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a b s t r a c t

While global- and basin-scale processes can be captured quite well with computationally-inexpensive
hydrostatic models, smaller-scale features such as shoaling nonlinear internal waves and bores, coastal
fronts, and other convective processes require the use of a nonhydrostatic model to accurately capture
dynamics. Here the nonhydrostatic capabilities of the General Curvilinear Coastal Ocean Model (GCCOM)
in a stratified environment are introduced. GCCOM is a three-dimensional, nonhydrostatic Large Eddy
Simulation (LES), rigid lid model that has the ability to run in a fully three-dimensional general curvilinear
coordinate system. This model was previously validated for unstratified flows with curvilinear coordi-
nates. Here, recent advances of the model to simulate stratified flows are presented, focusing on sigma
coordinate grids with both flat bottom geometry and a local gently sloping seamount. In particular, a suite
of test cases widely used as benchmarks for assessing the nonhydrostatic capabilities for gravity-driven

ia, et al.(2019) Validation of the nonhydrostatic General Curvilinear Coastal 
odel (GCCOM) for stratified flows, Journal of Computational Science, 30,  143-156
nternal seiche
nternal waves beam generation
enchmark
ravity-driven flows

flows and internal waves is presented: an internal seiche in a flat bottom tank, the classic lock release and
gravity current experiment, and a field-scale internal wave beam experiment consisting of an oscillating
tidal flow over a topographic ridge. GCCOM shows excellent agreement with the benchmark test cases
and is able to accurately resolve complex nonhydrostatic phenomena in stratified flows. Future studies
will utilize the model capabilities for realistic field-scale internal wave simulations.
. Introduction

One of the major challenges in the simulation of coastal ocean
ynamics is the vast range of length and time scales present. While
lobal- and basin-scale processes and currents can be captured
uite well with computationally-inexpensive hydrostatic models
e.g., [1]), smaller-scale features such as shoaling nonlinear inter-
al waves and bores, coastal fronts, and other convective processes
equire the use of a nonhydrostatic model to accurately capture
ynamics [2–6]. More formally, for processes where the charac-
eristic frequency (e.g., of an internal wave) is comparable to the
uoyancy frequency for a stratified fluid, or when the character-
stic vertical length scale is comparable to the horizontal length
cale, nonhydrostatic effects cannot be neglected (e.g., [7]). This
s particularly true for simulations that aim to capture the multi-

� The model data generated in this study are available at http://dolphin.sdsu.
du:8080/web-data/publ.3.2018/.
∗ Corresponding author.

E-mail addresses: mvgarcia@sdsu.edu (M. Garcia), pchobote@calpoly.edu
P.F. Choboter), rkwalter@calpoly.edu (R.K. Walter), jcastillo@sdsu.edu
J.E. Castillo).
scale internal wave energy cascade, a process that has wide ranging
effects on the physical and biological environment [8–16].

Simulating nonhydrostatic processes is computationally expen-
sive, as these models require an elliptic solver for the dynamic
pressure [17,3,18]. Moreover, for internal wave simulations, a high
horizontal grid resolution is required (i.e., small grid lepticity) so
that numerically-induced dispersion is small relative to physical
dispersion [19]. However, with vast improvements in comput-
ing power and computational methods, the use of nonhydrostatic
ocean models has become increasingly popular over the last decade
[20–25,7,26–30,5,31–33,6].

Key features of a subset of these models are summarized in
Table 1. Among others, a distinguishing feature between the models
is the coordinate system used. The Massachusetts Institute of Tech-
nology Global Circulation Model (MITgcm [29]) uses a curvilinear
grid in the horizontal coordinates, and z-coordinates in the vertical
with a finite-volume treatment of irregular bathymetry; the Bergen
Ocean Model (BOM, Berntsen et al. [22]) uses mode splitting and
sigma-coordinates with finite differences on a staggered grid; the

Regional Ocean Modeling System (ROMS [7]) variant with nonhy-
drostatic capabilities (not openly available via ROMS community
web-page) uses sigma coordinates, as well as the Finite Volume



Table 1
Key features of select nonhydrostatic ocean models.

Models MITgcm SUNTANS ROMS-NH FVCOM-NH SOMAR GCCOM

Author, Year Marshall et al. [29] Fringer et al. [25] Kanarska et al. [7] Lai et al. [27] Chalamalla et al. [24] Present article
Equations NSE RANS NSE LES NSE NSE NSE NSE LES
Horizontal grid Orthogonal curvilinear Unstructured Curvilinear Unstructured Curvilinear Curvilinear
Vertical coordinate system z− z− �− Generalized �− Curvilinear Curvilinear
Grid type Arakawa C-grid Triangular grid Arakawa C-grid Triangular grid AMR C-grid Arakawa C-grid
Spatial discretization scheme Finite volume Finite volume Finite volume Finite volume Finite volume Finite difference
Time discretization scheme Quasi 2nd

Adams-Bashforth
Adams-Bashforth Split-Explicit Modified RK4/

Semi-Implicit
PPM/Semi-implicit RKW3

Pressure solution method Fractional step Pressure-Split Fractional step Fractional step Fractional step Fractional step
CG,GM
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Pressure solver Conjugate-Gradient (CG) CG P
Library dependency None ParaMetis P
Program language F90 C F

oastal Ocean Model (FVCOM [27]); the Stanford Unstructured
onhydrostatic Terrain-following Adaptive Navier-Stokes Simula-

or (SUNTANS [25]) employs an unstructured grid in the horizontal
nd z-level in the vertical; Koltakov and Fringer [26] presented
moving grid method using generalized curvilinear coordinates;

nd the Stratified Ocean Model with Adaptive Refinement (SOMAR
5]) features adaptive mesh refinement and more recently an LES
omponent [24].

