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Abstract
Water is fundamental to all aspects of protein function including folding, stability, catalysis, and dynamics. The
unique characteristics of water make it the ideal solvent for supporting life but also make it incredibly difficult
to study. While much has been learned about the role of water in protein function, a site resolved
understanding of these interactions has remained elusive thereby leaving a large hole in the biophysical puzzle.
Experimental techniques that provide a site-resolved view of protein hydration without mutation of the
protein are necessary to understand the thermodynamic role of water on protein function. It has been shown
that the combination of Nuclear Magnetic Resonance (NMR) spectroscopy and encapsulation of proteins
within the core of reverse micelles can satisfy these requirements. The goal of this thesis is to apply and expand
upon currently established techniques to make it generally applicable to all protein systems. First, previously
established methods were used to examine the internal hydration patterns of staphylococcal nuclease variants
with internal ionizable groups. The results demonstrate that water penetrates the hydrophobic core to stabilize
buried ionizable groups. This study illustrates the utility of NMR detected hydration measurements for
longstanding biophysical questions. Next, two methods to reduce data collection times were implemented for
hydration dynamics measurements. This necessary time savings provides a platform for assessing the
reproducibility and precision of NMR derived hydration measurements. A new data fitting method that allows
for quantitative hydration dynamics measurements of protein regions generally contaminated by hydrogen
exchange is introduced. Finally, one of the remaining artifacts associated with hydration dynamics
measurements detected by NMR is addressed: hydrogen exchange relayed artifacts. This was accomplished by
developing experiments to decouple the relaying spin and applying a new data fitting method. These methods
allow for the first site and time resolved study of protein hydration in the absence of artifact is presented.
These techniques introduced were applied to Ubiquitin encapsulated in AOT reverse micelles. The majority of
slowed waters reside in concave regions of the protein surface. This suggests surface curvature is one of the
contributing factors for the slowing of hydration waters. The experiments presented demonstrate the utility of
using NMR for measuring protein-water interactions. The work presented expands and improves upon
existing methodologies and provides a framework for artifact free site resolved measurement of protein water-
interactions in all protein systems.
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ABSTRACT 
 

OPTIMIZATION OF NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 

METHODS FOR MEASURING PROTEIN HYDRATION IN REVERSE MICELLES 

Christine Jorge 

A. Joshua Wand 

Water is fundamental to all aspects of protein function including folding, stability, 

catalysis, and dynamics. The unique characteristics of water make it the ideal solvent for 

supporting life but also make it incredibly difficult to study. While much has been 

learned about the role of water in protein function, a site resolved understanding of these 

interactions has remained elusive thereby leaving a large hole in the biophysical puzzle. 

Experimental techniques that provide a site-resolved view of protein hydration without 

mutation of the protein are necessary to understand the thermodynamic role of water on 

protein function.  It has been shown that the combination of Nuclear Magnetic Resonance 

(NMR) spectroscopy and encapsulation of proteins within the core of reverse micelles 

can satisfy these requirements. The goal of this thesis is to apply and expand upon 

currently established techniques to make it generally applicable to all protein systems. 

First, previously established methods were used to examine the internal hydration 

patterns of staphylococcal nuclease variants with internal ionizable groups. The results 

demonstrate that water penetrates the hydrophobic core to stabilize buried ionizable 

groups. This study illustrates the utility of NMR detected hydration measurements for 
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longstanding biophysical questions. Next, two methods to reduce data collection times 

were implemented for hydration dynamics measurements. This necessary time savings 

provides a platform for assessing the reproducibility and precision of NMR derived 

hydration measurements. A new data fitting method that allows for quantitative hydration 

dynamics measurements of protein regions generally contaminated by hydrogen 

exchange is introduced. Finally, one of the remaining artifacts associated with hydration 

dynamics measurements detected by NMR is addressed: hydrogen exchange relayed 

artifacts. This was accomplished by developing experiments to decouple the relaying spin 

and applying a new data fitting method. These methods allow for the first site and time 

resolved study of protein hydration in the absence of artifact is presented. These 

techniques introduced were applied to Ubiquitin encapsulated in AOT reverse micelles. 

The majority of slowed waters reside in concave regions of the protein surface. This 

suggests surface curvature is one of the contributing factors for the slowing of hydration 

waters. The experiments presented demonstrate the utility of using NMR for measuring 

protein-water interactions. The work presented expands and improves upon existing 

methodologies and provides a framework for artifact free site resolved measurement of 

protein water-interactions in all protein systems.  
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Chapter 1: Introduction  

Protein Hydration 

Water is necessary for life, and it is generally accepted that water contributes to many 

aspects of protein function including structure and folding, stability, dynamics, and 

catalysis (1-16). As the biological solvent water has been the subject of extensive study 

for decades; research spans from simple atomistic details of water structure and hydrogen 

bonding networks through small molecule interactions to large macromolecular 

complexes (17-29). Despite this, the knowledge of interactions between protein and water 

have remained elusive due to lack of experimental methods that provide site and time 

resolution of native protein.  

Several aspects of water that make it flexible enough to support life also make it 

incredibly difficult to study. Water is a small molecule (2.8 Å) and has very rapid 

rotational and translational motions (1-2 ps in bulk, 10-100 ps at interface) (9) which 

requires experimental techniques with resolution on the ps time scale. Furthermore, water 

is ubiquitous with a typical biochemical sample containing 104-107 times more water 

molecules than protein molecules. A typical biochemical protein sample will have two 

different types of water that behave differently; the hydration layer which consists of 2-3 

water layers surrounding the protein (28, 30-37), and the bulk aqueous phase. Though 

distinct, the water molecules can readily exchange in and out between hydration waters 

and bulk solvent. Furthermore the population of the hydration layer relative to bulk 

solvent is incredibly small making the deconvolution of these two species difficult using 

most spectroscopic techniques. Finally the hydrogen bonding patterns of water are 

extremely dynamic and make water a very unique molecule. Water is normally involved 
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in four intermolecular hydrogen bonds in a tetrahedral geometry though this is highly 

dynamic (9). The number of hydrogen bonding partners, the angles and lengths of the 

hydrogen bonds, and the number of protons attached to a given oxygen atom are highly 

variable (38, 39). This variability depends on many factors of the local environment 

including temperature, solute hydrophobicity, solute size and curvature, and local charges 

(17, 21, 23, 26, 30, 38, 40-42). While no experimental techniques can address all of these 

problems simultaneously, a collective understanding of protein hydration in a global 

sense has been accomplished through piecewise analysis of many different studies.  

One of the most studied aspects of water on protein function is through the hydrophobic 

effect. The term, coined by Kauzmann in 1959, describes the favorable entropic gain 

attributed to desolvation of hydrophobic molecules (43-45). It has been implicated as the 

major driving force in protein folding and stability (i.e., burial of hydrophobic amino 

acids in the hydrophobic core of the protein) (46-50). The hydrophobic effect raises 

important questions regarding protein-protein recognition and the motions of the 

hydration layer (51). Studies have suggested that interfaces responsible for protein 

binding have slowed hydration dynamics relative to the rest of the protein hydration shell 

and contribute to thermodynamics of macromolecular interactions (5, 39, 52). To 

understand the role of the hydration layer on macromolecular recognition it is necessary 

to understand what features of the protein slow hydration waters.   

In addition to surface waters, buried waters have been shown to contribute to different 

aspects of enzyme function (25, 53-55). Internal water molecules can serve structural 

roles by hydrogen bonding to the protein backbone. Waters present in active sites of 



 3 

enzymes act as hydrogen bonding scaffolds, H+ donors, and are essential for catalysis(56-

59). Buried polar groups and ionizable groups play key roles in enzyme catalysis and 

energy transduction and are generally solvated (60, 61). Membrane proteins have been 

shown to have water wires that facilitate H+ and e- transfer through the protein to 

facilitate signal transduction(57). A precise understanding of how these waters contribute 

to protein function require a site resolved view of native protein hydration dynamics.  

The surface of a protein is topologically and chemically heterogeneous, thus precluding 

predictions of the hydrogen bonding patterns surrounding the protein (46). The protein 

surface is decorated with charged and polar residues which will affect the local hydrogen 

bonding pattern of water to protein (19, 23, 62). Hydrophobic regions of the protein 

surface will be devoid of hydrogen bonded water. The local surface curvature will affect 

the local geometry of water hydrogen bonding partners (41, 63, 64). This contrasting 

behavior has led to models of both hydrophilic and hydrophobic hydration. Results from 

the study of the water-hydrogen bond network around small molecules suggest that the 

hydrogen bond network is not disturbed around hydrophilic molecules, but form ice-like 

structures around hydrophobic molecules (9, 18, 27, 65-68). Chandler has described the 

contrasting behavior of the hydrophobic effect around small versus long length scales 

(46) (69). In small molecules the hydrogen bond network of water isn’t broken, but rather 

rearranged. Around larger hydrophobic regions >1 nm in length the hydrogen bonds must 

be broken resulting in dewetted vapor-like interfaces. It is clear that the heterogeneous 

nature of the protein surface precludes ability to predict the thermodynamic contribution 
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of water to the protein. Experimental measures are necessary to understand the intricate 

interplay between water and the protein surface.   

Many techniques have described the global nature of the hydration layer, but a site-

resolved understanding is lacking. Amongst these, neutron scattering studies have shown 

that protein dynamics are quenched in the absence of water, and that at least 2-3 layers of 

hydration water are needed to restore movement (70). The hydration layer is generally 

thought to consist of the first 2-3 layers surrounding the protein, but other studies have 

suggested much longer hydration shells (33). Neutron scattering, x-ray scattering, 

infrared spectroscopy and magnetic relaxation dispersion have shown that the hydration 

layer surrounding the protein is slowed relative to bulk. The estimation of the degree to 

which the hydration layer is slowed varies from two times to two fold slower than bulk 

(17, 30, 33, 34, 71-78). The degree to which the water is slowed in the hydration shell 

varies across the protein surface and will depend on the local environment. In order to 

understand the characteristics of the protein surface that result in slowing of waters a site 

resolved view of water dynamics is necessary.  

The majority of site-resolved investigations of water have been from X-ray 

crystallographic studies or molecular dynamics studies. X-ray crystallography has 

provided a wealth of knowledge about the locations of water, but offers no insight into 

either hydration dynamics or protein dynamics (37, 79, 80). Similarly, comparisons of the 

same protein under different crystallographic conditions have shown that waters at the 

protein surface vary considerably and maybe artifactual (52). Molecular dynamics (MD) 

simulations have provided the majority of our understanding of the behavior of these 
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hydration waters; however, the lack of experimental evidence makes simulation data 

difficult to interpret (21, 81). Similarly, due to the complex nature of water, 

computational water models have proven to be insufficient to define the role of hydration 

on protein function. It remains unclear as to what aspects of local density, hydrogen 

bonding patterns, or rotational and translational motion of the water are the predominant 

forces in affecting protein dynamics. As such over 400 different water models for MD 

simulations have been reported (82).  Experimental methods such as Overhauser dynamic 

nuclear polarization (83-86) (87) and tryptophan fluorescence (36, 88) provide site and 

dynamic resolution of hydration, but only report on one region of the protein. These 

methods also require mutation for the incorporation of probes which may alter the local 

hydration of a protein. While these techniques offer site resolution they are insufficient to 

describe the entire protein surface and offer little insight into the collective role of water 

on protein function. Additionally, these techniques measure the different relaxation rates 

of the incorporated probe which is highly sensitive to local environment. Therefore, for 

partially solvent exposed sites the protein itself is capable of affecting these 

measurements. 

Nuclear magnetic resonance (NMR) spectroscopy methods have also been used to probe 

the motions of hydration waters (53, 89-93). These methods take advantage of the dipolar 

interaction between nearby spins via the nuclear Overhauser effect (NOE). NMR 

spectroscopy is unique in that it allows for site-specific resolution of dynamical 

processes. Unfortunately several aspects of the behavior of bulk water have resulted in 

numerous seemingly insurmountable artifacts and has restricted this approach to bound 
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structural waters. (31, 75, 93). However, recent technological and methodological 

advancements have shown that these artifacts can be overcome by encapsulating proteins 

within the hydrophilic core of a reverse micelle. The goal of this thesis is to expand and 

improve upon these methodologies to develop a framework for artifact free site resolved 

measurement of protein-water interactions of all protein systems.  

NMR for protein hydration 

Over 30 years ago Wüthrich and coworkers identified that the dynamics of protein water 

interactions can be measured by through space dipolar interactions between the protein 

and water spins via the nuclear Overhauser effect (NOE) (94). The NOE can be measured 

in the laboratory (NOE) or the rotating (ROE) (95-98) reference frames. While the NOE 

and ROE are mechanistically similar their cross relaxation rates (σNOE and σROE, 

respectively) differ as a function of the correlation time between the protein and water 

molecules. Dynamic information about the water interaction requires taking the ratio of 

the NOE and ROE cross relaxation rates(89-91, 93). Due to the different reference frames 

of detection they have varied dependence on their spectral density functions (Equations 

1-1 and 1-2) 

 σ NOE = q[6J(2ωo )− J(0)]   1-1 

 σ ROE = q[3J(ωo )− 2J(0)]   1-2 

Where q=γ4ħ2/10[µo/(4π)]2 = 5.7x1010 Å6 s-1. Therefore q is a prefactor of fundamental 

constants including the gyromagnetic ratio of protons(γ) and Plank’s constant (ħ), ω is the 

proton Larmor frequency, and J(ω) is the power spectral density function defined:  
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 J (ω ) = C(t)cos(ωt)dt∫   1-3 

where C(t) is the sum of the auto-correlation function of the magnetic dipole-dipole 

interactions between two spins that are sufficiently close.  

 
  
C(t) =

Y20(rj (0))
rj

3(0)
Y20(rj (t))

rj
3(t)j

∑    1-4 

Where is a normalized spherical harmonic function that 

describes the internuclear vector between the two adjacent spins. The auto-correlation 

function (Equation 1-‐4) is therefore a convolution of the time dependence and length and 

orientation of the two interacting spin systems, and makes a detailed interpretation of the 

σNOE and σROE challenging. 

The cross-relaxation rates as a function of the interaction time between protein and water 

by using the “rigid sphere” model are illustrated in Figure 1-1. This assumes no internal 

motion between the protein and water bond vector and can be described by the reduced 

spectral density function:   

 
  
J (ω ) = 1

r6

τ c

1+ω 2τ c
2   1-5 

Where r is the distance between two interacting spins and τc includes the mean residence 

time (τres) of water and the rotational correlation time of the solute (τm) such that 

1/τc=1/τres+1/τm. This model does not describe any diffusional or rotational movement of 

water about the protein and is therefore insufficient to extract τres.  

 

  
Y20(rj ) = 5 / 16π × (3cos2θ −1)
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Figure 1-1: A) Dependence of σNOE in black and σROE  in red as a function of the 
correlation time of the protein water interaction. The ratio of the σNOE and σROE 

rates is shown in blue. The black vertical line shows the zero-crossing point (356) 
for the NOE, which is the minimum detectable correlation time for the 
intermolecular NOE. Fortuitously, the dynamics of water in the reverse micelle 
core is on this time scale of the null of the NOE, which reduces the expected 
range of the NOE from 0 to -0.5. Rates were calculated using a distance of 2.2 Å, 
a magnetic field strength of 14.6 T (1H 600 MHz) and the rigid rotor spectral 
density (Equation 1-5). 

 

Although it is difficult to de-convolute the many contributions to the intermolecular NOE 

(dipole-dipole coupling strength and rate of modulation of the dipole-dipole vectors), 

there are several models that describe the use of the intermolecular NOE to extract 

information about rotational and translation motions of water near the surface of a 

protein. One of the earlier models developed by Ayant et al. describes the relaxation 

between nearby spins located on spherical particles of unequal radii undergoing uniform 

translational (99) and rotational diffusion (100). Brüschweiler and Wright used this 

formulation (among others) to demonstrate the inherent difference between intra- and 

inter-molecular NOEs and to present an approximate theoretical range of timescales of 
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differential water dynamics (101). More recently, Halle expanded upon this model to 

incorporate non-uniform diffusion of water near the protein surface eventually 

concluding that the intermolecular protein-water NOE near the surface of the protein is 

contaminated by bulk solvent (102); however, this has been shown to not necessarily be 

the case(103).  

The simpler rigid sphere model does not factor in internal dynamics of the protein but is 

sufficient to describe the waters movements ranging from fast (300ps) to slow (~10ns). In 

the case of slow water with a long correlation time the σNOE/σROE ratio approaches -0.5, 

whereas fast water approaches an NOE/ROE ratio of 1 (Figure 1-1)(93). The rotational 

correlation time of water in the reverse micelle is substantially slowed relative to bulk 

aqueous solvent and the τc will never be slower than the null crossing point for the NOE. 

Therefore, in the reverse micelle, slow water NOE/ROE ratios approach -0.5, and fast 

water approaches 0.  

 The cross relaxation rate can be calculated from the peak height intensity (INOE) of 

the crosspeak. The intensity takes the form:  

   INOE = Ao[e
−R1τm (1− e−σ NOEτm )]   1-6 

   IROE = Ao[e
−R1ρτm (1− e−σ ROEτm )]   1-7 

Where Ao is a prefactor, R1 is the longitudinal relaxation rate, and τm is the mixing time. 

The ROE crosspeak intensity follows the same form but undergoes transverse (R1ρ) 

relaxation (94).  

There are three types of magnetization transfer that can be detected by the NOE (Figure 

1-2). The first is the direct dipolar magnetization transfer from the protein to the water, 
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which is the measurement of interest. The second is the case of direct hydrogen exchange 

between the protein and water. The observed cross relaxation rate takes the form(94, 

104):  

  σ NOE
obs =σ NOE + kex   1-8 

  σ ROE
obs =σ ROE + kex   1-9 

Where kex is the hydrogen exchange rate. The sign of σNOE and kex term are both negative, 

whereas the sign of σROE is positive (104). Magnetization transfer from direct hydrogen 

exchange can easily be detected because the ROE crosspeak is the same sign as the NOE 

(i.e. same sign as the diagonal peak) (95, 105). 

The third type of magnetization transfer occurs from exchange-relayed NOEs. In this 

case water will exchange hydrogens with a labile protein proton, which can then undergo 

an NOE transfer to a nearby protein. This type of exchange is spectrally indistinguishable 

from direct dipolar magnetization exchange and is the major artifact of NOE-detected 

hydration experiments (106, 107). The σNOE/σROE ratio in the case of exchange-relayed 

NOEs is always artificially lower than in the absence of relay. Often times this causes the 

σNOE/σROE ratio to be outside of the theoretical limits. The observed cross-relaxation rate 

is defined by(94, 95, 108):  

    σ NOE
obs =σ NOE + (Σkex iσ NOE

int ra )   1-10 

    σ ROE
obs =σ ROE + (Σkex iσ ROE

int ra )   1-11 

Depending on the question of interest NOE and ROE experiments at multiple mix times 

can be measured to solve for the σNOE and σROE.  
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Figure 1-2: Examples of magnetization transfer that can be detected by the NOE 
experiment. A) Direct NOE between a protein-proton and a water proton as 
shown by a straight blue arrow. B) Direct hydrogen exchange between a protein-
proton and a water proton as a purple curved arrow. C) Exchange relayed process 
where a protein-proton (e.g. hydroxyl) directly hydrogen exchanges with water 
(curved purple arrow) followed by direct dipolar exchange (straight blue bar) to a 
nearby protein-proton (e.g. amide) 

 

While the σNOE/σROE ratio appears to be an excellent means to understand hydration 

dynamics near the surface of the protein, there are three issues that arise when attempting 

to analyze these experiments in aqueous solution. The first is poor dipolar contact 

between protons on the protein surface and water protons: although hydration layer 

waters are slowed relative to bulk by up to 2 orders of magnitude (23), they are often still 

too fast to detect quantifiable intermolecular NOEs (93). The second issue is potential 

contamination from bulk water on the NOE (102): the overwhelming presence of waters 

in the bulk solvent has been thought to diminish the distance dependence of the 

intermolecular NOE from r-6 to r-1. The third issue is possible contamination of the 

protein-water NOE from chemical exchange: magnetization can be transferred from 

hydrogen-exchanged protons from nearby exchangeable groups (nearby waters, backbone 

amides, or side chains) leading to potential ambiguities in the assignment of a true 
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protein-water NOE (75, 93). Fortunately, these issues can (mostly) be alleviated upon 

encapsulating the protein within a reverse micelle.  

Reverse Micelles 

Reverse micelles (RM) are spontaneously forming particles composed of a nano-pool of 

water, an amphiphilic surfactant shell, and bulk organic solvent  (Figure 1-3) (109-116). 

The reverse micelle can encapsulate small molecules or large biological macromolecules, 

or can be made in the absence of solute (“empty”). The size of non-protein containing 

reverse micelles can be controlled by the molar ratio of the water-to-surfactant, Wo, added 

to the sample. Stable reverse micelle samples have been made with Wo ranging from 2-60 

consisting of water pools ranging from 1.7-28 nm (68, 114). It has also been shown that 

proteins maintain their hydrated radii upon encapsulation within a reverse micelle with 

excess water being sequestered into “empty” reverse micelles (117). Protein 

encapsulation in reverse micelles was initially intended to overcome the tumbling limit in 

NMR by replacing bulk aqueous solvent with a low viscosity organic solvent (118-123). 

The utility of the reverse micelle has led to its use in many biophysical studies including 

metastable proteins, lipid anchored proteins,  membrane proteins, and hydration 

measurements (119, 124-129).  
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Figure 1-3: Schematic of Ubiquitin encapsulated in a reverse micelle. 

 

There are several benefits of reverse micelle encapsulation for the detection of protein-

water NOE’s. Nucci et al. showed that nearly all artifacts associated with measuring 

protein-water interactions via the NOE in aqueous solution are removed when employed 

in the reverse micelle (125). “Empty” RMs have been extensively used to study water 

pool behavior and hydrogen bond behavior of water networks (27, 40, 42, 66, 68, 111, 

130-132). Confinement from the reverse micelle slows the rotational and translational 

motions of water by up to two orders of magnitude. The water surrounding the surfactant 

interface is the most motionally restricted suggesting that water is highly influenced by 
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ions and charged surfaces. The water motions become more bulk like as it extends into 

the core of the water pool (27, 38, 40, 66, 68, 130). Reverse micelles with higher water 

loadings have water with more bulk-like behavior. The overall slowing of water in the 

reverse micelle serves to amplify the intermolecular NOE. Additionally, encapsulation of 

protein removes bulk water while maintaining the native hydration shell of the protein 

(117). This maintains the local nature of the NOE as there is no bulk aqueous solvent to 

contaminate distance dependence of the intermolecular NOE. And finally, the hydrogen 

exchange rates are slowed approximately two orders of magnitude in the reverse micelle 

(125, 133). This slowing removes contamination from direct hydrogen exchange of 

amides and greatly reduces exchange relayed processes occurring from side chains. Thus 

the reverse micelle is the ideal system to study protein and water interactions via the 

NOE.  

Biophysical studies of proteins in reverse micelles require that the protein maintains its 

native structure upon encapsulation (134). Retention of structure is easily identified by 

using NMR spectroscopy. Fidelity of protein structure and dynamics can be inferred 

through careful analysis of 15N-HSQC spectra. The NMR chemical shifts of protons and 

amides are exquisitely sensitive to slight differences in local chemical environment. In 

order to assess foldedness the amide peaks must maintain good spectral dispersion. 

Generally, comparison of protein chemical shifts in bulk aqueous solution and reverse 

micelles show RMSD’s <0.1 ppm (117, 135). Several structures of proteins encapsulated 

in the reverse micelle have been determined and are shown to have backbone Cα RMSD’s 

<1 Å relative to in bulk aqueous solution (119, 127, 136). It is also necessary that the 



 15 

protein remains stable over the course of several weeks during experimental collection. 

These requirements generally require optimization of encapsulation conditions for each 

protein studied.  

Numerous surfactant mixtures have been developed that encapsulate proteins 

reproducibly and stably (115, 116). Bis-(2-ethylhexyl)sulfosuccinate (AOT) is an anionic 

surfactant and is, to date, one of the most studied reverse micelle systems. AOT reverse 

micelles do not require the addition of any secondary surfactants or co-surfactants and is 

therefore simple to use. However NMR spectroscopy shows that many proteins in AOT, 

while dissolved in the aqueous core, are unfolded (137). Ubiquitin is one of the few 

exceptions to this and generally encapsulates in AOT reverse micelles at high 

concentrations (~300µM), and remains folded and stable for >6 months. A second 

surfactant system has also been widely studied. Cetyltrimethylammonium bromide 

(CTAB) is a cationic surfactant that can either form micelles or reverse micelles 

depending on the type of co-surfactant used. CTAB requires a cosurfactant that is 

generally a short chain primary alcohol such as hexanol to form a reverse micelle. The 

tertiary mixture makes it slightly more difficult to initially optimize but encapsulates a 

wide range of proteins (113, 114, 122, 138). Recently, a new quaternary surfactant 

system was introduced consisting of lauryldimethylamine-N-oxide (LDAO) and 

decylmonoacylglycerol (10MAG) and slight amounts of primary alcohol cosurfactants. 

The 10MAG/LDAO is a zwitterionic surfactant mixture resulting in a much lower charge 

density than the other anionic and cationic surfactants (AOT and CTAB respectively). 

The 10MAG/LDAO mixture is capable of encapsulating the widest range of proteins, but 
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due is the most difficult to optimize (135). Nearly all proteins can be encapsulated in one 

of these surfactant mixtures.  

