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Abstract The oceanic response to high-frequency local diurnal wind forcing is examined in a small coast-
al embayment located along an understudied stretch of the central California coast. We show that local 
diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. 
A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that 
the first-mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly 
coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong 
wind forcing. The diurnal evolution of the hydrographic structure and circulation in the bay is examined 
using both individual events and composite-day averages. During the late afternoon, the local wind 
strengthens and results in a sheared flow with near-surface warm waters directed out of the bay and a com-
pensating flow of colder waters into the bay over the bottom portion of the water column. This cold water 
intrusion into the bay causes isotherms to shoal toward the surface and delivers subthermocline waters to 
shallow reaches of the bay, representing a mechanism for small-scale upwelling. When the local winds relax, 
the warm water mass advects back into the bay in the form of a buoyant plume front. Local diurnal winds 
are expected to play an important role in nearshore dynamics and local upwelling in other small coastal 
embayments with important implications for various biological and ecological processes. 

1. Introduction 

Nearshore coastal environments of eastern boundary current upwelling systems, such as the California Cur-
rent Large Marine Ecosystem (CCLME), are among the world’s most productive ecosystems. The intense pro-
ductivity of these systems is shaped by physical processes on a wide range of spatiotemporal scales, 
ranging from regional-scale (100 s of km) to local-scale (10 s of km and smaller) processes. On a regional 
scale, prevailing atmospheric conditions in the CCLME drive equatorward winds, resulting in seasonal coast-
al upwelling [cf. Hickey, 1979]. This process brings deep, cold, nutrient-rich waters close to the surface, nour-
ishing near-surface phytoplankton and fueling nearshore productivity [Pennington and Chavez, 2000]. 
During the major upwelling season in CA (approximately April–September [Garcıa-Reyes and Largier, 2012]), 
strong upwelling favorable winds (typically lasting weeks) drive intrusions of offshore waters into the near-
shore region. This process is interrupted during regional wind relaxation events lasting several days [e.g., 
Send et al., 1987] that allow warm offshore waters to move back toward the coast and in some cases pole-
ward [cf. Washburn et al., 2011]. These upwelling/relaxation cycles have been linked to the delivery of inver-
tebrate larvae to nearshore habitats [Roughgarden et al., 1991; Wing et al., 1995] and are often times 
thought of as the dominant feature driving variability and affecting a host of physical and biological pro-
cesses along large portions of the CCLME [Hickey, 1979; Breaker and Broenkow, 1994; Pennington and Chavez, 
2000; Woodson et al., 2009; Garcıa-Reyes and Largier, 2012; Cheriton et al., 2014; Walter et al., 2014b; Walter 
and Phelan, 2016]. 

Local features, however, may play an equally important role in driving ecosystem dynamics in the coastal 
ocean, particularly with regard to local wind-driven variability, coastline orientation, and topography. For 
example, in northern Monterey Bay, a large open coastal embayment located along the central California 
coast, a persistent coastal upwelling front forms between cold, recently upwelled waters outside the bay 
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and warm, trapped waters inside of the bay that are shadowed (i.e., ‘‘upwelling shadow’’ [Graham and 
Largier, 1997; Woodson et al., 2009; Bonicelli et al., 2014a]) from regional wind forcing by topographic fea-
tures (i.e., Santa Cruz Mountains) [Woodson et al., 2009]. The upwelling front propagates back and forth 
along the coast daily due to modulation by strong diurnal wind forcing [Woodson et al., 2009; Walter et al., 
2016]. In the northern portions of the bay, the local sea breeze is oriented parallel to the coastline, resulting 
in an offshore Ekman transport of surface waters and local diurnal upwelling [Woodson et al., 2007]. In a 
smaller open embayment along the coast of Chile (Cartagena Bay), Bonicelli et al. [2014a] found that 
northern and southern bay sites, separated by just 6 km, experienced markedly different thermal structure 
and current variability due to the presence and absence, respectively, of strong local diurnal wind forcing. 

On local scales, diurnal winds can be driven by differential heating and cooling between the land and 
ocean, as well as topographic steering [Gille et al., 2003, 2005]. These sea (and land) breezes are common in 
coastal zones worldwide and can have a significant effect on nearshore physical and biological variability. 
For example, several studies have found that diurnal wind forcing is a major mechanism driving significant 
temperature oscillations, some of which are on the order of seasonal fluctuations [Kaplan et al., 2003; 
Woodson et al., 2007; Bonicelli et al., 2014a; Aristizabal et al., 2016]. Local winds have also been shown to 
influence a host of physical processes including local diurnal upwelling [Woodson et al., 2007], inertial cur-
rent oscillations [Orlić et al., 2011; Lucas et al., 2014], internal wave development [Lerczak et al., 2001], local 
heat budgets [Suanda et al., 2011], modulation of buoyant plume fronts and the subsequent evolution of 
nonlinear internal waves [Woodson et al., 2009; Walter et al., 2016], and local circulation patterns [Rosenfeld, 
1988; Woodson et al., 2007; Bonicelli et al., 2014a]. From a biological perspective, local diurnal winds have 
been shown to play a fundamental role in phytoplankton dynamics [Lucas et al., 2014] and spatial patterns 
of barnacle settlement [Bonicelli et al., 2014b], thereby affecting ecosystem productivity and the transport of 
larvae. Despite this growing list, a deeper understanding of the ubiquity and importance of these local-
scale processes at regional and global scales is still lacking. 

Our goal here is to document in detail the fine-scale (both spatial and temporal) oceanic response of a small 
(bay length scale L 2 km in this study) coastal embayment that is characteristic of the coastline along the 
CCLME and other boundary current systems. In this contribution, we focus on the effect of local diurnal 
wind forcing on temperature variability, circulation patterns, and upwelling dynamics in a small coastal 
embayment located along an understudied stretch of the central California coast. Extension of the results 
and their implications, along with recommendations for future work and modeling studies, are discussed. 

