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ABSTRACT

Fingerprinting the Smart Home: Detection of Smart Assistants Based on Network
Activity

Arshan Hashemi

As the concept of the Smart Home is being embraced globally, IoT devices such as the

Amazon Echo, Google Home, and Nest Thermostat are becoming a part of more and

more households. In the data-driven world we live in today, internet service providers

(ISPs) and companies are collecting large amounts of data and using it to learn about

their customers. As a result, it is becoming increasingly important to understand

what information ISPs are capable of collecting. IoT devices in particular exhibit

distinct behavior patterns and specific functionality which make them especially likely

to reveal sensitive information. Collection of this data provides valuable information

and can have some serious privacy implications.

In this work I present an approach to fingerprinting IoT devices behind private

networks while only examining last-mile internet traffic . Not only does this attack

only rely on traffic that would be available to an ISP, it does not require changes to

existing infrastructure. Further, it does not rely on packet contents, and therefore

works despite encryption.

Using a database of 64 million packets logged over 15 weeks I was able to train

machine learning models to classify the Amazon Echo Dot, Amazon Echo Show, Eufy

Genie, and Google Home consistently. This approach combines unsupervised and

supervised learning and achieves a precision of 99.95%, equating to one false positive

per 2,000 predictions. Finally, I discuss the implication of identifying devices within a

home.
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Chapter 1

INTRODUCTION

With the emergence of the Smart Home, questions have arisen regarding the privacy

and security implication of IoT devices within homes. In 2018, household penetration

of Smart Home devices in the United States is 32% and is expected to hit 53.1% by

2022 [6]. Similarly, it is predicted that by 2020, Virtual Personal Assistant (VPA)

enabled wireless speakers will be adopted by 3.3% of global households, accounting

for a $2.1 billion market. The increasing adoption of such devices coupled with the

questionable data-collection practices of vendors and service providers exacerbates

these concerns.

Recent events such as the leak of two million recordings between parents and

children by an internet-connected teddy bear company, CloudPets, [7] shed light

on the intimate nature of information that can be captured by devices within a

home. Furthermore, controversial data collection practices by large companies, such

as Facebook [8], have been subject to scrutiny leading to unease amongst the wide

range of stakeholders in IoT privacy. More so than ever, consumers are seeking strong

guarantees that their data is not being used in unexpected and unintended ways.

As a result, vendors and service providers have a large stake in preserving the trust

of consumers. Additionally, governments have a responsibility to pass legislation to

protect the rights of individuals, and consequently need to understand the gravity of

the situation. Currently under debate is the issue of what information companies have

a right to collect as well as the which practices people can reasonably expect to be

informed of. It has never been more important to examine the information ISPs have

access to and understand the role IoT devices can play in revealing it.

Smart Homes and IoT devices are changing not only the level of internet connec-
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tivity with which we operate, but also the nature of the interactions we have with the

internet. More and more, IoT devices are focusing on physical interactions, leveraging

microphones, cameras, sensors, and thermostats to learn about their environment

[9, 10]. While the privacy implications of such data collection is currently under debate,

the value of its collection is apparent and will only become increasingly important as

both the adoption and scope of internet-connected devices grow.

At best, current devices use secure encryption techniques to conceal actual packet

contents. Confidence in the sufficiency of encryption is so high that in 2017 the FCC

removed data collection restrictions claiming, “privacy risk is minimal, encryption

is pervasive” [11]. However, this is a false premise. It has been shown that even

encrypted packets can reveal sensitive information both about what devices a person

has in their home and what behaviors they are engaging in [11, 10, 12, 13]. Clearly, this

violates the privacy of individuals, but more concerning is the fact that an upstream

observer such as an ISP can gather information at scale with no changes to existing

infrastructure [12].

By collecting encrypted traffic observers can learn intimate details about individuals.

For example, traffic from a medical device can reveal health conditions, while traffic

from smart assistants and home automation devices can reveal at what times someone

is home or awake [13, 11]. When collected by ISPs this information can be used to

generate analytics that can be very valuable to businesses and be used to discriminate

against particular types of traffic.

It has been shown that attacks such as activity inference and behavioral profiling

are not difficult to perform if it is known in advance which devices are communicating.

Therefore, fingerprinting IoT devices is instrumental both in enabling malicious attacks

and generating valuable analytics [12].

In this work I examine the behavior of Smart Assistants, namely the Amazon

2



Echo, Google Home, and Eufy Genie and propose an effective approach to identifying

IoT devices within NATed (Network Address Translation) or private networks. This

information is extracted solely from packet metadata of upstream network traffic in

the form of connection logs, similar to Netflows, which are then used to train machine

learning models to detect Smart Assistant traffic.

I address the following questions:

1. Can classifiers be trained to identify connections made by IoT devices given

only the features that an upstream observer would have access to when sniffing

packets coming from a NATed gateway router.

2. Are these methods feasible and accurate enough to have significant implications

on privacy?

3. Are these privacy concerns grave enough to warrant implementation of defenses

and regulation?

While previous work has achieved success at similar classification, it has been

mostly directed towards proving the feasibility of such an attack. The datasets are

small, many features of network traffic such as TCP flags are ignored, and model

precision is far too low to be deployable at scale. In addition to training models for

classification, a large portion of this work focuses on constructing an optimal feature

set and addressing concerns regarding the scalability of such a system. Further, I

utilize unsupervised machine learning to design a method of filtering traffic which

reduces the false discovery rate of devices.
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Chapter 2

RELATED WORK

2.1 IoT Security and Privacy

A discussion has begun regarding the suitability of current Internet regulation gover-

nance [9, 14, 15]. In [9], Cerf et. al formalizes the concept of digital safety and address

the challenges facing Internet Governance. Cerf et. al argue that the responsibility

for addressing these issues is shared among all stakeholders in its security. These

stakeholders range from companies in the private sector who rely on the trust of

customers, the consumers whose privacy is at risk, and governmental entities who

hold the responsibility for protecting their citizens.

Network monitors [16] and privacy mediators [17] which enforce local privacy

policies and monitor for default passwords, unencrypted traffic, abnormal behavior,

and side-channel privacy leaks have been proposed in an attempt to reduce the

vulnerability. A separate effort is being conducted to examine current devices and

design methodologies to reduce some of the vulnerability [18]

2.2 Privacy Policies and Practices of Intelligent Virtual Assistants

Unsurprisingly, IVAs such as the Amazon Echo and Google Home have come under

scrutiny for their security and privacy practices. In [19],” Jackson et al. argue that

security and privacy concern for the Amazon Echo revolve around mutual trust rooted

in accuracy, fairness, and privacy.

Commonly, companies address these issues in their privacy notices and agreements.

However, agreement to these policies is often given automatically, through use of the
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device (Amazon Echo devices). This is problematic as policies often change over time

leaving the responsibility to track changes in the hands of the user [18].

Of pertinence to this paper are policies for data sharing with external parties

due to their business models and services. As the functionality and variety of IoT

applications increase, this data will become an asset that can be sold [18]. To maintain

privacy, it is essential that data is either stored locally or kept private if it is stored

in the cloud. If data is used to train models, is it done for the purpose of improving

functionality or user experience? And is this performed in a sufficiently anonymised

way?

2.3 Traffic Analysis and Device Fingerprinting

Attacks based on traffic analysis and device fingerprinting has been the subject of much

previous research. In [20], Kohno et al. describe the various classes of fingerprinting

techniques: active, passive, and semi-passive. To apply active fingerprinting, an

attacker must be able to initiate connections to the device being fingerprinted, whereas

in a passive attack all that is required is the ability to observe traffic. In a semi-passive

attack, the attacker has the ability to interact with the device being fingerprinted

after the connection has been initiated. Next, Kohno et al. propose passive and

semi-passive fingerprinting techniques which rely on TCP headers to calculate clock

skew, and determine if two devices on the internet are actually the same physical

device.

In [21], Felten et. al, compromise the privacy of users’ Web-browsing history by

measuring the time it takes for certain web pages to load. The time it takes to revisit

recently accessed websites is significantly lower due to use of web caching mechanisms

by both browsers and DNS. Felten et. al show that an attacker can distinguish cache

hits from misses with 96.7% accuracy.
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2.4 Fingerprinting NATed Hosts and Netflows

One of the intricacies of device identification is that many individual devices are

often represented by a single NAT box such as a router. From the perspective of

an upstream observer, NATed devices appear to be coming from a single endpoint

making it difficult to know the number of distinct hosts. In [22], Bellovin proposes a

method of counting the number of hosts behind small NAT boxes based on IP header

information. Bellovin shows that fields in the IP header often reveals which packets

originate from the same underlying device.

However, at scale network monitoring is often performed not at the packet level

but at the Netflow level. Netflow records are concise representations of network

traffic and are used to collect IP/TCP traffic statistics for data analysis [23]. From

each packet a key comprised of the IP source and destination addresses, source and

destination ports, and protocol is extracted. Additional statistics relating to the

cumulative number of exchanged packets, bytes, timestamps, and TCP flags, and

ToS are calculated. Each set of records is grouped by key into flows, which can then

be further grouped bi-directionally by taking the union of the both one-way flows

between two communicating hosts. However, this compactness comes at a cost, with

information such as payload of the packet lost, it becomes more complicated to track

hosts.

In [23] Verde et. al address the more difficult problem of fingerprinting users

behind NAT from NetFlow Records alone. Verde et. al present a framework to identify

NATed users within a network. The framework operates in two stages:

Stage 1:

1. Takes as input NetFlow raw records of the target user
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2. Trains a set of Hidden Markov Models (HMMs) to capture the time component

of user activities

3. Selects the best performing HMM

Stage 2:

1. Uses selected HMM to classify unknown traffic

2. Aggregates results into a new dataset that describes time intervals

3. Applies Random Forest for final classification

This strategy was able to achieve greater than 90% precision and recall in scenarios

where there were up to 1,000 users simultaneously connected behind 2 NATed IP

addresses. These results are significant given the scale of the experiment and complex

behavioral patterns of users. It follows that similar methods can be used to identify

devices.

