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Olanzapine As A Novel Treatment For Chemotherapy Induced Nausea

Abstract
OLANZAPINE AS A NOVEL TREATMENT FOR CHEMOTHERAPY-INDUCED

NAUSEA AND VOMITING
Rosario B. Jaime-Lara
Bart C. De Jonghe

Background: Chemotherapy-Induced Nausea and Vomiting (CINV) is a prevalent adverse effect of
chemotherapy, reducing quality of life and resulting in considerable healthcare resource utilization costs.
Olanzapine, historically used as an antipsychotic, is now added to cancer antiemetic guidelines due to its
effectiveness in preventing and managing CINV. While therapeutic options have improved CINV treatment,
the literature highlights a substantial gap in knowledge regarding the pathophysiology of CINV and the
biological basis of olanzapine’s effect on CINV. The primary objective of this dissertation was to better
understand how olanzapine alleviates CINV. These data can increase knowledge of the pathophysiology
of CINV and help identify potential biological mediators to target for therapeutic interventions.

Methods/Results: To address our objective, we conducted a literature review of CINV with a focus on
olanzapine and identified potential biological mediators of olanzapine’s effects on CINV: ghrelin and
serotonin g. Subsequently, we conducted a series of behavioral experiments in rats to study the
antiemetic effects of olanzapine. Olanzapine in rats (as in humans) decreased chemotherapy-induced
malaise/nausea, anorexia, and body weight loss. To test the effect of olanzapine on potential biological
mediators of these chemotherapy-induced adverse effects, we assessed the effects of olanzapine on
ghrelin and serotonin. We found that olanzapine decreases the number of cisplatin (a chemotherapeutic
agent known to induce CINV in almost 100% of people and animals in the absence of antiemetic
prophylaxis) activated neurons in the hindbrain and determined olanzapine’s effect on chemotherapy-
induced malaise is at least in part mediated by the hindbrain. Additionally, we found olanzapine
counteracts cisplatin-induced decreases in circulating ghrelin and central ghrelin receptor [GHSR] gene
expression six hours post chemotherapy. Lastly, we report olanzapine decreased serotonin 2C receptor
[5-HT2C] gene expression in the hindbrain and the hypothalamus.

Conclusion: These findings suggest that olanzapine may alleviate CINV by counteracting the effects of
cisplatin on the hindbrain, circulating ghrelin, ghrelin receptor expression, and 5-HT2C receptor gene
expression in the hindbrain and hypothalamus. Future research should further define the role of these
potential biological mediators in CINV and determine whether counteracting cisplatin-induced alterations
of ghrelin and 5-HT2C signaling are sufficient to help control CINV.
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ABSTRACT

OLANZAPINE AS A NOVEL TREATMENT FOR CHEMOTHERAPY-INDUCED
NAUSEA AND VOMITING
Rosario B. Jaime-Lara

Bart C. De Jonghe

Background: Chemotherapy-Induced Nausea and Vomiting (CINV) is a prevalent adverse effect
of chemotherapy, reducing quality of life and resulting in considerable healthcare resource
utilization costs. Olanzapine, historically used as an antipsychotic, is now added to cancer
antiemetic guidelines due to its effectiveness in preventing and managing CINV. While
therapeutic options have improved CINV treatment, the literature highlights a substantial gap in
knowledge regarding the pathophysiology of CINV and the biological basis of olanzapine’s effect

on CINV. The primary objective of this dissertation was to better understand how olanzapine

alleviates CINV. These data can increase knowledge of the pathophysiology of CINV and help

identify potential biological mediators to target for therapeutic interventions.

Methods/Results: To address our objective, we conducted a literature review of CINV with a
focus on olanzapine and identified potential biological mediators of olanzapine’s effects on
CINV: ghrelin and serotonin g. Subsequently, we conducted a series of behavioral experiments in
rats to study the antiemetic effects of olanzapine. Olanzapine in rats (as in humans) decreased
chemotherapy-induced malaise/nausea, anorexia, and body weight loss. To test the effect of

olanzapine on potential biological mediators of these chemotherapy-induced adverse effects, we

v



assessed the effects of olanzapine on ghrelin and serotonin. We found that olanzapine decreases
the number of cisplatin (a chemotherapeutic agent known to induce CINV in almost 100% of
people and animals in the absence of antiemetic prophylaxis) activated neurons in the hindbrain
and determined olanzapine’s effect on chemotherapy-induced malaise is at least in part mediated
by the hindbrain. Additionally, we found olanzapine counteracts cisplatin-induced decreases in
circulating ghrelin and central ghrelin receptor [GHSR] gene expression six hours post
chemotherapy. Lastly, we report olanzapine decreased serotonin 2C receptor [S-HT2C] gene

expression in the hindbrain and the hypothalamus.

Conclusion: These findings suggest that olanzapine may alleviate CINV by counteracting the
effects of cisplatin on the hindbrain, circulating ghrelin, ghrelin receptor expression, and 5-HT2C
receptor gene expression in the hindbrain and hypothalamus. Future research should further
define the role of these potential biological mediators in CINV and determine whether
counteracting cisplatin-induced alterations of ghrelin and 5-HT2C signaling are sufficient to help

control CINV.
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CHAPTER I: Introduction

Background

Chemotherapy-induced nausea and vomiting (CINV) persists alongside cancer treatment
despite numerous advances in antiemetic drug development. CINV remains understudied, and
research is needed to improve quality of life and reduce patient suffering during cancer treatment.
In the United States alone, almost 650,000 people undergo chemotherapy annually. Although
chemotherapy can lead to disease remission (Prevention, 2015), many chemotherapeutics are
known to have severe adverse effects, including nausea and vomiting (P. J. Hesketh, 2008) which
devastate quality of life (Bloechl-Daum, Deuson, Mavros, Hansen, & Herrstedt, 2006; P.
Hesketh, 2005; Lindley et al., 1992; Osoba, Zee, Pater, et al., 1997) and may negatively impact
treatment adherence (Markowitz & Rabow, 2008). Before the introduction of current antiemetic
treatments (i.e., serotonin type 3 receptor antagonists [5S-HT3RAs], neurokinin-1 receptor
antagonists [NK-1RAs], and olanzapine), 20% of patients discontinuing chemotherapy identified
CINV as a reason for terminating or postponing treatment (Markowitz & Rabow, 2008).
Antiemetics have reduced the prevalence of CINV following chemotherapy from greater than
90% to 25% (vomiting) and 50% (nausea) (Grunberg et al., 2004; Hsich et al., 2015). However,
studies in oncology patients with different primary tumor sites and stages of cancer continue to
identify CINV among the most distressing side effects of chemotherapy (Coates et al., 1983;
Griffin et al., 1996). Thus, CINV is still a prominent clinical obstacle to cancer treatment and
patient quality of life.

Olanzapine is a relatively novel agent in of the treatment of CINV. Historically used as
an antipsychotic, olanzapine was added to cancer treatment antiemetic guidelines in 2014 after
clinical trials demonstrated oral olanzapine effectively attenuates CINV in patients with different

cancer diagnoses (Jackson & Tavernier, 2003; Navari et al., 2007; Navari et al., 2005; Navari,



Gray, & Kerr, 2011; S. D. Passik et al., 2003; S. D. Passik et al., 2002; Pirl & Roth, 2000;
Srivastava, Brito-Dellan, Davis, Leach, & Lagman, 2003). Olanzapine is a particularly promising
therapeutic option for multiple reasons. 1) When it is used as a psychiatric drug, olanzapine
(15.1mg + 4.7mg/day) induces weight gain (an average of 4.2 kg) in greater than 90% of people
within the first three months of initiating treatment, which could be valuable in reducing cancer-
related weight loss (S. Gupta, Droney, Al-Samarrai, Keller, & Frank, 1999; Kinon, Basson,
Gilmore, & Tollefson, 2001; Ratzoni et al., 2002). 2) Additionally, prophylactic oral olanzapine
(10 mg) reduces CINV during the first 24 hours following chemotherapy (from 35% to 14%
compared to placebo) (Navari, 2014; Navari, Nagy, & Gray, 2013; Navari et al., 2016). 3) Lastly,
a single daily dose of oral olanzapine (10 mg) reduces the prevalence of CINV occurring 24+

hours following chemotherapy (from 75% to 58% compared to placebo) (Navari, 2014; Navari et

al., 2013; Navari et al., 2016). While the anti-psychotic effects of olanzapine are thought to be
mediated primarily by the blockade of serotonin and dopamine receptors (Reynolds, 2011;
Seeman, 2002; Stahl, 2013), the molecular mechanisms that underlie olanzapine’s effects on
nausea and vomiting are largely unknown. However, olanzapine is known to impact energy
balance through serotonin type 2C receptors [S-HT2C] and ghrelin (including circulating ghrelin
and its receptor, growth hormone secretagogue [GHSR]) which overlap with known CINV
pathways (Hattori, 2010; Murashita et al., 2005; van der Zwaal et al., 2012; Yakabi, Sadakane, et
al., 2010). Identifying mediators that contribute to olanzapine’s antiemetic properties may
elucidate important details about mechanisms of alleviating CINV and can help identify new

therapeutic targets.

Significance of Chemotherapy-induced Nausea and Vomiting

Prevalence of Chemotherapy-induced Nausea and Vomiting
It is estimated that 14 million people worldwide and 1.6 million people in the United

States are diagnosed with cancer every year (Cancer Facts and Figures 2016; Organization,



2013). Chemotherapy is one of the most commonly used types of cancer therapies (Cancer Facts
and Figures 2016), with nearly four million people around the world receiving treatment every
year (Research., 2016). Although chemotherapy can cure cancer, increase the rates of remission,
and/or slow the growth of cancer cells, it is accompanied by side effects which can devastate
quality of life and can lead to treatment discontinuation (Coates et al., 1983; Griffin et al., 1996;
Lorusso et al., 2017; Markowitz & Rabow, 2008).

Nausea and vomiting are among the most prevalent side effects of chemotherapy (Coates
et al., 1983; Griffin et al., 1996; Lorusso et al., 2017). Highly emetogenic chemotherapy (HEC) is
characterized by induction of CINV in over 90% of patients in the absence of prophylaxis (5, 9,
48-50). Current antiemetics used to prevent CINV in patients receiving HEC include:
dexamethasone, 5-HT3RAs, NK-1RAs, and olanzapine. Clinical guideline and medication
regimens are discussed in detail in Chapter II. These medications have greatly reduced the
prevalence of CINV, but even with optimal antiemetic therapy (including dexamethasone, 5-
HT3RA, and NK-1RAs), 25% of patients continue to experience vomiting and over 50% continue
to experience nausea (Grunberg et al., 2004; Hsieh et al., 2015). Notably, although nausea is more
prevalent than vomiting, current antiemetics are more effective at controlling vomiting than at
reducing nausea (Bloechl-Daum et al., 2006; Farrell, Brearley, Pilling, & Molassiotis, 2013;
Fernandez-Ortega et al., 2012; Grassi et al., 2015). Thus, chemotherapy-induced nausea is not
well managed by current antiemetic therapies and continues to be a significant adverse effect in
over half of patients undergoing chemotherapy.

Additionally, the prevalence of delayed CINV (CINV occurring more than 24 hours
following treatment) is greater than that of acute CINV (CINV occurring less than 24 hours
following treatment). Studies report delayed CINV in up to 70% of patients with different types
of cancer compared to 55% experiencing acute CINV (Bloechl-Daum et al., 2006; Farrell et al.,
2013; Fernandez-Ortega et al., 2012; Grassi et al., 2015). However, most available antiemetics,

with the exception of olanzapine and NK-1 antagonists, are better at treating acute side effects



(Bosnjak, Gralla, & Schwartzberg, 2017; Navari et al., 2016). Thus, despite the use of
antiemetics, CINV - particularly delayed nausea - is not controlled and continues to cause severe

distress in 50% of patients undergoing chemotherapy (Grunberg et al., 2004; Hsieh et al., 2015).

Implications: human and financial consequences

Uncontrolled CINV decreases quality of life (QOL), interfering with daily activities and
compromising physical wellbeing (4, 23-25). In the context of this dissertation, QOL is defined as
a multidimensional concept that includes subjective evaluations of physical and emotional
wellbeing (CDC). In a recent study examining the effect of CINV on the quality of life of patients
with different cancer diagnoses, after only 2 cycles of chemotherapy 64% of patients
experiencing CINV had significant reductions in their QOL scores (Grassi et al., 2015). Intensity
and duration of CINV are associated with greater decreases in quality of life (Ballatori et al.,
2007; Fernandez-Ortega et al., 2012). Importantly, nausea has a stronger negative impact on QOL
than vomiting (Bloechl-Daum et al., 2006; Farrell et al., 2013; Fernandez-Ortega et al., 2012;
Grassi et al., 2015), interfering with daily activities of 89% of people experiencing severe nausea
compared to 39.3% experiencing vomiting (Bloechl-Daum et al., 2006; Fernandez-Ortega et al.,
2012). Furthermore, decreases in QOL associated with severe nausea can affect nutritional status.
In a study by Farrell et al., with a sample of 104 patients with breast, ovarian, or bladder cancer,
25% of Subjective Global Assessment scores (a measure of nutritional status- calculated by
assessing weight changes, food intake, gastrointestinal symptoms, changes in functional capacity
and physical signs of malnutrition) were indicative of malnutrition after just one cycle of
chemotherapy (Farrell et al., 2013).

CINV has a severe impact on patients’ perceptions of chemotherapy treatment and
negatively impacts their emotional wellbeing with both nausea and vomiting continually
identified among the most feared side effects of chemotherapy across gender and age groups

(Coates et al., 1983; Lorusso et al., 2017; Ruhlmann et al., 2015). Importantly, the fear of CINV



was consistently high before treatment initiation and after multiple treatment cycles in patients
with different types of cancer (breast, ovarian, lung, lymphoma, head, and neck ) (Coates et al.,
1983; Lorusso et al., 2017; Ruhlmann et al., 2015). In a multinational (Australia, Italy and Spain)
study by Grassi et al. of 302 participants with multiple cancer sites (gastrointestinal, breast,
genitourinary, respiratory, and blood), those who reported CINV had higher levels of maladaptive
coping (e.g., “hopelessness-helplessness” and “anxious preoccupation”) and emotional distress
(Grassi et al., 2015). In a multinational study by Lorusso et al., 50% of 373 participants with
different primary tumor sites (including breast, colon, lung, and gastric cancer) identified CINV
as the most intolerable adverse effects of chemotherapy (Lorusso et al., 2017). Thus, nausea and
vomiting continue to be identified among the most distressing, intolerable, and feared side effects
of chemotherapy (Griffin et al., 1996; Lorusso et al., 2017; Ruhlmann et al., 2015).

Qualitative studies also capture the negative impact of CINV on people’s physical and
emotional wellbeing (Farrell et al., 2013; Molassiotis, Stricker, Eaby, Velders, & Coventry, 2008;
Olver, Eliott, & Koczwara, 2014; Salihah, Mazlan, & Lua, 2016). Multiple studies in oncology
patients with various types of cancer (including breast, lung, colon, and genitourinary), CINV
was consistently identified and described as a disruption to daily functions (e.g., eating) (44-46).
In a qualitative study by Malossiotis et al., 17 patients (whose diagnoses included breast cancer,
lung cancer, lymphoma, and sarcoma) receiving chemotherapy described CINV as distressing,
“I’d rather be sick than have nausea...to be honest I’d rather have sickness because you can do
something about it” (Molassiotis et al., 2008). In another study by Olver et al. 42 patients with
nine cancer diagnoses (including breast cancer, testicular cancer, leukemia, and pancreatic
cancer) identified CINV as interfering with their daily functions; “I feel less energized when the
nausea is there...I don’t function when I’ve got that nausea feeling, at the moment it’s too hard, it
might seem like a cop-out, but it just seems so hard...” (Olver et al., 2014). A study by Salihah et
al. of 13 women with breast cancer also reported patients identified chemotherapy induced nausea

as interfering with their eating patterns, “I eat less because of nausea, I felt terribly tired...”



(Salihah et al., 2016). In another study by Farrell et al. 104 participants with multiple primary
tumor sites, perceived CINV to be an obstacle to healthy eating, “I don’t eat the right thing
because the only things that stay down are crappy things. Like, healthy food makes me nauseous”
(Farrell et al., 2013). From both quantitative and qualitative perspectives, these studies clearly
indicate that CINV continues to negatively impact QOL by impacting physical and emotional
wellbeing (Farrell et al., 2013; Molassiotis et al., 2008; Olver et al., 2014; Salihah et al., 2016).
Uncontrolled CINV has also been associated with considerable healthcare resource
utilization and decreased productivity/lost work days (Burke, Wisniewski, & Ernst, 2011; Craver,
Gayle, Balu, & Buchner, 2011; Tina Shih, Xu, & Elting, 2007). U.S.-based studies have found
that CINV is associated with higher medical costs, including increased inpatient admissions,
emergency room visits, and outpatient hospital visits (Burke et al., 2011; Tina Shih et al., 2007).
Specifically, Burke et al. found CINV as a primary and/or secondary diagnosis accounts for 18%
of health-related visits following the first cycle of chemotherapy (Burke et al., 2011). Although
the estimates of CINV health related costs in the US vary, reports estimate direct medical costs of
$778.58 and $1300 per patient during the first 5 days and the first 30 days following
chemotherapy, respectively (Burke et al., 2011; Tina Shih et al., 2007). Notably, these costs were
30% higher than the health-related costs of patients with controlled CINV (Tina Shih et al.,
2007). Uncontrolled CINV among working-age adults receiving highly or moderately emetogenic
chemotherapy also have indirect costs of $180 ($112.49 for missed work and $67.62 for reduced
productivity) within just the first 5 days following chemotherapy initiation (Tina Shih et al.,
2007). This amounts to an average of $23.4 million nation-wide per day (Tina Shih et al., 2007).
Thus, CINV poses a significant financial burden on people receiving chemotherapy, their

families, and the US health care system.