Dissertation Objectives 

It is clear that the interactions between protein and water are incredibly complex. In order 

to understand the thermodynamic contributions of water to different aspects of protein 

function it is necessary to obtain a site and time resolved view of protein hydration in 

native folded protein. And yet, due to the complex behavior of water, experimental 

techniques that provide this level of resolution are lacking. The revival of NMR methods 

to measuring protein-water interactions via the NOE by encapsulating proteins in the 

interior of reverse micelles has contributed a great step forward in this endeavor. While 

promising, technological advancements will facilitate the broader application of these 

methods. The goal of this dissertation is to improve and expand upon on these methods to 

make it generally applicable to all protein systems. The following chapters are organized 

in order of increasing complexity in the measurements ranging from binary observations 

of internal waters to analysis of protein hydration across the chemically heterogeneous 

protein surface.  

Chapter 2 employs NOE hydration measurements to ask a straightforward biophysical 

question: do water molecules enter the hydrophobic core of proteins to stabilize internal 

ionizable groups? Although a seemingly simple question, the lack of techniques that 

provide site resolution have made this a highly debated subject. In fact, many 

experimental and computational methods including X-ray crystallography, MRD, and 

MD simulations have been employed to tackle this question. To date, many of the 
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findings of these experiments contradict each other and therefore no clear consensus has 

been reached. As only detection of internal waters are required, and no dynamics are 

necessary to address this question the NOE experiments collected were relatively fast. 

This allowed for the study of several different mutants in a tractable amount of time.  

Chapter 3 addresses the issue of reproducibility and level of quantitation derived from 

NOE hydration measurements. Data collection times were reduced by implementing non-

uniform sampling of three-dimensional experiments or by decreasing the dimensionality 

of the experiments from three to two dimensions. Minimal signal-to-noise requirements 

for quantitative reproducibility were determined. Finally, a new data fitting method was 

implemented that allows for the quantitative hydration dynamics of buried waters, or 

waters in the absence of artifact from exchangeable side-chains.  This method of data 

fitting does not require assumptions about the relaxation of the protein-water interaction 

and is therefore more robust than previously established methods. The established 

method centers on collecting a buildup of experimental mix times and therefore would 

not be feasible if not for the reduction in data collection times. 

Finally, Chapter 4 tackles one of the long-standing limitations of protein-hydration 

measurements via the NOE: contamination from hydrogen exchange. A new pulse 

sequence was implemented that decouples side-chain hydroxyls removing exchange 

relayed contributions. A more rigorous data fitting method is implemented that allows for 

quantitative hydration dynamics measurements without artifact even for sites in the 

proximity of exchangeable side chains. The experiments and data analysis are more 
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intensive than those presented in Chapters 2 and 3, but provide a means to measure 

protein-water NOE’s without contamination through the entire protein.  

A distillation of the methods introduced in the subsequent chapters is provided in 

Appendix A. A general protocol for how to prepare samples and the data collection 

necessary for these measurements is provided. Additionally, the different data fitting 

methods described in the following chapters is reiterated with their general use and 

applicability.  It is the hopes of the writer that anyone reading this thesis will be able to 

implement these experiments in order to address fundamental questions of protein 

hydration. 
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Chapter 2: Water Penetration into the hydrophobic core of 
staphylococcal nuclease stabilizes internal ionizable residues 
 
This work began as a collaboration with Dr. Bertrand Garcia Moreno from Johns 
Hopkins University.  

Abstract 

Water-penetration into the core of proteins serves many structural and functional roles. 

Understanding protein-water interactions has been a long sought after goal but has 

remained elusive due to the complicated behavior of water. Solution nuclear magnetic 

resonance (NMR) spectroscopy via the nuclear Overhauser effect (NOE) in combination 

with reverse micelle encapsulation of proteins has been proposed as a means to 

characterize these interactions. This method was used to measure hydration dynamics 

measurements of a hyper stable variant of staphylococcal nuclease SNase ∆+PHS and 

two mutants SNase ∆+PHS/I92E and SNase ∆+PHS /V66E. These mutants have 

ionizable groups buried within the hydrophobic core of the SNase β-barrel. These 

ionizable groups have large dielectric constants relative to what is normally predicted 

within the protein. Water penetration into the hydrophobic core of the protein, as well as 

protein relaxation have been proposed as ways of stabilizing these internal ionizable 

groups. Protein hydration detected via the NOE validates crystallographic waters in all 

variants of Snase. Additionally, the SNase mutants show detectable hydration throughout 

the entire hydrophobic cavity. Protein dynamics on both the fast (ps-ns) and slow (µs-ms) 

timescale are largely unchanged between the SNase Δ+PHS parent protein and mutants. 

This suggests that water penetration into the core of the protein acts to stabilize the buried 

ionizable groups.   
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Introduction 

Water penetration into the core of proteins serves many structural and functional roles 

(53, 91, 93, 139). Internal water molecules generally interact with buried polar groups 

that do not have a hydrogen-bonding partner (61, 140, 141). They serve to reduce the 

energetic cost of transferring polar atoms into the hydrophobic interior(61). Most buried 

ionizable groups are typically in their hydrated state, and just a few water molecules are 

needed to solvate charges effectively in the proteins low dielectric environment. As many 

buried polar and ionizable groups are essential for catalysis and energy transduction 

including H+ transport and redox reactions water molecules play a central role in these 

fundamental protein processes (57, 59, 140, 142, 143).  

However, despite the fundamental role of internal waters on protein function a site 

resolved understanding of the number and location of water molecules has proved to be 

elusive. Water molecules are extremely small and are generally disordered with rapid 

rotational motion (141). Additionally, water penetration is often accompanied by changes 

in the conformation and dynamics of the protein. This makes experimental measures of 

internal hydration difficult to obtain for all but the most rigid waters. Many experimental 

and computational methods have been employed to study internal waters, but each with 

its own sets of caveats. X-ray crystallography provides the precise location of rigid water 

molecules (80), however, positionally disordered waters will not provide sufficient 

electron density and cannot be detected by crystallography. This is especially true in 

room temperature crystallography where generally no water molecules can be detected. 

Cryogenic crystal structures detect more internal waters but whether those are present at 

room temperature or if they result from cryogenic artifacts is still largely debated (79, 
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144). Molecular dynamic (MD) simulations have provided the majority of our 

understanding of internal waters; however, the lack of experimental evidence makes 

simulation data difficult to interpret (24). Fluorescence (88) and dynamic nuclear 

polarization measurements (145) offer site resolution and dynamics information about 

local waters but require mutation of the protein. Neutron and x-ray scattering methods 

(77), as well as magnetic relaxation dispersion (MRD) (31, 75) methods provide dynamic 

information but report only on global averaging thereby precluding a site resolved 

understanding of the water positioning. An experimental method that provides site 

resolution of native protein at room temperature is necessary in order to understand that 

number and position of these internal water molecules.  

NMR spectroscopy is a useful tool for characterizing interactions between water and 

protein. Wüthrich and coworkers proposed NMR methods for the study of site-resolved 

hydration dynamics more than two decades ago (91).This method measures protein-water 

interactions using through-space intermolecular dipolar magnetization exchange 

processes between protein and water via the nuclear Overhauser effect in the laboratory 

(NOE) (94) and rotating (ROE) (96) reference frames. NMR spectroscopy also detects 

protein dynamics across multiple timescales (146). Unfortunately in bulk aqueous 

solution NMR spectroscopy of protein-water NOE’s is limited by the same difficulties 

that plague other experimental techniques. Rapid water motions, exchange between the 

aqueous layer and bulk solution, and rapid hydrogen exchange rates restrict these 

measurements to only a few completely buried and rigid waters. Recently, Nucci et al. 

showed that encapsulating proteins into the hydrophilic core of a reverse micelle removes 
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all of the artifacts associated with measuring hydration via the NOE in bulk aqueous 

solution (125).  

Reverse micelles (RMs) are nano-scale complexes that spontaneously form in the 

presence of appropriate amphipathic surfactant molecules, bulk organic solvent, and 

minimal aqueous solvent (109). Protein structure and native hydration layer are 

maintained inside of the protective core of reverse micelles (119). Sequestration of 

protein in the aqueous core of RMs provides several advantages in the measurement of 

hydration dynamics. Firstly, confinement from the RM slows both hydration water and 

hydrogen exchange behavior (68, 133.). The combined slowing of water and hydrogen 

exchange means that the movements of the hydration layer are within the range of 

detection by NMR and that artifacts from hydrogen exchange are minimized. 

Additionally, the removal of bulk water prevents exchange in and out of the hydration 

layer (102). These benefits allow for detection of protein-water interactions of dynamic 

waters, as well as the detection of water molecules that are still partially solvent 

accessible. Furthermore, protein hydration and protein dynamics can be measured in the 

same sample that allow the interplay between water penetration and dynamic changes to 

be studied simultaneously.  

The present study uses NMR spectroscopy to measure internal hydration and protein 

dynamics of staphylococcal nuclease (SNase) Δ+PHS and two of its mutants (147). 

SNase Δ+PHS is a hyper stable pseudo-wild type variant of SNase and differs from wild 

type by three mutations (P177G, H124L, S128A) and deletion of a loop (residues 44-49) 

(24). SNase Δ+PHS has a flat stability profile (11.8kcal/mol) between pH 4.5-9. SNase 

Δ+PHS has a cavity within the hydrophobic core that is large enough to fit ~4 water 
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molecules but is generally thought to be desolvated. Many mutants have been engineered 

with internal ionizable groups in the hydrophobic core of the protein to study the 

dielectric constant of proteins in a controlled manner. Many mutants remain folded with 

little change to the crystallographic structure. In this present study the NOE is used to 

detect protein hydration in SNase Δ+PHS, and two mutants SNase Δ+PHS/I92E (148) 

and SNase Δ+PHS/V66E (54). Additionally, backbone dynamics are measured to asses 

changes in dynamics associated with each mutant. Ile92 is one of the most buried 

residues in SNase and its side chain is buried deep within the hydrophobic core of the β-

barrel. Similarly the side chain of Val66 is also buried within the β-barrel but the residue 

resides on the α1 helix immediately adjacent to the β-barrel(149). Several characteristics 

of these mutations make them ideal for studying the dielectric constant of proteins (150). 

Firstly, the small cavity within the hydrophobic core in which these side chains reside 

offers enough room to tolerate amino acid substitutions without disrupting the side chain 

(151-155). Thus any change in protein structure or dynamics is a result of the presence of 

internal polar groups. As these mutations are non-native the protein does not have any 

evolutionary mechanisms in place to stabilize these charges and therefore must adapt to 

the change in the local environment. Previous studies have shown that the mutant 

proteins retain their native fold and that the buried Glus have an elevated dielectric 

constant of ~10 (54, 141, 148, 156-159). Whether the stabilization of the internal 

ionizable group and high dielectric constant are the result of water penetration or protein 

relaxation remains highly debated. The data presented here suggest water penetration is a 

dominant source of the high polarizability of the protein interior and the stabilization of 
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internal polarized residues with minimal changes to overall backbone dynamics or 

structure.  

Results and Discussion 

SNase encapsulation 

Wild type SNase ∆+PHS and its mutants ∆+PHS/V66E and ∆+PHS/I92E stably and 

reproducibly encapsulate at a final concentration of 100 µM in reverse micelles 

composed of 60 mM, 450 mM hexanol and a Wo of 20. Under these conditions the 

reverse micelles are mono-dispersed ellipsoids (114). Lower concentrations of 

cosurfactant increase the resolution between the water and hexanol hydroxyl peak (Figure 

2-1). The 15N NOESY-HSQC experiments used for hydration were also analyzed to 

verify that the protein is not interacting with the surfactant shell. If coalescence of the 

water and hexanol peaks occurs then there is no way to verify that NOE’s are arising 

from water and not from hexanol. 13C-detected hydration experiments require deuterated 

surfactants to eliminate spectral artifacts in the methyl region. Therefore, it is important 

to have at least one protonated site in the surfactant that is spectrally resolved to verify no 

protein-surfactant interactions. All samples had a separation >100hz between the water 

and hexanol peaks.  

Hydration measurements detected via the NOE require low pH to minimize hydrogen 

exchange. The NOE can detect magnetization transfer through both through space dipolar 

interactions as well as hydrogen exchange (92, 95, 105, 160, 161). It was previously 

shown that the reverse micelle slows hydrogen exchange by 2 orders of magnitude (125, 

133). Thus, amide exchange is sufficiently slow in the reverse micelle to not exchange on 

the timescale detectable by the NOE (161). Unfortunately, titratable side chains have 
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exchange rates higher than amides. Side chains have exchange rate minima between pH 

5-7 (162). In order to limit hydrogen exchange processes all experiments were performed 

at pH 5.3. The pH was verified by amide chemical shifts and by monitoring the acetate 

chemical shift as described previously (137).  

 

Figure 2-1: Overlay of standard 1D spectrum (black) and 1D spectrum with WET 
suppression (163)of SNase Δ+PHS encapsulated in CTAB/hexanol reverse 
micelles. Peaks that were used to assess sample stability are labeled a) water, b) 
hexanol, and c) acetate. Separation between the water and hexanol peaks is 
necessary to ensure that the protein is not interacting with the surfactant layer 

 

Upon encapsulation spectra maintain broad dispersion of peaks, and only minimal 

chemical shift perturbations were observed between aqueous and reverse micelle 

samples. The 15N-HSQC spectrum of encapsulated SNase ∆+PHS show excellent 
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agreement with that obtained in free aqueous solution with R2 for chemical shift 

correlations of the amide 1H and 15N both exceeding 0.99 and chemical shift RMSDs of 

0.04 ppm and 0.17 ppm for proton and nitrogen chemical shifts, respectively. The 13C-

HSQC of the reverse micelle is directly superimposable on the aqueous spectrum. This 

indicates the protein maintains its native structure under the conditions used for 

encapsulation. Under these conditions the reverse micelle samples remain stable for >6 

months. Stability of the reverse micelle mixture was verified by periodically measuring 

the integral and chemical shift of the water and acetate peaks in 1D proton detected 

experiments. Stability of the protein was verified by 2D 15N-HSQC’s.   

Chemical Shift Perturbations of I92E and V66E mutants 

The amide cross peaks in 15N-HSQC spectra are highly sensitive to the local chemical 

environment and therefore report on minor structural perturbations. The majority of 

amide peaks in both the ∆+PHS/I92E and ∆+PHS/V66E mutants do not display major 

chemical shift perturbations (CSPs) upon mutation suggesting general retention of the 

structure (Figure 2-2). Ile92 is one of the most buried residues of SNase and resides in the 

back of the β-barrel. The mutated Glu side chain is completely buried within the 

hydrophobic core. The pKa value of the buried Glu is shifted towards neutral with a value 

of 8.85 (164). The stability of the I92E mutant is highly pH dependent and has a 

maximum stability at pH 5. As the pH is increased the Glu becomes deprotonated and the 

stability decreases. At pH 5.3 the buried Glu is in its protonated uncharged form, and the 

protein has a stability >5.5kcal/mol. The I92E mutant has a median CSP of 0.04 ppm 

with a mean of 0.11 ppm. There are several locations where larger CSP’s occur. The β-

bulge consisting of residues 18-22, and the inner part of the α1 helix consisting of 
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residues 61-67 show CSPs up to 1ppm. The residues that make up the β-bulge show the 

largest crystallographic Cα RMSDs in the crystal structures relative to wild type (144). 

However, these changes are slight with a  <0.3Å RMSD. Additionally, these residues 

form a hydrogen bond network with the 4 internal water molecules that solvate the Glu 

carboxyl. The hydrogen bonded water network extends out toward bulk solvent. These 

bridging waters extend between the β-barrel and the α1 helix and are hydrogen bonded to 

the Ser 59:O. CSPs of the mutation site and the residue immediately preceding it can also 

be observed.  

 

Figure 2-2: Chemical Shift perturbations for SNase Δ+PHS/I92E (blue squares) 
and SNase Δ+PHS/V66E (red triangles) relative to the pseudo wild-type SNase 
Δ+PHS parent protein.  

 

The V66E mutation is located on the α1 helix, with its side chain buried in the β-barrel. 

Similar to the I92E mutant, the V66E mutant Glu has a pKa value of 8.8 that is highly 

shifted toward the neutral form. At pH 5.3 the buried Glu is in its protonated uncharged 

form and the protein has a stability of ~5 kcal/mol. A similar pattern of CSPs can be seen 

in with the V66E mutant as with the I92E mutant. CSPs are identified in the β-bulge 

consisting of residues 18-22, and in the α1 consisting of residues 61-67. While fewer 

water molecules are seen crystallographically, 2 buried waters are hydrogen bonded to 
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residue 22 and solvate the buried Glu. A similar water network of bridging waters is also 

seen crystallographically. The CSPs presented here are in agreement with the crystal 

structures (54, 148) that have been determined previously and suggest that no large 

changes in the protein structure are present.  

Analysis of NOESY and ROESY spectra 

Protein-water interactions were measured by observing cross peaks at the water 

resonance of 15N-resolved NOESY- and ROESY-HSQCs (Figure 2-3A and C) for amides 

and 13C-resolved NOESY- and ROESY-HSQC’s for methyls. (Figure 2-3B and D). 

Hydration measurements were performed on fully perdeuterated protein that was grown 

in 99% D2O to replace non-labile protons with deuterons (165). This removes any intra-

molecular cross-peaks from Hα protons that resonate at frequencies overlapped with 

water. Perdeuteration also drastically decreases the R1ρ relaxation rate due to the lower 

gyromagnetic ratio of deuterons over protons. Perdeuteration decreased the amide R1ρ 

relaxation rate to 0.04 s-1 from 0.11 s-1 in full protonated protein. This allows for the 

collection of ROESY spectra at longer mix times. All amide detected NOE and ROE 

experiments were collected with 30 ms mix times. Methyl detected experiments were 

collected at 40 ms mix times. The intensity of the NOE is dependent on both the distance 

between interacting spins and the motions of the internuclear vector (93, 94). The NOE is 

therefore lower in intensity for inter-molecular crosspeaks, such as those between protein 

and water, than in intramolecular cross peaks. Increasing the mix time allows for 

increased signal-to-noise and detection of interactions that have faster water motions. All 

protein-water interactions were assumed to have a distance of <4 Å between the 

interacting spins.  



 29 

The cross-relaxation rate of the NOE and ROE cross peaks are dependent on the 

correlation time of the protein-water interaction. The correlation time is defined as the 

inverse sum of the molecular tumbling (τm) and the interaction of the protein and water 

bond vector. The NOE has a positive cross relaxation rate at short correlation times and 

then crosses zero and becomes negative for longer correlation times. This zero crossing 

point is 356 ps when collected on a 500MHz spectrometer. This results in a negative 

cross peak relative to diagonal for short interaction times and a positive cross peak 

relative to diagonal at longer interaction times. All NOESY cross peaks in the 15N and 

13C-NOESY-HSQC spectra are positive suggesting long-lived protein-water interactions 

(Figure 2-3A and B). The rotational translational motion of water is slowed an order of 

magnitude in the reverse micelle relative to bulk (68). Additionally, it is known that the 

dynamics of water at the protein interface are slowed 1-2 orders of magnitude. The lack 

of negative NOESY cross peaks indicate that the dynamics of water on the surface and 

within the protein are substantially slow relative to bulk.  
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Figure 2-3: A) 15N NOESY-HSQC, B) 13C NOESY-HSQC, C)15N ROESY-
HSQC, and D) 13C ROESY-HSQC spectra at the water plane of SNase Δ+PHS 
encapsulated in CTAB/hexanol reverse micelles. Positive and negative crosspeaks 
are colored black and red, respectively. No positive crosspeaks are observed in 
15N or 13C NOESY-HSQC spectra owing to the slowed waters in the reverse 
micelle. Positive crosspeaks observed in 15N or 13C ROESY-HSQC spectra are 
located in disordered termini or side chains suggesting no contamination from 
hydrogen exchange. 
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In contrast to the NOE the cross-relaxation rate of the ROE is always positive, resulting 

in a negative cross peak relative to the diagonal. Hydrogen exchange results in a positive 

cross peak relative to the diagonal in the ROE spectrum. This is advantageous because it 

easily allows for the detection of hydrogen exchange. Therefore, only negative cross 

peaks in the ROESY spectra are considered to be protein-water interactions. Positive 

cross peaks are indicative of hydrogen exchange and are not included in our analysis. As 

the cross-relaxation rate of the ROE does not have a zero crossing point it is able to 

detect faster protein-water interactions (98). Residues that had cross peaks in the ROESY 

experiments but not the NOESY experiments were considered fast protein water 

interactions as the NOE approaches the zero-crossing point.  

In SNase Δ+PHS and both mutants the majority of positive cross peaks in the 15N-

ROESY spectra, which are indicative of hydrogen exchange, are the disordered protein 

termini. An additional 2 sites, Arg81 and Lys 84, within the protein showed hydrogen 

exchange peaks. None of these sites are located near mutation sites. No positive cross 

peaks were observed in 13C-detected ROESY experiments and no other hydrogen 

exchange peaks were observed in any of the spectra (Figure 2-3 B and D). 

Hydration of SNase ∆+PHS and comparison to crystal structures 
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Water 
H-Bond 
Partners 

Detected Amide 
NOEs 

Detected Methyl 
NOEs 

WAT1 Asp77:N, 
Leu89:O 

Lys84, Gly85, 
Asp89, Gln125, 
Thr126 

Leu7:HD, 
Leu37:HD, 
Leu89:HDS 

WAT2 Trp140:Nε1, 
Val104:O, 
Ala109:O 

Gly107, 
Trp140Hε1 

Val104:HG 
Ile133:HD 
 

WAT3 Gly20:N, 
Pro42:O, 
Gly55:O 

Phe44, Gly20   

WAT4 Glu73:Oε1, 
Gly96:N 

Glu73, Asp95, 
Gly96 

  

WAT5 His8:O, 
Glu10:Oε2, 
Phe76:N 

His8, Glu10, 
Phe76 

  

WAT6 Tyr115:N, 
Asn118:O, 
Tyr113:O 

Leu38, *Val114, 
Gly117, Asn119 

Leu38:HDS, 
Leu37:HD, 
*Val108:HGS 

WAT7 Thr22:O, 
Asp19:O, 
Ser59:O 

Ile18, Gly19, 
Asp21, Thr22, 
Lys63 

  

*Residues >4Å in flexible loop consisting of residues 111-119 

Table 2-1: Location of buried crystallographic waters and nearby protons with 
detectable hydration via the NOE 

 

Cross peaks that were detected in 15N and 13C NOESY- and ROESY HSQC’s were 

mapped to the cryogenic crystal structure of SNase ∆+PHS (PDB accession 3BDC). 

Several waters have been identified in the cryogenic crystal structures, although only 2 

water molecules have been confirmed using magnetic relaxation dispersion methods 

(141). A list of crystallographic waters and the sites with NOEs are listed in Table 2-1 

(54). One water molecule, WAT1 is hydrogen bonded to the Asp77:N and Leu89:O. 

Numerous cross peaks including Leu7, Leu37, and Leu89 methyls, and show NOEs to 

water. WAT2 is hydrogen bonded to the Trp140 indole. NOEs to water were detected on 

the Val104 and Ile133 methyls, Gly107 amide, and the Trp140 indole. A third buried 

water, WAT3, is hydrogen bonded to Gly20:N, Pro42:O, and Gly55:O. NOEs were 

detected to the amides of residues Phe44 and Gly20. Two water molecules WAT4 and 

WAT 5 are partially solvent exposed and hydrogen bonded to Glu73:Oe1 and Gly96:N, 

and His8:N, Glu10:Oe2, and Phe76:N respectively. NOEs to water are detected on 
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amides Glu73, Asp95 and Gly96 for WAT4 and His8, Glu10 and Phe76 for WAT5. 

Several solvent exposed waters are also identified in the active site. These waters, WAT6, 

are hydrogen bonded to Y115:N, N118:O, and Y113:O. The amide of Leu38, and 

methyls of Leu37 and Leu38 are less than <4 Å away from WAT6 and have detectable 

NOEs to water. Additionally, several other residues including amides Val114, Gly117, 

and Asn119, and methyls from Val108 also show NOEs to water. The loop making up 

the active site consisting of residues 111-119 is highly dynamic as assessed by H-N NOE 

(166) and TROSY-Hahn Echo experiments (167). This flexibility would explain the 

detection of NOEs to waters that are between 4-6Å away from the crystallographic water. 

One final cluster, WAT7 of buried waters resides within the β-bulge consisting of 

residues 18-22. Two water molecules are hydrogen bonded to each other and residues 

Thr22:O, Asp19:O, and Ser59:O. While the water molecule bound to Ser59 is detected by 

all crystal structures the water bound to Thr22 and Asp19 is only detected in some crystal 

structures. Amides immediately surrounding these waters Ile18, Gly19, Asp21and Thr22 

all have NOEs to water confirming the presence of this second water molecule.  
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Figure 2-4: Top: Structure of SNase Δ+PHS (PDB accession code 3BDC) with 
buried crystallographic waters shown as blue spheres. Bottom: Structure of SNase 
Δ+PHS (PDB accession code 3BDC) with protons with detectable NOEs to 
waters illustrated as spheres. Sites that are within 4 Å of a crystallographic water 
are illustrated in blue, with all other sites in purple. 