Here, the capabilities of the nonhydrostatic General Curvilinear
oastal Ocean Model (GCCOM) for stratified flows are intro-
uced. GCCOM is a three-dimensional large eddy simulation (LES)
avier–Stokes solving model that has the ability to run in a fully

hree-dimensional general curvilinear coordinate system. Earlier
ersions of this model were described by Abouali and Castillo [20],
orres [34], Torres et al. [35], Torres and Castillo [36], Torres et al.
37] for flow over complex terrain; however, these earlier versions
reated stratification with a simplified buoyancy forcing term and
id not explicitly take into account hydrostatic pressure gradients.
he version of the model described here computes the density
ffects by removing the buoyancy term and adding a horizontal
ressure gradient force that arises from the hydrostatic compo-
ent of pressure following Shchepetkin and McWilliams [38]. This
epresentation, which is described further below, has been shown
o accurately capture gravity-driven flows and internal waves. Fur-
hermore, to lower the computational cost of the nonhydrostatic
ressure, two libraries were integrated: the Aggregation-based
lgebraic MultiGrid library (AGMG [39]) and the Portable, Exten-
ible Toolkit for Scientific Computation (PetSC [40]) a comparison
f the efficiency of these libraries in GCCOM is presented in Valera
t al. [41]. GCCOM has also demonstrated the ability to nest within
regional hydrostatic model, allowing for the efficient simulation
f multiscale processes [42], and it also includes a data assimilation
ramework [43].

In this contribution, we focus on the validation of the non-
ydrostatic capabilities of the model in a stratified environment.

n particular, a suite of test cases widely used as benchmarks for
ssessing the nonhydrostatic capabilities for gravity-driven flows
nd internal waves are used. Details of the model, including the
quations and numerical methods, are described in Section 2. The
umerical experiments (Section 3) follow and include an internal
eiche (Section 3.1), a lock release (Section 3.2), and a tidally-forced
tratified flow over a seamount aimed at investigating the forma-
ion of internal wave beams (Section 3.3). These results collectively
emonstrate the accuracy of GCCOM for these types of flows.

. Governing equations
.1. Equations of motion

GCCOM solves the three-dimensional Navier–Stokes equations
ith the Boussinesq approximation, assuming nondivergent flow,
RES Multigrid (MG) Leptic method/MG MG or Block-Jacobi
ith Hypre ParaMetis CHOMBO AGMG, PetSC

F90 C++/F77 F90

a rigid lid at the ocean surface, and a Large Eddy Simulation (LES)
formulation with a subgrid-scale model. A complete description
of the equations used in GCCOM was presented by Abouali and
Castillo [20]. In this section, an overview of the model in physical
space is presented in order to document the new implementation
of horizontal pressure gradient force, which allows the model to
accurately simulate stratified and gravity-driven flows. Detailed
information about the curvilinear transformation and discretiza-
tions can be found in . The equations of motion are,

∂u
∂t

+ u · ∇u = − 1
�0

∇p − g�

�0
k − ∇ · �, (1)

∂T

∂t
+ u · ∇T = ∇ · (kT∇T), (2)

∂S

∂t
+ u · ∇S = ∇ · (kS∇S), (3)

∇ · u = 0, (4)

and

� = f (T, S, p), (5)

where u = (u, v, w) is the velocity vector, g�k/�0 represents the
acceleration due to gravity, � represents the stress tensor com-
puted with a subgrid-scale model, T is temperature, S is salinity,
kT is the temperature diffusivity, kS is the salinity diffusivity, and
f is an equation of state. Note in particular that the pressure p is
not assumed to be hydrostatic. This model employs the rigid-lid
approximation.

The sub-grid stress tensor, �ij, is calculated using the Smagorin-
sky model [44],

�ij = −2�T eij, �T = (Csl)
2
√

2eijeij, eij = 1
2

(
∂ui

∂xj

+ ∂uj

∂xi

)
,

where �T is the turbulent eddy viscosity and eij is the strain rate

tensor. The length scale is l = (�x�y�z)1/3, where �x, �y, and �z
are the discretized grid step size in the x, y, and z directions, respec-
tively. Physically relevant values of the Smagorinsky constant CS are
0.08–0.22 [45].

For the experiments described here, the equation of state is
taken to be a linear function of temperature and salinity,

� = f (T, S) = �0
(

1 − ˛(T − T0) + ˇ(S − S0)
)

, (6)

where �0 = 1027 kg m−3, T0 = 10
◦
C, S0 = 35, ˛ = 1.664 × 10−4 ◦

C−1,
and ˇ = 7.605 × 10−4 [46]. The linear equation of state is used for

the simulations described here to facilitate close comparison of the
numerical product with theoretical results, which are described in
terms of density values. GCCOM has the capability to employ the
fully nonlinear UNESCO equation of state.
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.2. Numerical methods

In  order to perform calculations on three-dimensional arbi-
rarily (orthogonal and non-orthogonal) shaped geometries,
eneralized independent variables are introduced, which trans-
orm the equations of motion from physical coordinates into
eneral curvilinear coordinates [36] (see Appendix A). One of
he advantages of a curvilinear grid with a uniformly applied
oordinate transformation is the ease of the application of the
oundary conditions, as well as the ability to solve the transformed
quation on the computational grid which is more efficient for high-
erformance computing since the computational grid maps the
omputer. Central finite differences are used to calculate the met-
ics of transformation, except at the boundaries, where one-sided
econd order accurate finite differences are used [20] (see Appendix
). In the computational coordinates, derivatives are approximated
sing a second-order finite-difference scheme, with central dif-
erences used for the linear terms, and the Kawamura method
4th-order accurate) for the nonlinear advection terms [47].