Nursing Science and CINV

Despite its prevalence and severity, CINV receives little research attention. Nursing



research, as reflected in the National Institute of Nursing Research’s (NINR) strategic plan, has
identified the need to expand symptom science (NINR, September 2016). A symptom is defined
as a subjective indicator of disease (e.g., pain) and may be accompanied by an objective “sign” of
disease (e.g., bleeding). Mentioned by name are pain, fatigue, and stress, while nausea, although
comparably prevalent, remains notably absent (NINR, September 2016). The absence of nausea
and vomiting- with a focus on nausea as a standalone symptom - demonstrates that CINV
continues to be neglected in the context of symptom management. Therefore, exploring the
symptomatology of CINV is of utmost importance and its study is necessary to expand symptom
science.

To guide research in symptom science that integrates behavioral and biological data,
NINR scientists developed the NIH Symptom Science Model (NIH-SSM) (Cashion & Grady,
2015). The NIH-SSM model (Figure 1.1) describes a sequence for symptom science research,
beginning with the identification of a complex symptom that holds a phenotype, followed by
identification of biomarkers, and ultimately illuminates therapeutic and clinical interventions that
lead to symptom reduction. Phenotypes, the observable physical or biochemical characteristics of
an organism, are determined using biological, behavioral, and clinical data. Once the phenotype is
determined, diverse methodologies (e.g. genomic data) are used to discover potential measures of
biological processes and pharmacologic responses termed “biomarkers.” These data can then be
utilized to develop therapeutic interventions.

This model can be applied to chemotherapy-induced nausea (a symptom) which often
proceeds chemotherapy-induced vomiting (a sign). This model has served as a foundation to the
experiments described in this body of work. In this context, chemotherapy-induced nausea
represents the complex symptom. Behavioral and biological data will be collected to identify
observable physical and behavioral properties of nausea and vomiting (Chapter III).
Immunohistochemistry and molecular experiments will be conducted to illuminate potential

mediators of CINV (Chapter IV). These experiments can serve to identify potential mediators of



olanzapine’s antiemetic properties, and further research can help establish the role of these
potential mediators in CINV.

As recognized by NINR, “novel discoveries require the integration of behavioral and
biologic data and the development of models to predict, treat, and manage the symptoms of
diseases and treatments” (Cashion & Grady, 2015). Thus, understanding the pathophysiology of
CINV is necessary to improve treatments. Our laboratory is among a small number of groups
which examines the pathophysiology of CINV. Known details about the pathophysiology of
CINV are described in Chapter II. To further define how olanzapine alleviates CINV, this
dissertation focuses on studying its behavioral effects and identifying potential mediators of
olanzapine’s antiemetic properties. Determining the mechanism by which this drug alleviates
CINV can lead to research that ultimately identifies better treatments of CINV and improves

patient’s quality of life.

Purpose and Specific Aims

The purpose of this body of work is to better understand how olanzapine alleviates
CINV. These data can increase knowledge of the pathophysiology of CINV and help identify
potential therapeutic targets that alleviate CINV and improve quality of life for people
undergoing chemotherapy. Accordingly, the first aim is to identify gaps in the literature regarding
CINV and olanzapine as an antiemetic. The second aim, is to determine the behavioral effects of
systemic and central olanzapine following chemotherapy. Lastly, the third aim is to identify
potential biological mediators of olanzapine’s antiemetic properties during acute and delayed
phases of CINV. These aims are summarized in Table 1.1.

To address the first aim, a literature review of the pathophysiology and clinical
implications of CINV, with a focus on olanzapine, was performed (Chapter II). This review

examines what is known regarding the pathophysiology of CINV, available therapeutic options,



clinical guidelines, olanzapine as an antiemetic, and potential biological mediators of
olanzapine’s antiemetic properties.

The second aim, to assess the behavioral effects of olanzapine (Chapter III), was
addressed by measuring the effects of olanzapine on pica (consumption of non-nutritive material-
an established proxy for malaise), feeding, and body weight post chemotherapy. To determine the
behavioral effects of systemic and centrally administered olanzapine, both intraperitoneal
(systemic) and intracerebroventricular (central) olanzapine were administered.

Building on the findings of our behavioral studies, the third aim was to identify potential
biological mediators of olanzapine’s effect on pica, anorexia, and body weight loss (Chapter I).
First, immunohistochemical studies were conducted to assess olanzapine’s site(s) of action by
assessing its effect on neuronal activation at the Dorsal Vagal Complex (DVC), a brain region
known to mediate CINV. Then, informed by our literature review (Chapter II), we tested two
potential targets of olanzapine’s therapeutic effect on CINV: serotonin and ghrelin/ghrelin.
Accordingly, we tested ghrelin levels. Additionally, examined the effects of olanzapine on
expression of serotonin receptors (HTR2C, HTR1A, HTR3, and HTR2A) and ghrelin receptor

(GHSR) genes in the hypothalamus and the hindbrain (regions of the DVC).

Summary

In summary, CINV is highly prevalent and understudied. Despite available antiemetic
therapies, CINV continues to be cited among the most distressing, intolerable, and feared side
effects of chemotherapy. However, despite its prevalence and severity, there is a gap in the
literature regarding the pathophysiology of CINV. While the NINR supports the advancement of
symptom science, CINV - and nausea as a standalone symptom - remain neglected in the context
of care and research. Thus, it is imperative for research to focus on alleviating CINV.
Particularly, studying olanzapine’s antiemetic properties may shed light on important mediators

of CINV and help identify therapeutic targets.



Figures

Figure 1.1 The NIH Symptom Science Model

Complex
Symptom
Clinical Phenotypic
Application Characterization
Biomarker
Discovery

Figure 1.1 The NIH-SSM. The NIH-SSM was developed to guide research. It begins with the
presentation of a symptom; the symptom undergoes phenotypic characterization; then biomarkers
are identified; and this ultimately leads to clinical applications, resulting in symptom reduction

and improvement.
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Tables

Table 1.1 Specific Aims and How Each Was Addressed

Specific Aim

How the aim was addressed

Identify gaps in the olanzapine and CINV
to identify potential biological mediators of

olanzapine in the context of CINV

o Chapter II- Chemotherapy induced nausea
and vomiting: A literature review with a focus

on olanzapine

Determine the behavioral effects of

olanzapine on cisplatin-treated rats:

o Does olanzapine decrease
cisplatin-induced pica, anorexia, and

weight loss?

Hypothesis: Both intraperitoneal and 4"
ventricle olanzapine will decrease pica,

anorexia, and weight loss in rats.

e Chapter I1I- olanzapine decreases
chemotherapy-induced nausea, anorexia, and

body weight loss in rats.

a. Experiment 1.1- Effects of intraperitoneal
olanzapine on cisplatin induced pica, anorexia,

and body weight loss

b. Experiment 1.2- Effects of fourth ventricle
intracerebroventricular olanzapine on cisplatin-

induced pica, anorexia, and body weight loss

Determine olanzapine’s effect on potential
biological correlates of CINV and energy

balance

Hypothesis: Olanzapine will decrease the
number of c-Fos (marker of neuronal
activation) positive neurons in the
hindbrain (area postrema and nucleus of
the solitary tract). Olanzapine will rescue
cisplatin-related drops in circulating
ghrelin. Olanzapine will decrease serotonin

and ghrelin receptor expression in the

e Chapter IV- Olanzapine’s effect on
biological mediators of CINV and energy

balance

a. Experiment 2.1- Assessment of olanzapine
treatment on cisplatin-induced c-Fos in
hindbrain (area postrema and nucleus of the

solitary tract) neurons

b. Experiment 2.2- Assessment of olanzapine
treatment on cisplatin-induced reductions in

plasma ghrelin

c. Experiment 2.3- Assessment of olanzapine
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hypothalamus and the hindbrain. treatment on cisplatin-induced alterations in
central messenger RNA expression of ghrelin
receptor and serotonergic receptors (5-HT2C,

5-HT2A, 5-HT3, 5-HT1A)
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Background

Defining emesis and CINV

CINV is a major adverse effect of chemotherapeutic agents (Bloechl-Daum et al., 2006;
P. Hesketh, 2005; Lindley et al., 1992; Osoba, Zee, Pater, et al., 1997). Vomiting, or emesis,
refers to an involuntary response characterized in part by the forceful expulsion of contents from
the upper gastrointestinal tract (P. Hesketh, 2005). The emetic response to chemotherapy and
other stimuli is a complex polysynaptic neural pathway that is modulated by multiple sensory and
motor systems to produce vomiting (P. L. B. P. G. S. Andrews, 1990; Horn, 2014b; D. Huang,
Meyers, Henry, De la Torre, & Horn, 2011). The typical emetic response is a coordinated
sequence of events where vagal and enteric input give rise to the emetic reflex. Prior to vomiting,
a retrograde giant contraction (RGC) acts (under vagal control) to propel intestinal contents into
the stomach for subsequent expulsion (P. L. Andrews, 1992; Lang, 2016). The RGC originates in
the small intestine and travels toward the antrum, forcing chyme from the intestine to travel
through the open pylorus and into the relaxed proximal stomach [ibid]. This is followed by the
ejection phase comprised of two phases: 1) a retching phase and 2) a vomiting phase (P. L.
Andrews, 1992; P. L. B. P. G. S. Andrews, 1990; Horn, 2014b; D. Huang et al., 2011). During
retching, the diaphragm, abdominal muscles, and intercostal muscles contract, while the glottis
remains closed. This movement results in a decrease in thoracic pressure and an increase in
abdominal pressure (P. L. Andrews & Hawthorn, 1988; P. L. B. P. G. S. Andrews, 1990).
Retching is believed to help prepare gastric content so that it is positioned for expulsion (P. L. B.
P. G. S. Andrews, 1990). During the vomiting phase, there is an increase in both thoracic and
abdominal pressure accompanied by a larger contraction of the stomach and the shortening of the
esophagus (P. L. Andrews & Hawthorn, 1988; P. L. B. P. G. S. Andrews, 1990). This allows for

the expulsion of the gastric contents [ibid].
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In the context of this dissertation, nausea refers to the unpleasant sensation of malaise
that often, but not always, precedes emesis (P. L. Andrews & Horn, 2006). However, it is
important to note that unlike the definition of vomiting, there are multiple definitions of nausea
found across the literature (Stern, 2011). The lack of consensus regarding the definition of nausea
is likely due to the subjective nature of symptoms. Nausea (like other symptoms) is difficult to
describe and detect in another person because it is a private sensation (Stern, 2011). This poses
clinical challenges, including 1) variability in clinical assessment which could potentially alter
treatment and 2) it makes it difficult to evaluate the efficacy of treatment. Nausea can be induced
by the same stimuli as vomiting, and it often requires less intense stimulation (Horn, 2014a).
However, it is not easier to treat or prevent nausea (Horn, 2007, 2008). Paradoxically,
medications used to treat CINV are often able to treat/prevent vomiting better than nausea [ibid].
Furthermore, organisms are capable of experiencing vomiting without nausea and vice versa
(Oman, 1987). For example, there are reports from astronauts in space that describe incidences of
vomiting without prior sensation of nausea (Oman, 1987). This suggests that nausea may involve
subtly independent pathways than those involved in emesis, and that although they may overlap,
the two behaviors may be separate and distinctive (P. L. Andrews & Horn, 2006). Nonetheless,
both of these phenomena are believed to serve as specialized warning systems that protect against

toxic agents to ensure survival of the organism (Horn, 2014b).

Phases of CINV

There are three distinct CINV phases: acute CINV, delayed CINV, and anticipatory
nausea and vomiting (ANV) (Jacobsen & Redd, 1988; Kris et al., 1985; Moher, Arthur, & Pater,
1984; Roila et al., 1991). Acute CINV occurs within the first twenty-four hours following
administration of a chemotherapeutic agent and has a peak in intensity at 5-6 hours post treatment
(Kris et al., 1985; Roila et al., 1991). Delayed phase refers to CINV that takes place more than

twenty-four hours post treatment (Kris et al., 1985). Delayed CINV peaks at 48-72 hours after
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drug administration (Kris et al., 1985; Roila et al., 1991). Current “gold standard” antiemetics
including, dexamethasone (an anti-inflammatory drug), serotonin type 3 receptor antagonists [5-
HT3RAs], and neurokinin-1 receptor antagonists [NK-1RAs] have demonstrated variable efficacy
in treating these phases. For example, 5-HT3RAs (e.g., ondansetron) are better at treating acute
CINV, but not delayed CINV (Sanger & Andrews, 2006). Conversely, N-K1RAs (e.g., aprepitant
and fosaprepitant) and olanzapine, demonstrate higher efficacy in treating delayed CINV
(Campos et al., 2001; Cocquyt et al., 2001; Navari et al., 1999). This suggests that distinct
chemical pathways may orchestrate these phases. The pathophysiology of CINV and the
therapeutic options available for its treatment will be discussed in greater detail in subsequent
sections.

ANV in response to chemotherapy refers to nausea and vomiting that occurs in
“anticipation” of CINV and can occur in the absence of the chemotherapeutic agent (Jacobsen &
Redd, 1988; Kamen et al., 2014). One theoretical mechanism of ANV is Pavlovian classical
conditioning where a conditioned response occurs within/between multiple pairings of
chemotherapy and a conditioned stimulus (e.g., hospital room, smells, healthcare personnel, etc.)
result in the patient associating the stimuli to chemotherapy and its adverse effects (Jacobsen &
Redd, 1988; Kamen et al., 2014). In other words, both chemotherapy and the conditioned stimuli
can become associated with CINV [ibid]. Subsequently, the presence of the stimuli alone can be
enough to induce nausea and/or vomiting (Kamen et al., 2014). For example, a patient can
undergo multiple cycles of chemotherapy (accompanied by CINV) administered by a nurse.
Seeing that nurse in future might induce nausea and vomiting even before, or independently of,
the chemotherapy. This highlights the importance of psychosocial factors in patient care and
suggests that the forebrain and other centers of cognition communicate with emetic centers to

govern these associations.

Neuroanatomy and Pathophysiology of CINV
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There are numerous neuroanatomical regions involved in the genesis of CINV. A well-
characterized anatomical site where the pathways controlling nausea and vomiting converge is in
the caudal hindbrain within the brainstem. At this primitive and largely evolutionarily conserved
area, there are neural circuits that integrate a wealth of information and organizational elements
classically referred to as the “central pattern generator” (CPG) for emesis (Horn, 2007, 2014Db).
Although often referred to as a “vomiting center,” the CPG is not a “center” or discrete
anatomical structure per se (P. L. Andrews & Hawthorn, 1988; Horn, 2007, 2014b; Miller &
Wilson, 1983). Rather, it is a collection of nuclei in the brainstem which communicate in an
interrelated fashion (Horn, 2007, 2014b). There are three main areas of physiological innervations
to the CPG which have been shown to induce CINV when activated (Horn, 2014a, 2014b). These
inputs include: (1) vagal-gastrointestinal, (2) the chemoreceptor trigger zone (CTZ), and (3) the
forebrain (Horn, 2014a, 2014b), and may include elements of both the peripheral (vagal) and
central nervous system (the CTZ, forebrain). Also, it is important to note that the CPG can be
activated by different means and the circuits involved may interact with one another to induce or
inhibit nausea and vomiting (17, 19, 35). The exact circuitry by which these inputs are integrated
remains largely unknown. The sections below will provide a summary of the pathophysiology
occurring within the three main physiological inputs listed above. Table 2.1 provides a summary
of abbreviation of terms and neuroanatomical regions and Table 2.2 provides a summary of terms

and neuroanatomical regions.

1) Vagal- gastrointestinal

CINV has a strong gastrointestinal (GI) component where GI sensory stimuli are
integrated by vagal afferents embedded in the peripheral nervous system (P. L. Andrews et al.,
1990; P. L. Andrews & Hawthorn, 1988; P. L. Andrews & Horn, 2006; Horn, 2014b; Horn et al.,
2014; Horn, Richardson, Andrews, & Friedman, 2004). Multiple studies across species

(including- mice, rats, shrews, and ferrets) have provided evidence that the vagus nerve (cranial
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nerve 10) plays a major role in CINV (P. L. Andrews et al., 1990; P. L. Andrews & Hawthorn,
1988; Fukui, Yamamoto, Sasaki, & Sato, 1993; Fukui, Yamamoto, & Sato, 1992; P. J. Hesketh,
2008). An intact vagus nerve is necessary to induce a maximal emetic response (P. L. Andrews et
al., 1990; Fukui et al., 1993; Fukui et al., 1992). Additionally, studies in rats have shown that
vagotomy of the common hepatic branch decreases neuronal activation and behavior indicative of
chemotherapy-induced malaise (De Jonghe & Horn, 2008; Horn et al., 2004).