2. Experimental Setup and Methods 

2.1. Field Site and Data 
San Luis Obispo (SLO) Bay is a small semienclosed coastal embayment located along the eastern Pacific 
Ocean and the central California coast (Figure 1a). The northern portion of SLO Bay (L 2 km wide), and 
the focus of this study, is sheltered behind several prominent coastal peaks and topographic features and 
so is sheltered from regional northwesterly winds (Figure 1c). SLO Bay and the surrounding region feature a 
vast ecological diversity including giant kelp forests, several popular tourist destinations, and beaches (e.g., 
Avila Beach, Pismo Beach), a major fishing port (Port San Luis) for local fisheries (e.g., rockfish, Dungeness 
crab), and the California Polytechnic State University (Cal Poly) Pier (Figure 1c). The surrounding region is 
also home to several State Marine Reserves and Conservation Areas and is part of the proposed Chumash 
Heritage National Marine Sanctuary. To date, there has not been a comprehensive study examining near-
shore physical processes and the effect of local wind forcing on circulation patterns in SLO Bay. 

In order to assess the influence of local wind forcing on temperature and current variability and local 
upwelling dynamics, a cross-shelf array of three oceanographic moorings was deployed at the northern end 
of SLO Bay from 23 June to 12 August 2015. The main mooring was deployed near the 16.5 m isobath in 
the center of the study site region (Middle Bay, Figure 1c) and included the following instrumentation: ther-
mistors (RBRsolo T, accuracy of 0.0028C) sampling at 2 Hz placed every meter in the vertical from 1 m above 
the bed (mab) to 13 mab; a Sea-Bird 37 conductivity-temperature-depth (CTD) sensor sampling at 3 min 
intervals located at 2 mab; and a Teledyne RDI Sentinel V (1000 kHz, five beams) acoustic Doppler current 
profiler (ADCP) colocated next to the mooring line. The ADCP sampled continuously at 2 Hz with 0.4 m verti-
cal bin spacing and was leveled by divers to within 18 of the horizontal to minimize instrument tilt errors. 
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Figure 1. (a) Bathymetry and topography of the greater SLO Bay region highlighting the location of the offshore buoy used for regional wind data (black dot, NDBC 46011). (b, c) 
Zoomed in maps highlighting the nearshore study site in SLO Bay and the location of instrumented moorings (black dots) and the Cal Poly Pier (solid white line). The gray lines denote 
the 10, 20, and 30 m isobaths. (d) Schematic of the cross-shelf array of moorings and instrumentation, where the gray rectangles denote approximate thermistor locations, the gray circle 
indicates the subsurface buoy location, and the black and gray lengths designate the vertical distance from the seafloor to the near-surface thermistor, and the approximate vertical 
distance from the near-surface thermistor to the average sea surface height over the experiment, respectively. 

An additional mooring was deployed offshore of the Middle Bay mooring near the 26 m isobath to capture 
the offshore extent of the northern bay region (offshore, Figure 1c). This mooring contained thermistors 
(RBRsolo T, 2 Hz sampling) with 3 m vertical spacing spaced from 1 to 22 mab (1, 4, 7, 10, 13, 16, 19, and 22 
mab), as well as Sea-Bird 37 CTD sensors at 2 and 19 mab. A shallow nearshore mooring was deployed close 
to the 12 m isobath at the end of the Cal Poly Pier (nearshore, Figure 1c) with thermistors (RBRsolo T, 2 Hz 
sampling) at 1, 2, 3, 5, and 7 mab. The configuration of the moorings was designed to capture upwelling 
processes and the cross-shelf evolution of temperature (Figure 1d). 

In order to examine regional wind forcing, offshore winds were obtained from the National Data Buoy 
Center (NDBC) buoy 46011 (Figure 1a; http://www.ndbc.noaa.gov/station_page.php?station546011) and 
rotated to upwelling favorable winds (i.e., equatorward and parallel to the regional coastline, 1508 from true 
north). Meteorological data, including local wind data inside the northern area of SLO Bay, were obtained 
from measurements (2 min intervals) collected at the end of the Cal Poly Pier (Figure 1c). 

To assess regional-scale variability, a Level 4 (blended) sea surface temperature (SST) product was acquired. 
This product was produced on a global 0.0118 grid by the Group for High Resolution Sea Surface Tempera-
ture (GHRSST) at the Jet Propulsion Laboratory. This Multiscale Ultrahigh Resolution (MUR) Level 4 analysis 
(version 4) is based upon nighttime GHRSST Level 2 skin and subskin SST observations from a host of instru-
ments including the NASA Advanced Microwave Scanning Radiometer-EOS, the Moderate Resolution Imag-
ing Spectroradiometer on the NASA Aqua and Terra platforms, the US Navy microwave WindSat 
radiometer, and in situ SST observations from the NOAA iQuam project (http://podaac.jpl.nasa.gov; 
accessed 6 October 2015). Ocean surface current data were obtained via a regional network of high-
frequency (HF) radar data. Data (2 km gridded) were downloaded from the Coastal Observing Research and 
Development Center at Scripps Institution of Oceanography (http://hfrnet.ucsd.edu/thredds/catalog.html; 
accessed 22 October 2015). All times referenced in the text and figures are in local time [Pacific Daylight 
Time (PDT)]. 
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2.2. Data Analysis 
Spectral and coherence calculations were carried out using standard techniques [e.g., Walter et al., 2011]. 
The window length was selected by taking into account the length of the original record, frequency resolu-
tion, and the degrees of freedom (DOF) for calculating confidence intervals. In order to minimize leakage in 
the spectral domain, Hamming windows with 50% overlap were applied. A chi-square variable analysis was 
performed using the equivalent DOF to calculate confidence intervals on the spectra [Emery and Thomson, 
2001]. Statistical significance in the coherence analysis was also calculated using the equivalent DOF [Emery 
and Thomson, 2001]. 

