binary outcome variable and one or more predictor variables. As illustrated

in Figure 2.12, the logistic regression algorithm determines the equation of the best

fitting line to separate the two classes. When new observations are presented, the

algorithm classifies them based on which side of the decision boundary they fall.

2.3.2.2 Decision Trees

The Decision Tree algorithm is a sequential approach to binary classification that

utilizes a directed graph data structure. It was first proposed by Gordon V. Kass in

1980 and exhibits high classification speed, strong learning ability, and a relatively

simple implementation [44]. It does this by determining which questions, or ”tests”,
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Figure 2.12: Logistic Regression

[29]

best divide the observations into separate classes [32]. Figure 2.13 illustrates a rudi-

mentary classification tree for predicting whether or not a golf tournament will be

held, based on three predictor variables related to the weather: outlook, humidity,

and wind. Each node of the tree describes a test that is conducted on the observa-

tion, and the leaves of the tree represent outcome predictions based on the results of

those tests. Classification trees, while effectively comprehensible, are overly sensitive

to features with a large number of values [40].

Figure 2.13: Decision Tree Example

[35]
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2.3.2.3 Naive Bayes

Lastly, Naive Bayes is a probabilistic classification technique that is based on the

Bayes Theorem and assumes that all input features are independent of one another

[30]. Bayes Theorem describes the likelihood of an event through the prior proba-

bilities of similar events occurring. Naive Bayes is particularly well suited for high-

dimensional data sets and has shown to outperform complex classification techniques,

despite its simplicity [48]. It has proven effective in many practical applications, in-

cluding text classification, medical diagnosis, and systems management.

2.3.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) are more sophisticated computational models

based on the structure and functionality of the human brain, which is composed

of roughly 100 billion neurons [62]. Each neuron is connected to thousands of others

through their dendrites (input nodes) and axons (output nodes). Similarly, an arti-

ficial neural network is made up of several layers of digital neurons, each of which

is given input values from nodes in the preceding layer and generates an output to

nodes in the following layer, as illustrated in Figure 2.14.

Each input node represents an independent, or predictor variable of the problem.

For example, if the network were to estimate the value of a used car, then the input

variables might include the vehicle’s make, model, and mileage. The output node

represents the dependent, or response variable(s) of the problem and can be contin-

uous, binary, or categorical. Predictions are made through a process called Forward

Propagation where activated neurons receive weighted inputs from other neurons in

the preceding layer [62]. The weights are summed and fed into an activation function.

The output of this function is then sent to nodes in the following layer. As the neural
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Figure 2.14: Artificial Neural Network

[20]

network is trained, the weighted values between neurons are continuously adjusted

until an optimal model, or mapping from inputs to outputs, is achieved [37]. Artifi-

cial neural networks have resurrected interest in Artificial Intelligence and have been

used to create revolutionary technologies like self-driving cars, facial-identification

software, and intelligent personal assistants like Apple’s Siri and Amazon’s Alexa.
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Chapter 3

EXPERIMENTAL DESIGN

The scope of this study is focused on student teams working together towards com-

mon goals in time-constrained environments, where all team members face real con-

sequences for either success or failure. These student groups participated in various

business and engineering courses that focused on creating innovative products and

services. Although there has been some criticism of student sample usage, it is fre-

quently the sample of choice used in group personality composition research [10].

3.1 Data Collection

Data for this study was collected from 541 college students, across 111 teams, at

a large American public university. Participants completed a set of well-accepted

and vetted assessments that allowed for the quantification of each group’s personality

composition. After 12 weeks, course instructors completed performance evaluations

for each team over several dimensions of group effectiveness. The overall survey

response rate was 74% with individual demographic distributions listed in Tables 3.1,

3.2, 3.3, and 3.4.