The  time discretization is based on the fractional step method
f Kim and Moin [48] and employs the third-order Runge–Kutta
ethod described by Wicker and Skamarock [49]. The horizon-

al pressure gradient force arising from the hydrostatic part of the
ressure pH is computed explicitly (see Section 2.3 for details). First,
he density field is calculated at time step n using the equation of
tate,

n = f (Tn, Sn). (7)

hen  the hydrostatic pressure gradient ∇HpH is calculated follow-
ng the methods outlined in Section 2.3, where ∇H = (∂/∂x, ∂/∂y) is
he gradient in only the horizontal components, so that ∇HpH is zero
n the w-momentum equation. Following this, a predicted velocity
eld u* is computed using the hydrostatic pressure gradient,

∗ = RK3
(

−un · ∇un − 1
�0

∇HpH − ∇ · �n
)

, (8)

here  RK3() denotes the application of the third-order
unge–Kutta method of Wicker and Skamarock [49]. Next, a
orrection to the pressure field pc is computed to ensure a
ivergence-free velocity field,

2pc = 1
�t

∇ · u∗, (9)

ssuming  no-gradient boundary conditions for pc, from which a
orrected velocity field is calculated at time step n + 1,

n+1 = u∗ − �t∇pc. (10)

he Laplacian transformation of pc (Eq. (9)) in curvilinear coordi-
ates can be found in Appendix C. Temperature and salinity are
pdated as follows:

n+1 = RK3
(
−un+1 · ∇Tn + ∇ · (kT∇Tn)

)
, (11)

n+1 = RK3
(
−un+1 · ∇Sn + ∇ · (kS∇Sn)

)
. (12)

.3.  Hydrostatic pressure gradient

The discretization of the hydrostatic pressure gradient is similar
o the scheme as described by Shchepetkin and McWilliams [38].
ince hydrostatic pressure is defined by

∂pH

∂z
=  −g�, (13)
t follows that

∂pH

∂x
= ∂

∂x

∫ 0

z

g� dz̃ =
∫ 0

z

g
∂�

∂x
dz̃, (14)
where z = 0 is at the ocean surface, and z < 0 in the interior. In
GCCOM, ∂�/∂x and ∂�/∂y are computed at each grid point on the
curvilinear grid using the same finite difference algorithm as spa-
tial derivatives of other terms in the model [36,20]. To evaluate the
integral in (14), a cubic spline is constructed for each of ∂�/∂x and
∂�/∂y, according to

f (�) = f (0) + f (1)� + f (2) �2

2
+ f (3) �3

3!
, (15)

where 0 < � < 1 is a local computational coordinate between two
vertical grid points. The coefficients are given by

f (0) = fk, f (1) = dk, f (2) = (6�k − 2dk − 4dk)/h, f (3)

= (6dk + 6dk+1 − 12�k)/h2, (16)

where h = zk+1 − zk is the local change in vertical coordinate and
�k = (fk+1 − fk)/h. Here, fk represents the value of ∂�/∂x or ∂�/∂y at
� = 0 and fk+1 is the same function at � = 1. The parameter dk is com-
puted as in Shchepetkin and McWilliams [38] to reduce spurious
oscillations,

dk =
2�k�k−1

�k + �k−1
if �k�k−1 > 0,

0  otherwise.

(17)

The cubic spline (15) is integrated vertically to evaluate ∂pH/∂x and
∂pH/∂y at the cell centers of the staggered grid. The final steps of
the calculation are an interpolation of ∂pH/∂x from the center grid
to the u-grid, and an interpolation of ∂pH/∂y from the center grid
to the v-grid.

3.  Nonhydrostatic stratified test cases

3.1. Internal seiche

The  first test case that explores the nonhydrostatic capabilities
of GCCOM is that of a two layer internal seiche with various inter-
face thicknesses. This test case is similar to the two-dimensional
free-surface internal seiche test cases of Casulli [2] and Fringer
et al. [25], except that GCCOM is run in three dimensions with
free slip boundary conditions in the lateral direction and a rigid
lid. Following Kundu [50], the linearized dispersion relation for a
small-amplitude internal seiche with two  layers separated by an
interface with finite thickness is given by

ω2 = g′k
2

tanh
(

kD

2

)
f (kı), (18)

where k = 2
/�w is the wave number, which is determined by
length of the domain L and the fundamental wavelength �w = 2L;
g′ = g��/�0 is the reduced gravity; g is the magnitude of the accel-
eration due to gravity; D is the domain depth; ı is the interface
thickness; and f(kı) = (1 + kı/2)−1 represents the effect of the finite-
width interface. Dividing both sides of Eq. (18) by k2 yields an
expression for the phase speed squared, which can be used to cal-
culate the speed of the leftward and rightward propagating waves
that superpose to yield the standing wave (i.e., the internal seiche),

c2 = g′

2k
tanh

kD

2
f (kı). (19)

The shallow (kD → 0) and deep (kD → ∞) water limits of Eq. (19)

are investigated. In the shallow water limit, the phase speed is only
a function of depth and reverts to the shallow-water wave speed
(assuming the dispersive character of the finite interface thickness
is negligible [25]), whereas in the deep water limit, the phase speed



Fig. 1. Initial normalized density field of the internal seiche for the various aspect ratios.
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ig. 2. Example horizontal velocity u fields of the internal seiche experiment at the
nsets  show the velocity over time for both the horizontal (u) and vertical (w) veloc

ecomes independent of depth. A comparison of Eq. (19) to the deep
ater phase speed yields

c

cdw

)2
=

g′
2k tanh

(
kD
2

)
f (kı)

g′
2k f (kı)

=  tanh
(


�
2

)
, (20)

here � = D/L is the aspect ratio of the standing wave specified by
he size of the domain. As the aspect ratio decreases, and horizon-
al length of the domain becomes much larger than the vertical
xtent (� � 1), the waves are not expected to become frequency-
ispersive and the wave speed will approach the shallow-water

ave speed. For cases where the horizontal extent of the domain is

n the order of the vertical extent (� = O(1)), the waves will become
requency dispersive and approach the deep-water wave speed.
iven that the frequency-dispersive behavior of internal gravity
mum (left) and maximum (right) horizontal velocity for � = 1.6 at plane Y = L/2. The
t a location slightly above the center of the domain (black dot in top panel).

waves  is a nonhydrostatic effect, the aspect ratio can be used as a
measure of the nonhydrostacy in this test case.