The time-varying frequency content (power) of various time series was examined using continuous wavelet 
transforms following Torrence and Compo [1998]. A Morlet mother wavelet function was used with a nondi-
mensional frequency parameter (xo as in Torrence and Compo [1998]) set to six in order to satisfy necessary 
conditions for the wavelet function. The wavelet power spectrum is defined using the magnitude of the 
wavelet transform squared, W 5jWnð Þs j2, where n is a localized time index and the wavelet scale (s) is almost 
identical to the Fourier period. In order to isolate the time-varying wavelet power over a particular band of 
scales (periods), such as the diurnal period, the scale-averaged wavelet power is calculated between scales 
(s1 to s2) using the following formula: 

2j2 Xdjdt jWn sj jhW tð Þi5 ; (1)
Cd j5j1 

sj 

where dj is the scale resolution, dt is the sampling time interval, and Cd 5 0.776 is a reconstruction constant. 
To determine confidence levels, wavelet power is compared to a background model spectrum of red-noise 
(i.e., univariate lag-1 autoregressive; see Torrence and Compo [1998] for additional details). 

A complex empirical orthogonal function (CEOF) analysis was used to decompose the ADCP velocity data 
into its dominant statistical modes (i.e., its principal components). The CEOF analysis was applied to the 
complex time series w z; t 5u z; t 1ivð Þ, where u and v represent the eastward and northward compo-ð Þ ð Þ z; tpffiffiffiffiffiffiffi 
nents of velocity, respectively, and i5 21. By solving an eigenvalue problem for the complex covariance 
matrix (formed using the time varying portion of w z; t ), the CEOF analysis provides a description of the ð Þ
spatial variability of the velocity field through modal shapes (i.e., eigenfunctions), as well as the temporal 
variability of each independent vertical mode through a complex amplitude time series [Kaihatu et al., 1998; 
Edwards and Seim, 2008]. Moreover, the eigenvalue associated with each respective modal shape can be 
used to quantify the contribution of that modal shape to the total variance of the original signal. Using a 
complex analysis has the benefit of a more physical interpretation to a particular phenomenon since the 
modal shape not only dilates and contracts in time based on the magnitude of the complex amplitude time 
series, but it also rotates in time using the phase (i.e., angle) of the complex amplitude time series (real com-
ponent eastward, imaginary component northward) [Edwards and Seim, 2008]. 

3. Results 

3.1. General Observations 
Throughout the nearly 2 month long study period, offshore winds exhibited typical regional upwelling/ 
relaxation cycles (Figure 2a) for the central California coast [Woodson et al., 2009; Walter et al., 2014b; Walter 
and Phelan, 2016], with persistent upwelling winds blowing from 3308 for several weeks alternating with 
several days of reduced wind speeds. The local wind forcing consistently displayed diurnal fluctuations with 
eastward wind components reaching more than 10 m/s during the afternoon (Figures 2a and 2b). The west-
ward component was much weaker and often nonexistent. The local diurnal wind signal also displayed peri-
ods of stronger/weaker variability throughout the record. 

The vertical temperature structure recorded at the cross-shelf array of moorings shows several prominent 
features (Figures 2c–2e). The first is the presence of cold (and saltier, S 33.7) waters extending throughout 
the water column at the beginning of the record and the appearance of a warm (and fresher, S 33.4) 
water mass toward the end of July. SST images indicate that these cold and warm water masses are the 
result of regional water masses advected into SLO Bay from the north and south/offshore, respectively (Fig-
ure 2h). The cold water mass is likely the result of extended regional upwelling lasting several weeks prior 
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Figure 2. (a) Regional upwelling favorable winds from NDBC buoy 46011 (33 h low-pass filtered, gray line) and local east/west (positive 5 eastward) winds from the Cal Poly Pier (black 
line). (b) Local wind rose (oceanographic orientation-directionality indicates wind vector direction) using data from the Cal Poly Pier. Time series of the vertical temperature structure (10 
min averages) at the (c) Offshore, (d) Middle Bay, and (e) Nearshore moorings. (f) East/west (positive 5 eastward/out of the bay study site) and (g) north/south (positive 5 northward/into 
the bay study site) time series of the vertical velocity structure (60 min averages) from the Middle Bay mooring. The solid blue line in Figures 2f and 2g denotes the sea surface height. 
(h) Weekly MUR SST images corresponding to the dates shown on the bottom of Figure 2g. The black ‘‘x’’ in Figure 2h denotes the study site location. 

to the start of the observations (not shown), while the warm water mass appears to originate from the com-
bination of a poleward warm water flow from south of Point Conception [Washburn et al., 2011] and the 
intrusion of offshore waters that originate from submesoscale features [Nidzieko and Largier, 2013]. The sec-
ond prominent feature, and the focus of this study, is higher-frequency variability that results in large daily 
temperature fluctuations (up to 58C) on the same order of those driven by regional water mass advection, 
and the associated appearance of strong frontal features that result in the episodic stratification of the 
water column. This high-frequency temperature variability is coherent across the three mooring sites, and 
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in some cases, results in perturbations that extend throughout the entire water column at the nearshore 
site, especially during strong local wind forcing. These features coincide with near-surface velocities direct-
ed out of the bay study site and the development of surface-intensified velocity shear (Figures 2f and 2g), 
particularly during periods of enhanced local wind forcing. 