Gender Percent

Male 56.2%

Female 43.8%

Table 3.1: Gender Demographics
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Race and Ethnicity Percent

American Indian or Alaska Native 0.2%

Asian 10.9%

Black or African American 0.7%

Hispanic/Latino American 9.9%

White 72.8%

Other 5.2%

Table 3.2: Race and Ethnicity Demographics

The independent variables in this study include the group’s demographic configura-

tion, personality composition, and levels of social sensitivity. Group demographic

information, including team size, gender, and ethnicity were captured using popu-

lar survey instruments like Qualtrics. Personality characteristics were derived using

a widely-accepted measurement of the Five Factor Model, called the Big Five In-

ventory (BFI) [27]. Each factor of the Big Five assessment breaks down into two

supplementary facets, generating 10 additional personality categories to be evaluated

[66]. Finally, the group’s social sensitivity was captured using the Reading the Mind

in the Eyes (RME) questionnaire.

Age Percent

18-19 11.3%

20-21 57.0%

22-23 26.9%

24-25 4.8%

Table 3.3: Age Demographics

Subjects were first asked to take the assessments individually to determine the group-

level mean, minimum, and maximum scores for each of the personality factors. Then
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Major Percent

Business Administration 35.7%

Communication Studies 12.9%

Engineering 31.3%

Other 20.1%

Table 3.4: Major Demographics

groups were instructed to repeat the assessments together as unified swarms using

the Swarm AI technology provided by Unanimous A.I. These assessments included a

44-item personality test (BFI) and a 36-item social sensitivity test (RME).

The dependent variables in this study include several assessments of the team’s per-

formance by the professor in each course. Extant research has suggested the use of

a second dependent variable to measure the same outcome phenomenon as the pri-

mary dependent variable [10]. Therefore, two assessments of group performance were

administered. The first was a 6-item evaluation of team effectiveness and the second

was a 4-item measure of team performance. Prior studies have shown that both as-

sessments provide an accurate and reliable measure of group performance [68]. These

scores were combined to create a single dependent variable that represents the overall

performance of the group.

3.2 Data Analysis

A variety of statistical techniques were applied to analyze the effects of group com-

position on team performance. Most notably, the coefficient of determination, R2,

was used to calculate the variance in group performance explained by a particular

independent variable. T-Tests were conducted to measure the significance of these re-
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lationships. Additionally, the variances explained by group-level personality averages

were compared to the variances explained by swarm-level personality scores. Further-

more, a mixture of regression and classification algorithms were deployed, including

Multivariate Linear Regression, K-Nearest Neighbor Regression, LASSO Regression,

Logistic Regression, Decision Trees, and Naive Bayes Classifiers. Finally, an artificial

neural network was developed in TensorFlow and its performance was compared with

the simpler machine learning models.

3.3 Machine Learning Pipeline

Figure 3.1: Machine Learning Pipeline

As illustrated in Figure 3.1, a machine learning pipeline was constructed to per-

form the complex computational analysis required for this study. First, raw sur-

vey responses from participants and instructors were exported from Qualtrics and

Swarm AI. The spreadsheets were parsed and the survey responses were extracted

and scored. Invalid teams were discarded, including groups that exhibited less than

50% survey completion or less than 50% swarm participation [10]. The scores were

scaled to account for acquiescence, the tendency of an individual to consistently agree

to questionnaire items, regardless of the content [46]. Then group-level personality

compositions were calculated by taking the mean of the individual team members’

scores. The correlation of determination, R2, was used to measure the variance in
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team performance explained by group-level and swarm-level personality factors.