 

Despite the hydrophobic interior of the β-barrel containing a cavity large enough to hold 

4 water molecules, no water NOEs are detected in the hydrophobic core. Additional 

NOEs to water were located on surface exposed regions of the protein. These include 
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amides from residues Phe61, Val17, Thr13, Leu14, Met26, Tyr29, and Lys53. While 

multiple crystallographic waters are present in the SNase Δ+PHS cryogenic crystal 

structure, only two waters, WAT1 and WAT2 are considered long lived according to 

MRD experiments and MD simulations (156, 157, 159, 168). No NOEs were detected on 

buried residues that were not near crystallographic water. All additional NOEs were 

located on loops and were solvent exposed. In the absence of spin diffusion the NOE has 

a very short r-6 dependence. Since all NOEs, except for those in the dynamic active site 

loop were under 4 Å in distance from a crystallographic water shows that the local nature 

of the NOE is maintained.  

Hydration of I92E  

The I92E mutation is one of the most buried residues in the protein and is located in the 

back most buried region of the β-barrel. At pH 5.3 the Glu is in its neutral, protonated 

form. It is part of the hydrophobic core consisting of residues Leu14, Ala17, Val23, 

Leu36, Val66, Ile72, and Val99. NOEs for the I92E mutant were detected for Leu14, 

Val23, Leu36, Val66, and Ile72. Both methyl peaks for Val99 were overlapped in the 13C 

detected experiments and cannot be used in our analysis, and Ala17 was unable to be 

detected due to the choice of ILV only methyl labeling. All methyls lining the 

hydrophobic core have NOEs to water suggesting water penetration throughout the cavity 

(Figure 2-5A). This is in stark contrast to previous experimental and computational data. 

The I92E mutant has the largest number of waters in the cryogenic crystal structure, but 

doesn’t have any crystallographic waters in room temperature structures (144). A total of 

4 cryogenic crystallographic waters are hydrogen bonded to each other and to the Glu92 

carboxyls, and Gly20, Asp19, and Thr62 carbonyls. Methyls of Leu14, Val23, Leu36, 
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and Val66 are within 4 Å of these crystallographic waters. However, the methyls of 

residue Ile72 are more than 6 Å from the nearest crystallographic water, and more than 4 

Å from the Glu carboxyls. This suggests that water penetrates deep into the hydrophobic 

core but is disordered. These disordered waters cannot make hydrogen bonds with nearby 

residues that accounts for lack of crystallographically detected waters. Up to 10 putative 

binding sites were previously detected for SNase mutants by DOWSER (168). However, 

molecular dynamics simulations suggest that water molecules occupy only 5 of these 

sites and that on average only two water molecules are present in the cavity at any time. 

The findings presented here suggest that all 10 of these binding sites may be transiently 

occupied by water but these waters may not form the necessary hydrogen bonds to be 

detected by other methods. This is consistent with findings of Nguyen et. al (148). The 

NOE is capable of detecting dynamic and positionally disordered waters as long as they 

are within 4 Å of the detecting proton.  

Hydration of V66E 

Similar to the I92E mutant, all internal crystallographic waters that were detected in the 

SNase Δ+PHS cryogenic structure were also detected in the V66E mutant structure. 

Residues buried deep in the hydrophobic core have detectable NOEs to water. This 

includes residues Leu14, Leu36, Ile72, and Ile92. Only two waters were detected in the 

cryogenic crystal structure and no waters were detected in the room temperature crystal 

structure. Molecular dynamics simulations confirmed the presence of two water 

molecules, although one water molecule is more long-lived than the other (156, 168). 

Magnetic relaxation dispersion showed no difference in internal hydration between the 
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Δ+PHS and V66E mutant (141). NOEs to water can be detected by all methyls lining the 

cavity suggesting that water penetrates deep into the cavity (Figure 2-5B).  

 

Figure 2-5: Cavity of SNase Δ+PHS/I92E (PDB accession number 5KIX) A) and 
SNase Δ+PHS/V66E (PDB accession number 5EGT) B). Sites with detectable 
NOEs to water are shown as teal spheres. The site of mutation is illustrated as 
orange sticks. 

Comparison of protein dynamics 

The increased dielectric constant of the buried Glu residues in the I92E and V66E 

mutants can be due to either water penetration into the core or by local structural 

rearrangements. The CSP data presented here are in agreement with crystallographic data 

suggesting that no large changes occur to the protein structure occur upon mutation. 

Water penetration can be coupled to changes in local unfolding or increased dynamics on 

the µs-ms timescale. Protein dynamics using the H-N NOE were used as a proxy to detect 

fast (ps-ns) motions and protein disorder (166). The ratio of the NOE is taken from 

experiments with and without saturation. The saturated NOE is dependent on the local 

fluctuations of the H-N bond vector. Ordered regions with fast dynamics have depressed 
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ratios and are generally less than 0.65, whereas the ratios of disordered regions invert 

sign. In the SNase Δ+PHS protein negative HN-NOE values were detected in disordered 

termini. Additionally decreased HN-NOE values were measured at the β-bulge consisting 

of residues 18-22, the β-turn consisting of residues 28 and 29, the truncated loop 

consisting of residues 37-54, and the loop consisting of residues 107-119 (Figure 2-6A). 

This is consistent with previously measured aqueous 15N relaxation data of SNase (169). 

This further suggests that structure and dynamics are unaffected by reverse micelle 

encapsulation. Similar patterns of HN-NOE ratios were observed for both of the mutants 

studied. Comparisons of HN-NOE ratios between the WT and I92E mutant had a slope of 

0.95, and R2 of 0.98, and a standard deviation of 0.05. Similarly, comparisons between 

WT and the V66E mutant had a slope of 0.99, with an R2 of 0.98 and a standard deviation 

of 0.04. Thus, no changes in protein disorder or protein dynamics on the ps-ns timescale 

were observed.  

TROSY Hahn-Echo experiments were used to assess protein dynamics on the us-ms 

timescale, and are expressed as the rate of chemical exchange (Rex) (167). The fastest 

dynamics of the WT protein Rex values were greater than 20 s-1. These residues were part 

of the β-bulge consisting of residues 18-22, the loop consisting of residues 37-54, and the 

loop consisting of residues 107-119 (Figure 2-6B). Similar patterns of Rex were identified 

for the I92E mutant. Conversely, Rex values for the V66E mutant are depressed for all but 

the loop consisting of residues 107-119. Thus, no increases in protein dynamics occur 

upon mutation. Molecular dynamic simulations have shown that the most common 

traveled route for water molecules is through passage between Ala17, Ile18, Aps19, and 

Ser59. Intriguingly, these protein dynamics, along with buried waters hydrogen bonded to 
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Thr22 and Asp19 and Ser59 are observed in all mutants as well as the wild type. Thus the 

flexibility of the β-bulge is required for penetration of water into the core of the protein.  

 

Figure 2-6: A) HN-NOE values and B) TROSY Hahn-Echo Rex values for SNase 
Δ+PHS (black circles), SNase Δ+PHS/I92E (blue squares), and SNase 
Δ+PHS/V66E (red triangles). 

Conclusions 

The dielectric constant for ionizable groups buried in the hydrophobic core of SNase is 

substantially higher than what would be expected from the protein interior. Two 

mechanisms have been proposed to describe the increased dielectric accompanying 

buried ionizable group; water penetration into the hydrophobic core, and structural 

rearrangement of the protein. However, despite numerous experimental and 

computational studies there remains a longstanding debate as to whether or not water is 

capable of entering the hydrophobic core of proteins. This study uses reverse micelles to 
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investigate protein dynamics and protein-water interactions in SNase and two mutants via 

NMR spectroscopy.  

The structure and dynamics of SNase Δ+PHS encapsulated in CTAB/hexanol reverse 

micelles is maintained relative to bulk solution as assessed by chemical shift 

perturbations, and HN-NOE and TROSY Hahn Echo experiments. The reverse micelle 

serves to slow the rotational and translational motions of water as well as remove 

exchange in and out of the hydration layer to bulk. However, despite this, the majority of 

residues that have detectable NOEs to water are within 4 Å of previously detected 

crystallographic waters or reside in solvent exposed parts of the protein exemplifying the 

local nature of the NOE. Three water sites have been previously identified as being slow, 

whereas six different buried water sites were identified by the NOE. Thus, the NOE is 

capable of detecting protein-water interactions on timescales faster than other methods 

such as room temperature crystallography and magnetic-relaxation dispersion. Even 

though the hydrophobic core of the WT protein is large enough to house up to four water 

molecules, no NOEs were detected to water in the core suggesting that no water 

penetrates the core in the wild type protein.   

In contrast to the wild-type protein, SNase I92E and V66E mutants have detectable NOEs 

to water throughout the hydrophobic cavity. No major changes in chemical shift or 

dynamics were observed between the wild type and mutant proteins. These findings are 

consistent with crystallographic structures and suggest that water penetration is not 

coupled to any large conformational changes or local unfolding events. The largest 

changes in chemical shift are observed around the β-bulge consisting of residues 18-22. 

This region of the protein has fast Rex dynamics on the us-ms timescale in both the WT 
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and mutant proteins. This suggests that the dynamics along the β-bulge allow for 

penetration of water molecules into the cavity but the lack of hydrogen binding partners 

within the hydrophobic core preclude burial of water in the WT protein in its native state. 

Upon mutation the buried Glu residues in the I92E and V66E mutants are sufficient to 

stabilize water molecules within the hydrophobic core. These waters are hydrogen 

bonded to the carboxyl side chains of the Glu residue and form a characteristic ring like 

structure. However, the depth of detected NOEs suggest that once the water molecule is 

brought into the core of the protein it is capable of transiently penetrating deep into the 

hydrophobic core. These transient motions are likely highly disordered and therefore not 

detectable by crystallography or other methods such as magnetic relaxation dispersion. 

The data presented here suggest that water penetration is a major factor for the high 

apparent dielectric constants of buried Glu residues. While slight structural 

rearrangements of side chains would not be detected by our measurements no large 

changes in protein structure or dynamics are observed upon water penetration. These 

findings are consistent with those hypothesized by Nguyen et al. who suggest that the 

hydrophobic core may contain many more water molecules than previously detected, and 

that they may not be site bound and can penetrate transiently in many locations (148). 

The NOE method does not require positionally ordered waters and is therefore the only 

method that can detect these types of dynamic interactions. 
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Chapter 3: Reduction of experimental time for protein-water hydration 
measurements using nuclear magnetic resonance spectroscopy 
 
Most of this work was done in collaboration with Dr. Bryan Marques, previous Ph.D. 
candidate in the laboratory of A. Joshua Wand.  

Abstract 

The interaction between the surface of proteins and the three to five layers of solvating 

water (the hydration layer) is inarguably of utmost importance throughout all facets of 

biology; however, these interactions are notoriously difficult to observe in a site-specific 

manner without physical alterations to the studied protein. Encapsulating proteins within 

reverse micelles slows hydration dynamics and hydrogen exchange within the hydration 

layer enough such that it allows for quantification of site-specific hydration dynamics at 

protein surfaces via NMR nuclear Overhauser effect (NOE) spectroscopy. Through the 

advent of non-uniformly sampled (NUS) NMR spectroscopy, it is possible to reliably 

extract this information in afraction of the time. In this study, we first determine the 

reproducibility of hydration dynamics measurements as determined from NUS versions 

of the experiments and also provide criteria for outlier detection. We also extrapolate 

proper hydration ratios for encapsulated ubiquitin by collecting hydration dynamics 

experiments at multiple mixing times, a feat not possible without NUS. Finally, we 

introduce water-selective two-dimensional versions of the hydration experiments that 

further improve the efficiency with which hydration dynamics can be detected. 

Introduction 

The ability to measure protein-water interactions is necessary to understand the 

thermodynamic role solvation water plays on protein function and stability (43, 44, 46). 
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However, measuring these interactions has proven to be quite difficult for a number of 

reasons. Solution nuclear magnetic resonance (NMR) has been used to measure the 

dynamics of protein water interactions via the nuclear Overhauser effect (90, 91, 93). 

These measurements, when performed in bulk aqueous solution, have numerous artifacts 

that limit the ability to study protein hydration in a quantitative manner (75, 102). 

We have recently shown that encapsulating proteins in the hydrophilic core of a reverse 

micelle (RM’s) retains the native folded protein and its hydration shell while reducing the 

amount of water (116, 117, 119). These factors contribute to slower water and reduced 

hydrogen exchange (27, 133). Proteins encapsulated in RM’s allow an experimental 

condition that is optimal for the study of protein hydration. Nucci et al. show that the 

majority of Ubiquitin in AOT reverse micelles had detectable hydration that spanned the 

entire theoretical limit. He further concluded that the HX rates are indeed slowed by 

several orders of magnitude (125, 126). The combination of selective perdeuteration and 

reverse micelle encapsulation removes all artifacts present in aqueous solution 

measurements without the need for complicated pulse sequences. 

Despite this massive improvement in sample preparation one major technical problem 

still remains. The overall concentration of protein in a reverse micelle sample is often low 

(~50-300µM)(116). Cross peaks observed in nuclear Overhauser effect spectroscopy can 

often be quite low in signal-to-noise intensity due to rapid motions or large distances 

between dipoles. This is especially true in the case of intermolecular interactions (94). 

Thus, protein hydration experiments are often very time costly due to the need to collect a 

high number of transients per FID, which is necessary to obtain peaks with adequate 
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signal-to-noise (S/N) intensity. Thus, the long time requirements restrict data collection 

to one or two mix periods. This makes fitting of the cross-relaxation rates impossible 

without assumptions about the relaxation behavior of water. In this present study two 

different methods are applied to decrease experimental time in NOESY experiments; 

reducing the number of points when collecting a three-dimensional experiment, or by 

reducing the dimensionality of the experiment. Decreasing experimental time allows for 

the collection of multiple mix times thereby providing more robust data fitting.  

Traditional NMR experiments sample uniformly across a Cartesian grid in order to 

satisfy the criteria for the discrete Fourier transform (DFT). NUS takes advantage of the 

fact that only a small subset of sampled frequencies contain data while the rest contain 

noise. Therefore, when using NUS only a fraction of time points need to be collected 

resulting in decreased experimental time per experiment. This time savings can then be 

applied to collecting experiments with greater signal-to-noise (S/N) or resolution in a 

tractable amount of time (170-172). However, processing of NUS data with a traditional 

DFT results in many artifacts. A number of programs have been created to reconstruct 

NUS data sets that result in accurate S/N and frequency reconstruction with minimal 

artifacts. In this present study we use sinusoidally weighted Poisson-gap (173) NUS 

schedule followed by iterative-soft thresholding (IST) reconstruction (174, 175).  IST 

reconstruction belongs to a larger class of compressed sensing algorithms (176). It has 

previously been shown to have accurate frequency reconstruction and high linear peak-

heights relative to a uniformly sampled reference and also benefits from reduced spectral 

noise (170, 173, 174). We have chosen this method due to its ease of application, broad 
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use in the NMR community, and minimal computational requirements. However, the 

procedure in this present paper should be broadly applicable to a number of NUS 

sampling scheduling and reconstruction methods.  

Full three-dimensional experiments are often not needed to measure protein hydration. 

Generally, only crosspeaks that occur at the water resonance of the three-dimensional 

experiment are used for analysis. Time savings can also be accomplished by reducing the 

dimensionality of the experiment from a three-dimensional to a two-dimensional 

experiment. This is accomplished by selectively exciting the water frequency prior to the 

NOE mix time. The excited water is then able to undergo dipolar relaxation (NOE) to 

nearby protein protons, and then read out using a standard HSQC readout.  

First, we identify the minimal recommended non-uniform sampling density necessary for 

quantitative peak height intensity in NOESY-HSQC spectra. Then we then assess the 

intra-sample and inter-sample reproducibility of hydration σNOE/σROE ratios as detected 

with NUS hydration. This allows us to determine a reliable signal-to-noise (S/N) cutoff 

below which reproducibility is generally poor. We then collect hydration experiments 

with a series of mixing times in order to improve the way we calculate the σNOE/σROE. 

And finally, we introduce two dimensional pulse sequences that can also be used for 

protein hydration dynamics measurements. 

Results and discussion 

Choice of Sampling Density 

For hydration measurements we need quantitatively accurate peak heights in addition to 

the precision of peak frequencies. We set out to determine the minimal NUS sampling 
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density necessary for a quantitative NOE. The peak height intensities of the 

intermolecular NOE between protein and water is low relative to intramolecular cross 

peaks. In the case of hydration it is often more beneficial to increase the number of 

transients per FID than increasing the resolution in the indirect dimensions (170) In order 

to find a minimum recommended sampling density we collected a series of 15N-edited 

NOESY-HSQC on U- [13C15N]-ubiquitin collected at low spectral resolution with 

different NUS sampling densities.  

We collected five sampling densities: 5, 10, 15, 20, 25% NUS in both indirect dimensions 

as well as duplicates in the uniformly sample and 25% sampled (highest sampled density) 

data sets. Over 200 well-resolved cross-peaks ranging from signal-to-noise of 10-200 

(~1-20% diagonal peak height) were compared across the varied densities. The R2 of 

peak height intensity converges to ~0.99 at a15% NUS density, however the <RMSD> 

between Cartesian sampling and NUS sampled data continues to decrease as the sampling 

density is increased. The percent RMSD in peak height between two Cartesian replicates 

was 2.2%, compared with two 25% NUS replicates with a percent RMSD of 5.79%. The 

percent RMSD error between Cartesian sampling and 25% NUS data sets was 5.85%. 

Because the error of the σNOE/σROE is taken in quadrature it was important to have a final 

percent error between two replicates be ~5% of the total measurement.  

 Slope R2 % <RMSD> 
Cartesian vs. Cartesian 1.005 0.999 2.20% 
Cartesian vs. 5% NUS 0.839 0.893 26.96% 
Cartesian vs. 10% NUS 0.939 0.976 14.65% 
Cartesian vs. 15% NUS 0.952 0.989 10.62% 
Cartesian vs. 20% NUS 0.966 0.994 9.06% 
Cartesian vs. 25% NUS 0.971 0.996 6.14% 
NUS 25% vs. NUS 25% 1.01 0.998 5.79% 
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Table 3-1: Peak height intensity was compared for NOE cross-peaks in a NUS 
dataset relative to the peak height intensity of a Cartesian sampling data set of the 
same experiment. A combination or <RMSD> and slope were used do determine 
the requirement for 25% NUS sampling for hydration dynamics analysis. 

 

Therefore, all experiments for testing the reproducibility of hydration were used at 25% 

NUS data collection yielding a total ¼ experimental time. These guidelines provided a 

conservative estimate that was determined to be sufficient for high reproducibility 

independent of sampling schedule optimization, resolution, and spectral crowding.  

The IST method for reconstructing non-uniformly sampled data belongs to a larger 

family of compressed sensing (CS) techniques. One of the major limitations of CS 

techniques is the principle of transform sparsity (176). In general, as the sparseness of the 

measured signal is decreased (i.e. more peaks in an NMR spectrum), the amount of points 

collected is decreased, or the sampling density is decreased the reliability of the 

reconstruction decreases. Conventional 3-dimensional spectra (such as the HNCO) which 

are spectrally sparse are often recorded with sampling densities as low as ~10%. 

Unfortunately, NOESY spectra have a much larger number of peaks with a high dynamic 

range of peak heights. This, in combination with the low signal-to-noise of the inter-

molecular NOE presents a challenge for reconstruction of NUS data (170, 171, 177).  

It has been shown that in traditional NMR experiments optimal S/N is obtained when 

indirect dimensions are sampled to 1.26*T2, whereas optimal resolution is present at 

3.14*T2 (178). However, it has also been shown that benefits are observed using NUS 

from increased S/N and resolution well past 1.26*T2 (179). Additionally, the precision of 

the NUS reconstruction is dependent on the overall number of points collected; 
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experiments with low sampling density but high resolution are comparable to low 

resolution, highly sampled data. There is no consensus of optimal sampling density and 

resolution (170, 180).  

In the case of protein hydration measurements the rapid nature of water makes crosspeaks 

intensities generally quite weak relative to the diagonal (94). In order to simulated an 

absolute worst case scenario (as may be encountered in large spectrally overlapped 

proteins) using these criteria we show that a sampling density of 25% results in accurate 

peak height reproducibility and an RMSD less than 5%. This sampling density is similar 

to the requirements of a standard 2D experiment (171, 180), an intuitive finding since the 

water-plane of a 3D NOESY-HSQC largely mimics its HSQC (125). This conservative 

method does not require optimizing sampling schedules, and is tolerant to spectral 

overlap. Decreases in RMSD would be present for well-resolved or more high-resolution 

data collection.  

Reproducibility of NUS 15N NOESY-HSQC and 15N ROESY-HSQC hydration experiments 

Non-uniform sampling was added to standard 15N NOESY-HSQC and ROESY-HSQC 

pulse sequences. For simplicity of analysis (see below), all experimental parameters 

including mix times, pulse length and power, inter-scan delays, and increments collected 

in each dimension must be the same for both the NOE and ROE experiment. The ROE 

experiment replaces the laboratory frame NOE mixing period with a continuous-wave 

spinlock bracketed by 90o
y pulses (98). A weak CW spinlock pulse with a bandwidth of 

~16-20 ppm ensures a wide excitation bandwidth and suppresses contributions from 

Hartman-Hahn transfers. The 90o hard pulses bracketing the spinlock remove any off-
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resonance effects on the edge of the bandwidth. This scheme does not require 

complicated phase cycling (Figure 3-1).  

 

Figure 3-1: 15N NOESY-HSQC and ROESY-HSQC pulse sequences. The boxed 
region indicates the mix with the ROE counterpart illustrated to the right. Narrow 
and wide bars indicate 90o and 180o pulses respectively. Phase cycling of scheme: 
Φ1=4(x), 4(-x), Φ2=4(y), 4(-y), Φ3=16(x),16(-x), Φ4= x,-x, Φ5=2(x), 2(-x), 
Φ6=2(x), 2(-x), Φ7=2(y), 2(-y), r=x,-x,-x,x,-x,x,x,-x,-x,x,x,-x,x,-x,-x,x,-x,x,x,-
x,x,-x,-x,x,x,-x,-x,x,-x,x,x,-x. 

 

In order to study the reproducibility of the hydration dynamics measurements we 

collected 15N-edited NOESY-HSQC and ROESY-HSQC spectra at a single mix point of 

three independent samples, each collected in duplicate. Each sample used <90% 

perdeuterated protein and was prepared in AOT reverse micelles as described previously. 

The ratio of the height of the NOE and ROE cross peak was then identified for each peak. 

This allowed us to compare both intra and inter sample reproducibility of hydration 

dynamics measurements. Both the intra- (Figure 3-2A) and inter-sample (Figure 3-2B) 

are very reproducible with several obvious outliers.   
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Figure 3-2: The reproducibility of the hydration experiments is dependent on 
signal-to-noise. Comparison of the uncorrected NOE/ROE ratios within the same 
sample A) and between different samples B) demonstrate excellent 
reproducibility with obvious outliers. The black line indicates the line of best fit. 
Individual sites are colored according to their minimum S/N as follows: Red= 
S/N<10, Orange= 10<S/N<15, Yellow=15<S/N<20, Green=20<S/N<25, 
Blue=25<S/N<30. 

 

The comparison of all intra sample points (Figure 3-2) shows a modest R2 of 0.76 with an 

<RMSD%> of ~20 percent. By iteratively removing sites with low signal-to-noise the 

reproducibility of the measurement continues to increase. The signal-to-noise was set to 

the lowest signal-to-noise between the NOESY and ROESY data sets. Often because of 

T1ρ relaxation this was the ROESY counterpart. The R2 and RMSD both begin to plateau 

when at values of ~0.94, and ~7% of the measurement when only peaks with a minimum 

S/N greater than 20 is used. As the minimum S/N is increased the reproducibility does 

not increase dramatically. 

 

Intra Sample Duplicates Inter Sample Duplicates 

Minimum S/N R2 RMSD RMSD % R2 RMSD RMSD% 

All 0.76 0.117 18.27% 0.23 0.204 37.60% 
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>10 0.89 0.081 12.33% 0.4 0.181 32.48% 

>15 0.95 0.053 8.03% 0.52 0.157 27.42% 

>20 0.94 0.052 7.61% 0.65 0.125 19.41% 

>25 0.93 0.050 7.16% 0.67 0.112 15.24% 

>30 0.93 0.049 6.93% 0.71 0.101 13.08% 

Table 3-2: Comparison of inter- and intra- sample reproducibility as a function of 
signal-to-noise 

 

When comparing inter-sample duplicates similar trends are observed. As peaks with the 

low S/N are removed from the analysis the R2 and RMSD improve. However, unlike the 

case of the intra sample comparisons the overall RMSD continues to decrease as peaks 

with S/N as high as 30 are discarded. This suggests that slight variations in samples might 

contribute to slightly decreased reproducibility. However, it should be noted that this is 

true in the case of low S/N cross peaks, and that peaks with higher S/N remain 

quantitatively reproducible between samples.   

It is interesting to note that even in the IST reconstruction peaks with S/N greater than 8 

are reliably constructed in their frequency. However, the absolute peak height is less 

reliably reproduced with peaks with S/N between 8 and 20. Cross-peaks of low S/N are 

less reproducible and hence less reliable than those of high S/N. However, these peaks 

can still be used to detect the present of water in cases where quantitation of the rate is 

not necessary.  

Reverse micelles are spontaneously forming assemblies that adopt their most 

thermodynamically stable arrangements. Reverse micelle mixtures consist of an ensemble 

of shapes and sizes. Slight differences in micelle composition on the micro-scale could, 
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in theory, affect the hydration (114, 116, 137). In general we show that the ratio of the 

σNOE/σROE, which is the basis of the hydration measurements, is highly reproducible given 

high signal-to-noise both within a sample and between samples. Additionally, we show 

that the sites with the highest percent error of the σNOE/σROE ratio are the sites that have 

lower signal-to-noise. 