2.5 Fingerprinting IoT Devices

Fingerprinting of IoT devices behind a NATed home networks is a topic that had not

previously been explored deeply. Still, I consider a small but influential set of papers

foundational to my work.

In the paper [13], Srinivasan et. al present the Fingerprint and Timing-based

Snooping (FATS) attack which shows that private in-home activities can be observed

by eavesdropping on wireless transmissions of sensors in a home, even in the presence

of encryption. The attack relies on wireless fingerprinting based on the physical

characteristics of RF transmissions to identify devices. Using similar characteristics,

identified devices can then be grouped into spatial clusters representing rooms in a
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home, and these then clusters can be classified as a kitchen, bathroom, bedroom,

etc. This information can then be combined to determine what activities are being

performed in a home at a given time. Using this method, Srinivasan et al. were able

to achieve 80-95% accuracy on activity recognition. However, because this attack

relies on wireless transmissions it is limited to a LAN and cannot be performed by an

upstream observer.

Taking a different approach, Apthorpe et al. propose an attack which is effective

while only relying on traffic available to a passive upstream observer [12]. This attack

examines DNS queries and traffic rates to fingerprint common IoT devices using a

3-nearest neighbor classifier. Apthorpe et al. find that surprisingly simple traffic

features can distinguish smart home appliances with greater than 95% accuracy, but

suggests that more complex features may lead to improved accuracy. Further, they

explore the possibility of activity inference and determine that given the limited

purpose of IoT devices, once a device has been identified, user activity can be inferred

easily through traffic rates.

A third paper, [10] demonstrates that home automation devices such as a Nest

Thermostat are susceptible to similar fingerprinting techniques. Bro, a network analysis

framework, was used to generate logs from connections captured on a local network.

Device behavior was profiled, and correlation analysis was used to find associations

between connections made and observed behavior. Notably, Nest Thermostats reflect

distinct, identifiable patterns in network communications depending on which mode

the device was in. The mode in use directly indicated with 67% to 88% accuracy

whether somebody was home or if the house was empty. However, this approach

was limited by its requirement that connections be exactly the same size in order to

indicate the same behavior.
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Chapter 3

BACKGROUND

3.1 IoT and the Smart Home

The Internet of Things was a term coined to describe the ever-growing number of

internet connected devices. These devices range from sensors such as video cameras

and wearable devices to actuators which allow for control and management of home

appliances remotely. A final class of IoT devices known as Smart Objects combine the

functionality of both actuators and sensors [1].

The typical architecture of IoT Systems includes the following [18]:

• Internet of things device: The component which interacts with the environment,

collecting information and performing some action.

• Data transport: this component represents the communication network between

the IoT device and cloud services.

• Cloud Service: Collect and store data sent from IoT devices. Provides IoT

devices services such as analytics and feedback. Often the key aspects of a

device’s functionality rely on constant communication with a cloud service.

3.2 IVA

A common type of IoT device is the Intelligent Virtual Assistant (IVA). An IVA is

defined as a device running an agent powered by artificial intelligence whose purpose

is to process voice data, perform analysis, and respond to user requests [24]. In this
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Figure 3.1: Typical IoT system[1]
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paper I focus on standalone IVAs that reside on dedicated devices, and rely entirely

on cloud services for their intelligence.

3.3 Machine Learning

Machine learning is a subfield of artificial intelligence focused on designing algorithms

that can learn from data without relying on rules-based programming [25]. Machine

learning algorithms make predictions using statistical methods to estimate complex

functions [26]. This is allows them to learn patterns in data that would be difficult or

impossible to learn otherwise.

Machine learning is referred to as supervised when an outcome variable is present

to guide the learning process. This allows the model to learn what underlying features

are usually associated with a certain outcome. Unsupervised learning occurs when only

the features are observed and there is no measurement of the outcome [27]. Lacking

outcomes, an unsupervised algorithm is forced to make predictions by grouping similar

observations. The two types of machine learning are commonly distinguished by the

presence of labels in the dataset.

In this work, I focus on both unsupervised and supervised techniques to achieve

optimal classification. While there is a wide variety of machine learning algorithms, I

focus only on those which best suited my needs.

3.4 Decision Trees

It is possible to represent acquired knowledge in the form of a decision tree. The tree

attempts to classify objects described in terms of attributes based on rules derived

from previous examples. Each object belongs to one of a set of mutually exclusive

classes. A decision tree is constructed from these examples beginning with the root of
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Figure 3.2: Decision Tree[2]

the tree and proceeding down to its leaves which represent classes. All other nodes

represent attribute based tests with a branch for each possible outcome. To classify

an object we traverse the tree, starting at the root, evaluate the test, and follow the

appropriate branch to the next node. This is repeated until a leaf is encountered, at

which point the object is classified.

The goal is to construct a decision tree based on rules extracted from a training

set, and attempt to use it to classify other unseen objects as well. Therefore, a simpler

decision tree is favorable as it is more likely to represent generalized rules. The

question that follows is how to form a reasonably simple decision tree without having

to examine every possible tree. At the core, this question depends on the choice of the

attribute-based test represented by nodes in the tree. If at the root of the tree there

is a particular attribute who’s test would result in splits of the dataset such that each

split contains objects of a single class then it can be said that this attribute is the

optimal choice. It is therefore possible to choose an attribute at each non-leaf node of

the tree that best splits the remaining objects.

The decision of best splitting attribute is made according to some heuristic function.

A common method is to choose the attribute that results in the greatest Information

Gain. Given an attribute A that splits the set S into subsets Si, the average entropy

of the subsets is computed and compared to the entropy of the original set S. Entropy
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is a measure of orderedness in the class distribution of S, and is defined in section 3.12

of this thesis.

However, Information Gain can be biased towards choosing attributes with a large

number of values which can lead to both overfitting and fragmentation (splitting into

too many small sets).

One alternative is to use the Gini Index which instead of entropy uses an impurity

measure

Where pi is the proportion of objects with class i. The average Gini index can then be

defined as

Which is then used to calculate the Gini Gain

3.5 Random Forests

A Random Forest is a classifier consisting of a collection of tree-structured classifiers

where each tree casts a unit vote for its prediction, and the most popular class is

chosen [3]. Each tree (typically a decision tree) is built from a sample drawn with

replacement from the training set. Additionally, when constructing the tree, the best

splitting attribute is selected not from the full feature set but from a random subset

of features.
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Figure 3.3: Random Forest[3]

Figure 3.4: Typical MLP configuration[4]

This induces randomness in the collection of trees which, due to averaging, leads to

lower variance and greater robustness in the model. This also leads to faster training

and greater scalability as for each tree both the training and feature set are reduced

to smaller sub-samples of the original dataset.

It is important to note that in contrast to the original publication, some imple-

mentations of Random Forests combines classifiers by averaging their probabilistic

prediction, instead of letting each classifier vote for a single class. This is true for

both the scikit-learn and Matlab implementations [28, 29].
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3.6 Neural Networks

A common class of artificial neural networks is the Multilayer Perceptron (MLP). An

MLP is composed of interconnected nodes, or neurons, contained in an input layer,

one or more hidden layers, and an output layer. In a feedforward MLP, each neuron

in a layer receives a set of inputs from the previous layer, calculates the sum, and

outputs a value referred to as the activation to each of the neurons in the next layer.

If enough inputs to a particular neuron activate, a threshold is surpassed and the

neuron, itself, activates.

This activation threshold is modeled by the bias, a number that the sum of the

inputs has to surpass in order to activate the neuron. However, to model complex

decision making, the inputs to a neuron need to be able to take on different weights.

Whether or not a neuron activates can now be defined as a function of z :

A sum of the weighted input, wx, to a neuron added to a negative bias, b, for that

neuron. If z is greater than zero, the threshold is exceeded and the neuron activates

outputting a number close to one, but if z is less than zero, the neuron does not

activate and outputs a number close to zero. This is mathematically modeled by an

activation function such as the sigmoid function

This function is commonly used and offers a smooth curve which allows the network

to learn effectively through a technique called gradient descent.

Gradient descent is an iterative approach to minimizing the error of the network

by taking small steps in the direction of decreased error until a local optima is reached.
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Figure 3.5: Sigmoid Activation Function

A cost function must be defined to quantify the error in terms of the predicted and

expected output of the network. This is accomplished by the cross-entropy cost

function.

Where y is defined as the expected output, a is the activation, a = (z), and n is

the number of training inputs. This error function is only dependent on one variable,

a which is a function of the weights and biases of the neurons in the network. By

taking the gradient of the error function with respect to the weights and biases, we

can determine the direction in which the error increases the most. By taking a step in

the opposite direction, we can decrease the error the most. Step by step the network

slowly adjusts its weights and biases in order to achieve the minimum possible error.

The size of each step taken is called the learning rate and defines how much the

network tweaks its weights and biases on each iteration. A large learning rate leads to

a network that cannot fine tune its weights and biases by small enough amounts to

reach true minimum error. A small learning rate results in a network that learns too

slowly to be useful.

Actual implementations of gradient descent often use an algorithm called back-

propagation. Backpropagation feeds input data through the network and computes
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the cost of the model with the current weights. The error in the output of the network

is determined in terms of the weights and biases of the output layer. This step is

repeated putting those weights and biases in terms of the weights and biases of the

previous layer. This process continues propagating backwards through the layers of the

network. By doing this, the algorithm can calculate the gradient of the error function

with respect to the weights and biases of each individual neuron in the network, and

as a result knows how to tweak them in order to decrease the total error.