A closer examination of a representative 2 day period (6 and 7 July 2016) from the Middle Bay mooring 
reveals the diurnal evolution of the aforementioned high-frequency features (Figure 3). During the early 
morning when the local winds are absent, a near-surface warm water mass in the form of a buoyant plume 
front advects in the northwest direction (i.e., directly into the northern portion of the bay, black arrows in 
Figure 3), resulting in strong near-surface stratification. The resulting stratification provides an internal wave 
guide and supports high-frequency (i.e., 5–30 min period) internal wave activity [Walter et al., 2016]. During 
the late morning, a local eastward wind develops, peaking in the early afternoon, and subsiding in the late 
evening. This period of strong local wind forcing is characterized by the development of near-surface flow 
reversals, as the currents at the top of the water column start to move toward the southeast (i.e., out of the 
northern portion of the bay, red arrows in Figure 3), driving the surface warm water mass out of the bay. 
While the surface currents are directed out of the northern bay, a compensating flow directly into the bay 
exists over the bottom portion of the water column. The result is a strong baroclinic flow with increased 
shear in the near-surface region. This northwestward flow along the bottom drives colder waters into the 
northern end of the bay (gray arrows in Figure 3). These cold waters infiltrate throughout the water column 
and shoal toward the surface, replacing the warm surface layer. Following this local wind-driven modulation 
and upwelling, the local winds relax, allowing the warm water mass to advect back into the northern bay. 

Figure 3. Zoomed in time series example from 6 and 7 July 2016 of the (a) local east/west winds (east 5 positive), (b) vertical temperature 
structure (1 min averages), and the (c) east/west (positive 5 east/out of the bay study site), and (d) north/south (positive 5 north/into the 
bay study site) velocity (1 min averages) throughout the water column at the Middle Bay mooring. The solid blue line in Figures 3c and 3d 
denotes the sea surface height. 
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Figure 4. (a) Power spectral density of temperature at discrete heights (denoted in color bar) throughout the water column at the Middle Bay mooring. The dashed red lines denote the 
diurnal and semidiurnal (M2 tidal component) frequencies, the dashed gray lines the high-frequency internal wave band, and the dashed blue line the surface wave frequency. Also 
shown is a 23 (solid gray) and 22 (solid black) power law fit. (b) Variance preserving power spectra of temperature at all vertical locations. Variance preserving power spectra of the (c) 
local east/west winds and the (d) local sea surface height. The dashed red lines in Figures 4c and 4d denote the diurnal and semidiurnal (M2 tidal component) frequencies and the gray 
shading signifies 90% confidence intervals. Variance preserving power spectra of the (e) east and (f) north velocity components throughout the water column. 

Consideration of the temperature spectra across various depths reveals a major, surface-intensified peak at 
the diurnal frequency, with a weaker signal in the semidiurnal band (Figures 4a and 4b). The local east/west 
winds also show a dominant diurnal peak (Figure 4c). The temperature spectra of near-surface thermistors 
display enhanced variance within the high-frequency internal wave (HFIW) band (5–30 min period). At fre-
quencies higher than the HFIW band, the spectral falloff rate follows a 23 power law fit in the upper water 
column and transitions to the more canonical 22 power law fit at the bottom of the water column, imply-
ing a strong scattering of near-surface HFIWs toward smaller scales in the near-surface region [Nam and 
Send, 2012]. The velocity spectra as a function of depth also reveal a prominent peak in the diurnal band, 
particularly in the east velocity component which is aligned with the direction of the local wind forcing 
(Figures 4e and 4f). 

3.2. Velocity Variance and Winds 
A tidal harmonic analysis was performed on the velocity observations over the entire study period (not 
shown) using the T_Tide package [Pawlowicz et al., 2002]. The north and east velocity components (60 min 
averages) were separated into their barotropic and baroclinic components using depth-averaged values. 
The K1 (diurnal) and M2 (semidiurnal) tidal components dominated the barotropic signal, although the tidal 
ellipses only had semimajor axes on the order of 1 cm/s for each component, indicating weak barotropic 
tidal forcing. For the baroclinic component, tidal ellipses were calculated as a function of depth for the K1 

and M2 components. The M2 component displayed semimajor and semiminor axes that were approximately 
constant with depth and O(1 cm/s), again indicating weak semidiurnal tidal forcing. The K1 tidal ellipse 
exhibited near-surface semimajor (4.6 cm/s) and semiminor (2.2 cm/s) axes that were enhanced relative to 
the bottom of the water column [both near-bottom axes O(1 cm/s)]. The surface tidal ellipses were also 
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approximately 1808 out of phase from the bottom ellipses and oriented with the prevailing bay coastline 
orientation (i.e., 30–508 CCW from true north). 

The large baroclinic K1 amplitudes computed with the harmonic analysis are likely due to signal contamina-
tion of the diurnal band by strong local winds [cf. Rosenfeld et al., 2009; Suanda et al., 2011]. This is evident 
as a decrease in amplitude with depth, consistent with frictional forcing from above, as well as the findings 
from the nearby Monterey Bay region [see Rosenfeld et al., 2009, discussion; Suanda et al., 2011]. Moreover, 
at this particular latitude (35.178N), which is poleward of the critical latitude (308N), the diurnal frequency 
(1 cpd) is smaller than the inertial frequency (f 1.15 cpd). Thus, freely propagating internal waves at the 
diurnal frequency are not permitted, given that the background current vorticity is likely small [cf. Lerczak 
et al., 2001; Aristizabal et al., 2016]. Moreover, a coherence analysis was performed using the local winds and 
the east baroclinic velocity component as a function of depth. At the diurnal frequency, the winds and 
velocity were significantly coherent with approximately zero phase lag at the surface (not shown). Further 
validation that the currents are predominantly driven by local winds is presented below using the CEOF 
analysis and comparison of strong versus weak local wind forcing periods. 