Then the data was prepared for a series of machine learning algorithms. The corre-

lation coefficient, R, was used to perform feature evaluation and determine the top

10 predictors of team performance. Next, the data was normalized, partitioned into

training and testing sets, and fed into three regression algorithms. The top 10 feature

model was compared with a more complex model that utilized the full set of predic-

tor variables. Next, groups that performed in the top 75th percentile were labeled as

”exceptional teams”. Three separate classifying algorithms were trained to predict

whether groups would fall under this category. Finally, an artificial neural network

was constructed, trained, and validated over the data set. Network hyperparameters,

including number of hidden layers, activation functions, batch size, and more were

optimized using grid search. The various machine learning models were compared us-

ing Mean Squared Error (MSE) and classification accuracy (ACC) over the validation

set.
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Chapter 4

RESULTS

4.1 Personality Factors

This study examines the aggregated personality compositions of the group and in-

vestigates the variance in team performance explained by group-level means and

swarm-level responses. As illustrated in Table 4.1, personality compositions mea-

sured by group averages, explained 8% of the variance in team performance. On the

other hand, group personality compositions measured by swarms explained 15% of

the variance. Thus, when GPC was determined as a swarm, rather than aggregating

the individual member means, it increased predictive capabilities of team performance

by 7%.

While prior studies have found Conscientiousness and Agreeableness to be the person-

ality factors that best predict group performance, the results of this research suggest

that Extraversion and Conscientiousness are the leading predictors. Additionally,

GPC differences measured by the swarm were strongest in Extraversion (7%) and

Openness (4%). This has interesting implications in the context of local interactions

among swarm members and suggests that swarming more accurately captures social,

active, and creative group personality compositions.

4.2 Personality Facets

The predictive capabilities displayed by human swarms is even more apparent when

analyzing the 10 personality facets of the Five Factor Model, shown in Table 4.2.
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Personality Factor Group β Swarm β Group R Swarm R ∆R Group R2 Swarm R2 ∆R2

Extraversion 0.54 0.49 0.25 0.36 0.11 0.06* 0.13* 0.07

Agreeableness 0.55 0.23 0.14 0.12 -0.02 0.02 0.01 -0.01

Conscientiousness 0.71 0.38 0.20 0.24 0.04 0.04 0.06* 0.02

Neuroticism -0.19 -0.21 -0.05 -0.10 -0.05 0.00 0.01 0.01

Openness 0.21 0.61 0.05 0.21 0.16 0.00 0.04 0.04

All Factors 0.29 0.39 0.10 0.08 0.15* 0.07

*P-Value < 0.05

Table 4.1: FFM Personality Factors Results

While the aggregated individual means explained 10% of the variance in team per-

formance, swarm-level personality scores explained 29% of the variance, representing

a 19% increase in predictive capacity. Interestingly, it was common for one of the

two personality facets to exhibit a stronger relationship with group performance than

the other. For example, within the dimension of Agreeableness, Altruism accounted

for 7% of the variance while Compliance exhibited no correlation with performance.

These findings suggest that, of the personality facets measured in this study, As-

sertiveness (E), Activity (E), Altruism (A), Order (C), and Self-Discipline (C) are

the traits that have the greatest effect on group performance. Additionally, swarm

amplification across all personality dimensions was strongest in Extraversion (10%),

Agreeableness (5%), and Neuroticism (5%).

4.3 Individual Minimums and Maximums

The individual minimum and maximum scores for each personality category were also

recorded and analyzed. The results, shown in Tables 4.3 and 4.4, suggest that indi-
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Personality Facet Group β Swarm β Group R Swarm R ∆R Group R2 Swarm R2 ∆R2

Assertiveness (E) 0.48 0.48 0.22 0.36 0.14 0.05 0.13* 0.08

Activity (E) 0.48 0.31 0.24 0.28 0.04 0.06* 0.08* 0.02

Altruism (A) 0.60 0.49 0.15 0.27 0.12 0.02 0.07* 0.05

Compliance (A) 0.20 -0.05 0.06 -0.03 -0.09 0.00 0.00 0.00

Order (C) 0.50 0.30 0.21 0.29 0.08 0.04 0.08* 0.04

Self-Discipline (C) 0.69 0.29 0.21 0.18 -0.03 0.04 0.03 -0.01

Anxiety (N) -0.03 -0.26 -0.01 -0.14 -0.13 0.00 0.02 0.02

Depression (N) -0.55 0.07 -0.18 0.05 0.22 0.03 0.00 0.03

Aesthetics (O) 0.33 0.27 0.14 0.14 0.00 0.02 0.02 0.00

Ideas (O) -0.13 0.33 -0.03 0.16 0.19 0.00 0.02 0.02

All Facets 0.32 0.54 0.22 0.10 0.29* 0.19

*P-Value < 0.05

Table 4.2: FFM Personality Facets Results

vidual outliers may play an even greater role in team performance than the average