Improved data fitting of NOESY and ROESY hydration ratios with a mixing time buildup 

To determine the hydration ratios for ubiquitin amides 15N-edited NOESY-HSQC and 

ROESY-HSQC hydration experiments were collected at four different mixing times (20, 

40, 60, and 80 ms). In the linear regime of the NOESY experiment (i.e. no spin diffusion) 

the signal intensity (INOE ) of the cross peak is proportional to the cross relaxation rates 

(σNOE) damped by the auto-relaxation rate (Equation 3-1)(94). The auto-relaxation rate is 

different in the laboratory and rotating frames, and depends on the relaxation of both the 

protein and water protons involved in the NOE.  In order to fit for the true σNOE/σROE ratio 

we collect NOESY-HSQC and ROESY-HSQC spectra at series of mix times. The natural 

log of the INOE/IROE as a function of mix time (τmix) is fit to a line with the slope equal to 

the auto-relaxation rates and the intercept equal to the σNOE/σROE
 as shown in Equation 

3-2. 

 
  

INOE (τ m )
IROE (τ m )

=
σ NOEe−R1τm

σ ROEe−R1ρτm
  3-1 

 
  
ln[−

σ NOEe−R1τm

σ ROEe−R1ρτm
]= ln[−

σ NOE

σ NOE

]+ (R1ρ − R1)τ m   3-2 
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These data were then fit to Equation 3-2 to obtain the effective relaxation rate (1/T1ρ-1/T1: 

slope) and σNOE/σROE
 ratios (intercept). All mix times were performed in the linear regime 

of the NOE to prevent any contamination from spin-diffusion. The T1 of the NOE is 

negligible at the mix times used and therefore the overall relaxation rate will be referred 

to as T1ρ, which includes contribution from both protein and water relaxation.  

As demonstrated in Figure 3-3A as the mix time of the experiment increases the 

σNOE/σROE gets more negative. If only the protein amide proton T1ρ is used to correct for 

the auto-relaxation, σNOE/σROE approaches 0 (not shown) resulting in an overcorrection 

leading to artificially faster hydration measurements. The T1ρ fit from Equation 3-2, 

which include contributions from amide and water are slower than the amide relaxation 

alone. There is no correlation between the fit T1ρ of the amide and water peak and the 

amide T1ρ alone (data not shown). Additionally, the calculated T1ρ’s vary substantially 

suggesting that the water protons interacting with the amides have unique relaxation 

properties.  

 

Figure 3-3: The buildup hydration ratios as a function of NOESY and ROESY 
mixing time (τm) demonstrate the necessity of proper T1ρ correction. A) The 
uncorrected hydration ratios B) fitting of data to Equation 3-2 to for the effective 
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relaxation time constant (T1ρ) and the proper hydration ratio C) Applying the fit 
T1ρ correction shows nearly constant hydration ratios at all experimental mixing 
times (20, 40, 60, and 80 ms). The four example residues, T66 (red diamonds), 
A46 (blue squares), K11 (green circles), and R42 (yellow triangles) were chosen 
to demonstrate the full dynamic range of the hydration ratio. 

 

Despite the ~10% error possible for each individual time point measurement due to the 

signal-to-noise fitting using linear regression offers statistics on the precision of the 

obtained ratios, which would not be possible at a single mix time alone. This, in 

combination with the longer mix times that can be sampled, can be advantageous in the 

case of lower signal-to-noise cross peaks. In general, this fitting method appears to be 

highly robust and is independent of assumptions of uniform water relaxation.  

It has previously been assumed that the amide-proton T1ρ is the fastest relaxing term in 

the hydration measurements and can therefore be used to correct for the auto relaxation in 

the σNOE/σROE  (125, 126). However, we here we show that the relaxation behavior is a 

complex mixture of water and protein relaxation in both the laboratory and rotating 

frames. Performing a full buildup is the only way to obtain the coefficient of the auto-

relaxation, as there is no clear correlation between amide proton T1ρ and the σNOE/σROE
 

relaxation term. Furthermore, linear regression of the buildup further increases the 

precision of the measurement 

Implementation of 2D pulses sequences 

Three-dimensional experiments require long data collection times. Two-dimensional 

projection variants can be used to reduce data collection time and simply involves 

selective excitation of the water resonance prior to the mixing time(181). While many 



 55 

water selection schemes have been reported in this study we use the e-PHOGSY water 

excitation scheme. This selective scheme is robust, easy to implement, and can be used 

for both aqueous and reverse micelle experiments. The e-PHOGSY scheme is a spin-echo 

sequence that begins with a 90o-G1-180o
wat –G1-90o

 scheme, which renders the water 

magnetization longitudinal (182). Example pulse sequences for both two-dimensional and 

three-dimensional 15N NOESY and ROESY-HSQC’s are shown in Figure 3-4.  

 

Figure 3-4: Water-selective two-dimensional NOESY-HSQC pulse sequence. The 
boxed region indicates the mix with the ROE counterpart illustrated to the right. 
Narrow and wide bars indicate 90o and 180o pulses respectively. Water selective 
180o shaped pulse is illustrated as a hollow shape. All phases are x unless 
otherwise indicated. Phase cycling of scheme Φ1=4(x),4(y),4(-x),4(-y), Φ2= x,-x, 
Φ3=2(x), 2(-x), Φ4=2(x), 2(-x), Φ5=2(y), 2(-y), r=x,-x,-x,x,x,-x,x,-x,-x,x,-x,x,x,-
x. 

 

Comparisons peak height intensities between three dimensional and water-selective two-

dimensional 15N NOESY-HSQC and 15N ROESY-HSQC spectra at 60ms mix times are 

shown in Figure 3-5. Both the 15N NOESY-HSQC (Figure 3-5A) and 15N ROESY-

HSQC (Figure 3-5B) correlations have R2 values >0.98 suggesting that two-dimensional 

water selective experiments are a good alternative to standard three-dimensional 

experiments. However, the signal-to-noise of two-dimensional experiments is 
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substantially lower than in three-dimensional experiments. This is because only the water 

protons are excited during the experiment. The reverse micelle has very few waters 

relative to bulk aqueous solution. The reduction in water results in less excited protons. 

Therefore, the signal-to-noise of the water selective experiments will also depend on the 

Wo of the sample.  The decreased signal-to-noise can be compensated by an increased 

number of transients collected per FID. In general, the two-dimensional NOESY-HSQC 

and ROESY-HSQC can offer an approximate two times savings relative to a NUS non-

selective three-dimensional experiment.  

 

Figure 3-5: Comparison of peak height intensity between non-selective 3 
dimensional experiments and 2 dimensional water selective experiments 

 

In the present study we use a 15 ms long 180o water selective SINC pulse in order to 

maximize signal-to-noise. In general, the water-selective 180o pulse should be chosen 

depending on the bandwidth of excitation needed versus the duration of the pulse length. 

If fully perdeuterated protein is used, a relatively short (10-15 ms) water selective (e.g. 

SINC, Gauss) pulse is recommended to prevent relaxation of the water during the spin-

echo. The shorter selective pulse will help increase signal-to-noise in the experiment. If 
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the protein cannot be fully perdeuterated and contributions from Hα are a concern, a 

longer (G3, reburp) pulse can be used. The intra-protein protons relax due to T2 

relaxation during this time removing contamination from intramolecular Hα peaks. 

However, some of the water will also relax in this time period resulting in slightly less 

signal-to-noise. Previous hydration experiments have used isotopic filtering schemes to 

remove any magnetization that originates from 13C bound protons. While effective at 

removing intra-molecular NOE’s the additional filtering module results in reductions in 

signal-to-noise and sensitivity. Additionally, these methods require uniform 13C isotopic 

labeling. The pulse sequence presented here is straightforward to implement and removes 

the need for complicated pulse sequences while still being able to filter for intra-

molecular Hα protons.  

Conclusions 

Despite the importance of water in biological systems the ability to quantify water 

interactions has remained technically challenging. In this study we set out to improve the 

way the protein-water interactions are measured via NMR. It has previously been shown 

that optimal choices in sample preparation such as for proteins encapsulated in reverse 

micelles are necessary to remove experimental artifacts (125, 126). Here, we extend those 

methods to improve data collection and analysis in order to obtain reproducible and 

quantitative σNOE/σROE rates.  

We implement sinusoidally weighted Poisson-Gap NUS (173) data collection, and IST 

reconstruction to 3D 15N-edited NOESY and ROESY spectra (175). In the case of 

hydration it is highly recommended to use the NUS to increase the number of transients 
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per FID instead to increase precision of the measurement (170). The implementation of 

NUS also allowed us to comprehensively test the reproducibility within and between 

samples.  

We highly recommend that a duplicate of one mix point be collected for each protein 

measured as a reference to determine the minimal S/N necessary for reproducibility. The 

conventional measure of S/N ratio in NMR spectroscopy is the peak height divided by the 

RMS noise of a peak less spectral region. While this assumption holds true for fully 

sampled data, NUS noise is non-Gaussian and non-uniformly distributed. Several metrics 

for measuring S/N in NUS sampled data have been discussed (171, 172), and are beyond 

the scope of the paper. Here, we use standard calculation of RMS noise to define our S/N 

cutoff. This is used as a metric to determine the S/N cutoff for reproducibility of the 

σNOE/σROE in our hands. This should allow for a broadly applicable metric for S/N despite 

variations in pulse sequence, NUS sampling schedules, reconstruction methods, and S/N 

calculation.  

Previous studies have measured the NOE/ROE at a fixed mixed point (53, 89-92, 125, 

126, 183-186). The time savings from the decreased experimental time allowed us to 

collect 4 sets of NOESY-HSQC and ROESY-HSQC experiments with varied mix times. 

This allowed us to perform a full buildup series and fit for the desired σNOE/σROE
 and 

relaxation rates. Performing mix time buildups does not require assumptions or apriori 

knowledge of the relaxation behavior of the amide-proton and water-proton vector. This 

allows for a more robust and accurate way of fitting for the σNOE/σROE. 
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In general, the methods presented here offer an experimentally tractable way of 

measuring protein hydration in a quantitative fashion via the NOE. The implementation 

of non-uniform sampling to three dimensional NOESY-HSQC and ROESY-HSQC 

spectra, or two-dimensional water-selective experiments is sufficient to reduce 

experimental time and allow for increased signal-to-noise and greatly improved data 

fitting methods. Collection of one duplicate spectrum at a single mix point is needed to 

determine the S/N cutoff required for robust reproducibility. This makes the method 

broadly applicable so other implementations of NUS sampling and reconstruction may be 

used.  
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Chapter 4: Decoupling of hydrogen exchange relay artifacts for 
detection of protein-water NOEs on the protein surface 

Abstract 

The ability to measure protein hydration dynamics with site resolution has been a missing 

link in the biophysical puzzle. Many techniques have been proposed to measure protein 

hydration; however, many of them either require mutation, or lack dynamic or site 

resolution. Those that do not have these limitations are riddled with artifact due to the 

ubiquitous and dynamic nature of bulk water. It has been shown that protein hydration 

dynamics can be measured using NMR spectroscopy by encapsulating proteins in reverse 

micelles. The combination of confinement from the micelle and the removal of bulk 

water are necessary for measuring surface hydration dynamics from the NOE. The NOE 

is able to detect magnetization through both physical hydrogen exchange as well as the 

dipolar interaction between two nearby spins. The reverse micelle slows hydrogen 

exchange by approximately two orders of magnitude. This is sufficiently slow to remove 

any contamination from direct hydrogen exchange of backbone amides, but is insufficient 

to entirely remove hydrogen exchange relay artifacts from side chains. The overall 

slowing of hydrogen exchange provides a unique environment such that the exchange is 

slow enough to be in the slow-exchange regime of NMR and therefore spectrally 

resolved from water. In this present study we take advantage of the unique chemical 

shifts of hydroxyls to decouple any NOE contribution during the mix period. This serves 

to remove hydrogen exchange relay artifacts and facilitates direct detection of protein 

water interactions via the NOE. We apply this method to Ubiquitin in AOT reverse 

micelles and show that all values are within the theoretical limit of the measurement. 
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Additionally, we show that the majority of slowed waters reside near previously 

identified crystallographic waters. The method introduced here provides a robust and 

artifact free way of measuring protein hydration via the NOE.  

Introduction 

Water is necessary for protein function (8) and is involved in aspects of protein folding 

(44), stability (187), catalysis (58) dynamics (73), and protein interactions. It is known 

that water dynamics are heterogeneously slowed at the protein interface (63). In order to 

understand the thermodynamic contribution of water on protein function it is necessary to 

measure the dynamics of the hydration layer with site resolution (6, 7). However, a site 

resolved view of protein hydration dynamics is very difficult to obtain experimentally. 

Solution nuclear magnetic resonance spectroscopy (NMR) has been used to measure 

protein water interactions via the nuclear Overhauser effect (NOE) for several decades 

(31, 89, 90, 93).  

The nuclear Overhauser effect (NOE) detects through-space dipolar magnetization 

transfer (94). The NOE reports on both inter- and intra-molecular interactions but has 

extremely sensitive r-6 distance dependence.  Only the first hydration layer surrounding 

the protein is close enough to the protein to be detected via the NOE. The short-range 

nature of the NOE makes it ideal to allow for site specificity of protein-water 

interactions. The magnitude of the NOE cross relaxation rate (σNOE) increases with the 

effective correlation time of the protein-water interaction. The NOE can be observed 

from magnetization transfer in both the laboratory (NOE) and rotating (ROE) reference 

frames. Otting et al. showed that the effective water correlation times could be 
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extrapolated from the ratio of these rates (σNOE/ σROE), thereby giving dynamic 

information (90, 93).  

In theory this methodology should provide site resolved hydration dynamics across the 

surface of the protein. Unfortunately, several aspects of bulk water result in artifacts 

when this method is applied to the surface of the protein thereby limiting its use to only 

buried structural waters (75, 102). The artifacts are generally caused by the high 

concentrations of water relative to protein, as well as the very fast timescales of water 

reorientation and hydrogen exchange rates. Nucci et al. showed that encapsulating 

proteins in the interior of a reverse micelle remove contamination from artifacts thereby 

facilitating the detection of hydration water dynamics (125, 126). 

Reverse micelles are spontaneously forming particles composed of a nano-pool of water, 

an amphiphilic surfactant shell, and bulk organic solvent (137). The nano-pool of the 

reverse micelle is sufficient to solubilize a protein in its folded conformation. 

Encapsulation removes bulk water while maintaining the native hydration shell of the 

protein. This removes any signal from bulk water and removes any contamination from 

exchange between the hydration layer and bulk that maintains the local nature of the 

NOE. Additionally, confinement from the reverse micelle slows the rotational and 

translation motions of water as well as the hydrogen exchange rates (27, 66, 68, 125).  

Therefore the slowed waters amplify the effect of the NOE and the slowed hydrogen 

exchange removes contamination from exchange and exchange-relayed processes that 

can also be detected by the NOE.  
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In the reverse micelle the hydrogen exchange rates of amides are sufficiently slow to 

eliminate any contamination from direct hydrogen exchange. Unfortunately, the 

hydrogen exchange rates of side chains are substantially faster than amides. The pH 

minimum of hydrogen exchange is also shifted for side chains and is often between 5 and 

7 (162). Hydrogen exchange from side chains can contribute to hydrogen-exchange relay 

artifacts in NOESY and ROESY experiments. These artifacts, unlike direct hydrogen 

exchange, are spectrally indistinguishable from a direct NOE.  

This present studied measures hydrogen exchange rates of a small molecule, glucose, in 

different reverse micelle mixtures as a function of pH and buffer concentration. This 

allows for a better understanding of hydrogen exchange chemistry within the reverse 

micelle. The results from glucose suggest that hydrogen exchange is indeed quenched but 

likely still remains fast enough for hydroxyl containing side chains. Therefore we 

implement NMR experiments that decouple hydrogen exchange during the NOE to 

identify sites that have detectable hydrogen exchange relay artifacts. A novel data fitting 

is outlined and the surface hydration dynamics of ubiquitin in AOT reverse micelles is 

described.  

Results and discussion 

Measurement of glucose hydrogen exchange in the reverse micelle   

In addition to dipolar interactions the NOE can potentially contain contributions from 

direct hydrogen exchange and exchange-relayed hydrogen exchange. Nucci et al. showed 

that reverse micelle slows hydrogen exchange chemistry by over 2 orders of magnitude 

(125). Hydrogen exchange can either be acid or base catalyzed (H+, OH-), water 
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catalyzed, or buffer catalyzed. The removal of bulk water in the reverse micelle limits the 

H+ and OH- catalysis. Unfortunately, every micelle has both water and buffer that can 

still contribute to the overall hydrogen exchange chemistry. Both the sample buffer, as 

well as the surfactant can act as weak acids/bases for catalysis if the pKa is generally low. 

The exchange chemistry of amides at pH 5 in RMs is sufficiently slow to not be detected 

by the NOE (161). Amino acid side chains have intrinsically higher exchange rates and 

can still be detected by the NOE (162). The hydrogen exchange rates of glucose were 

measured in the reverse micelle in order to quantitatively understand the exchange 

chemistry in the reverse micelle using EXchange SpectroscopY (EXSY) (105, 160). A 

small molecule is ideal for measuring hydrogen exchange rates due to its increased 

sensitivity and spectral simplicity. Glucose is a water-soluble small molecule that has a 

pKa of ~12. The amino acid side chains with the highest exchange rates at pH 5 are 

Tyrosine, Serine, and Threonine, which have pKa’s of 10.5, 13, and 13, respectively 

(Table 4-1) (162). Therefore, glucose was an ideal choice to understand the exchange 

chemistry in the reverse micelle.  

 pKa 
Glucose 12 
Tyrosine 10.5 
Serine 13 
Threonine 13 
Lysine 10.5 
Arginine 12.5 

Table 4-1: pKa values of glucose and exchangeable side chain protons. 

 

The exchange behavior varies with the surfactant mixture used (Figure 4-1). The head 

group in AOT has a titratable head group. It has been shown that the sample pH is 

dominated by the pH of the AOT that is used. The HX rates of glucose in AOT are pH 
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dependent.  AOT has a low pKa of ~5 and acts as a catalyst below pH 5. The acid 

catalyzed hydrogen exchange limb of the AOT HX has a standard slope 1 per pH unit. 

Intriguingly the base form of the sulfate group does not appear to catalyze HX.  

CTAB/hexanol surfactant mixtures are unable to act as catalysts. Hexanol is the only 

titratable part of the surfactant and its pKa is too high (~20) to contribute to HX at 

standard experimental pH. Therefore, the HX rates of glucose in the reverse micelle do 

not change with pH of the surfactant. In addition to surfactant effects the buffer used can 

also catalyze exchange. The concentration dependence of HX for acetate is present but is 

generally low. The concentration dependence of buffer of phosphate is substantially 

higher and in fact cannot be measured at a concentration above 20mM NaPO4. Therefore 

phosphate buffer should be avoided for hydration studies. These findings suggest that 

care must be taken in the choice of surfactant mixture, pH, and buffer conditions when 

encapsulating proteins in reverse micelles. Present studies use AOT reverse micelles at 

pH 5 and use 10mM NaAcetate buffer to reduce hydrogen exchange contributions.  
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Figure 4-1: Hydrogen exchange rates of glucose in the reverse micelle. A) 1D 1H 
spectrum of glucose in CTAB/hexanol reverse micelles showing that the 
exchange rates are slowed and in the slow-exchange regime via NMR. B) 
Example EXSY curve and fitting of a glucose peak in CTAB/hexanol RM at pH 
5. C) The different behavior of HX as a function of pH between AOT (red square) 
and CTAB/hexanol (blue circle) reverse micelles. D) The effect of buffer on 
glucose HX in CTAB/hexanol reverse micelles using Sodium acetate (blue 
circles) and sodium phosphate (red squares) as buffer. 

 

In the absence of buffer the glucose exchange rates are ~50 s-1 in the reverse micelle 

which is in stark comparison to rates of ~2000 s-1 when measured in bulk aqueous 

solution. These HX rates will vary depending on the surfactant, pH, and buffer. 

Additionally, Levinger et al. showed that the HX rates vary depending on the Wo used 

(133). This is due to an increased water catalyzed rate due to the increased dynamics of 

water in the RM at higher water loading. The pKa values of T/Y/S hydroxyls are 
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approximately one pK unit lower than glucose. Therefore, the side chain HX rates of 

T/S/Y residues in a protein are sufficiently fast to be on the same timescale as the NOE 

and ROE cross relaxation rates (~1-10-s). The exchange rates in the slow exchange NMR 

timescale and hydroxyl residues have unique peaks in 1H spectra.  

Implementation of broadband decoupling of exchange relay 

The overall slowing of HX in the revere micelle is approximately 2 orders of magnitude. 

The HX rates for serine and threonine hydroxyls have pH minimums at around 6.5. The 

HX rate of serine and threonine in bulk aqueous solution at pH 5 is 1000 s-1. Therefore, in 

the reverse micelle, the HX rate is still approximately 10 s-1. If a labile hydrogen that is 

within NOE-distance of the NOE detection spin (e.g. amide hydrogen) exchanges 

sufficiently rapidly with water then an NOE cross peak between the water resonance and 

the amide hydrogen will be created even though water may not actually be close the 

amide hydrogen. This exchange relay process is otherwise indistinguishable from an 

authentic intermolecular NOE. The residual HX is sufficiently fast for serine and 

threonine hydroxyls to cause exchange relay artifacts in the NOE experiments. However, 

the HX rates are sufficiently slow on the NMR timescale to have distinct chemical shifts 

relative to water. Melacini et al. showed that if hydroxyls are sufficiently slow to have 

unique chemical shifts they can be decoupled during an NOE experiment thereby 

removing exchange relay contamination (184, 185). Decoupling was added to the mix 

period of standard two-dimensional water selective experiments (Figure 4-2: A) Pulse 

sequence used to decouple relaying hydroxyls from the NOE spectrum. Black rectangle 

pulses are 90o hard pulses, open shaped pulse is a water-selective 180o shaped pulse, and 
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closed pulses are 180o broadband selective pulses centered on the hydroxyl peaks. The 

selective decoupling pulse is looped n times for the duration of the mix. B) A diagram of 

how the decoupling experiment works to remove exchange relay. A protein hydroxyl is 

able to hydrogen exchange directly with water, and subsequently NOE to a nearby 

protein amide. The hydroxyl proton is continuously flipped using a broadband decoupled 

pulse so it is no longer able to effectively NOE. 

 

Figure 4-2: A) Pulse sequence used to decouple relaying hydroxyls from the NOE 
spectrum. Black rectangle pulses are 90o hard pulses, open shaped pulse is a 
water-selective 180o shaped pulse, and closed pulses are 180o broadband selective 
pulses centered on the hydroxyl peaks. The selective decoupling pulse is looped n 
times for the duration of the mix. B) A diagram of how the decoupling experiment 
works to remove exchange relay. A protein hydroxyl is able to hydrogen 
exchange directly with water, and subsequently NOE to a nearby protein amide. 
The hydroxyl proton is continuously flipped using a broadband decoupled pulse 
so it is no longer able to effectively NOE. 

 

This decoupling scheme was applied to 90%-2H,15N-Ubiquitin in AOT reverse micelles 

(Figure 4-3). Hydroxyls of Ubiquitin had been previously assigned owing to the slowed 

HX in the reverse micelle. The water peak of ubiquitin in AOT reverse micelles resonates 

at 4.5 ppm. Hydroxyls resonate at 4.7-6.15 ppm. G3 pulses are selective “top hat” pulses 

that have uniform excitation across the bandwidth and no net perturbations occur outside 
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the bandwidth of excitation (188). Unfortunately, though net magnetization is unaffected 

the nuclei immediately outside of the excitation bandwith experience perturbations during 

the pulse.(184). Resonances near the decoupling pulse undergo T2 relaxation during the 

decoupling pulse. The stronger the decouple pulse (i.e. wider bandwidth excitation) the 

more off-resonance frequencies are affected. The hydroxyls resonate at frequencies near 

water and therefore decoupling pulses result in slight relaxation of the water. Therefore, 

two individual decoupling pulses were applied to reduce the relaxation of the water. Two 

10 ms G3 180o inversion pulses with a 0.6 ppm bandwidth centered at 5.4 and 6.1 ppm 

were used in 15N detected water selective NOESY-HSQCs. The hydroxyls from residues 

Thr55 and Ser57 could not be decoupled due to their proximity to water and therefore 

sites within 4 Å of these residues were not analyzed.  
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Figure 4-3: Overlay of two-dimensional water selective NOE (black) and NOE 
with decoupling (pink) with 100ms mix time of Ubiquitin in AOT reverse 
micelles. The decoupling experiment was collected with a 10ms G3 inversion 
pulse centered at 5.4ppm with a bandwidth of 0.6 ppm.    

When the decoupling is applied to the NOE experiment then exchange relay is removed 

from the overall rate. The resultant spectrum has the pure NOE rates to water without any 

contamination from hydrogen exchange. The G3 pulse centered at 5.4 ppm decouples 

residues Thr7, Thr9, and Ser20. A decreased NOE from the decoupled experiments 

relative to the standard NOE experiments were observed at residues Thr9, Gly10, Lys11, 

Thr12, Thr14, Ser20, Thr22, Asn25, Gln62, Ser65, and Thr66. The G3 pulse centered at 

6.1 ppm decouples residues Ser65 and Thr66. The residues affected were Thr12, Thr14, 

Ser20, Thr22, Asn25, Gln62, Ser65, and Thr66. The hydroxyls from residues Thr14 and 

Thr22 were not assigned but are affected by both G3 pulses suggesting that they are 



 71 

likely between the two-excitation bandwidths. Similarly, the hydroxyl from Tyr59 was 

not assigned, but only one amide, Glu51, was within NOE distance of this hydroxyl.  