The model was set up on an equally spaced Cartesian grid
with a horizontal length L = 100 m and a horizontal grid spacing
of �x = 1 m.  In order to vary the aspect ratio, and hence the nonhy-
drostacy, the model was  run at the following depths with a vertical
grid resolution of 0.5 m:  10, 20, 40, 80, and 160 m (representing
� = 0.1, 0.2, 0.4, 0.8, respectively). The simulation was run for a
total of 250 s with a time step of �t = 0.001 s. Free-slip boundary
conditions were employed along all wall boundaries.

For the experiments with varying depths (aspect ratios), the
initial density stratification is given as in Fringer et al. [25],
�(x, y, z, t = 0) = −��

2
tanh

[
2tanh−1˛s

ı

(
z + D

2
− a cos(kx)

)]
(21)



Fig. 3. Ratio of the nonhydrostatic wave speed to the deep-water wave speed as
a function of the aspect ratio for both the model results (circles), as well as what
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heory  predicts (solid line). The dashed line denotes the ratio of the shallow-water
ave  speed to that of the deep-water wave speed (cf. [3]).

here ��/�0 = 0.06 represents the normalized difference in
ensity between the top and bottom layers, a = 1 m is the seiche-
mplitude, ı = 5 m,  and ˛s = 0.99. The initial density profiles for each
umerical experiment are shown in Fig. 1.

The modeled wave speed was calculated by first determining
he period of oscillation T by looking at the time series of the hor-
zontal velocity u over time at a particular point near the center
f the domain (Fig. 2). The wave speed was then calculated from

 = ω
k = 2


kT , where k = 2

�w

= 

L is determined from the length of the

omain. The modeled wave speed was compared to the theoreti-
al deep-water (i.e., nonhydrostatic) wave speed given by Eq. (19).
ig. 3 shows the ratio of the nonhydrostatic wave speed to the deep-
ater wave speed (denominator of Eq. (20)) for the both the model

esults (open circles), as well as what theory predicts (solid line, Eq.
20)). GCCOM accurately captures the wave speed for large aspect
atios, where nonhydrostatic effects are expected to be large. Slight
ifferences are likely due to using a linearized dispersion relation
nd a finite-interface. Moreover, the velocity field in Fig. 2 for � = 1.6
highly nonhydrostatic) is able to accurately capture the decrease
n magnitude of the velocity vectors away from the internal inter-
ace, a phenomena that would not be present in a hydrostatic solver
here the waves would behave like shallow water waves with. The
ecay away from the interface can also be seen in the vertical profile
f the horizontal velocity in Fig. 4. This profile, as well as the vertical
elocity profile, match the shape of the linearized eigenfunctions
hown in Fringer and Street [51]. These results demonstrate that the
odel is able to accurately capture the frequency-dispersive nature

nd key nonhydrostatic characteristics of the internal seiche.

.2. Lock exchange flow

The  second validation experiment performed was the classic
ock exchange (also called lock release) problem, where two  flu-

ds with different densities are initially separated by a wall that is
ater released. This test case follows a similar numerical setup to
he three-dimensional direct numerical simulations (DNS) of Här-
el et al. [52], the two-dimensional simulation of Fringer et al. [25]
using SUNTANS, and the two-dimensional simulation of Lai et al.
[27] using FVCOM-NH. The simulation is performed in a three-
dimensional domain (401 × 6 ×101) with a tank of length Lx = 0.8 m,
a lateral width of Ly = 0.01 m,  and a depth D = 0.1 m.  Various grid
discretization ratios (�x/�z) were tested, and the results were not
sensitive to these changes. The model is initialized with zero initial
velocity and more dense fluid on the right side and less dense fluid
on the left side of the domain separated by an interface with a finite
thickness ı, where the density field is

�(x, y, z, t = 0) = �min + ��

2

(
1 − erf

(
x

ı

))
, (22)

where ı = 0.01 m is the width of the interface,
�min = 1025.9525 kg m−3 is the initial density on the left side
of the domain, and ��  is the density difference between the two
fluids chosen such that the reduced gravity is equal to [3,52]

g′ = g
��

�0
= 0.01 m s−2. (23)

The model is run with a time step of �t = 0.01 s for a total of 180 s
and free-slip boundary conditions at the walls. This choice of �t was
made after conducting a sensitivity analysis. With larger values of
�t, overturning billows were still observed, but details were more
diffused. The temperature diffusivity is set to zero.

Fig. 5 shows the evolution of the exchange of the two dif-
ferent density fluids. The development and growth of a train of
Kelvin–Helmholtz (KH) billows is evident. These characteristically
nonhydrostatic features and vortical structures, which are not
resolved in hydrostatic models (cf. [3]), develop when the velocity
shear between the two layers exceeds the restoring force of strat-
ification. More formally, these shear instabilities require that the
gradient Richardson number be less than a critical value of 0.25 for
sufficient periods of time.

For  comparison with theory and prior studies, the front speed
was calculated by tracking the position of the front over time along
the bottom of the domain (i.e., uf = −dxf

1/dt where xf
1 denotes the

horizontal position of front along the bottom of the domain and
the negative sign accounts for the leftward propagating front, cf.
Härtel et al. [52]). The calculated front speed is compared to the
buoyancy velocity, ub =

√
g′D/2 = 0.0224m s−1, using the nondi-

mensional Froude number, Fr = uf/ub [3,52].
The median Froude number over time of our experiment was

equal to 0.7176, which is within 1.0% of the theoretical value of
1/

√
2 = 0.7071 originally formulated by Benjamin [53]. Moreover,

this result compares well with the DNS results of Härtel et al. [52]
(Fr = 0.675, 4.5% error relative to theory) and the two-dimensional
results of Fringer et al. [3] (Fr = 0.654, 7.5% error relative to theory).
Note that hydrostatic models tend to significantly underestimate
the front speed relative to nonhydrostatic models [3]. Addition-
ally, the Froude number has been shown to vary slightly with the
Reynolds number (or the Grashof number) [52]. Nonetheless, the
GCCOM model results are well within the range of error of other
nonhydrostatic models and accurately capture the nonhydrostatic
overturning billows.