In the vagal-gastrointestinal pathway, free radicals are generated in the GI tract and other
areas of the body after exposure to a chemotherapeutic agent [ibid]. This results in excessive
exocytotic release of serotonin from enterochromaffin cells lining the small intestine (P. L.
Andrews et al., 1990; P. J. Hesketh, 2008). Serotonin then binds to 5-HT3 receptors at the vagal
afferent terminals in the intestinal wall (P. L. Andrews et al., 1990; P. L. Andrews & Hawthorn,
1988; P. L. Andrews & Horn, 2006; Horn, 2014b; Horn et al., 2014; Horn et al., 2004). These
afferents have axons which terminate in multiple regions of the brain implicated in emesis,
including the CPG, dorsal vagal complex (discussed below), and have been shown to relay
information to forebrain sites (Bayo et al., 2012; P. Hesketh, 2005; Inrhaoun, Kullmann,

Elghissassi, Mrabti, & Errihani, 2012).

Hindbrain and forebrain sites required for CINV
2) Chemoreceptor trigger zone (CTZ) within the dorsal vagal complex.

The dorsal vagal complex (DVC) is a collection of nuclei within the hindbrain, including
the nucleus of the solitary tract (NTS) and the area postrema (AP) (Bayo et al., 2012; "Dorsal
Vagal Complex (DVC)," 2009; P. Hesketh, 2005). The DVC is located within the dorsomedial
medulla oblongata and it receives input from visceral structures (described above) (Bayo et al.,
2012; "Dorsal Vagal Complex (DVC)," 2009; P. Hesketh, 2005). Most of the visceral afferent
signals terminate at the NTS (Travagli, 2007), which receives afferent signals from the

gastrointestinal system via glutamatergic (excitatory neurotransmitter) synapses (Alhadeff &
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Holland, 2015). Thus, the NTS integrates vital sensory information from cardiorespiratory and
subdiaphragmatic organs of the gastrointestinal tract (Travagli, 2007). When the GI tract is
exposed to noxious stimuli this information is relayed from the NTS to the CPG to induce emesis
(P. Hesketh, 2005).

Another DVC structure that mediates emesis is the area postrema (AP). The AP is a
circumventricular collection of neighboring nuclei that also receives input and innervates visceral
structures ("Dorsal Vagal Complex (DVC)," 2009). The AP is known as the chemoreceptor
trigger zone (CTZ) (Bayo et al., 2012; Inrhaoun et al., 2012), and as its name implies, it is an area
known to have a role in chemical detection. It is positioned above the NTS at the inferior border
of the fourth ventricle, an area that is relatively permeable and able to encounter and detect
chemicals (Bayo et al., 2012; Zhou et al., 2015). At this site, capillaries are not tightly bound by
glial cells and are easily permeated by chemical stimuli [ibid]. Thus, its anatomical features are
consistent with its role in chemo-detection. Activation of this area is known to trigger CINV via
two methods: 1) direct/indirect activation by vagal stimuli and 2) by detecting chemicals
(endogenous chemicals or toxins) in the cerebrospinal fluid (P. L. Andrews & Hawthorn, 1988).

The vital role of the NTS and the AP is supported by dorsal vagal complex ablation
studies (in rats and other species) and studies evoking emesis via chemical infusion into the
cerebrospinal fluid (Beleslin & Strbac, 1987; Borison, Borison, & McCarthy, 1984; Coil &
Norgren, 1981; Stewart, Burks, & Weisbrodt, 1977). Furthermore, animal studies utilizing
immunohistochemical methods in both vomiting and non-vomiting species have shown c-Fos
expression (a protein marker for neuronal activation) at the AP and NTS that are accompanied by
behavioral signs of nausea following cisplatin (a potent chemotherapeutic agent known to induce
CINV in almost 100% of people and animals in the absence of prophylaxis) treatment at multiple
doses and across time periods treatment (Alhadeff & Holland, 2015; Billig, Yates, & Rinaman,

2001; De Jonghe & Horn, 2009; Holland, Leonard, Kensey, Hannikainen, & De Jonghe, 2014).
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Another hindbrain region involved in emesis is the lateral parabrachial nucleus (PBN)
(Bayo et al., 2012; "Dorsal Vagal Complex (DVC)," 2009; P. Hesketh, 2005). The PBN is located
at the junction between the ventrolateral medulla and the pons [ibid]. Multiple studies
demonstrate that cisplatin-chemotherapy activates neurons in the PBN (Alhadeff & Holland,
2015; Alhadeff et al., 2017; De Jonghe & Horn, 2009). Furthermore, recent studies conducted by
Alhadeff et al. found that projections from the NTS to the lateral PBN may mediate cisplatin-
induced nausea, anorexia, and weight loss (Alhadeff & Holland, 2015; Alhadeff et al., 2017). The
lateral PBN serves as the secondary relay of visceral signals from NTS to forebrain regions,
including the amygdala and the hypothalamus (discussed below) (Alhadeff & Holland, 2015;

Alhadeff et al., 2017; De Jonghe & Horn, 2009; Yates, Catanzaro, Miller, & McCall, 2014).

3) Forebrain

Recent studies have suggested that the amygdala, a brain structure of the limbic system,
is an important participant along the vagal-gastrointestinal CINV input described above (Alhadeff
& Holland, 2015; De Jonghe & Horn, 2009; Holland et al., 2014; Horn et al., 2014). For example,
in a 2014 study, Horn et al. utilized an anterograde tracer (a tracer that identifies axonal
projections) to show that the NTS, AP, and the lateral parabrachial nucleus (IPBN) received input
of axon terminals from vagal afferents known to induce emesis in musk shrews (Horn et al.,
2014). Another 2014 study by Holland et al. in mice models demonstrated increased post-
cisplatin expression of N-methyl-D-aspartic acid (NMDA) receptor subunit (a glutamate receptor
subunit which is a major excitatory neurotransmitter) in the amygdala and other brain regions,
including the DVC and PBN, (Holland et al., 2014). This expression was accompanied by
increased neuronal activation at the DVC and PBN as well as behavioral changes (reduction in
food intake and body weight) indicative of chemotherapy-induced malaise (Holland et al., 2014).
A study by Alhadeff et al. identified a neural circuit (NTS—IPBN—CeA) activated by cisplatin-

chemotherapy in which glutamate signaling (modulated by gene expressions of a-amino-3-
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hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA glutamate receptor subunits
of neurons in the amygdala) is required for full expression of cisplatin-induced nausea, anorexia,
and weight loss in rats (Alhadeff & Holland, 2015). More recently Alhadeff et al, demonstrated
that most NTS—IPBN and IPBN—CeA projections co-express vesicular glutamate transporter 2
(VGLUT2) (Alhadeff et al.,, 2017). Together these data outline a neuronal circuit
(NTS—IPBN—CeA) that is required for full expression of CINV and identify the phenotype of
neurons within this circuit (neurons with excitatory projections that are modulated by glutamate
receptors and VGLUT?2).

Other brain regions that likely mediate chemotherapy-induced symptoms are the bed
nucleus of the stria terminalis (BNST) and the hypothalamus (Gungor & Pare, 2016). The BNST
is located in the basal forebrain and is known to mediate anxiety-like responses (elicited by
different stimuli than amygdala-induced anxiety) to environmental threats (Gungor & Pare,
2016). Cisplatin induces c-Fos expression (48 hours post cisplatin administration) and increases
in AMPA and NMDA subunit expression (24 hours post cisplatin treatment) at the BNST in rats
and mice (Holland et al., 2014; Horn, Ciucci, & Chaudhury, 2007). Furthermore, the
hypothalamus regulates important functions, including energy balance, thermoregulation, and
circadian thythms (Olszewski, Grace, Billington, & Levine, 2003). A study by Yamamoto et al.
found that intraperitoneal cisplatin (30 mg/kg) increases glutamate release in the hypothalamus 1
hour following cisplatin treatment and this rise is associated with emesis (Yamamoto et al.,
2009). This study also found that 5-HT3RAs (known to reduce CINV) inhibited hypothalamic
glutamate levels (Yamamoto et al., 2009). Furthermore, decreases in hypothalamic ghrelin
receptor expressionare associated with CINV and chemotherapy-induced anorexia (Olszewski et
al., 2003; Yakabi, Kurosawa, et al., 2010; Yakabi, Sadakane, et al., 2010). The role of
hypothalamic ghrelin is discussed in further detail below.

The limbic system and the amygdala are also known to play a role in anticipatory CINV.

The amygdala is known to be an integrative center for emotions (Desmedt, Marighetto, Richter-
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Levin, & Calandreau, 2015; P. Hesketh, 2005). It receives and interprets sensory and visceral
stimuli to produce intense emotional responses, such as fear. Pathways from the thalamus to the
amygdala are important in emotional learning and fear conditioning (Desmedt et al., 2015; P.
Hesketh, 2005). This mechanism is believed to play a role in the conditioning that is
characteristic of anticipatory CINV (P. Hesketh, 2005; Horn, 2014b). For example, anticipatory
CINV can develop as a learned response to chemotherapy after patients are exposed to multiple
treatment cycles (Bernstein, 1985; Mattes, 1994; Schwartz, Jacobsen, & Bovbjerg, 1996). In fact,
the strongest predictor of nausea or vomiting in subsequent chemotherapy cycles is the presence

or absence of CINV in the first cycle of chemotherapy (Warr, 2014).

The Use of Pre-Clinical Models in the Study of CINV

As is reflected by existing knowledge of the pathophysiology of CINV, pre-clinical
animal models - including: mice, rats, house musk shrews, and ferrets- have been instrumental to
the study of CINV. For example, ferret models played an important role in the discovery of 5-
HT3 receptor antagonists (Christie, 2007; Leslie et al., 1990). However, the use of animal models
in the study of CINV poses some challenges, as some animals do not possess the capacity to
vomit, and nausea and other symptoms (e.g. pain and fatigue) are self-reported sensations that
cannot be directly verbalized by non-human animals (Horn, 2014a). It is important to note that
this challenge (measuring a subjective sensation in a non-verbal animal) also applies to humans
who are unable to verbalize their symptoms (e.g. infants, patients suffering from dementia,
patients with speech impairments following a stroke, etc.).

Each species demonstrates unique physiological and behavioral responses, some of which
are similar to humans. For example, although rats and mice lack a vomiting reflex, they
demonstrate similar brainstem and limbic forebrain activation in response to chemotherapy

compared to vomiting species such ferrets and shrews (Billig et al., 2001; De Jonghe & Horn,
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2009; Holland et al., 2014; Horn et al., 2007). Importantly, although rodents do not vomit, they
also exhibit behavior, pica (consumption of non-nutritive substances), that serves a similar
evolutionary function to eliminate toxic substances. Rodents ingest non-nutritive substances (such
as clay) that bind to toxins and are eliminated by the gastrointestinal system through the feces (De
Jonghe, Lawler, Horn, & Tordoff, 2009; Mitchell, Krusemark, & Hafner, 1977; Mitchell et al.,
1976; N. Takeda, Hasegawa, Morita, & Matsunaga, 1993). Antiemetics used to treat CINV are
also effective at reducing pica, and peaks in chemotherapy-induced pica in rodents mirror peaks
in CINV observed in humans (Malik, Liu, Cole, Sanger, & Andrews, 2007; Yamamoto,
Matsunaga, Matsui, Takeda, & Yamatodani, 2002). Thus, despite their inability to vomit, these
“lower” mammalian species are useful models for studying central nausea circuits found in
“higher” mammalian species. The translational value of the animal-model data must be
independently assessed and compared to other animals/human parameters.

Although animals and non-verbal humans cannot directly communicate or report
sensation (i.e., nausea), nausea may be inferred through the quantification of observed behaviors
and measurement of physiological parameters associated with nausea (P. L. Andrews & Horn,
2006; Horn, 2014b; J. E. Smith, Friedman, & Andrews, 2001). Some examples of behavioral
measures in rodents include: pica (consumption of non-nutritive material- such as clay-
presumably to dilute toxins in the body), conditioned taste aversion, decreased food consumption,
and decreased movement (P. L. Andrews & Horn, 2006; De Jonghe et al., 2009; Stern, 2011).
Examples of potential biological markers include plasma vasopressin (a hormone that plays an
important role in fluid regulation) (Billig et al., 2001) and gastric dysrhythmias which precede
nausea/emesis (Koch, 2014; Ueno & Chen, 2004). Hawthorn et al., found that administration of
apomorphine (a potent emetic agent) dramatically increased levels of vasopressin in ferrets
(Hawthorn, Andrews, Ang, & Jenkins, 1988). Additionally, a study conducted by Xu et al., found
that severity of nausea (induced by motion) correlated with increases in plasma vasopressin in

healthy adults (Xu et al., 1993). Multiple studies have found that gastric dysrhythmias are
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associated with nausea and vomiting (Koch, 2014; J. Liu, Qiao, & Chen, 2006; Ueno & Chen,
2004). For example, Ueno et al. found that gastric dysrhythmias preceded vomiting induced by
gastric electrical stimulation in dogs (Ueno & Chen, 2004). Additionally, a study by Liu et al.
found that gastric electrical stimulation for gastric dysrhythmias reduced nausea and vomiting in
dogs (J. Liu et al.,, 2006). Thus, studies suggest that gastric dysrhythmias are an objective
biomarker for nausea and a potential therapeutic target for antiemetic treatment.

Animal studies can have a smaller sample size compared to human studies because
environmental variations and variability between subjects are controlled, and thus these studies
do not require a large sample size to achieve statistical power (Horn, 2014a). Another benefit of
utilizing pre-clinical models is that studies conducted on humans are limited by stricter ethical
principles. For example, use of chemotherapeutic agents outside of the context of patient care is
prohibited in humans. Moreover, animal studies are required before trials escalate to clinical
phases. Thus, there are advantages and challenges in utilizing animal models and experimental
design should aim to achieve a balance between efficiency (decreased costs and decreased

ethical/time constrains) and translatability (Acton & Winter, 2002).

Clinical Guidelines for the Prevention and Management of CINV

Chemotherapy emetic risk categories

Antiemetic prophylaxis and treatment depend on the emetogenic potential of the
chemotherapeutic agent and the type of CINV (acute, delayed, or anticipatory) (Inrhaoun et al.,
2012; Jordan, Gralla, Jahn, & Molassiotis, 2014; Jordan, Jahn, & Aapro, 2015). There are 4
categories of emetogenicity: 1) highly emetic (HEC), 2) moderately emetic (MEC), 3) low emetic
(LEC), and 4) minimally emetic. These categories correspond with 90% risk or greater, 30-90%

risk, 10-30% risk, and less than 10% risk of emesis respectively.
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Antiemetic regimen by emetic risk category

Current guidelines, including those set forth by the Multinational Association of
Supportive Care in Cancer (MASCC) and the American Society of Clinical Oncology (ASCO),
utilize emetogenicity risk to guide CINV management (Inrhaoun et al., 2012; Jordan et al., 2014;
Jordan et al., 2015). For regimens involving more than one chemotherapeutic agent, the
emetogenic category is determined by the most emetogenic drug (P. Hesketh, 2015). 5-HT3
receptor antagonists [S-HT3RAs], olanzapine, and NK-1 receptor antagonists [NK-1RAs], and
dexamethasone are among the pharmacological agents recommended by current clinical
guidelines for CINV prevention (NCCN), 2017; Jahn, Jordan, & Rizzi). The prophylactic
regiment for acute CINV induced by HEC is comprised of: 1) 5-HT3RAs, 2) dexamethasone,
and 3) an NK-1RAs or olanzapine, while only dexamethasone and an NK-1RAs or olanzapine are
recommended for delayed CINV induced by HEC (Basch et al., 2011; P. Hesketh, 2015; Roila et
al., 2010). To prevent acute CINV caused by MEC, guidelines recommend: 5-HT3RAs and
glucocorticoids (e.g. dexamethasone) to be administered, whereas for delayed CINV for MEC
either dexamethasone or 5-HT3RAs alone are recommended [ibid]. To prevent acute CINV
caused by LEC, dexamethasone is recommended as prophylaxis; no preventative measures are
recommended for delayed CINV for LEC (Basch et al., 2011; P. Hesketh, 2015; Roila et al.,
2010). Lastly, guidelines do not suggest any preventative measures prior to minimally emetogenic
chemotherapy [ibid].

Multiple studies have determined that guideline-consistent CINV prophylaxis is
associated with decreased CINV and improved patient outcomes (Jordan et al., 2015). This
highlights the importance of implementing and adhering to treatment guidelines. Despite the
literature supporting the benefit of following clinical guidelines, adherence to treatment
guidelines is suboptimal (Clark-Snow, Affronti, & Rittenberg, 2017; Jahn et al.; Jordan et al.,
2015). A 2017 nationwide study by Clark-Snow et al. found adherence to antiemetic guidelines

was low (73% for acute and 25% for delayed phases), especially during the delayed phase (Clark-
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Snow et al., 2017). Thus, it is important for clinicians to integrate clinical guidelines into their
practice. Nurses should be familiar with guidelines, so they can advocate for patients to receive

optimal treatments which better prevent and treat CINV.

Therapeutic Options for the Treatment of CINV

The introduction of chemotherapy in the late 1950s was revered by the medical
community, because it was the first therapeutic option known to cure cancer (Institute).
However, antineoplastic agents, such as the HEC cisplatin, induce severe nausea and vomiting (P.
J. Hesketh, 2008). The introduction of antiemetics including dexamethasone, 5-HT3RAs, and
NK-1RAs reduced the incidence of vomiting from 90% to 50% in people undergoing
chemotherapy (Rojas, Raje, Tsukamoto, & Slusher, 2014). Dexamethasone and newer antiemetic

agents are described in detail below.