Calibration of pulse location and lengths and correcting for kappa 

The decoupling pulses during the mix results in slight relaxation of water during the 

pulse. A correction for this artifact was measured by using a two-dimensional water 

selective NOE experiment with a 360o decoupling gauss pulse in the middle of the mix 

period. In order to determine the correction factor, the peak height intensity of each peak 

in the decoupled NOE correction experiment was compared to the peak height intensity 

of the standard two-dimensional NOE experiment. The ratio of the unaffected peaks 

yields the correction factor for one single 360o pulse. The correction factor is determined 

from the slope of intensities not affected by the decoupling pulse. The correction depends 

on the pulse length and center of excitation and thus needs to be determined for each 

decoupling pulse profile and parameter sets. In principle, once the correction factor is 

determined, the NOE peak intensities for all mixing times can be corrected by using κn 

where κ is the correction factor for each 360o cycle and n is the number of cycles used 

(189). In order to identify κ two-dimensional water selective NOE and decoupled NOE 

experiment were collected with a mix time of 140 ms mix time for both decoupling 

pulses. The decoupling pulse length was set to 10ms for a 180o inversion, resulting in a 

20 ms 360o pulse during the mix. A histogram of the ratios with high signal-to-noise in 

each measurement was used to identify the top 10% of ratios. The slope of the NOE 

versus the decoupled NOE of the top 10% provides κ (Figure 4-4). The decoupling pulse 

centered at 5.4ppm was determined to be 0.946 with 95% confidence intervals between 
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0.94 and 0.95. The decoupling pulse centered at 6.1 ppm was determined to be 0.96 with 

95% confidence intervals between 0.946 and 0.97. A κ value of 0.95 and 0.97 were 

selected for pulses centered at 5.4 ppm and 6.1 ppm, respectively.  

 

Figure 4-4: Using a 2D experiment to determine κ for a decoupling pulse centered 
at 5.4 ppm A) Histogram of the ratio of peak height intensity of the NOESY-
HSQC with decouple pulse versus the NOE without the decouple pulse. The ratio 
cannot be above 1 since the decouple experiment can never have more signal than 
the NOE experiment. Both experiments used a 140ms mix time with a 20ms 360o 

decouple pulse in the middle of the mix. The highest ratio of decoupled/non-
decoupled are those that are not decoupled during the experiment. The top 10% of 
peaks are used to determine κ B) A plot of the peak height intensity of the NOE 
versus the decoupled experiment for all peaks (grey circles), and the highest ratio 
(black circles) between NOE decoupled vs. NOE. The slope of the red line gives 
κ=0.946.  

 

The magnitude of the correction factor needs to be small and pulse profiles that result in 

𝜅 values less than 0.95 should be avoided. It is therefore often necessary to employ 

weaker, more selective decoupling pulses at the expense of having to repeat the 

experiments to cover the entire region of interest. Nevertheless, even for very high 𝜅 

values it is generally not feasible to correct the entire NOE evolution curve satisfactorily. 
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In order to sample the full curve of the NOE on a deuterated protein the mix time must 

sample extremely high values (1 sec). Using a 10ms decoupling pulse requires a κ50 

correction factor and is therefore unreliable at long mix times. Additionally, very slight 

variations (0.005) of the determined κ value can result in under or overcorrection of the 

overall intensity. Fortunately, the NOE cross-relaxation rate relies on the slope of the 

initial curves and this is not a concern and the correction factor at long mix times will 

largely affect the T1 relaxation term.  

Fitting NOE/ROE ratios without hydrogen exchange relay contributions 

Full buildup curves for the NOE, ROE, and decoupled-NOE at 5.4 ppm and 6.1 ppm 

were collected for ubiquitin in AOT reverse micelles. All experiments used a two-

dimensional water selective experiment and all experimental parameters including inter-

scan delay, number of scans, and digital resolution were matched. The ROE experiments 

used mix times of 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 110, 130, 150, 250 

ms. All NOE and decoupled NOE experiments used mix times of 20, 40, 60, 80, 100, 

140, 180, 240, 300, 400, 550, 750, 1000 ms. The best fit curves were fit to extract the 

cross-relaxation rate of each set of experiments as described below (Figure 4-5). 
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Figure 4-5: Example buildup curves for residue Leu8 of ubiquitin in AOT reverse 
micelles. A) NOE buildup curve and B) ROE buildup curve. The peak height 
intensities are shown as black circles with the a full curve fit shown in black, and 
a fit using the first several points in the linear regime in blue. C) The effect of 
decoupling on peak height intensity. NOE buildup curve is shown as black 
squares, the buildup with the decoupling centered at 6.1 ppm (teal circles), and the 
buildup with the decoupling at 5.4 ppm (magenta triangles). Decoupling at 6.1 
ppm does not affect the NOE, whereas the rate is decreased by ~50% when the 
decoupling at 5.4 ppm, suggesting that there is an exchange relay contribution 
from a hydroxyl resonating at 5.4 ppm. 

 

The curves for the NOE, ROE, and decoupled-NOE experiment need to be individually 

fit to Equations 4-1 and 4-2 

   INOE = Ao[e
−R1τm (1− e−σ NOEτm )]   4-1 

   IROE = Ao[e
−R1ρτm (1− e−σ ROEτm )]   4-2 

Unfortunately due to the similar timescales of σNOE and R1 (σROE / R1ρ) these equations 

are difficult to fit for directly. Fortunately, the Ao term is constant for all experiments 

assuming identical acquisition parameters and good sample stability. Global fit 

parameters were used on to determine the Ao term in the NOE experiment. A global fit of 

the Ao term was accomplished by fitting crosspeaks with mixing times in the linear 

regime of the NOE buildup by using Equation 4-3: 
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   INOE = Ao(1− e−σ NOEτm )   4-3 

The determined Ao term was held constant and each set of experiments was fitted to 

Equations 4-1 and 4-2 using the full buildup and Equation 4-3 using the first few points. 

The first few points were collected so that they are in the linear regime of the NOE 

buildup curves. The rates fit using these two methods should be the same, although the 

rates might differ slightly (Figure 4-6). Fitting to Equation 4-3 requires less parameters 

and is an easy fit. However, because it is constrained to peaks in the linear range the 

signal-to-noise is generally low. In cases where the linear regime is too noisy the full 

buildup allows sampling at longer mix times and therefore greater signal-to-noise. 

However, the relaxation term R1 of the full Equation fitting may be skewed due to the 

overcorrection due to κ at long mix times. 

The σNOE, σROE, and σNOE
dec rates are needed to determine the σNOE/σROE. For sites that are 

not contaminated by exchange relay the ratio of the fitted rates is sufficient. For sites that 

contain exchange relay one must fit the σNOE and σROE to Equations 1-10 and 1-11. The 

difference of the cross relaxation rates between the NOE experiment and the decoupled-

NOE experiment give the contribution from HX relay: 

   (Σkex •σ NOE
int ra ) =σ NOE

dec −σ NOE  4-4 

The intramolecular ROE is 2x the NOE, therefore the HX contribution is 2x greater for 

the ROE than the NOE. The ROE can be calculated using: 

   σ ROE =σ ROE
obs − 2(Σkex •σ NOE

int ra )   4-5 
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All ratios should fall within -0.5-0 (Figure 4-6). As a general rule this data fitting method 

must include at least 5-10 different mix times per experiment type. The choices in mix 

time does not need to be matched for the different experiments as each curve will be fit 

independently. It is highly recommended that the linear regime be highly sampled.  

 

Figure 4-6: Fitting the NOE/ROE ratios. A) Distribution of the σNOE/σROE ratios 
without correcting for exchange-relayed contributions. Most of the ratios are >-
0.5 and are outside of the theoretical limit. B) Distribution of the σNOE/σROE after 
fitting for contributions from hydrogen exchange relay. Most sites are within the 
theoretical limit of -0.5-0. C) The correlation of the σNOE/σROE when the first 5 
points of the buildup is fit to Equation 4-3 versus when fit to the full curve 
(Equation 4-1).  

The raw σNOE/σROE ratios without decoupling of hydroxyls range from -0.3 to -1.5 (Figure 

4-6 A). This is substantially higher than the theoretical limit of 0 to -0.5. The σNOE/σROE 

ratios after decoupling the hydroxyls range from 0 to -0.55 with one additional outlier at -

0.65 (Figure 4-6 B). The additional NOE from the relayed hydroxyl will artificially 

decrease the σNOE/σROE ratio. This is due to the intra-molecular NOE being half the 

magnitude of the internal ROE. Upon decoupling, almost all sites are within the 

theoretical range. The σNOE/σROE were fit using both Equation 4-1 and Equation 4-3 

(Figure 4-6 C). The two fitting methods are in good agreement with a slope of 1.3 and an 

R2 of 0.9.  
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Surface mapping of ubiquitin hydration 

The final σNOE/σROE ratios were plotted on the protein structure to identify which regions 

of the protein had the slowest hydration dynamics. There are a total of 73 amides in 

ubiquitin (76 resides with 3 prolines).  A total of 6 amides had positive crosspeaks in the 

ROE spectrum, which are indicative of hydrogen exchange. These residues include 

Thr12, Lys33, Asp39, Ala46, Lys63, and Gly75. An additional 6 amides could not be 

analyzed due to their proximity to a hydroxyl that was not decoupled in either of the two 

pulses. These include residues E51 which is the only amide within 4 Å of Tyr59, and 

residues Thr55, Leu56, Ser57, Asp58, and Tyr59 with are within 4 Å Thr55 and Ser57 

hydroxyls. Sites with signal-to-noise ratios less than 20 in any of the experiments were 

excluded due to lack of reliability of the buildup curves. An additional 9 sites could not 

be analyzed due to their proximity to an Hα proton that was overlapped with water due to 

the residual 10% protonation left in the protein sample. A total of 18 sites were deemed 

quantitative and could be mapped to the protein structure (Figure 4-7).  
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Figure 4-7: The calculated σNOE/σROE ratios were mapped to the protein surface of 
Ubiquitin in AOT reverse micelles (PDB accession 1G6J/Conformer25). The top 
shows the cartoon illustration with all amides shown as spheres. Spheres are 
colored red to blue for fast to slow hydration dynamics detected via the NOE. 
Crystallographic waters are shown in cyan spheres. The bottom shows the surface 
representation using the same color scheme as above. The regions in green have 
detectable hydration dynamics via the NOE, but are outside of the theoretical 
limit of -0.5. Orange regions are sites that have amides within 4Å of the surface 
but don’t have a quantitative σNOE/σROE ratio. 
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Several different regions of slow waters are identified. Ubiquitin has two partially buried 

water molecules detected crystallographically. The first water molecule, WAT1, is 

hydrogen bonded between Leu43 amide and the Lys27 side chain. The Leu43 amide has 

a detectable σNOE/σROE ratio at the bound limit. Unfortunately, the amide of Leu50 is 

overlapped with Phe45 and an σNOE/σROE ratio was unable to be analyzed with this current 

data set. Similarly, the amide of Glu51 has a slow σNOE/σROE ratio but was not considered 

in our analysis because it is within 4Å of the non-decoupled Tyr59 residue. Denisov et al. 

previously identified this water residue as being the only slow water molecule in 

Ubiquitin in magnetic relaxation dispersion experiments (MRD) (190, 191). This water 

residue was shown to be slowed in several MD simulations (28, 63). The experimental 

MRD results provide dynamic information, but do not provide spatial resolution. Here, 

the presence of this long-lived water is confirmed and slow hydration dynamics are 

detected via the σNOE/σROE ratio. An additional partially buried water molecule WAT2 is 

visible in the crystal structure and is hydrogen bonded to amides of Leu8 and Leu 71. 

Several sites surrounding this water molecule have slow detectable σNOE/σROE ratios 

including Leu8, Leu71, and Leu69. Several other clusters of slow waters are identified 

using the σNOE/σROE ratios. Nearly all of these sites reside in highly curved pockets in on 

the surface structure. Depth of burial was not correlated with the overall slowing of 

protein hydration. Surface curvature and local topology has been hypothesized as a 

driving force for the slowing of waters at the protein surface (30, 34, 133, 192, 193). The 

data presented here are in agreement with this hypothesis. However, these findings could 

be confounded with the choice of detection probe for the NOE since amides are generally 
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involved in secondary structure hydrogen bonds and are not surface exposed. As the 

depth of burial of detected NOEs are within 1-3.5 Å this doesn’t seem likely. 

Additionally, all amides in Ubiquitin are less than 5 Å from the protein surface. More 

protein systems are necessary to understand the role of surface curvature on protein 

hydration.  

Conclusions 

The lack of methods for measuring surface hydration dynamics of proteins in a site and 

time resolved manner has left a great hole in the biophysical puzzle. In this present study 

we improve upon NMR methods for the detection of protein hydration via the NOE. 

Hydrogen exchange relay artifacts from side chain hydroxyls have remained a major 

artifact in NOE detected hydration experiments. The unique environment of the reverse 

micelle slows these exchange rates such that they are on the slow chemical shift NMR 

timescales. We have shown that these hydroxyls can be selectively decoupled during the 

NOE mix time. The contribution from hydrogen exchange cannot be decoupled during 

the ROE experiments. Therefore, we introduce a new data fitting method that allows for 

calculation of σNOE/σROE ratios without contribution from exchange relay. This method 

was applied to Ubiquitin in AOT reverse micelles.  

The data presented here are in agreement with many previous experimental and 

computational studies of Ubiquitin hydration. Additionally, many other sites were 

detected that have slow hydration relative to previously studies. In addition to partially 

buried waters the NOE detects regions of surface hydration that are slow. The slowed 

waters of Ubiquitin tend to cluster around the surface of the protein. Slowed waters reside 
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in concave regions of the protein. This is in good agreement with other experimental and 

computational studies of surface hydration. The experiments outlined here provide the 

only method of measuring protein hydration with site and time resolution without 

mutating the protein. Artifact free measurement using the NOE requires reverse micelle 

encapsulation.  
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Chapter 5: Conclusions and Future Directions 
 

The goal of this thesis was to apply and improve upon methods that use NMR 

spectroscopy and reverse micelle encapsulation of proteins to study protein hydration 

dynamics. NMR provides the only experimental technique that provides both site 

resolution and dynamic information on native proteins. The methods presented show that 

protein-water interactions detected via the NOE can be applied to a wide range of 

biophysical questions that necessitate different levels of quantitation. Several different 

ways of collecting and analyzing NOE data are introduced. The final method introduced 

provides the only means of site resolved hydration dynamics measurement of native 

protein in the absence of artifact.  

Chapter 2 measured protein-water interactions of SNase Δ+PHS and several of its 

mutants in CTAB/hexanol reverse micelle. Water penetration into the hydrophobic core 

of SNase mutants with internal ionizable groups has been highly debated. NOE hydration 

measurements were applied to identify whether water is able to penetrate into the 

hydrophobic core of SNase. Unlike other methods, the NOE is able to detect nearby 

positionally disordered waters. Protein-water NOE’s were detected throughout the entire 

hydrophobic core, including to sites that are >4 Å from nearby crystallographic waters. 

Additionally we were able to show that no major changes to protein structure or 

dynamics occurred. These measurements were used only to identify the presence of 

internal waters and did not require high levels of quantitation. Therefore, only a single 

mix period was used. This allowed for relatively fast data collection and the ability to 

study multiple mutants in a tractable amount of time. 
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Chapter 3 aims to develop faster methods for the detection of protein-water NOEs. 

Hydration dynamics experiments are generally low in signal-to-noise and require long 

data collection times. NUS sampling was implemented to traditional three-dimensional 

NOESY-HSQC experiments. Two-dimensional water selective experiments were also 

implemented. Both of these methods allowed for an over 4-fold time savings. We 

benchmarked the reliability of NOE crosspeaks under these conditions and the 

reproducibility of hydration dynamics σNOE/σROE ratios both within and between samples. 

Finally, a new method for data fitting that allows for the detection of σNOE/σROE ratios 

without assumptions about the relaxation behavior of the water and protein was 

introduced. The methods presented in Chapter 3 are sufficient for quantitative hydration 

dynamics of buried waters or surface hydration of sites >4 Å from a Ser/Thr/Tyr 

hydroxyl.  

In Chapter 4 tackles one of the longstanding artifacts affecting protein hydration 

measurements via the NOE. Hydrogen exchange and hydrogen exchange relay, though 

slowed relative to bulk, are still present in the reverse micelle. Hydrogen exchange relay 

artifacts can be removed from NOE spectra by selective decoupling of hydroxyl peaks 

during the mix time. A new data fitting method to calculate σNOE/σROE ratios of sites near 

hydroxyls without contamination from hydrogen exchange is presented. Partially buried 

waters are reliably detected. Additionally, we show that slowed surface waters tend to 

reside in concave regions of the protein. The data analysis and time requirements of the 

experiments are relatively slow and complex. However, these methods provide the only 
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means of measuring surface hydration dynamics with site resolution and time resolution 

that are devoid of artifact.  

The work in this thesis has focused on methods development for the data collection and 

analysis of protein hydration detected via the NOE. These advancements focused on 

decreasing the amount of experimental time needed to collect these experiments, as well 

as improving the data collection and fitting to provide artifact free measurements. The 

techniques presented here offer the only site and time resolved measurements of protein-

water interactions of native state protein. Despite this, one can envisage much additional 

technical advancement that might increase the utility of these measurements. To date, 

most proteins can be reliably encapsulated in at least one of the well-used surfactant 

mixtures. The identification of novel surfactant mixtures as well as biophysical 

characterization of existing mixtures will help ensure that all proteins can be encapsulated 

in an ideal surfactant mixture under ideal conditions such as pH and Wo.  The NMR 

experiments used have fairly low signal-to-noise ratios which increase experimental time. 

Optimization of pulse sequences to increase signal-to-noise will be advantageous for 

broad application of these techniques. Additionally, the experiments presented here rely 

on shaped pulses, which have imperfect excitation. The “top hat” pulses presented in 

Chapter 4 provide the most uniform excitation over a given bandwidth, and only 

marginally affect off-bandwidth frequencies. Development of new pulses that do not 

affect off-bandwidth frequencies would remove the need to correct for κ during the 

decoupling experiments and further increase the precision of the measurements. Finally, 

the experiments presented here rely on amide or methyl detection. While these protons 
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are distributed across the entire protein they generally tend to reside on the protein 

interior. Novel isotopic labeling schemes and NMR detection schemes will facilitate a 

much larger range of detectable surface probes specifically on the surface of the protein.   

The work presented here outlines several different strategies for applying the NOE to 

measure protein-hydration. An outline of how to collect these experiments, as well as the 

different considerations for each type of application are described in Appendix A. Each 

of these strategies was applied to a model protein system and general trends were 

observed. However, water plays roles in many aspect of protein function. In order to truly 

understand the thermodynamic role that water plays in protein function it will be 

necessary to measure hydration dynamics on many proteins, in order to address different 

aspects of protein-water interactions. The data presented here are in good agreement with 

many other biophysical and computational methods but are able to provide more 

information. By adding NMR detection of protein-water interactions to the biophysicist’s 

toolbox in combination with other well-established methods, we hope that the role of 

water on protein function will be elucidated in a quantitatively rigorous and 

comprehensive way.
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Appendix A: General method for measuring protein hydration 

General protocol for measuring hydration in a small protein 

Hydration dynamics experiments can be performed on any protein that is stable in the 

reverse micelle. Here, we illustrate the general procedure that was used for measuring 

surface hydration dynamics of Ubiquitin in AOT reverse micelles. Ubiquitin is an 8.3 

kDa protein that encapsulates stably for up to several years (119). The procedure 

described below, including data fitting can be applied to any small protein that can be 

100% perdeuterated. If larger proteins are studied then TROSY detection schemes and 

changes in NOE and ROE mix times should be changed accordingly. Similarly, if the 

protein cannot be fully perdeuterated changes some potential changes will be identified.  

1) Determine optimal encapsulation conditions using 15N protein. Please see 

Fuglestad et al. for a comprehensive description of how to screen and benchmark 

encapsulation conditions (115). 

2) Assign protein in the reverse micelle using 13C15N protein using standard triple 

resonance experiments (e.g. HNCA, HNCOCA, HNCO, HNCACO, HNCACB, 

CBCACONH) (194)  

3) Express protein of interest in 99%-D2O M9 with 15NH4Cl as the sole nitrogen 

source and purify (165). Once purified dialyze extensively against water and 

lyophilize.  

4) Dissolve protein in 6.75 uL (Wo=10, 75mM surfactant, 500uL sample) buffer 

containing 10mM NaAcetate, 10mM NaCl, pH 5 (137, 195).  
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5) Prepare reverse micelle sample for hydration dynamics using 100% deuterated 

alkane as the bulk solvent  

6) Collect 3D 15N-NOESY-HSQC to assign T/S/Y hydroxyl protons and determine 

decoupling bandwidth needed for all hydroxyls (~4.7-6.2ppm) 

7) Setup G3 (188) decoupling pulses using STDISP. A 10 ms decouple pulse will 

cover a bandwidth of 0.6ppm. Use two decouple pulses centered at 5.4 and 

6.1ppm to cover the bandwidth of 5.1-5.7ppm and 5.8-6.4ppm, respectively 

8) Measure 2D NOESY-HSQC’s with and without one 360o rotation during the mix 

using the calibrated G3 pulses. The mix time should be relatively long (e.g. 

100ms) to increase signal-to-noise. For fully perdeuterated protein a short water-

selective inversion pulse should be used. For protein that is not fully 

perdeuterated the water-selective inversion pulse should be relatively long 

(>50ms) to allow for protein Hα’s to relax. This removes contamination from 

overlapped intra-protein NOE’s 

9) Determine the κ correction factors for each of the selective pulses (189). Plot a 

histogram of the ratio of decoupled vs. not decoupled peak height intensity. 

Identify the top 10% of peaks and plot the decoupled versus not decoupled peak 

height intensities. The slope of the linear regression line is the κ correction factor. 

This slope should be >0.95 

10)  Collect 2D water-selective (182) 15N-NOESY-HSQC, 15NROESY-HSQC, and 

15N-NOESY-HSQC with G3 decoupling. Mix times for the NOE and decoupled-

NOE experiment are 20, 40, 60, 80, 100, 140, 180, 240, 300, 500ms. Example 
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mix times for the ROE would be 10, 15, 20, 25, 30, 35, 40, 50, 75, 150ms. For 

fully perdeuterated protein a short water-selective inversion pulse should be used. 

For protein that is not fully perdeuterated the water-selective inversion pulse 

should be relatively long (>50ms) to allow for protein Hα’s to relax. This removes 

contamination from overlapped intra-protein NOE’s. A weak CW spinlock with a 

bandwidth of 8.3-10kHz should be used for the ROESY-HSQC experiment. 

11)  Correct the NOE-decoupled peak height intensities with the determined κ value.  

12) Fit the data as described below and calculate NOE/ROE rates.  

Data fitting 

Buried internal waters without quantitative dynamics 

Structural or buried waters can easily be detected by the NOE. If no dynamics 

information is needed the σNOE and σROE can each be collected using a single mix time. If 

perdeuterated protein is used the experiment can be collected in either two or three-

dimensional experiments. If protonated protein is used the two-dimensional water 

selective experiments with a long water selective pulse is recommended to remove 

contamination from Hα. If short mix times are used (~20ms) a rough approximation of 

how long lived the waters are can be obtained by taking the ratio of the peak height 

intensities (INOE/IROE).  

Dynamics of buried waters or surface waters >5Å from hydroxyls.  

If full buildups for the NOE, ROE, and G3 experiments cannot be performed, or of the 

hydroxyls cannot be assigned the NOE/ROE method can still be used on buried waters or 
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sites that are >5A from the nearest hydroxyls. Matched mix time NOESY-HSQC and 

ROESY-HSQC experiments should be collected (94, 96). The data fitting relies on linear 

regression and therefore 4 mix time points are recommended. The mixing time is not 

restricted to the linear regime. The ROE experiments will have contributions from auto-

relaxation, even at short mix times. To calculate out the σNOE/σROE ratio in the absence of 

relaxation multiple mix times are needed. The natural log of the INOE/IROE as a function of 

mix time (τmix) is fit to a line with the slope equal to the auto-relaxation rates and the 

intercept equal to the σNOE/σROE as shown in Equation 5-2 

   5-1 

   5-2 

 

The linear regression fitting is generally simple and robust.  

Surface waters 

 Full buildup curves for the NOE, ROE, and decoupled-NOE must be collected 

(97, 105, 107, 160). The curves for the NOE, ROE, and decoupled-NOE experiment need 

to be individually fit to Equations 1-6 and 1-‐7. Unfortunately due to the similar 

timescales of σNOE  and R1 (σROE / R1ρ) these equations are difficult to fit for directly. 

