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Abstract
The Standard Model of particle physics has been tested over many years with many ex- periments and has
predicted experimental results with remarkable accuracy. In 2012, the last piece of the Standard Model, the
Higgs boson, was discovered by the experiments ATLAS and CMS at the Large Hadron Collider (LHC).
Although this completes the Standard Model, this by no means completes our picture of the physics that
describes the observable universe. Several phenomena and measurements remain unexplained by the
Standard Model including gravity, dark matter, the baryon-antibaryon asymmetry of the universe and more.
One of the primary goals of the LHC and the ATLAS experiment are to search for extensions and
modifications to the Standard Model that could help to explain these phenomena. This the- sis presents three
areas where I made major contributions. The first is in the identification of prompt electrons in ATLAS using
a likelihood method both in the online trigger system and in offline data analysis. Prompt electrons are
ubiquitous in the signatures of electroweak physics, one of the cornerstones of the ATLAS physics program.
Next I present a search for new physics in low-mass (65-110 GeV) diphoton events. This is a model
independent search that is motivated by several extensions to the Standard Model including the two Higgs
doublet model where new scalars can appear as lighter versions of the Standard Model Higgs. No evidence for
a new narrow resonance is found, so limits ranging from 30 to 101 fb are set on the production cross section of
such a resonance, assuming that its branching fraction to two photons is 100 percent. The sensitivity of these
results are limited by the systematic uncertainties due to the potential spurious signals introduced by the two-
photon non-resonant Standard Model background. My third contribution was an initial investigation of a new
method to model this background using Gaussian Process Regression.
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abstract

a search for new low-mass diphoton resonances at atlas and an

investigation into using gaussian process regression to model

non-resonant two-photon standard model backgrounds

Rob Roy MacGregor Fletcher

I.J. Kroll

The Standard Model of particle physics has been tested over many years with many ex-

periments and has predicted experimental results with remarkable accuracy. In 2012, the last

piece of the Standard Model, the Higgs boson, was discovered by the experiments ATLAS

and CMS at the Large Hadron Collider (LHC). Although this completes the Standard Model,

this by no means completes our picture of the physics that describes the observable universe.

Several phenomena and measurements remain unexplained by the Standard Model including

gravity, dark matter, the baryon-antibaryon asymmetry of the universe and more. One of

the primary goals of the LHC and the ATLAS experiment are to search for extensions and

modifications to the Standard Model that could help to explain these phenomena. This the-

sis presents three areas where I made major contributions. The first is in the identification

of prompt electrons in ATLAS using a likelihood method both in the online trigger system

and in offline data analysis. Prompt electrons are ubiquitous in the signatures of electroweak

physics, one of the cornerstones of the ATLAS physics program. Next I present a search for

new physics in low-mass (65-110 GeV) diphoton events. This is a model independent search

that is motivated by several extensions to the Standard Model including the two Higgs dou-

blet model where new scalars can appear as lighter versions of the Standard Model Higgs.

No evidence for a new narrow resonance is found, so limits ranging from 30 to 101 fb are

set on the production cross section of such a resonance, assuming that its branching fraction

to two photons is 100 percent. The sensitivity of these results are limited by the systematic

uncertainties due to the potential spurious signals introduced by the two-photon non-resonant

Standard Model background. My third contribution was an initial investigation of a new

method to model this background using Gaussian Process Regression.
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Preface

This thesis describes some of the work I did as a graduate student but does not attempt to be

a complete and detailed discussion of any topics. My hope is that someone will find this useful,

especially the last chapter which describes my attempts to refine how background modeling

in the low mass diphoton group is done. This work will likely be carried on by new students

and this may be a good starting point to see what I have tried in the past, what work I was

doing at the end, and what studies were outstanding. This will also be a source of references

that describe in much more detail the topics contained in here.

This thesis will be organized as follows: Chapter 1 contains an overview of my time in

graduate school, with very brief descriptions of work I performed that are not the focus of later

sections. This section is largely historical and is intended to document projects for my own

benefit. Chapter 2 gives a short introduction to the Standard Model of particle physics as well

as a few shortcomings of the theory. As the main analysis described in this thesis is motivated

by extensions to the scalar sector of the Standard Model, emphasis is placed on how additional

scalars can help to address gaps in our understanding of the fundamental particles and their

interactions. Chapter 3 describes the Large Hadron Collider and the ATLAS experiment. This

chapter skips over a tremendous amount of detail, but references give complete descriptions

of both the LHC and ATLAS. Each collaborator on the ATLAS experiments earns the right

to be an author on physics publications by performing a qualification task. My task was

ix
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performed in a so-called e/gamma group, a Combined Physics and Performance group that

focuses on the identification of electrons and photons whose experimental signatures are very

similar in the ATLAS detector. I worked on the identification of prompt electrons produced

in the decay of electroweak processes such as W → eν, Z → e+e−. This work is described in

Chapter 4. After qualifying for authorship, I began the work that would make up the bulk of

this thesis. Experimental signatures with two photons in the final state provide clean processes

with relatively small backgrounds which makes them a good choice to search for new physics.

A search for low mass diphoton resonances below the Standard Model Higgs mass is described

in Chapter 5. The analysis on diphoton events uses a method known as spurious signal

to test for functional forms to describe the background distribution. This method requires

large quantities of simulated data which are prohibitively expensive to generate. Chapter 6

describes some initial investigation with the goal to replace this method with a more advanced

technique based on Gaussian Process Regression. This method was ultimately not used in this

round of analysis, however I think is a very promising way forward for not only the diphoton

group, but many other groups with similar regression tasks.

”Sometimes science is more art than science, Morty. A lot of people don’t get

that.”

– Rick Sanchez

Rob Roy MacGregor Fletcher

University of Pennsylvania, July 2018



Chapter 1

Introduction

The discovery of new particle consistent with the Higgs boson was announced on July 4th,

2012. During the announcement, I was driving a truck through western Pennsylvania on my

way to start graduate school at Penn. This was an exciting time in particle physics, and Penn

had played a big part. The summer before classes began for me, I worked with Doug Schaefer,

one of the Penn graduate students at that time, on the WW decay channel of the Higgs boson.

Although I did not work on this for too long, it got me excited to finish classes and dig into

more analysis.

This chapter will briefly describe some of the work that I did on ATLAS that does not

fit well into other sections or does not merit its own section. This work is primarily being

documented for my own benefit.

1.1 Electron ID

My first real work on ATLAS was in the Egamma group which is a combined pysics and

performance group that focuses on the identification of prompt electons and photons. My

focus was the identification of electrons. This was to be my service work on ATLAS. When

I joined the group, the electron ID had been reworked by a few Penn students and had been

1



1. Introduction 2

changed from a cuts-based system, to a naive Bayes method called electron likelihood. At

this time the likelihood approach was only used in the offline analysis; the cuts-based analysis

had been used in the trigger. There was interest in moving the trigger over to an electron

likelihood as well. This would remove some inefficiencies that arose from using 2 different IDs.

Some electrons that passed the cuts ID would not pass the likelihood and vice versa. Work

began to modify the likelihood to work in the trigger. For me this culminated in 2 sleepless

weeks with another Penn student Joey Reichert and I trying to finalize new versions of the

likelihood before the deadline to get them into the trigger.

1.2 Large Extra Dimension Models

After my service work was done, I transitioned into the exotic diphoton group. This group

focuses on searches for exotic particles whose final states include two photons. In the beginning

I was interested in graviton models that could be measured in the diphoton channel. The

analysis I had started on was a search for Arkani-Hamed, Dimopoulos and Dvali (ADD) type

gravitons [1] and Randall-Sundrum type gravitons [2]. These models are also sometimes known

as Large Extra Dimension (LED) models as they propose an additional spatial dimension, x5.

If we consider a periodic extra dimension,

x5 ∼ x5 + 2πR (1.1)

where R is the radius of extra dimension, the momentum of a particle propagating in this

dimension would be

p5 ∼ n

R
, n ∈ Z. (1.2)

Then we can write the equation motion of such a particle as,

δµδ
µφn(xµ) =

n2

R2
φn(xµ) (1.3)
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with mass,

m2 =
n2

R2
. (1.4)

Theories of this type with an extra dimension are known as Kaluza-Klein theories after

Theodore Kaluza [3] and Oscar Klein[4]. These theories have been tested down to extremely

small scales with current limits at R . 10−21 meters. Extra dimensions of this size are pretty

much hopeless to find. Arkani-Hamed, Dimopoulos and Dvali proposed that maybe this extra

dimension is only accessible to gravity and, this causes the size of the extra dimension to

only be bounded by tests of gravity, which means R . 1mm. One very interesting feature of

theories like this is that since only gravity can propagate through this extra dimension, it can

have the effect of ”diluting” the effect of gravity in the 3 other space dimensions. This can

possibly explain why there is such a large difference between the strength of the weak force

and gravity. This difference is known as the hierarchy problem.

What does gravity look like in more than the 3 dimensions we are used to? The gravita-

tional potential we all learn in our beginning physics classes can be written,

V (r) = G
m1m2

r
(1.5)

where G is the gravitational constant and r is the distance between masses m1 and m2. Using

the relationship Mpl ∼
√

1/G (where I’m leaving out factors of ~c and π for simplicity) where

Mpl is the Planck mass, we can write this as

V (r) ∼ 1

M2
pl

m1m2

r
(1.6)

Now, if we add in n extra dimensions[1], we can use Gauss’s law, considering r << R, to

write the gravitational potential as,

V (r) ∼ 1

M2+n
D

m1m2

r1+n
(1.7)
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We can see that if n > 0 for relatively small scales we should measure the potential deviating

from the familiar 1/r law. What about at scales where gravity has been well measured

(r � R)? In this case the potential can be written as,

V (r) ∼ 1

M2+n
D Rn

m1m2

r
(1.8)

Comparing equations 1.6 and 1.8 we can see that this relates the 3-dimensional Planck mass

that we measure, to the n-dimensional one where gravity is allowed to propagate in more

dimensions.

M2
pl ∼M2+n

D Rn (1.9)

Using this relationship we can begin to try to explain the hierarchy problem by setting the

n-dimensional Planck mass to the weak scale (∼ 1 TeV). This is saying that there really is no

difference in the forces when considering n-dimensions, and we only see an apparent difference

because we can only observe the 3-dimensional version of the Planck mass. What does this

mean for the radius of the extra dimensions R? For n = 1 we get that R ∼ 1013cm. This is on

the order of the size of the solar system! This definitely does not agree with experiment. For

n = 2 we get that R ∼ 1mm which we said was around the smallest scale tests of gravity have

been performed. So tests of gravity do not rule out extra dimension models with a number of

extra dimensions n = 2 or greater.

The way that just adding extra spatial dimensions could very simply address the hierarchy

problem was very interesting to me. I joined the search for large extra dimensions using data

from the early part of Run2 at ATLAS. Results published on 2015 data showed a 3.4σ deviation

from Standard Model backgrounds at 750 GeV, with CMS (the competing experiment to

ATLAS) also showing a 3.9σ deviation [5, 6]. Although the threshold for discovery used in

high energy physics is 5σ, both experiments seeing an excess at ∼ 750 GeV was enough to

spark intense interest from the theoretical community. Around 200 papers were published
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within a month of the results being announced. During this time I participated in cross

checks of the results [7].

1.3 HGam Data Validation

Early in my time with the exotics diphoton group, it was decided that this group should be

merged with the Higgs to gamma gamma group (HGam) as their analysis was very similar and

the background samples were largely the same. My first large project in the HGam group was

to work on a framework that could perform validation on smaller datasets derived from the

larger raw datasets collected by ATLAS. The validations primary goal was to ensure that no

data was missing or incorrectly calculated in the derived data. Another Penn student, Tony

Thompson, had begun this project and had produced very rough skeleton of a framework when

he left the experiment. My main contribution to this was to write a script that automatically

checked whether the proper data sets were created and if the information they contained

matched the raw data. This was done in python and the outputs were written to JSON.

The outputs were then used to build a dynamic website that contained easy to read tables

with all of the relevant information so that it could be used as a reference for anyone in the

group. Figure 1.1 shows a screen shot of the website. When the script completed running

over the datasets it would also email a report summarizing any issues it found to the people

responsible for creating the datasets. Although this project was not directly related to Higgs

physics, it was very fun and one of the first times I had built a complete website that functioned

dynamically based on underlying data.
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Figure 1.1: A screen shot of the HGam validation monitoring website. Every dataset is
dynamically split on the page into tabs and rows of samples which can be colored red when
an issue in that sample is detected.

1.4 High-Mass Diphoton

The high-mass diphoton search in the HGam group included searches for new scalar particles,

non-resonant and resonant spin-2 signals in the mass range 200 GeV - 2.7 TeV [8, 9]. In

order for the results to be reported in a way that is useful to theorists and for comparison

to other experiments, they must be corrected to account for various detector and selection

effects. For example, if we measure the cross-section of a particle by counting how many

times we observe that particle and comparing that with the integrated luminosity collected,

this will give incorrect results as some of the particles produced may follow a path that takes

it through gaps in the detector, or regions of the detector that are used for cabling or support

structure. Or maybe that particle had some kinematic configuration that meant it was rejected

by our selection, or by our trigger due to technical or computing limitations. If a theorist

wanted to compare our measurement to his or her model, they would need to know the actual
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cross-section, not just the part of it we can see. In order to correct these values we calculate

acceptance and correction factors by using Monte Carlo (MC) simulation. To do this, we take

generated MC and find the ratio of particles that pass our analysis selection, or that pass

through the active volume of the detector to the total number generated. These ratios are

shown in equation 1.10

CX =
Nselection
Nfiducial

AX =
Nfiducial
Ntotal

(1.10)

Here Nselection is the number of particles passing the applied selection cuts, Ntotal is the

total number of particles generated in Monte Carlo, and Nfiducial is the number of particles

generated in Monte Carlo that pass through the fiducial volume of the detector. The definition

of the fiducial volume of the detector is something that can take a lot of work on the part of

analysts to accurately describe. For the sake of simplicity this can be thought of as a region of

the detector where its response is well understood and where all components are functioning

properly. In the high-mass diphoton search paper released in 2017 [8], I was responsible for

calculating these so-called AxCx factors and their associated uncertainties. The factors and

the fits used to model them are shown in figure 1.2 To calculate the uncertainties on these

factors several modified samples are produced. These samples have some quantity modified

away from its nominal value up 1σ and down 1σ. The AxCx factors are recalculated for each

of these and their difference is fit with a function. This function is then used to model the

uncertainty on the factors due to imperfect knowledge of the quantity being varied. Figure 1.3



1. Introduction 8

 [GeV]Xm

500 1000 1500 2000

A
cc

ep
ta

nc
e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ATLAS Simulation Internal

y = 6.29e-01 - 1.77e-01 exp(-3.55e-03 x)

X0toyy_NW

X0toyy_W2p

X0toyy_W6p

X0toyy_W10p

X0toyy_W15p

(a)

 [GeV]Xm

500 1000 1500 2000

C
or

re
ct

io
n 

fa
ct

or

0.55

0.6

0.65

0.7

0.75

0.8

0.85

ATLAS Simulation Internal

y = 7.49e-01 - 2.20e-01 exp(-3.66e-03 x)

X0toyy_NW

X0toyy_W2p

X0toyy_W6p

X0toyy_W10p

X0toyy_W15p

(b)

Figure 1.2: The acceptance factor (a) and the correction factor (b) for several resonance
widths and at several masses of a scalar particle. The first part of the label Xtoyy refers to
MC produced from a new particle X decaying to two photons. The last part of the labels are
used to designate the decay width of the particles used in the MC samples, NW being the
nominal narrow width sample.
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Chapter 2

The Standard Model

The Standard Model of particle physics is the name given to theory used to describe matter and

how it interacts. It has taken form over the course of several decades and began with separate

theories. The first steps toward a unified picture of the fundamental particles and forces came

in 1961 when Sheldon Glashow unified the weak and electromagnetic forces [10]. This led to

the current description of the Standard Model that began to solidify in the 1970s with the

experimental confirmation of quarks in deep inelastic scattering experiments conducted at the

Stanford Linear Accelerator [11].

2.1 The Standard Model

The Standard Model as it is now described is a type of quantum field theory known as a gauge

theory whose local transformations obey the symmetry groups,

SU(3)C × SU(2)L × U(1)Y (2.1)

when arranged in particular multiplet representations. Interactions between all of the matter

particles are described by gauge bosons which appear as fields that must be added into the

field content of the model in order to ensure local invariance under these transformations.

This is done by the modification of the derivative to the covariant derivative which depends

9
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on these new gauge fields. The generators of the respective symmetry groups provide the

description of the gauge fields responsible for the fundamental forces. The 8 generators of

SU(3) are the 8 gluon fields Gµ of the strong interaction, with the 3 generators of the SU(2)

group combined with the single generator of the U(1) group giving the Wµ and Bµ fields

responsible for the electroweak interactions.

The symmetry groups as written require that all particle content in the Standard Model be

massless which is contrary to experiment where the fermions and weak bosons are observed

to be massive. The solution to this problem was proposed through the Higgs mechanism

developed by three groups: Peter Higgs [12, 13], Robert Brout and Francois Englert [14], and

Gerald Guralnik, Carl R. Hagen, and Tom Kibble [15]. This mechanism breaks the electroweak

symmetry through the addition of a scalar field with non-trivial vacuum.

SU(2)L × U(1)Y → U(1)EM (2.2)

After symmetry breaking the scalar field acquires a vacuum expectation value in the low-

energy regime and the interaction with the fermionic fields and the gauge fields gives them

mass. The Wµ and Bµ fields mix to give the physical W± and Z massive gauge bosons

which are the mediators of the weak force. The U(1)EM symmetry is responsible for an

orthogonal mixing to give the massless gauge field Aµ of the photon responsible for mediating

the electromagnetic force.

The last piece of the standard model was added in the 1970s which described the inter-

actions of the strong interaction in the theory of quantum chromodynamics (QCD). Quarks

experience a phenomena known as confinement due to the fact that their interaction be-

comes stronger and larger distances. This posed a problem for experiment as it predicted

that quarks could never be detected on their own but must exist in bound states with other

quarks. Politzer, Wilczek and Gross [16, 17, 18] in 1973 showed the asymptotic freedom of
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Figure 2.1: An illustration of the fields present in the Standard Model [19].

quarks in which their coupling gets weaker at high energies and thus QCD can be described

perturbations.

The combination of the electroweak theory and quantum chromodynamics are what be-

came known as the Standard Model of Particle Physics (SM). The field content of the SM is

illustrated in figure 2.1.

2.2 Beyond the Standard Model

The predictions made by the Standard Model have agreed remarkably well with experiment.

However, we know that the SM cannot be the only component in our description of physics.

One of the most glaring shortcomings of the SM is the complete lack of any description of
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gravity. There have been many attempts at a quantum theory of gravity and unifications with

the 3 other forces in the SM, but as of yet none have been completely successful. There are

several other places where the SM fails to give any specific reason for some effect we know

exists, or provides no prediction on an experimentally observed quantity. Endeavors to expand

or modify the Standard Model are collectively known as Beyond the Standard Model.