Dexamethasone

Dexamethasone is a synthetic steroid that is used as an anti-inflammatory, anti-allergic,
and antiemetic drug (P. Hesketh, 2005). Dexamethasone mimics endogenous glucocorticoids,
which are secreted by the adrenal cortex and stimulate the release of cortisol (a hormone that
regulates metabolism and immune response) (P. Hesketh, 2005; Morrow, Hickok, Andrews, &
Stern, 2002). In the 1980s dexamethasone was reported to be effective in the prevention of CINV
(Chu et al., 2014). Subsequently, dexamethasone and other glucocorticoids were shown to
successfully prevent CINV, radiotherapy-induced nausea and vomiting, and post-operative
nausea and vomiting (Chu et al., 2014). Currently, dexamethasone is widely used in combination
with other agents to prevent CINV (Basch et al., 2011; P. Hesketh, 2015; Roila et al., 2010).
However, dexamethasone’s antiemetic mechanisms are not fully understood.

A recent review suggests that dexamethasone prevents CINV, through its anti-

inflammatory effect, its direct effect on the NTS, its effect on serotonin, and its regulation of the
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HPA axis (Chu et al., 2014). Dexamethasone and other glucocorticoids are anti-inflammatory and
can attenuate cisplatin-induced production of eicosanoids (inflammatory mediators- e.g.
prostaglandins, thromboxanes, and lipoxins) (Chu et al., 2014). Dexamethasone can also decrease
the transcription of inflammatory cytokines (TNF-a, IL-1, -2, -3, etc.) and NK-1 and NK-2
receptors (Barnes, 1998; Chu et al., 2014). Secondly, dexamethasone may act directly at the NTS
reducing CINV; a study by Ho et al. in cats found that microinjection of dexamethasone (100
nanoliters) into the bilateral NTS decreased xylazine-induced emesis (Ho, Ho, Wang, Tsai, &
Chai, 2004). The third proposed mechanism is that glucocorticoids reduce CINV by acting on
serotonin receptors (Chu et al., 2014; Suzuki, Sugimoto, Koyama, Mashimo, & Uchida, 2004).
An electrophysiology study by Zusuki et al., in xenopus oocytes found that dexamethasone
directly inhibited the effect of 5-HT3 receptors (known to mediate CINV) by decreasing
serotonin electric current (a measure of electrical activity in neurons) by 50% (Suzuki et al.,
2004). Lastly, dexamethasone’s antiemetic effects may be related to its effect on the
hypothalamic pituitary adrenal (HPA) axis, where it alters cortisol and adrenocorticotropic
hormone (ACTH), a hormone secreted by the anterior pituitary gland that mediates cortisol
release (C. Huang et al., 2012; Morrow et al., 2002). Chemotherapy alters HPA axis activity, with
studies demonstrating that chemotherapy reduces serum cortisol and ACTH in patients with
different cancer diagnoses (Chu et al., 2014; C. Huang et al., 2012; Morrow et al., 2002). Thus,
chemotherapy may induce CINV by impeding normal physiological function of HPA axis

activity, and dexamethasone may revert these changes.

5-HT3 Receptor Antagonists [5-HT3RAS]

The introduction of 5-HT3RAsis considered one of the most important advances in CINV
research (P. J. Hesketh, 2008). They are currently the single most effective pharmacological agent
for the prevention of acute CINV (P. Hesketh, 2015). First generation receptor antagonists work

through competitively inhibiting the binding of serotonin to the 5-HT3 receptor [ibid]. There are
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currently five first-generation 5-HT3RAs -dolasetron, granisetron, ondansetron, ramosetron, and
tropisetron- available for the treatment of CINV (P. Hesketh, 2015). All five agents, in both oral
and intravenous formulations, have demonstrated equal effectiveness in preventing CINV
(Gandara et al., 1998; R. J. Gralla et al., 1998; P. Hesketh, 2015; Perez et al., 1998). However
dolasetron and ondansetron carry a risk of QTc prolongation (a measure of heart electrical
activity indicating ventricular tachyarrhythmias and increasing risk of cardiac arrest/sudden
death), and thus the FDA has placed restrictions on their use (P. Hesketh, 2015).

In 2003, the first and only second-generation agent, palonosetron, came to market (Rojas
et al., 2014). Compared to first generation agents, palonosetron has a higher affinity for 5-HT3
receptors and has a longer half-life (Aapro, 2005; Zhou et al., 2015). Presumably due to these
more favorable pharmacological properties, palonosetron has not been associated with QTc
prolongation and has been found to be effective in preventing both acute and delayed CINV
(Aapro, 2005; Eisenberg et al., 2003; R. Gralla et al., 2003; Zhou et al., 2015). Unlike first
generation agents that act through competitively inhibiting serotonin binding to SHT3 receptors,
palonosetron is an allosteric receptor antagonist (it binds to a site other than the receptor active
site resulting in a conformational change that inhibits binding) (Rojas et al., 2014). This
difference in binding suggests palonosetron could have a unique effect on receptor function. It
was suggested that this second-generation agent works through internalization of the 5-HT3
receptors. Four findings support this theory (Rojas et al., 2014). First, palonosetron has a longer
half-life than first generation agents CINV (Aapro, 2005; Eisenberg et al., 2003; R. Gralla et al.,
2003). This would be expected since reversing receptor internalization would require more time
than removing competitive inhibitors. Second, the antagonizing effects of palonosetron are more
resistant to extracellular proteases compared to drugs that act upon cell-surface receptors (Rojas
et al., 2014). This suggests that its effect on 5-HT3 receptors occurs within the cell, not on the cell
surface. Third, cells treated with palonosetron have decreased extracellular surface area,

suggesting receptors (which would increase surface area) are not located on the cell surface
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(Rojas et al., 2014). Lastly, visualization with florescent microscopy has further confirmed the
internal location of 5-HT3 receptors on cells treated with palonosetron [ibid]. Thus, palonosetron

offers new and promising properties to better manage CINV.

NK-1 Receptor Antagonists [NK-1RAs]

Neurokinin-1 receptor antagonists inhibit CINV by blocking the binding of Substance P
to NK-1 receptors in both central and peripheral locations (P. J. Hesketh, 2008; Navari, 2013;
Rojas et al., 2014). Aprepitant, its prodrug fosaprepitant, and rolapitant are among the only NK-
IRA currently approved for the prevention of highly emetogenic chemotherapy (HEC) or
moderately emetogenic chemotherapy (MEC) (Bosnjak et al., 2017; Institute; Rapoport et al.,
2016). Unlike first generation 5-HT3 receptor antagonists alone, NK-1RAs in combination with
palonosetron are more effective at treating delayed CINV (Bosnjak et al., 2017; Roscoe et al.,
2012). A study by Aapro et al. showed that aprepitant and fosaprepitant given in conjunction with
5-HT3RAs and dexamethasone were more effective than ondansetron alone and dexamethasone
for controlling delayed emesis and reduced the need for rescue medication (Aapro et al., 2015).
These two drugs are also well tolerated and have fewer adverse effects than ondansetron and
metoclopramide (Van Belle et al., 2002). Other studies have demonstrated that the rate of
complete response (no emesis or rescue treatment following chemotherapy) was higher on days
1-5 for patients that had received aprepitant compared to 5S-HT3RAs and dexamethasone alone (P.
J. Hesketh et al., 2003; Poli-Bigelli et al., 2003). Thus, aprepitant and fosaprepitant are now
included in current clinical guidelines ((NCCN), 2017; Roila et al., 2010).

Another drug combination including netupitant, a highly selective NK-1RA, was recently
approved in the United States for the treatment of highly emetogenic chemotherapy (P. J.
Hesketh, Palmas, & Nicolas, 2017). This drug combination of netupitant plus palonosetron
(NEPA) has proven to have comparable efficacy and safety compared to aprepitant (P. Hesketh,

2015; P. J. Hesketh et al., 2017). Furthermore, NEPA given in combination with dexamethasone
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was found to be superior in efficacy compared to oral palonosetron plus dexamethasone (Jordan
et al., 2015). In addition, patients receiving NEPA also reported fewer decreases in function than
patients receiving palonosetron alone (Jahn et al.). Lastly a 2017 study by Hesketh et al. found
that NEPA was effective and well tolerated in lung cancer patients receiving their first cycle of
HEC across both acute and delayed phases of CINV and across treatment cycles (P. J. Hesketh et

al., 2017). Thus, this new drug combination has become a promising new treatment for CINV.

Olanzapine as a Novel Agent for the Prevention and Management of CINV

Olanzapine was recently added to CINV antiemetic guidelines after case studies, chart
reviews, and proceeding clinical trials demonstrated oral olanzapine effectively attenuates CINV
in patients with different primary cancer sites (Jackson & Tavernier, 2003; Navari et al., 2007;
Navari et al., 2005; Navari et al., 2011; S. D. Passik et al., 2003; S. D. Passik et al., 2002; Pirl &
Roth, 2000; Srivastava et al., 2003). Olanzapine is an atypical antipsychotic that has broad
spectrum binding characteristics known to block multiple serotonergic, histaminic, muscarinic,
and dopaminergic receptors. Common side effects of olanzapine include sedation and weight gain
(S. Gupta et al., 1999; Ratzoni et al., 2002). Since the early 1970s, olanzapine has been used to
treat schizophrenia and bipolar disorder (Jordan et al., 2015). However, in the early 2000s,
multiple case studies reported olanzapine effectively attenuates nausea (Jackson & Tavernier,
2003; S. D. Passik et al., 2003; S. D. Passik et al., 2002; Pirl & Roth, 2000; Srivastava et al.,
2003). The first case study, presented by Pirl and Roth reported olanzapine (5mg/day) improved
nausea in a patient suffering from chronic nausea (Pirl & Roth, 2000). Another set of six case
studies by Jackson and Tavernier also found olanzapine (2.5 mg/day titrated to 5mg/day) was
effective in treating intractable nausea in palliative care patients diagnosed with different types of
cancer, heart disease, or Alzheimer’s disease (Jackson & Tavernier, 2003). A pilot study by

Passik et al. found that in 15 patients with advanced cancer (with different primary tumor sites),
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three doses of oral olanzapine (2.5 mg/day, 5.0 mg/day, and 10 mg/day) given for two days
significantly reduced nausea (full control was achieved in over 90% of patients compared to a
baseline of less 40%) and were associated with improvements in quality of life for all dosage
conditions (S. D. Passik et al., 2002). A follow up retrospective chart review of 28 patients (with
different primary cancer sites and stages of cancer) who had received olanzapine (2.5 mg or 5 mg
twice daily) found it reduced the incidence of delayed CINV in patients receiving MEC and HEC
to 20% (compared to an incidence of 50% in patients receiving standard antiemetics-
dexamethasone, 5-HT3, and/or NK-1RAs) (S. D. Passik et al., 2003).

These case studies led to the implementation of a series of clinical trials testing the
efficacy of oral olanzapine in the prevention and management of CINV. A phase I study
conducted by Passik et al. using an olanzapine dose escalation (5mg to 10mg prior to
chemotherapy and on days 0-7), reported that olanzapine was effective in fully controlling CINV
(in 100% of patients receiving MEC and in 67% of patients receiving HEC) in 15 patients with
varied primary cancer sites (Steven D. Passik et al., 2004). Phase II trials found olanzapine (5
mg/day prior to chemotherapy and on day 1-4) given in combination with dexamethasone and 5-
HT3RAs was safe and very effective (full control was achieved in over 80% of the 30
participants) at controlling both acute and delayed CINV in patients with different forms of
cancer (Navari et al., 2007; Navari et al., 2005). A phase III clinical trial (251 participants) found
olanzapine (10 mg/day prior to chemotherapy and on day 1-4) had superior efficacy in the
prevention of nausea after HEC compared to NK-1RAs (full control in up to 86% vs 65% of
participants), reduced CINV costs, and was well tolerated by oncology patients with different
types and stages of cancer (Bosnjak, Dimitrijevic, & Djordjevic, 2016; Navari et al., 2007; Navari
et al., 2005). In another phase III clinical trial (276 participants) olanzapine (10 mg/day for 3
days) was also found to be superior in managing breakthrough CINV compared to
metoclopramide (full control in 70% vs 30% of participants) in patients with different cancer

diagnoses (Navari, 2013). Thus, olanzapine’s superiority and efficacy in reducing CINV led to
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the addition of olanzapine (10 mg orally prior to chemotherapy and on days 1-4 following
chemotherapy) to National Cancer Comprehensive Network (NCCN) antiemetic guidelines in
2014 as an adjunctive therapy to 5S-HT3RAs and dexamethasone (NCCN), 2017; NCCN, 2014).
Since 2014 and as recently as July 2017, other antiemetic guidelines, including the American
Society of Clinical Oncology (ASCO) and the Multinational Association of Supportive Care In
Cancer (MASCC) guidelines have been modified to include olanzapine to prevent CINV and/or
to treat breakthrough CINV (Cancer, 2016; Oncology, 2017).

In addition to its efficacy as an antiemetic, olanzapine is a particularly attractive
pharmacotherapy for its potential to induce weight gain (Kim et al., 2008; Naing et al., 2015; Q.
H. Zhang, M. Lian, J. Deng, C. Huang, X, 2012). More than 90% of people taking olanzapine for
the treatment of schizophrenia and bipolar disorder gain weight within the first 3 months of
initiating treatment (S. Gupta et al., 1999; Ratzoni et al., 2002). Olanzapine is also associated
with more weight gain compared to all other second-generation antipsychotics (Lett et al., 2012;
Zhu et al., 2017). However, few studies have been conducted to test the effect of olanzapine on
body weight in cancer patients (Naing et al., 2015; Navari & Brenner, 2010). A study by Naing et
al. found oral olanzapine (doses ranging from 2.5 to 10 mg/day for 8 weeks) had a modest effect
on weight, with a trend towards the reduction of weight loss in patients with advanced (stage 111
and stage IV) cancer with diverse tumor types (Naing et al., 2015). Another study by Navari et al.
found oral olanzapine (5 mg/day for 4 weeks) when given with megestrol acetate, significantly
improved weight and appetite in 43% of patients with advanced (stage III and stage IV)
gastrointestinal or lung cancer (compared to megestrol acetate alone)(Navari & Brenner, 2010).
Further studies must be conducted to establish olanzapine’s efficacy in improving weight loss in
oncology patients.

While the anti-psychotic effects of olanzapine are thought to be mediated primarily by the
blockade of serotonin and dopamine receptors (Reynolds, 2011; Seeman, 2002; Stahl, 2013), the

molecular mechanisms that underlie its effects on nausea and vomiting are largely unknown.
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However, olanzapine is known to impact energy balance through serotonin type 2c¢ receptors [5-
HT2CRs] and ghrelin (including circulating ghrelin and its receptor- growth hormone
secretagogue receptor) and these metabolic pathways overlap with known CINV pathways
(Hattori, 2010; Murashita et al., 2005; van der Zwaal et al., 2012; Yakabi, Sadakane, et al., 2010).
Identifying mediators that contribute to olanzapine’s antiemetic properties can elucidate

important details about mechanisms of alleviating CINV and can help identify therapeutic targets.

Potential Mediators of Olanzapine’s Antiemetic properties

Potential mediators of olanzapine’s therapeutic effect on CINV include 5-HT2CRs,
circulating ghrelin, and growth hormone secretagogue receptor (GHSR). Olanzapine and
cisplatin-chemotherapy are known to have opposite effects on serotonin and ghrelin systems
(Hattori, 2010; Murashita et al., 2005; van der Zwaal et al., 2012; Yakabi, Sadakane, et al., 2010).
Olanzapine is known to antagonize 5-HT2CRs (Bymaster et al., 1996; Fuller & Snoddy, 1992),
increase plasma ghrelin (Murashita et al., 2005; van der Zwaal et al., 2012; Weston-Green,
Huang, & Deng, 2011), and increase GHSR1 expression (Q. Zhang et al., 2014; Q. H. Zhang, M.
Lian, J. Deng, C. Huang, X, 2012), while cisplatin is known to stimulate 5-HT2CR expression
(Yakabi, Sadakane, et al., 2010) and decrease plasma ghrelin (Hiura, Takiguchi, Yamamoto,
Kurokawa, et al., 2012; H. Takeda et al., 2008). Thus, olanzapine may work by counteracting the
effects of cisplatin by decreasing 5-HT2CR expression, increasing circulating ghrelin, and

increasing GHSR.

5-HT2C Receptors and Their Potential Role in Chemotherapy-induced Symptoms

Olanzapine has a high affinity for 5-HT2CRs and is known to antagonize these receptors
(Bymaster et al., 1996; Kirk, Glazebrook, Grayson, Neill, & Reynolds, 2009). 5-HT2C is a
serotonin receptor subtype (Bymaster et al., 1996), that is located in high concentrations in the

brain at regions known to mediate CINV: the NTS, CeA, and hypothalamus (Wright, Seroogy,
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Lundgren, Davis, & Jennes, 1995) (Alhadeff & Holland, 2015; De Jonghe & Horn, 2009; Holland
et al., 2014). Thus, 5-HT2CRs’ location makes them likely candidates for involvement in CINV.
Additionally, 5-HT2CRs’ functional roles make these receptors particularly attractive for the
study of CINV. 5-HT2CRs have been linked to nausea and other GI symptoms- including loss of
appetite (Fujitsuka et al., 2009; Okada, Saito, & Matsuki, 1995; Silenieks, 2014; S. R. Smith et
al., 2009; Yakabi, Sadakane, et al., 2010). Specifically, olanzapine is known to cause weight gain
via serotonin receptor 2C antagonism (X. F. Huang, Weston-Green, & Yu, 2017; Lord et al.,
2017) and inhibition of 5-HT2CRs has been linked to decreases in nausea (Okada et al., 1995; H.
Takeda et al., 2008). Conversely, cisplatin treatment has been associated with increased activation
of 5-HT2CRs (Y. K. Gupta & Sharma, 2002; Hattori, 2010; Okada et al., 1995; H. Takeda et al.,
2008) and increases the expression of 5-HT2CRs in the brain (Yakabi, Sadakane, et al., 2010).
This stimulation of 5-HT2CRs in the brain is linked to GI side effects- including nausea (Y. K.
Gupta & Sharma, 2002; H. Takeda et al., 2008). Thus, olanzapine may decrease CINV by

antagonizing 5-HT2CRs in the brain.