3.7 K-means clustering

The K-Means algorithm is a versatile and scalable clustering technique that can be

applied to many different applications. It works by assigning points to k clusters and

then attempting to minimize the distance between the points within a cluster and that

cluster’s centroid which is calculated as the mean value of all the samples assigned

to it. The algorithm iteratively reassigns clusters and recalculates centroids until it

converges on a particular clustering.

Given an integer k and a set of n data points Xd. This occurs through the following

steps [30]:

1. Arbitrarily choose an initial k centers C= {c1,c2... ,ck}.

2. For each i ∈ {1,... ,k}, set the cluster ci to be the set of points in X that are

closer to ci than they are to cj for all j 6=i.

3. For each i ∈ {1,... ,k}, set ci to be the center of mass of all points in Ci:

4. Repeat Steps 2 and 4 until C no longer changes.
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The performance of K-means is highly dependant on the initial choice of centroids

as well as the distance metric used. For centroid initialization I chose to use the

k-means++ which selects initial cluster centers to be distant from each other, leading

to provably better results than random initializations [31]. For the distance metric, I

chose the inertia, sum of squared distances of samples within a cluster to their nearest

neighbor:

3.8 Mini-Batch K-Means

Mini-Batch K-Means uses mini-batches to reduce the computation time and memory

requirements of the K-means algorithm. Mini-batches are subsets of the input data,

randomly sampled in each training iteration. Results are slightly worse than traditional

K-means, but the lower quality is outweighed by improvements in computation time

[32].

3.9 Model Validation

For a given dataset it is necessary to define a procedure to evaluate predictive models.

It would be incorrect to test the performance of a model on the same data that it

was trained on. A common evaluation strategy is the holdout method which involves

partitioning the dataset into a training set and a testing or set. However, this method

is highly unpredictable as the evaluation is dependant on which points are selected to

be in the training and testing sets.
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Figure 3.6: Confusion Matrix[5]

3.9.1 K-fold Cross Validation

To reduce the evaluation’s dependence on the way data is partitioned, K-fold cross-

validation is implemented. In K-fold cross-validation, the dataset is divided into k

subsets and the holdout method is repeated k times. Each of the k subsets is selected

once as the testing set while the remaining k-1 subsets are used as the training set.

Performance is evaluated as the average across all k trials. This method also reduces

the effect of overfitting which occurs when the model becomes so closely fit to a limited

set of data points that it begins to model noise and idiosyncrasies which may not be

representative of the entire dataset.

3.10 Classifier Performance Metrics

For binary classification it is often useful to represent performance in the form of a

confusion matrix. 3.6 shows the layout of a typical confusion matrix.

True Positives (TP) are defined as the number of correct positive predictions,

True Negatives (TN) are defined as the number of correct negative predictions, False
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Positives (FP) are defined as the number of incorrect positive predictions, and False

Negatives (FN) are defined as the number of incorrect negative predictions. It is then

possible to define the following performance metrics in terms of the labels provided by

the confusion matrix.

3.10.1 Accuracy

Accuracy is the percentage of correctly classified samples. Given a testing set of size

N it is defined as

To effectively measure classifier performance, accuracy alone is often insufficient as it

is an incomplete measure of performance. In cases where the overwhelming majority

of the samples belong to a single class, classifiers can achieve high accuracy by simply

predicting the majority class. Further, it does not differentiate between the type of

error being made. To compensate for this deficiency several more informative metrics

are often measured.

3.10.2 Precision

Precision can be thought of as a measure of classifier exactness and is defined as the

proportion of positively predicted samples that were positively labeled.

3.10.3 Recall

Recall can be thought of as measure of classifier completeness and is the proportion of

positively labeled samples that were positively predicted.
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3.10.4 F1 Score

The F1 Score is the harmonic mean of Precision and Recall, therefore, taking both

False Negatives and False Positives into account. It is defined as

3.10.5 False Positive Rate

The False Positive Rate (FPR) is the proportion of negative samples that were

predicted positively and is defined as

3.10.6 False Discovery Rate

The False Discovery Rate (FDR) is the proportion of all positively predicted samples

who are actually negative samples and is defined as

3.10.7 One-vs.-Rest Transformation

To utilize the metrics defined above in the case of multiclass classification, a transfor-

mation is necessary to reduce the problem to multiple binary classification problems.

A simple solution is the one-vs.-rest approach which, for each class, characterizes all

samples of that class as positive samples and all other samples as negative.
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3.11 Clustering Performance

Measuring performance of unsupervised learners is typically more complicated than

that of classifiers. In the case where the class labels are not known it is necessary to

evaluate the grouping of samples by some metric of similarity.

One common method is to measure the variation within a cluster. This can be

done by calculating the Sum of Squared Errors (SSE) defined as

Where n is the number of samples in a cluster, xi is the value of the ith sample,

and x is the mean of all samples. In K Means clusters the SSE is equivalent the total

sum of squared Euclidean distances.

Euclidean distance does not factor in that attributes of a given sample may be on

different scales. One solution is to alternatively find the coefficient of variance within

the cluster. Given a dataset of size n with individual samples x the mean, x̄, and

standard deviation, σ, are

The coefficient of variation is
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3.12 Information Entropy

In the case where class labels are known, it is possible to evaluate performance by

comparing the clustering to the ground truth grouping. In a simple case the number

of clusters is equal to the number of classes. However, in more complex scenarios

samples belonging to each class can exhibit many distinct patterns of behavior. While

these patterns will cluster together, it is unreasonable to expect these patterns to

further cluster by class label. One solution is to allow for a number of clusters larger

than the number of classes, providing finer granularity.

Information Entropy can be leveraged to define a metric for how valuable a

clustering is with respect to the ground truth labels. If a cluster had to be associated

with a class label, a simple solution would be to examine all the samples in the cluster

and assign the most common class label to that cluster. Entropy can then be described

as a measure of the uncertainty with which this cluster labeling occurs. Consider a

dataset D = {D1... ,Dn} comprised of a list of n data instances. Suppose the class

label attribute, C, has k distinct values defining k distinct classes, {c1... ,ck}. Let Di

be the set of data instances in D with the class label of ci. Then we can define the

probability of observing a particular class as,

The Shannon entropy of the dataset D with respect to textitC is defined as follows

[33, 34]:

If a cluster is comprised of samples belonging to the same ground truth class then

that cluster can be considered pure and has minimum entropy of 0. If a cluster is
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perfectly split between classes then it has maximum entropy (the exact value of which

varies by the number of classes).

3.13 Tools

My research was dependant on a selection of tools for classification, clustering, traffic

analysis, and data preprocessing.

3.13.1 Matlab

Matlab is a platform for computational mathematics. It combines a matrix-based

programming language with a desktop environment that caters to many scientific and

engineering applications[mathworks ref]. Matlab offers built-in toolboxes for Deep

Learning and Machine Learning that provide useful performance metrics and support

for parameter tuning. I utilized the Neural Network Toolbox to train and test MLP

classifiers and the Classification Learner for Decision Trees and Random Forests.

3.13.2 Scikit-Learn

Scikit-learn is a machine learning library for the Python programming language. It

provides tools for data mining and data analysis such as clustering, classification,

preprocessing, and others. I found the implementation of the K-Means and Mini-Batch

K-Means algorithms particularly useful for clustering analysis. Additionally, I utilized

Scikit-learn for standardization, normalization, and other data preprocessing tasks.

3.13.3 Bro

Bro is an open source network analysis framework. It can be used as an intrusion

detection system but I was primarily interested in its capabilities as a traffic analysis
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tool. In particular Bro can generate comprehensive logs that describe network activity,

and I specifically examined the TCP/UDP/ICMP, DNS, HTTP, and FTP activity

logs.

3.13.4 Wireshark

Wireshark is a widely used network protocol analyzer. It offers a GUI through

which network data can be browsed. This provided me with the ability to conduct

preliminary analysis as well as the option to delve into irregular behavior that I

observed. Wireshark also offers functionality to read and write many different capture

formats, allowing me to convert packet captures from hexdump to pcap.

3.13.5 Intel NUC

The Intel NUC which stands for Next Unit of Computing, is a small personal computer

designed by Intel. It offers a lightweight and customizable board which can accept

various operating systems, storage, and memory.
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Chapter 4

THE DATASET

To answer the questions posed by this work it was imperative that I have access to

a dataset consisting of a large amount of quality IoT data generated through legal

methods. Fortunately, an effort to generate such a dataset was taking place at the

time of my research, and I was able to work in conjunction with several other students

to meet this need which could be divided into three key components:

• Establishment of a threat model

• Construction of a testbed for data generation

• Implementation of a pipeline for data processing

4.1 Threat Model

In the attack presented in this work the adversary is defined as a passive network

observer with access to upstream network traffic and with the goal of inferring what

devices exist behind a private network. The attacker does not have access to LAN

traffic. Therefore, the attack must be possible even if hosts are NATed behind a

gateway router. This is meant to emulate the information available to an ISP or

similar entity.

Further, the attacker is not able to manipulate traffic or actively engage with the

devices, and as a result, is forced to only examine traffic generated by these devices

when they are idle or not directly being interacted with.

Second, many devices communicate securely through TLS/SSL, so we assume that

packet contents are encrypted and therefore cannot be used. By relying solely on
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packet metadata we can establish an attack which is still successful despite industry

best practices for ensuring security.

Data collection can occur at both the individual packet level (PCAP) and flow

level (IPFIX, Netflow, connection logs). Generation and collection of flow level data

is already supported by most routers in large networks [12] meaning that this attack

will require minimal changes to existing infrastructure. Using standard collection

procedures, records can be aggregated, stored in a database, and used to train machine

learning algorithms.