2.2.1 Baryon Asymmetry

In all of the observable universe we see almost entirely matter. We do not seem to see hardly

any antimatter. In the early universe these two should have been created in equal parts and

experiment seems to tell us that they annihilate in equal parts. Something must have caused

the universe to prefer one over the other. In 1967 Sakharov [20] proposed three conditions

that must be met in order to have an asymmetry in baryonic matter in the universe. These

are:

1. A baryon number violating process

2. Charge (C) and Charge-Parity (CP ) violation

3. Interactions outside of thermal equilibrium

Baryon number (B) is obviously a requirement as if we assume initially B = 0 and in the

later we observe B to be a large number, then this number cannot be conserved. There is no

known process in the Standard Model that violates baryon number. C and CP violation both

exist in the weak interactions but the amount of violation is not large enough to account for

the remnants of the early universe that we observe today. Several extensions to the Standard

Model address these in different ways. The two Higgs doublet model adds a second scalar

doublet to the SM and allows for more places where CP violation can occur. Other models
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address the asymmetry in a more direct way, for example Darkogenesis [21] where the baryon

asymmetry is generated through interaction with a ”dark” sector of matter that can in effect

transfer baryon number to the visible sector.

2.2.2 Dark Matter

Dark matter is another area where the Standard Model remains silent. We know from obser-

vations of galactic rotation that the luminous matter cannot account for all of the mass in a

galaxy [22]. It is also observed that large regions of space bend light in an effect called grav-

itational lensing [23]. The standard model does not contain any particle that could exhibit

all of the properties of dark matter, the most important of which is that it does not interact

with photons (hence the name ’dark’).

Figure 2.2: Rotation curve of the spiral galaxy M33. The yellow and blue points are the
measured curve, while the dotted line is the one predicted from luminous matter only [24]

Extensions to the Standard Model need to add a particle that does not couple to photons,
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has a very small cross section to any other SM particle, has mass and is stable. Some exten-

sions to the scalar sector of the SM contain what are called inert fields that do not interact

with the rest of the SM. These massive bosons could then be a candidate for dark matter.

Supersymmetric models also contain particles that can fill this role.

2.2.3 Supersymmetry

There are several search programs looking for new particles beyond the SM. The most popular

of these programs is the search for Supersymmetry (SUSY), a type of space-time symmetry

that supposes that all fermions have bosonic super parters, and all bosons have fermionic super

partners [25]. This approximately doubles the particle content in the SM. In addition, at least

one more scalar doublet field must be added. One of Supersymmetry’s biggest draws is that it

solves the Hierarchy Problem where divergent terms in the SM cancel against terms in SUSY.

This also solves the problem of the unification of forces. Figure 2.3 shows the running couplings

of the 3 forces in the SM, and with SUSY. As can be seen the SM couplings never completely

unify as all three forces don’t converge at a single point. However when including SUSY, the

running couplings are modified and the forces do all unify at a point. Supersymmetry can

also provide a candidate for dark matter as the couplings of SUSY particles to the SM are

tightly constrained and so can have relatively stable light particles [26]. These particles could

easily have couplings to the photon and other SM particles smaller than observed coupling

limits on dark matter.
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Figure 2.3: The running couplings of the forces in the SM shown with the dotted lines. With
the addition of Supersymmetry, the forces have a point of unification at high energy scales,
shown in red and blue [25].



Chapter 3

The LHC and ATLAS Detector

The Large Hadron Collider (LHC) is one of the largest, most complicated machines ever

built by man. It has fascinated me for years and is one of the reasons that I chose to study

high energy physics. The detectors built to take advantage of the collisions produced in the

LHC are no less impressive and represent the cumulative work of thousands of physicists and

engineers. This chapter will briefly introduce the LHC and the ATLAS detector. This is by

no means a complete description. For more detail on the LHC see references [27, 28] and for

ATLAS see references [29, 30, 31, 32].

3.1 The Large Hadron Collider

The LHC is a particle collider consiting of about 10,000 superconducting magnets. It ac-

celerates protons around the 27 kilometer ring and collides them with a center of mass en-

ergy of
√
s = 13 TeV. The facility is built at European Organization for Nuclear Research

(CERN) about 100 meters underground across the French-Swiss border. The first collisions

were recorded in 2010 with a center of mass energy of
√
s = 7 TeV. Protons collide at four

interaction points along the beamline where the four experiments sit. These are ATLAS and

CMS, which are general purpose detectors, ALICE and LHCb which are detectors designed

16
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Figure 3.1: The location of the LHC tunnel at the French-Swiss border near Geneva. (Photo:
CERN)

for heavy ion collisions and b-quark physics respectively. The LHC is the final stage of a series

of accelerators that raise the beam energy until it can be directed into the main beamline.

The CERN accelerator complex is shown in figure 3.2

Protons in the LHC travel around the ring in bunches of 1 × 1011 protons per bunch.

They circulate at a rate of 50 Mhz (25ns bunch spacing) and each time bunches cross there

are approximately 30 interactions under the current run conditions. A quantity called in-

stantaneous luminosity is used to measure the rate that data is taken. Figure 3.3 shows the

instantaneous luminosity per day for data taking in 2017. The integrated luminosity is how

we measure the amount of data taken and is quoted in units of inverse femtobarns (fb−1).

These units make it easy to estimate the number of events we can expect for a given process

with cross-section σ (measured in femtobarns). In the data taking period from 2015 to 2017

∼ 80fb−1 were recorded with the ATLAS detector. Figure 3.4 shows the luminosity recorded

by ATLAS per month for the years 2011 through 2018. Although such high luminosities come
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Figure 3.2: A schematic drawing of the CERN accelerator complex responsible for feeding
protons into the main LHC beamline. (Image: CERN)

with challenges due to the rate of interactions, observation of extremely rare processes require

that we run at these high rates.

3.2 The ATLAS Detector

The LHC houses two general purpose detectors; ATLAS and CMS. These detectors have been

designed to accomodate a very broad physics program and serve as cross checks of eachother.

In this section I will give a brief introduction to the design of the ATLAS detector with a

focus on the detector subsystems that are relevant to electron identification.
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3.2.1 Overview

The ATLAS detector is situated at one of the interaction points along the LHC that is on

the CERN campus. It is located approximately 100m underground, is 25m high, 44m long

and weighs around 7000 tons. Proton interactions take place at the center of the detector

and are recorded as the particles created in the interaction escape outward. Figure 3.5 The

Figure 3.5: A cutaway view of the ATLAS detector. (Image: CERN)

ATLAS detector is composed of several subsystems that are designed to make differnt kinds

of measurements. These can generally be split into 3 systems; trackers (collectively know as

the inner detector), calorimeters, and muon spectrometer. These systems are arranged in a

concentric pattern around the interaction point, and is made up of a barrel shaped section

that is approximately uniform in the plane orthogonal to the beamline, and end cap sections

that are circular and located on either end of the barrel.
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3.2.2 Inner Detector

The inner detector is responsible for tracking particle paths as the pass through the detec-

tor. The inner detector is composed of 3 seperate subsystems; the pixel detector, silicon

strip detector (SCT), and the transition radiation tracker (TRT). The arrangement of these

subsystems is shown in figures 3.6 and 3.7.

Figure 3.6: A cross section of the inner detector showing all layers of the subdetector. (Image:
CERN)

The pixel detector consists of 80 million channels in 3 layers. Just outside of this is the

SCT microstip detector with 4 layers. These two detectors both use silicon based tracking

where charged particles passing through the layers causes current to flow and a corresponding

point in space is recorded in data. The third layer works a bit differently to the previous

two. The transition radiation tracker consists of straw tubes filled with xenon (or argon in
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Figure 3.7: A cutaway of the inner detector showing the arrangement of all subsystems in
relation to each-other. (Image: CERN)

some sections) and a wire suspended in the middle. When charged particles pass through the

straw tubes the gas inside is ionized and the ions drift to the walls of the straw tube where

the total charge collected is recorded. This can serve a tracking function as there are 50,000

straws in the barrel section and the path of the particle can be reconstructed by finding the

line of straws that have signal in them. The reason for this design comes from the transition

radiation (TR) emitted by particles interacting with detector. Lighter charged particles will

emit more transition radiation than heavier ones. This allows the use of the TR to help

distinguish electrons from other particles and is a valuable input for electron identification.

These three trackers are housed inside of a solenoid magnet with 2 Tesla field. This field causes

charged particle tracks to bend and by calculating the radius, the momentum and charge of

the particles can be determined.
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3.2.3 Electromagnetic Calorimeter

Calorimeters are used to measure the energy deposited in them as particles pass through, or

stop in them. The first of these is the Liquid Argon Calorimeter (LAr) also known as the

electromagnetic calorimeter (EMcal) [35]. It uses liquid argon as a scintillator and accordion

shaped electrodes arranged in 3 layers. The layers are segmented differently to measure the

shape of electromagnetic showers in the material. The first layer is very finely segmented in

the η direction, the second and deepest layer is segmented evenly in the η and φ direction.

The third layer is the most shallow and has larger segmentation than the other two. A slice

of the EMcal is shown in figure 3.8. The total depth of the EMcal is ∼ 22 radiation lengths

so most showers should be entirely contained within this subsystem. This calorimeter is the

primary system used in electron and photon identification.

3.2.4 Hadronic Calorimeter

Located just outside of the EMcal is the Hadronic Calorimeter, also called the tile calorimeter

(tileCal). Each of 64 modules in the barrel are composed of alternating layers of iron plates

and scintillating tiles. As the name suggests, this calorimeter is designed to measure the

energy of hadronic particles. The tiles sample the hadronic shower and based scintillating

measured the total energy in the shower can be calculated.

3.2.5 Muon Spectrometer

Along with neutrinos, muons are one of the only particles that will normally completely escape

from the detector. While other particles are completely stopped in the calorimeters, muons

will pass through the outer layers. The muon spectrometer consists of chambers that measure

the momentum of muons. The system uses a series of 4 Tesla toroid magnets.outer
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Figure 3.8: A small slice of the ATLAS Electromagnetic Calorimeter system showing how
each of the 3 layers is segmented [36].
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Figure 3.9: A cutaway view of the calorimeter system in the ATLAS detector. The EM
calorimeter and Hadronic calorimeter are shown [37].
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Figure 3.10: One barrel module of the hadronic calorimeter showing the arrangement of iron
and scintillating tiles [38].

Figure 3.11: A cutaway view of the ATLAS muon spectrometer [39].



Chapter 4

Electron Identification

Electrons are an important part of many ATLAS analyses. Whether directly looking for

decays involving electrons or identifying them to veto events, electron ID finds it way into use

in a large number of groups. The primary instruments used in ID are the pixel and silicon-

strip tracking systems, transition radiation tracker, EM calorimeter and to a lesser extent

the hadronic calorimeter. A number of quantities (variables) are measured in each of these

subsystems are used to differentiate electrons and photons from other particles. In the past a

cuts-based ID was used where each variable is subdivided into an accept and reject region. If

an electron candidate lies in the accept region, this process is repeated for the next variable.

This continues until all of the variable distributions have been cut on. The candidates that

pass all of these cuts are then considered to have passed some level of electron identification.

The line dividing the accept and reject regions can be adjusted to control the efficiency of

identification for what we would call an operating point. Although this method is simple

and provided a fairly small rate of false positive, with the increasing demands placed on the

detector due to higher luminosity, a better method was sought. The Electron Likelihood was

selected to replace the cuts based method [40] [41].

My work on ATLAS began in the Egamma group with the Electron Likelihood. While

working on electron ID, I contributed almost all areas of the Likelihood ID, but a majority

27
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of my work involved preparing tunes, or the set of inputs used to define the ID operating

points for the ID. At this time, due to the success of the Likelihood used on offline data, it

was also decided to be adapted for use in the trigger ID algorithms as well. I was involved in

both the software changes and modifications to the method required by running in the online

environment. In this chapter, I will briefly discuss electron reconstruction and the electron

likelihood method.

4.1 Electron Reconstruction

Electron reconstruction is the process of creating electron candidates from the raw information

collected by the triggering system. This is performed in several steps.

• Seed-cluster reconstruction: Energy deposits in the calorimeter are grouped into

clusters. This is done with a sliding window algorithm summing the transverse energies

in three layers of the EM calorimeter within an η × φ region of 0.075× 0.125.

• Track reconstruction: The path through the tracking volume is calculated creating

a track.

• Electron specific track refit: Tracks are matched to a cluster. The η and φ of the

track are extrapolated into the second layer of the EM calorimeter. If this track is close

enough to a cluster it is refit with a more advanced track fitter.

• Electron candidate reconstruction: The track matching of the previous step is

redone with stricter criteria.

Because photons will look the same as electrons in the EM calorimeter, tracking criteria

must be used to remove photons. Electron candidates that do not have a track associated

to them are removed and considered photons. Electrons whose tracks are reconstructed to a
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secondary vertex are also considered to be photons and are removed. Some electron candi-

dates, based on their E/p, their pT and if there is an associated pixel hit can be classified as

ambiguous, or unambiguous. This determines if it will be considered as only an electron, or

if it will also be included in the photon container.

After all of these steps, some additional quantities are computed, such as the four-momentum,

and the electron candidates have their energies calibrated.

4.2 Electron ID

4.2.1 Variables used for Electron ID

The various subsystems in the ATLAS detector can be used to make many measurements.

The measurements used in the electron and photon ID are referred to as variables. These are

described in table 4.1. A schematic drawing of the path of an electron through a section of

the detector is depicted in figure 4.1

The b-layer, silicon strips (SCT) and TRT all provide space point hits for tracking while

the TRT also provides a number of high threshold hits that can be used to distinguish electrons

from other particles that have similar detector signatures like pions. Tracking variables d0 and

|d0/σd0 | are measurements of the impact parameter, or the distance away from the beamline

the particle originates from. These help to distinguish electrons from b-jets and c-jets that

tend to have secondary vertices far from the beamline.

The TRT helps to discriminate electrons from heavier particles through the use of transition

radiation. Lighter particles that have higher γ-factors will produce more photons when passing

through detector material than heavier particles. This is measured with the variable FHT

which is the ratio of high threshold hits to the total number of hits in the TRT. This tends

toward higher values for electrons than for heavier particles.
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Figure 4.1: A schematic drawing of a section of the ATLAS detector. The red line shows the
path an electron takes through each subsystem [41].

The three main layers of the EM calorimeter provide shower shape information at different

granularities. EM objects should not have showers longer than the EM calorimeter, so any

energy deposited behind it into the hadronic calorimeter can be used to discriminate between

electrons and light/heavy flavor objects. This is measured with the Rhad variable which is the

ratio of transverse energy in the hardronic calorimeter to the EM calorimeter. The f1 and

f3 variables measure the ratio of the energy in the first and third layers respectively to the

total energy in the EM calorimeter. These allow transverse characteristics of the shower to

be measured. The width the of the showers are measured with variables wstot, wη, Rη and

Rφ. Electrons tend to have very narrow showers compared with heavier hadrons.

4.2.2 Electron Likelihood

The Electron Likelihood method developed to replace the cuts based ID is a naive Bayes

classification method using probability density functions (PDFs) to determine the probability

that a candidate is an electron. PDFs for both signal and background are created and are used
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Type Description Name Rejects Use

LF γ HF

Hadronic Ratio of ETin the first layer of the hadronic calorimeter Rhad1 x x L
leakage to ETof the EM cluster.

(used over the range |η| < 0.8 or |η| > 1.37)

Ratio of ETin the hadronic calorimeter

to ETof the EM cluster. Rhad x x L
(used over the range 0.8 < |η| < 1.37)

Back layer of Ratio of the energy in the back layer to the total energy in the

EM calorimeter EM accordion calorimeter. This variable is only used for

pT < 80 GeV due to known inefficiencies at high pT, and is f3 x L
also removed from the LH for |η| > 2.37, where it is

poorly modeled by the MC.

Middle layer of Lateral shower width,
√

(ΣEiη2i )/(ΣEi)− ((ΣEiηi)/(ΣEi))2,

EM calorimeter where Ei is the energy and ηi is the pseudorapidity wη x x L
of cell i and the sum is calculated within a window of 3× 5 cells

Ratio of the energy in 3×3 cells over the energy in 3×7 cells Rφ x x x L
centered at the electron cluster position

Ratio of the energy in 3×7 cells over the energy in 7×7 cells Rη x x x L
centered at the electron cluster position

Strip layer of Shower width,
√

(ΣEi(i− imax)2)/(ΣEi), where i runs over

EM calorimeter all strips in a window of ∆η ×∆φ ≈ 0.0625× 0.2, wstot x x x C∗

corresponding typically to 20 strips in η,

and imax is the index of the highest-energy strip

Ratio of the energy difference between the maximum

energy deposit and the energy deposit in a secondary δEmax x x L
maximum in the cluster to the sum of these energies

Ratio of the energy in the strip layer to the total energy f1 x L
in the EM accordion calorimeter

Track Number of hits in the innermost pixel layer; nBlayer x C

conditions discriminates against photon conversions

Number of hits in the pixel detector nPixel x C

Number of total hits in the pixel and SCT detectors nSi x C

Transverse impact parameter with respect to the beam-line dO x x L
Significance of transverse impact parameter |d0/σd0 | x x L
defined as the ratio of dO and its uncertainty

Momentum lost by the track between the perigee and the last δp/p x L
measurement point divided by the original momentum

TRT Likelihood probability based on transition radiation in the TRT eProbHT x L
Track-cluster ∆η between the cluster position in the strip layer δη1 x x L
matching and the extrapolated track

∆φ between the cluster position in the middle layer

of the calorimeter and the momentum rescaled δφres x x L
track extrapolated from the perigee

Ratio of the cluster energy to the track momentum E/p x x C∗

Table 4.1: Definitions of electron discriminating variables, the types of backgrounds the vari-
ables help to discriminate against, and if a variable is used as a likelihood PDF (L) or used
as a rectangular cut (C). The ∗ refers to the fact that the E/p and wstot variables are only
used for electrons with pT > 150 GeV for the Tight identification operating point (in software
release 20.7), and are not used for the looser operating points.
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in combination to calculate a discriminant value. A cut is then placed on this discriminant to

determine a desired signal efficiency or background rejection.

The likelihood is constructed by making a set of PDFs from a sample of electrons (signal)

and electron fakes (background) for each of the n variables to be used. Each electron candidate

to be classified has a set of the same n variables which we will call x. The value from each

signal (background) PDF associated with the variables x is calculated and their product is

taken to get the signal (background) likelihood value. These are then combined to get the

likelihood discriminant value according to equation (4.1).

dL =
LS

LS + LB
, LS(x) =

n∏
i=1

PS,i(xi) (4.1)

This distribution for signal (background) tends to have a compressed peak at 1 (0) and

so for finer control over the operating point a transformation is applied to the discriminant

(4.2). This transformation broadens the peaks so the shape is more defined but still maintains

signal and background separations.

d′L = −τ−1dLln(dL − 1), τ = 15 (4.2)

More advanced methods such as the electron likelihood have the advantage that they take

into consideration multiple distributions at once, unlike the cuts method that looks at only

one variable at a time. Figure 4.2 shows the signal and background distributions for the

variables f1 and Rφ. The large overlap of the signal and background causes any cut made on

these variable to have poor background rejection. In some situations the variable might not

be used at all as it adds no power to the method. With a likelihood, so long as there is a
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difference in the shape, it can contribute to the power of the classification. Figure 4.3 shows

the output discriminant of an example likelihood after transformation and the ROC curve

corresponding to the continuum of operating points representing cuts on the discriminant.