Ghrelin and Its Potential Role in Chemotherapy-Induced Symptoms

Ghrelin is an orexigenic hormone that is mainly secreted by the stomach during fasting and
shortly before meals (Inui, 2001; Inui et al., 2004). Ghrelin is a high affinity ligand for the growth
hormone secretagogue receptor 1 (GHSR1), which is highly expressed in the DVC and in the
hypothalamus (Inui, 2001; Kojima et al., 1999; Yakabi, Sadakane, et al., 2010). Olanzapine
increases GHSR expression, potentiates ghrelin-mediated GHSR1 activity, and increases
circulating ghrelin levels (Tagami et al., 2016; Weston-Green et al., 2011; Q. Zhang et al., 2014).
These findings combined with pre-clinical and clinical evidence demonstrating ghrelin-mediated
decreases in CINV, anorexia, and cachexia (Hiura, Takiguchi, Yamamoto, Takahashi, et al.,
2012; Y. L. Liu, Malik, Sanger, & Andrews, 2006), suggest that OLZ’s antiemetic/anti-anorectic

effect may be mediated by the ghrelin system. However, the effect of olanzapine on plasma
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ghrelin and GHSR expression in the brain, have not been studied post chemotherapy.
Determining if olanzapine decreases CINV through potentiating ghrelin can help clarify the role

of ghrelin in CINV. It also highlights ghrelin enhancement as a potential treatment for CINV.

5-HT2CR and GHSR Interaction

Multiple studies have reported an interaction between the serotonin and ghrelin signaling
pathways in the brain (Aoki et al., 2016; Dryden, Frankish, Wang, Pickavance, & Williams,
1996; Hansson et al., 2014; Schellekens et al., 2015). Studies have shown that administration of
5-HT2CR agonists inhibit ghrelin-induced orexigenic effects, and GHSRI1 activity decreases in
response to serotonin (Currie, John, Nicholson, Chapman, & Loera, 2010; Schellekens et al.,
2015). Furthermore, centrally administered ghrelin increases 5-HT2CR expression in the
amygdala and dorsal raphe, while centrally administered 5-HT2CR agonists decrease ghrelin-
induced food intake in rats (Hansson et al., 2014; Schellekens et al., 2015). Additionally, 5-
HT2CR agonists decreases hypothalamic neuropeptide Y (NPY), a GHSR1 downstream
orexigenic signal, expression in the hypothalamus and its subsequent ghrelin-induced food intake
(Aoki et al., 2016; Dryden et al., 1996). Furthermore, 5S-HT2CR and GHSRI1 colocalize in
hypothalamic neurons (Schein et al., 1970). Thus, these studies suggest there is a 5-HT2CR,
GHSR1a, ghrelin, and NPY interaction in the brain.

Most recently, this interaction was established through experiments showing that 5-
HT2CR and GHSRI1 form a heterodimer that inhibits the effects of ghrelin (Schellekens et al.,
2015; Schellekens, van Oeffelen, Dinan, & Cryan, 2013). Flow cytometry fluorescence resonance
energy transfer (fcFRET) studies demonstrate there is a direct interaction between the 5-HT2CR
and GHSR1a, which translates into a biologically significant inhibition of ghrelin-induced food
intake (Schellekens et al., 2015). 5-HT2CR/GHSRI1 dimerization can lead to co-internalization,
which prevents GHSR activity on the cellular surface and subsequently blocks ghrelin’s

orexigenic effects (Schellekens et al., 2015; Schellekens et al., 2013). Importantly, olanzapine
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reduces hypothalamic 5-HT2CR/GHSR1 dimerization in a dose-dependent manner (X. F. Huang
et al., 2017). Since, olanzapine is a 5-HT2CR agonists and upregulates GHSR1, its blockade of 5-
HT2CR may interfere with its inhibition of GHSR, blocking GHSR’s constitutive effects on food
intake and CINV. However, olanzapine’s effect on 5-HT2C/GHSR dimerization in relationship to

CINV has not been studied.

Summary

Great advancements in our knowledge of the pathophysiology of CINV have been
made within the last 30 years, and this knowledge has led to improvements in prevention,
treatment, and management of CINV (Institute). Pharmacological discoveries such as the
identification of 5-HT3RAs, NK-1RAs, and olanzapine have improved the prevention
and management of CINV and are reflected in current clinical guidelines. Despite these
advances, CINV continues to be prevalent (Bloechl-Daum et al., 2006; Lindley et al., 1992;
Osoba, Zee, Warr, et al., 1997). Better understanding of the mediators of effective
pharmacotherapies -specifically olanzapine- can help in identifying therapeutic targets to

better alleviate CINV.
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Tables

Table 2.1 Index of Abbreviations

Abbreviation Term

5-HT Serotonin

5-HT2CR serotonin type 2 C receptor

5-HT3RAs serotonin 3 receptor antagonist

ACTH adrenocorticotropic hormone

AMPA- o-amino-3-hydroxy-5-methyl-4-isoxazolepropionic ~ acid  receptor
receptor subunit

subunit

ANV anticipatory nausea and vomiting

AP area postrema

ASCO American Society of Clinical Oncology
CeA central amygdala

CINV chemotherapy-induced nausea vomiting
CPG central pattern generator

DMSO dimethyl sulfoxide

DVC dorsal vagal complex

ELISA enzyme-linked immunosorbent assay
fcFRET flocytometry fluorescence resonance energy transfer
FDA Food and Drug Administration

GHSR1 growth hormone secretagogue receptor 1
GI Gastrointestinal

GRC giant retrograde contraction

HEC highly emetogenic chemotherapy

HPA hypothalamic pituitary axis

ICV Intracerebroventricular

IL Interleukin
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IP

Intraperitoneal

MASCC Multinational Association of Supportive Care in Cancer

MEC moderately emetogenic chemotherapy

NCCN National Comprehensive Cancer Network

NEPA netupitant plus palonosetron

NIH-SSM NIH Symptom Science Model

NK-1RAs neurokin-1 receptor antagonists

NMDA N-methyl-D-aspartic acid receptor subunit

receptor

subunit

NPY neuropeptide Y

NTS nucleus of the solitary tract

OLZ Olanzapine

PBN parabrachial nucleus

QOL quality of life

QTec corrected QT (measure between the Q and T wave in the heart's
electrical cycle) interval

RGC retrograde giant contraction

SAL Saline

TNF tumor necrosis factor
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Table 2.2 Summary of Terms and Neuroanatomical Regions

Term Definition/ Context

Acute CINV CINV occurring within the first 24 hours following chemotherapy
Anticipatory Nausea and vomiting that occurs in “anticipation” of CINV.
CINV

Area Postrema
(AP)

Circumventricular collection of nuclei (neuronal/cell nuclei) within the
DVC. Positioned above the NTS at the inferior border of fourth
ventricle and plays a role chemo detection.

AMPA & Glutamate receptor subunits. Modulate glutamate signaling required
NMDA for full expression of cisplatin-induced nausea, anorexia, and weight
receptor loss in rats.

subunits

Cisplatin Potent chemotherapeutic agent known to induce CINV in almost 100% of

people and animals in the absence of prophylaxis

CPG for emesis

Collection of nuclei in the brainstem which communicate in an interrelated

“yomiting fashion to produce vomiting. The CPG is activated during CINV

center”

Dorsal Vagal Region of the hindbrain known to mediate CINV and energy balance.

Complex It includes the NTS and the AP

(DbVO)

Delayed CINV | CINV occurring 24+ hours following chemotherapy

Highly Chemotherapeutic agents that induced CINV in over 90% of

Emetogenic people/animals receiving chemotherapy

Chemotherapy

Nucleus of the | Region of the DVC that received afferent signals from the

Solitary Tract | gastrointestinal system (most visceral signals terminate at the NTS).

(NTS)

Parabrachial Region of the hindbrain that is activated by cisplatin-chemotherapy. It

Nucleus receives projections from the NTS- relaying information from visceral
organs to forebrain regions- may mediate CINV

Pica Consumption of non-nutritive material (e.g. kaolin clay, chalk, dirt,

etc.). In rodents, pica (like vomiting in humans) is believed to be an
evolutionary adaptation to help eliminate toxic substances and is an
established proxy for malaise.
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Introduction

Over 1.6 million people in the United States are diagnosed with cancer every year, with
greater than a third of these individuals undergoing chemotherapy (Cancer Facts and Figures
2016). Given that for many patients chemotherapy is critical to survival, it is concerning that
these agents produce severe side effects including vomiting, nausea, and anorexia, which
decrease quality of life and can lead to treatment attrition or discontinuation (Coates et al., 1983;
Griffin et al.,, 1996; Molassiotis et al., 2008). Within the last 30 years, antiemetic
pharmacotherapies have improved control of chemotherapy-induced vomiting (Aapro, 2005;
Aapro et al., 2015; Chawla et al., 2003; Gandara et al., 1998; P. J. Hesketh, Aapro, Street, &
Carides, 2010). However, these drugs have been less effective in the management of
chemotherapy-induced nausea and associated long-term malaise (P. L. Andrews & Hawthorn,
1988; Hsieh et al., 2015; Olver et al., 2014). CINV is particularly important as CINV can lead to
weight loss (decreased muscle mass and decreased adiposity) that aggravates cancer-related
cachexia (Ottery, 1994; Tisdale, 2002; Warren, 1932). Given the gravity and prevalence of CINV,
improved understanding of the chemical mediators and the pathophysiology of CINV is necessary
to promote the development of more effective pharmacotherapies.

Olanzapine, historically used as an antipsychotic, was recently added to antiemetic
guidelines due to its efficacy in reducing CINV (NCCN), 2017; Navari, 2014). Olanzapine not
only attenuates both acute and delayed phases of CINV ((NCCN), 2017; Navari, 2014), but it
also induces hyperphagia and weight gain in healthy subjects (Kim et al., 2008; Naing et al.,
2015; Q. H. Zhang, M. Lian, J. Deng, C. Huang, X, 2012), which make it a promising agent in
reducing chemotherapy-related anorexia and weight loss. While the anti-psychotic effects of
olanzapine are thought to be mediated primarily by a combinatorial blockade of serotonin (5-HT)

and dopamine receptors (Reynolds, 2011; Seeman, 2002; Stahl, 2013), the molecular mechanisms
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that underlie olanzapine’s effects on emesis remain largely unknown. Furthermore, there are few
pre-clinical studies examining olanzapine’s antiemetic properties.

The present work aimed to evaluate olanzapine’s effectiveness against chemotherapy-
dependent reductions in food intake/body weight and increases in pica behavior (a well-
established proxy for malaise/nausea in rats- quantified by kaolin clay consumption) (Mitchell et
al., 1976; N. Takeda et al., 1993; Yamamoto et al., 2002). To evaluate the potential site of action
of olanzapine on food, body weight change, and pica, we administered olanzapine both

systemically and directly into the hindbrain prior to cisplatin treatment.

Methods

Animals and housing conditions

Male Sprague Dawley rats (Charles River Laboratories, Wilmington, MA) were housed
individually in hanging, wire-bottom cages in a 12 h light, 12 h dark cycle and had ad libitum
access to pelleted chow (Purina Rodent Chow, 5001) and water except when noted. Rats were
adapted to the housing conditions for 7 days before the start of the experiments. Rats in
behavioral studies had ad libitum access to kaolin (Research Diets, K50001) for 3 days prior to
the start of the experiment. All procedures conformed to the institutional standards of the

University of Pennsylvania Institutional Animal Care and Use Committee.

Drugs
Cisplatin (cis-diammineplatium dichloride, Sigma-Aldrich) was dissolved in 0.9% saline
and administered at a dose of 6 mg/kg. The cisplatin solution was sonicated and vortexed

immediately before intraperitoneal (IP) injection for each experiment. Intraperitoneally
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administered olanzapine (olanzapine, Tocris) was dissolved in saline. The time-line of drug
administration is depicted in Figure 3.1 (A) and Figure 3.2 (A). Centrally infused olanzapine

was dissolved in 100% dimethyl sulfoxide (DMSO, injected volume 2uL).

Fourth Ventricle Intracerebroventricular (ICV) Surgeries

Rats received intraperitoneal anesthesia (ketamine, 90 mg/kg; Butler Animal Health
Supply), xylazine (2.7 mg/kg; Anased), and acepromazine (0.64 mg/kg; Butler Animal Health
Supply) and subcutaneous analgesia (2.0 mg/kg Metacam; Boehringer Ingelheim Vetmedica) for
all surgeries. For intracerebroventricular infusions, a 26-gauge guide cannula (8§ mm
81C3151/Spc, Plastics One,) directed at the fourth ventricle was implanted (bregma -11.6 mm,
lateral 0.0 mm, and dorsoventral -7.2 mm) and affixed to the skull with screws and dental cement
as previously published (Schmidt et al., 2016). All rats were given one week for recovery from
surgery. To confirm cannula placement, blood glucose was measured following 5-thio-D-glucose
(210 pg in 2 pL of artificial cerebrospinal fluid) infusion as described previously (Hayes et al.,

2011).

Experiment 1: Effects of intraperitoneal (IP) olanzapine on cisplatin-induced kaolin intake,
anorexia, and body weight loss

We evaluated the ability of olanzapine to ameliorate cisplatin-induced anorexia, kaolin
intake and body weight loss using pseudo-counterbalanced approach described as published
(Alhadeff & Holland, 2015). On day 1, body weight-matched rats (n=16; 350-450 g, n=8/group)
received IP injections of olanzapine (2 mg/kg) or saline followed by IP saline. On day 6, the 2
groups received IP saline or olanzapine (2mg/kg) followed by IP cisplatin. All animals were
injected between 0900 h (one hour before dark onset) and 1000 h. Food and kaolin intake

measurements were taken as previously described (De Jonghe et al., 2012) at 2 h, 6 h, 24 h, 48 h,
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and 72 h post cisplatin injections. Body weights were taken daily immediately before the onset of

the dark cycle. Following 72 h measurements, rats were euthanized.

Experiment 2: Effects of fourth ventricle intracerebroventricular (4" ICV) olanzapine on
cisplatin-induced kaolin intake, anorexia, and body weight loss

Rats (n=16; 350-450 g) were habituated to experimental procedures identical to
Experiment 1 except on day 1, two groups of weight matched animals (n=8/group) received 4"
ventricle infusions of olanzapine (125 pg/2 pL) or 100% DMSO followed by IP saline. Six days
later, the 2 groups received 4™ ventricle infusions of olanzapine or DMSO followed by IP
cisplatin. All animals were infused between 0900 h and 1000 h. Food and kaolin intake
measurements were taken as in Experiment 1. Following 72 h measurements, rats were

euthanized.

Statistics and data evaluation

All data is expressed as means = SEM. For all experiments, two-way ANOVAs were
performed to evaluate the two drug treatments (main effects: cisplatin/saline and
olanzapine/vehicle) for food intake, body weight change, mRNA expression, and
immunofluorescence. For the dose response study in Experiment 1 and Experiment 2, a one-way
ANOVA was performed to evaluate the effect of each dose on food intake. In Experiment 1 and
Experiment 2, kaolin intake, food intake, and body weight were calculated by subtracting
cumulative measurements at each time point from measurements taken at 0 h.

Post hoc analyses were conducted with Tukey’s multiple comparison test. For all
statistical tests, a p-value less than 0.05 was considered significant. For each experiment,

statistical differences between mean values were calculated using PRISM (GraphPad Inc.).
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Results

Experiment 1: Systemic olanzapine attenuates cisplatin-induced pica

A significant interaction between pretreatment with I[P OLZ (2 mg/kg) and IP cisplatin (6
mg/kg) on kaolin intake was observed at 24, 48, and 72 hours (Fig. 1B, F (125 > 4.41; p<0.05).
There was also significant interaction between OLZ and cisplatin treatments on body weight at 24
and 48 hours and food intake at 72 hours (Fig. 1C-D, all F (125) > 4.34; p<0.05). Cisplatin had a
significant main effect on kaolin intake at 24, 48, and 72 hours (Fig.1C, all F (1 25y > 4.41; p<0.05).
Cisplatin also had an effect on food intake, and body weight at 24, 48, and 72 hours (Fig.1 D and
E, all F (125 > 41.03; p<0.05). Post hoc analyses revealed a significant attenuation of cisplatin-
induced kaolin intake in animals pre-treated with OLZ at 72 hours (Fig. 1B, all p<0.05).
However, OLZ pre-treatment failed to attenuate body weight loss induced by cisplatin (Fig. 1B
and C). As expected, there was no difference in kaolin intake, food intake, and body weight in IP

OLZ vs IP saline pre-treated animals following cisplatin treatment (Fig. 1).