Conservation of energy is also examined by tracking the total
mechanical energy (TE) of the system over time, which is comprised
of the potential energy (PE) and kinetic energy (KE)

TE = PE + KE =
∫ Lx/2

−Lx/2

∫ Ly

0

∫ D

0

�gz dx dy dz

∫ Lx/2 ∫ Ly
∫ D
+
−Lx/2 0 0

1
2

�(u2 + v2 + w2) dx dy dz. (24)
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ig. 4. Vertical profiles of the horizontal (left) and vertical (right) velocities at t = 49
rst-mode linearized eigenfunction analysis of Fringer and Street [51] are also show
ach  respective profile.

nitially, the fluid is at rest so KE|t=0 = 0 and the TE in the system is
omprised of PE,

E|t=0 = g
(�max + �min)

2
D2

2
LyLx. (25)

Fig.  6 shows the evolution of TE in the system over time, as well
s the partition between KE and PE which are in concordance with
ai et al. [27]. The total energy is normalized by the initial total
nergy in the system at t = 0. As the lock is released, the KE increases
rom zero and the PE decreases. As the front reaches the sidewalls,
he KE decreases and the PE increases as the return flow devel-
ps. This transfer of energy between KE and PE continues as the
ront sloshes back and forth, although with decreasing magnitude.
he total mechanical energy within the system is conserved to first
rder, with minimal energy loss due to viscous effects.

.3.  Field-scale internal wave beams

This final test case consists of the generation of internal wave
eams in a continuously stratified fluid from an oscillatory flow
ver a Guassian ridge. This field-scale test case follows the exper-
mental setup of Vitousek and Fringer [6]. The simulation is
erformed in a domain (128×6×101) with a length of Lx = 3000 m
nd a depth of D0 = 1000 m.  In the center of the domain is a Gaussian
idge given by

 = D0 − ab exp(−x2/2L2
b), (26)

here the sill amplitude is ab = 20 m and Lb = Lx/100 m.
The numerical simulation is initialized with a constant stratifi-

ation of N = 0.007 s−1, where the buoyancy frequency squared is
iven by
2 = (−g/�0)∂�/∂z. (27)

his constant stratification corresponds to a linearly varying den-
ity with ∂�/∂z =−0.005 kg m−4. The initial setup is shown in Fig. 7.
ximum horizontal velocity) for � = 1.6 (dashed gray line). Analytical solutions to the
reference (solid black line). Velocities are normalized by the maximum velocity for

At  the boundaries, the model is forced with an oscillatory tidal
flow given by

ubc = u0 sin(ωt), (28)

where u0 = 0.01 m s−1. The model also uses sponge layers (SL) at
the boundaries to minimize internal wave reflection, following the
approach of Vitousek and Fringer [6],

SL(x, y, z, t) = −u(x, y, z, t) − ubc(x, y, z, t)
�s

sl(r), (29)

where sl(r) = exp(−4r/Lsl), r is the distance to the domain boundary,
and the damping time scale is �s = 100 s. This allows the sponge
layer to decay over the distance Lsl = Lx/10 [6].

In a fluid with constant stratification, forcing frequency ω, and
in the absence of the Coriolis force (i.e., f = 0), internal wave beams
will radiate with a constant slope given by the angle

ϕ = tan−1

⎛
⎝

√√√√
(

ω/N
)2

1 −
(

ω/N
)2

⎞
⎠ . (30)

When ω/N � 1, the nonhydrostatic beam angle approaches the
hydrostatic beam angle given by

ϕh = tan−1
(

ω/N
)

. (31)

In this test case, the forcing frequency ω is varied in different runs,
while fixing the buoyancy frequency N such that ω/N = 0.2, 0.4, 0.6,
and 0.8, respectively, for the various runs.

For all cases, the model is run with a time step of �t = 0.01 s for a
total time of 20 tidal periods (T = 2
/ω) to enable sufficient spin-up
time for the development of beams and to allow for transients to

decay [6]. The beam angle was determined following Vitousek and
Fringer [6] by finding the vertical location of the maximum of the
root-mean-square velocity over the last ten tidal periods and in a
limited horizontal region of [200, 500] m.  A linear least-squares fit
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Fig. 5. Evolution of the lock exchange at different times. Shown is

o the x − z location of these maxima was used to determine the
nternal wave beam angle.

Fig.  8 shows the horizontal velocity field normalized by the tidal
elocity amplitude (u/u0) for the various ω/N values considered.
he flow field is shown after 19.5 tidal periods (t = 19.5T), corre-
ponding to when ubc = 0. Also shown are beam angles predicted
y hydrostatic (Eq. (31)) and nonhydrostatic (Eq. (30)) theory. In
ll cases, the model produces internal wave beams that match the
onhydrostatic theory. This is particularly evident for large ω/N
alues, where nonhydrostatic effects are strongest. In this case, the
ydrostatic theory predicts smaller angles compared to the nonhy-
rostatic theory and model results.

Fig. 9 shows the internal wave beam angle � as a function
f ω/N for the different model runs (as computed using the lin-
ar regression), as well as the angles predicted by hydrostatic
nd nonhydrostatic theory. The model is able to accurately cap-
ure the nonhydrostatic beam angle for all ω/N values considered.

his test case demonstrates the ability of the model to accu-
ately capture the proper internal wave behavior for this field-scale
odel.
on-dimensional density field over the three-dimensional domain.

4. Conclusions and future directions

GCCOM has previously been validated for idealized homo-
geneous environments, showcasing the advantages of its three-
dimensional curvilinear coordinate system [54,34,35]. The version
of the model described here computes the effects of density strat-
ification by removing the buoyancy term and adding a horizontal
pressure gradient force that arises from the hydrostatic compo-
nent of pressure following Shchepetkin and McWilliams [38]. This
representation more accurately captures gravity-driven flows and
internal waves. The following numerical experiments are per-
formed to demonstrate the abilities of the model: an internal seiche,
a lock exchange (i.e., a lock release) in a rectangular tank, and inter-
nal wave beams generated from flow over a seamount. These test
cases have been widely used as benchmarks for assessing the accu-
racy and efficiency of different nonhydrostatic numerical models.