personality composition of the group. For example, after examining the impact of

team conscientiousness, having a single high scoring member is more predictive of

group performance (7%) than having a team with a high average level of conscien-

tiousness (4%). This suggests that groups with highly intelligent and conscientious

leaders will be well-managed and successful. Additionally, the least conscientious

member of the group explained 6% of the variance in team performance. This could

support the wide-spread theory that unorganized individuals, functioning as a part

of an otherwise well-coordinated team, do not adopt the practices of the group, but

instead drag the team down and prevent optimal performance from being achieved.

Furthermore, the least agreeable member of the team explained 11% of the variance
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in group performance. It seems that the ”weakest link” may actually be one of the

strongest predictors of team effectiveness.

Personality Factor Minimum β Maximum β Minimum R Maximum R Minimum R2 Maximum R2

Extraversion 0.39 0.23 0.23 0.12 0.05 0.01

Agreeableness 0.84 0.77 0.34 0.16 0.11* 0.03

Conscientiousness 0.41 1.11 0.24 0.27 0.06* 0.07*

Neuroticism -0.56 0.11 -0.23 0.06 0.05 0.00

Openness 0.10 0.33 0.04 0.10 0.00 0.01

*P-Value < 0.05

Table 4.3: Individual Personality Factor Minimums and Maximums Re-
sults

Personality Facet Minimum β Maximum β Minimum R Maximum R Minimum R2 Maximum R2

Assertiveness (E) 0.32 0.16 0.19 0.09 0.04 0.01

Activity (E) 0.25 0.28 0.19 0.15 0.04 0.02

Altruism (A) 0.61 0.07 0.29 0.02 0.27* 0.00

Compliance (A) 0.35 0.27 0.20 0.10 0.04 0.01

Order (C) 0.26 0.54 0.21 0.25 0.04 0.06*

Self-Discipline (C) 0.37 0.84 0.22 0.24 0.05 0.06*

Anxiety (N) -0.25 0.33 -0.12 0.22 0.02 0.05

Depression (N) -0.31 -0.16 -0.15 -0.11 0.02 0.01

Aesthetics (O) 0.14 0.43 0.10 0.21 0.01 0.05

Ideas (O) 0.03 -0.25 0.01 -0.08 0.00 0.01

*P-Value < 0.05

Table 4.4: Individual Personality Facet Minimums and Maximums Results
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4.4 Social Sensitivity

Finally, the effects of social sensitivity on group performance were evaluated and the

results are shown in Table 4.5. Group-level social sensitivity accounted for roughly

5% of the variance in team performance, while the social sensitivities of the swarm

explained 6% of the variance. This suggests that measuring social sensitivity as a

swarm may better reflect the actual group dynamics of teams, thereby increasing its

ability to predict team performance.

Mind in the Eyes Group β Swarm β Group R Swarm R ∆R Group R2 Swarm R2 ∆R2

Social Sensitivity -0.87 -0.90 -0.23 -0.25 -0.02 0.05 0.06* 0.01

*P-Value < 0.05

Table 4.5: Reading the Mind in the Eyes Results

4.5 Machine Learning

Prior research in machine learning has found that overly-complex feature sets often

lead to cumbersome models with poor predictive capabilities. The correlation coeffi-

cient, R, was utilized to determine the top 10 features with the highest correlations

to group performance. These features, listed in Table 4.6, were extracted from the

data set and used to train a variety of machine learning algorithms. The performance

of these algorithms were compared to the NULL model. The NULL model consis-

tently predicts the mean target value, or the average performance across all groups

in the training set, and is often established as the baseline reference for comparison.