Experiment 2: Centrally administered (ICV) olanzapine decreased cisplatin-induced pica,
anorexia, and weight loss

A significant OLZ-cisplatin interaction was observed on kaolin intake and body weight at
48, and 72 hours (Fig. 2C-E, all F (1,15) > 4.79; p<0.05). Cisplatin had a significant main effect on
kaolin intake, food intake, and body weight at 48 and 72 hours (Fig. 2, all F (1,18 > 33.56; p<0.01).
Cisplatin also had a significant effect on kaolin intake at 2, 6, and 24 hours and food intake at 24
hours (Fig. 2, all F 1,15y > 17.00; p<0.001). Post hoc analyses showed significant decreases in
kaolin intake and body weight loss in animals pre-treated with OLZ (OLZ-cisplatin vs saline-
cisplatin) at 48, and 72 hours (Fig. 2C, all p<0.05). No difference in kaolin intake, food intake,

and body weight were observed between ICV OLZ and ICV DMSO pre-treated animals (Fig. 2)
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Discussion

Current clinical guidelines recommend administration of oral OLZ to prevent and
manage CINV ((NCCN), 2017). OLZ is a particularly promising drug because it is known to
increase body weight and it is more effective than 5-HT3 receptor antagonists and N-K1 receptor
antagonists in reducing delayed CINV (Navari et al., 2007; Navari et al., 2005; Navari et al.,
2016). Although numerous pre-clinical studies have been conducted to study OLZ’s psychotropic
and metabolic effects (Lieberman et al., 2005; Navari et al., 2016), only one pre-clinical study has
been conducted to examine OLZ’s antiemetic properties, and the results were inconclusive
(Machida et al., 2015).The current set of studies sought to examine the behavioral effects of OLZ
on cisplatin-induced malaise and energy balance in rats.

Here we show that prophylactic IP OLZ reduces chemotherapy-induced pica and
anorexia at 72 hours post cisplatin administration, and via 4™ ICV OLZ infusion, reduced pica
and weight loss 48 and 72 hours following cisplatin treatment. Thus, both systemic and central
OLZ reduce cisplatin-induced malaise. Although the mechanism of OLZ on malaise/nausea is not
clear, the reduction in pica following ICV OLZ suggest that OLZ’s antiemetic properties are
sufficient to induce malaise/nausea. Importantly, OLZ’s reduction in cisplatin-induced malaise
correspond with the peak of delayed CINV (48 -72 hours). This has significant clinical
implications since other medications, such as 5-HT3 receptor antagonists, do not effectively
control delayed CINV (Baba et al., 2017; Chelkeba et al., 2017; Feyer & Jordan, 2011; Hsieh et
al., 2015). Thus, as reflected in clinical guidelines, OLZ can complement other antiemetics to

better prevent and manage delayed CINV (Abe et al., 2016; Navari et al., 2011).

Furthermore, [P OLZ also reduced cisplatin-induced anorexia at 72 hours. This is
important since cisplatin-induced anorexia can lead to a state of negative energy balance and can
further aggravate cancer-related cachexia (Ottery, 1994; Tisdale, 2002; Warren, 1932). Cancer-

related cachexia is characterized by an involuntary loss of lean body mass with or without loss of
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fat mass and is associated with poor responses to chemotherapy and decreased survival (Aoyagi,
Terracina, Raza, Matsubara, & Takabe, 2015; Dewys et al., 1980). Anorexia is one of multiple
mechanism involved in the development of cachexia. Thus, IP OLZ’s ability to counteract
anorexia may be important in decreasing aggravation of cancer-related cachexia. Importantly, we
did not observe an attenuation of cisplatin-induced anorexia in animals receiving ICV OLZ. This
suggests that OLZ effect on anorexia is not mediated by the hindbrain, OLZ effect on feeding

may be mediated by other regions of the brain involved in feeding, such as the hypothalamus.

Unexpectedly, the effects of I[P OLZ on anorexia and malaise were not paralleled by an
attenuation of body weight loss. One possible explanation is that dose of OLZ was insufficient to
elicit an effect on all aspects of energy balance. The dose of IP OLZ was chosen because it had no
effect on energy balance under non-pathological conditions. Thus, the dose of IP OLZ may have

also been insufficient to elicit an effect.

Unlike the effects on feeding observed after IP administration, ICV OLZ did not
significantly reduce chemotherapy-induced anorexia, but it reduced weight loss. This suggests
that centrally infused OLZ may cause metabolic changes, such as decreasing energy expenditure,
that were not elicited following peripheral administration. Therefore, the effects of systemic and
central OLZ administration may partially occur through distinct mechanisms, which eventually
lead to changes in body weight but not necessarily impact feeding behavior. This is consistent
with other studies conducted in rats showing olanzapine induced metabolic changes, including
weight gain, hypothermia, and decreased locomotor activity, in the absence of hyperphagia
(Cooper et al., 2007; Evers, Calcagnoli, van Dijk, & Scheurink, 2010). However, the mechanisms
underlying OLZ’s metabolic effects in pre-clinical models has provided contradictory results, and
require further investigation and standardization of doses, sex, and experimental time periods

(Cooper et al., 2007; Evers et al., 2010; van der Zwaal, Janhunen, la Fleur, & Adan, 2014).
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In summary, we found that OLZ reduces malaise, anorexia, and weight loss following
chemotherapy in rats. Our findings suggest olanzapine may decrease pica through hindbrain
actions and that feeding changes may be mediated by other brain regions (non-hindbrain).
Together, these data help to identify potential mediators of OLZ’s antiemetic properties,
contribute to better understanding CINV, and provide the opportunity for the development of

more effective and better tolerated antiemetic pharmacotherapies.
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Figure 3.2
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Figure Legends

Figure 3.1. (A) Timeline of injections in Experiment 1. (B) Dose response experiment
found no significant difference between doses of IP OLZ (0.5 mg/kg, 1 mg/kg, and 2 mg/kg)
on feeding (C) IP OLZ (2 mg/kg) decreased cisplatin induced pica at 72 hours. (D) Cisplatin
significantly increased weight loss. IP OLZ did not significantly affect weight loss. (F) IP
OLZ decreases cisplatin-induced anorexia. Data are expressed as mean = SEM. Different

lower-case letters represent statistically significant differences (Tukey HSD, P<0.05).

Figure 3.2. (A) Timeline of injections in Experiment 2. (B) Dose response experiment
found no significant difference between doses of ICV OLZ (pure DMSO, 25 ug, and 125
ng) on feeding (C) ICV OLZ (125 pg) decreased cisplatin induced pica at 48 and 72 hours.
(D) Cisplatin significantly increased weight loss at all time points, and ICV OLZ
significantly reduced weight loss at 48 and 72 hours. (F) Cisplatin significantly increased
anorexia. ICV OLZ did not significantly improve anorexia. Data are expressed as mean +
SEM. Different lower-case letters represent statistically significant differences (Tukey HSD,

P<0.05).
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Introduction

Despite the administration of appropriate pharmacologic methods of prevention, a
significant percentage of patients continue to exhibit chemotherapy-induced nausea, vomiting
(CINV), and anorexia especially during the delayed phase (>24 h) following treatment. The
antipsychotic drug olanzapine was recently added to antiemetic guidelines due to its efficacy in
reducing CINV. The activity of olanzapine at multiple serotonin (5-HT) receptors, particularly the
5-HT2C and 5-HT3 receptors, which both play a role in the central mediation of nausea and
vomiting, suggests that it might have clinically significant antiemetic properties by modulating
central serotoninergic signaling. Moreover, olanzapine may also stimulate ghrelin release and
sensitivity, which might contribute to its antiemetic and anti-anorectic effects.

Olanzapine’s antiemetic effect may be mediated by its effect on serotonin (Brafford &
Glode, 2014; Navari, 2014). Serotonin is known to play a key role in emesis (Y. K. Gupta &
Sharma, 2002; Johnston, Lu, & Rudd, 2014; Rojas et al., 2014), with serotonin 3 receptor
antagonists being among the most widely used antiemetics (NCCN), 2017; Aapro, 2005; P.
Hesketh, 2015). Olanzapine is a strong antagonist of serotonin receptors, including serotonin 2C,
serotonin 2A and serotonin 3 receptors (Bymaster et al., 1996; Selent, Lopez, Sanz, & Pastor,
2008; Stahl, 2013). Notably, olanzapine has especially high affinity for serotonin 2C receptors (5-
HT2CRs) which are located in high concentrations in the hindbrain at regions known to mediate
CINV, the nucleus of the solitary tract and the area postrema (Wright et al., 1995) (Alhadeff &
Holland, 2015; De Jonghe & Horn, 2009; Holland et al., 2014). Additionally, 5-HT2CRs’
functional roles make these receptors particularly attractive for the study of CINV. Specifically,
olanzapine is known to cause weight gain via serotonin receptor 2C antagonism (X. F. Huang et
al., 2017; Lord et al., 2017) and inhibition of 5-HT2CRs has been linked to decreases in nausea
(Okada et al., 1995; H. Takeda et al., 2008). Conversely, cisplatin treatment has been associated

with increased activation of 5-HT2CRs (Y. K. Gupta & Sharma, 2002; Hattori, 2010; Okada et
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al., 1995; H. Takeda et al., 2008) and increased expression of 5-HT2CRs in the brain (Yakabi,
Sadakane, et al., 2010). This stimulation of 5-HT2CRs in the brain is linked to GI side effects-
including anorexia and nausea (Y. K. Gupta & Sharma, 2002; H. Takeda et al., 2008). Thus,
olanzapine may decrease CINV by counteracting cisplatin-induced effects on 5-HT2CRs in the
brain.

Another potential mechanism by which olanzapine stimulates food intake and alleviates
CINV is via modulation of the ghrelin system. Ghrelin is an orexigenic hormone that is mainly
secreted by the stomach during fasting and shortly before meals (Inui, 2001; Inui et al., 2004).
Ghrelin is a high affinity ligand for the growth hormone secretagogue receptor (GHSR), which is
highly expressed in the hindbrain (Inui, 2001; Kojima et al., 1999). Cisplatin decreases
hypothalamic GHSR and circulating ghrelin (Hiura, Takiguchi, Yamamoto, Kurokawa, et al.,
2012; Tanaka et al., 2008; Yakabi, Sadakane, et al., 2010). Conversely, olanzapine increases
GHSR expression, potentiates ghrelin-mediated GHSR activity, and increases circulating ghrelin
levels (Tagami et al., 2016; Weston-Green et al., 2011; Q. Zhang et al., 2014). These findings
combined with pre-clinical and clinical evidence demonstrating ghrelin-mediated decreases in
CINV, anorexia and cachexia (Hiura, Takiguchi, Yamamoto, Takahashi, et al., 2012; Y. L. Liu et
al., 2006), suggest that olanzapine may mediate olanzapine’s antiemetic/anti-anorectic effect by
counteracting the effects of cisplatin on the ghrelin system.

The present work aimed to determine olanzapine’s effect on potential biological
correlates of CINV and energy balance. Immunohistochemistry was conducted to determine
changes in the number of c-Fos (a marker of neuronal activation) positive neurons in the area
postrema (AP) and the nucleus of the solitary tract, regions known to mediate CINV (Beleslin &
Strbac, 1987; Borison et al., 1984; Coil & Norgren, 1981; Stewart et al., 1977). Additionally,
circulating ghrelin as well as central expression levels of GSHR and serotonin receptor subunits
in the hypothalamus, dorsal vagal complex (DVC), central amygdala (CeA), and parabrachial

nucleus (PBN) were examined following cisplatin administration.
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Methods

Animals and housing conditions

Male Sprague Dawley rats (Charles River Laboratories, Wilmington, MA) were housed
individually in hanging, wire-bottom cages in a 12 h light, 12 h dark cycle and had ad libitum
access to pelleted chow (Purina Rodent Chow, 5001) and water except when noted. Rats were
adapted to the housing conditions for 7 days before the start of the experiments. Rats in
behavioral studies had ad libitum access to kaolin (Research Diets, K50001) for 3 days prior to
the start of the experiment. All procedures conformed to the institutional standards of the

University of Pennsylvania Institutional Animal Care and Use Committee.

Drugs

Cisplatin (cis-diammineplatium dichloride, Sigma-Aldrich) was dissolved in 0.9% saline
and was administered at a dose of 6 mg/kg. The cisplatin solution was sonicated and vortexed
immediately before intraperitoneal (IP) injection for each experiment. Intraperitoneally

administered olanzapine (Tocris) was dissolved in saline.

Experiment 1: Assessment of olanzapine treatment on cisplatin-induced c-Fos in DVC neurons

Body weight-matched rats (n=16; 250-300 g) were assigned to one of four conditions
(n=4/group). Half of the groups received IP olanzapine (2 mg/kg) and the other half received
saline followed (15 minutes later) by IP cisplatin (6 mg/kg) or saline in a 2 x 2 between subjects
design. To avoid feeding-related changes in c-Fos expression between groups, all animals were
food deprived until samples were collected 6 h following cisplatin treatment. Briefly, rats were
deeply anesthetized with IP anesthesia [ketamine, (90 mg/kg; Butler Animal Health Supply),

xylazine (2.7 mg/kg; Anased), and acepromazine (0.64 mg/kg; Butler Animal Health Supply)]
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and transcardially perfused with 0.1 M PBS (phosphate buffered saline, Boston Bioproducts), pH
7.4, followed by 4% PFA (Paraformaldehyde, Boston Bioproducts). Brains were removed and
post fixed in 4% PFA for 4 h and then stored in 30% sucrose for two days. Brain sections
containing the DVC were processed for c-Fos as published (De Jonghe & Horn, 2009; Holland et
al., 2014). The brains were sectioned coronally and collected serially in triplicate starting at
bregma -14.3 mm and ending at bregma -13.3 mm. Immunohistochemistry was generally
conducted according to previously described procedures (Holland et al., 2014). Briefly, sections
were washed with 0.1 M PBS. Brain sections were incubated in 5% normal donkey serum for 1 h,
followed by an overnight (16 h) incubation with the polyclonal rabbit anti-Fos primary antibody
(1:1000, s2250; Cell Signaling). Sections were washed and incubated with the secondary
antibody donkey anti-rabbit Alexa Fluor 594 (1:500; Jackson Immuno Research Laboratories),
mounted onto glass slides, and coverslipped using Fluorogel (Electron Microscopy Sciences).
The c-Fos positive neurons were visualized and quantified using fluorescence microscopy (Nikon

801, NIS Elements AR 3.0) at 20X magnification.

Experiment 2: Assessment of olanzapine treatment on cisplatin-induced reductions in plasma

ghrelin

Rats (n=16; 300-350 g) (n=4/group) received IP injections of olanzapine (2 mg/kg) or
saline followed by IP cisplatin (6 mg/kg) or saline in a between subject design. All animals were
injected 1 hour before dark onset. Six hours after the last injection, rats were decapitated, and
trunk blood was collected into heparin-coated tubes containing protease inhibitor, p-
hydroxymercuribenzoic acid (Bertin Pharma, final concentration of 1 mM). Blood was
centrifuged to collect plasma and stored at —80 °C until assayed. Plasma was assayed using an

acylated ghrelin ELISA kit and an unacylated ghrelin ELISA kit (Bertin Pharma, Montigny-le-
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Bretonneux, France) according to the manufacturer’s instructions. Plasma samples was analyzed

in duplicate.

Experiment 3: Assessment of olanzapine treatment on cisplatin-induced alterations in central
MRNA expression of GHSR and serotonergic receptors (5-HT2C, 5-HT2A, 5-HT3, 5-HT1A)

Rats (n=32; 300-350 g) received IP olanzapine or saline followed by IP cisplatin or saline
(n=8/group) and food was removed. At 6 h, rats were euthanized via decapitation. Whole brains
were collected, and flash frozen in isopentane. Whole hypothalamus and bilateral micropunches
(1 mm in diameter) containing regions of the DVC, PBN, and CeA were collected according to
previously published methods (Holland et al., 2014). The micropunches of each tissue
corresponded to the following coordinates: DVC (-14.3 mm from bregma ~ 1.0 mm long), IPBN
(beginning at -10.04 mm from bregma and were ~ 1.5 mm long), and CeA (beginning at -3.0 mm
from bregma and were ~ 1.0 mm long).

For quantitative real-time polymerase chain reaction (QPCR), RNA was extracted from
samples using Trizol (Invitrogen) and RNeasy Kit (Qiagen) according to manufacturer’s
instructions. cDNA was generated from extracted RNA using a High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems). The qPCR was performed using pre-designed Taqman
probes (Applied Bioscience). Rat beta actin (Cat. 4352340E) was used as a housekeeping
reference gene and probes were used to quantify relative mRNA levels of Growth Hormone
Secretagogue Receptor (RN00821417), Serotonin Receptor 2C (Rn00562748), Serotonin
Receptor 2A  (Rn00567856), Serotonin 3A (Rn00567878) and Serotonin Receptor 1A
(Rn00569876). Samples were run in duplicate and relative mRNA expression was calculated

using the comparative delta-delta Ct Method as described previously (Holland et al., 2014).