The first modal shape of the CEOF analysis, which describes 47.9% of the total velocity variance, shows a 
sheared, baroclinic structure with a very near-surface layer that is roughly 1808 out of phase with the rest of 
the water column (Figure 5a). The magnitude of the amplitude time series shows temporal variability that is 
generally aligned with periods of enhanced variance in the east/west winds time series time (described fur-
ther below; Figure 5b). The first three modes describe 90% of the variance, but as will be discussed below, 
the first mode displays a diurnal variability that is coherent with the local wind forcing and thus will be the 
focus of what follows. 

A wavelet analysis of the first-mode CEOF amplitude time series magnitude, which dilates and contracts the 
CEOF modal shape over time, was performed to examine the time-varying frequency content of the time 
series. Figure 6b shows that the first-mode CEOF amplitude magnitude is dominated by the diurnal fre-
quency band. The temporal variability in the diurnal variance also aligns with the majority of the diurnal 
peaks in the local east/west wind field. A similar alignment of the diurnal peaks is not seen between the 
first-mode CEOF amplitude time series magnitude and the local sea surface height (Figure 6c), indicating 
that the first-mode CEOF is modulated by the local wind forcing and not by surface tidal forcing. Scale-
averaged wavelet power was calculated between 22 and 26 h for the local winds, the first-mode CEOF 
amplitude time series magnitude, and the local sea surface height, in order to isolate the contribution to 
the diurnal frequency band. The scale-averaged power is normalized by the maximum value for each 
respective variable for comparison between variables (Figure 6d). Evident in the diurnal power is a strong 

Figure 5. First-mode CEOF (explains 47.9% of the variance) from the Middle Bay mooring. (a) Modal shape (real component, eastward), (b) magnitude of the complex amplitude time 
series, and (c) phase (i.e., angle of the complex amplitude time series, where the angle is measured CCW from the positive real axis). 
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Figure 6. Wavelet power spectrum of the (a) local east/west winds, (b) amplitude time series from the first-mode CEOF, and (c) the local 
sea surface height. The black contour lines represent the 90% confidence level. The dashed black lines denote the diurnal and semidiurnal 
(M2 tidal component) periods. Thick black lines on both ends of the spectrum indicate the ‘‘cone of influence’’ where edge effects become 
important. (d) Scale-averaged wavelet power between periods of 22 and 26 h isolating the diurnal band for each variable in Figures 6a–6c. 
The scale-averaged wavelet power is normalized by the maximum value for each respective variable for comparison between the 
variables. 

correlation between the local winds and the first-mode CEOF amplitude time series magnitude, with a pro-
nounced peak in the two variables in the middle of July. The local winds and amplitude time series magni-
tude are significantly coherent at the diurnal frequency (Figure 7a) with almost zero phase lag (Figure 7b). 
Moreover, the temporal variability in the diurnal band of the local sea surface height does not correspond 
to the diurnal variance in the first-mode CEOF (or the local wind, Figure 6d), nor are the two parameters 
coherent at the diurnal frequency (Figure 7a). The above evidence suggests that the first-mode CEOF signal, 
which describes nearly half the velocity variance, is largely determined by local wind forcing in the northern 
portion of the bay. 

3.3. Canonical Day and the Diurnal Cycle 
In order to assess the diurnal cycle of the local wind forcing, circulation, and temperature structure, canoni-
cal day (i.e., composite averages representing a typical day) plots were created by computing averages of 
variables centered on each hour of the day (local time, PDT) at the Middle Bay mooring. Figure 8 highlights 
the diurnal evolution of various parameters and further clarifies the trends discussed previously. During the 
morning hours (�00:00–08:00), the local wind forcing is absent (Figure 8a) and a warm surface layer appears 
at the study site as a buoyant plume front that increases local stratification (Figure 8d). The arrival of this 
warm front corresponds with near-surface velocities directed mainly into the bay (i.e., toward the west, Fig-
ures 8e and 8f). As the local eastward winds develop in the late morning and peak around 15:00, a strong 
jet oriented out of the bay study site (i.e., southeastward) develops near the surface. This offshore flow near 
the surface coincides with the arrival of a large intrusion of cold water over the bottom portion of the water 
column with velocities oriented into the bay study site (northwestward). This cold water intrusion into the 
bay study site causes isotherms to shoal toward the surface and represents a mechanism for local wind-
driven diurnal upwelling distinct from the classic coastal upwelling described by Ekman-like dynamics. In 
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Figure 7. (a) Coherence squared and (b) phase lag between the local winds and the first-mode CEOF amplitude time series (black), as well 
as the local sea surface height and the first-mode CEOF amplitude time series (gray). The 99% confidence level is shown as a gray line in 
Figure 7a. The diurnal and semidiurnal (M2 tidal component) frequencies are denoted by red lines. 

this case, the shoaling of isotherms is related to the advection of cold subsurface waters, which originate 
outside of the shallow portions of the embayment, into the study site location (i.e., an undercurrent [see 
K€ampf, 2015a,2015b, and references therein]) due to diurnally varying currents forced by the local winds. 
Temperature and velocity variability over the canonical day (Figures 8g and 8h), quantified by calculating 
the standard deviation at each canonical day hour, is concentrated in the surface layer. This is likely due to 
a combination of changes in the frontal structure, HFIW activity, and variability in the local wind forcing (i.e., 
stronger and weaker local wind forcing periods), the latter of which is explored further below. 

The first-mode CEOF amplitude time series magnitude, which dilates/contracts the modal shape in Figure 
5a, follows the diurnal cycle and evolution of the local winds, peaking around 15:00 (Figure 8b). The phase 
(i.e., angle of the complex amplitude time series) of the first-mode CEOF, which rotates the modal shape in 
Figure 5a, follows the dominant velocity trends described above. For example, during peak wind forcing 
when the magnitude of the amplitude time series is at its maximum (i.e., large dilation of the modal shape 
in Figure 5a), the phase is close to zero and begins to go slightly negative in later hours [negative (positive) 
phase indicate CW (CCW) rotation of the modal shape]. Taken into consideration with the modal shape, this 
phasing is consistent with the southeast (northwest) flow that develops near the surface (bottom) of the 
water column. The diurnal evolution of the phase, and the corresponding rotation of the modal shape, is 
also consistent with the velocity signal directionality at other times. Composite day averages of the second-
mode CEOF (30.8% of velocity variance explained, not shown) display a constant amplitude and phase over 
all composite day hours, indicating that this mode is not forced by diurnal winds. The local diurnal winds 
appear to be a first order control on the dominant circulation patterns, temperature variability, and upwell-
ing inside the bay. 