4.2 IoT Testbed

I retrieved captures of Smart Assistant network traffic taken from a database con-

structed by a team of Cal Poly students [Ryan’s Paper]. The database was constructed

in a laboratory environment where an Intel NUC, configured as a wireless access point,

logged all network traffic sent from 15 IoT devices over a period of 15 weeks.

The Intel NUC received an internet connection through its Ethernet port and

shared its connection with other devices as an 802.11n access point. A python script

running on the access point listens on a socket opened on the wireless interface.

Incoming and outgoing packets are captured, and the packet metadata and hexdump

are stored in an Amazon RDS MySQL database.

4.3 Implementation of a pipeline for data processing

The packet logging table of the database contains about 64 million packets and 71

gigabytes worth of data. Due to the large table size and memory constraints it was not

feasible to make queries over large periods of time. Initial queries for just a few day’s

worth of data from 4 devices would time out after several hours. To speed up packet
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retrieval I utilized a multithreaded approach. Running on the 32 core computers in the

Cal Poly Massively Parallel Accelerated Computing (MPAC) Laboratory, I launched

28 worker threads which each simultaneously queried the database for 2 hour chunks

of captures and merged the results to a single file. This reduced the time to query for

all relevant data to 1 hour. I collected 20 million packets sent by the Amazon Echo

Dot, Amazon Echo Show, Eufy Genie, and Google Home.

Because the packets were sniffed on the LAN, the capture included both upstream

and internal LAN traffic. Devices would often attempt to discover and communicate

with other devices on the same network. For example, applications that were enabled

on multiple devices, such as Spotify, would attempt to synchronize on a tablet, smart

TV, and Amazon Echo. Although devices exhibited interesting interactions on the

LAN, to stay consistent with the Threat Model, I chose to remove all traffic that

originated and was destined for an address within the three private address blocks:

• 10.0.0.0 – 10.255.255.255

• 72.16.00 – 172.31.255.255

• 192.168.0.0 – 192.168.255.255

To extract features from the packet metadata I chose to convert the packet capture

to flow-level records (connection logs) using Bro’s network analysis tools. After

removing any LAN connections, the resulting log contained 800,000 connections which

were then converted to CSV format to simplify integration with Matlab. The features

shown in Table 4.1 were extracted.

4.3.1 Connection State

The connection state feature can take the values listed in Table 4.2
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orig h The originator’s IP address

orig p The originator’s port number.

resp h The responder’s IP address

resp p The responder’s port number

proto The transport layer protocol of the connection

service An identification of an application protocol being sent over the connection

duration How long the connection lasted

orig-bytes The number of payload bytes the originator sent

resp bytes The number of payload bytes the responder sent

conn state Information about the type of connection

missed bytes Number of bytes missed in content gaps, which is representative of packet loss

history State history of connections as a string of letters

orig pkts Number of packets that the originator sent.

orig ip bytes Number of IP level bytes that the originator sent

resp pkts Number of packets that the responder sent

resp ip bytes Number of IP level bytes that the responder sent

Table 4.1: Features extracted from each connection

S0 Connection attempt seen, no reply.

S1 Connection established, not terminated.

SF Normal establishment and termination

REJ Connection attempt rejected.

S2 Connection established and close attempt by originator seen (but no reply from responder).

S3 Connection established and close attempt by responder seen (but no reply from originator).

RSTO Connection established, originator aborted (sent a RST).

RSTR Responder sent a RST.

RSTOS0 Originator sent a SYN followed by a RST, we never saw a SYN-ACK from the responder.

RSTRH Responder sent a SYN ACK followed by a RST, we never saw a SYN from the (purported) originator.

SH Originator sent a SYN followed by a FIN, we never saw a SYN ACK from the responder (hence the connection was “half” open).

SHR Responder sent a SYN ACK followed by a FIN, we never saw a SYN from the originator.

OTH No SYN seen, just midstream traffic (a “partial connection” that was not later closed).

Table 4.2: Connection State
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s a SYN w/o the ACK bit set

h a SYN+ACK (“handshake”)

a a pure ACK

d packet with payload (“data”)

f packet with FIN bit set

r packet with RST bit set

c packet with a bad checksum

t packet with retransmitted payload

i inconsistent packet (e.g. FIN+RST bits set)

q multi-flag packet (SYN+FIN or SYN+RST bits set)

ˆ connection direction was flipped by Bro’s heuristic

Table 4.3: Connection History

4.3.2 History

History records the state history of connections as a string of letters. The meaning of

the letters is defined in Table 4.3:

If the event comes from the originator, the letter is in upper-case; if it comes from

the responder, it’s in lower-case. Multiple packets of the same type will only be noted

once.

4.4 CTU Dataset

To measure the performance of the classifiers in a realistic scenario it was also necessary

to introduce background traffic from which the Smart Assistants could be identified. It

is not a trivial task to create a dataset representative of real network traffic. A capture
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must take place on a large and real network, but rely solely on packet metadata in

order to protect user privacy.

The CTU-13 Dataset provides large samples of live network traffic obtained on

the Czech Technical University campus [35]. The dataset provides thirteen different

captures outputted in various formats including PCAP, NetFlows, and Bro connection

logs. The captures were taken on the CTU campus over periods ranging from a few

hours to a few days.

I included 3 additional captures: CTU-Normal-6, CTU-Normal-7, and CTU-

Normal-12. Each of these datasets include captures taken of a user working on a

computer for several hours. The computers involved were either desktops or notebooks

running Linux.
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Chapter 5

MACHINE LEARNING

5.1 Methodology

Training supervised learners to best classify devices was an iterative process that

involved experimentation and analysis. Preliminary results indicated that devices

engaged in patterns of behavior that were classifiable. However, to reach accept-

able levels of accuracy it was necessary to establish a methodology that maximized

performance of the classifiers. The methodology consisted of the following steps:

• Select the set of machine learning algorithms best suited for the problem

• Construct an optimal feature set

• Define specific performance goals

• Use pre-processing and unsupervised learning to optimize model performance

5.2 Selection of Machine Learning Algorithms

To select a supervised algorithm for classification I examined Neural Networks, Support

Vector Machines, and Random Forests. These algorithms are widely considered to

be the best performing machine learning algorithms, although their performance is

strongly dependant on the data and nature of the classification problem.

Neural networks are meant to remove the need for feature extraction and engineer-

ing, but given a situation where this task has already been performed, Random Forests

are better suited. Additionally, Random Forests work well with a mixture of numerical
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and categorical features while Neural Networks and Support Vector Machines require

categorical attributes to be encoded numerically.

I ultimately chose Random Forests as the primary classifier as both preliminary and

final results showed that Random Forests provided the best classification performance.

However, during informal experimentation I also relied on Decision Trees due to their

quick training time and similarity to Random Forests.

I additionally provide classification results for neural networks at various stages

in my results. Although they did not perform as well as Random Forests, I felt they

were important to include as a performance benchmark. It should be noted, though,

that neural networks are typically used with larger, more complex feature sets and

significantly more training data than this work provides.

In Appendix B I experimentally verify that Random Forests are the best performing

model for this problem.

5.3 Feature Selection

In this step each feature was individually evaluated by training models on a single

feature. High accuracy indicated that the feature was particularly useful for distin-

guishing devices. The differentiating features can be referred to as primary features

which combine to form the minimal feature set. The minimal feature set represents

smallest possible set of features that can be used to classify devices with reasonable

accuracy. In the event that network observers are limited by the number or variety of

features that can be extracted, the minimal feature set provides a baseline for device

classification.

The remaining features could be subdivided into two more categories. Comple-

mentary features which did not perform well individually but combined with other
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features to improve accuracy, and features that did not provide improved accuracy in

any situation. An intuitive example of the first case is the protocol feature. Due to the

limited number of protocols, this feature is not very descriptive, but when combined

with other features can help to define patterns in device behavior.

The process of feature selection documented in detail in Appendix C.

5.4 Defining Performance Goals

Classification of IVAs can be alternatively reframed as a problem of binary classification:

Given traffic of all types, can a particular device be identified? With this framing, it

now possible to identify the two types of error that can occur:

• Type 1 error (false positive): indicating that a device exists in a network when

it does not

• Type 2 error (false negative): failing to identify a device when it is present in a

network

Given the nature of the classification problem the two types of errors can vary in

significance. Therefore, it is important to contextually examine the consequences of

each type of error to determine which should be prioritized.

In the case of device classification it is clear that Type 1 errors carry a much higher

cost than Type 2 errors. A high number of false positives, leads to high uncertainty in

predictions, and a classifier that cannot be trusted is not acceptable in this situation.

Even a false positive rate of 1% becomes problematic when classification occurs at

scale. An ISP with thousands of customers will generate far too many false positives

to be able to confidently identify devices.

Conversely, false negatives are much less significant. There is a wide variety of
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behaviors that devices engage in, and it would be acceptable for most of them to be

ignored if it meant that a few could be identified with high confidence. Consequently,

I consider the reduction of false positives to be the most important problem which

this work seeks to solve.

5.5 Types of Device Behaviors

To identify the potential causes of false positives, it is necessary to understand the

behavior of devices. Intuitively, it can be said that devices will send some traffic that

is similar to other devices and some that is different. For example, similar traffic

can be comprised of DNS queries or short connections that are not indicative of any

particular behavior while more distinct behavior will likely occur over more complex

connections. It is important to note that in some cases short connections can still be

representative of unique behavior, but there exists a subset of these connections which

are not informative.

A false positive can occur as a result of two scenarios. First, a false positive may

be generated when the input is unable to be understood by the classifier, forcing it to

make an inaccurate prediction. This could be a result of insufficient model training or

noise in the input. In the second case, a particular type of connection is consistently

labeled as belonging to multiple devices. If the underlying behavior is performed

by multiple devices, the classifier will become confused. Returning to the previous

example, if all the devices sent DNS queries that resulted in identical connections,

classification of this behavior would be unpredictable. Therefore, the classifier should

not be attempting to predict the presence of a device based on a type of connection

are commonly made by multiple devices.
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5.6 Clustering

Clustering can be used to identify groupings of similar behavior. An effective clustering

algorithm should be able to form clusters such that each connection within a cluster

is an instance of a distinct behavior that devices engage in. For instance, it would be

reasonable to expect all pings, or ICMP Echo traffic, to cluster together regardless of

the device.