Statistics and data evaluation
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All data are expressed as means + SEM. For all experiments, two-way ANOVAs were
performed to evaluate our two drug treatments (main effects: cisplatin/saline and
olanzapine/vehicle). For Experiment 1, c-Fos counts of three sections from each animal were
averaged at each plate level. In Experiment 2, sample absorbance measurements were used to
determine concentration by linear regression from standard curves. To determine relative mRNA
expression in Experiment 3, average delta Ct values of beta actin were subtracted from average
delta Ct values of the gene of interest. Post hoc analyses were conducted with Tukey’s multiple
comparison test. For all statistical tests, a p-value less than 0.05 were considered significant. For
each experiment, statistical differences between mean values was calculated using PRISM

(GraphPad Inc.)
Results

Experiment 1: Olanzapine decreased cisplatin-induced c-Fos in the area postrema and the
nucleus of the solitary tract

Representative immunofluorescent sections from the hindbrain (the area postrema and the
nucleus of the solitary tract) 6 hours post cisplatin administration are depicted in Fig. 4.1. OLZ (2
mg/kg) pretreatment and cisplatin (6 mg/kg) displayed a significant interaction (all F (;,12) > 7.56;
p<0.05) on c-Fos positive neurons in nucleus of the solitary tract (NTS) neurons at the level of
the obex (-14.3 mm from bregma) and mid-DVC (-13.8 mm from Bregma). Cisplatin had a main
effect at the level of the obex, mid-DVC, and 4™ ventricle (-13.3 mm from Bregma) (all F (1.12) >
5.09; p<0.05). Post hoc tests showed that cisplatin increased c-Fos counts at the level of the obex
and mid-DVC (all p < 0.05). OLZ pretreatment significantly reduced cisplatin-induced increases
in c-Fos counts in nucleus of the solitary tract (NTS) neurons at the level of the obex and mid-
DVC (olanzapine-cisplatin vs saline-cisplatin; p<0.05). Cisplatin induced an increase in the

number of c-Fos positive cells in the area postrema (AP) and at the level of the 4™ ventricle.
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However, olanzapine did not significantly reduce cisplatin-induced increases in the number of

immunofluorescent cells in the AP and at the level of the 4" ventricle.

Experiment 2: Olanzapine blocks cisplatin-induced reduction in circulating ghrelin levels
There was a significant interaction between OLZ and cisplatin treatments (Fig. 4.2A, all
F (1,12) = 10.35; p<0.01) on acylated (active) ghrelin levels 6 hours post cisplatin treatment. Data
also showed there was a significant interaction between OLZ and cisplatin on the acylated to
unacylated ghrelin ratio (Fig. 4.2B, F (1,12) =11.09; p <0.005). Post hoc tests showed that cisplatin
decreased acylated ghrelin and this effect was blocked in animals pre-treated with OLZ (Fig.
4.2A, p <0.05). The ratio of acylated ghrelin to unacylated ghrelin was also significantly lower in
cisplatin treated animals, and this effect was blocked by pretreatment with OLZ (Fig. 4.2C, p
<0.05). There was no significant difference in unacylated ghrelin levels between groups (Fig.
4.2B). In addition, post hoc analyses revealed that OLZ in healthy animals (OLZ-saline) did not
change acylated ghrelin levels. There was no significant difference in acylated to unacylated

ghrelin between OLZ-cisplatin treated animals and control groups.

Experiment 3: Olanzapine decreased 5-HT2C gene expression in the DVC and hypothalamus
following cisplatin treatment

A significant interaction between IP OLZ (2 mg/kg) and IP cisplatin (6 mg/kg) was
observed on 5-HT2C expression in the DVC and hypothalamus (Fig. 4.3A-B, all F (123 > 4.73;
p<0.05). Cisplatin also had a main effect on 5-HT2C in the DVC and hypothalamus (Fig. 4.3A-B,
all F (123)> 30.5; p<0.0001). Post hoc analysis showed cisplatin increased expression of 5-HT2C
in the DVC and hypothalamus (Fig. 4.3A-B, all p<0.05). There was no difference in 5-HT2C
expression between OLZ treated animals and saline treated controls in any tissue sample
analyzed. Additionally, the saline-cisplatin treatment group had decreased GHSR expression in

the hypothalamus compared to OLZ-cisplatin treated animals (Fig. 4.3B, all p<0.05). There was
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no significant difference between HTR2A, HTR1A, and HTR3 expression in the DVC, or
HTR2A expression in hypothalamic tissue. Finally, no significant differences in gene expression

of HTR2C and GHSR were noticed in the PBN and CeA.

Discussion

Olanzapine was added to antiemetic guidelines in 2014 after case studies, pilot studies,
and clinical trials found that it is effective at preventing and managing CINV (NCCN), 2014).
The current set of studies sought to examine the neuronal, and molecular effects of OLZ on
cisplatin-treated rats. The current studies showed IP OLZ reduced cisplatin-induced neuronal
activation in the DVC and rescued cisplatin-induced decreases in circulating ghrelin 6 hours post
cisplatin administration. Additionally, molecular experiments suggested OLZ counteracts
cisplatin related changes in hindbrain and hypothalamic 5-HT2C and GHSR expression 6 hours
post chemotherapy.

The central sites of action contributing to OLZ’s antiemetic side effects are not fully
defined. A recent electrophysiological study demonstrated that OLZ decreases the excitability of
neurons located in the hindbrain and reduced vagal output to subdiaphragmatic organs (Anwar,
Miyata, & Zsombok, 2016). Conversely, cisplatin increases neuronal activation in the dorsal
vagal complex of the hindbrain (Horn, 2009). This effect is dependent on vagal input, and these
effects contribute to nausea (Horn, 2009). Thus, Experiment 1 examines the effects of OLZ in the
NTS and AP following cisplatin treatment. To our knowledge, this is the first
immunohistochemical study that has been conducted to study the effect of OLZ on neuronal
activation in the hindbrain and the first to study cisplatin-induced activation following olanzapine
pretreatment. Our finding corroborates studies conducted in rats, mice, shrews, and other species,
which show that cisplatin increases the number of c-Fos positive NTS neurons (Alhadeff et al.,
2017; De Jonghe & Horn, 2009; Holland et al., 2014; Horn, 2009; Ray, Griggs, & Darmani,

2009). Previous research studies have shown OLZ increases the number of c-Fos expressing
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neurons in the forebrain including the locus coeruleus (Dawe et al., 2001). However, in the
present study OLZ decreases cisplatin-related increases in neuronal activation in NTS neurons at
the level of the obex and mid-dorsal vagal complex 6 hours post chemotherapy. The reduction in
neuronal activation could indicate that OLZ could have an inhibitory effect on neuronal activation
in the NTS. This experiment also showed that OLZ alone did not significantly increase c-Fos
expression in the NTS or the AP.

Recent studies have demonstrated the positive effects of ghrelin or its analogs in the
prevention of CINV (Hiura, Takiguchi, Yamamoto, Takahashi, et al., 2012; Y. L. Liu et al., 2006;
Rudd et al., 2006). However, some ghrelin-based clinical trials have failed to demonstrate
significant attenuation of CINV, anorexia, weight loss, and cachexia (Currow et al., 2017; Temel
et al., 2016). This discrepancy may be caused by partial ghrelin resistance, which may limit the
effectiveness of ghrelin-based therapy in cancer patients. OLZ has been reported to increase
ghrelin levels in psychiatric patients (Murashita et al., 2005; Q. Zhang, Deng, & Huang, 2013).
Our data show that IP OLZ reverses cisplatin-induced reductions in circulating ghrelin.
Additionally, we observed cisplatin-induced decreases in hypothalamic GHSR expression were
rescued by pretreatment with OLZ. This supports studies demonstrating cisplatin-induced
decreases in hypothalamic GHSR (Yakabi, Kurosawa, et al., 2010). Furthermore, GHSR agonists
reduce CINV and anorexia (Yakabi, Kurosawa, et al., 2010; Yakabi, Sadakane, et al., 2010;
Yoshiya et al., 2016). These data highlight the possibility that OLZ’s antiemetic properties may
be partially mediated by ghrelin , specifically by reversing cisplatin-induced reduction in
circulating ghrelin and ghrelin receptor expression. Further studies are required to establish the
role of ghrelin in relation to OLZ’s antiemetic properties and in the prevention of CINV.
Nevertheless, OLZ may be able to counteract ghrelin-resistance, highlighting the possibility of
combination therapy of OLZ and ghrelin may be more effective at managing CINV.

To further define the molecular effects of OLZ, we examined whether OLZ had an effect

on serotonin receptors. Since OLZs antipsychotic properties are mediated by serotonin receptors
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(Brafford & Glode, 2014; Reynolds, 2011; Seeman, 2002), and serotonin is also known to play an
important role in CINV, we hypothesized that serotonin may also mediate OLZ’s antiemetic
properties. Indeed, we found that IP OLZ reversed cisplatin-induced increases in 5-HT2CR
expression. Since increases in 5-HT2CR have been associated with nausea and anorexia (Kirk et
al., 2009; Silenieks, 2014; H. Takeda et al., 2008), these results indicate that OLZ’s antiemetic
effect may be mediated by 5-HT2CR expression. Further studies should be conducted to examine
whether OLZ’s antiemetic effects are dependent on 5-HT2CR signaling and whether 5-HT2CR
antagonism is sufficient to effectively manage CINV.

In summary, we found that OLZ reversed cisplatin-induced changes in serotonin and
ghrelin . Specifically, OLZ reduced the number of activated neurons in the nucleus of the solitary
tract, rescued drops in circulating ghrelin, decreased 5-HT2C expression in the DVC and
hypothalamus, and increased hypothalamic GHSR expression. Our findings suggest 5S-HT2C and
circulating ghrelin may mediate OLZ’s antiemetic properties. Together, these data help to identify
potential mediators of OLZ’s antiemetic properties, contribute to better understanding CINV, and
provide the opportunity for the development of more effective and better tolerated antiemetic

pharmacotherapies.

62



Figures

Figure 4.1
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Figure 4.2
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Figure 4.3
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Figure Legends

Figure 4.1. Representative immunofluorescent images of NTS neurons in the DVC at the level of
the obex (-14.3 mm), of NTS and AP neurons at the caudal medial DVC (-13.8 mm), and the
NTS at the level of the fourth ventricle (-13.3 mm). Coordinates correspond to distance from
Bregma. (A) At all levels, cisplatin induced increases the number c-Fos positive NTS/AP
neurons. [P OLZ (2 mg/kg) reduced c-Fos immunofluorescence in NTS neurons at the level of the
obex and at the caudal medial NTS in cisplatin treated rats (OLZ-CIS vs SAL-CIS). (B) Mean =+
SEM c-Fos positive cell counts in the NTS and AP are shown. Different lower-case letters

represent statistically significant differences (Tukey HSD, P<0.05).

Figure 4.2 Concentration (pg/mL) of circulating acylated and unacylated ghrelin were calculated for each tre
group. (A) Cisplatin decreases levels of acylated ghrelin compared to controls. IP OLZ rescued acylated ghrelin
(B) There were no significant differences in unacylated ghrelin levels between treatment groups. (C) Ci
decreased the ratio of acylated to unacylated ghrelin ratio. [P OLZ Olanzapine increased cisplatin-induced decre
the ratio of acylated to unacylated ghrelin. Data are expressed as mean + SEM. Different lower-case letters re;

statistically significant differences (Tukey HSD, P<0.05).

Figure 4.3 Changes in serotonin (HTR2C, HTR2A, HTR1A, and HTR3) and ghrelin (GHSR) subunit expressior
DVC, hypothalamus, CeA, and PBN were examined. (A) HT2C receptor subunit expression was increased in th
of cisplatin-treated rats. (B) HT2C expression was increased and GHSR receptor subunit expression was reducec
hypothalamus. No significant changes on HTR2C and GHSR expression were observed at the CeA (C) or at th
(D). Data are expressed as mean + SEM. Different lower-case letters represent statistically significant difft

(Tukey HSD, P<0.05).
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Chapter V: Summary and Conclusion

Introduction

CINV continues to be highly prevalent, is an economic burden, and negatively impacts
patient quality of life. Thus, it is important to better understand and improve treatments that
alleviate CINV. Olanzapine is an atypical antipsychotic commonly used in the treatment of
schizophrenia (Stahl, 2013) recently added to antiemetic guidelines due to its effectiveness in
preventing and managing CINV ((NCCN), 2017; Navari, 2014). It is known to act on multiple
receptor families, including dopaminergic, serotonergic, muscarinic, and histaminic receptors
(Bymaster et al., 1996; Stahl, 2013). It was introduced as an antiemetic after multiple case studies
reported that patients receiving olanzapine had a lower incidence of CINV (Jackson & Tavernier,
2003; S. D. Passik et al., 2003; Pirl & Roth, 2000; Srivastava et al., 2003). Subsequent clinical
trials confirmed its effectiveness in the prevention and management of CINV (Navari et al., 2005;
Navari et al., 2011; Steven D. Passik et al., 2004). Although, the precise mechanism by which
olanzapine reduces CINV is unknown, olanzapine is known to have an impact on serotonin and
ghrelin receptor expression in the brain, which are known to play a role in CINV (Hiura,
Takiguchi, Yamamoto, Takahashi, et al., 2012; Lord et al., 2017; Yakabi, Kurosawa, et al., 2010;
Q. Zhang et al., 2013). Thus, olanzapine’s reduction of chemotherapy-induced side effects may
be correlated with changes in serotonergic and ghrelin systems.

This body of work sought to better understand how olanzapine alleviates chemotherapy-
induced side effects. The specific aims of this body of work were 1) to identify gaps in the
literature regarding olanzapine as an antiemetic and identify potential biological correlates
associated with olanzapine’s effect on CINV and energy balance 2) determine the behavioral
effects of olanzapine in rats and 3) test the effects of olanzapine on potential biological mediators

of CINV and energy balance. Each specific aim was met, and the findings contribute to our
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knowledge of olanzapine in relation to CINV. These data provide guidance for future programs of

research.

Summary of Principal Findings

The first aim was to identify gaps in the literature regarding the use of olanzapine as an
antiemetic and identifying olanzapine’s effect on biological correlates of CINV and energy
balance. Our literature review revealed that there is scant literature studying the effect of
olanzapine as an antiemetic in pre-clinical models. Only one study has been conducted to
examine the effects of olanzapine on chemotherapy-induced malaise in rats (Machida et al.,
2015). Additionally, the literature highlighted serotonin and ghrelin as important players in
olanzapine-induced metabolic changes, including weight gain and increased feeding (Kirk et al.,
2009; Silenieks, 2014; Q. Zhang et al., 2013; Q. Zhang et al., 2014). Specifically, olanzapine has
opposite effects on serotonin (5-HT) and ghrelin compared to cisplatin (Kirk et al., 2009;
Silenieks, 2014; Yakabi, Kurosawa, et al., 2010; Yakabi, Sadakane, et al., 2010; Q. Zhang et al.,
2013; Q. Zhang et al., 2014). While cisplatin is known to increase activation and expression of
serotonin 2C receptors (5-HT2CRs) in the brain (H. Takeda et al., 2008), olanzapine is known to
increase food intake and body weight through antagonizing 5-HT2CRs (X. F. Huang et al., 2017;
Lord et al., 2017). Furthermore, cisplatin has been reported to decrease circulating ghrelin and
hypothalamic ghrelin receptor (GHSR) expression (Yakabi, Kurosawa, et al., 2010; Yakabi,
Sadakane, et al., 2010). Conversely, olanzapine can increase circulating ghrelin (Q. Zhang et al.,
2014) (Murashita et al., 2005). However, olanzapine’s effect on serotonin and ghrelin signaling in
relation to CINV had not been explored. A summary of the principal findings is provided in
Table 5.1. These findings informed the experimental questions and experimental designs of the
primary data included in this body of work.

The second aim of this dissertation was to identify the effects of olanzapine on cisplatin-

induced pica, anorexia, and weight loss in rats. The principal findings are summarized in Table
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5.2. As mentioned above, since olanzapine was introduced based on clinical observations, its
effect on pre-clinical models for the study of CINV remains unexplored. Thus, in Chapter 1 we
tested the effects of intraperitoneal and fourth ventricle olanzapine administration. These
experiments show that olanzapine decreases cisplatin-induced pica, anorexia, and weight loss.
Our observation that IP olanzapine decreases malaise/nausea and anorexia 72 hours post cisplatin
treatment in rats aligns with the effect of olanzapine in humans. Additionally, fourth ventricle
olanzapine decreased, cisplatin-induced pica and weight loss at 48 and 72 hours. Notably, these
behavioral changes were observed at 48 and 72 hours, a time period corresponding to the peak of
delayed CINV. Thus, in rats, as in humans, olanzapine is particularly effective at reducing
delayed CINV. This suggests that rats are a useful model in the study of olanzapine’s effect on
CINV.

The third aim of this body of work was to determine olanzapine’s effect on the hindbrain
and on potential biological correlates of CINV. To address this aim, we conducted a series of
experiments to determine 1) does olanzapine have an effect on the hindbrain, and if so, is
olanzapine’s effect on the hindbrain sufficient to reduce cisplatin-induced side effects? and 2)
does olanzapine counteract cisplatin-induced changes in circulating ghrelin and serotonin and
ghrelin receptor expression? We found that IP olanzapine decreases the number of cisplatin
activated neurons in the NTS (region of the hindbrain known to mediate CINV) 6 hours post
cisplatin-treatment. Thus, olanzapine acts on the hindbrain, reducing the number of activated
neurons in the NTS. To determine if olanzapine’s effect on the hindbrain is sufficient to reduce
cisplatin-induced pica, anorexia, and weight loss, olanzapine was administered directly into the
fourth ventricle. Olanzapine infusion into the fourth ventricle attenuated cisplatin-induced pica
and body weight loss, but not anorexia. Thus, olanzapine’s effect on the hindbrain is sufficient to
attenuate pica and weight loss, but olanzapine’s effect on feeding is likely mediated by other
brain regions (not the hindbrain). Additionally, these experiments suggest that olanzapine’s

reduction of weight loss, is not directly caused by changes in feeding. Rather, olanzapine may
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decrease weight loss via other changes in energy balance such as decreased locomotion and
reduced thermogenesis.