The diurnal evolution of ocean surface currents throughout the entire bay region, as opposed to just the 
northernmost portion of the bay where the in situ moorings were located, was assessed using canonical 
day averages of HF radar measurements over 3 h periods (Figure 9). We note that only qualitative inferences 
can be made with the HF radar measurements and that the gridded measurements (i.e., 2 km) may not suf-
ficiently resolve all fine-scale features and local forcing effects, particularly at points close to the coastline. 
Nonetheless, during the early parts of the day when the local winds are weak, surface currents are generally 
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Figure 8. Composite day average plots over the entire study period of the (a) local east/west winds, (b) first-mode CEOF amplitude time series magnitude, and the (c) first-mode 
CEOF phase. The gray shading signifies one standard deviation from mean. Composite day contour plots from the Middle Bay mooring of (d) temperature, (e) north/south velocity 
(positive 5 north/into the bay study site), and (f) east/west velocity (positive 5 east/out of the bay study site). Figures 8g–8i denote the standard deviation of the respective quantity in 
Figures 8d–8f. 

weak (especially from 03:00 to 09:00). During the late afternoon, the surface currents increase in strength 
and show a large-scale flow directed out of the greater embayment area and directed to the south. 

3.4. Weak Versus Strong Local Wind Forcing 
The effect of the temporal variability of the local winds on bay dynamics was examined by creating a local 
wind forcing index and comparing composite day averaged quantities during weak and strong forcing peri-
ods. The index is defined using the normalized scale-averaged wavelet power of the local diurnal winds, as in 
Figure 6d. Using a nondimensional cutoff of 0.3 (results largely consistent with other thresholds, e.g., 0.2 or 
0.4), Figure 10a highlights periods of strong and weak local wind forcing, respectively, consistent with the gen-
eral trends in Figure 2a. The composite average of surface currents from HF radar calculated over the entire 
weak and strong wind periods is shown in panel (i) of Figures 10b and 10c, respectively. Large-scale flows for 
both periods are directed toward the south and out of the larger embayment, but the average currents are 
nearly double during the strong local wind forcing period. The local wind forcing index accurately delineates 
the two wind forcing periods, evident in the canonical day winds in Figure 10, panel (ii), where the strong 
wind period shows peak eastward winds that are nearly double that of the weak wind period. 

Comparison of the temperature structure displays many of the same diurnal (i.e., canonical day) features 
described previously; however, the strong wind period shows a much sharper warm front in the early morning, 
and enhanced upwelling in the late evening. The enhanced upwelling is evident in the steeper isotherms and 
increased flux of cold, subthermocline waters to the nearshore. This leads to the cold water mass extending far-
ther up into the water column for longer periods of time relative to the weak wind period. The velocity structure 
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Figure 9. Composite day average plots of surface current vectors (black arrows) obtained from HF radar measurements over the entire study period. Individual panels denote composite 
averages taken over the time period shown at the top of each respective panel (all times in local time, PDT). 

shows the same general trends, but the velocities and features (e.g., near-surface jet, shear) are intensified, par-
ticularly during the peak wind forcing around 15:00 in the strong wind period. The CEOF amplitude time series 
(Figure 10, panel (iii)) also shows a much more pronounced maximum coinciding with the peak in wind forcing 
during the strong wind period. This is in contrast to the weak wind period, which displays less diurnal structure 
and only a minimal afternoon increase around 15:00. The diurnal evolution of the CEOF phase is similar between 
the two periods, but the strong wind period shows much less variability compared to the weak wind period. 

The cross-shelf evolution of temperature structure during the weak and strong wind periods is shown in 
Figures 11a and 11b, respectively. During the strong wind forcing period, progressively colder waters upwell 
to the Middle Bay and Nearshore mooring locations compared to the weak wind forcing period. Further-
more, these colder waters penetrate higher up in the water column and persist along the bottom of the 
water column for greater portions of the day during strong wind forcing periods. Changes in the timing and 
structure of the front separating the cold and warm water masses are also observed between the two peri-
ods. It is clear that the distribution of temperature, and potentially other water mass properties, in the 
shallow reaches of the bay is modulated by local wind forcing and this upwelling mechanism. 

4. Discussion 

4.1. Diurnal Heat Budget 
The previous sections established a strong relationship between diurnal changes to the water column 
temperature structure and local wind forcing. Here we examine the effect of surface heat fluxes on the 
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Figure 10. (a) Normalized, diurnal scale-averaged wavelet power of the local east/west winds (as in Figure 6d) used for the local diurnal wind forcing index. The dashed black line 
denotes the cutoff (0.3) between strong and weak wind forcing. Time periods above this cutoff (strong local wind forcing) are shaded gray. Figures 10b and 10c show the composite day 
averages of various parameters (subpanels (i)–(vii) described below) calculated at the Middle Bay mooring over the (b) weak and (c) strong local wind forcing periods, respectively. (i) 
Composite average surface current vectors from HF radar measurements over the entire strong/weak period, composite day averages of the (ii) local east/west winds, first-mode CEOF 
(iii) amplitude time series magnitude and (iv) phase, (v) temperature, (vi) north/south velocity (north 5 positive/into the bay study site), and (vii) east/west velocity (east 5 positive/out of 
the bay study site). The gray shading in subpanels (ii–iv) signifies one standard deviation from mean. 

diurnal evolution of the local water column heat content. The total surface heat flux is estimated from the 
sum of the incoming shortwave solar radiation (Qsw), latent (Qlat), sensible (Qsens), and outgoing longwave 
radiation (Qlw) heat fluxes, where positive (negative) values represent heat fluxes into (out of) the ocean. 
Individual heat flux terms are estimated using local data from the Cal Poly Pier meteorological station and 
the bulk formula found in Rosenfeld et al. [1994] (see also  Suanda et al. [2011]). The relative humidity sen-
sor at the Cal Poly Pier malfunctioned during the experiment, so this parameter was obtained from a 
meteorological station in the nearby Morro Bay (Figure 1a, data available at www.slosea.org/about/ 
archive.php). 