For  a small-amplitude internal seiche in a closed rectangular

basin, GCCOM was able to accurately capture the wave speed for
large aspect ratios, where nonhydrostatic effects are expected to
be large, as well as the accurate decay of the velocity field away
from the internal interface [21,3,6]. For the lock exchange experi-



Fig. 6. (Top) Time series of total mechanical energy (potential plus kinetic) normalized by the initial total mechanical energy. (Bottom) Time series of potential energy (PE,
dashed black line, left axis) and kinetic energy (KE, solid gray line, right axis), where the potential energy is shown as potential energy minus the initial potential energy to
visualize  on a similar scale as the kinetic energy.
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Fig. 7. Model configuration highlighting the initial density distribution with c

ent, which is one of the most widely used test cases for validation
3,55,52,27], GCCOM was  able to capture the characteristically
onhydrostatic overturning billows and propagation of the grav-

ty current front. The Froude number of the front calculated from
he GCCOM model showed excellent agreement relative to theory
nd other nonhydrostatic models. GCCCOM also displayed the cor-
ect energetics and exchange between potential and kinetic energy
hroughout this experiment with minimal total energy loss. The
ast experiment considered the generation of internal waves by an
scillating tidal flow over a ridge in a continuously stratified fluid

similar to Chalamalla et al. [24], Jalali et al. [56], Kanarska et al. [7],
antilli and Scotti [5], Vitousek and Fringer [6]). GCCOM was able
o accurately capture the nonhydrostatic beam angle predicted by
nt stratification. The Gaussian ridge is shown as solid white near the bottom.

theory, particularly at large ω/N, where nonhydrostatic effects are
most significant.

The  vertical coordinate system is often reported as one of the
critical aspects in the design of ocean models (see Vitousek and
Fringer [6] and the references therein, and Haney [57], Berntsen
[58]). One of the advantages of the GCCOM model is its general
curvilinear coordinate system, which is capable of handling curvi-
linear orthogonal and non-orthogonal grids in all three dimensions
(i.e., including the vertical dimension). This allows for the more
accurate simulation of small-scale ocean process along very steep

slopes (e.g., internal wave shoaling on a steep slope), as well as
the flexibility to distribute the grid nodes along the vertical line
in order to reduce the grid-induced errors [20]. General curvi-



Fig. 8. Instantaneous horizontal velocity normalized by the tidal velocity amplitude (u/u0

0.6,  and 0.8 for the top left, top right, bottom left, and bottom right, respectively. The theor
(solid black line) theory are also shown.

Fig. 9. Internal wave beam angle as a function of the forcing frequency nondimen-
sionalized  by the buoyancy frequency (ω/N). The model results are shown as solid
b
s

l
fl
i
t
m
s

lack dots, and the angles predicted by hydrostatic and nonhydrostatic theory are
hown as dashed and solid black lines, respectively.

inear coordinates are quite common in industrial and practical
uid dynamics applications where complex geometries strongly

nfluence flows [59–61]; however, for ocean applications, rela-

ively little is known about how this coordinate system can reduce

odel errors. In future work, the full 3D curvilinear coordinate
ystem will be implemented, and tests will be conducted on real
) at t = 19.5T, corresponding to when ubc = 0. Each plot corresponds to ω/N= 0.2, 0.4,
etical beam angles predicted for hydrostatic (dashed black line) and nonhydrostatic

bathymetry  with nontrivial, realistic topography. Verification that
the baroclinic pressure gradient force remains accurate over steep
bathymetry will be tested, and this will be followed up with field-
scale experiments of internal waves shoaling on a steep shelf. The
realistic field-scale simulations will compared with high-resolution
field measurements of shoarling internal waves for verification
[12,14,15].

Ongoing work with GCCOM includes a GCCOM PETSc-based par-
allel model, which has been re-designed using a data management
distributed array (DMDA) domain decomposition strategy. This
allows the Arakawa three-dimensional mesh to be easily divided
among processors to improve performance. This parallel imple-
mentation was tested for accuracy and performance and some of
the preliminary results can be found in Patel [62]. Future work
will also focus on nesting a high-resolution nonhydrostatic GCCOM
model within a larger-scale hydrostatic model (e.g., ROMS)  for more
efficient simulations of multiscale processes (cf. Choboter et al.
[42]). Additionally, while the rigid lid approach for the immediate
application of the modeling of field-scale internal waves is suf-
ficient, future applications may  require the implementation of a
free-surface model which is more difficult to implement (e.g., met-
ric terms in coordinate transformation are time-dependent) and
more computationally expensive. With the goal of making GCCOM a
user-friendly community model, a Cyber-infrastructure Web  Appli-
cation Framework (CyberWeb) [63,64] is being developed, through
which scientists can run customized simulations, view results, and
download data through a community portal.
Overall this paper presents a three-dimensional nonhydrostatic
model for simulating small-scale processes in stratified flows. The
model uses a fractional step algorithm for the computation of the
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onhydrostatic pressure, which accurately computes the density
ffects by adding a horizontal pressure gradient force. Benchmark
est cases demonstrate that the model is capable of capturing non-
ydrostatic behavior for gravity-driven flows and internal waves
ith excellent accuracy. Future studies will utilize the model capa-

ilities for field-scale internal wave simulations.

cknowledgments

We acknowledge the help of Mary Thomas, Manuel Valera, and
eelam Patel for their contribution to the development of the cur-

ent GCCOM model. We  also acknowledge helpful conversations
ith S. Vitousek on the internal wave beam experiments and the

nternal seiche modal analysis. We  are especially grateful for the
elpful comments and suggestions from three anonymous review-
rs. Support was  provided by the CSU Council on Ocean Affairs,
cience and Technology (COAST) Grant Development Program. This
esearch was supported by the Computational Science Research
enter (CSRC) at San Diego State University (SDSU). The model
ata generated in this study are available at http://dolphin.sdsu.
du:8080/web-data/publ.3.2018/.