The good separation between signal and background can be seen.
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Figure 4.2: Distribution of the variables f1 and Rφ for signal(red) and background(blue). The
large overlap of the signal and background of variables like this cause the cuts method to have
poor background rejection.
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Figure 4.3: An example likelihood discriminant output (a), after having been transformed by
Equation 2, for data signal and background distributions. The corresponding ROC curve is
shown in (b), illustrating the continuum of operating points. A cut-based menu is plotted for
comparison.
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A ”tuned” likelihood consists of a set of PDFs, for each variable used in the likelihood

and for each eta and phi bin used, and values of a cut on the discriminant for each desired

operating point. The shape of the PDFs vary as a function of pT and η so they are divided

into 10 pT and 9 η PDFs each with their own set of discriminant cuts. Tables 4.2 and 4.3 show

the binning of the PDFs and discriminant cuts in pT and η. In addition to the discriminant

cuts, one or more hits in the pixel tracker as well as seven or more SCT hits are required.

Bin boundaries in pT[GeV]
PDFs 4.5 7 10 15 20 30 40 ∞
Discriminant cut values 4.5 7 10 15 20 25 30 35 40 45 ∞

Table 4.2: Electron transverse energy binning used for the electron likelihood PDFs and
discriminant cut values.

Bin boundaries in |η|
0.0 0.6 0.8 1.15 1.37 1.52 1.81 2.01 2.37 2.47

Table 4.3: Electron pseudorapidity binning used for the electron likelihood PDFs and discrim-
inant cut values.

The discriminant values chosen are set to roughly match the efficiency of the 3 operating

points (loose, medium, tight) used in the Run 1 offline likelihood. A fourth operating point

was added (veryloose) with relaxed criteria compared to the loose operating point. This can

be used to to study backgrounds that are similar to signal electrons.

4.2.3 Probability Density Functions

PDFs can be obtained by making histograms of the variables used in the likelihood from

signal and background samples. Finite statistics and the division of samples by pT and η

mean that the PDFs produced will not be smooth. This can lead to undesirable behavior

in the likelihood as electrons in adjacent bins could have large differences in their respective
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discriminants. In the tails of the PDF we also tend to have bins with 0 entries. In order to

avoid undefined results, the PDFs should also be greater than zero everywhere. To correct

this, we smooth the PDFs using an adaptive kernel density estimator (KDE). This takes each

bin in the histogram and replaces it with a Gaussian distribution (the kernel) whose height

and width are determined by the content of the bin. The difference between a non-adaptive

and adaptive KDE is that Gaussian widths are variable in the adaptive case. This has the

effect of narrowing the Gaussian kernel with increasing bin content as bins with high statistics

have less uncertainty. The KDE technique is illustrated in figure 4.4 along with an example

PDF before and after smoothing.

Non-adaptive KDE Method

Adaptive KDE Method

(a)

ηR
0.7 0.8 0.9 1 1.1 1.2

en
tr

ie
s

0

20

40

60

80

100

120

140

Signal Histogram
KDE-smoothed

(b)

Figure 4.4: An example likelihood discriminant output (a), after having been transformed by
Equation 2, for data signal and background distributions. The corresponding ROC curve is
shown in (b), illustrating the continuum of operating points. A cut-based menu is plotted for
comparison.

4.2.4 Correcting MC variable mis-modeling

One big advantage of the electron likelihood is that it can be tuned using data. A sample of

electrons are gathered using the tag-and-probe method detailed in [42]. This sample will be a

relatively unbiased, pure sample of data electrons with which to build PDFs. At the beginning
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of Run 2, however, no data samples were available for the run conditions and center of mass

energy the LHC was preparing for. This meant that we were forced to use MC to build the

PDFs and tune the likelihood. These samples have some known mis-modeling effects in the

form of shifts and in a few cases width scaling. This can be corrected however by comparing

the MC variable distributions to
√
s = 8 TeV data and shifting or modifying the width of

the distributions. Because of the difference in run conditions, the 8 TeV data will not exactly

represent the variable shapes for 13 TeV data, but the shifts and widths will be close enough

to use until data PDFs can be made with 13 TeV data.

The shifts are implemented as constant offsets of the mean position of the distributions.

A comparison of data and MC showed that the variables which needed shifting corrections

were f1, f3, Rη, wη2 and Rφ. Width correction is performed by modifying the full width at

half max (FWHM), which the variables ∆η1, ∆φres and Rhad were found to need.

The operation to apply the shifts is performed on an electron-by-electron basis using v∗MC =

vMC−a for some offset a. To modify the widths the operation v∗MC = (vMC− v̄MC)∗w+ v̄MC

for a width parameter w and where v̄MC is the mean of the distribution. The parameter a is

found by minimizing a χ2 test statistic,

χ2 =
∑
bins

(ndata − nMC)2

σdata + σMC
. (4.3)

The parameter w is selected by taking the ratio of the FWHM of data to MC. Figure 4.5

shows the MC distributions before and after the corrections compared with the data distri-

butions used.

While working in the Egamma group I was responsible for calculating all parameters of the

shifts used to correct the MC. To make the corrections available to the entire group, I wrote a
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tool that could be used to automatically correct all relevant distributions based on matrices of

parameters that were kept updated in the tool. This was integrated into the official Egamma

software package.

4.2.5 Signal and Background PDFs

The results of the KDE smoothing and MC correction procedure are shown in figures 4.6 and

4.7 for signal and background. The PDFs shown are taken from the 20GeV < pT < 30GeV ,

0.6 < |η| < 0.8 bin.

4.3 Pileup Correction

The LHC is continually trying to increase the luminosity of the collider. This allows more

data to be collected in a shorter amount of time. The increase in luminosity means that the

average number of interactions per bunch crossing also increases. In 2016 the average was

∼25 interaction, up from ∼12.5 in 2015. The additional vertices in each event contribute to

what is known as pileup. Particles from completely different interaction vertices can overlap,

depositing energy in the same regions of the detector. Some ID variables are particularly

effected by this and their shapes, in general, become broader. Rη and Rhad have the strongest

dependence on pileup as seen in figure 4.8. When these distributions become wider, their

PDFs become more background like. For events with a lot of pileup, this causes a drop in

the efficiency to identify electrons. Rη and Rhad are among the variables with the highest

discriminating power as can be seen in figure 4.9 and so they cannot just be removed from

the likelihood.

We would like to correct for this drop in efficiency. We can do this by making the discrim-

inant cut linearly dependent on the number of primary vertices (nvtx), d(nvtx) = dL + aṅvtx.



4. ElectronID 38

η∆

0.1− 0.08− 0.06− 0.04− 0.02− 0 0.02 0.04 0.06 0.08 0.1

n
o

rm
a

liz
e

d
 t

o
 o

n
e

0

0.05

0.1

0.15

0.2

0.25

Data 2016

 ee MC→Z 

 ee MC corrected→Z 

ATLAS Internal

= 13 TeVs

 <40
T

30 < E

 < 1.15η0.80 < 

 probesVeryLoose

φ∆

0.15− 0.1− 0.05− 0 0.05 0.1 0.15

n
o

rm
a

liz
e

d
 t

o
 o

n
e

0

0.02

0.04

0.06

0.08

0.1

0.12
Data 2016

 ee MC→Z 

 ee MC corrected→Z 

ATLAS Internal

= 13 TeVs

 <40
T

30 < E

 < 1.15η0.80 < 

 probesVeryLoose

1
f

0 0.1 0.2 0.3 0.4 0.5

n
o

rm
a

liz
e

d
 t

o
 o

n
e

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
Data 2016

 ee MC→Z 

 ee MC corrected→Z 

ATLAS Internal

= 13 TeVs

 <40
T

30 < E

 < 1.15η0.80 < 

 probesVeryLoose

3f

0.02− 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

n
o

rm
a

liz
e

d
 t

o
 o

n
e

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045 Data 2016

 ee MC→Z 

 ee MC corrected→Z 

ATLAS Internal

= 13 TeVs

 <40
T

30 < E

 < 1.15η0.80 < 

 probesVeryLoose

ηR

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

n
o

rm
a

liz
e

d
 t

o
 o

n
e

0

0.01

0.02

0.03

0.04

0.05

0.06 Data 2016

 ee MC→Z 

 ee MC corrected→Z 

ATLAS Internal

= 13 TeVs

 <40
T

30 < E

 < 1.15η0.80 < 

 probesVeryLoose

2η
w

0.006 0.008 0.01 0.012 0.014 0.016 0.018

n
o

rm
a

liz
e

d
 t

o
 o

n
e

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018
Data 2016

 ee MC→Z 

 ee MC corrected→Z 

ATLAS Internal

= 13 TeVs

 <40
T

30 < E

 < 1.15η0.80 < 

 probesVeryLoose

hadR

0.05− 0 0.05 0.1 0.15 0.2

n
o

rm
a

liz
e

d
 t

o
 o

n
e

0

0.01

0.02

0.03

0.04

0.05

0.06
Data 2016

 ee MC→Z 

 ee MC corrected→Z 

ATLAS Internal

= 13 TeVs

 <40
T

30 < E

 < 1.15η0.80 < 

 probesVeryLoose

φ
R

0.5 0.6 0.7 0.8 0.9 1

n
o

rm
a

liz
e

d
 t

o
 o

n
e

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

Data 2016

 ee MC→Z 

 ee MC corrected→Z 

ATLAS Internal

= 13 TeVs

 <40
T

30 < E

 < 1.15η0.80 < 

 probesVeryLoose

Figure 4.5: Data and MC electron variable distributions obtained using the Z → ee tag-and-
probe method, and in the 30 ≤ ET¡ 40, 0.80 ≤ η¡ 1.15 bin. MC is shown before and after
applying the constant shift and width corrections described in the text. KDE smoothing has
been applied.
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Figure 4.6: MC-based signal and background PDFs used in the electron LH for software
release 20.7 (with MC shower shape shifts and widths applied), shown for the variables f1,
f3, Rη, Rφ, Rhad, Eratio, and wη, after KDE smoothing has been applied. Only electron
candidates with 20 GeV < ET < 30 GeV and 0.60 < |η| < 0.80 are shown. As the MC was
used to construct these PDFs, the probes from Z → eewere additionally required to pass a
truth matching requirement, while the background electron candidates from a dijet sample
were required to fail the electron truth matching.
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Figure 4.7: MC-based signal and background PDFs used in the electron LH for software release
20.7 (with MC shower shape shifts and widths applied), shown for the variables eProbabil-
ityHT, dO, |dO/σd0 |, ∆η1, ∆φres, and ∆p/p, after KDE smoothing has been applied. Only
electron candidates with 20 GeV < ET < 30 GeV and 0.60 < |η| < 0.80 are shown. As the
MC was used to construct these PDFs, the probes from Z → eewere additionally required
to pass a truth matching requirement, while the background electron candidates from a dijet
sample were required to fail the electron truth matching.
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Figure 4.8: Rη is shown in (a) integrated for Nvtx< 11 and Nvtx> 11. The same is shown
for Rhad in (b).
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Figure 4.9: The n− 1 method used to optimize the choice of variables to use in the electron
likelihood. Individual variables are removed from the nominal list of likelihood variables, and
the likelihood recalculated to assess the relative power of each variable. The example shows
the importance of FHT , Eratio, Rhad and Rη; the performance of the likelihood decreases
when each is removed. The Tight cut-based operating point is shown for comparison.
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This can correct for the negative slope in the signal efficiency, but because we are relaxing the

cut at high nvtx we are also letting more background pass the cut. This situation is illustrated

in figure 4.10.
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Figure 4.10: In black are the efficiencies corresponding to the signal efficiency tuning being
linearly corrected as a function of nvtx. We observe how the background blows up for this
first order correction. In red we see the second correction in where the signal efficiency is
re-injected with some slope in order to stabilize the background.

This correction as a function of nvtx is applied to only the Medium and Tight operating

points as the pileup dependence for Loose and VeryLoose are too small to have a noticeable

effect. In the plane defined by the likelihood discriminant as a function of nvtx this correction

would correspond to tilting the line defining the cut giving it non-zero slope. However, since

the Loose and VeryLoose operating points are not adjusted, there are situations where at high

pileup the line defining the Medium operating point will cross the looser ones. The electrons

passing the Medium likelihood is then no longer strictly a subset of the Loose likelihood.

Figure 4.11 shows how this situation can arise.

The remedy for this situation we decided to make was to keep the discriminant cuts flat

as a function of nvtx and instead correct the discriminant output as a function of the pileup.

This will ensure that all tighter operating points are subsets of looser ones by construction.
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Introduction

• In 2012, the MediumLH, TightLH, and VeryTightLH used a
pileup-depdendent discriminant cut, linear in nvtx.

I This nvtx correction means these menus are not subsets, though the
e↵ect is small. But for 2015, we want these menus to be subsets.

• LooseLH and VeryLooseLH had no pileup correction, to avoid making
the backgrounds nvtx dependent
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Joey Reichert (Penn) New Scheme for LH Pileup Correction November 25, 2014 3 / 9Figure 4.11: Example of the pileup correction used in Run 1 where the z-axis shows the number
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The correction to the discriminant is done in the following way:

dnew(nvtx) =



d if d < dref

dref + (d− dref )
dtight,old−dref
dtight,new−dref if dref ≤ d < dtight,new

dtight,old + (d− dtight,new)
dmax−dtight,new
dmax−dtight,new if dtight,new ≤ d < dmax

d if dmax ≤ d

(4.4)

Here dref is a reference discriminant which defines the lowest point where pileup corrections

are to be done. This is set to the VeryLoose operating point as we do not require it to be pileup

corrected. Similarly dmax is the largest value of the discriminant that should be corrected.

This method was found to have performance similar to the Run 1 scheme of correcting the

cut values themselves, but ensures that the tighter points remain subset of the looser.



4. ElectronID 44

4.3.1 Conclusion

The electron likelihood used offline in Run 1 has been extremely successful. Its improvements

over the cuts based ID made it a good candidate for operation in the trigger in Run 2 where the

demands on the ID would be higher. The operating points implemented for online and offline

running closely match the signal efficiencies of the cuts based ID, but with better background

rejection. Although the luminosity of the LHC is steadily increasing, the likelihood is able to

adjust around this and will continue to deliver steady performance through the end of Run

2.



Chapter 5

The Search for Low Mass Diphoton
Resonances

Most of the activities on Atlas can be divided into measurements and searches. Measurement

groups find a numerical value for some parameter of a previously discovered particle or process.

An example of this would be the Higgs cross section group which makes ever more accurate

measurements of the cross section and branching ratios of the Higgs Boson. In order to make

these measurements, the particle whose parameters you will be assessing need to be discovered.

This is where the search groups come in. Search groups have the goal of finding new particles

and processes. These measurements are simply to determine if there is a statistically significant

deviation from currently known physics. Where I spent a majority of my time on Atlas was

in a group interested in searching for new particles that decay to two photons and appear in

the data as resonances, or narrow bumps.

In the following I will present a search for low mass diphoton resonances during 2017 and

2018 [43]. This analysis used pp collision data with a total integrated luminosity of 80.4 fb−1

and a center of mass energy of
√
S = 13TeV collected in 2015, 2016 and 2017. This search is an

update of the Run 1 results with 20.3fb−1 of data at
√
s = 8TeV [44] The search is performed

for narrow resonances with spin 0. Experimental signatures such as these are predicted by

models involving an extended Higgs sector and some Supersymmetric/Axion models.

45
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This analysis represents the work of many people over many months. This chapter closely

follows the low mass diphoton support note [43] meant to supplement the conference note[45]

both of which I spent the last year or so working on. Although I was responsible for many

support and production tasks such as data validation, and signal Monte Carlo production,

my main focus was on the non-resonant background modeling and the spurious signal test

described in section 5.6.3.

5.1 Introduction

Several theoretical models predict new resonances in the diphoton invariant mass spectrum.

One of the more prominent are extensions to the Higgs sector of the standard model. The

Standard Model Higgs sector contains one complex scalar doublet field that gives rise to the

standard model Higgs boson. This is the minimal scalar sector that can be added to the

Standard Model to give mass to give mass to particles through the Higgs mechanism. The

scalar sector does not necessarily need to be minimal however.

The simplest extension is to add one additional complex scalar doublet field. This is known

as the two Higgs doublet model (2HDM) [46] [47] [48]. The scalar potential for two doublets

can be written,

V = m2
11 Φ†1Φ1 +m2

22 Φ†2Φ2 −m2
12(Φ†1Φ2 + Φ†2Φ1) +

λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2

+λ3 Φ†1Φ1Φ†2Φ2 + λ4 Φ†1Φ2Φ†2Φ1 +
λ5

2

[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
.

The minimization of this potential is,

〈Φ1〉0 =

 0

v1√
2

 , 〈Φ2〉0 =

 0

v2√
2

 . (5.1)

With two complex scalar doublets, there will be 8 fields in total. As in the SM Higgs, 3 of

these fields get ”eaten” to give mass to the W± and Z bosons. This leaves 5 physical scalar
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fields; two charged scalars, two neutral scalars, and one pseudoscalar.

The Yukawa couplings in the 2HDM [47] in general, will be,

Ly = y1
ij ψ̄iψjΦ1 + y2

ij ψ̄iψjΦ2, (5.2)

with mass matrix,

Mij = y1
ij

v1√
2

+ y2
ij

v2√
2

(5.3)

In the Standard Model, the mass matrix and Yukawa matrices diagonalize meaning that

there are no flavor changing neutral currents (FCNC). With the addition of an additional

scalar doublet, the Yukawa matrix is not necessarily guaranteed to be diagonalized if the

mass matrix is. This means that the 2HDM can have FCNC at tree level which have very

strong constraints from experiment [49]. To avoid this problem an additional Z2 symmetry

can be enforced. This can be applied in a few different ways; the type I where all fermions

only couple to one of the doublets, and the type II where the up-type quarks couple to one

doublet, with the down-type quarks and leptons coupling to the other. Two other models are

possible (type III and type IV) which do allow tree level FCNC but constrain them in other

ways.

The two neutral scalars are h and H with h the lighter of the two. Either one of these

two could be the SM Higgs and so the second neutral scalar could be found above or below

125 GeV. Just like in the SM the branching ratio of bosons to photons in the 2HDM are not

predicted to be large, but the clean experimental signature and high resolution of the ATLAS

detector make the diphoton channel very good at searching for an extended scalar sector.
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5.2 Data and Simulation

5.2.1 Data

In 2015 the ATLAS experiment began the Run 2 data collection period where the center of

mass energy was increased from
√
s = 8 TeV to near its design energy of

√
s = 13 TeV. For

this analysis, data from 2015, 2016 and 2017 were used. Events were recorded by requiring a

diphoton trigger with a transverse energy (ET ) of 20 GeV on both the leading and subleading

photon candidates. The high level trigger (HLT) then requires that both photons pass tight

reconstruction criteria in addition to being isolated for the 2017 data only. The data used

after these requirements corresponds to 80fb−1 of total integrated luminosity [43].

5.2.2 Signal Simulation

Monte Carlo simulation (MC) is used to produce both signal and background samples that are

used for various modeling tasks as well as to optimize the search strategy. Due to the difference

in run conditions between the 2015/2016 and the 2017 data collection periods, simulation must

be generated separately for each. The mc16a samples correspond to the 2015/2016 and the

mc16d samples to the 2017 data.

The different MC signal samples are detailed in Table 5.1. The default samples are the ggF

ones, generated using the effective-field-theory approach implemented in MadGraph5 aMC@NLO [50]

version 2.3.3 at next-to-leading order (NLO) in quantum chromodynamics (QCD). From the

Higgs characterization framework [51], CP-even dimension-five operators coupling the new

resonance to gluons and photons were included. Samples were generated with the NNPDF3.0

NLO parton distribution functions (PDFs) [52], using the A14 set of tuned parameters (tune)

of Pythia 8.186 [53, 54] for the parton-shower and hadronization simulation. Narrow Width

Approximation is assumed for all samples (a 4 MeV width is used in practice).Interference
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effects between the resonant signal and the background processes are neglected. Mass points

outside of the search region (65-110 GeV) were generated in order to have a better interpola-

tion of the signal modeling (cf Section 5.4). But in the end the 40 and 50 GeV mass points

are not used because the shape is biased by the trigger cut.