These groupings, or clusters, can then be examined to determine if they are at a

high risk of leading to false positives. Connections associated with high risk clusters

can then be ignored leading to a direct decrease in false positives observed.

Formally, it can be said that observed behavior can be separated into clusters that

are either homogeneous or heterogeneous. Clusters that are homogeneous describe

unique behavior and are well-suited for identifying devices. On the other hand, clusters

that are heterogeneous describe behavior that is engaged in by multiple devices and

will only lead to confusion. Therefore, the elimination of heterogeneous clusters is

synonymous with the elimination of groupings with a high risk of producing false

positives.

Cluster heterogeneity can be quantified by the Information Entropy (3.12) which in

this case is simply a measure of the uncertainty with which a cluster can be associated

with a particular device. By defining an entropy threshold to represent the highest

acceptable heterogeneity, clusters that are not easily associated with a particular

device can be filtered out. Setting the entropy threshold to zero would mean that

everything but pure clusters (clusters with one one type of device) would be removed

from the dataset.

To apply this strategy to my classifier I used the K-Means algorithm to identify

heterogeneous clusters and filter out their corresponding connections. The K-means
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algorithm was chosen due to its efficient run-time of O(n). Given the size of the

input dataset as well as the potentially high number of clusters, non-linear algorithms

such as Hierarchical Clustering would quickly become unmanageable. The runtime

and memory usage were only further improved through the use of the optimized

Mini-Batch variation of the K-Means algorithm. It is important to note that K-means

is known to struggle with high dimensionality and non-hyper-spherical cluster shape,

but given the low number of features, this was not an issue.

Another limitation of K-Means Clustering is that the ideal K value (the number of

clusters) is not known ahead of time. It is necessary to derive this value experimentally

by examining many values of K and measuring the effectiveness of the clustering.

To derive the value of K, clustering performance must be evaluated to determine

if the algorithm is providing groupings that are sufficiently distinct. First, the entropy

can be examined to determine the type of groupings that are being made. An effective

clustering algorithm will isolate specific behavior which can be either performed by a

single device, or common to multiple devices. Therefore, clusters will be either very

homogenous or very heterogeneous resulting in entropy values at both extremes, but

very few in the middle. It can then be said that high variance in the distribution of

cluster entropy is an indicator of effective clustering.

This method allowed me to narrow down my search to a smaller range of K values,

but an alternative method was needed to provide a more fine grained evaluation

of performance. Revisiting the notion that a cluster represents a behavior that is

repetitively engaged in, it would be reasonable to assume that a good clustering

algorithm would produce clusters that contain very similar connections. Similarity can

be quantitatively measured by the standard deviation of each feature of a connection.

However, since the features are on different scales, a standardized measure of variance,

the coefficient of variation, is needed to represent the total similarity. By calculating
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the average coefficient of variation across all attributes, or features, the similarity of a

cluster can be calculated. Further, this value can be averaged across all clusters to

determine the effectiveness of an instance of the K-Means algorithm.

5.7 Classifier Integration

To integrate this method into my classifier I train the K-Means model on the training

dataset to identify the heterogeneous clusters based on entropy. For each heterogeneous

cluster, the cluster number is recorded and connections within that cluster are dropped

from the dataset. The remaining connections are then used to train the classifier.

After training, the K-Means model can indicate which cluster a new input would

be placed into without having to recalculate every cluster. If an new connection

is assigned to a cluster that was previously determined to be heterogeneous, it is

not classified. As a result the classifier will not be given the opportunity to make a

prediction on a connection that has a high chance of producing a false positive.

Decreasing the entropy threshold decreases false positives and reduces the amount

of noise in the dataset. However, it is necessary to tolerate some level of heterogeneity

in order to prevent overfitting and increase model robustness. Further, low thresholds

can filter out the majority of a device’s data which can lead to a poorly trained model.

The entropy threshold is effectively a parameter that can be adjusted to give

preference to false positives over false negatives. A high entropy threshold will allow

for training on a larger and more diverse set of data increasing the completeness or

recall of the classifier. A low entropy threshold leads to a model which can predict

the presence of devices less often but with much greater precision. I experimentally

determine the entropy threshold which meets the performance needs in Section 6.4.
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5.8 Removing Noise from the Dataset

In addition to reducing the false positive rate, clustering was useful for removing

noise from the dataset. For the 15 weeks during which this dataset was generated

the devices were left almost entirely untouched with an event log kept to record any

interactions. However, there was ultimately some unlogged interactions with the

devices which were included in the dataset. I defined two heuristics to identify and

remove extraneous connections. A cluster should only be included if: It contains

greater than 105 connections as this represents a behavior that occurs at least daily

It contains greater than 15 connections and has a low coefficient of variation. This

heuristic is meant to account for behavior that is irregular but especially distinct such

as a weekly software update.

It is important to remember that a cluster must still meet the entropy threshold

to be included, but these heuristics prevent excessively small but homogenous clusters

from being included in the dataset.

5.9 Note about the Dataset

It is not entirely accurate to state that this dataset provides data from four distinct

IoT devices. At times the Amazon Echo Show and Amazon Echo Dot communicate

with each other in ways that two devices made by different manufacturers would not.

For example, the devices communicate such that only one device responds to a voice

command that both may have heard. The extent at which this collaboration occurs is

unknown, but judging by the respective distributions of traffic it could certainly be

the case that the Amazon Echo Dot offloads some work to the Amazon Echo Show

who then relays it back to the Echo Dot over the LAN. As a result we shall consider

these two devices separate but somewhat coupled.
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Chapter 6

RESULTS

I present the results of this work as a series of 4 experiments. The experiments follow

the methodology proposed in the previous section, starting a baseline of classification

and progressing to filter design, false positive reduction, and the introduction of

background traffic.

6.1 Models

In this section I will establish the parameters used for each of the classifiers referenced

in this chapter. Although some effort was put into fine tuning the machine learning

algorithms used in this work, optimizing the performance of the individual classifiers

is beyond the scope of this work.

In this work I utilized the Matlab implementation of a Random Forest, available

through the Classification Learner. Table 6.1 shows the properties of the Random

Forest classifier used.

I relied on the Matlab implementation of Neural Networks, available through the

Deep Learning Toolbox. Table 6.2 shows the parameters of the two-layer feed-forward

network.

Type of Learner Decision Tree

Number of Learners 30

Max number of splits 812,171

Split Criterion Gini Index

Table 6.1: Random Forest Parameters
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Number of Hidden Layers 1

Number of Hidden Neurons 20

Hidden Neuron Activation Function Sigmoid

Output Neuron Activation Function Softmax

Learning Rate 0.01

Performance Function Cross-Entropy

Table 6.2: Neural Network Parameters

K (Experimentally derived) 2770

Centroid Initialization Method k-means++

Maximum Iterations 300

Batch Size 100

Reassignment Ratio 0.01

Table 6.3: K-Means Parameters

For K-Means clustering I used the scikit-learn implementation of Mini-Batch

K-Means. Table 6.3 shows the parameters of the mode.

6.2 Baselines

In this section I establish the baseline classification accuracy of the trained models. The

purpose of this section is to demonstrate the levels of accuracy that were established

by the models without filtering in place or background traffic included.

A detailed description of how the features and models were selected, corresponding

confusion matrices as well as further information on the models trained only on certain

protocols and services are available in the Appendices.

Table 6.4 shows the baseline performance of the Random Forest.
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Device Accuracy Precision Recall False Discovery

Echo Dot 98.50% 90.09% 90.36% 9.91%

Echo Show 98.42% 93.90% 84.19% 6.10%

Eufy Genie 99.68% 96.39% 99.36% 3.61%

Google Home 98.51% 96.12% 94.13% 3.88%

Table 6.4: Baseline Performance of Random Forest classifier

Device Accuracy Precision Recall False Discovery

Echo Dot 99.83% 97.59% 96.33% 2.41%

Echo Show 99.88% 97.66% 98.41% 2.34%

Eufy Genie 99.98% 99.98% 99.96% 0.02%

Google Home 99.96% 99.79% 99.83% 0.21%

Table 6.5: Performance of model trained on HTTP(S)

Table 6.5 shows the baseline performance of the Random Forest when trained on

HTTP and HTTPS connections only.

6.3 Experiment 1: K-Means Clustering

In this section I present the results obtained by performing K-Means clustering. All

12 features were used including categorical attributes, such as protocol and service,

which needed to be transformed to numerical values.

The results achieved in this experiment filter confirmed the claim that devices

behavior tended to form either homogenous or heterogenous clusters. In Table 6.6 and

Table YY I present some of the larger clusters observed to demonstrate this pattern.

These results ultimately served as the rationale for the implementation of a filter

which is introduced in the next experiment.
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Figure 6.1: 5 Large Homogenous Clusters

Cluster Size Entropy Variation Service duration src. packets src. bytes resp. packets resp. bytes

1 127256 0.0005 0 http 7 5 337 5 933

2 65143 0 0 http 7 6 391 4 299

3 36034 0 0 http 7 5 337 5 636

4 10749 0 0.02 http 7.397 5 336.05 5 589.15

5 11128 0.104 0.17 other 1.949 2 120 0 0

Table 6.6: 5 Large Homogenous Clusters
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Figure 6.2: 5 Large Heterogenous Clusters

Number Size Entropy Variation Service duration src. packets src. bytes resp. packets resp. bytes

1 21962 1.393 0 unknown 7 1 60 0 0

2 8361 1.109 0 dns 0 1 75.99 1 76

3 4826 1.866 0.01 unknown 7 1 51.188 0 0

4 3743 1.72 0.15 unknown 1.582 2 111.85 1 59.7

5 2086 1.68 0.87 unknown 0.026 1 52 1 60

Table 6.7: 5 Large Heterogenous Clusters

Some key observations from homogenous clusters include:

• The Eufy Genie was the device most commonly found in homogenous clusters.