Algorithms that effectively model the underlying relationships within the data are

expected to produce a lower error rate than NULL.
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Top 10 Features

Swarm Extraversion

Swarm Assertiveness (E)

Individual Minimum Agreement

Individual Minimum Altruism (A)

Swarm Order (C)

Swarm Activity (E)

Individual Maximum Conscientiousness

Swarm Altruism (A)

Individual Maximum Order (C)

Swarm Social Sensitivity

Table 4.6: Features Chosen By Correlation Coefficients

Three regression algorithms were trained and validated over the data set including

Multivariate Linear Regression (MLR), K-Nearest Neighbor Regression (KNN), and

LASSO Regression. The LASSO Regression algorithm utilized an alternative ap-

proach to feature evaluation and selection. The features chosen by LASSO are listed

in Table 4.7. Interestingly, the LASSO algorithm selected more individual minimum

and maximum features, however both feature sets primarily contained factors and

facets from the Extraversion, Conscientiousness, and Agreeableness dimensions of

personality.

The results of the regression models are displayed in Table 4.8. As expected, the sim-

pler models exhibited less Mean Squared Error (MSE) than the more-complex models

that utilized the full feature set. Multivariate Linear Regression was not an effective

algorithm for the full model, however the K-Nearest Neighbor and LASSO algorithms

both produced less error than NULL. The highest performance was achieved by the
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LASSO Features

Individual Minimum Agreeableness

Individual Maximum Agreeableness

Individual Maximum Conscientiousness

Individual Maximum Openness

Swarm Assertiveness (E)

Swarm Altruism (A)

Individual Maximum Order (C)

Individual Maximum Anxiety (N)

Individual Maximum Aesthetics (O)

Table 4.7: Features Chosen By LASSO

Top 10 Feature model using the Multivariate Linear Regression algorithm (0.19 MSE).

This is a substantial improvement from the NULL model which generated 0.45 MSE.

Regression NULL MLR KNN LASSO

Top 10 Features MSE 0.444637 0.191778 0.323847 0.316524

Full Model MSE 0.444637 7.10079 0.367044 0.396821

Table 4.8: Mean Squared Error for Regression Models

The regression algorithms were also compared over group-level and swam-level feature

sets. As illustrated in Figure 4.2, the swarm models consistently exhibited less Mean

Squared Error than the corresponding group models. This reinforces earlier findings

that suggest the personality of the swarm is a better predictor of group performance

than the average scores of individual team members. The lowest error was achieved

by the K-Nearest Neighbors algorithm (0.62 MSE for Swarms), however none of these

models outperformed Top 10 Feature MLR.
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Figure 4.1: Mean Squared Error for Regression Models

Regression NULL MLR KNN LASSO

Group MSE 0.733578 1.11895 0.69526 0.833399

Swarm MSE 0.733578 1.08608 0.629615 0.704416

Table 4.9: Mean Squared Error for Regression Models

Next, groups were split into separate classes and labeled. Teams that performed in

the top 75th percentile were marked as ”exceptional” and the remaining teams were

labeled as ”average”. Three classification algorithms were trained and validated in-

cluding Logistic Regression, Decision Tree Classifiers, and Naive Bayes Classifiers.