ppendix A. Curvilinear coordinates transformation

Prior to the finite-difference discretization, the equations of
otions (Eqs. (1)–(9)) are transformed into a uniform curvilinear

rid (i.e., from (x, y, z) to (�, �, �), Torres et al. [35]), in order to
ive the model the capability to perform calculations on three-
imensional arbitrarily shaped geometries. In the present work,
ll simulations are conducted in sigma coordinates. The following
eneralized independent variables are introduced

 = t, � = �(x, y, z, t), � = �(x, y, z, t), � = �(x, y, z, t), (A.1)

here  the derivatives transform according to

∂
∂x

= ∂�

∂x

∂
∂�

+ ∂�

∂x

∂
∂�

+ ∂�

∂x

∂
∂�

, (A.2)

∂
∂y

= ∂�

∂y

∂
∂�

+ ∂�

∂y

∂
∂�

+ ∂�

∂y

∂
∂�

, (A.3)

∂
∂z

= ∂�

∂z

∂
∂�

+ ∂�

∂z

∂
∂�

+ ∂�

∂z

∂
∂�

. (A.4)

he  Jacobian of the transformation is defined as

 =

∣∣∣∣∣∣∣∣∣∣∣∣

∂�

∂x

∂�

∂y

∂�

∂z

∂�

∂x

∂�

∂y

∂�

∂z

∂�

∂x

∂�

∂y

∂�

∂z

∣∣∣∣∣∣∣∣∣∣∣∣
. (A.5)

 general rule for the derivatives can be defined as follows:

�x = J
(

y�z� − y�z�

)
, �x = J

(
y�z� − y�z�

)
, �x = J

(
y�z� − y�z�

)
,

�y = J
(

x�z� − x�z�

)
, �y = J

(
x�z� − x�z�

)
, �y = J

(
x�z� − x�z�

)
,

�z = J
(

x�y� − x�y�

)
, �z = J

(
x�y� − x�y�

)
, �z = J

(
x�y� − x�y�

)
.

(A.6)

Several keys aspects in the curvilinear coordinates transfor-

ation described above are noteworthy. First, the equations are

ransformed from the physical grid to a unit cube and the cal-
ulation is performed in that domain. Additionally, only the
quations are transferred and not the variables. Finally, central
finite-differences are used to calculate the metrics of transforma-
tion, except at the boundaries, where forward or backward second
order accurate finite-differences are used.

Appendix B. Numerical solution of Navier–Stokes in
curvilinear coordinates

The  GCCOM model uses a finite-difference scheme that is second
order accurate in space [54]. For the linear terms, central differences
are employed. The 4th-order accurate Kawamura method is used
for the non-linear terms [47], for example(

f�
∂u

∂�

)
i,j,k

=
∣∣∣(f�

)
i,j,k

∣∣∣ ui+2,j,k − 4ui+1,j,k + 6ui−1,j,k + ui−2,j,k

4ı�

(B.1)

where f� = u�x + v�y + w�z , and a similar formulation for the other
non-linear terms. This discretization is similar to a central differ-
ence, but it is composed of both a forward and backward scheme,
and its value changes depending on the sign of f� .

Appendix  C. Nonhydrostatic pressure in curvilinear
coordinates

Calculating the nonhydrostatic pressure (Eq. (9)) requires dis-
cretizing the Laplacian

∇2p = ∂2
p

∂x
+ ∂2

p

∂y
+ ∂2

p

∂z
. (C.1)

The Laplacian is expressed in curvilinear coordinates as follows
[36]:

∇2p = L(p) −L(x)

[
�x

∂p

∂�
+ �x

∂p

∂�
+  �x

∂p

∂�

]

−L(y)

[
�y

∂p

∂�
+ �y

∂p

∂�
+  �y

∂p

∂�

]

−L(z)

[
�z

∂p

∂�
+ �z

∂p

∂�
+  �z

∂p

∂�

]
,

(C.2)

where the components L(p), L(x), L(y), L(z) are written as

L(p)=a
∂2

p

∂�2
+ b

∂2
p

∂�2
+ c

∂2
p

∂�2
+ 2

[
d

∂2
p

∂�∂�
+  e

∂2
p

∂�∂�
+  q

∂2
p

∂�∂�

]

L(x)=a
∂2

x

∂�2
+ b

∂2
x

∂�2
+ c

∂2
x

∂�2
+ 2

[
d

∂2
x

∂�∂�
+  e

∂2
x

∂�∂�
+  q

∂2
x

∂�∂�

]

L(y)=a
∂2

y

∂�2
+ b

∂2
y

∂�2
+ c

∂2
y

∂�2
+ 2

[
d

∂2
y

∂�∂�
+  e

∂2
y

∂�∂�
+  q

∂2
y

∂�∂�

]

L(z)=a
∂2

z

∂�2
+ b

∂2
z

∂�2
+ c

∂2
z

∂�2
+ 2

[
d

∂2
z

∂�∂�
+  e

∂2
y

∂�∂�
+  q

∂2
z

∂�∂�

]

(C.3)

where a, b, c, d, q are defined as

a = �2
x + �2

y + �2
z ,

b = �2
x + �2

y + �2
z ,

c  = �2
x + �2

y + �2
z ,

(C.4)

d  = �x�x + �y�y + �z�z,

e = �x�x + �y�y + �z�z,

q  = �x�x + �y�y + �z�z.
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q. (C.2) is solved using a cell-centered finite-difference method,
here each term of the equation is discretized as follows:

∂p

∂�
=  (p(i+1,j,k) − p(i−1,j,k))/2��,

∂p

∂�
= (p(i,j+1,k) − p(i,j−1,k))/2��,

∂p

∂�
=  (p(i,j,k+1) − p(i,j,k−1))/2��,

(C.5)

∂2
p

∂�2
= (p(i + 1, j, k) + p(i − 1, j, k) − 2p(i, j, k))/�2

� ,

∂2
p

∂�2
= (p(i, j + 1, k) + p(i, j − 1, k) − 2p(i, j, k))/�2

�,

∂2
p

∂�2
= (p(i, j, k + 1) + p(i, j, k − 1) − 2p(i, j, k))/�2

� ,

(C.6)

∂
2
p

∂�∂�
= p(i  + 1, j + 1, k) + p(i − 1, j − 1, k) − p(i + 1, j − 1, k) − p(i − 1, j + 1, k)

4����
,

∂
2
p

∂�∂�
= p(i  + 1, j, k + 1) + p(i − 1, j, k − 1) − p(i + 1, j, k − 1) − p(i − 1, j, k + 1)

4����
,

∂
2
p

∂�∂�
= p(i,  j + 1, k + 1) + p(i, j − 1, k − 1) − p(i, j + 1, k − 1) − p(i, j − 1, k + 1)

4����
.