• Amazon devices were less likely to form highly homogenous clusters

• Homogenous clusters tended to contain HTTP and HTTPS traffic

• Homogenous clusters typically involved multi-packet exchanges

• Entropy is a sensitive measurement. Even a very small proportion of connections

from different devices will lead to significantly higher entropy than a pure cluster.

Some key observations from heterogeneous clusters include:

• Clusters were generally smaller in size
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• All four devices appeared in many of the clusters

• Clusters tended to contain DNS or traffic from unknown services

• Clusters typically involved short or single-packet exchanges

6.4 Experiment 2: Introducing the Filter

Given the results in Experiment 5, implementing the filter appeared to be a viable

method of reducing false positives. To derive an appropriate entropy threshold It was

necessary to examine the relationship between maximum allowed entropy and model

performance. I varied the entropy threshold from 0 to 1 measuring the effect on both

precision and recall. Results are only plotted for the lower half of entropy thresholds

(less than 1), and as filtering with larger entropy thresholds are not useful given the

goals of this work.

Figure 6.3 shows that as the entropy threshold approaches 0, the Echo Show and

Echo Dot have a significant portion of their traffic filtered out, meaning that their

connections tended to cluster heterogeneously. On the other hand, the Eufy Genie

only has a small amount of traffic filtered out indicating that its connections cluster

homogeneously. Therefore, the percentage of connections filtered out at low entropy

thresholds can be viewed as a measure of the uniqueness of device behavior.

In Figure 6.4, the amount of traffic remaining for each service is plotted as the

entropy threshold decreases. It can be seen that traffic from unknown services are

filtered out at a much faster rate while http and https traffic does not decrease

significantly.

At this point is important to note that moving forward performance is calculated

considering both the filtering and classification portions of the model. In other words,

filtered data is taken into account when calculating performance metrics. This means
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Figure 6.3: Connections Filtered

Figure 6.4: Traffic Remaining
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Figure 6.5: Precision and Recall vs. Threshold

that samples that are filtered count as False negatives for the corresponding class and

True negatives for all other classes despite neither being trained nor tested on. This

allows for a more complete measure of Recall and Accuracy.

Figure 6.5 shows the weighted averages of recall and precision average across the

four devices. It is clear that an inverse relationship is present as recall increases with

entropy threshold while precision decreases. This can be attributed to the filtering.

For low thresholds, more confusing samples are removed and the model is less likely to

make false positive predictions. However, the filter inevitably removes both positive

and negative samples from the dataset resulting in a higher number of false negatives.

As described in Section 5.1 this is acceptable given the much higher cost of false

positives.

It first appears that maximum precision is achieved at the lowest entropy threshold.

However, this is not true. At a certain entropy threshold the precision stop decreasing.

Any samples filtered out past this point only serve to decrease recall and overall model

robustness without any other benefit. To find this point, I examined the false discovery

rate for very low entropy thresholds.
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Figure 6.6: Precision and Recall vs. Threshold

Predicted

Echo Dot Echo Show Eufy Genie Google Home

Echo Dot 10,088 0 8 65

Actual Echo Show 2 10,214 10 44

Eufy Genie 1 3 290,737 3

Google Home 0 1 3 118,554

Table 6.8: Confusion Matrix of Model with Filter

Device Accuracy Precision Recall False Discovery

Echo Dot 83.53% 99.97% 12.47% 0.03%

Echo Show 73.00% 99.96% 8.09% 0.04%

Eufy Genie 74.81% 99.99% 72.87% 0.01%

Google Home 79.63% 99.91% 57.52% 0.09%

Table 6.9: Performance of model with Filter
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Predicted

Echo Dot Echo Show Eufy Genie Google Home

Echo Dot 6,459 0 0 11

Actual Echo Show 2 8,792 0 2

Eufy Genie 0 0 281,308 0

Google Home 0 1 0 107,968

Table 6.10: Confusion Matrix of Model with Filter on HTTP(S) Traffic

Device Accuracy Precision Recall False Discovery

Echo Dot 92.098% 99.969% 16.81% 0.031%

Echo Show 96.503% 99.989% 38.33% 0.011%

Eufy Genie 90.918% 100.000% 88.45% 0.000%

Google Home 95.579% 99.988% 85.79% 0.012%

Table 6.11: Performance of Model with Filter on HTTP(S) Traffic

Figure 6.6 shows that the false discovery rate stopped decreasing around an entropy

threshold of 0.02. Given this results, 0.02 was selected as the optimal entropy threshold

to be used in the remaining experiments.

Tables 6.8 and 6.9 provide a more complete picture of the performance of the

classifier, with input filtered at a threshold of 0.02. While both the Echo Dot and

Echo Show had many of their samples filtered out, the total error is significantly lower.

When applied to only HTTP and HTTPS traffic even higher precision is observed

(Table 6.11), and the high error between the Echo Dot and Echo Show is eliminated

(Table 6.10).
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6.5 Experiment 3: Introducing Background Traffic

In the final experiment background traffic from the CTU-13 dataset was introduced

to determine if device classification is feasible in a realistic scenario. First, I added

the Background traffic to the full set of capture device traffic which I will refer to as

the IVA dataset from here on out. I then passed this dataset through the filter with

an entropy threshold of 0.02, and retrained two models: one on the full set of data

and one on only HTTP and HTTPS traffic.

This new dataset is not representative of a realistic capture scenario due to the

mismatched time frames. The CTU-13 capture was taken over a period of several

days while the IVA dataset was created through at 15 week capture.

However, it is only necessary to worry about the time frames of the individual

connections and not the length capture itself. The classifier is not taking into account

more elaborate patterns that may emerge over many long periods of time because

patterns of behavior are limited to being described by a single connection log entry.

The remaining capture time only allows for multiple instances of behavior to be

captured.

With regards to the length of the connections themselves, mismatches in capture

lengths could cause there to be some connections in the IVA dataset that last longer

than the entire CTU-13 capture. In this case the classifier would be easily able

to predict that these connections are not Background traffic. It was consequently

necessary to ensure that the CTU-13 capture was long enough to contain connections

of similar duration to that of the IVA dataset. Otherwise, this dataset was not far

from what an ISP might observe.
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Predicted

Echo Dot Echo Show Eufy Genie Google Home Background

Echo Dot 108,645 3,199 1,023 2,446 10,799

Echo Show 7,525 67,164 366 1,788 4,153

Actual Eufy Genie 276 397 376,364 617 2,137

Google Home 1,402 689 1,673 191,622 10,706

Background 50 55 26 157 2,524,894

Table 6.12: Confusion matrix of Model 1 with background traffic

Device Accuracy Precision Recall False Discovery

Echo Dot 99.196% 92.191% 86.15% 7.809%

Echo Show 99.452% 93.930% 82.92% 6.070%

Eufy Genie 99.804% 99.193% 99.10% 0.807%

Google Home 99.413% 97.453% 92.98% 2.547%

Background 99.154% 98.911% 99.99% 1.089%

Table 6.13: Performance of Model 1 with background traffic

6.5.1 Model 1

The first model was trained and tested was the original dataset of 812,172 connections

(no filter, all types of traffic) with 2,525,182 Background connections added from the

CTU-13 dataset. The introduction of Background Traffic, shown in Table 6.13, had

almost no effect on the classification performance of Devices. With the exception of

the Eufy Genie, Background traffic was classified with higher precision and recall than

most of the devices. It is interesting to observe that the model produced significantly

more false positives than false negatives when classifying Background Traffic.
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Predicted

Echo Dot Echo Show Eufy Genie Google Home Background

Echo Dot 22,077 690 22 92 55

Echo Show 473 37,730 21 100 92

Actual Eufy Genie 12 58 317,922 11 47

Google Home 60 125 21 125,609 36

Background 2 7 106 0 164,074

Table 6.14: Confusion matrix of Model 2 with background traffic

Device Accuracy Precision Recall False Discovery

Echo Dot 99.790% 97.591% 96.25% 2.409%

Echo Show 99.766% 97.721% 98.21% 2.279%

Eufy Genie 99.971% 99.980% 99.96% 0.020%

Google Home 99.934% 99.839% 99.81% 0.161%

Background 99.948% 99.860% 99.93% 0.140%

Table 6.15: Performance of Model 1 with background traffic

6.5.2 Model 2

I trained the next model on the subset of all HTTP and HTTPS traffic. Again,

performance did not vary significantly from prior results without background traffic.

Again, the Echo Dot and Echo Show suffer from a high false discovery rate. Background

traffic achieves high precision and recall, but only examining HTTP and HTTPS

traffic reduces the Background dataset size from 2,525,182 to 164,419.

6.5.3 Model 3

For the next model, the dataset used for the first model in the section was passed

through a the filter with an entropy threshold of 0.02. The filter included a much
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Predicted

Echo Dot Echo Show Eufy Genie Google Home Background

Echo Dot 2,771 16 0 7 53

Echo Show 4 1,288 3 1 55

Actual Eufy Genie 1 3 220,363 0 24

Google Home 7 2 0 85,867 71

Background 3 14 0 4 1,740,299

Table 6.16: Confusion matrix of Model 3 with background traffic

Device Accuracy Precision Recall False Discovery

Echo Dot 93.985% 99.569% 2.20% 0.431%

Echo Show 96.112% 97.354% 1.59% 2.646%

Eufy Genie 91.291% 99.999% 55.23% 0.001%

Google Home 94.137% 99.986% 41.66% 0.014%

Background 61.719% 99.988% 68.92% 0.012%

Table 6.17: Performance of Model 3 with background traffic

larger proportion of Background traffic, but excluded a large amount of the Echo Dot

and Echo Show traffic. It can be seen that recall and accuracy decrease significantly

due to the large proportion of samples filtered out. However, in the case of the Eufy

Genie and Google Home the false discovery rate is exceptionally low.