Since the goal of the analysis is to perform a model-independent search, the properties of

the fiducial volume and correction factors (detailed in Section 5.8) are also studied for other

Higgs-like production modes: vector boson fusion (VBF), associated production with a vector

boson (WH, ZH) and associated production with a top quark pair (tt̄H). All those samples

are simulated with the Powheg [55, 56] generator both interfaced to Pythia8 [53] for parton

showering and hadronization.

Process Generator Mass [GeV] Nevents (×103) width
mc16a mc16d

ggF MadGraph
40-50-60-70-80-90-100-110-120-140-160-180 30 40 NWA

60 30 40 5%
ggF PowHeg+Pythia8 40-60-80-100-120 30 40 NWA
VBF PowHeg+Pythia8 40-60-80-100-120 30 40 NWA
WH Pythia8 40-60-80-100-120 30 40 NWA
ZH Pythia8 40-60-80-100-120 30 40 NWA
tt̄H PowHeg+Pythia8 40-60-80-100-120 30 40 NWA

Table 5.1: Signal samples of the five Higgs production modes, available mass points and
whether the NWA width is used or not [43].

5.2.3 Background Simulation

MC samples of prompt diphoton events are used to validate the functional form used to model

the background diphoton invariant mass spectrum.

Events containing two photons are also generated using the Sherpa 2.2.2 generator, with

a 20 GeV cut on the photon transverse energy. Matrix elements are calculated with up to

2 partons at LO and merged with the Sherpa parton shower [57] using the ME+PSatLO
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Generator mγγ range [GeV] Cross section [pb] Filter efficiency Nevents (×106) Reconstruction
– mc16a mc16d

Sherpa LO 0 – 55 1.4088·10+2 2.4335·10−1 1.0 1.0 FS
55 – 100 1.4778·10+2 4.5670·10−1 1.0 1.0 FS

100 – 160 3.9728·10+1 4.9730·10−1 1.0 1.0 FS
Sherpa NLO 50 – 90 1.3904·10+2 1 91.7 130.0 AFII

90 – 175 5.1823·10+1 1 114.7 162.7 AFII

Table 5.2: Prompt diphoton background samples.

prescription [58]. The CT10 PDF set is used in conjunction with dedicated parton shower

tuning developed by the Sherpa authors. Those samples are used for optimisation of the

analysis and for cross-checks.

A recent implementation of Sherpa, version 2.2.4 [59], is also used. It consistently com-

bines parton-level calculations of varying jet multiplicity up to NLO (The γγ and γγ+1 parton

processes are generated at NLO accuracy, while the γγ+2 partons and γγ+3 partons process-

esare generated at LO. Charm and bottom quarks are included in these matrix elements in the

massless approximation.) with parton showering while avoiding double-counting effects. The

NNPDF3.0 NNLO PDFs [60] are used in conjunction with the corresponding Sherpa default

tuning. Those samples with high-statistics are used for the background modelling studies

described in Section 5.5.

Details on those samples are given in Table 5.2. In order to maximize the available statistics

over the mass range of interest, the simulation is separately performed in exclusive slices of

diphoton invariant mass. Those samples are fully reconstructed and are used for optimization

of the analysis.

Samples with one photon and up to 2 jets are simulated with Sherpa and are generated in

slices of the photon transverse energy. They are described in the general HGam supporting

note [61] and are used for the study of the isolation cuts.

Monte-Carlo samples of Z → ee decays are simulated using POWHEG-BOX V2 interfaced
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Generator mee range [GeV] Filter Cross section [pb] Filter efficiency Nevents (×106)
– mc16a mc16d

POWHEG – 1.9012·10+3 1 61.2 79.3

0 – 70 c-veto, b-veto 1.9810·10+3 0.82143 8.0
0 – 70 c-filter, b-veto 1.9816·10+3 0.11407 5.0
0 – 70 b-filter 1.9821·10+3 0.06576 8.0

70 – 140 c-veto, b-veto 1.1063·10+3 0.69432 6.0
70 – 140 c-filter, b-veto 1.1045·10+2 0.18697 2.0
70 – 140 b-filter 1.1043·10+2 0.11605 6.0

140 – 280 c-veto, b-veto 4.0711·10+1 0.61632 5.0
SHERPA 140 – 280 c-filter, b-veto 4.0683·10+1 0.23302 3.0

140 – 280 b-filter 4.0671·10+1 0.15319 12.4
280 – 500 c-veto, b-veto 8.6711·10+0 0.56328 2.0
280 – 500 c-filter, b-veto 8.6597·10+0 0.26640 2.0
280 – 500 b-filter 8.6793·10+0 0.17638 2.0
500 – 1000 1.8096·10+0 1 3.0

1000 – ∞ 1.4875·10−1 1 1.0

Table 5.3: Z → ee samples used to study the Drell-Yan background.

to the PYTHIA8 version 8.186 parton shower model. The CT10 parton density function set

is used in the matrix element. The AZNLO set of tuned parameters is used, with PDF set

CTEQ6L1, for the modeling of non-perturbative effects. Sliced samples generated with Sherpa

2.2.1 are also used for computing systematic uncertainties. Details on those samples are given

in Table 5.3.

The data and MC samples are processed through the HGam framework, and the mini-

xAODs version h021 are used unless stated otherwise. Weights are applied to correct the

simulation: Scale Factor for the photon identification, pile-up, choice of the diphoton vertex,

and MC weight when applicable (eg Sherpa samples).
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5.3 Event Selection

5.3.1 Trigger Selection

In general we want to be able to perform this search as low as possible in diphoton mass. One

of the limits we run into in this regard is the threshold at which triggers become prescaled. At

very low transverse energies (ET), the rate that events occur in the detector is much higher

than the detector is able to record at. This means that low ET, the triggers must be prescaled,

or have their rate limited. We would like to use triggers that are unprescaled as they will

collect a higher fraction of the events produced above their threshold. For 2015 and part of

2016 running the trigger 2g20 tight was used, which corresponds to a diphoton trigger where

both the leading and subleading photons are required to have ET> 20 GeV and both pass

tight identification. For the later part of 2016 running, the threshold was raised to 22 GeV

for the lowest unprescaled trigger (2g22 tight) due to the increase in luminosity of the LHC.

In 2017, the threshold was lowered back to 20 GeV by adding the additional requirement that

the photons pass the very loose calorimeter isolation (2g20 tight icalovloose). The triggers

used are summarized in table 5.4.

Year 2015 2016 up to D3 2016 from D3 2017
HLT item 2g20 tight 2g20 tight 2g22 tight 2g20 tight icalovloose

luminosity [fb−1] 3.2 fb−1 11.5 21.5 43.6 fb−1

Table 5.4: Lowest unprescaled HTL items, depending on the data-taking period, and associ-
ated integrated luminosity [43]

The use of 20 GeV triggers means we can use an offline cut of 22 GeV on the photon ET.

This causes a kinematic turn on in the invariant mass distribution which peaks at around 60

GeV. Although this turn on makes background modeling more difficult (see section 5.6.3), it

allows us to fit the distribution down to 60 GeV. The efficiency of the triggers are studied by
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the Egamma group’s photon trigger experts and are shown in figure 5.1a. These efficiencies

have good agreement with simulation and are shown in figure 5.1b as the ratio of data to MC.
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Figure 5.1: 2g20 tight icalovloose trigger efficiencies (a) and data/MC ratios (b) measured
on 2017 data.



5. Low Mass Diphoton 54

5.3.2 Kinematic Selection

As mentioned before we use an offline cut of ET> 22 GeV. We want to keep this as low as

possible for two reasons: to be able to start the search as low as possible and to keep the

kinematic turn on caused by the cut far away from the Drell-Yan peak. Changes to this cut

were not considered.

Also considered were relative cuts where the absolute ETcut is also divided by the in-

variant mass of the pair of photon candidates. These relative cuts are used in the SM

H → γγanalysis [62] as well as the high-mass diphoton analysis [8]. Figure 5.2a shows a

comparison of the absolute and relative cuts defined as ET > 22GeV/XGeV . You can see

that for the relative cuts the kinematic turn on follows the absolute cut until the value of

XGeV where it falls off. To measure the effect on the background we use background only

SHERPA MC samples described in section 5.2. The number of background events are mea-

sured in a window centered at mX , the mass of the signal point, with a width of 2∗σCB where

σCB is the width of the double sided crystal ball function used in the signal parameterization

described in section 5.4. Figure 5.2b shows the comparison of the tested cuts on the number

of background events normalized to the ET > 22GeV cut. The same is done in figure 5.2c for

the number of signal events measured on the ggF signal MC samples, again normalized to the

absolute cut.

In order to test the cuts, we use the significance Z = S/
√
B. This analysis is process

independent and so we have no expected number of events to compare. The ratio of S/
√
B for

the relative cut divided by S/
√
BET>22GeV for the default 22GeV cut is shown in figure 5.2d.

The significance is much lower at high masses for the relative cuts so it was concluded that

the default absolute cut ET > 22GeV will be used for this analysis.
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Figure 5.2: (a) Mγγ distribution of the diphoton background for various sets of kinematic
cuts applied on the photon transverse energies. (b) Ratio between the number of background
events in mX ± 2 ∗σCB with the tested cuts and with the 22 GeV cuts. (c) Ratio between the
number of signal events in mX ± 2 ∗ σCB with the tested cuts and with the 22 GeV cuts. (d)
Ratio between S/

√
B with the tested cuts and S/

√
B with the 22 GeV cuts.
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5.3.3 Isolation Selection

In addition to using an isolation requirement on the 2017 trigger, we also use isolation in the

offline selection of events. Isolation ensures that there is not too much activity in the detector

around the photon from both other interaction vertices but also from other decay product

originating from the primary vertex. Non-isolated candidates have a higher probability of

being misconstructed as photons. Two types of isolation variables are used; track-based and

calorimeter-based. Track-based isolation, ptcone20, is defined as the scalar sum of the trans-

verse momenta of all tracks with pT > 1GeV in the cone of size ∆R =
√

((∆η)2+(∆φ)2) = 0.2

around each photon candidate. Only tracks that are reconstructed as originating from the

primary vertex are used, and tracks associated with conversions are also removed. The

calorimeter-based isolation uses only the topological clusters in the calorimeter. topoetcone40

is the sum of all positive energy in clusters within a cone of ∆R = 0.4 after having subtracted

the contribution from the photon candidate itself.

Similar to how the photon ID is done, there are three different isolation cuts that are

available as working points:

• FixedCutTightCaloOnly: topoetcone40 < 0.022pT +2.45 [GeV], aiming for SM measure-

ments;

• FixedCutTight: topoetcone40 < 0.022pT + 2.45 [GeV] and ptcone20/pT < 0.05, aiming

for high-ET photons;

• FixedCutLoose: topoetcone20 < 0.065pT and ptcone20/pT < 0.05, designed for the SM

H → γγ analysis.

In order to choose which working point to use, we look at the significance for each cut. We

will measure the significance relative to the FixedCutLoose working point by taking the ratio
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Generator of signal samples Mass point [GeV]
MadGraph MX = 40, 50, 60, 70, 80, 90, 100, 110 MX = 120, 140, 160, 180, 200

MX − 5 < mγγ < MX + 5 GeV MX − 10 < mγγ < MX + 10 GeV
PowHeg+Pythia8 MX = 40, 60, 80, 100, 120 MX = 160

MX − 10 < mγγ < MX + 10 GeV MX − 20 < mγγ < MX + 20 GeV

Table 5.5: mγγ cuts applied on signal and background samples with respect to the different
mass of resonance points.

of the two. This gives us the relative efficiency εrelative = Ntestcut/NFixedCutLoose where

Ntestcut (NFixedCutLoose) is the number of events passing the cut we are testing (number

of events passing FixedCutLoose). The gain or loss in significance as measured relative to

FixedCutLoose is written as ZtestCut/ZFixedCutLoose = εS/
√
εB where εS and εB are the

relative efficiencies for the signal and background respectively.

The samples primarily used for the isolation study are the MadGraph samples, however,

samples produced with PowHeg+Pythia8 are used as well to check the effect of the working

points on different production modes. These samples are detailed in section 5.2.2. For the

background samples we use the Sherpa leading order samples in addition to the Sherpa γ jet

samples. The γ jet component ranges from about 50% to 30% of the total background events

according to the study in section 5.6.1. This means we need to account for this contribution

as jets have a different isolation distribution from photons. Isolation working points are tested

for two fraction of γ jet contribution, 50% γγ : 50% γ jet and 70% γγ: 30% γ jet. Jet-jet

components are neglegted as they are small (∼ 6% section 5.6.1).

The events that are used for testing are required to pass the basic kinematic selection

of 2g20 tight trigger, tight identification and ET > 22 GeV. There is then an addition cut

placed on the events invariant mass in a window around the mass of the signal being tested.

These cuts range from ±5GeV for lower masses to ±20 GeV for higher masses in the PowHeg

samples. These Mγγ cuts are shown in table 5.5.
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Figure 5.3 shows the relative isolation efficiencies for the background samples. The binning

in this plot corresponds to the mass points in the MadGraph signal sample so that they may

be easily compared and combined. Likewise, figure 5.4 shows the same background samples,

but with the binning corresponding to the mass points in the PowHeg signal samples. As can

be seen, the ratios for the FixedCutTight isolation are below 1, showing that this working

point has a higher rejection than the FixedCutLoose. This is expected as the tight cuts

are designed to have a greater rejection (or lower efficiency). The relative efficiency for the

FixedCutTightCaloOnly is greater than or close to 1, showing that its rejection power is lower

than that of the track-based FixedCutLoose working point.

The relative efficiency for the MadGraph signal samples are shown in firgure 5.5. We

find a similar situation to the background efficiency with the FixedCutTightCaloOnly being

more efficient than FixedCutLoose, and FixedCutTight being slightly less. Figure 5.6 shows

the significance relative to the FixedCutLoose working point for the two different fractions

of γ-jet. In both cases, the FixedCutTight working point has a higher significance than the

calorimeter only version, but both are lower and 1 in general. Although the FixedCutTight

isolation is very close to one for a few mass points, it is on average lower.

Figure 5.7 shows the relative efficiencies for the PoweHeg + Pythia8 signal samples with the

ggH, ttH, VBF, WH, and ZH production modes. The significance for each of these production

modes is shown in figure 5.8 for the 70% : 30% γ-jet fraction, and the same in figure 5.9 for the

50% : 50% γ-jet fraction. We see similar results for the PowHeg + Pythia8 samples as for the

MadGraph samples. The FixedCutLoose working point tends to have the highest significance

across the invariant mass range and so it is used for the analysis.
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(a) (b)

(c) (d)

Figure 5.3: Isolation efficiency relative to the FixedCutLoose working point for background
samples: (a) γγ. (b) γjet. (c) combined background sample with γγ : γjet = 70% : 30%.
(d) γγ : γjet = 50% : 50%. Efficiencies for the FixedCutTight (respectively FixedCut-
TightCaloOnly) working point are represented with full (respectively open) circles.
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(a) (b)

(c) (d)

Figure 5.4: Isolation efficiency relative to the FixedCutLoose working point for background
samples: (a) γγ. (b) γjet. (c) combined background sample with γγ : γjet = 70% : 30%.
(d) γγ : γjet = 50% : 50%. Efficiencies for the FixedCutTight (respectively FixedCut-
TightCaloOnly) working point are represented with full (respectively open) circles.
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(a)

Figure 5.5: Isolation efficiency relative to the FixedCutLoose working point for MadGraph
signal samples. Black open circles represents that FixedCutTight isolation requirement is
applied, and blue dots represents FixedCutTightCaloOnly.

(a) (b)

Figure 5.6: Significance relative to the FixedCutLoose working point with MadGraph signal
sample and background contains: (a) γγ : γjet = 70% : 30%. (b) γγ : γjet = 50% : 50%.
Significances for the FixedCutTight (respectively FixedCutTightCaloOnly) working point are
represented with full (respectively open) circles.
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(a) (b)

(c) (d)

(e)

Figure 5.7: Isolation efficiency relative to the FixedCutLoose working point for signal samples:
(a) ggH. (b) ttH. (c) VBFH. (d) WH. (e) ZH. Efficiencies for the FixedCutTight (respectively
FixedCutTightCaloOnly) working point are represented with full (respectively open) circles.
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(a) (b)

(c) (d)

(e)

Figure 5.8: Significance relative to the FixedCutLoose working point with signal sample as:
(a) ggH. (b) ttH. (c) VBFH. (d) WH. (e) ZH. The background contains γγ : γjet = 70% : 30%.
Significances for the FixedCutTight (respectively FixedCutTightCaloOnly) working point are
represented with full (respectively open) circles.
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(a) (b)

(c) (d)

(e)

Figure 5.9: Significance relative to the FixedCutLoose working point with signal sample as:
(a) ggH. (b) ttH. (c) VBFH. (d) WH. (e) ZH. The background contains γγ : γjet = 50% : 50%.
Significances for the FixedCutTight (respectively FixedCutTightCaloOnly) working point are
represented with full (respectively open) circles.
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5.3.4 Categorization

The determination of which and how many categories to use is important for this analysis as

we expect to have different numbers of Drell-Yan events for different conversion status of the

photon candidates. Conversions happen when photons in material convert into e+e−pairs.

Conversion status is split into 3 categories. Unconverted, converted with 1 track, and con-

verted with 2 tracks. The two conversion categories are then further subdivided by which

detector sub systems (silicon tracker or TRT) the tracks appear in.

• unconverted: unconverted photon

• conv 1-track: single track converted photon, divided in:

– singleSi: one track only, with Si hits

– singleTRT: one track only, no Si hits (TRT only)

• conv 2-track: double track converted photon, divided in:

– doubleSi: two tracks, both with Si hits

– doubleTRT: two tracks, none with Si hits (TRT only)

– doubleSiTRT = two tracks, only one with Si hits

Three different categorization schemes are considered where the leading and subleading

photons conversion status are treated separately.

• 4 Categories - Checking only whether the photon is converted or not for leading and

subleading.

• 9 Categories - As above but splitting the conversions into 1-track and 2-track varieties.
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• 36 Categories - Treating all of the above conversion states divide by subdetector sepa-

rately for leading and subleading.

To determine whether categorization is necessary or which to use as similar approach is

taken to the previous sections. The significance is tested with each categorization scheme

and compared with no categorization. For these tests the signal used is the X → γγ process

and with Z → ee as background. The significance is defined as Z = NX→γγ/
√
NZ→ee where

NX→γγ and NZ→ee are the number of events passing all selection criteria and falling within

a window of 2 ∗ σCB . For the X → γγ signal samples, only the mass point mX = 90GeV is

used. The significance defined for a single category i can be written as,

Zi = fX→γγi ∗NX→γγ/
√
fZ→eei ∗NZ→ee. (5.4)

Here we have used the fi as the fraction of events in each conversion category as measured

in the signal or background MC. The sum in quadrature of all conversion categories is the

overall significance for that categorization scheme shown in eq. 5.5

Zcategories =
√

ΣiZ2
i = Znocategories

√√√√Σi

(
fX→γγi√
fZ→eei

)2

(5.5)

This allows us to use part of this equation as a figure of merit: FoM =
√

Σi(f
X→γγ
i /

√
fZ→eei )2.