Fortunately, the Ao term is constant for all experiments assuming identical acquisition 

parameters and good sample stability. In order to simplify the data fitting the Ao term can 

  

INOE (τ m )
IROE (τ m )

=
σ NOEe−R1τm

σ ROEe−R1ρτm

  
ln[−

σ NOEe−R1τm

σ ROEe−R1ρτm
]= ln[−

σ NOE

σ NOE

]+ (R1ρ − R1)τ m
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be determined using a global fit of the NOE data and held constant for the remaining 

curves. A global fit of the Ao term is accomplished by fitting crosspeaks with mixing 

times in the linear regime of the NOE buildup by using a simplified version of Equation 

5-3: 

   INOE = Ao(1− e−σ NOEτm )   5-3 

Once the Ao term is determined it can then be held constant and each experiment is then 

fitted to the full NOE buildup and Equation 5-3 using the first few points. Fitting to 

Equation 5-3 requires less parameters and is an easy fit. However, because it is 

constrained to peaks in the linear range the signal-to-noise may be low. In cases where 

the linear regime is too noisy the full buildup allows sampling at longer mix times and 

therefore greater signal-to-noise. However, the relaxation term R1 of the full equation 

fitting may be skewed due to the overcorrection due to κ at long mix times. 

 Once the observed σNOE, σROE, and σNOE
dec rates are calculated the NOE/ROE ratio 

can be determined. For sites that are not contaminated by exchange relay the ratio of the 

fitted rates is sufficient. For sites that contain exchange relay one must fit the σNOE and 

σROE to Equations 5-4 and 5-5. The difference of the cross relaxation rates between the 

NOE experiment and the decoupled-NOE experiment give the contribution from HX 

relay: 

   (Σkex •σ NOE
int ra ) =σ NOE

dec −σ NOE   5-4 

The intramolecular ROE is 2x the NOE, therefore the HX contribution is 2x greater for 

the ROE than the NOE. The ROE can be calculated using: 
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   σ ROE =σ ROE
obs − 2(Σkex •σ NOE

int ra )   5-5 

The NOE/ROE ratios can then be calculated. All ratios should fall within -0.5-0. As a 

general rule this data fitting method must includes at least 5-10 different mix times per 

experiment type. The choices in mix time does not need to be matched for the different 

experiments as each curve will be fit independently. It is recommended that atleast half of 

the data points collected are within the linear regime of the NOE and ROE buildups.   

General sample considerations 

Protein growth and purification 

 The choice of protein labeling schemes will depend on the regions of protein that 

are of interest (step 3 of general protocol). One of the biggest considerations when 

preparing protein for hydration studies is the need for high perdeuteration levels (165). 

The reasons for this are multifold. Perdeuteration suppresses spin diffusion and reduces 

longitudinal relaxation thereby providing purer cross relaxation and access to longer 

NOE/ROE mixing times. The latter is helpful for obtaining higher signal-to-noise (S/N) 

cross peaks and sampling broader sampling of the time dependence. The ROE 

experiments require transverse magnetization and is therefore sensitive to R1ρ relaxation. 

Perdeuteration drastically reduces this relaxation rate. Extensive perdeuteration also 

largely eliminates spin-diffusion, which maintains the local nature of the NOE even at 

longer experimental mix times. Additionally, Hα protons may resonate at frequencies 

similar to or overlapped with water. Therefore an intra-molecular cross peak from a Hα 

that is overlapped with water may be mistaken for an inter-molecular protein-water NOE. 
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The intra-molecular NOE is much stronger than an inter-molecular NOE and therefore 

high (~99%) deuteration levels are recommended. If such high perdeuteration levels 

cannot be obtained a high-resolution structure in combination with Hα assignments can be 

used to remove any potential contaminant peaks from the analysis. If a high-resolution 

structure is not available more complicated pulse schemes may also be used to remove 

signals from Hα’s, and will be discussed below.  

 The simplest isotopic labeling scheme uses uniform 15N-labelling in an otherwise 

99%-2H background using 15NH4Cl as the sole nitrogen source during growth (196, 197). 

15N-labelling is relatively inexpensive and provides a probe on every residue within a 

protein. This facilitates good detection coverage of protein-water NOE’s across the entire 

protein. However, since most amides are involved in secondary structure hydrogen 

bonds, many may be too far from the protein surface or internal cavities to provide 

enough information.  Selective methyl labeling can provide additional coverage both on 

the surface of the protein and especially in the hydrophobic core of the protein. 13CH3-

ILV,12C,2H,15N labeling can be easily obtained by adding α-ketobutyrate and α-

isoketovalerate precursors 1-hour before induction. While not as commonly used 

selective methyl labeling of alanine, threonine, and methionine residues, as well as 

selective 13C,1H labeling of aromatic residues in a deuterated background can be used 

(197-200).  

 Once the isotopically labeled protein is purified it needs to be prepared for reverse 

micelle encapsulation. This requires removal of excess salt and buffers prior to 

concentration. Depending on the isoelectric point of the protein and the pH used during 
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purification the protein can still contain a high concentration of counter ions. High salt 

concentrations can interfere with reverse micelle encapsulation (201). Additionally, many 

buffer molecules can catalyze hydrogen exchange thereby increasing the hydrogen 

exchange contaminants in the reverse micelle (162). If possible, it is best to dialyze dilute 

protein extensively against water and then lyophilize prior to the preparation of reverse 

micelles.  

Once dry the protein can be resuspended in small amounts of the buffer that will 

be used in the reverse micelle. The final pH of the reverse micelle sample (buffer and 

surfactant) should be kept relatively low in order to reduce hydrogen exchange. In 

general a pH of ~5 is optimal for low hydrogen exchange rates of amides and side chains  

(161). It is important to stay away from phosphate buffers because even modest 

concentrations can increase hydrogen exchange rates dramatically. Other buffers such as 

acetate, a commonly used buffer at pH 5, only mildly increase hydrogen exchange rates 

and are safe to use at low concentrations. Verify and monitor pH once the sample is made 

(137). 

Reverse micelle encapsulation and considerations 

Proteins must be stably encapsulated in reverse micelles for hydration measurements 

using the NOE. For an in-depth description of benchmarking protein encapsulation refer 

to Fuglestad et al. A 3D 15N-NOESY-HSQC should be collected on an encapsulated 

protein to verify that the protein is not interacting with the surfactant shell. A well 

solubilized protein in its native hydration shell will not have any detectable NOE’s 

between the protein and the surfactant.  If protein-surfactant NOE’s are detected the 
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surfactant mixture or encapsulation conditions should be changed. If the protein cannot 

encapsulate in other mixtures only buried or structural waters should be studied. If 

CTAB/hexanol is used care should be taken to resolve the water and hexanol hydroxyl 

peaks in the 1D 1H-spectrum. The 15N-NOESY-HSQC should be used to verify that no 

crosspeaks exist between the protein and hexanol hydroxyl. This can be accomplished by 

decreasing the hexanol concentration, increasing the temperature, or reducing the 

concentration of surfactant. Protonated surfactants can be used for 15N-detected 

experiments. For 13C detected experiments deuterated surfactants should be used to avoid 

streaking and spectral artifacts.  

 The NOE/ROE hydration experiments are relatively insensitive and so the reverse 

micelle sample must be stable for several weeks in order to collect data of sufficient 

quality. If a protein itself is stable in a reverse micelle then the greatest source of RM 

sample instability comes from evaporation of either the pentane or buffer. This can be 

mitigated by using moderate experimental temperature (e.g. 20oC) and plugging the 

sample with a vortex plug. Record 1-dimensional 1H spectra periodically through the 

course of the experiments to make sure no changes occur in the peak height or frequency 

of the water peak or buffer peaks.   
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Appendix B: Materials and Methods 

 

Chapter 2 

Protein Purification 
SNase ∆+PHS and mutants was expressed as previously(202) described in M9 minimal 

media with 15NH4Cl as the sole nitrogen source. Reverse micelle encapsulation condition 

screening was performed using 1H,15N-protein as described by Fuglestad et al. (115). 

Chemical shift assignments were collected using 1H, 13C, 15N protein by using 13C6-

labeled glucose as the sole carbon source. Protein hydration and dynamics measurements 

were performed on 2H, 13CH3-ILV, 12C, 15N-SNase grown in 99%-D2O and adding α-

ketobutyrate and α-ketovalerate precursors 1 hour before induction (200). Cells were 

grown at 37oC until OD600 reached 0.8, and induced with 1 mM IPTG for 4 hours. 

Induced cells were harvested and sonicated in buffer containing 6M Urea, 25mM Tris, 

2.5mM EDTA, pH8.0. The sonicate was spun down and the supernatant was run over an 

SP sepharose fast flow column and eluted with a NaCl salt gradient (0-400 mM) and 

collected. Fractions containing pure protein were collected and dialyzed against 4L of 1M 

KCl overnight to refold. Refolded protein was subjected to four rounds of dialysis against 

4L of water. Small quantities of 0.1mM HCl were used to change the pH of the protein 

and final dialysis solution to pH 5.3. Protein was divided into 1mg aliquots, flash frozen 

in a dry ice/ethanol mixture, and lyophilized until dry. Protein purity was confirmed by 

SDS-PAGE and mass spectrometry. All unlabeled chemicals were purchased from 

Sigma-Aldrich (St. Louis, MO) and all isotopically labeled chemicals were purchased 
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from Cambridge Isotope Laboratories (Andover, MA). Site directed mutagenesis for 

V66E and I92E mutants were engineered from SNase ∆+PHS using Agilent quick-

change kits (Santa Clara, CA) and sequenced.  

Protein Encapsulation 

Lyophilized SNase was resuspended in 13µL of 50mM NaAcetate, 50mM NaCl, 20uM 

DSS, 0.05% NaAzide, pH 5.3. Reverse micelles were prepared by injecting 13.0 µL 

(target Wo=20) of concentrated SNase, into a mixture of 60 mM 

cetyltrimethylammonium bromide (CTAB)/450mM hexanol and 550 µL of 99% (d-12) 

deuterated pentane, and vortexed until clear. Reverse micelles for encapsulation tests and 

assignment experiments used uniformly 1H surfactants. Hydration and dynamics 

experiments used d13-N-hexanol and d42-cetyltrimethylammonium bromide to remove 

proton surfactant signals in the methyl region. The reverse micelle solution was 

transferred to a Wilmad screw cap tube and a vortex plug was placed on the sample-air 

interface during NMR data acquisition. SNase reverse micelle samples remain stable for 

>6 months under those conditions.  Deuterated surfactants were purchased from 

Cambridge Isotope Laboratories (Andover, MA) 

NMR spectroscopy 

All NMR experiments were performed on either 500 or 600 MHz Bruker Avance III 

spectrometers equipped with TXI cryoprobes. All spectra were recorded at 293 K and 

referenced to dimethyl-silapentanesulfonate (DSS, Sigma). Backbone assignment data 

were collected at 600 MHz using gradient-selected sensitivity-enhanced 15N-HSQC, 
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HNCA, HNCOCA HNCACB, CBCACONH, HNCO and HNCACO experiments with 

proton carrier on water (194). Backbone assignments were collected in both aqueous 

solution and in the reverse micelle samples. Chemical shift perturbations of mutants were 

calculated by using Equation 5-1 

 
  
CSP = (H ppm

WT − H ppm
mut )2 + 0.1(N ppm

WT − N ppm
mut )2   5-1 

ILV-Methyls were assigned in aqueous solution and mapped to the reverse micelle. 

Methyl assignments were performed using a 13C-HSQC and MQ-(H)CCH-TOCSY with a 

13.2ms FLOPSY spinlock using a 7.5kHz 13C spinlock field strength (203). All 

assignment data were collected using 10%-non-uniform sampling in the indirect 

dimensions. Sampling schedules were created using Poisson-Gap sampling. Backbone 

assignments were collected in an aqueous reference sample as well as the reverse 

micelles. All hydration and dynamics experiments were collected at 500 MHz. Both 15N 

and 13C sensitivity enhanced NOESY- and ROESY-HSQC’s were collected. WET 

suppression was used on 13C-detected experiments to eliminate spectral artifacts arising 

from residual pentane protonation (163). ROESY-HSQC’s used an 8.3kHz bandwidth 

continuous wave spinlock with a 90y-Sly-90y motif during the mix to eliminate frequency 

offset artifacts (98). Proton carrier was set to 5.5 ppm and 2.8 ppm for 15N- and 13C-

detected experiments, respectively. No water suppression was used. A 30 ms and 40 ms 

mixing time was used for 15N and 13C-detected experiments, respectively. All 

experimental parameters including pulse durations and scans were matched for NOESY-

HSQC and ROESY-HSQC pairs. Hydration experiments were collected using 25% non-

uniform sampling in both indirect dimensions. Sampling schedules were created using 
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Poisson-Gap sampling (173, 204). Protein dynamics on the µs-ms time scale were 

measured using the TROSY Hahn Echo method as introduced by Palmer (167). The 2/J 

value was set to 10.8ms. Intensities were measured with 2-D experiments collected in 

triplicate (Iα, Iβ, IzSz). 15N R1 measurements were performed as a series of 2D 

experiments with 9 delay times ranging from 28-750ms with 3 duplicates. Rates were 

fitted to a single exponential decay. The value <κ> was obtained from the trimmed mean 

of amides not exhibiting chemical exchange. Rex was calculated using the Equation 5-2 as 

described by Palmer:   

 
  
Rex = R2

α − R1
2 HzNz / 2−ηxy (κ −1)+ R1

N / 2   5-2 

Errors in Rex were calculated by error propagation using RMS noise of the spectra. 

Dynamics on the ps-ns timescale were measured using the heteronuclear NOE. H-N NOE 

values were taken as ratios of intensities with and without saturation. A relaxation delay 

of 5 s was used to ensure full relaxation of water (166). Errors were calculated by error 

propagation using the RMS noise of the spectra. All spectra were processed using 

NMRPipe and analyzed in Sparky (205).  

Data Processing and molecular visualization 

All calculations were performed using in house scripts written in Python with standard 

packages including numpy, matplotlib, and scipy, or in GraphPad Prism. All visualization 

was performed in PyMol (Delano Scientific) (206) using PDB accession numbers 3BDC, 

5KIX, and 5EGT for SNase Δ+PHS, SNase Δ+PHS/I92E, and SNase Δ+PHS/V66E 

respectively. Amide hydrogens were added to the structures using VMD.  
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Chapter 3 

Protein Purification and Reverse Micelle Encapsulation 

The gene for wild-type human ubiquitin was cloned into the pET11a expression vector 

(Genscript) and expressed in BL21(DE3) E. coli cells in M9 minimal media. Ubiquitin 

used for sampling density measurements were grown in 100% H2O and 13C d-glucose 

and 15NH4Cl as the sole carbon and nitrogen sources for uniformly labeled U- [13C15N]-

ubiquitin. Ubiquitin used to determine NUS hydration reproducibility were grown in 95% 

D2O and 15NH4Cl as the only nitrogen source to yield ~90% 2H, U- [15N] ubiquitin. The 

protein was then extracted from inclusion bodies, purified, and refolded as previously 

described(121). After purification, the protein was extensively dialyzed against pH 5.0 

adjusted water and lyophilized in 1 mg aliquots. Aqueous samples were made with U- 

[13C15N]-ubiquitin resuspended in buffer (50 mM sodium acetate pH 5.0 with 50 mM 

NaCl) to a final concentration of 1 mM. To create stable reverse micelle samples 

(119),each aliquot of 90% 2H, U-[15N] ubiquitin was dissolved in the proper amount of 

buffer (50 mM sodium acetate pH 5.0 with 50 mM NaCl) in order to create a reverse 

micelle using the direct injection method(116) with a molar water to surfactant ratio 

(water loading or W0) of 10 using 75 mM bis(2-ethylhexyl)sulfosuccinate (AOT) as the 

surfactant and 99% deuterated pentane (d-12) as the solvent. The pH of the AOT was pre-

adjusted to 5.0 (137) in order to ensure the aqueous nanopools were at an average pH of 

5. All isotopically labeled materials were obtained from Cambridge Isotopes (Andover, 

MA) and all unlabeled chemicals were purchased from Sigma-Aldrich (St. Louis, MO). 

Three separate reverse micelle samples were made.  



 100 

NMR Spectroscopy and Experimental Setup 

All aqueous samples were collected at 25oC on a 500 MHz (1H) Bruker AVANCE III 

spectrometer equipped with a TXI cryoprobe. 15N-resolved, sensitivity-enhanced  

NOESY-HSQC (207) was collected on U-[13C15N]-ubiquitin with an NOE mix period of 

100ms. Each experiment was collected with 32 scans per free induction decay with 24 

and 64 complex points in nitrogen and indirect protein, respectively. Spectral widths were 

10504.20 Hz (F3, 1H), 1414.696 Hz (F2, 15N) and 5982.8 Hz (F1, 1H-indirect), 

corresponding to sweep widths of 21, 28, and 12, respectively. All data was collected 

with a 97.5 ms acquisition time and an interscan recycle delay of 1 sec. Non-uniformly 

sampled data was collected with both indirect dimensions collected non-uniformly. 

Sampling schedules were generated using the PoissonGap2program (175) and were not 

tested or optimized before use. A total of 8 experiments were collected, 2 uniformly 

Cartesian sampled (US), and 6 non-uniformly sampled (NUS) data sets at 5, 10, 15, 20, 

25, 25% sampling density in the indirect dimensions, respectively.  

All reverse micelle data were collected at 20oC on a 500 MHz (1H) Bruker AVANCE III 

spectrometer equipped with a TXI cryoprobe. 15N-resolved, sensitivity-enhanced  

NOESY-HSQC (89, 94, 196, 207) and ROESY-HSQC (96, 97, 108) were collected on 

uniformly 15N-labeled, ~90% perdeuterated ubiquitin encapsulated in AOT reverse 

micelles as described above. All three-dimensional (3D) NOESY-HSQC and ROESY-

HSQC spectra were collected at 25% Poisson-gap sampling with non-uniformly sampled 

(NUS) versions of the pulse sequences (173, 175) with 32 scans per free induction decay 

with 50 and 64 complex points in the nitrogen and indirect proton dimensions, 
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respectively. Spectral widths were 10504.20 Hz (F3, 1H), 1666.921 Hz (F2, 15N) and 

5482.9 Hz (F1, 1H-indirect), corresponding to sweep widths of 21, 33, and 11, 

respectively. The ROESY experiments used a 8.33 kHz continuous wave spin-lock field 

as previously described (125, 126). Three reverse micelle samples were used and each 

sample was collected at a single N(R)OE mix time in duplicate. Additionally, one sample 

was collected at multiple mix points (20, 40, 60, 80 ms) in order to perform a full NOE 

buildup curve.  Two dimensional experiments were collected with spectral widths of 

10504.20 Hz (F2, 1H) and 1666.921 Hz (F1, 15N) corresponding to sweep widths of 21 

and 33 ppm for proton and nitrogen, respectively. Experiments were collected with 512 

scans per free induction decay and a 48 complex points in nitrogen. The water selective 

pulse was a 15ms Sinc pulse center around water. The inter-scan delay was set to 1 

second. 

All spectra were processed in NMRPipe (208) using the istHMS reconstruction algorithm 

for non-uniformly sampled data (175) with a threshold of 98% and 400 iterations. All 

water (4.5 ppm) cross-peak intensities were determined using Sparky (205). S/N ratios 

were determined as the max peak intensity divided by the RMSNOISE across the entire 

spectrum. All further analysis was completed using standard data fitting software or in 

house Python Scripts.  

Chapter 4 

Reverse Micelle Encapsulation 

Glucose was encapsulated in AOT and CTAB/hexanol reverse micelles. The pH of 2M 

glucose in the absence of buffer was adjusted using small quantities of 0.01M HCl and 
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0.01M NaOH. The pH of AOT reverse micelles was pre-adjusted as described 

previously. Glucose reverse micelles containing sodium acetate and sodium phosphate 

were collected at pH 5. All reverse micelle samples were made with 75mM surfactant 

with a Wo of 20. A total of 15 µL of stock glucose solution was added for a final glucose 

concentration of 50mM in the reverse micelles. AOT reverse micelles were prepared as 

described in Chapter 3 except that only 10mM NaAcetate buffer was used to reduce 

overall hydrogen exchange rates.  

NMR Spectroscopy and Experimental Setup 

All experiments were collected at 20oC on a 500 MHz (1H) Bruker AVANCE III 

spectrometer equipped with a TXI cryoprobe. Hydrogen exchange rates of glucose in 

reverse micelles was collected using standard EXSY experiments. One-dimensional 

water selective NOE experiments using the e-PHOGSY scheme with gradient pulses was 

used. The Bruker pulse pack “SELNOGP” was converted into a pseudo two-dimensional 

experiments. Proton spectral widths were 10000 Hz corresponding to a 20 ppm 

sweepwidth and 128 transients per FID were collected and the inter scan delay was set to 

2 seconds. The water selective pulse consisted of a 15ms SINC pulse. A total of 20 delays 

were used consisting of 3, 4, 6, 8, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 

75, 100, 150, 200, 500, 800 with 3 duplicates. 15N NOESY-HSQCs, ROESY-HSQCs, 

and NOESY-HSQCs with decoupling were collected as a series of pseudo three-

dimensional water selective experiments. Each experiment was collected with 96 

transients per fid and 48 complex points in nitrogen with spectral widths of 10000 Hz and 

1620 Hz corresponding to 20 ppm and 32 ppm for proton and nitrogen, respectively. 
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Selective water excitation was achieved using a 15ms SINC pulse. Decoupling of 

hydroxyls was accomplished using a 10ms G3 inversion pulse. Each G3 inversion loop 

consisted of one 360o rotation and was 20 ms long. Each G3 pulse has a bandwidth of 

~0.6 ppm, and decoupling experiments were centered at 5.7 and 6.1 ppm. NOE and 

decoupled NOE experiments were collected with mix times of 20, 40, 60, 80, 100, 140, 

180, 240, 300, 400, 550, 750, 1000. ROE experiments were collected with mix times of 

10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 110, 130, 150, 250 ms. Experiments for 

determining the κ correction factor were set at 80 and 140 ms mix times with a 20ms 

360o pulse in the middle of the mix period.  

Data fitting 

All spectra were processed in NMRPipe (208). Glucose peak height intensities were 

determined by using the NMRDraw module of NMRPipe. Protein crosspeak intensities 

were determined using Sparky (205). In house python scripts were used to fit glucose 

hydrogen exchange rates according to Equation 5-3: 

   Ao(1− e−kexτ )e−R1τ   5-3 

All data fitting for Ubiquitin was performed using GraphPad Prism.  