The relatively poor performance of the Echo Dot and Echo Show can be attributed

to the much lower number of samples that made it through the filter. It appears

that the introduction of Background traffic had an effect on cluster entropy for these

devices. It may be required that the optimal entropy threshold be redetermined for

each dataset in order to maximize precision.
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6.6 Experiment 4: Realistic Private Network Scenario

As an additional experiment. I attempted to use Model 3 of Experiment of 4 (Section

6.5.3) to classify connections made in a dataset meant to simulate a capture on a

realistic private network. The dataset was constructed by combining the following

captures.

• CTU-Normal-6: user working on a Linux desktop for several hours

• CTU-Normal-7: user working on a Linux desktop for several hours

• CTU-Normal-12: user working on a Linux notebook for several hours

• 6-hour capture of traffic from the IoT Testbed

None of the samples in this dataset were taken from the dataset used to train the

model. Therefore the model had previously neither seen the samples in this dataset

nor seen any samples belonging to the same capture as the samples in this dataset.

However, this experiment was not particularly conclusive. The 6 hour capture

produced a much smaller number of useful connections than expected, and even fewer

connections made through the filter. The confusion matrix in Table 6.18 shows that

the device traffic was almost entirely filtered out. As a result, the corresponding

performance metrics (Table 8) are not very meaningful. It appears that small captures

hinder the performance of the model. Longer captures are required so that behavior

patterns can be sufficiently observed.
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Predicted

Echo Dot Echo Show Eufy Genie Google Home Background

Echo Dot 0 0 0 0 0

Actual Echo Show 0 10 2 1 6

Eufy Genie 1 0 0 0 4

Google Home 0 0 0 0 0

Background 0 1 2 2 918

Table 6.18: Confusion matrix of Model 3 with background traffic

Device Accuracy Precision Recall False Discovery

Echo Dot 99.894% - - -

Echo Show 98.944% 90.909% 52.63% 9.091%

Eufy Genie 99.261% - - -

Google Home 99.683% - - -

Background 98.416% 98.922% 99.46% 1.078%

Table 6.19: Performance of Model 3 on private network scenario
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Chapter 7

DISCUSSION

The results listed above demonstrate that IVA-enabled smart speakers can be identified

with very high accuracy and precision using machine learning algorithms. Not only

can IVA-enabled smart speakers be differentiated from each other, they can be

differentiated reliably from background traffic. This implies that these results can be

extended to a variety of IoT devices which exhibit similarly unique behavior patterns.

Throughout this work it has been shown that despite the pervasiveness of encryption

does not prevent this attack which relies solely on packet metadata. This is problematic

given that the FCC overturned its decision to ban the restrictions placed on ISPs with

regards to data collection, claiming that encryption is sufficient.

The proposed methodology can be implemented with minimal modifications to

existing infrastructure. Further, given the very low false discovery rates implementation

at scale would not result in a problematic number of false positives. Therefore, ISPs

who are best positioned to collect training data for these models will also be best

positioned to then use the models to discover information about private networks.

This attack enable ISPs to consistently be able to determine which devices are

contained within the homes of their customers. Even further, once traffic can be

reliably associated with a particular device it is then possible to examine the traffic in

context of the particular device to perform activity inference. There is a selection of

literature which demonstrates the feasibility of such an attack [10, 36, 13, 11, 37]. For

example, it has been shown that Nest Thermostats can reveal at what times a person

is home, sleep monitors can reveal at which times a person sleeps, and smart kitchen

appliances can reveal information about the eating habits of an individual.
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This alone is a clear violation of privacy. However, the implications of this type of

attack extend far beyond trivial violations of privacy. When deployed at scale this type

of data collection generates valuable information about what devices consumers have

and how they interact with them. This presents a tremendous opportunity for ISPs

to collect information about the specific devices owned by each of their customers.

This information can be sold to businesses or be used to give preferential (or

discriminatory) treatment to traffic from certain devices. Therefore, it is important to

pose the question of whether ISPs, as an intermediary to communication, have a right

to profit from this type of data collection.

Next it is important to discuss the viability of defenses which can be implemented

to protect against such attacks. It has already been established that encryption alone

is not a suitable defense, so alternatives must be examined.

One possible defense includes the use of VPN Tunneling. VPN (Virtual Private

Network) Tunneling allows for an entire packet (including metadata) to be encrypted

and then encapsulated within a carrier packet for transport. The carrier packet can

then be transmitted to a proxy server who then can encrypt the carrier packet and

forward the original packet to its intended destination. With VPN tunneling in place all

traffic from a network will appear to originate from a single pair of endpoints. However,

it is unlikely that VPN tunneling is adopted as a defense because it is unreasonable

to assume that manufacturers will design their IoT devices to communicate in this

manner. Further, this approach is not perfect. First, VPN tunneling does not entirely

protect against this attack if the networks activity is sparse or if a dominating device

is present. Second, the use of a tunnel prohibits ISPs from performing this attack,

but consequently enables proxy servers to conduct it.

Another possible defense is traffic shaping. Traffic shaping involves modifying

traffic rates to fit some predetermined schedule and padding or fragmenting packets
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such that they are all the same size. This will consistently protect against the attack,

but comes with an inherent bandwidth and latency cost. Given this cost, companies

have been reluctant to adopt any form of it. However, if the bandwidth and latency

limitations can be overcome, traffic shaping seems the most viable defense to this

attack.

58



Chapter 8

CONCLUSION

This work has established that IVA-enabled smart speakers exhibit distinct commu-

nication patterns that classifiers can be trained to identify. Further, communication

patterns are so distinct that classifiers can still identify devices in the presence of a

large amount of background network traffic. The results suggest that classifiers can

be trained to identify connections made by IoT devices in general.

Traffic is logged given only features that an upstream observer has access to.

This type of data collection can occur at scale with minimal modification to existing

infrastructure allowing for this methodology to be implemented at scale. As scale

increases even moderately low rates of false positive can destroy classifier trust.

However, I have shown in this work that clustering can be used to reduce the false

positive rate to a rate that is manageable at scale.

This type of data collection has significant implications on privacy when imple-

mented by an upstream observer. ISPs, for example, can utilize these methods to

learn about what devices their customers have in their homes, to perform activity

inference, and to give preferential treatment to certain types of traffic. These are

legitimate concerns and warrant discussion regarding the implementation of defenses

and regulation to prevent this type of data collection.
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APPENDICES

Appendix A

TRAFFIC ANALYSIS

To get a sense of what types of information can be extracted by examining device

activity I conducted a preliminary traffic analysis.

Out of the 2,128,290 total connections in the dataset 1,344,133 were with another

device on the same LAN. This is certainly an interesting finding as it demonstrates

just how frequently smart home devices communicate to discover each other and

maintain consistency across different platforms. For example, the Amazon devices

on the network such as the Echo Show, two Echo Dots, and a Fire Stick frequently

attempt to discover each other and coordinate responses so that only a single device

responds to a request even when multiple can hear it. Similarly, Spotify enabled

devices communicate to allow music playback on remote devices and ensure that only

one account is listening at a time.

The remaining 834,157 connections consisted of upstream traffic intended for hosts

on external networks. To get an understanding of the identity of these hosts I examined

the set of DNS queries generated from the network. In Table A.1 I show the set of

the 20 most queried domains. This list alone reveals information about what devices

may exist on the network. Requests to domains are seen with the words “Alexa”,

“eufy-genie”, “amazon”, and “google”. Many of these seem to be associated with APIs

and cloud services. Other requests containing phrases such as “connectivity-check”,

and “device-metrics” seem to be relaying information about devices to the cloud. It

is also interesting to note that some of the most frequent DNS requests were DNS
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Figure A.1: HTTP Activity

requests to local domains (not shown) coming from devices or applications such as

Spotify and Chromecast presumably for discovery and other LAN interactions.

Next, I examined the type of HTTP requests that devics engaged in. Figure

A.1 shows the breakdown by type of request. However, the Amazon Echo and Dot

produced significantly less HTTP traffic (1,368 and 20,635 connections, respectively)

than the Google Home and Eufy Genie (81,814 and 321,632 connections, respectively).

It is important to note that there were no POST requests observed from the devices.

This could be in part due to the fact that devices were not being actively interacted

with, but probably due to encryption of POST requests in order to preserve privacy.

Additionally, the Google Home only engaged in HEAD requests. These requests only

reveal metadata about the document being requested and are useful for caching, but

do not necessarily reveal sensitive information in the response body.

Figure A.2 shows encrypted HTTPS connections. Given that the Eufy Genie

sent such a large number of unencrypted HTTP requests it is not surprising that it

hardly engaged in any HTTPS connections. The Amazon Echo Show and Google

Home’s connections are encrypted much more frequently as a they sent far fewer

unencrypted GET requests. Strangely, the Amazon Echo Dot does not engage in very
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DNS Query Number of Queries

www.google.com 65424

avs-alexa-na.amazon.com 56584

clients4.google.com 23786

clients1.google.com 13017

time.google.com 7855

api.amazonalexa.com 7432

time.windows.com 6683

spectrum.s3.amazonaws.com 5971

channel.status.request.url 4381

device-metrics-us.amazon.com 4019

arcus-uswest.amazon.com 3290

clients3.google.com 2430

ntp-g7g.amazon.com 1912

api.amazon.com 1795

android.googleapis.com 1633

kindle-time.amazon.com 1415

dp-gw-na.amazon.com 1283

genie.eufylife.com 1137

www.yahoo.com 911

connectivitycheck.gstatic.com 753

Table A.1: Common DNS Queries
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Figure A.2: HTTPS Activity

Device Domain Frequency

Google Home clients4.google.com 40680

Echo Dot device-metrics-us.amazon.com 6317

Echo Show api.amazonalexa.com 16222

Eufy Genie genie.eufylife.com 2397

Table A.2: Domains Contacted Most Frequently Using Encryption

many connections. One possible explanation is that the Echo Show relays information

to the Echo Dot locally, in order to reduce duplicate requests.