The figure of merit tells us the change in significance we expect for a particular scheme of

categorization relative to having no categorization. If this number is greater than 1, the cat-

egorization is better than no categories. Tables 5.6, 5.7, and 5.8 show the results for the

schemes with 4, 9 and 36 categories respectively. The FoM for each scheme is 1.71, 1.78, and

1.84 respectively. We can see from the table 5.8 that a majority of the converted photons
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in both leading and subleading are of the doubleSi type. Even thought the figure of merit

for this scheme is the highest, the majority of conversion belonging to one type means we

are safe to consider fewer categories. Similarly, in the case of 4 categories, the case where

there is one converted photon, and one unconverted photon has very similar fractions for both

the leading and subleading photons being converted. Because they are so close we can merge

these categories as well. So, instead of 4 categories we would have 3: unconverted/unconverted,

(converted/unconverted + unconverted/converted), and converted/converted labeled UU, UC,

and CC respectively. It was decided ultimately to use this 3 category scheme for the analysis

as the difference in the FoM is not large and using less categories simplifies many other parts

of the analysis.

f catZ→ee(%) subleading γ
unconverted converted

leading γ
unconverted 10.2 23.6
converted 17.3 48.9
f catH→γγ(%) subleading γ

unconverted converted
leading γ

unconverted 50.5 21.1
converted 19.9 8.4

fX→γγi /
√
fZ→eei subleading γ

unconverted converted
leading γ

unconverted 1.58 0.44
converted 0.48 0.12

Table 5.6: Percentage of events containing photons reconstructed as unconverted or converted

in Z → ee and H → γγ simulated events, and
fX→γγi√
fZ→eei

per category. The Figure of Merit is

1.71.
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f catZ→ee(%) subleading γ
unconverted single-track conv double-track conv

leading γ
unconverted 10.2 2.8 20.8
conv 1 track 3.4 1.2 6.2
conv 2 tracks 13.9 5.4 35.5
f catH→γγ(%) subleading γ

unconverted single-track conv double-track conv
leading γ

unconverted 50.5 8.3 12.9
conv 1 track 8.3 1.2 2.3
conv 2 tracks 11.7 2.0 3.0

fX→γγi /
√
fZ→eei subleading γ

unconverted single-track conv double-track conv
leading γ

unconverted 1.58 0.50 0.28
conv 1 track 0.45 0.11 0.09
conv 2 tracks 0.31 0.08 0.05

Table 5.7: Percentage of events containing photons reconstructed as unconverted, single-track

converted or double-track converted in Z → ee and H → γγ simulated events, and
fX→γγi√
fZ→eei

per category. The Figure of Merit is 1.78.
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f catZ→ee(%) subleading γ
unconverted singleSi singleTRT doubleSi doubleTRT doubleSiTRT

leading γ
unconverted 10.2 1.4 1.4 19.7 0.5 0.6

singleSi 1.7 0.1 0.3 3.3 0.0 0.0
singleTRT 1.8 0.3 0.4 3.3 0.1 0.1
doubleSi 12.7 2.4 2.6 31.2 0.8 0.8

doubleTRT 0.8 0.1 0.1 0.8 0.0 0.0
doubleSiTRT 0.4 0.1 0.1 0.8 0.0 0.0
f catH→γγ(%) subleading γ

unconverted singleSi singleTRT doubleSi doubleTRT doubleSiTRT
leading γ

unconverted 50.5 2.1 6.2 10.5 1.8 0.6
singleSi 2.0 0.1 0.3 0.5 0.1 0.0

singleTRT 6.3 0.3 0.5 1.4 0.3 0.1
doubleSi 9.3 0.4 1.1 1.9 0.3 0.1

doubleTRT 1.7 0.1 0.3 0.5 0.1 0.0
doubleSiTRT 0.6 0.0 0.1 0.2 0.0 0.0

fX→γγi /
√
fZ→eei subleading γ

unconverted singleSi singleTRT doubleSi doubleTRT doubleSiTRT
leading γ

unconverted 1.58 0.18 0.53 0.24 0.25 0.08
singleSi 0.16 0.01 0.05 0.03 0.16 0.01

singleTRT 0.48 0.06 0.08 0.08 0.08 0.02
doubleSi 0.26 0.03 0.07 0.03 0.03 0.02

doubleTRT 0.19 0.01 0.09 0.05 0.08 0.01
doubleSiTRT 0.10 0.00 0.03 0.02 0.00 0.02

Table 5.8: Percentage of events containing photons reconstructed as unconverted or one of the

five flavors of conversion in Z → ee and H → γγ simulated events, and
fX→γγi√
fZ→eei

per category.

The Figure of Merit is 1.84
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5.3.5 Selection Efficiency on Signal

The total and relative selection efficiency is summarized in Figure 5.10 where the pileup

conditions corresponding to 2015+2016 and 2017 are compared. Most of the efficiency loss

comes from the trigger selection (cf Table 5.4), in particular the 20 GeV or 22 GeV online

cuts. The preselection cuts (i.e. asking for two loose photons with a tranverse energy higher

than 22 GeV) also have a relative efficiency growing from 60 to 85% with increasing ET. The

offline tight efficiency is around 90%, and flat with ETas there is already a tight requirement

on the trigger. The overall efficiency goes from 14%/10% for mX = 60 GeV (the limit will

start at 65 GeV) to 32%/24% for mX = 100 GeV, for 2016 and 2017 respectively. The

difference between the two years comes from the increasing pile-up which degrades the photon

identification and isolation efficiencies (already included at trigger level). The total efficiency

is only of 2% for mX = 40 GeV, and the trigger efficiency of 4%, meaning we would need to

use a different trigger with lower ETcuts in order to search below 60 GeV.
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Figure 5.10: (a) Absolute and (b) relative selection efficiency for signal, with mc16a
(2015+2016) and mc16d (2017) samples for different mass points.

The fraction of events in each category is shown in Figure 5.11. It is rather flat with the

mass, with average fractions of 50%, 42% and 9% for the UU , UC and CC respectively.
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Those fractions are parameterized with second order polynomial functions:

fUU = 5.81186.10−01 − 1.31921.10−03 ∗ x+ 4.04665.10−06 ∗ x2

fUC = 3.51254.10−01 + 9.60341.10−04 ∗ x− 2.99837.10−06 ∗ x2

fCC = 1− fUU − fUC

(5.6)
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Figure 5.11: Fraction of conversion categories in terms of diphoton invariant mass. A second
order polynomial fit is performed. The statistical errors are binomial.

5.3.6 Selection Efficiency on Data

The number of selected events in data is summarized in Table 5.9. The total number of selected

events is 3414135. The use of an isolation requirement in the trigger for 2017 causes fewer

numbers of events to pass the preselection in 2017 compared with 2016 where no isolation

was used in preselection, despite the similar integrated luminosity. After isolation is applied

in the full selection the numbers are comparable.
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Year 2015 2016 2017
preselection 638392 6720477 4101517
tight 391529 4041009 2838686
isolated 152850 1564423 1696862
UU 49.9% 52.5% 47.8%
UC 41.0% 39.4% 42.1%
CC 9.1% 8.1% 9.9%

Table 5.9: Cut flow measured in data, in the 60 < Mγγ < 120 GeV mass window, for 2015,
2016, and 2017, as well as the fraction of events in each category.
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5.4 Signal Modeling

5.4.1 Signal Parameterization

To model the signal shape, we use a functional form that is Gaussian near the center, but has

tails that are non-Gaussian. The reason for this is that energy leakage effect primarily the

lower tail. This causes the distribution to be asymmetric. To model this behavior we choose

a double sided crystal ball function (DSCB). This function is used several H → γγ type

analyses. Because we use the narrow width approximation (NWA) where the width of the

resonance is narrower than the energy resolution of the calorimeter, this function can work

for different narrow resonance models.

The double-sided Crystal Ball function is defined as

N ·



e−t
2/2 if −αLow ≥ t ≥ αHigh

e−0.5α2
Low[

αLow
nLow

(
nLow
αLow

−αLow−t
)]nLow if t < −αLow

e
−0.5α2

High[
αHigh
nHigh

(
nHigh
αHigh

−αHigh+t
)]nHigh if t > αHigh,

(5.7)

where t = ∆mX/σCB , ∆mX = mX − µCB , N is a normalisation parameter, µCB is the

peak of the Gaussian distribution, σCB represents the width of the Gaussian part of the

function, αLow (αHigh) is the point where the Gaussian becomes a power law on the low

(high) mass side, nLow (nHigh) is the exponent of this power law. A schematic representation

of the DSCB is shown in figure 5.12.

Four of the six parameters are found to be mass dependent. nlow and nhigh are not mass

dependent and so will be modeled with constants. The remaining parameters will be modeled

with a first order polynomial in the mass mX . To set the parameters we use the MadGraph



5. Low Mass Diphoton 74

N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

May 12, 2014 – 17 : 55 DRAFT 15

The double-sided Crystal Ball function is defined as438

N ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−t2/2 if −αLow ≥ t ≥ αHigh

e
−0.5α2

Low[
αLow
nLow

(
nLow
αLow
−αLow−t

)]nLow if t < −αLow

e
−0.5α2

High[
αHigh
nHigh

(
nHigh
αHigh

−αHigh+t
)]nHigh if t > αHigh,

(2)

where t = ∆mX/σCB, ∆mX = mX − µCB, N is a normalisation parameter, µCB is the peak of the Gaussian439

distribution, σCB represents the width of the Gaussian part of the function, αLow (αHigh) is the point440

where the Gaussian becomes a power law on the low (high) mass side, nLow (nHigh) is the exponent of441

this power law. An illustrative drawing of the double-sided Crystal Ball function is provided in Figure 9.442
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Figure 9: Description of the double-sided Crystal Ball function parameters, for a signal mass

mX = 600 GeV. The different parameters are described in the text.

4.3 Modelling of mγγ at high-mass - inclusive443

In a first step, an unbinned fit of the mγγ distribution of all the events passing the selection cuts in the444

ggF samples is performed using the double-sided Crystal Ball function, separately for each mass point445

mX (single mass point fit). The evolution of the DSCB parameters as a function of mX are then fitted to446

extract parameterizations. In a second step, the parameterization functions of the DSCB parameters are447

used as input for a binned multiple mass point fit, where all the mass points are fitted simultaneously.448

The floating parameters of the fit are now the coefficients of the parameterization functions listed in Table449

2. The nLow and nHigh parameters are also left free in the multiple mass point fit, but since no particular450

trend is visible with mass in the single mass point fits, nLow and nHigh are parametrised with a constant.451

Figure 10 shows the results of the multiple mass point fit to the ggF samples, and the normalized452

residuals. Figure 11 shows the outcoming parameterizations of the DSCB parameters from the multiple453

mass fit (pink line) compared to the single mass point fit results (blue points fitted with the blue line)454

where nLow and nHigh are fixed to the values obtained from the multiple mass point fit. A very good455

agreement is found between both methods. The final parameterizations obtained from the multiple mass456

point fit are given in Table 2, and will be used for the high-mass analysis.457

Figure 5.12: A schematic representation of the double-sided crystal ball function with a signal
mass of mX .

ggF MC signal sample. These samples are categorized according to the 3 categories UU, UC,

and CC described in section 5.3.4.

To find the parameterizations as a function of mX for the DSCB we use two fits: a single

point fit, and a multiple, simultaneous fit. The single point fit involves taking each mass

point signal sample separately and fitting with a DSCB. The DSCB parameters for each fit

are then fit with a first order polynomial, or constant in the case of nlow and nhigh to get the

parameterizations of the DSCB as a function of mX . The multiple, simultaneous fit takes all

of the signal mass points and fits them at once using the first order polynomials directly in the

fit. The multiple fit method will better pick up the correlations between some fit parameters

and so this is used as the main method to obtain the parameterization. The single mass point

fits are used as a validation.

The single mass point fits for mX = 60, 80, and 100 are shown in figures 5.13, 5.14, and 5.15
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for the three conversion categories UU , UC , and CC respectively.
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Figure 5.13: Fit of the mγγ distributions for ggF samples at mX = 60 (left), 80 (middle) and
100 GeV (right) to a double-sided Crystal Ball function for UU category. The bottom insets
show the pulls in each bin (the difference between the simulated point and the fit, divided by
the statistical uncertainty in each bin).
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Figure 5.14: Fit of the mγγ distributions for ggF samples at mX = 60 (left), 80 (middle) and
100 GeV (right) to a double-sided Crystal Ball function for UC category. The bottom insets
show the pulls in each bin (the difference between the simulated point and the fit, divided by
the statistical uncertainty in each bin).

The results of the multiple fit are shown in table 5.10. The parameterization is shown

as a function of mnX = mX−100
100 . These are the parameters that are used for the analysis.

Figures 5.16-5.18 show the results of the parametrization of the multiple fit compared with

the single fit points as well as the fitted line to the single fit mass points.

The correlation between all parameters in the multiple fit are shown in figure 5.19. The
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Figure 5.15: Fit of the mγγ distributions for ggF samples at mX = 60 (left), 80 (middle) and
100 GeV (right) to a double-sided Crystal Ball function for CC category. The bottom insets
show the pulls in each bin (the difference between the simulated point and the fit, divided by
the statistical uncertainty in each bin).

strong correlation between several of the parameters shows that the multiple fit method should

be used to make sure these relationships are fully captured by the fit.

Parameter Parameterization Coefficient UU UC CC

∆mX a+ bmnX a 0.06± 0.03 0.14± 0.04 0.20± 0.10
b 0.01± 0.06 0.05± 0.078 0.03± 0.19

σCB a+ bmnX a 1.43± 0.03 1.70± 0.05 1.96± 0.11
b 0.77± 0.06 0.81± 0.09 0.88± 0.20

αLow a+ bmnX a 1.65± 0.12 1.58± 0.13 1.51± 0.23
b −0.03± 0.14 0.06± 0.13 −0.09± 0.26

nLow a a 9.85± 3.75 6.74± 2.34 8.04± 5.91
αHigh a+ bmnX a 1.45± 0.09 1.48± 0.11 1.51± 0.23

b 0.16± 0.15 −0.05± 0.16 −0.09± 0.26
nHigh a a 1468± 12943 1624811± 8566690 652± 17070

Table 5.10: Parameterizations of the double-sided Crystal Ball function describing the signal
shape, result of the multiple mass point fit at low-mass, for the three categories. mnX is
defined as mnX = mX−100

100 .
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Figure 5.16: Result of the simultaneous fits of the mγγ distributions for ggF samples from 40
to 200 GeV for the UU category. The four plots correspond to the parameters ∆mH , σCB ,
αlow and αhigh. The red line corresponds to the result of the multiple fit while the dashed
lines correspond to the linear fit of the individual fits.
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Figure 5.17: Result of the simultaneous fits of the mγγ distributions for ggF samples from 40
to 200 GeV for the UC category. The four plots correspond to the parameters ∆mH , σCB ,
αlow and αhigh. The red line corresponds to the result of the multiple fit while the dashed
lines correspond to the linear fit of the individual fits.
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Figure 5.18: Result of the simultaneous fits of the mγγ distributions for ggF samples from 40
to 200 GeV for the CC category. The four plots correspond to the parameters ∆mH , σCB ,
αlow and αhigh. The red line corresponds to the result of the multiple fit while the dashed
lines correspond to the linear fit of the individual fits.

Figure 5.19: Correlation between different parameters of the global fit for ggF samples. The
index ”0” indicates the constant part of the linear polynomial.
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5.5 Background Modeling

One of the most important and first steps in performing any analysis is modeling the back-

grounds. ATLAS sees many thousands of interactions per second but most of these are

processes that we are not interested in. However, since the experimental signature can look

identical to the process that we do actually care about, it is often impossible to separate the

uninteresting and interesting events. This means that we will have large backgrounds in our

datasets and searching for new physics often involves looking for small signals on top of the

background processes.

We expect to see two main types of background, non-resonant backgrounds and resonant

ones. The non-resonant backgrounds come from QCD production of photon pairs (γγ) shown

in figure 5.20, photon and jet pairs (γj), and jet pairs (jj). This background appears as a

smoothly falling distribution across the entire invariant mass range and is modeled with a fit

function.

�q

q̄

q

γ

γ

(a)

�q

q

q

q

g

g

γ

γ

(b)

Figure 5.20: SM background processes that contribute to the non-resonant background. (a)
is the qq̄ process and (b) is the dominant ggF process.

The resonant background is due to the Drell-Yan process Z → ee where both of the

electrons are misidentified as photons shown in figure 5.21.
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Figure 5.21: The Drell-Yan process Z → ee. This process gives the resonant background
where the electrons are misidentified as photons.

5.6 Non-Resonant Background

To model the non-resonant part of the background, we construct templates from background

MC samples for the γγ part, and take the γjet component from control regions in data. These

two components are added together according to their respective fractions as measured in the

next section.

5.6.1 Background Composition

In order to properly build the templates used to find an approprite fit function we need to

determine the relative contributions in the data from γγ, γjet, and jetjet events. This will

allow us to combine the appropriate samples with the correct fraction. The 2x2D sideband

method is used which is described in detail in [63]. This method involves extrapolating from

background control regions in the side bands of the isolation and identification variables.

To begin, a sample is prepared from the data using a modification to the Tight ID criteria

where all cuts on variable measured in the first layer of the EMCal are removed except for

wstot. This working point is known as Loose’. This sample is referred to as L′L′. In this

sample the total yield of all events, WL′L′

tot , will be the sum of all γγ, γj, and jj events.

WL′L′

tot = WL′L′

γγ +WL′L′

γj +WL′L′

jγ +WL′L′

jj . (5.8)

The yields on the right of equation 5.8 are unknown. This sample is then divided into 16
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orthogonal subsamples by whether each photon passes or fails the tight ID and isolation

requirement. The signal region is defined by both the leading and subleading photon passing

the tight ID and isolation which we denote by TITI. The remaining 15 control regions are

where one or both photon candidates are required to fail either the ID or isolation or both.

For example the region defined by the leading photon failing the tight ID and isolation is

denoted T̄ ĪT I and corresponds to a part of the WL′L′

jγ component of equation 5.8. The total

yield for any of the subsamples can be written as a function of the efficiencies to pass the tight

and isolation requirement for photons, as a function of the fake rate for a jet to missidentified

as a photon. There are also non-trivial correlations between the fake rates for jj events and

so a factor for this must also be put in. The correlation between the other components is

neglected. For the TITI signal region, this is,

NTITI = WL′L′

γγ εT1εI1εT2εI2

+WL′L′

γj εT1εI1fI2fT2

+WL′L′

jγ fI1fT1εT2εI2

+WL′L′

jj f ′I1f
′
T1f

′
I2f
′
T2ξIjj ,

(5.9)

where

• εI1and εI2are the efficiencies of the isolation criteria of one of the six analysis under

study for the leading and subleading photons respectively. They are determined from

the diphoton simulation.

• εT1and εT2are the Tight identification efficiencies for the leading and subleading photons

respectively, also determined from the diphoton simulation.

• fI1and fI2are the isolation fake rates for the γj and jγ events, fitted directly on data.



5. Low Mass Diphoton 83

• fT1and fT2are the Tight identification fake rates for the γj and jγ events, fitted directly

on data.

• f ′I1and f ′I2are the isolation fake rates for the jj events, fitted directly on data.