Composite day averages were calculated for the individual surface heat flux terms in Figure 12a. The surface 
heat fluxes are dominated by the incoming shortwave solar radiation, which peaks midday, with magni-
tudes and relative values consistent to those in Suanda et al. [2011] from the nearby Monterey Bay region. 
The diurnal cycle of the total surface heat flux (Figure 12b) is compared to observed changes in the depth-
integrated (i.e., water column) heat content, 
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Figure 11. Composite day average plots highlighting the cross-shelf distribution of temperature calculated over the (a) weak and (b) strong local wind forcing periods, respectively. Sub-
panels (i), (ii), and (iii) show the composite day average temperature at the Offshore, Middle Bay, and Nearshore mooring, respectively, for the (a) weak and (b) strong diurnal wind peri-
ods. (c) Schematic of the cross-shelf array of moorings and instrumentation, where the gray rectangles denote approximate thermistor locations, the gray circle indicates the subsurface 
buoy location, and the black and gray lengths designate the vertical distance from the seafloor to the near-surface thermistor, and the approximate vertical distance from the near-
surface thermistor to the average sea surface height over the experiment, respectively. 

ð0 @T 
qcp dz; (2)

@t2H 

where q is the seawater density, cp is the specific heat (3993 J/kgC), H is the water column depth, and @T is@t 

the time-derivative of the canonical day temperature. Full water column profiles of temperature were possi-
ble (see Middle Bay schematic in Figure 1d) with the incorporation of very near-surface temperature meas-
urements obtained from an automated profiler at the end of the Cal Poly Pier (see www.cencoos.org/data/ 
shore/sanluis for data description and access). 

In general, changes to the water column heat content are due to a combination of advective and surface 
heat fluxes. Figure 12b highlights the daily cycle of heat content changes compared to the total surface 
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heat flux. During the early morning, 
there are large increases in the heat 
content (i.e., warming) followed by 
large decreases (i.e., cooling) in the late 
evening following the peak in the local 
winds. These changes to the heat con-
tent are nearly an order of magnitude 
larger than the maximum in the net 
surface heat flux, which occurs around 
midday. These results indicate that sur-
face heat fluxes do not explain the 
large water column warming and cool-
ing events. Rather, the changes are due 
to advective heat fluxes. These fluxes 
are likely the result of the advection of 
the warm water mass into the bay 
study site in the early morning when 
the winds are weak (warming) and the 
local upwelling of cold water into the 
bay study site following the peak in 
local winds (cooling). Suanda et al. 
[2011] found a similar minimal contri-

incoming shortwave radiation (Qsw), longwave radiation (Qlw), sensible (Qsen), and bution from the surface heat flux in 
latent (Qlat). Positive values represent heat fluxes into the ocean. (b) Composite 

Figure 12. (a) Composite day averages of individual surface heat flux terms: 

northern Monterey Bay. These results 
day averages of the net surface heat flux (black line) and the change in heat con-
tent within the water column (gray line). The gray shading in both panels signifies also suggest that the local heat budget 
one standard deviation from mean. is controlled by advective heat fluxes, 

which are driven by local wind forcing. 

4.2. Implications 
The local circulation and temperature structure within the northernmost portion of SLO Bay is predominant-
ly controlled by local wind forcing. The diurnal forcing results in the development of a local front between 
the warm water mass inside the bay and cold upwelled water. The modulation of the front by local winds 
results in diurnal changes to the water column stratification. However, the strong near-surface shear that 
develops in the presence of the local winds has the ability to erode this stratification and generate local 
wind-driven mixing of the water column. The water column stability is assessed by comparing the stratifica-
tion and velocity shear using the gradient Richardson number, 

N2 

Ri5 ; (3)
@U 2

1 @V 2 
@z @z 

where N252 g @q is the buoyancy fre-qo @z 

quency squared, and U and V denote 
the east and north velocity compo-
nents (10 min averages), respectively. 
Figure 13 shows composite day aver-
ages for the strong and weak wind 
forcing periods, respectively, of the 
percentage of the time that the near-
surface (13 mab) gradient Richardson 
number is below the critical value of 
0.25. In the late afternoon ( 15:00, 
coinciding with the peak in local 
winds), the strong wind forcing period 

Figure 13. Percentage of time that the near-surface (13 mab) gradient Richardson 
shows a much greater percentage of number is below the critical value of 0.25 at each respective canonical day hour 
the time where the flow is subcritical for the weak (gray) and strong (black) local wind forcing periods. 
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(Ri < 0.25) and is subject to the destabilizing effect of the local wind-driven shear and enhanced vertical 
mixing. 