To determine if olanzapine counteracts cisplatin-induced changes in serotonin and ghrelin
systems we measured circulating ghrelin levels, changes in ghrelin receptor (GHSR1) expression,
and in serotonin receptor expression (5-HT2C, 5-HT2A, 5-HT1A, and 5-HT3). We found
olanzapine reverses cisplatin-induced decreases in circulating acylated ghrelin (active ghrelin)
and that olanzapine treated animals showed increased hypothalamic GHSR1 expression compared
to cisplatin treated animals. Thus, olanzapine has an opposite effect on circulating ghrelin and
ghrelin receptor expression compared to cisplatin. Olanzapine did not have an effect on GHSR in
the DVC, the central amygdala, or the PBN. Lastly, olanzapine counteracted cisplatin-induced
increases in 5-HT2CR expression, but did not change 5-HT2A, 5-HT1A, or 5-HT3 receptor
expression. Together these experiments show that olanzapine counteracts cisplatin-induced:
decreases in circulating ghrelin, decreased hypothalamic GHSR1 expression, and increases in 5-
HT2CR expression. These principal findings are summarized in Table 5.3.

Together the primary data suggest that, in the rat, olanzapine decreases, cisplatin-induced
pica, anorexia, and weight loss during the delayed phase of CINV. Thus, rats can be a useful
model to study the effects of olanzapine on CINV and energy balance. Additionally,
intraperitoneal olanzapine decreases the number of activated neurons in the AP and the NTS six
hours post-cisplatin treatment, suggesting olanzapine has an effect on the hindbrain. Indeed,
fourth ventricle administration of olanzapine reduced pica, demonstrating that olanzapine’s effect
on the hindbrain is sufficient to reduce pica. Furthermore, fourth ventricular administration of
olanzapine reduced weight loss but did not reduce cisplatin-induced anorexia. This suggests that
olanzapine’s effects on feeding are mediated by non-hindbrain regions. Olanzapine may have
eating-independent mechanisms of reducing weight loss (e.g. reduced thermogenesis, locomotor

activity). Lastly, the data show olanzapine counteracts cisplatin-induced: decreases in circulating
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ghrelin, decreased hypothalamic GHSR1 expression, and increases in 5-HT2CR expression.

Figure 5.1 provides a summary of these integrated findings.

NIH Symptom Science Model

The NIH Symptom Science Model (NIH-SSM) served to guide the experiments
described in this body of work. As mentioned previously, this model can be applied to
chemotherapy-induced nausea (a symptom). The behavioral experiments were conducted to
characterize the phenotype (determining whether olanzapine decreases cisplatin-induced pica,
anorexia, and weight loss). The data obtained in this body of work suggests olanzapine does
attenuate cisplatin-induced, pica, anorexia, and weight loss. Immunohistochemistry and
molecular experiments were conducted to identify the effect of olanzapine on potential biological
mediators of CINV and energy balance dysregulation. These experiments suggest that olanzapine
may act by counteracting the effects of cisplatin on SHT2CR expression, decreasing cisplatin-
induced increases in 5-HT2CR expression. The studies also suggested that olanzapine may
counteract decreases in ghrelin, by counteracting cisplatin-induced reductions in circulating
ghrelin and rescuing cisplatin-induced decreases in hypothalamic GHSR expression. Further
research is required to establish whether these changes in serotonin and ghrelin are sufficient to
reduce CINV, anorexia, and weight loss. Better understanding the biological basis of olanzapine’s
action of CINV, could help identify more specific therapeutic targets that improve chemotherapy-
induced symptoms while reducing side effects. Thus, the specific aims of the studies presented in
this dissertation align with NINR’s recognition that “novel discoveries require the integration of

behavioral and biological data in the development of models to predict, treat, and manage

symptoms of diseases and treatments (NINR, September 2016).”
Limitations
The experiments described in this body of work suggest that olanzapine may alleviate

CINV, anorexia, and weight loss by counteracting the effects of cisplatin on the hindbrain,
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circulating ghrelin, ghrelin receptor expression, and SHT2C receptor expression. However, these
changes may interact with other factors or may be mediated by confounding factors. For example,
emetogenic risk in response to chemotherapy varies by sex and olanzapine’s effect on body
weight also varies by sex and (Davey et al., 2012; Nyman et al., 2007; Roila et al., 1991; J. P.
Zhang et al.,, 2013). Thus, estrogen or other hormones that affect sexual development or
reproduction may also play an important role in olanzapine’s effect on malaise and energy
balance. Further research is needed to determine if olanzapine’s effect on chemotherapy-induced
changes in ghrelin and serotonin is sufficient to attenuate CINV, anorexia, and weight loss and to
identify/study other factors that may also contribute to decreased malaise behavior.

Additionally, water intake data may help clarify the effect of olanzapine on body weight
changes. In addition to inducing anorexia, cisplatin is also known to reduce water intake during
the first 48-72 hours (De Jonghe & Horn, 2008; De Jonghe et al., 2009; Malik et al., 2006), which
likely contributes to cisplatin-induced body weight loss. As is discussed above, our studies
suggest that olanzapine’s attenuation of cisplatin-induced anorexia is mediated by hindbrain
independent mechanisms as supported by our findings that ICV olanzapine (hindbrain specific)
was not sufficient to decrease anorexia. However, the hindbrain (including the area postrema, the
nucleus of the solitary tract and the parabrachial nucleus, and other areas known to mediate
CINV) is known to be important in regulating water intake (Johnson & Thunhorst, 1997; Ramsay
& Booth, 2012). Thus, although ICV olanzapine may not be sufficient to reduce anorexia, [CV
olanzapine may be particularly effective at reverse cisplatin-induced decreases in water intake.
An increase in water intake following ICV olanzapine could increase weight and explain the
observed reductions in weight loss in the absence of increased food intake. Future experiments
should examine the effect of ICV olanzapine on water intake.

Additionally, the experiments in this body of work were conducted on healthy rodents
and, as described below, future research should examine the effects of olanzapine on malaise

behavior of tumor bearing models. As described in chapter two, cancer treatment is often
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determined based on tumor type, stage, and location and treatments have different emetogenic
risks ((NCCN), 2017; Baba et al., 2017). Thus, cancer pathology also impacts response cancer
treatment and to antiemetics and should be considered in CINV research. Furthermore, we also
observed improvement in cisplatin-induced malaise, anorexia, and weight loss during the delayed
phase of CINV. However, our biological data was collected during the acute phase (6 hours post
cisplatin treatment) and future research should also examine changes in the number of hindbrain
activated neurons, circulating ghrelin, and GHSR/SHT2CR expression in the delayed phase (24

hours+ post cisplatin treatment).

Recommendations for Future Research

Expanding the Study of the of Olanzapine as an Antiemetic in Pre-Clinical Models

Although multiple pre-clinical studies have been conducted to examine the metabolic
effects of olanzapine, there is scant literature examining olanzapine as an antiemetic in pre-
clinical models (Machida et al., 2015). Only one previous study has been conducted to investigate
the effects of cisplatin-induced pica in rats (Machida et al., 2015). In this study, intraperitoneal
olanzapine (2 mg/kg and 10 mg/kg.) decreased cisplatin-induced pica, but this change was not
significant. The data described in this body of work builds upon these findings and shows that
olanzapine does significantly reduce cisplatin-induced pica in rats. Future research studies can
utilize rats as a pre-clinical model for the study olanzapine in the context of CINV and energy
balance. Future research should also be conducted on tumor bearing pre-clinical models to
determine olanzapine’s effect on chemotherapy-induced malaise behaviors and to account for the

complexity of cancer pathology.

Better Defining the Role of 5-HT2CR, GHSR, and circulating ghrelin in CINV
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The experiments described in this in this body of work show olanzapine decreases pica,
anorexia, and weight loss. They also suggest that olanzapine may counteract cisplatin-induced 1)
increases in 5-HT2CR expression (in the dorsal vagal complex and hypothalamus), 2) decreases
in hypothalamic GHRS expression, and 3) decreases in circulating ghrelin. Future experiments
should test whether serotonergic antagonism and ghrelin agonism are sufficient to reduce pica,
anorexia, and weight loss. To test this relationship, future studies can investigate the effects of
olanzapine on CINV and energy balance regulation in ghrelin signal-deficient models (e.g.
ghrelin-knockout or GHSR-knockout animals). Additionally, animals could be administered an
antagonist specific to 5-HT2CR and/or a GHSR agonist to determine if this is sufficient to reduce
CINV. Translating these results into clinical applications, such as developing drugs that target 5-

HT2C and ghrelin signaling systems, warrants further research.

Standardizing Measures for the Study of the Metabolic and Antiemetic Effects of Olanzapine in
Rodents

As mentioned previously, pre-clinical studies have been conducted to examine the metabolic
effects of olanzapine in rodents, including its effect on food intake and body weight.
Additionally, pre-clinical studies have examined the effects of olanzapine on circulating ghrelin
levels. However, as literature reviews have highlighted, olanzapine’s effect on body weight, food
intake, and ghrelin are not consistent across the literature. This may be due to variations in doses,
route of administration, measurement times, and study duration. A recent review, examining
conflicting data regarding the effects of olanzapine on circulating ghrelin suggested that the
differences might be due to a triphasic effect, with an initial upregulatory effect followed by a
downregulatory negative feedback phase, and a final increase effect in the long term (Q. Zhang et
al., 2014). Standardizing experimental conditions to study the metabolic and antiemetic effects of
olanzapine in rodents would allow for inter-study comparisons that clarify the effects of

olanzapine on serotonin and ghrelin signaling systems.

74



Recommendations for Clinical Practice

Understanding the Biological Mediators and Mechanisms of Drugs Used in the Clinical Setting
There are numerous medications with unknown biological mechanisms that like
olanzapine, are used because of their observed clinical efficacy. However, it is important to
understand the biological basis of their clinical effects to improve scientific knowledge about the
pathological condition(s) they treat. Better understanding the biological effects of these drugs can
also help in the development of more specific drug targets that improve health while minimizing
adverse effects. Drugs like olanzapine lack specificity, acting on multiple receptors throughout
the body and this lack of specificity can lead to increased adverse effects. This body of work
highlights the gaps in the literature regarding the biological basis of olanzapine’s use as an
antiemetic and the need to better understand how olanzapine alleviates CINV. Thus, the studies
presented in this dissertation support the need to better understand drugs that are utilized to treat
and manage disease conditions or side effects of treatment, aligning with the NINR’s recognition

that integration of behavioral and biological data is crucial in the study of symptoms.

Integrating Updated Clinical Guidelines in to Clinical Practice

As was evident in the literature (Chapter II) and in this body of work, olanzapine is very
effective and superior to other antiemetics in the management of CINV, particularly in alleviating
delayed CINV. For example, olanzapine when used in combination with dexamethasone and 5-
HT3 receptor antagonists provides superior control (compared to a combination of NK-1 receptor
antagonists, dexamethasone, and 5-HT3 receptor antagonists) of delayed CINV reducing delayed
nausea from 62% to 31% (Navari et al., 2011). This 50% reduction in the incidence of delayed
nausea, translates to improvement in symptom management for a potentially large number of
people undergoing cancer treatment. Thus, it is important for clinicians to integrate clinical

guidelines into their practice to ensure patients’ symptoms are better controlled.
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Conclusion

The purpose of this body of work was to better understand how olanzapine alleviates
CINV. Reviews of the literature highlighted the need to better understand the biological basis of
olanzapine’s antiemetic effect and led to the identification of ghrelin and serotonin systems as
potential mediators of olanzapine’s effect on malaise and energy balance. Behavioral data showed
olanzapine decreases pica, anorexia, and body weight loss in rats, suggesting that rats are a useful
pre-clinical model in the study of olanzapine. Experimental data in rats provided evidence
suggesting olanzapine’s reduction in chemotherapy-induced malaise/nausea is at least partially
mediated by the hindbrain. Lastly, biological assays and molecular techniques demonstrated that
olanzapine counteracts cisplatin-induced 1) neuronal activation in the dorsal vagal complex 2)
decreases in plasma ghrelin and hypothalamic ghrelin receptor expression and 3) increases in 5-
HT2CR expression in the dorsal vagal complex and the hypothalamus. In summary, these results
suggest that olanzapine may alleviate CINV by counteracting the effects of cisplatin on the
hindbrain,on circulating ghrelin, ghrelin receptor expression, and SHT2C receptor expression.
Further research is needed to establish whether rescuing chemotherapy-induced changes in

ghrelin and serotonin signaling is sufficient to attenuate CINV.
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Tables

Table 5.1 Principle Findings: Specific Aim 1

Specific Aim 1: Identify gaps in the literature regarding the use of olanzapine in CINV

Studies Principal Findings
Identify gaps in the literature 1) Olanzapine’s mechanism(s) of reducing CINV
regarding olanzapine and CINV are unknown.

2) Few preclinical studies have examined
olanzapine as an antiemetic

Identify potential biological 1) Olanzapine may alleviate CINV by counteracting
mediators of olanzapine in the cisplatin-induced decreases in circulating ghrelin
context of CINV and ghrelin receptor expression

2) Olanzapine may alleviate CINV by counteracting
cisplatin-induced increases in SHT2C expression
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Table 5.2 Principle Findings: Specific Aim 2

Specific Aim 2: Identify behavioral effects of olanzapine in cisplatin treated rats

Studies Principal Findings

Determine the effects of intraperitoneal | 1) IP olanzapine decreases cisplatin-induced
olanzapine on cisplatin-induced pica, pica 72 hours following cisplatin
anorexia, and weight loss administration

2) IP olanzapine decreases cisplatin-induced
anorexia 72 hours post cisplatin
administration

3) IP olanzapine does not decrease cisplatin-
induced weight loss

Determine the effects of fourth 1) 4" ICV olanzapine decreased cisplatin-
ventricle olanzapine infusion on induced pica 48 and 72 hours post
cisplatin-induced pica, anorexia, and chemotherapy

weight loss
2) 4" ICV olanzapine decreases cisplatin-

induced weight loss 48 and 72 hours
following chemotherapy

3) 4™ ICV olanzapine does not decrease
cisplatin-induced anorexia
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Table 5.3 Principle Findings:

Specific Aim 3

Specific Aim 1: Determine

CINV.

olanzapine’s effect on potential biological correlates of

Studies

Principal Findings

Assessment of olanzapine
treatment on  cisplatin-
induced c-Fos in DVC
neurons

1) IP olanzapine decreases the number of neurons that are
activated by cisplatin in the area postrema and the
nucleus of the solitary tract 6 hours post cisplatin
treatment

Determine the effects of
intraperitoneal and fourth
ventricle olanzapine on
cisplatin-induced pica,
anorexia, and weight loss

1) Olanzapine’s effect on the hindbrain is sufficient to
induce pica 72 hours post chemotherapy

2) Hindbrain olanzapine reduced cisplatin-induced
weight loss 72 hours post chemotherapy

3) 4™ ICV olanzapine did not reduce cisplatin-induced
anorexia

Assessment of olanzapine
and cisplatin on ghrelin

1) IP olanzapine rescues cisplatin-induced decreases in
plasma acylated ghrelin 6 hours post cisplatin treatment

Assessment of olanzapine
on cisplatin-induced
alterations in central
mRNA expression of
GHSR and serotonergic
receptors (5-HT2C, 5-
HT2A, 5-HT1A, and 5-
HT3)

1) Olanzapine reduces cisplatin-induced increases in 5-
HT2CR expression in the hypothalamus and dorsal vagal
complex 6 hours post cisplatin treatment

2) Cisplatin-treated animals had lower GHSR expression
compared to cisplatin treated animals 6 hours post
cisplatin treatment
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Figures

Figure 5.1
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Figure 5.2
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Figure Legends

Figure 5.1- 1) Cisplatin stimulates the release of serotonin from enterochromaffin cells in the
small intestine and a signal is relayed by the vagus nerve to the hindbrain, a known mediator of
CINV. 2) These afferent signals from the vagus nerve, terminate at the hindbrain, activating
neurons in the dorsal vagal complex. 3) Cisplatin reduces circulating ghrelin levels. 4) Cisplatin
increases expression of 5-HT2C. 5) Cisplatin treated animals have decreased hypothalamic
GHSR expression compared to cisplatin-treated animals. 6) Olanzapine counteracts the effects of
cisplatin, antagonizing 5-HT2C receptors, decreasing the number of cisplatin-activated neurons in
the dorsal vagal complex, decreasing 5-HT2C receptor expression in the hypothalamus and DVC,

and increasing hypothalamic GHSR compared to cisplatin-treated animals.

Figure 5.2- 1) Cisplatin stimulates the release of serotonin from enterochromaffin cells in the
small intestine and a signal is relayed by the vagus nerve to the hindbrain, a known mediator of
CINV. 2) These afferent signals from the vagus nerve, terminate at the hindbrain, activating
neurons in the dorsal vagal complex. 3) Cisplatin reduces circulating ghrelin levels. 4) Cisplatin
increases expression of 5-HT2C. 5) Cisplatin treated animals have decreased hypothalamic
GHSR expression compared to cisplatin-treated animals. 6) Olanzapine counteracts the effects of
cisplatin, antagonizing 5-HT2C receptors, decreasing the number of cisplatin-activated neurons in
the dorsal vagal complex, decreasing 5-HT2C receptor expression in the hypothalamus and DVC,

and increasing hypothalamic GHSR compared to cisplatin-treated animals.
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