• f ′T1and f ′T2are the Tight identification fake rates for the jj events, fitted directly on

data.

• ξIjj is the isolation correlation factor between the jets in the jj events, fitted directly on

data.

As an example of one of the control regions, equation 5.10 shows TIT̄ Ī, is the subsample

where the leading photon is required to pass both tight ID and isolation, but the subleading

is required to fail both. The remaining 14 equations are listed in appendix A.1.

NTIT̄ Ī = WL′L′

γγ εI1εT1 (1− εI2) (1− εT2)

+WL′L′

γj εI1εT1 (1− fI2 − fT2 + fI2fT2)

+WL′L′

jγ fI1fT1 (1− εI2) (1− εT2)

+WL′L′

jj f ′I1f
′
T1 (1− ξIjjf ′I2 − f ′T2 + f ′I2f

′
T2ξIjj)

(5.10)

With the efficiencies and isolations measured directly on the Sherpa γγ MC sample the

remaining unknowns are the fractions (WL′L′

γγ , WL′L′

γj , WL′L′

jγ , WL′L′

jj ), the fake rates (fT1,

fT2, fI1, fI2, f ′T1, f ′T2, f ′I1, f ′I2), and the jj correlation (ξIjj). These are all determined by a

fit to data. Table 5.11 shows the efficiencies measured on MC used as inputs to the fit. The

results of the fits are shown in table 5.12 for each of the categories UU , UC , CC as well

as the inclusive sample. The fraction of each component are shown as a function of invariant

mass in figures 5.22-5.24.
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Category Year Isolation Identification

Inclusive
2015+2016 (mc16a)

εI1 0.9291± 0.0004 εT1 0.9520± 0.0003
εI2 0.8664± 0.0005 εT2 0.9289± 0.0004

2017 (mc16d)
εI1 0.9043± 0.0006 εT1 0.9446± 0.0004
εI2 0.8290± 0.0007 εT2 0.9219± 0.0005

UU
2015+2016 (mc16a)

εI1 0.9423± 0.0005 εT1 0.9480± 0.0005
εI2 0.8829± 0.0007 εT2 0.9288± 0.0005

2017 (mc16d)
εI1 0.9174± 0.0008 εT1 0.9406± 0.0006
εI2 0.8464± 0.0009 εT2 0.9210± 0.0007

UC
2015+2016 (mc16a)

εI1 0.9198± 0.0006 εT1 0.9548± 0.0005
εI2 0.8557± 0.0008 εT2 0.9286± 0.0006

2017 (mc16d)
εI1 0.8965± 0.0009 εT1 0.9469± 0.0006
εI2 0.8196± 0.0011 εT2 0.9220± 0.0007

CC
2015+2016 (mc16a)

εI1 0.9000± 0.0015 εT1 0.9608± 0.0010
εI2 0.8275± 0.0018 εT2 0.9314± 0.0012

2017 (mc16d)
εI1 0.8741± 0.0021 εT1 0.9545± 0.0013
εI2 0.7864± 0.0024 εT2 0.9256± 0.0015

Table 5.11: Isolation and identification efficiencies for true photons used as input to the 2x2D
sideband method for the measurement of the diphoton purity in the [60, 120] GeVmass range of
the sample passing the full selection, for the years 2015+2016 (mc16a) and 2017 (mc16d). The
efficiencies are determined with respect to the leading and subleading photon candidates of true
diphoton events that pass the full selection except the isolation and tight identification criteria,
which are removed; the photons must pass instead the (looser) L’ identification requirements.
The uncertainty arises from the MC statistics.
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Category component fraction
2015+2016 2017

Inclusive

γγ 0.666± 0.004+0.022
−0.034 0.673± 0.006+0.027

−0.041

γj 0.183± 0.002+0.027
−0.019 0.178± 0.004+0.039

−0.030

jγ 0.096± 0.002+0.016
−0.013 0.086± 0.003+0.029

−0.024

jj 0.056± 0.001+0.024
−0.029 0.063± 0.001+0.031

−0.037

UU

γγ 0.673± 0.006+0.011
−0.036 0.688± 0.010+0.018

−0.047

γj 0.179± 0.003+0.030
−0.018 0.175± 0.005+0.037

−0.026

jγ 0.094± 0.003+0.010
−0.006 0.080± 0.005+0.027

−0.016

jj 0.054± 0.001+0.022
−0.025 0.057± 0.002+0.023

−0.028

UC

γγ 0.658± 0.006+0.035
−0.035 0.661± 0.009+0.028

−0.033

γj 0.186± 0.004+0.020
−0.017 0.181± 0.005+0.029

−0.025

jγ 0.099± 0.003+0.018
−0.015 0.093± 0.005+0.031

−0.025

jj 0.057± 0.001+0.020
−0.025 0.065± 0.002+0.029

−0.034

CC

γγ 0.649± 0.012+0.042
−0.031 0.654± 0.017+0.042

−0.021

γj 0.184± 0.008+0.022
−0.024 0.179± 0.011+0.050

−0.043

jγ 0.108± 0.007+0.022
−0.010 0.093± 0.010+0.034

−0.047

jj 0.059± 0.003+0.022
−0.031 0.074± 0.004+0.043

−0.050

Table 5.12: Signal and background fraction in the mass range [60, 120] GeV, obtained with
the 2x2D sideband method, for the year 2015+2016 and 2017 inclusively and in conversion
category.
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Figure 5.22: Data and γγ, γj and jj yields for the UU category, determined by the 2x2D
sideband method as a function of the diphoton mass, for the years 2015+2016 (a) and 2017
(b). The resulting fractions are shown below and for 2015+2016 (c) and 2017 (d).
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Figure 5.23: Data and γγ, γj and jj yields for the UC category, determined by the 2x2D
sideband method as a function of the diphoton mass, for the years 2015+2016 (a) and 2017
(b). The resulting fractions are shown below and for 2015+2016 (c) and 2017 (d).
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Figure 5.24: Data and γγ, γj and jj yields for the CC category, determined by the 2x2D
sideband method as a function of the diphoton mass, for the years 2015+2016 (a) and 2017
(b). The resulting fractions are shown below and for 2015+2016 (c) and 2017 (d).
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5.6.2 Background Samples and Templates

Modeling the diphoton backgrounds we find in this resonance search requires the use of Monte

Carlo samples in addition to samples taken from regions of data outside of our search region.

Modeling the background with data only can be tricky. Before performing our analysis we

cant know whether signal exists in our selection or not. Modeling using data directly runs the

risk of absorbing the signal into what we are classifying as background. For this reason, the

main SM γγ backgrounds are modeled using Monte Carlo where we can be certain that the

sample contains only background processes. With about 35% of the non-resonant background

coming from jets faking photons, we must also account for the γj and jγ background. The

jj background is small compared to the others and so will be ignored. Following a strategy

to section 5.6.1, data is used to model the jet components of the backgrounds.

The γγ component of the background comes from the Sherpa NLO sample listed in ta-

ble 5.2. Although this is a high-statistics sample, the MC/data ratio is not as high as it has

been in past iterations of this analysis. This means that there is more statistical fluctuation

in the sample relative to the data than we would like. The weights used in this sample can

contribute to this fluctuation as well. The four main weights used for this MC sample are

shown in fig 5.25. IF there are weights that have large fluctuations we would like to be able

to not apply them in order to minimize the uncertainty as much as possible. The photon ID

SF and MC weight both have a strong dependence on Mγγ so we must retain these or risk

sculpting the invariant mass distribution. The other two weights however, are relatively flat

in Mγγ and what little dependence they do have is smaller than the statistical uncertainty

on the MC sample (see section 5.6.3 for the distributions). These two weights can safely be

removed.

While performing the spurious signal test described in the next section, it was noticed that
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Figure 5.25: Profile of the weights applied to the Sherpa NLO diphoton simulation, as a
function of Mγγ . Only the preselection is applied. The four plots correspond to the Photon
ID, vertex, pile-up and MC weights.

the normalization between the [50,90]GeV and [90,175]GeV samples was slightly different.

The spurious signal test tends to be very sensitive to these kinds of shifts. Sherpa experts

confirmed that the uncertainty on the cross-section of the samples is on the order of 1%. To

fix this normalization, a 5th order polynomial was fit to the distribution with different weights

applied to one slice of the sample. The χ2/ndf was compared for each correction to find the

best normalization between the two slices.

• nominal cross-section: χ2/ndf = 241.3/114;

• 0.99 correction: χ2/ndf = 134.596/114;

• 0.98 correction: χ2/ndf = 143.65/114.

Based on these results we apply a correction of 0.99 to the higher mass slice. The Mγγ dis-

tributions before and after the correction to the cross-section is applied is shown in figure 5.26
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Figure 5.26: Invariant diphoton mass distribution computed with the Sherpa NLO sample
before (a) and after (b) the correction of cross-section, fitted with a fifth order polynomial
function. The bottom panels show the ratio between the histograms and the fits.

In order to get the γj and jγ components of the templates, we must find a control region

in data that allows us to extract jet enriched samples. In the following, only 2017 data is used

to construct the templates and it is assumed that the difference in shape of the 2015 and 2016

data in the invariant mass distribution is negligible.

Three control regions are tested:

• CR1: the two photons pass the tight identification cuts, one photon passes the isolation

cuts and one fails it. It uses the trigger of the analysis (2g20 tight icalovloose, corre-

sponding to 43.0 fb−1). It has the advantage of being very close from the signal region

and the bias from inverting the cuts is minimal. But it has a high contamination from

the diphoton background: the estimated fraction of γγ from MC studies is of 25%.

• CR2: one photon passes the tight identification and the isolation cuts, while the other

one passes the loose identification but fails both the tight identification and the isolation

cuts. It uses the 2g20 loose trigger since the online and offline tight identifications are

very close, corresponding to 1.54 fb−1. It has the advantage of a minimal contamination

from the diphoton background (less than 10%). But this CR is far from the signal region



5. Low Mass Diphoton 92

so the shape could be biased by the inversion of cuts.

• CR3: the two photons pass the isolation cuts, one passes the tight identification, the

other one passes the loose identification but fails the tight identification. It uses data

from the 2g20 loose trigger and has the advantage of being close to the signal region.

But the diphoton contamination is high, around 25%.

The first control region, CR1, is very close to the signal region in data which causes it to

have a very high contamination of Drell-Yan background. This would make if very difficult to

accurately model the γj shape without first removing this background. Removing the Drell-

Yan would require an entire modeling study on this control region which is not feasible. This

control region is not considered further.

CR3 is the closest to the signal region as it has the closest cuts. This will be used as the

base line for the templates. Because CR3 uses the 2g20 loose trigger its statistics are small

compared with the high-stats Sherpa γγ sample. We are unable to use CR3 to directly sum

with the MC as this would cause the fluctuations in the resulting template to be very large.

Instead, a ratio of the γγ MC and CR3 are taken. This ratio is then fit with a second order

polynomial for the UU and UC categories, and fit with a first order polynomial for the CC

category. This fit can then be used to reweight the γγ MC sample in order to reproduce the

γj shape in high-statistics. This γj template will then be summed with the nominal γγ MC

sample according to their respective purity fractions found in section 5.6.1. Figures 5.27 and

5.28 show the invariant mass shapes for the CR2 and CR3 control regions compared with the

Sherpa γγ sample as well as the ratio of the control region to MC for each category.

Several templates are also created with variations. These are to asses the impact of the

choice of fit function as well as the selection of the control region. No systematic uncertainties

are directly applied to the templates.
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Figure 5.27: Mγγ shapes for the data-driven CR2 and CR3 and from the diphoton MC sample
for the three categories, made with 2015+2016 data and mc16a diphoton MC for inclusive(a),
UU (b) , UC (c), and CC (d). All histograms are normalized to the same area. The bottom
panels correspond to the ratio to the diphoton MC shape. The pink line corresponds to a
first/second order polynomial fit to the CR3/γγ MC ratio.

• the γγ purity is increased by 5% (conservative since the relative uncertainty on the

measured purity varies between 0.6 and 2.6%).

• the γγ purity is decreased by 5% (conservative since the relative uncertainty on the

measured purity varies between 0.6 and 2.6%).

• the smoothing of the reducible background is changed: the Sherpa γγ / CR3 ratios

fitted by second(first) order polynomial are fitted by first(second) order polynomial.

• the CR2 is used instead of the CR3 for the shape of the reducible background.
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Figure 5.28: Mγγ shapes for the data-driven CR2 and CR3 and from the diphoton MC sample
for the three categories, made with 2017 data and mc16d diphoton MC for inclusive (a), UU
(b) , UC (c), and CC (d). All histograms are normalized to the same area. The bottom
panels correspond to the ratio to the diphoton MC shape. The pink line corresponds to a
first/second order polynomial fit to the CR3/γγ MC ratio.

The templates with those different variations are showed in Figure 5.29, as well as the ratio

to the nominal template. The impact of the fraction of irreducible and reducible backgrounds

and the choice of the function for the smoothing of the reducible background is small (2% at

most), while using a different CR can give a difference up to 5%. The Spurious Signal method

will be used on the five samples in order to test the robustness of the chosen function.

A closure test is also performed on the resulting templates to validate them against the

signal region in data. The 2g20 loose trigger is used which corresponds to about 10% of the
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Figure 5.29: Non-resonant background templates built from the irreducible and reducible
components for the inclusive case and the three categories, made with the mc16a+mc16d
diphoton MC and data-driven components from 2015-2017 data. The black lines correspond
to the nominal template and the other ones to variations of the templates. The bottom panels
show the ratios to the nominal template.

total statistics in data. A wide binning of 10GeV in Mγγ is also used in order to obscure

any signal that may exist in this data. Figures 5.30 and 5.31 shows the templates compared

with the signal region data. The Drell-Yan peak is clearly visible in the data especially in the

CC category. As these templates do not model the resonant background we only check the

agreement outside of the peak region. The agreement with data is good.
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Figure 5.30: Invariant mass distribution from 2015+2016 data (black points), and the non-
resonant template. The grey bands correspond to the envelope of all variations.
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Figure 5.31: Invariant mass distribution from 2017 data (black points), and the non-resonant
template. The grey bands correspond to the envelope of all variations.
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5.6.3 Spurious Signal Tests

In order to fit a function to a distribution, we first must select a function. This is not always

as easy as it seems since most times in physics we don’t know what the underlying process

is generating the distribution. Without an exact functional form, we must choose one that

we think approximates the distribution well. A common test in ATLAS for the suitability

of a function to model the data is the spurious signal test. This involves fitting your chosen

background function plus a function for your signal model on a Monte Carlo sample that

contains only background events. Because we have limited resources with which to generate

the MC samples, there will be statistical fluctuation in them. This will cause the signal part

of the fit to report non-zero values. Because we are using a sample that has no signal in this,

we call this the Spurious Signal. Obviously when we go to search for real signal in our data

we would hope that our chosen functions do not give us any spurious results and so we would

like them to have low values of the Spurious Signal when tested on background only samples.

One way we can try to select the right function to describe the background is to test several

functions against each-other, then select the one that has the lowest spurious signal, or that

meets some other criteria. Which functions to test are ad-hoc and several functions that have

the general behavior we see in the background distribution are chosen.

The procedure for choosing a fit function with the spurious signal test follows from the

procedure used in the H → γγ cross section analysis [62]. I will start by detailing the nominal

spurious signal test that has been used in past analyses and then discuss changes made because

of changes in the run 2 analysis.

• Prepare a high statistics background only sample of MC simulation.

• Fit this distribution with a signal plus background function and measure the yield from

the signal part Nspur,i.
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• For each mass point in 1 GeV steps, repeat this process.

• Find the maximum value of Nspur,i for all mass points in the range. This is called the

size of the spurious signal Nspur

Normally a criteria is adopted to determine which function passes the test. In the run 1

low mass analysis, the criteria was that the size of the spurious signal Nspur must be lower

than 20% of the background statistical uncertainty. In the standard model Higgs search, they

also require that the size of Nspur be lower than some percentage of the expected signal,

however, since for this analysis there is no expected signal, this criteria was ignored.

Several fit functions may satisfy the criteria and so the one with the fewest degrees of

freedom is chosen. The size of the spurious signal will also be used later in the statical model

for the search as a Gaussian constraint using a width of Nspur.

The fit range for the low-mass search is 60 < mγγ < 120 GeV. This range is selected to

search below the SM Higgs mass but above the kinematic turn on caused by the 20 GeV and

22 GeV triggers used.

The MC sample used is a γγ only background sample produced with Sherpa. Several files

are produced in ranges of mγγ and are then summed and weighted by their cross section. This

sample is then re-weighted by the shape extracted from γ+Jet data described in section 5.6.2

The fit functions chosen to test are:

• Fermi distribution: f(x) = exp(−x/µ)/(1 + exp(−(x−m0)/σ))

• Bernstein polynomials: f(x) = Σni=0piu
i(1− ui), where u = (x− xmin)/(xmax − xmin)

and n=4 to n=7

• A Landau function

• The sum of a Landau and exponential function.
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For each conversion category the function is fit in the range [60, 120] GeV and the spurious

signal is measured in the range [65,110] GeV. For the run 1 analysis, the function that passes

the above criteria and has the fewest degrees of freedom is chosen to model the background.

For the run 2 analysis most of the spurious signal test remains unchanged, however some

modifications were necessary due to a limit on the amount of Monte Carlo we were able to

produce.

In the run 1 analysis because ATLAS had collected 20fb−1 of data [64] compared to the

80fb−1 collected in run 2, in order to keep the spurious signal numbers near what we saw

in run one, much more data would have to be generated. Limitations on the number of MC

events able to be generated meant that we would have to perform this test with a much lower

MC to data ratio. The standard model Higgs group uses a sample produced with a diphoton

mass between 90 GeV and 175 GeV. This sample detailed above was used as the upper slice of

our MC. We also needed to simulate data down to 50 GeV, so another production had to be

done. Because we were the only group using this particular slice, we were not able to request

the same statistics in the sample. In the end we had a MC to data ratio of 15 : 1 and 50 : 1

for the low and high slices respectively. A lower MC to data ratio will result in larger spurious

signal numbers as the relative size of the statistical fluctuations will be higher.

The results of the spurious signal fits on the γγ+γJ templates discussed above are shown

for the categories UU fig:5.32, UC fig:5.33 and CC fig:5.34. The information is summarized in

table:5.13, table:5.14 and table:5.15. The signal function and parameterization used for these

fits is the DSCB function described in section 5.4

Because the MC to data ratio is so low we are not able to find any functions that meet the

nominal criteria, so we instead define a ”relaxed criteria” defined by equation 5.6.3. This is

used to check if the tested functions are statistically compatible with the maximum allowable
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value for S/δS.

ζspur =



Nspur + n ∗∆MC Nspur + n ∗∆MC < 0

Nspur − n ∗∆MC Nspur − n ∗∆MC > 0

0 otherwise

We use n = 2. In other words we are allowing the 2σ error bars to fall within the original

range of 30% background uncertainty. Relaxing the criteria is necessary in the case of limited

statistics in MC. Figure 5.39 shows ζspur compared with the nominal spurious signal result

for each category. The relaxed criteria is included in the results tables.

Even with the case of requiring the relaxed criteria, we still do not find functions passing

in each category. This inspired trying to instead perform the spurious signal test on the Mγγ

spectrum using a relative Et (etRel) cut instead of the absolute one. The etRel is defined

by dividing the photon Et by the diphoton invariant mass of the photon pair in the event.