The combination of the local coastline orientation, topographic features, and wind forcing lead to fronto-
genesis and the modulation of the warm water mass inside of the bay, resulting in episodic changes to the 
water column stratification. Evident throughout the entire record are HFIWs that propagate along the inter-
nal wave guide (i.e., stratification) provided by the buoyant plume front (e.g., Figure 3b around 12:00 on 6 
July at the base of the near-surface warm layer). Frequent occurrences of nonlinear internal waves with 
amplitudes exceeding half the depth of the water column are observed, as well as rank-ordered packets of 
HFIWs. Woodson et al. [2011] noted an increased prevalence of HFIWs at a coastal upwelling front during 
strong diurnal wind forcing, and Woodson et al. [2011] and Walter et al. [2016] hypothesized that the local 
winds were responsible for the transcritical generation [see Stastna and Walter, 2014] of internal waves at 
the front. Furthermore, the near-surface temperature spectra falloff rate follows a 23 power law and sharp-
er falloff, implying a scattering of HFIWs toward smaller scales [Nam and Send, 2011]. A further understand-
ing of the role that local wind forcing plays in nonlinear internal wave generation [cf. Lerczak et al., 2001], as 
well as the subsequent fate of these waves in the nearshore and possible formation of internal bores [Walter 
et al., 2012], will yield significant insight into turbulent mixing processes [Davis and Monismith, 2011; Walter 
et al., 2014a], larval transport [Shanks, 1983; Pineda, 1994], and cross-shelf exchange of various scalars 
[Boehm et al., 2002; Walter et al., 2014b]. 

Additionally, the CCLME is listed as a hotspot for ecological risk due to upwelling-driven hypoxia, and it is 
also particularly vulnerable to ocean acidification (OA) because of this strong upwelling, representing a sys-
tem with multiple stressors [Hofmann et al., 2011; Boehm et al., 2015]. A better understanding of the physical 
processes that control the transport of subthermocline waters, which are low in dissolved oxygen (DO) and 
pH, to the nearshore coastal environment will help address significant knowledge gaps in hypoxia/OA 
research. In many locations, regional-scale upwelling, which varies seasonally, sets the offshore stratification 
and moves the thermocline to shallower regions [e.g., Pennington and Chavez, 2000; Walter and Phelan, 
2016]. However, the cross-shelf extent of this upwelling is often limited, suggesting alternative mechanisms 
for the final push of subthermocline waters to shallower regions. This study suggests that local wind-driven 
upwelling may be an important control on the delivery of subthermocline waters to shallow, nearshore hab-
itats and needs to be considered when assessing drivers of nearshore hypoxia and OA. 

From a biological perspective, local wind variability in coastal embayments likely has a considerable effect 
on local phytoplankton dynamics and community structure, as well as the occurrence of harmful algal 
blooms (HABs). Previous studies have shown that strong thermal stratification and low wind stress condi-
tions promote retention of surface waters and favor algal blooms [Ryan et al., 2008]. The results presented 
here indicate that weak local wind forcing reduces exchange in the bay and decreases wind-driven mixing. 
These conditions act to increase local residence times and allow stratified conditions to persist, which has 
the potential to minimize dispersal of surface aggregations and create a local bloom incubator [Ryan et al., 
2008]. Moreover, coastal convergent fronts have the ability to create small-scale structure and locally aggre-
gate phytoplankton, thereby influencing plankton ecology [Ryan et al., 2010]. Finally, it is interesting to con-
sider the role that SLO Bay plays in the broader ecology of the region, as Point Conception ( 80 km to the 
south) is a major biogeographic province boundary. At the regional scale, Point Conception demarcates the 
northern open coast dominated by cold upwelled waters from the warmer, sheltered waters of the South-
ern California Bight to the south [Caldwell et al., 1986; Blanchette et al., 2007; Aristizabal et al., 2016]. Prelimi-
nary analysis of data from long-term temperature records in the area (Walter et al., unpublished 
manuscript) indicates that SLO Bay behaves as an upwelling shadow system. This, combined with the peri-
odic warming of SLO Bay generated by the diurnal wind relaxation, may promote favorable conditions for a 
refuge for organisms expanding northward, although further work is needed to verify this hypothesis. 

In general, regional and local-scale processes interact to drive substantial physical and biological variability 
in the coastal ocean. While the current generation of coastal circulation models is able to accurately capture 
larger-scale flows, modeling processes on smaller scales continues to pose challenges [Rasmussen et al., 
2009]. In particular, coastline topography and high-resolution wind forcing data have been shown to be 
important parameters to accurately capture nearshore physics and larval dispersal patterns [see Rasmussen 
et al., 2009, and the references therein]. This study reinforces the idea that careful consideration of the grid 
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resolution and wind forcing, especially in small coastal embayments, is needed to adequately resolve impor-
tant nearshore physics and biological processes such as larval dispersal. 

5. Conclusions 

Coastal embayments are ubiquitous features in major upwelling systems around the world, ranging in size, 
shape, and dominant physical forcing. Compared to regional-scale upwelling/relaxation events, less is 
known about the oceanic response in these shallow systems to high-frequency local diurnal wind forcing. 
Understanding how these different systems are influenced by both regional and local dynamics is critical to 
understanding a host of physical and biological processes. In this study, we show that the local diurnal 
wind forcing is the dominant driver of temperature variance and circulation patterns in a small-scale coastal 
embayment along an understudied stretch of the central California coast. The interaction between the local 
wind forcing and existing stratification leads to a dynamic situation characterized by the delivery of subther-
mocline waters to shallow reaches of the bay. Future studies should examine the influence of local wind 
forcing on this upwelling mechanism across an annual cycle. It is expected that local wind forcing will play 
an important role in nearshore dynamics and local upwelling from the early spring to late fall when 
regional-scale upwelling brings the offshore thermocline closer to the surface and strong gradients 
between air temperatures over the land and ocean result in enhanced local wind forcing. Moreover, small-
scale spatial structure in thermal structure and variability should be considered at other bay locations to 
better understand drivers of spatial similarities and differences, as well as outside of the bay to investigate 
spatial differences in regions that are subject to differential exposure to regional upwelling processes. 
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