Bro provides a log of activity it identifies as weird. From the Bro documentation:

Weird activity is defined as unusual or exceptional activity that can

indicate malformed connections, traffic that does not conform to a par-

ticular protocol, malfunctioning, or misconfigured hardware, or even an

attacker attempting to avoid/confuse a sensor.

In Figure A.3 I list a breakdown of these observed behaviors by device.

It can be seen that premature and active connection reuse are seen occurring in all
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Figure A.3: Weird Behavior

devices. Data before connection establishment seems to occur much more frequently

in the Amazon devices, especially the Echo Show, while the DNS unmatched reply is

observed frequently in the Google Home.

This analysis showed that devices engaged in distinct behavior and even revealed

their presence through the domains that they contacted. While this analysis was

useful, manual examination of device behavior is not a viable option for classifying

devices. An alternative approach for device fingerprinting must be considered which

is both more flexible and scalable.
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Appendix B

MODEL SELECTION

In Section 5.2 I described the rationale behind choosing Random Forests as my primary

classifier. However, in this experiment I formally demonstrate that Random Forests

provide the best performance. The input dataset for this experiment is the set of all

upstream connection labeled by Device, with all twelve features included.

B.1 Feedforward Neural Network (MLP)

Table B.1 and Table B.2 illustrate the performance of the MLP classifier

B.2 Random Forests

Table B.3 and Table B.4 illustrate the performance of the Random Forest classifier

The results listed in Tables B.3 and B.4 show that the Random Forest was better

suited for this classification problem than the Neural Network (Table B.1 and B.2). In

section 5.2, I have outlined some potential causes of this disparity in performance. I

Predicted

Echo Dot Echo Show Eufy Genie Google Home

Echo Dot 76,733 11880 11727 8538

Actual Echo Show 10314 46,302 4352 3506

Eufy Genie 27412 11441 361,846 26645

Google Home 11,653 11,374 21046 167,403

Table B.1: Confusion matrix of MLP classifier
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Device Accuracy Precision Recall False Discovery

Echo Dot 89.962% 60.845% 70.48% 39.155%

Echo Show 93.491% 57.165% 71.81% 42.835%

Eufy Genie 87.364% 90.695% 84.67% 9.305%

Google Home 89.810% 81.227% 79.16% 18.773%

Table B.2: Performance of MLP classifier

Predicted

Echo Dot Echo Show Eufy Genie Google Home

Echo Dot 113,959 3,295 5,015 3,843

Actual Echo Show 8,364 68,192 1,986 2,455

Eufy Genie 621 411 396,405 1,534

Google Home 3,547 721 7,824 194,000

Table B.3: Confusion matrix of Random Forest classifier

Device Accuracy Precision Recall False Discovery

Echo Dot 98.50% 90.09% 90.36% 9.91%

Echo Show 98.42% 93.90% 84.19% 6.10%

Eufy Genie 99.68% 96.39% 99.36% 3.61%

Google Home 98.51% 96.12% 94.13% 3.88%

Table B.4: Performance of Random Forest classifier
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experimented with hyperparameters such as the number of hidden neurons in my Neural

Network before settling on my final configuration. However, experimentation with

different Deep Learning architectures and meticulous fine tuning of hyper-parameters

is outside the scope of this work. It is entirely possible that a more specialized Deep

Learning model can outperform the Random Forests used in this work.
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Appendix C

FEATURE SELECTION

In this experiment a Random Forest is trained only on a single attribute and the

model’s accuracy is evaluated using 5-fold cross-validation. The input dataset for

this experiment is the set of all upstream connection labeled by Device (812,172

connections). The purposed of this experiment was to examine the importance of each

feature and try various combinations of features to determine the final feature set.

Figure C.1 shows the accuracy of the single-feature models. Every feature was

able to provide greater than 50% accuracy with the exception of originator port which

in the case of a NATed network is usually randomly generated by the NAT router

solely for purpose of maintaining internal mappings. The most interesting takeaway

is that the bytes sent and received, both at the application and network layer, were

the best predictors of device. Next, history provided good accuracy as well which is

unsurprising as the state history of a connection can convey a significant amount of

information about the type of behavior a device engages in.

With a basic understanding of the importance of each feature, the next step was to

determine which features in combination lead to increased accuracy and which made

little or no difference. I again trained Random Forests in combination with 5-fold

cross-validation.

Starting with the best performing features I incrementally increased the size of

the feature set such that accuracy increased. In most cases this was done by including

the next best performing feature which was already not in the feature set. However,

this was not the case for all of the feature sets. In the smaller feature sets I chose

to exclude the network layer bytes (orig/resp ip bytes) to reduce redundancy since
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Figure C.1: Accuracy of models trained on individual features

application layer bytes were already included. Similarly, port numbers were excluded

due to the protocol and service features.

Further, I chose not to include history and connection state for feature sets 2, 4, 7,

and 9. These features are not universal to all flow level records and excluding them

allowed me to show the effectiveness of the attack when using only commonly available

features of network traffic. Next, my focus shifted to maximizing accuracy.

Key takeaways from this portion of results include the following:

• 91.3% accuracy can be achieved only relying on the number of bytes sent and

received

• Bytes sent/received, number of packets, and history have the biggest impact on

accuracy.

• Increasing the number of features increases accuracy.
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Feature set: 2 4 5 7 9 11 12

conn state

duration

history

missed bytes

orig bytes

orig ip bytes

orig pkts

proto

resp bytes

resp ip bytes

resp pkts

service

Table C.1: Features in each Feature Set
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• Increasing the size of the feature set from 5 to 12 only leads to a 0.7% increase

in accuracy.

I ultimately chose the feature set of size 12 in an effort to achieve the best possible

accuracy. However, it is important to note that fairly high accuracy was still possible

with smaller feature sets. This finding shows that the attack is still possible despite

more limited network analysis capabilities.
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Appendix D

CLASSIFIER ACCURACY BY PROTOCOL AND SERVICE

The following experiment examines classifier accuracy on traffic separated by protocol

and service. The purpose of this experiment is to better understand which types of

traffic include unique patterns of behavior that can be used to identify a device. First I

seperated device traffic by protocol. Figure D.1 shows amount and type of traffic sent

by each device. The distribution of traffic across the various services and protocols

has implications for the models trained in this section. Because all devices do not

equally rely on the same services or protocols, filtering by service introduces a bias in

the training set. For example, training on only http traffic results in a dataset that

does not include very many connections from the Echo Show or Echo Dot. Therefore,

this information can help to determine which results in this section are meaningful,

and which may be problematic.

Figure D.2 shows a case of misleading results as upon initial observation it appears

that the model trained on UDP traffic achieves the best accuracy. However, by

examining the distribution of traffic by protocol in Figure D.1 it becomes clear that

the only devices sending a significant amount of UDP traffic are the Google Home and

the Echo Dot, and that UDP traffic in general is far rarer than TCP traffic. The fact

that the model achieved 99.6% accuracy is still notable. Upon further examination I

was able to discover that while the majority of udp traffic is DNS requests, the Google

Home had 10,246 non-DNS connections, suggesting that the Google Home relies on

UDP in ways that other devices do not.

Examining traffic separated by service (Figure D.4), it is clear that models trained

on HTTP and HTTPS produce the best performance. Traffic from unknown services

simply does not provide a comparable level of accuracy, presumably due to the high
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Figure D.1: Device Traffic

Figure D.2: Accuracy
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Figure D.3: Device Traffic

Figure D.4: Accuracy
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Predicted

Echo Dot Echo Show Eufy Genie Google Home

Echo Dot 22,094 692 25 125

Actual Echo Show 482 37,807 24 103

Eufy Genie 13 65 317,933 39

Google Home 51 148 18 125,634

Table D.1: Confusion Matrix of model trained on HTTP(S)

Device Accuracy Precision Recall False Discovery

Echo Dot 99.83% 97.59% 96.33% 2.41%

Echo Show 99.88% 97.66% 98.41% 2.34%

Eufy Genie 99.98% 99.98% 99.96% 0.02%

Google Home 99.96% 99.79% 99.83% 0.21%

Table D.2: Performance of model trained on HTTP(S)

variance across the types of connections which fall into this category. The HTTP

results are problematic due to the lack of connections by the Echo Dot and Echo

Show (Figure D.3) while the HTTPS results lack connections from the Eufy Genie.

However, all four devices are represented in the combined set of both HTTP and

HTTPS traffic. The model trained on this set achieves 98.4% accuracy. Many IoT

devices rely on HTTP or HTTPS to send REST API calls to Cloud Services. These

findings demonstrate that analyzing interactions with these Cloud Services alone is

enough to identify devices.

Table D.1 shows the confusion matrix of the model trained on HTTP and HTTPS

traffic. It is interesting to note that the greatest error was observed between the two

Amazon devices, the Echo Dot and the Echo Show, who likely share many of the same

Cloud Services.
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Table D.2 shows the model performance. This is a clear improvement over the

model trained on the entire dataset. However, classification between Echo Dot and

the Echo Show still are not comparable with the Eufy Genie and Google Home. This

is likely due to similarity between connections which the filter introduced in the next

experiment will seek to eliminate.
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