The advantage of moving to relative cuts are that the spectrum no longer shows the turn on

curve from the trigger cuts which allows much easier selection of fit function. This however

comes with the downside of reduced data statistics in our Mγγ spectrum. You can see from

figure 5.35 the Mγγ spectrum for absolute Et cuts and various relative Et cuts. Selecting the

cut Et > 22/58GeV completely removes the trigger turn on at the beginning of the fit range.

Figure 5.36 show a comparison of the absolute Et > 22 GeV and relative Et > 22/55 GeV

cuts for the full fit range in the UU category. Integrating these two spectra we get that the

loss in statistics is ∼60% going from absolute to relative cuts. Even though this seems like a

large loss, the change in significance is ∼10% (fig. 5.37). We add new fit functions to the test

as we are now able to consider functions that do not need to model the trigger turn on:

• Dijet: m
(b0+b1log(mγγ)+b2log(m2

γγ))
γγ (1−m1.5

γγ )a

– Dijet1: b1 = b2 = 0



5. Low Mass Diphoton 102

– Dijet2: b2 = 0

– Dijet3: All coefficients included

• Exponential Poly2: e(p0+p1∗mγγ+p2∗m2
γγ)

The results of the spurious signal test for the relative Et distributions are shown in figures

5.40 - 5.42 and tables 5.16 - 5.18 for each of the categories UU , UC and CC . Comparing

the functions that we would select to use for the background, we can see that the relative Et

cuts do perform much better as we expect (table 5.19).

The final decision on whether to use the absolute or relative cuts came down to the

effect on the expected limits that could be set in each case. Figure 5.38 shows a comparison

of the expected limits using the absolute Et cuts and the relative Et cuts. In the case of

absolute cuts, the functions used are the ones selected and indicated in the results tables.

Two different choices of functional forms are used in the relative Et limit indicated on the

figure. The 5%-10% change in limit is what we would expect to see considering the similar

change in significance we see. The decision was made to use the absolute Et cuts as they have

slightly better limits, and don’t require changing any other parts of the analysis.

The functions chosen to model the background are the one in each category with the lowest

value of ζspur. This is a Landau + Exponential for the UU and UC categories, and a fifth

order Bernstein polynomial for the CC .

Category function S/δS% ζspur/δS% Nspurious Free parameters

UU

Landau -137 -86.1 -549 2
Fermi 1.16e+06 7.46e+05 -1.24e+03 3

LandauExp -128 -76.7 -604 4 ⇐
Bern5 125 -83.4 701 5
Bern6 -131 -88.8 -689 6
Bern7 -142 -100 -730 7

Table 5.13: Spurious signal results for each of the tested functions in the UU category.
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Figure 5.32: The spurious signal and the spurious signal divided by the background uncertainty
with dashed lines representing 30% background uncertainty. Figures on the right include
uncertainty in the UU category. The figures on the left are the same as those on the right but
with no error bars shown.

Category function S/δS% ζspur/δS% Nspurious Free parameters

UC

Landau 198 138 974 2
Fermi -217 -187 -1.22e+03 3

LandauExp -104 -61.4 -496 4 ⇐
Bern5 -119 -77.2 -577 5
Bern6 -105 -75.2 -703 6
Bern7 -136 -107 -884 7

Table 5.14: Spurious signal results for each of the tested functions in the UC category.

Category function S/δS% ζspur/δS% Nspurious Free parameters

CC

Landau -121 -75.2 -244 2
Fermi -85 -37.2 -170 3

LandauExp -128 -80.9 -251 4
Bern5 -78.7 -38.3 -181 5 ⇐
Bern6 -84.2 -45.5 -202 6
Bern7 -77.6 -36.3 -204 7

Table 5.15: Spurious signal results for each of the tested functions in the CC category.
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Figure 5.33: The spurious signal and the spurious signal divided by the background uncertainty
with dashed lines representing 30% background uncertainty. Figures on the right include
uncertainty in the UC category. The figures on the left are the same as those on the right but
with no error bars shown.

Category function S/δS% ζspur/δS% Nspurious Free parameters

UU

Dijet2 -99.3 -25.2 337 3 ⇐
Bern4 -88.8 -15 -285 4
Bern5 -64 6.17 238 5

ExpPoly2 -96.5 48 326 2
Landau -307 -237 -977 2
Dijet1 -531 -482 1.64e+03 2
Bern3 -307 -258 -903 3

LandauExp 77.3 34.3 304 4
Dijet3 -114 -30.9 343 4

Table 5.16: Spurious signal results for each of the tested functions in the UU category for
relative Et cuts. The arrow represents the function selected to model the background in this
category.
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Figure 5.34: The spurious signal and the spurious signal divided by the background uncertainty
with dashed lines representing 30% background uncertainty. Figures on the right include
uncertainty in the CC category. The figures on the left are the same as those on the right but
with no error bars shown.

Figure 5.35: Comparison of the diphoton spectrum for absolute and relative Et cuts. The
vertical line shows the beginning of the non-resonant background fit range.
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Figure 5.36: Comparison of the diphoton spectrum for absolute and Et > 22/55GeV cuts for
the full fit range.

Figure 5.37: Comparison of significance for absolute and relative Et cuts.

  8

Sensitivity Loss with Relative pT cuts

● Evaluate sensitivity loss by computing expected limit without systematic uncertainties
- Black�: nominal selection

● Left@: nominal bkg param (Landau, Landau+Exp, Bern5 for UU, CU, CC) )to be compared to Red
● Right@: complex bkg param (all Bern5) )to be compared to Blue

- Blue@: add relative pT cuts, simple bkg parametrisation (ExpPoly2 and Landau+Exp)
- Red@: add relative pT cuts, complex bkg parametrisation (Bernstein 5 polynomials)

Adding relative pT cuts@: sensitivity loss of 5-10%, as expected (w/o systematics)Figure 5.38: Comparison of the expected limits for absolute and relative Et cuts.
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Figure 5.39: The spurious signal S divided by the background uncertainty in gray, and the
relaxed spurious signal ζ divided by the background uncertainty in blue as a function of MX

for the UU (a), UC (b) and CC (c) categories [43].
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Figure 5.40: The spurious signal and the spurious signal divided by the background uncertainty
for relative Et cuts with dashed lines representing 30% background uncertainty. Figures on
the right include uncertainty in the UU category. The figures on the left are the same as those
on the right but with no error bars shown.
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Figure 5.41: The spurious signal and the spurious signal divided by the background uncertainty
for relative Et cuts with dashed lines representing 30% background uncertainty. Figures on
the right include uncertainty in the UC category. The figures on the left are the same as those
on the right but with no error bars shown.

Category function S/δS% ζspur/δS% Nspurious Free parameters

UC

ExpPoly2 229 146 735 2
Landau -215 164 -783 2
Dijet1 -785 -731 2.47e+03 2
Bern3 -143 -104 -407 3
Dijet2 -171 -105 723 3
Bern4 -99.2 -33.3 -312 4 ⇐

LandauExp -110 -44.1 -424 4
Dijet3 -175 111 764 4
Bern5 97.7 33.4 322 5

Table 5.17: Spurious signal results for each of the tested functions in the UC category for
relative Et cuts. The arrow represents the function selected to model the background in this
category.
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Figure 5.42: The spurious signal and the spurious signal divided by the background uncertainty
for relative Et cuts with dashed lines representing 30% background uncertainty. Figures on
the right include uncertainty in the CC category. The figures on the left are the same as those
on the right but with no error bars shown.

Category function S/δS% ζspur/δS% Nspurious Free parameters

CC

LandauExp 92.9 24.1 187 4 ⇐
Bern5 57.8 20.1 102 5

Landau 127 83.6 -158 2
ExpPoly2 185 101 305 2

Dijet1 -474 -424 817 2
Bern3 -109 -37.2 197 3
Dijet2 -162 -81.4 270 3
Bern4 -101 44.6 191 4
Dijet3 -184 -105 282 4

Table 5.18: Spurious signal results for each of the tested functions in the CC category for
relative Et cuts. The arrow represents the function selected to model the background in this
category.
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Category Variable LandauExp (Abs Cut) Dijet2 (Rel Cut)

UU

S/δS% -128 -99.3
ζspur/δS% -76.6 -25.2
Nspurious -604 337

Free Parameters 4 3

Category Variable LandauExp (Abs Cut) Bern4 (Rel Cut)

UC

S/δS% -104 -99.2
ζspur/δS% -61.4 -33.3
Nspurious -496 -312

Free Parameters 4 4

Category Variable Bern5 (Abs Cut) LandauExp (Rel Cut)

CC

S/δS% -78.7 92.9
ζspur/δS% -38.3 24.1
Nspurious -181 187

Free Parameters 5 4

Table 5.19: Comparison of selected function for the absolute and relative Et cuts. The column
labeled ’Abs Cut’ (Rel Cut) shows the criteria for the selected function with absolute cuts
(relative cuts).
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5.7 Resonant Background

The resonant background comes from the Drell-Yan process, Z → ee where both electrons

are misidentified as photons. As this background is a signal like bump right in the middle

of our search range, it is important to have a good description of this background especially

in the CC category where this effect is largest. The background shape will be modeled with

a template built from Z → ee MC. This template can then be summed with the others to

create a complete background description.

The Drell-Yan background is estimated using a sample of dielections that are reconstructed

as electrons and required to pass the tight electron ID. No isolation is applied but the ETcut

used in the photon selection is used. A template is constructed from this sample and is

normalized to the number of electrons faking photons we expect by using the fake rates.

The distribution of electrons faking photons has shifted kinematics compared with Z → ee

events reconstructed as electrons. This is because a majority of the electrons reconstructed

as photons have undergone large bremsstrahlung. This shift must be modeled for the final

templates. Figure 5.43 shows the invariant mass distribution of ee and eγ. To do this we

use a Z → ee MC sample made of only electrons. From this sample we use events where

two photons are reconstructed and that pass all selection criteria for the diphoton analysis

detailed in section 5.3. These reconstructed photons must also be ∆R matched to truth

electrons originating from a Z decay to ensure that the photon candidates are not from final

state radiation. The dielectron data distribution is then transformed so that its kinematics

are closer to that of the fake photons obtained from the MC sample.
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Figure 5.43: Invariant mass distributions (normalized to unity) of electrons pairs (black)
and pairs made of a leading truth-matched electron reconstructed as an electron and sub-
leading truth-matched electron reconstructed as a photon (red) or pairs made of a leading
truth-matched electron reconstructed as photon and subleading truth-matched electron re-
constructed as an electron (blue), for unconverted (a) and converted (b) photons, obtained
on a Z → ee simulation sample.

5.7.1 Transformation of Dielectron Events

The transformation is done with a Smirnov, or inverse transform [65]. This method determines

the transform φ(x) needed to go from a distribution F (x) to G(x). First we calculate the

cumulative distributions (CDF) for F (x) and G(x) denoted CDFF (x) and CDFG(x). If the

unknown transform φ(x) takes you from F (x)→ G(x) then we can write

CDFF (x) = CDFG(φ(x)). (5.11)

Taking the inverse of CDFF (x) gives the definition of the transform,

φ(x) = CDF−1
G (CDFF (x)). (5.12)

So, using the CDFs for each function defines a transformation to go from one to the other.

We can use this to transform our electron distributions into photon distributions in the MC

samples. Figure 5.43 shows the CDFs for ee, eγ, and γe samples obtained from Z → ee MC.

These are then used to determine the transforms to take an electron distribution to the photon



5. Low Mass Diphoton 113

distribution for both leading and subleading objects. In this case the transforms work out to

be simple shifts along the Mγγ axis between the two CDFs. So for a particular mass point,

the transform is just a horizontal shift with a magnitude of the distance from the electron

CDF, to the photon CDF. We write the transforms δ1 and δ2 for the leading and subleading

object respectively.
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Figure 5.44: Cumulative distribution functions of discrete invariant mass values computed
using binned distributions of electrons pair (black) and electron with fake subleading photon
(red) or fake leading photon (blue) pairs in unconverted (a) and converted (b) photon category,
obtained on a Z → ee simulation sample.

Figures 5.45 and 5.46 show the effect of this transformation to reproduce fake unconverted

and converted photons, respectively. Transformed electrons in dielectron pairs here after are

noted e′.

In order to obtain the invariant mass spectrum of both transformed electrons, one need to

sum up shift values derived for leading and subleading transformations at the given dielectron

mass value,

me′e′ = mee + δ1 + δ2 = me′e +mee′ −mee .

Once these transformations are determined, the dielectron data can be shifted so the kine-

matics look like the resonant background in the diphoton Mγγ spectrum. Figure 5.47 shows
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the sum result of the transformation on both the leading and subleading electrons.
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Figure 5.45: Invariant mass distributions (normalised to unity) of electron with fake pho-
ton (blue) and transformed electron (red) pairs in leading (a) and subleading (b) cases for
unconverted photons, obtained on a Z → ee simulation sample.
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Figure 5.46: Invariant mass distributions (normalised to unity) of electron with fake pho-
ton (blue) and transformed electron (red) pairs in leading (a) and subleading (b) cases for
converted photons, obtained on a Z → ee simulation sample.

5.7.2 Electron to Photon Fake Rates

After the shapes of the leading and subleading electrons have been corrected to the pho-

ton distributions, the fake rates must be calculated. To build a template with the correct
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Figure 5.47: Invariant mass distributions (normalised to unity) of diphoton pair (blue) and
transformed electrons pairs obtained with summed up shifts (red) in UU (a), UC (b), CU
(c) and CC (d) categories, obtained on a Z → ee simulation sample.

normalizations, we must know the proper number of fakes that we can expect to occur.

To measure the electron to photon fake rates, a dielectron and a electron-photon sample

are used. The fake rate is measured separately for leading (ρ1) and subleading (ρ2) objects.

These fake rates are measured in a window around the Z-peak with a width of 6∗σCB which is

6 times the width of a double sided crystal ball fit to the data. As this is not a MC sample, the

non-resonant background must be subtracted away to give a good measure of the fake rates.

This is done with a signal + background fit, where the signal portion is a double sided crystal

ball and a Fermi × power law for the continuum portion of the Drell-Yan. The background
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uses a Fermi × exponential function. Figure 5.48 shows the results of the fits in the four

conversion categories.

Figure 5.48: Non-resonant background subtraction from the transformed e′e′ invariant mass
distributions performed before calculation of leading and subleading fake rates in data in four
conversion categories.

The electron to photon fake rates are calculated as:

ρ1 =
Nγe
Ne′e

,

ρ2 =
Neγ
Nee′

(5.13)

where as before, transformed electrons are denoted e′. The fake rates are first calculated on a

Z → ee MC sample, shown in figure 5.49. We can see that after the transformation, the fake

rate is flat in the invariant mass. This means we can use a single number for the rate and do

not have to parameterize it in Mγγ .

The final fake rates as measure on the data samples are shown in figure 5.50. The red lines

represent a fit to the data inside the mass window around the Z-peak.
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Figure 5.49: Invariant mass dependence of the leading (a) and subleading (b) unconverted
and the leading (c) and subleading (d) converted photon fake rates as measured in Z → ee
simulation, before (blue) and after (red) applying the Smirnov transformation.

The total number of fake diphoton events coming from the Drell-Yan process is then

NDY
γγ = αρ1ρ2N

DY
ee φ(mee) ,

where φ(mee) represents the Smirnov transformation of mass distribution from section 5.7.1,

and α is a correction factor introduced to take into account the reconstruction efficiency

differences between single photons and pairs of photons. This correction factor is evaluated

from Z → ee MC events and is defined as:

α =
1

ρMC
1 ρMC

2

NMC
γγ /NMC

e′e′ ,
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Figure 5.50: Invariant mass dependence of the leading (left) and subleading (right) uncon-
verted (top) and converted (bottom) photon fake rates, as measured in data. The red lines
represent the fit in the mass window.

where two transformed electrons e′e′ spectrum is obtained using mapping to γγ distribution

directly. Because the distributions after transformation don’t depend on the Mγγ , the fake

rate in nominator also doesn’t have mass dependence in the measured correlation factor as

seen in Fig. 5.51. This factor is expected to be around 1 if the photon reconstruction does not

depend on the reconstruction of the other candidate. However, since the track isolation uses

the information from both photon candidates in the event to determine the correct primary

vertex, there is some correlation.

Resulting normalization of the transformed distributions is obtained by rescaling e′e′ spec-

tra to the levels of the expected γγ background in data using the normalization factors
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Figure 5.51: Invariant mass dependence of correlation factor α in UU (a), UC (b), CU
(c) and CC (d) categories, obtained on a Z → ee simulation sample. The red lines represent
the fit in the mass window.

f = αρ1ρ2 shown in Fig. 5.52.

5.7.3 Resonant Background Templates

The resonant background templates are constructed from the Z → ee MC samples after kine-

matics transformation. These are then normalized using the fraction f = αρ1ρ2 as described

in the previous section. The resulting templates are shown in figure 5.53. Note that since we

are using a 3 category scheme for this analysis, the UC and CU categories are merged in the

end.
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Figure 5.52: Invariant mass dependence of normalisation factor f in UU (a), UC (b), CU
(c) and CC (d) categories, used to obtain expected number of fake photons in data. The red
lines represent the fit in the mass window.
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(c) CU
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Figure 5.53: Drell-Yan invariant mass templates (red) describing the expected diphoton back-
ground component (blue) in the UU (a), UC (b), CU (c) and CC (d) categories, obtained
on a Z → ee simulation sample.
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5.7.4 Standard Model Higgs Background

The standard model Higgs represents a very signal like resonant background. With its mass

as Mγγ = 125 GeV, it is outside our search window of [65, 110] GeV, however the lower tail

of the Higgs peak could contribute to the background. PowHeg+Pythia8 ggF Monte Carlo is

used to estimate the expected contribution to the backgrounds.

The selection described in Sec. 5.3 is applied. Table 5.20 shows the number of selected

SM Higgs events for each trigger configuration as used in the data and each conversion type

category. The mγγ distributions are shown in Fig. 5.54 (full range) and Fig. 5.55 (mass range

(60, 120) GeV).

Sample/luminosity(fb−1) trigger CC CU UU total
mc16a/15.4 2g20 tight 2.31 6.86 2.74 11.69
mc16a/21.5 2g22 tight 2.47 6.64 2.86 12.19
mc16d/43.6 2g20 tight icalovloose 6.57 18.57 9.09 34.23

Table 5.20: The number of SM Higgs with 60 < Mγγ < 120 GeV after normalizing to
the corresponding luminosity. The results are shown in three categories according to the
conversion types of the photons.

Adding the Standard Model Higgs component to the predicted γγ + γjet background

described in Sec. 5.5, NHiggs/
√
Nbkg andNHiggs/(NHiggs+Nbkg) are calculated, whereNHiggs

and Nbkg are the numbers of Standard Model Higgs and γγ + γjet backgrounds respectively.

Only the mc16d sample is used in this check, and Z → ee background is not considered.