Structural Surface Analysis 

The trigen and trisrf algorithms (209) were implemented on the structure of ubiquitin 

encapsulated in AOT reverse micelles (PDB entry 1G6J, conformer 25) in order to create 

a Van der Waals surface (VDWS) in Cartesian points. This surface was used to map the 

amide hydration dynamics across the surface of ubiquitin: if a point on the rendered 
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surface was within 4 Å of one or more amide probes, it would adopt the average 

σNOE/σROE ratio and would be colored accordingly (see main text for color scale). If a 

surface point was not within 4 Å of an amide residue, it is colored gray. All molecular 

images were created using PyMol (Delano Scientific). 
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 Appendix C: Data Tables 

Chapter 2 

Table C- 1: List of Chemical Shift Perturbations of SNase Δ+PHS/I92E and 
SNase Δ+PHS/V66E in CTAB/hexanol reverse micelles relative to the SNase 
Δ+PHS WT protein     

Assignment I92E V66E 
ALA 1   
THR 2   
SER 3 0.033 0.024 
THR 4 0.036 0.024 
LYS 5 0.038  
LYS 6 0.034 0.025 
LEU 7 0.030 0.020 
HIS 8 0.063 0.027 
LYS 9 0.188 0.047 
GLU 10 0.133 0.041 
ALA 12   
THR 13 0.208 0.044 
LEU 14 0.164 0.068 
ILE 15 0.137 0.141 
LYS 16 0.232 0.116 
ALA 17 0.204 0.150 
ILE 18 0.089 0.274 
ASP 19 0.217  
GLY 20 0.322 0.038 
ASP 21  0.087 
THR 22 0.645 0.912 
VAL 23 0.881  
LYS 24 0.452 0.972 
LEU 25 0.103 0.027 
MET 26 0.094 0.050 
TYR 27 0.013 0.008 
LYS 28 0.042 0.014 
GLY 29 0.010 0.010 
GLN 30 0.066 0.033 
MET 32  0.073 
THR 33 0.215 0.080 

PHE 34  0.095 
ARG 35 0.053 0.095 
LEU 36   
LEU 37 0.156 0.039 
LEU 38 0.110 0.063 
VAL 39 0.027 0.064 
ASP 40 0.254 0.145 
THR 41   
GLU 43 0.091 0.004 
PHE 51 0.012 0.043 
ASN 52 0.059 0.022 
GLU 53 0.016 0.006 
LYS 54 0.018 0.011 
TYR 55 0.024 0.022 
GLY 56 0.019 0.023 
GLU 57 0.034 0.015 
ALA 58 0.034 0.023 
SER 59 0.151 0.148 
ALA 60 0.073 0.032 
PHE 61 0.413 0.202 
THR 62  2.692 
LYS 63  0.725 
LYS 64  0.253 
MET 65 0.174 0.227 
VAL 66 0.599 4.027 
GLU 67 0.173 1.857 
ASN 68 0.165 0.115 
ALA 69 0.164 0.066 
LYS 70 0.069 0.072 
LYS 71 0.033 0.016 
ILE 72 0.043 0.012 
GLU 73 0.042 0.031 
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VAL 74 1.072 0.035 
GLU 75 0.694 0.027 
PHE 76 0.089 0.053 
ASP 77 0.146 0.033 
LYS 78 0.043 0.077 
GLY 79 0.030 0.005 
GLN 80 0.062  
ARG 81 0.026 0.008 
THR 82 0.105 0.072 
ASP 83 0.043 0.012 
LYS 84 0.019 0.011 
TYR 85 0.032 0.015 
GLY 86 0.054 0.052 
ARG 87 0.038 0.016 
GLY 88 0.083 0.094 
LEU 89 0.111 0.145 
ALA 90  0.005 
TYR 91 0.148  
GLU 92 0.452  
TYR 93 0.413 0.020 
ALA 94 0.026 0.037 
ASP 95 0.018 0.003 
GLY 96 0.040 0.028 
LYS 97 0.044 0.027 
MET 98 0.072 0.005 
VAL 99 0.206 0.075 
ASN 100 0.140 0.016 
GLU 101 0.027 0.038 
ALA 102 0.075 0.112 
LEU 103 0.021 0.134 
VAL 104 0.049 0.046 
ARG 105 0.072 0.019 
GLN 106 0.010 0.011 
GLY 107   
LEU 108 0.040 0.020 
ALA 109 0.063 0.043 
LYS 110  0.084 
VAL 111 0.122 0.102 
ALA 112 0.141  

TYR 113 0.029 0.032 
VAL 114 0.024 0.071 
TYR 115   
LYS 116 0.120 0.029 
GLY 117 0.108 0.113 
ASN 118 0.104 0.107 
ASN 119 0.043 0.026 
THR 120 0.009 0.018 
HIS 121   
GLU 122 0.037 0.050 
GLN 123 0.020 0.025 
LEU 124 0.039 0.000 
LEU 125 0.038 0.018 
ARG 126 0.029 0.005 
LYS 127 0.007 0.059 
ALA 128 0.018 0.044 
GLU 129   
ALA 130   
GLN 131 0.024 0.048 
ALA 132 0.017  
LYS 133 0.018 0.023 
LYS 134 0.024 0.033 
GLU 135 0.016 0.017 
LYS 136 0.038 0.026 
LEU 137 0.019 0.030 
ASN 138 0.020 0.015 
ILE 139 0.022 0.024 
TRP 140 0.028 0.014 
SER 141 0.009 0.050 
GLU 142 0.086 0.041 
ASP 143 0.031 0.020 
ASN 144 0.031 0.020 
ALA 145 0.019  
ASP 146 0.029 0.018 
SER 147 0.025 0.018 
GLY 148 0.016 0.017 
GLN 149 0.020 0.019 



107 

 
 

Table C- 2: 15N-Detected NOE and ROE values to water for SNase Δ+PHS

Assignment NOE 
S/N 

ROE 
S/N 

NOE/ROE 

    
Ser3HN 1102 917 1.20 
Thr4HN 715 530 1.35 
Lys5HN 290 162 1.79 
Lys6HN 78 16 4.76 
Leu7HN 13 -23 -0.58 
His8HN 89 -65 -1.36 
Glu10HN 224 -268 -0.84 
Thr13HN 23 -39 -0.60 
Leu14HN  -29  
Ala17HN 8 -25 -0.33 
Ile18HN 8 -17 -0.48 
Asp19HN 10 -11 -0.94 
Gly20HN 37 -54 -0.69 
Asp21HN 33 -23 -1.42 
Thr22HN 63 -75 -0.85 
Met26HN  -7  
Lys28HN  -17  
Thr33HN 80 -120 -0.67 
Leu38HN 25 -26 -0.95 
Glu43HN  -15  
Phe44HN  -15  
Lys53HN  -11  
Glu57HN  -9  
Phe61HN  -7  
Val66HN 9   
Ala69HN  -17  
Lys70HN  -11  
Ile72HN  -32  
Glu73HN 17 -34 -0.49 

Phe76HN 70 -100 -0.71 
Lys78HN 33 -24 -1.39 
Gly79HN 20 -20 -1.02 
Arg81HN 36 7 4.92 
Thr82HN 32 -47 -0.69 
Asp83HN 10 -14 -0.71 
Lys84HN 124 52 2.37 
Tyr85HN  -9  
Leu89HN 11 -13 -0.91 
Tyr91HN  -18  
Asp95HN 51 -58 -0.88 
Gly96HN 94 -120 -0.79 
Gly107HN 52 -63 -0.83 
Leu108HN 13   
Val111HN  -9  
Val114HN 43 -56 -0.78 
Gly117HN 28 -9 -3.05 
Asn119HN 29 -6 -4.53 
Thr120HN 63 -51 -1.23 
His121HN 61 -59 -1.03 
Leu124HN  -14  
Asn138HN 7 -32 -0.23 
Ser139HN 117 -139 -0.84 
Glu142HN 32 -28 -1.12 
Asp143HN 82   
Asn144HN 129 60 2.14 
Asp146HN 87 51 1.70 
Ser147HN 296 176 1.68 
Gly148HN 198 129 1.54 
Gln149HN  -34  
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Table C- 3: 13C-Detected NOE and ROE values to water for SNase Δ+PHS 

Assignment NOE 
S/N 

ROE 
S/N 

NOE/ROE 

    
Leu7HDR 40 -41 -0.97 
Leu7HDS 18 -19 -0.96 
Ile18HD1 24 -38 -0.63 
Leu37HDR 21 -22 -0.94 
Leu37HDS 23 -29 -0.81 
Leu38HDS 21 -32 -0.66 
Ile72HD1  -15  
Val74HGS  -8  
Leu89HDS  -11  
Val104HGR 36 -38 -0.93 
Val104HGS 6 -7 -0.88 
Val114HGS 12 -10 -1.19 
Leu124HDS 8 -17 -0.48 
Ile139H 36 -26 -1.34 

 

Table C- 4: 15N-Detected NOE and ROE values to water for SNase Δ+PHS/I92E 

Assignment NOE 
S/N 

ROE 
S/N 

NOE/ROE 

Ser3HN 850 795 1.07 
Thr4HN 640 536 1.19 
Lys5HN 319 213 1.50 
Lys6HN 77 30 2.60 
Leu7HN 19 -15 -1.25 
His8HN 106 -74 -1.43 
Lys9HN 50   
Glu10HN 12 -12 -0.96 
Ala12HN  -22  
Thr13HN  -13  
Leu14HN  -45  
Ala17HN 13 -39 -0.33 
Ile18HN 55 -67 -0.82 

Asp19HN 65 -64 -1.01 
Gly20HN 51 -74 -0.69 
Thr22HN 112 -128 -0.87 
Val23HN 29 -31 -0.94 
Met26HN 11 -11 -1.00 
Lys28HN  -19  
Thr33HN 89 -132 -0.67 
Arg35HN 7 -11 -0.66 
Leu36HN 36 -25 -1.43 
Leu38HN 29 -48 -0.60 
Glu43HN  -22  
Phe44HN  -17  
Asn51HN 12   
Lys53HN  -11  
Tyr54HN  -19  
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Ser59HN 15 -19 -0.79 
Ala60HN  -10  
Val66HN 20 -56 -0.36 
Ala69HN  -18  
Lys71HN  -7  
Ile72HN  -44  
Glu73HN 37 -47 -0.78 
Phe76HN 89 -145 -0.62 
Asp77HN 294 -369 -0.80 
Lys78HN 35 -37 -0.93 
Gly79HN 25 -22 -1.13 
Arg81HN 33 11 2.99 
Thr82HN 31 -47 -0.67 
Asp83HN 20 -11 -1.75 
Lys84HN 100 54 1.87 
Leu89HN 20 -24 -0.84 
Ala94HN  -10  
Asp95HN 60 -82 -0.73 
Gly96HN 106 -142 -0.74 
Met98HN 18   
Arg105HN  -9  
Gly107HN 90 -92 -0.98 

Lys110HN  -10  
Val111HN  -24  
Val114HN 69 -69 -1.01 
Lys116HN 41   
Asn118HN 22   
Asn119HN 32 -21 -1.54 
Thr120HN 79 -64 -1.24 
Glu122HN 29 -50 -0.58 
Gln123HN 24   
Ala128HN  -13  
Asn138HN 17 -43 -0.39 
Ile139HN 18   
Ser141HN 154 -193 -0.80 
Glu142HN 43 -26 -1.68 
Asp143HN 133 23 5.79 
Asn144HN 206 122 1.69 
Ala145HN 273 200 1.36 
Asp146HN 152 115 1.33 
Ser147HN 407 304 1.34 
Gly148HN 298 239 1.25 
Gln143HN  -52  

 
Table C- 5: 13C-Detected NOE and ROE values to water for SNase Δ+PHS/I92E 

Assignment NOE 
S/N 

ROE 
S/N 

NOE/ROE 

Leu7HDR 34 -37 -0.92 
Leu7HDS 27 -27 -1.00 
Ile18HDR 31 -45 -0.69 
Val23HGS 19 -31 -0.59 
Leu36HDR 37 -33 -1.12 
Leu36HDS 41 -38 -1.07 
Leu37HDR 33 -29 -1.15 
Leu37HDS 32 -37 -0.89 

Leu38HDR  -7  
Leu38HDS 38 -39 -0.98 
Val66HGR 38 -29 -1.31 
Val66HGS 24 -22 -1.09 
Ile72HDR 15 -24 -0.61 
Val74HGS 8   
Val104HGR 60 -52 -1.15 
Val104HGS 16   
Val111HGS 14   
Ile139HDR 55 -42 -1.30 
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Table C- 6: 15N-Detected NOE and ROE values to water for SNase Δ+PHS/V66E

Assignment NOE 
S/N 

ROE 
S/N 

NOE/ROE 

Ser3HN 1356 1002 1.35 
Thr4HN 761 475 1.60 
Leu7HN 7 -39 -0.18 
His8HN 140 -164 -0.85 
Lys9HN 47 -33 -1.41 
Thr13HN 68 -96 -0.71 
Leu14HN 18 -81 -0.22 
Ala17HN 24 -67 -0.37 
Ile18HN 294 -332 -0.89 
Gly20HN 95 -106 -0.90 
Asp21HN 118 -57 -2.06 
Thr22HN 232 -251 -0.92 
Leu25HN 8 -12 -0.74 
Lys28HN  -40  
Gly29HN  -9  
Met32HN 9 -25 -0.35 
Leu38HN 85 -120 -0.71 
Val39HN 16 -13 -1.30 
Glu43HN  -29  
Phe44HN  -26  
Lys53HN  -16  
Ser59HN 40 -66 -0.62 
Lys63HN 21 -38 -0.55 
Lys64HN  -8  
Ala69HN 11 -27 -0.40 
Lys70HN  -12  
Ile72HN 14 -71 -0.19 
Glu73HN 54 -68 -0.79 
Phe76HN 154 -199 -0.78 
Asp77HN 489 -548 -0.89 
Lys78HN 69 -57 -1.20 

Gly79HN 30 -28 -1.08 
Thr82HN 77 -107 -0.72 
Asp83HN 34 -18 -1.92 
Tyr85HN 225 -222 -1.02 
Leu89HN 39 -52 -0.76 
Ala90HN 8 -15 -0.53 
Asp95HN 99 -118 -0.83 
Gly96HN 184 -222 -0.83 
Lys97HN 12 -15 -0.77 
Met98HN 14 -27 -0.52 
Gly107HN 142 -157 -0.91 
Ala109HN 127 -135 -0.94 
Lys110HN 15 -32 -0.47 
Ala112HN 9 -13 -0.66 
Val114HN 101 -112 -0.90 
Lys116HN 66 -10 -6.52 
Gly117HN 63 -35 -1.79 
Asn118HN 33 -32 -1.02 
Asn119HN 69 -32 -2.14 
Thr120HN 175 -134 -1.31 
Glu122HN 8 -11 -0.73 
Lys133HN 97 -131 -0.74 
Lys134HN  -8  
Asn138HN 25 -61 -0.41 
Ser141HN 274 -315 -0.87 
Glu142HN 47 -49 -0.96 
Asp143HN 119 -30 -3.98 
Asn144HN 146 29 5.02 
Asp146HN 85 20 4.34 
Ser147HN 321 111 2.89 
Gly148HN 182 89 2.04 
Gln149HN -8 -76 0.10 
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Table C- 7: 13C-Detected NOE and ROE values to water for SNase Δ+PHS/V66E 

Assignment 
NOE 
S/N 

ROE 
S/N NOE/ROE 

Leu7HDR 51 -58 -0.88 
Leu7HDS 24 -29 -0.85 
Leu14HDR 22 -18 -1.22 
I18HD1 51 -74 -0.69 
Leu36HDR 11 -22 -0.48 
Leu36HDS 23 -21 -1.11 
Leu37HDR 26 -30 -0.88 
Leu37HDS 31 -35 -0.90 
Leu38HDR 10 -10 -0.97 
Leu38HDS 38 -49 -0.76 
Ile72HD1 15 -28 -0.54 
Leu89HDS 9 -15 -0.58 
Ile92HD1 -1 -13 0.09 
Val104HDR 56 -52 -1.08 
Val104HGS 5 -11 -0.42 
Val114HGS 10 -11 -0.87 
Leu124HDR 2 -33 -0.06 
Leu124HDS 9 -21 -0.41 
Ile139HD1 42 -43 -0.99 
 

Table C- 8: List of H-N NOE values for SNase Δ+PHS and mutants SNase 
Δ+PHS/I92E and SNase Δ+PHS/V66E 

Assignment	   WT	   	   	   I92E	   	   	   V66E	   	   	  
ALA	   1	   	   	   	   	   	   	   	   	   	  
THR	   2	   	   	   	   	   	   	   	   	   	  
SER	   3	   -‐1.03	   ±	  	   0.01	   -‐0.87	   ±	  	   0.02	   -‐1.01	   ±	  	   0.01	  
THR	   4	   -‐0.42	   ±	  	   0.01	   -‐0.21	   ±	  	   0.01	   -‐0.32	   ±	  	   0.01	  
LYS	   5	   	   	   	   0.05	   ±	  	   0.01	   	   	   	  
LYS	   6	   0.12	   ±	  	   0.01	   0.17	   ±	  	   0.01	   0.11	   ±	  	   0.01	  
LEU	   7	   0.55	   ±	  	   0.01	   0.45	   ±	  	   0.01	   0.45	   ±	  	   0.01	  
HIS	   8	   0.66	   ±	  	   0.01	   0.66	   ±	  	   0.01	   0.59	   ±	  	   0.01	  
LYS	   9	   	   	   	   0.73	   ±	  	   0.02	   0.67	   ±	  	   0.01	  
GLU	   10	   	   	   	   0.76	   ±	  	   0.02	   0.77	   ±	  	   0.01	  
ALA	   12	   	   	   	   0.73	   ±	  	   0.01	   	   	   	  
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THR	   13	   0.77	   ±	  	   0.02	   0.75	   ±	  	   0.02	   0.76	   ±	  	   0.01	  
LEU	   14	   0.77	   ±	  	   0.02	   0.83	   ±	  	   0.01	   0.79	   ±	  	   0.01	  
ILE	   15	   0.79	   ±	  	   0.03	   0.77	   ±	  	   0.02	   0.78	   ±	  	   0.02	  
LYS	   16	   0.74	   ±	  	   0.03	   0.75	   ±	  	   0.02	   0.82	   ±	  	   0.02	  
ALA	   17	   0.79	   ±	  	   0.02	   0.69	   ±	  	   0.02	   0.71	   ±	  	   0.01	  
ILE	   18	   0.63	   ±	  	   0.02	   0.59	   ±	  	   0.02	   0.59	   ±	  	   0.02	  
ASP	   19	   0.71	   ±	  	   0.04	   0.65	   ±	  	   0.02	   	   	   	  
GLY	   20	   0.76	   ±	  	   0.02	   0.73	   ±	  	   0.02	   0.72	   ±	  	   0.02	  
ASP	   21	   0.81	   ±	  	   0.06	   	   	   	   0.68	   ±	  	   0.02	  
THR	   22	   0.86	   ±	  	   0.04	   0.8	   ±	  	   0.04	   0.81	   ±	  	   0.03	  
VAL	   23	   0.8	   ±	  	   0.04	   0.78	   ±	  	   0.02	   	   	   	  
LYS	   24	   0.79	   ±	  	   0.02	   0.73	   ±	  	   0.02	   0.78	   ±	  	   0.02	  
LEU	   25	   	   	   	   0.75	   ±	  	   0.01	   0.77	   ±	  	   0.01	  
MET	   26	   0.83	   ±	  	   0.02	   0.77	   ±	  	   0.02	   0.79	   ±	  	   0.01	  
TYR	   27	   0.82	   ±	  	   0.02	   0.8	   ±	  	   0.01	   0.86	   ±	  	   0.01	  
LYS	   28	   0.71	   ±	  	   0.02	   0.67	   ±	  	   0.01	   0.69	   ±	  	   0.01	  
GLY	   29	   0.7	   ±	  	   0.02	   0.66	   ±	  	   0.02	   0.72	   ±	  	   0.01	  
GLN	   30	   0.76	   ±	  	   0.02	   	   	   	   0.76	   ±	  	   0.01	  
MET	   32	   0.72	   ±	  	   0.02	   	   	   	   0.79	   ±	  	   0.01	  
THR	   33	   0.72	   ±	  	   0.02	   	   	   	   	   	   	  
PHE	   34	   0.79	   ±	  	   0.02	   	   	   	   0.75	   ±	  	   0.01	  
ARG	   35	   0.85	   ±	  	   0.04	   0.84	   ±	  	   0.02	   0.8	   ±	  	   0.01	  
LEU	   36	   	   	   	   0.72	   ±	  	   0.02	   0.76	   ±	  	   0.01	  
LEU	   37	   0.73	   ±	  	   0.04	   0.79	   ±	  	   0.02	   0.86	   ±	  	   0.02	  
LEU	   38	   0.77	   ±	  	   0.05	   0.77	   ±	  	   0.05	   0.77	   ±	  	   0.02	  
VAL	   39	   0.83	   ±	  	   0.04	   0.79	   ±	  	   0.02	   0.74	   ±	  	   0.01	  
ASP	   40	   0.75	   ±	  	   0.04	   	   	   	   	   	   	  
THR	   41	   0.77	   ±	  	   0.03	   	   	   	   	   	   	  
GLU	   43	   0.71	   ±	  	   0.02	   0.74	   ±	  	   0.02	   0.72	   ±	  	   0.01	  
PHE	   51	   0.67	   ±	  	   0.02	   0.66	   ±	  	   0.02	   0.7	   ±	  	   0.01	  
ASN	   52	   0.72	   ±	  	   0.04	   0.73	   ±	  	   0.03	   0.72	   ±	  	   0.02	  
GLU	   53	   0.72	   ±	  	   0.02	   0.7	   ±	  	   0.01	   0.73	   ±	  	   0.01	  
LYS	   54	   0.65	   ±	  	   0.02	   0.6	   ±	  	   0.01	   0.65	   ±	  	   0.01	  
TYR	   55	   0.75	   ±	  	   0.02	   0.75	   ±	  	   0.02	   0.75	   ±	  	   0.02	  
GLY	   56	   0.83	   ±	  	   0.02	   0.81	   ±	  	   0.02	   0.85	   ±	  	   0.02	  
GLU	   57	   0.82	   ±	  	   0.02	   0.81	   ±	  	   0.02	   0.82	   ±	  	   0.02	  
ALA	   58	   0.85	   ±	  	   0.03	   0.79	   ±	  	   0.02	   0.84	   ±	  	   0.02	  
SER	   59	   	   	   	   0.69	   ±	  	   0.04	   0.81	   ±	  	   0.02	  
ALA	   60	   0.77	   ±	  	   0.03	   0.72	   ±	  	   0.02	   0.79	   ±	  	   0.02	  
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PHE	   61	   0.84	   ±	  	   0.03	   0.73	   ±	  	   0.02	   0.82	   ±	  	   0.02	  
THR	   62	   0.78	   ±	  	   0.03	   	   	   	   0.8	   ±	  	   0.02	  
LYS	   63	   0.79	   ±	  	   0.03	   	   	   	   0.87	   ±	  	   0.02	  
LYS	   64	   	   	   	   	   	   	   0.79	   ±	  	   0.02	  
MET	   65	   0.78	   ±	  	   0.02	   0.79	   ±	  	   0.02	   0.82	   ±	  	   0.02	  
VAL	   66	   0.81	   ±	  	   0.04	   0.76	   ±	  	   0.01	   0.83	   ±	  	   0.02	  
GLU	   67	   0.79	   ±	  	   0.03	   0.8	   ±	  	   0.02	   0.8	   ±	  	   0.02	  
ASN	   68	   0.81	   ±	  	   0.03	   0.69	   ±	  	   0.02	   0.8	   ±	  	   0.02	  
ALA	   69	   0.78	   ±	  	   0.02	   0.74	   ±	  	   0.01	   0.78	   ±	  	   0.01	  
LYS	   70	   0.77	   ±	  	   0.02	   0.74	   ±	  	   0.02	   0.8	   ±	  	   0.02	  
LYS	   71	   0.72	   ±	  	   0.02	   0.75	   ±	  	   0.02	   0.76	   ±	  	   0.02	  
ILE	   72	   0.73	   ±	  	   0.02	   0.74	   ±	  	   0.01	   0.71	   ±	  	   0.01	  
GLU	   73	   0.83	   ±	  	   0.03	   0.8	   ±	  	   0.02	   0.82	   ±	  	   0.01	  
VAL	   74	   0.84	   ±	  	   0.03	   0.81	   ±	  	   0.02	   0.85	   ±	  	   0.02	  
GLU	   75	   0.8	   ±	  	   0.02	   0.82	   ±	  	   0.02	   0.81	   ±	  	   0.02	  
PHE	   76	   0.74	   ±	  	   0.02	   0.73	   ±	  	   0.01	   0.77	   ±	  	   0.01	  
ASP	   77	   	   	   	   0.77	   ±	  	   0.02	   0.81	   ±	  	   0.02	  
LYS	   78	   0.75	   ±	  	   0.03	   0.74	   ±	  	   0.02	   0.79	   ±	  	   0.02	  
GLY	   79	   	   	   	   0.72	   ±	  	   0.01	   0.73	   ±	  	   0.01	  
GLN	   80	   0.1	   ±	  	   0.03	   0.18	   ±	  	   0.02	   	   	   	  
ARG	   81	   0.76	   ±	  	   0.02	   0.84	   ±	  	   0.03	   0.74	   ±	  	   0.01	  
THR	   82	   0.71	   ±	  	   0.02	   0.73	   ±	  	   0.02	   0.76	   ±	  	   0.02	  
ASP	   83	   0.78	   ±	  	   0.02	   0.75	   ±	  	   0.01	   0.76	   ±	  	   0.01	  
LYS	   84	   0.65	   ±	  	   0.02	   	   	   	   0.66	   ±	  	   0.01	  
TYR	   85	   0.72	   ±	  	   0.03	   0.79	   ±	  	   0.02	   0.73	   ±	  	   0.01	  
GLY	   86	   0.79	   ±	  	   0.03	   0.7	   ±	  	   0.02	   0.76	   ±	  	   0.02	  
ARG	   87	   0.77	   ±	  	   0.03	   0.72	   ±	  	   0.02	   0.75	   ±	  	   0.02	  
GLY	   88	   0.8	   ±	  	   0.02	   0.78	   ±	  	   0.01	   0.78	   ±	  	   0.01	  
LEU	   89	   0.77	   ±	  	   0.03	   0.76	   ±	  	   0.02	   0.83	   ±	  	   0.01	  
ALA	   90	   0.88	   ±	  	   0.05	   	   	   	   0.84	   ±	  	   0.02	  
TYR	   91	   0.75	   ±	  	   0.02	   	   	   	   	   	   	  
GLU	   92	   0.79	   ±	  	   0.03	   0.71	   ±	  	   0.01	   	   	   	  
TYR	   93	   0.84	   ±	  	   0.03	   0.8	   ±	  	   0.02	   0.82	   ±	  	   0.02	  
ALA	   94	   0.84	   ±	  	   0.03	   0.79	   ±	  	   0.02	   0.83	   ±	  	   0.02	  
ASP	   95	   0.78	   ±	  	   0.02	   0.79	   ±	  	   0.02	   0.79	   ±	  	   0.02	  
GLY	   96	   0.77	   ±	  	   0.02	   0.77	   ±	  	   0.02	   0.83	   ±	  	   0.02	  
LYS	   97	   0.83	   ±	  	   0.02	   0.85	   ±	  	   0.01	   0.83	   ±	  	   0.01	  
MET	   98	   	   	   	   0.67	   ±	  	   0.01	   0.72	   ±	  	   0.01	  
VAL	   99	   0.72	   ±	  	   0.03	   0.85	   ±	  	   0.02	   0.78	   ±	  	   0.02	  
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ASN	   100	   0.84	   ±	  	   0.04	   0.82	   ±	  	   0.02	   0.84	   ±	  	   0.02	  
GLU	   101	   0.76	   ±	  	   0.03	   0.79	   ±	  	   0.02	   0.84	   ±	  	   0.02	  
ALA	   102	   0.82	   ±	  	   0.03	   0.85	   ±	  	   0.02	   0.86	   ±	  	   0.02	  
LEU	   103	   	   	   	   	   	   	   	   	   	  
VAL	   104	   0.8	   ±	  	   0.02	   0.8	   ±	  	   0.02	   	   	   	  
ARG	   105	   	   	   	   	   	   	   	   	   	  
GLN	   106	   0.75	   ±	  	   0.03	   0.8	   ±	  	   0.02	   0.73	   ±	  	   0.02	  
GLY	   107	   	   	   	   	   	   	   	   	   	  
LEU	   108	   0.85	   ±	  	   0.04	   0.82	   ±	  	   0.02	   0.86	   ±	  	   0.02	  
ALA	   109	   0.83	   ±	  	   0.03	   0.77	   ±	  	   0.02	   0.81	   ±	  	   0.02	  
LYS	   110	   	   	   	   	   	   	   	   	   	  
VAL	   111	   0.83	   ±	  	   0.04	   0.8	   ±	  	   0.02	   0.8	   ±	  	   0.02	  
ALA	   112	   0.78	   ±	  	   0.04	   0.86	   ±	  	   0.03	   0.85	   ±	  	   0.03	  
TYR	   113	   0.73	   ±	  	   0.07	   0.78	   ±	  	   0.05	   0.81	   ±	  	   0.01	  
VAL	   114	   0.77	   ±	  	   0.02	   0.77	   ±	  	   0.02	   	   	   	  
TYR	   115	   	   	   	   	   	   	   	   	   	  
LYS	   116	   0.68	   ±	  	   0.03	   -‐0.65	   ±	  	   0	   0.63	   ±	  	   0.02	  
GLY	   117	   0.62	   ±	  	   0.01	   0.65	   ±	  	   0.02	   0.64	   ±	  	   0.01	  
ASN	   118	   0.57	   ±	  	   0.07	   0.6	   ±	  	   0.09	   0.63	   ±	  	   0.03	  
ASN	   119	   	   	   	   	   	   	   0.73	   ±	  	   0.02	  
THR	   120	   0.72	   ±	  	   0.02	   0.69	   ±	  	   0.02	   0.69	   ±	  	   0.02	  
HIS	   121	   0.79	   ±	  	   0.05	   0.82	   ±	  	   0.04	   0.79	   ±	  	   0.03	  
GLU	   122	   0.79	   ±	  	   0.02	   0.81	   ±	  	   0.01	   0.84	   ±	  	   0.02	  
GLN	   123	   	   	   	   0.73	   ±	  	   0.02	   0.74	   ±	  	   0.02	  
LEU	   124	   0.83	   ±	  	   0.03	   0.84	   ±	  	   0.01	   0.81	   ±	  	   0.02	  
LEU	   125	   0.81	   ±	  	   0.03	   	   	   	   0.8	   ±	  	   0.02	  
ARG	   126	   0.78	   ±	  	   0.03	   0.81	   ±	  	   0.02	   0.81	   ±	  	   0.02	  
LYS	   127	   0.69	   ±	  	   0.02	   0.74	   ±	  	   0.02	   	   	   	  
ALA	   128	   0.8	   ±	  	   0.02	   0.77	   ±	  	   0.02	   0.8	   ±	  	   0.02	  
GLU	   129	   	   	   	   0.28	   ±	  	   0.09	   0.81	   ±	  	   0.02	  
ALA	   130	   	   	   	   0.8	   ±	  	   0.02	   	   	   	  
GLN	   131	   0.82	   ±	  	   0.02	   0.87	   ±	  	   0.02	   0.88	   ±	  	   0.02	  
ALA	   132	   0.76	   ±	  	   0.03	   0.79	   ±	  	   0.02	   	   	   	  
LYS	   133	   0.79	   ±	  	   0.02	   	   	   	   0.8	   ±	  	   0.01	  
LYS	   134	   0.83	   ±	  	   0.02	   0.84	   ±	  	   0.02	   0.84	   ±	  	   0.02	  
GLU	   135	   0.85	   ±	  	   0.02	   0.81	   ±	  	   0.02	   0.84	   ±	  	   0.02	  
LYS	   136	   0.76	   ±	  	   0.02	   0.8	   ±	  	   0.01	   0.81	   ±	  	   0.02	  
LEU	   137	   0.86	   ±	  	   0.02	   0.83	   ±	  	   0.02	   0.83	   ±	  	   0.02	  
ASN	   138	   0.83	   ±	  	   0.02	   0.8	   ±	  	   0.01	   0.8	   ±	  	   0.01	  
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ILE	   139	   0.76	   ±	  	   0.03	   0.79	   ±	  	   0.02	   0.82	   ±	  	   0.02	  
TRP	   140	   	   	   	   	   	   	   0.81	   ±	  	   0.02	  
SER	   141	   0.79	   ±	  	   0.03	   0.81	   ±	  	   0.02	   0.83	   ±	  	   0.02	  
GLU	   142	   	   	   	   0.57	   ±	  	   0.01	   0.57	   ±	  	   0.01	  
ASP	   143	   0.36	   ±	  	   0.01	   0.43	   ±	  	   0.01	   0.35	   ±	  	   0.01	  
ASN	   144	   0.18	   ±	  	   0.01	   0.15	   ±	  	   0.01	   0.18	   ±	  	   0.01	  
ALA	   145	   	   	   	   0.08	   ±	  	   0	   	   	   	  
ASP	   146	   0.06	   ±	  	   0.01	   0.04	   ±	  	   0	   0.06	   ±	  	   0	  
SER	   147	   -‐0.38	   ±	  	   0.01	   -‐0.42	   ±	  	   0	   -‐0.39	   ±	  	   0	  
GLY	   148	   -‐0.62	   ±	  	   0.01	   -‐0.71	   ±	  	   0.01	   -‐0.68	   ±	  	   0	  
GLN	   149	   -‐0.69	   ±	  	   0.01	   -‐0.65	   ±	  	   0	   -‐0.71	   ±	  	   0	  
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Table C- 9: List of TROSY Hahn-Echo (Rex) values for SNase Δ+PHS and 
mutants SNase Δ+PHS/I92E and SNase Δ+PHS/V66E 