(C.7)

y substituting (C.5)–(C.7) into Eqs. (C.2) and (C.3), discretized
urvilinear coordinates for use in the Poisson equation and the
ollowing expression are obtained:

∇2p = − 1

2(�2
�
�2

��2
� )

{
4˛(i, j, k)p(i, j, k)

+[ˇ1(i, j, k) + ˇ2(i, j, k)]p(i + 1, j, k)

+[ˇ1(i, j, k) − ˇ2(i, j, k)]p(i − 1, j, k)

+[�1(i, j, k) + �2(i, j, k)]p(i, j + 1, k)

+[�1(i, j, k) − �2(i, j, k)]p(i, j − 1, k)

+[�1(i, j, k) + �2(i, j, k)]p(i, j, k + 1)

+[�1(i, j, k) − �2(i, j, k)]p(i, j, k − 1)

+�xy(i, j, k)p(i + 1, j − 1, k)

−�xy(i, j, k)p(i + 1, j + 1, k)

+�xy(i, j, k)p(i − 1, j + 1, k)

−�xy(i, j, k)p(i − 1, j − 1, k)

+�yz(i, j, k)p(i, j + 1, k − 1)

−�yz(i, j, k)p(i, j + 1, k + 1)

−�yz(i, j, k)p(i, j − 1, k − 1)

+�yz(i, j, k)p(i, j − 1, k + 1)

−�xz(i, j, k)p(i − 1, j, k − 1)

+�xz(i, j, k)p(i − 1, j, k + 1)

+�xz(i, j, k)p(i + 1, j, k − 1)

−�xz(i, j, k)p(i + 1, j, k + 1)
}

(C.8)

here ˛, ˇ1, ˇ2, �1, �2, �1, �2, �xy, �yz, �xz are transformation coeffi-

ients found after algebraic manipulation [65]. The corresponding
oefficients are:

(i,j,k) = (ac(i, j, k)�2
��2

� + bc(i, j, k)�2
� �2

� + cc(i, j, k))�2
� �2

�, (C.9)
ˇ1(i,j,k) = −2ac(i, j, k)�2
��2

� , (C.10)

ˇ2(i,j,k) = Lxc(i, j, k)ixc(i, j, k) + Lyc(i, j, k)iyc(i, j, k)

+Lzc(i, j, k)izc(i, j, k))(���2
��2

� ), (C.11)

�1(i,j,k) = −2bc(i, j, k) (�2
� �2

� ), (C.12)

�2(i,j,k) = (Lxc(i, j, k)jxc(i, j, k) + Lyc(i, j, k)jyc(i, j, k)

+Lzc(i, j, k)jzc(i, j, k))(�2
� ���2

� ), (C.13)

�1(i,j,k) = −2cc(i, j, k))(�2
� �2

�), (C.14)

�2(i,j,k) = (Lxc(i, j, k)kxc(i, j, k) + Lyc(i, j, k)kyc(i, j, k)

+Lzc(i, j, k)kzc(i, j, k))(�2
� �2

���), (C.15)

�xy(i,j,k) = �����2
� dc(i, j, k), (C.16)

�yz(i,j,k) = �2
� ����ec(i, j, k), (C.17)

�xz(i,j,k) = ���2
���qc(i, j, k), (C.18)

where Lxc, Lyc, and Lzc represent L(x), L(y), and L(z), respectively, dis-
cretized on the center grid according to (C.3). The terms ac, bc, cc,
dc, qc are the discretized by the metric transformation in Eq. (C.4).
The terms (ixc, iyc, izc), (jxc, jyc, jzc) and (kxc, kyc, kzc) are the cal-
culations of the derivative in the computational space represented
in Eq. (A.6).

Eq.  (C.2) is solved by obtaining a linear system of equations in
the more standardized form:

A p̂ = rhs(u) (C.19)

where A p̂ is expressed explicitly in Eq. (C.8), and rhs(u) is the
discretization of the right-hand side of Eq. (9). The matrix A is not
singular, is both large and sparse, and requires a 19-point stencil
with coefficient values based on the chosen mesh shape.

In  order to construct our 3D Laplacian operator, the set of points
on the 3D curvilinear mesh are mapped as an ordered numerical
set. This is achieved by imposing an ordering on the grid termed an
imposed lexicographical order of the unknown p(i, j, k). The natural
row ordering at the interior points of the domain is illustrated in
Fig. C.1, starting from bottom-to-top and continuing from left-to-
right.

From here, a large number of algorithms are available for solving
systems of equations with sparse matrices; depending on the given
application, some algorithms perform better than others. Several
methods are regularly used when solving time-dependent, incom-
pressible Navier–Stokes equations, each with their own  advantages
and disadvantages. Direct methods based on Gaussian elimination
solve small systems of equations efficiently; however, their work
and memory requirements prohibit them from being used for very
large systems. Conversely, multigrid methods [66] are well suited
for problems featuring large numbers of unknowns. Furthermore,
to lower the computational cost of the nonhydrostatic pressure
in GGCOM, two  libraries were integrated: the Aggregation-based

Algebraic Multigrid Library (AGMG [39]) and the Portable Exten-
sible Toolkit for Scientific Computation (PetSC [40]) a comparison
of the efficiency of these libraries in GCCOM is presented in Valera
et al. [41].
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