The classification results are listed in Table 4.10, with Logistic Regression displaying

the highest accuracy score over the validation set, at 81.8%. This algorithm outper-

formed the NULL model, which consistently predicted ”average” team performance

at 72.7% accuracy.
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Figure 4.2: Mean Squared Error for Regression Models

Classification NULL LogisticReg DecisionTree NaiveBayes

Accuracy 72.7273 81.8182 72.7273 72.7273

Precision 0 100 0 50

Recall 0 33.3333 0 66.6667

Table 4.10: Accuracy for Classification Models

Finally, an artificial neural network was constructed to model the relationship between

group personality composition and team performance. The network’s architecture

consisted of 10 input nodes, 1 hidden layer with 50 nodes, and an output layer with 1

node. Hidden nodes utilized the sigmoid activation function and the output node used

a linear activation function. Dropout regularization was applied to reduce over-fitting

and grid search cross validation was deployed to optimize all network parameters. The

hyperparameter combinations that were tested and the optimal architecture is listed

in Table 4.11
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Figure 4.3: Accuracy for Classification Models

Grid Search Parameters Optimal

Layers 1, 3, 5, 10, 15, 20 1

Nodes/Layer 1, 10, 50, 100, 500, 1000 50

Activation Function sigmoid, relu sigmoid

Epochs 50, 100, 200 50

Batch Size 5, 10, 20 5

Optimizer adam, rmsprop adam

Dropout Rate 0.0, 0.5, 0.7, 0.9 0.5

Table 4.11: Grid Search Cross Validation

A visualization of the network’s learning curve is illustrated in Figure 4.4. As ex-

pected, the model’s loss decreases over time, converging around 20 epochs. This en-

sures that the network is learning the true underlying relationships and developing an

effective model for future inference. The optimized network was able to demonstrate

0.71 MSE against the training set and 0.76 MSE over the validation set. Regardless
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of its power, the neural network approach did not achieve the accuracy exhibited

by more simplistic regression and classification techniques, like Multivariate Linear

Regression and Logistic Regression.

Figure 4.4: Learning Curve For Artificial Neural Network
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Chapter 5

FUTURE WORK

5.1 Personality Measurement

There is great potential for future researchers to measure group personality com-

positions through human swarming interfaces as opposed to traditional aggregation

methods like averages, minimums, and maximums. This measurement technique has

been shown to produce results that better reflect the actual dynamics of the group

and thereby amplify the ability to predict team performance. Further investigation

into the effectiveness of these methods is advised.

5.2 Swarm Behavior

While the personality of the swarm was thoroughly analyzed, there was no investi-

gation into the effects of swarm behavior. As swarms negotiate, they not only select

different answers, but also exhibit different collective behaviors. The momentum of

the puck, the factions that form, and the behaviors of individual contributors vary

across swarms. Further research is advised to investigate the effects that swarming

behavior has on group personality and resulting team performance.

5.3 Machine Learning

One of the biggest limitations in this study was access to data. Due to the novelty

of the Swarm AI technology, administrators were required to moderate the swarms
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in person. Data had to be collected by hand over the course of a full school year and

only about a hundred teams volunteered to participate, which is inadequate for some

machine learning techniques. Ideally, hundreds or even thousands of groups would

have been surveyed and the extra data would be expected to reduce model loss and

improve classification accuracy.
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Chapter 6

CONCLUSION

Overall, the findings presented in this paper support previous claims that group

personality composition is a strong predictor of team performance. However, this

study also shows that when groups of individuals gather online and form artificial

swarms, they are able to amplify the predictive capabilities of their GPC by as much as

19%. Additionally, Multivariate Linear Regression and Logistic Regression were the

machine learning algorithms that demonstrated the strongest performance across the

board. The full benefits of human swarming is still unknown, however we can look to

nature for continued guidance and inspiration. Swarms of autonomous vehicles could

someday navigate traffic in ways only previously observed in flocks of birds. Swarms

of legislators could someday form ideal policies and make optimal decisions only

previously seen by swarms of honey bees. Finally, swarms of engineers could someday

design and build structures that no individual could imagine, as demonstrated by the

massive nests constructed by colonies of termites. As the human race pushes the

boundaries of technology, we need to take the appropriate measures to ensure that

our collective intelligences can compete with the artificial intelligences we create.
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