 

Assignment WT I92E V66E 
SER 3 2.26 ±  0.38 2.45 ±  0.39 -6.91 ±  0.19 
THR 4 2.12 ±  0.29 2.04 ±  0.25 -6.50 ±  0.19 
LYS 5       1.60 ±  0.21       
LYS 6 1.64 ±  0.31 1.90 ±  0.30 -3.70 ±  0.19 
LEU 7 2.83 ±  0.31 2.09 ±  0.25 0.03 ±  0.24 
HIS 8 3.40 ±  0.42 3.75 ±  0.25 -1.53 ±  0.31 
LYS 9 6.87 ±  0.46 2.18 ±  0.34 -0.12 ±  0.30 
GLU 10 2.92 ±  0.68 3.06 ±  0.36 0.46 ±  0.56 
THR 13 3.16 ±  0.62 4.15 ±  0.69 -0.37 ±  0.52 
LEU 14 1.98 ±  0.41 1.50 ±  0.25 -0.23 ±  0.32 
ILE 15 0.48 ±  0.98 2.50 ±  0.58 -1.77 ±  0.81 
LYS 16 2.93 ±  0.94 4.20 ±  0.57 1.82 ±  0.78 
ALA 17 1.11 ±  0.46 1.86 ±  0.35 -0.50 ±  0.35 
ILE 18 2.02 ±  0.88 2.96 ±  0.61 -5.26 ±  0.63 
ASP 19 2.91 ±  2.05 9.01 ±  0.65       
GLY 20 6.11 ±  0.81 9.34 ±  0.38 3.19 ±  0.63 
ASP 21 35.35 ±  5.95       2.47 ±  0.95 
THR 22 6.05 ±  1.47 16.18 ±  1.65 0.30 ±  1.18 
VAL 23 10.31 ±  1.42 4.33 ±  0.42       
LYS 24 0.02 ±  0.67 1.78 ±  0.57 -1.98 ±  0.51 
LEU 25       1.29 ±  0.37 -0.47 ±  0.60 
MET 26 2.35 ±  0.74 2.27 ±  0.39 -0.62 ±  0.56 
TYR 27 1.17 ±  0.82 0.43 ±  0.34 -2.10 ±  0.65 
LYS 28 0.88 ±  0.53 1.09 ±  0.29 -1.23 ±  0.37 
GLY 29 2.81 ±  0.60 4.13 ±  0.35 -1.06 ±  0.48 
GLN 30 -0.12 ±  0.68       -1.95 ±  0.49 
MET 32 0.68 ±  0.79       0.27 ±  0.59 
THR 33 3.68 ±  0.56             
PHE 34 2.01 ±  0.98       0.34 ±  0.57 
ARG 35 23.54 ±  2.22 9.06 ±  0.53 0.46 ±  0.61 
LEU 36       3.94 ±  0.42 2.07 ±  0.53 

 
Assignment WT I92E V66E 

LEU 37 5.26 ±  1.62 5.59 ±  0.74 -1.72 ±  0.92 
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LEU 38 5.68 ±  1.90 13.09 ±  1.51 3.12 ±  0.59 
VAL 39 3.14 ±  1.25 9.32 ±  0.71 0.33 ±  0.50 
ASP 40 36.38 ±  3.76             
THR 41 0.55 ±  1.15             
GLU 43 4.09 ±  0.85 8.81 ±  0.43 0.59 ±  0.42 
PHE 51 6.30 ±  0.69 8.72 ±  0.41 2.79 ±  0.50 
ASN 52 8.85 ±  1.97 7.91 ±  0.92 5.59 ±  0.83 
GLU 53 1.21 ±  0.69 3.22 ±  0.33 2.38 ±  0.62 
LYS 54 4.48 ±  0.51 4.86 ±  0.27 3.87 ±  0.41 
TYR 55 3.51 ±  0.66 5.87 ±  0.45 3.34 ±  0.57 
GLY 56 3.68 ±  0.76 3.67 ±  0.42 1.05 ±  0.74 
GLU 57 5.06 ±  1.05 6.15 ±  0.55 3.70 ±  0.98 
ALA 58 0.50 ±  1.20 4.38 ±  0.57 4.36 ±  1.04 
SER 59 4.10 ±  2.95 5.55 ±  1.34 0.17 ±  0.85 
ALA 60 2.93 ±  1.17 2.63 ±  0.59 3.32 ±  0.99 
PHE 61 0.94 ±  1.26 1.73 ±  0.51 1.96 ±  0.98 
THR 62 2.34 ±  1.28       5.37   1.30 
LYS 63 0.61 ±  1.22       -0.34   0.84 
LYS 64             0.97   0.78 
MET 65 2.45 ±  0.90 2.18 ±  0.45 -2.02 ±  0.79 
VAL 66 2.16 ±  1.43 4.14 ±  0.32 0.39 ±  0.83 
GLU 67 0.46 ±  1.00 3.41 ±  0.46 2.46 ±  0.84 
ASN 68 2.24 ±  0.96 3.87 ±  0.51 1.22 ±  0.90 
ALA 69 -1.37 ±  0.63 0.37 ±  0.32 -3.21 ±  0.58 
LYS 70 2.04 ±  0.99 2.67 ±  0.42 -0.56 ±  0.71 
LYS 71 1.86 ±  1.10 3.45 ±  0.47 -0.70 ±  0.78 
ILE 72 0.60 ±  0.45 0.85 ±  0.25 -0.14 ±  0.34 
GLU 73 1.69 ±  0.99 2.13 ±  0.40 0.31 ±  0.65 
VAL 74 3.43 ±  0.90 4.05 ±  0.44 2.26 ±  0.60 
GLU 75 1.43 ±  1.00 2.49 ±  0.41 0.15 ±  0.61 
PHE 76 2.53 ±  0.63 3.53 ±  0.33 0.48 ±  0.43 
ASP 77 1.92 ±  0.69 3.78 ±  0.52 -0.26 ±  0.55 
LYS 78 4.67 ±  0.87 4.22 ±  0.43 2.61 ±  0.66 
GLY 79 2.71 ±  0.67 2.66 ±  0.34 0.51 ±  0.50 
GLN 80 2.33 ±  1.21 3.23 ±  0.70       

Assignment WT I92E V66E 
ARG 81 1.93 ±  0.65 4.46 ±  0.50 -0.02 ±  0.45 
THR 82 5.18 ±  0.78 3.85 ±  0.41 -2.23 ±  0.55 
ASP 83 0.85 ±  0.76 2.19 ±  0.34 -1.02 ±  0.54 
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LYS 84 3.51 ±  0.71       0.96 ±  0.46 
TYR 85 1.76 ±  1.41 4.02 ±  0.57 -2.01 ±  0.45 
GLY 86 2.90 ±  1.33 5.16 ±  0.59 1.04 ±  1.11 
ARG 87 1.49 ±  0.99 3.13 ±  0.41 -1.55 ±  0.71 
GLY 88 2.20 ±  0.80 1.45 ±  0.30 -1.94 ±  0.59 
LEU 89 10.90 ±  1.76 5.95 ±  0.54 -0.17 ±  0.58 
ALA 90 0.36 ±  1.82       -0.44 ±  0.62 
TYR 91 3.39 ±  0.63 3.30 ±  0.43       
GLU 92 1.61 ±  1.01 2.11 ±  0.43       
TYR 93 3.53 ±  1.05 4.01 ±  0.44 0.75 ±  0.71 
ALA 94 2.48 ±  0.94 1.78 ±  0.36 -0.86 ±  0.62 
ASP 95 1.18 ±  0.73 1.53 ±  0.31 -1.13 ±  0.57 
GLY 96 2.97 ±  0.80 5.32 ±  0.37 0.79 ±  0.64 
LYS 97 0.34 ±  0.72 0.29 ±  0.34 -2.39 ±  0.61 
MET 98       1.09 ±  0.23 -0.14 ±  0.30 
VAL 99 -1.05 ±  1.37 -0.63 ±  0.60 -1.78 ±  0.81 
ASN 100 5.56 ±  1.31 5.30 ±  0.62 5.05 ±  0.88 
GLU 101 1.00 ±  1.39 3.06 ±  0.72 -0.88 ±  0.92 
ALA 102 -0.97 ±  1.21 1.33 ±  0.56 0.21 ±  0.79 
LEU 103 2.54 ±  1.03 5.57 ±  0.58       
VAL 104 1.46 ±  1.42 4.38 ±  0.66 1.98 ±  0.89 
ARG 105 3.34 ±  1.13 3.45 ±  0.58 1.66 ±  0.81 
GLN 106 2.84 ±  1.04 3.51 ±  0.45 0.51 ±  0.72 
GLY                     
LEU 108 1.12 ±  1.24 3.59 ±  0.52 -0.92 ±  0.89 
ALA 109 2.77 ±  1.84 4.50 ±  0.76 1.42 ±  1.08 
LYS 110 0.84 ±  1.25       -1.33 ±  0.85 
VAL 111 4.21 ±  3.94 1.79 ±  1.81 0.01 ±  0.50 
ALA 112       4.69 ±  0.45       
TYR 113 -0.19 ±  0.64 1.03 ±  0.46       
VAL 114 4.34 ±  1.03 7.88 ±  0.60 1.65 ±  0.56 
TYR 115 47.62 ±  30.85             
LYS 116 4.31 ±  0.37 9.71 ±  0.60 2.58 ±  0.35 

Assignment WT I92E V66E 
GLY 117 39.30 ±  5.57 61.06 ±  8.52 17.21 ±  1.30 
ASN 118 0.79 ±  0.56       -0.79 ±  0.72 
ASN 119 5.25 ±  0.96 10.04 ±  0.54 1.18 ±  0.70 
THR 120 5.31 ±  1.92 8.19 ±  1.88 2.15 ±  1.37 
HIS 121 7.04 ±  1.46             



 119 

GLU 122 -0.31 ±  0.68 0.86 ±  0.26 -1.41 ±  0.51 
GLN 123 2.33 ±  0.57 3.50 ±  0.42 1.73 ±  0.50 
LEU 124 1.62 ±  0.84 3.53 ±  0.37 1.39 ±  0.61 
LEU 125 0.66 ±  1.25       -0.33 ±  1.00 
ARG 126 2.59 ±  1.17 3.77 ±  0.56 0.29 ±  0.76 
LYS 127 0.08 ±  0.82 1.76 ±  0.45       
ALA 128 0.47 ±  0.91 1.65 ±  0.48 -1.06 ±  0.76 
GLU 129       2.84 ±  0.42 2.98 ±  0.74 
ALA 130       1.57 ±  0.46       
GLN 131 1.21 ±  0.93 2.29 ±  0.45 -0.28 ±  0.82 
ALA 132 0.29 ±  1.35 0.90 ±  0.49       
LYS 133 2.28 ±  1.36       1.10 ±  0.65 
LYS 134 -0.37 ±  1.06 1.61 ±  0.51 -1.55 ±  0.95 
GLU 135 3.39 ±  1.09 4.08 ±  0.51 2.83 ±  0.95 
LYS 136 0.60 ±  1.21 1.22 ±  0.36 -1.40 ±  0.88 
LEU 137 1.63 ±  0.93 2.46 ±  0.40 -0.04 ±  0.72 
ASN 138 2.84 ±  0.50 3.37 ±  0.30 0.00 ±  0.42 
ILE 139 6.78 ±  1.31 11.71 ±  0.57 6.82 ±  0.94 
TRP 140 2.16 ±  1.03       0.77 ±  0.86 
SER 141 1.14 ±  0.97 3.27 ±  0.62 0.99 ±  0.62 
GLU 142 0.79 ±  0.56 1.28 ±  0.28 -2.20 ±  0.46 
ASP 143 2.59 ±  0.32 2.45 ±  0.14 -1.21 ±  0.23 
ASN 144 1.94 ±  0.31 1.79 ±  0.18 -3.92 ±  0.24 
ALA 145       0.71 ±  0.13       
ASP 146 1.91 ±  0.19 1.32 ±  0.11 -4.97 ±  0.14 
SER 147 1.83 ±  0.19 1.13 ±  0.10 -5.32 ±  0.14 
GLY 148 1.85 ±  0.18 1.43 ±  0.10 -6.10 ±  0.11 
GLN 149 0.95 ±  0.15 0.44 ±  0.10 -6.59 ±  0.12 
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Chapter 3 

Table C- 10: Ln transform fits of Ubiquitin in AOT reverse micelles using either a  
4 point (20, 40, 60, 80) buildup series or a 3 point (40, 60, 80) buildup series 

  4 Mix Times   3 Mix Times   
Assignme

nt 
intercept slope NOE/ 

ROE 
R2 intercept slope NOE/ 

ROE 
R2 

Gln 2 -1.43 13.26 0.24 0.96 -1.86 16.4 0.16 1 
Ile 3 -0.29 4.58 0.75 0.17 0.27 -7.61 1.3 0.83 
Phe 4 -0.56 10.6 0.57 0.56 -0.7 9.27 0.5 0.29 
Lys 6 -0.19 3.9 0.83 0.4 -0.11 0.92 0.89 0.02 
Thr 7 -0.6 7.12 0.55 0.95 -0.84 8.93 0.43 0.99 
Leu 8 -0.69 9.93 0.5 0.96 -1.02 12.35 0.36 1 
Thr 9 -0.47 6.52 0.63 0.96 -0.67 7.84 0.51 0.98 
Gly 10 -0.75 19.02 0.47 0.98 -1.28 21.83 0.28 0.99 
Lys 11 -0.65 6.22 0.52 0.93 -0.86 7.85 0.42 0.96 
Thr 12 -0.6 4.68 0.55 0.68 -0.9 8.44 0.41 0.97 
Thr 14 -0.79 4.58 0.46 0.81 -0.74 1.9 0.48 0.97 
Leu 15 -1.57 16.73 0.21 0.66 -1.37 6.71 0.25 0.19 
Val 17 -0.65 4.87 0.52 0.94 -0.76 5.13 0.47 0.87 
Glu 18 -1.65 11.59 0.19 0.99 -1.85 11.13 0.16 0.97 
Ser 20 -0.8 8.75 0.45 0.9 -0.78 5.25 0.46 0.95 
Asp 21 -1.44 25.75 0.24 0.96 -2.28 31.92 0.1 1 
Thr 22 -0.82 6.66 0.44 0.96 -1.04 8.37 0.35 1 
Ile 23 1.19 -37.23 3.28 0.42 -0.81 14.27 0.44 0.32 
Asn 25 -0.54 5.57 0.58 0.9 -0.77 7.79 0.46 1 
Val 26 -2.6 15.97 0.07 0.88 -3.13 20.04 0.04 0.86 
Glu 34 -1.65 21.2 0.19 0.9 -1.65 13.25 0.19 0.9 
Gln 40 -0.45 4.23 0.64 0.07 0.1 -7.59 1.1 0.15 
Gln 41 -0.82 8.09 0.44 0.27 -1.02 8.91 0.36 0.15 
Arg 42 -0.52 4.55 0.59 0.07 -0.93 10.56 0.39 0.15 
Leu 43 -0.66 6.31 0.51 0.89 -0.93 8.88 0.4 0.98 
Ala 46 -1.9 22.39 0.15 0.99 -2.5 25.23 0.08 1 
Lys 48 0.06 -4.95 1.06 0.16 0.77 -16.43 2.15 0.75 
Leu 50 -0.73 6.7 0.48 0.88 -0.86 6.56 0.42 0.73 
Glu 51 -0.48 5.84 0.62 0.9 -0.72 8.14 0.49 0.99 
Asp 52 -2.3 16.16 0.1 0.91 -2.95 22.34 0.05 1 
Ser 57 -0.47 6.01 0.62 0.89 -0.47 3.75 0.62 0.82 
Asp 58 -0.47 4.58 0.62 0.91 -0.47 2.83 0.63 0.96 
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Ile 61 -0.61 1.74 0.54 0.02 -0.97 7.88 0.38 0.17 
Gln 62 -1.6 14.77 0.2 0.96 -2.1 18.51 0.12 1 
Lys 63 -1.79 1.23 0.17 0.02 -1.34 -7.57 0.26 0.56 
Glu 64 -0.96 18.87 0.38 0.36 -0.74 7.67 0.48 0.04 
Ser 65 -0.92 10.28 0.4 0.86 -1.36 14.54 0.26 0.94 
Thr 66 -0.93 5.57 0.39 0.99 -1.01 4.88 0.36 0.99 
Leu 67 -0.66 10.43 0.51 1 -0.85 10.04 0.43 1 
His 68 -0.67 9.42 0.51 1 -0.86 9.46 0.42 1 
Leu 69 -0.75 10.11 0.47 0.99 -0.98 10.5 0.38 0.99 
Val 70 -0.16 6.41 0.86 0.94 -0.29 6.53 0.75 0.87 
Leu 71 -0.9 7.84 0.41 0.69 -1.4 14.21 0.25 1 
Arg 72 -0.42 0.61 0.65 0 0.29 -12.92 1.33 0.29 
Leu 73 -1.15 15.61 0.32 0.98 -1.6 18.11 0.2 1 
Arg 74 -1.5 18.87 0.22 0.93 -2.08 22.57 0.13 0.92 
Gly 75 -1.94 12.2 0.14 0.9 -2.41 16.37 0.09 0.95 
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Chapter 4 

Table C- 11: Glucose HX rates as a function of pH 

pH CTAB 

CTAB w/ 
50mM 
Acetate AOT 

3   326   
4 44.8 325 298 

4.5 62   179.9 
5 41 275 24 

5.5 41 281 96 
6 44 285 105 

7.5 52 417   
 
Table C- 12 Glucose HX rates as a function of buffer concentration in 
CTAB/hexanol reverse micelles 

Buffer 
Concentration 

(mM) 

Sodium 
Acetate 
(pH 5) 

Sodium 
Phosphate 

(pH 5) 
0 41 41 

10 88 268 
20 132 417 
30 183   
4 225   

50 275   
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Table C- 13: List of Hydroxyls and their assigned resonances 

Hydroxyl Resonance (ppm) 
Thr7 5.7 
Thr9 5.211 
Thr12 5.429 
Thr14 n/a 
Thr22 n/a 
Thr55 4.75 
Thr66 6.135 
Ser20 5.2 
Ser57 4.7 
Ser65 6.13 
Tyr59 n/a 
 

Table C- 14: List of residues within 4 Å of an Hα 

GLN 2 
SER 20 
ASP 21 
ILE 23 
GLU 24 
ILE 36 
ASP 39 
GLN 40 
GLN 41 
ASP 52 
GLY 53 
ARG 54 
ASN 60 
ILE 61 
LYS 63 
GLU 64 
ARG 72 
ARG 74 
GLY 75 
GLY 75 
GLY 76 
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Table C- 15: List of amides near hydroxyls 

Affected Amide Nearby OH  Distance 
PHE4 SER65 5.55 
PHE4 THR66 5.43 
VAL5 THR14 5.20 
THR7 THR7 2.51 
THR7 THR12 5.20 
LEU8 THR7 3.76 
LEU8 THR9 4.88 
THR9 THR7 2.41 
THR9 THR9 3.07 
GLY10 THR7 2.89 
GLY10 THR9 4.66 
LYS11 THR7 2.19 
LYS11 THR9 4.76 
THR12 THR7 5.40 
THR12 THR12 3.08 
ILE13 THR12 4.35 
ILE13 THR14 5.10 
THR14 THR14 2.51 
LEU15 THR14 4.58 
SER20 SER20 3.71 
ASP21 SER20 4.75 
THR22 THR22 2.42 
ILE23 THR22 3.63 
GLU24 THR22 3.46 
ASN25 THR22 2.45 
VAL26 THR22 4.63 
LEU50 TYR59 4.94 
GLU51 TYR59 2.20 
GLY53 THR22 4.52 
ARG54 THR22 5.68 
ARG54 TYR59 5.31 
THR55 THR55 2.05 
LEU56 THR55 4.50 
SER57 THR55 4.17 
SER57 SER57 3.89 
ASP58 THR55 2.80 

ASP58 SER57 3.91 
TYR59 THR55 4.98 
TYR59 SER57 5.23 
ASN60 SER57 4.89 
ILE61 SER57 5.94 
GLN62 SER65 2.10 
LYS63 SER65 5.25 
GLU64 SER65 5.35 
SER65 SER65 3.10 
THR66 SER65 3.78 
THR66 THR66 3.26 
LEU67 THR66 4.55 
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