Results are shown in Fig. 5.56 and Fig. 5.57. One can see that the Standard Model Higgs only

represents a small fraction (0.35% in the highest Mγγ bin, without categorization in conversion

types) of the total background. Therefore, the SM Higgs contribution to the backgrounds is

ignored when the final background template is built.
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(a) (b)

(c) (d)

Figure 5.54: Mγγ distribution of three Standard Model Higgs MC samples. (a) CC. (b) CU.
(c) UU. (d) Sum of three categories.
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(a) (b)

(c) (d)

Figure 5.55: Mγγ distribution of three Standard Model Higgs MC samples with 60 < Mγγ <
120 GeV. (a) CC. (b) CU. (c) UU. (d) Sum of three categories.
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(a) (b)

(c) (d)

Figure 5.56: Backgrounds bias due to Standard Model Higgs. (a) CC. (b) CU. (c) UU. (d)
Sum of three categories.
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(a) (b)

(c) (d)

Figure 5.57: Fraction of Standard Model Higgs in the total background. (a) CC. (b) CU. (c)
UU. (d) Sum of three categories.
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5.8 Fiducial Volume and Cx Factors

5.8.1 Fiducual Volume Definition

In order to quote results in a model independent way, we must correct measurements of the

cross-section. This allows the comparison with other exeriments as well as allowing theorists to

use the results. The correction factor will correct for detector effects such as reconstruction,

identification and selection efficiencies. It is defined as the number of reconstructed signal

events passing all analysis requirements, Nselection, divided by the number of signal events

generated in the fiducial volume, Nacceptance.

CX =
Nselection
Nacceptance

(5.14)

The correction factor is measured on MC truth values. In order for this correction factor

to provide a model independent result, it must use a definition of the fiducial volume that is

does not depend on the final state.

In order to choose the fiducial volume, a study on MC is done. Using samples with different

production modes (ggF, VBH, WH, ZH, ttH), a wide range of kinematics, as well as different

final states, we can optimize the definition of the fiducial volume.

All cuts applied on reconstructed photons are applied at truth level. Both photons should

be within the detector volume, |η| < 2.37 and not in the transition region between the barrel

and endcaps, 1.37 < |η| < 1.52. The standard ETcut is also applied, ET > 22 GeV.

Photons that are produced in final states that also have final state jets (ZH, WH, ttH) will

have a much higher isolation and therefore a much lower selection efficiency. We would like the

correction factor be be as stable in efficiency as possible so adding an isolation cut is required.

The cut is applied on the truth calorimeter isolation variable as etcone20 − 0.65 ∗ ET < 0.

Figure 5.58 shows the calorimeter isolation values in relation to the track isolation that is used
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in the offline kinematic selection for the analysis. Figure 5.59 shows the correction factors for

different production modes with and without the truth isolation cut.
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Figure 5.58: Reconstructed calorimeter isolation (a) and reconstructed track isolation (b) as a
function of the truth particle isolation, for mc16a MC samples for all Higgs production modes
and mX=100 GeV. Similarly, Figures(c) and (d) show the same for mc16d MC samples.

Also supplied for the purposes of reinterpretation of the results is the acceptance factor.

Figure 5.60 shows the fiducial acceptance using the cuts described above. The parameteriza-

tion of the acceptance factor as a function of mX is given as:

AX = 0.5729− 2.069 · e−3.13·mX/(100 GeV). (5.15)
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Figure 5.59: CX factors computed for five different production modes, as a function of mX .
In Figures (a) and (b) an isolation cut is also applied at truth level. In Figures (c) and (d),
the fiducial volume is defined with photons ET and η cuts only.The black dotted line shows
the 2nd order polynomial function used for the parameterization of CX as a function of mX .
The parameters of this function is obtained by a fit to the ggF MadGraph MC samples.
The gray dotted line shows the 2nd order polynomial function used for the systematic error,
which the parameters are obtained by a fit to the MC points with the maximum CX values.
Figures (b) and (d) show the ratio of the fit and the MC points. These ratios are taken as a
systematic error due to the different final states.

5.8.2 Cx Factors in Production Modes

As it is seen in Figure 5.59b, there is a 30% difference in CX factors between ggF and ttH

production modes for mX = 60 GeV. This difference is mainly due to the difference in

the photon ET distributions. The tight ID and photon isolation both have a dependence on

ET. This causes differences in the ID and isolation efficiency. The photon ET distribution
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Figure 5.60: Acceptance factors AX for different production modes, as a function of mX .

is shown in Figure 5.61. Photons from the ttH production mode have larger ET compared

to those from the ggF mode. Figure 5.62 presents the Tight ID and isolation efficiencies as

functions of photon ET. These efficiencies increase for larger ET, therefore the ttH signals

have higher selection efficiencies. The contribution of the isolation efficiency to the production

mode differences is small compared to that of the Tight ID. This is because the fiducial volume

is defined so that the production mode differences due to isolation efficiency is reduced, as

it is described above. Thus, the Tight photon ID is the main cause for the difference in CX

factors for ttH and ggF signals.
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Figure 5.61: Truth ET distributions for photons from different signal production modes. They
are shown for (a) leading photons and (b) subleading photons which pass the pre-selection.
The photons from ttH signals have larger ET compared to those from ggF signals.
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Figure 5.62: Selection efficiencies of photons with respect to truth photon ET. They are shown
for leading photons passing the pre-selection. (a) Tight photon ID efficiency, and (b) isolation
(track and calorimeter) isolation efficiency. These efficiencies increase for larger photon ET.

Figures 5.64 and 5.63 show the profile plots and correlation plots of the isolation vari-

ables with respect to the truth ET of photons. These figures demonstrate how the isolation

efficiencies increase with respect to photon ET.
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Figure 5.63: Correlation plots of topoetcone20 and truth ET for leading photons passing the
pre-selection. (a) ggF (Powheg+Pythia sample) and (b) ttH signals.
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Figure 5.64: Profile plots of isolation distributions with respect to the truth ET, for leading
photons passing the pre-selection. The markers show the average, and the bars show the
standard deviation for each ET bin. (a) Calorimeter isolation, (b) topoectone20, (c) track
isolation, and (d) ptcone20. Note that the large bars for ttH signal is because some of its
events can take large topoetcone20 values, as it is seen in Figure 5.63b.
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5.9 Systematic Uncertainties

5.9.1 Uncertainties on the Cx Factors

5.9.1.1 Production Mode

The uncertainty on the correction factor is taken as the envelope between the correction factors

for the production modes farthest apart. As shown in the section 5.8, the production modes

with the biggest difference in the CX factor is the nominal ggF sample and the ttH sample.

The uncertainty can be parameterized as the ratio of the fits between the two samples.

variation up =
0.5436 + 0.06644 ∗Mγγ/100 + 0.05077 ∗Mγγ/100 ∗Mγγ/100

0.08858 + 0.7405 ∗Mγγ/100− 0.1989 ∗Mγγ/100 ∗Mγγ/100
− 1 (5.16)

This uncertainty decreases from 25% at 65 GeV to 2.5% at 110 GeV.

5.9.1.2 Experimental Uncertainties

There are several uncertainties we need to account for on the calculation of CX factors asso-

ciated with experimental effects. These are:

• Trigger Scale Factor

• Uncertainty from pileup

• Photon identification efficiency

• Isolation efficiency

• Photon energy resolution

• Energy scale
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We saw in section 5.8 that the correction factor depends on the photon ID efficiencies as

well as the isolation efficiency. These two also both depend on ET, so any uncertainty on the

energy resolution will also need to be accounted for.

The uncertainty on CX due to the trigger scale factors is illustrated in Figure 5.65a and

parameterized as a function of mX as:

variation up = −0.00153 + 0.03453 ∗Mγγ/100− 0.01643 ∗Mγγ/100 ∗Mγγ/100

variation down = 0.001404− 0.03403 ∗Mγγ/100 + 0.01619 ∗Mγγ/100 ∗Mγγ/100

(5.17)

This uncertainty increases from 1.4% at 65 GeV to 1.7% at 110 GeV.

The uncertainty on CX due to the pileup is illustrated in Figure 5.65b and parameterized

as a function of mX as:

variation up = 0.1266− 0.1812 ∗Mγγ/100 + 0.07446 ∗Mγγ/100 ∗Mγγ/100

variation down = −0.1475 + 0.2319 ∗Mγγ/100− 0.1041 ∗Mγγ/100 ∗Mγγ/100

(5.18)

This uncertainty decreases from 4.1% at 65 GeV to 1.8% at 110 GeV.
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Figure 5.65: Systematic uncertainties associated with to the trigger efficiency (a) and pile-up
(b) as a function of mX , computed with the Madgraph ggF sample.

The uncertainty on CX due to the photon identification efficiency is illustrated in Fig-
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ure 5.66a and parameterized as a function of mX as:

variation up = 0.04845− 0.05095 ∗Mγγ/100 + 0.01904 ∗Mγγ/100 ∗Mγγ/100

variation down = −0.0476 + 0.04974 ∗Mγγ/100− 0.01854 ∗Mγγ/100 ∗Mγγ/100

(5.19)

This uncertainty decreases from 2.3% at 65 GeV to 1.5% at 110 GeV.

The uncertainty on CX due to the photon isolation efficiency is illustrated in Figure 5.66b

and parameterized as a function of mX as:

variation up = 0.04495− 0.01151 ∗Mγγ/100 + 0.006713 ∗Mγγ/100 ∗Mγγ/100

variation down = −0.04398 + 0.01106 ∗Mγγ/100− 0.00645 ∗Mγγ/100 ∗Mγγ/100

(5.20)

This uncertainty is of %, flat as a function of mX .
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Figure 5.66: Systematic uncertainties associated with to the photon identification (a) and
isolation (b) efficiencies as a function of mX , computed with the Madgraph ggF sample.

The uncertainty on CX due to the photon energy resolution is illustrated in Figure 5.67a

and parameterized as a function of mX as:

variation up = 0.0004173

variation down = −0.01147 + 0.01837 ∗Mγγ/100− 0.007655 ∗Mγγ/100 ∗Mγγ/100

(5.21)

This uncertainty decreases from 0.28% at 65 GeV to 0.05% at 110 GeV.
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The uncertainty on CX due to the photon energy scale is illustrated in Figure 5.67b and

parameterized as a function of mX as:

variation up = 0.01334− 0.01605 ∗Mγγ/100 + 0.004656 ∗Mγγ/100 ∗Mγγ/100

variation down = −0.01934 + 0.02594 ∗Mγγ/100− 0.008859 ∗Mγγ/100 ∗Mγγ/100

(5.22)

This uncertainty decreases from 0.49% at 65 GeV to 0.13% at 110 GeV.
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Figure 5.67: Systematic uncertainties associated with to the photon energy resolution (a) and
photon energy scale (b) as a function of mX , computed with the Madgraph ggF sample.

5.9.2 Signal Model

5.9.2.1 Energy Scale and Resolution

In this analysis the narrow width approximation is used which means that the shape of the

signal is determined almost entirely by the energy resolution and the energy scale of the

detector. The uncertainty on these two will cause some uncertainty in deviation on the mean

∆MX and the width σCB of the double-sided crystal ball function. The uncertainty for the

energy resolution and scale are estimated by varying them up and down. The parameters

∆MX and σCB are refit for each variation with the multiple mass point method detailed in

section 5.4 keeping all other parameters fixed to their nominal values. The uncertainty is then
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calculated as the ratio of the result of the varied sample to the nominal one. The uncertainties

on ∆mX vary between 0.3 and 0.5% and the ones on the width σCB vary between 2 and 8%.

These are summarized in table 5.21 and figure 5.68

Parameter Parameterization Coefficient UU UC CC
Energy scale up

∆mX a+ bmnX a [GeV] 0.55 0.58 0.56
b 0.74 0.64 0.51

Energy scale down
∆mX a+ bmnX a [GeV] -0.44 -0.30 -0.16

b -0.73 -0.54 -0.46

Energy resolution up
σCB a+ bmnX a [GeV] 1.53 1.797 2.0543

b 0.98 0.99292 1.0513
Energy resolution down

σCB a+ bmnX a [GeV] 1.35 1.61 1.87
b 0.61 0.66 0.74

Table 5.21: Parameterizations of the double-sided Crystal Ball function describing the signal
shape, result of the multiple mass point fit at low-mass, for the three categories, when the
photon energy scale and resolutions are varied up and down. mnX is defined as mnX =
mX−100

100 .
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Figure 5.68: Systematic uncertainties associated with to the photon energy scale (a) and
photon energy resolution (b) as a function of mX , computed with the Madgraph ggF sample.
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5.9.2.2 Conversion Categories

Photon conversions happen in the material of the tracking system. The uncertainty on the

number of photons that migrate from one conversion category to another is assessed by using

samples that have been reconstructed with a distorted detector geometry. The Egamma group

produced samples with a distorted geometry containing γ+jets that are sliced in bins of photon

ET from 17 GeV to 5000 GeV. Because this is not a standard diphoton sample, we cannot

use the default selection and categorization. We instead use the fraction of conversions in a

particular ET and η bin, f(ET, η). This fraction is shown in figure 5.69.
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Figure 5.69: fraction of converted photons in bins of ET and η for the (a) nominal and (b)
distorted geometries.

We may then use this fraction f(ET, η) for each of the leading and subleading photons

in the signal MC samples to get the fraction of events in each category of our signal MC

adjusted for the distorted geometry. This is done by looping over all events in the signal MC

and summing the fraction for the leading and subleading photons for their particular value of

ET and η. For example, in the CC category we have:

NCC =
∑

allevents

f(Eγ1
T , ηγ1) ∗ f(Eγ2

T , ηγ2) (5.23)
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And, then for the UU category we have:

NUU =
∑

allevents

(1− f(Eγ1
T , ηγ1)) ∗ (1− f(Eγ2

T , ηγ2)) (5.24)

The fraction of events in each category is then just the number in that category over the

total number of events in the signal sample, fCC = NCC /Ntotal and fUU = NUU /Ntotal.

The third category UC is then just fCU = 1− fUU − fCC . The fraction in each category

computed with the Single Photon samples and with the X → γγ signal samples are compared

in Figure 5.70a. One can see that the fractions recomputed with the fraction in the Single

Photon samples do not match the numbers computed directly with the signal sample. That

is most probably due to the correlation between the two photons. But assuming that this

correlation is independent from the geometry one can estimate systematic uncertainties by

comparing the numbers computed with the nominal and distorted geometries, as illustrated in

Figure 5.70b. Those migration uncertainties are slightly mass-dependent and this dependence

with modeled by third order polynomials:

• UU category: f(mX) = −15.5734+0.430247∗mX−0.00427721∗m2
X+1.33562e−05∗m3

X

%, with an average of +4%.

• UC category: f(mX) = 8.57602−0.254114∗mX +0.00268446∗m2
X −8.955e−06∗m3

X

%, with an average of +1%.

• UC category: f(mX) = 25.4582−0.624664∗mX+0.00560123∗m2
X−1.53142e−05∗m3

X

%, with an average of -2%.

The dependence of the fraction of events in each category on the production modes was

checked and is illustrated in Figure 5.71. One can see in the ratios to the ggF process that

the fractions agree within statistical uncertainties. But there is a small systematic effect
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Figure 5.70: (a) Fraction of events in each category computed with the signal samples (plain
markers) and using the conversion fractions from Single Photon samples (open markers). (b)
Ratio between the default geometry and distorted geometry.

and the expected limit was recomputed using more conservation values of -7.5% and +6.5%

for the UU and UC categories respectively, instead of -2% and +1% on average. The

expected limits with the two migration uncertainties are compared in Figure 5.72. The effect

of this increased uncertainty is negligible, probably because the results are dominated by the

UU category. Since the CX factors are computed inclusively the difference on the migration

between category have no impact on a possible re-interpretation.
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Figure 5.71: (a) Fraction of events in each category computed with the signal samples for
different production modes. (b) Ratio of the fraction in each category to the ggF process for
the UU category (c) for the UC category (d) for the CC category.
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narrow resonance as a function of the resonance mass mX in the 65-110 GeV mass range. The
black line corresponds to the default systematics uncertainties, and the green line to more
conservative migration uncertainties.
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5.9.3 Systematics summary table

Table 5.22: Summary of the main sources of systematic uncertainty on the limit on σfid.

Source Uncertainty Remarks

Signal yield, CX factors
Luminosity ±2%
Trigger ±1.4 – 1.7% mX -dependent
Photon identification ±1.5 – 2.3% mX -dependent
Isolation efficiency ±4% mX -dependent
Photon energy scale ±0.13 – 0.49% mX -dependent
Photon energy resolution ±0.053 – 0.28% mX -dependent
Pile-up ±1.8 – 4.1% mX -dependent
Production mode ±2.4 – 25% mX -dependent

Signal modelling
Photon energy scale ±0.3 – 0.5% mX and category–dependent
Photon energy resolution ±2 – 8% mX and category-dependent

Migration between categories
Material −2.0 / +1.0 / +4.1% category-dependent

non-resonant Background
Spurious Signal 604 / 496 / 181 events mX and category-dependent

DY Background modelling
Peak position ±0.1 – 0.2% category-dependent
Template shape ±2 – 3% category-dependent
Normalisation ±9 – 21% category-dependent
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Figure 5.73: Summary of the systematic uncertainties affecting the signal yield or the CX
factors.
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5.9.4 Impact of the expected limit

The impact of the different groups of systematics uncertainties (signal, DY background, Con-

tinuous background) is tested by computing the expected limit on the fiducial production

cross-section, in Figure 5.74. The largest impact comes from the Spurious Signal systematics,

making this analysis systematics-limited.
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Figure 5.74: Expected limits on the fiducial production cross-section σfid.BR(X → γγ) of
a narrow resonance as a function of the resonance mass mX in the 65-110 GeV mass range,
for different hypotheses: in red no systematic uncertainties are considered, in blue only the
Spurious Signal uncertainties are considered, in green all uncertainties are considered except
for the one on the CX factor, in black all uncertainties (including the ones on the signal yield
and the DY background) are considered.
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5.10 Results

5.10.1 Statistical Model

The data are described using an extended PDF expressed as

L =

nc∏
c=1

e−N
total
c

ndatac∏
i=1

Lc(Mγγ(i, c)) (5.25)

where nc = 3 is the number of categories, ndatac and N total
c are respectively the number of

data events and the sum of the fitted numbers of events in each component in category c, and

Mγγ(i, c) is the Mγγ value for event i of category c. The per-event term is expressed as

Lc(Mγγ ;σfid,mX , Nuu,c, Nuc,c, Ncu,c, Ncc,c, Nbkg,c, cc, θ) =

NX.c(σfid,mX , θNX , θSS)fX(Mγγ ,mX ,xX(mX), θσ)

+ Nuu,c(θNuu,c)fuu,c(Mγγ ,xuu,c, θuu,c)

+ Nuc,c(θNuc,c)fuc,c(Mγγ ,xuc,c, θuc,c)

+ Ncu,c(θNcu,c)fcu,c(Mγγ ,xcu,c, θcu,c)

+ Ncc,c(θNcc,c)fcc,c(Mγγ ,xcc,c, θcc,c)

+ Nbkg,cfbkg,c(Mγγ , cc)

(5.26)

where σfid is the fiducial production cross-section of the new resonance of mass mX ; Nuu,c,

Nuc,c, Ncu,c, and Ncc,c are the number of Drell-Yan background events identified respec-

tively as unconverted-unconverted (contributing to the UU category), unconverted-converted,

converted-unconverted (both contributing to the UC category) and converted-converted (con-

tributing to the CC category). Nbkg,c is the fitted number of background events and cc

collectively refers to the background parameters used to describe its shape; finally, θ collec-

tively designates the nuisance parameters used to describe the systematic uncertainties. The

nuisance parameters are listed below:

• θlumi : uncertainty on the integrated luminosity of the data sample.
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• θtrig, θID, θisol, θCX , θPU : experimental uncertainties on the signal yield.

• θERS , θESS : experimental uncertainties on the signal yield and shape arising from

energy resolution and scale.

• θmatmig : migration uncertainty between categories.

• θbkg,UU ,θbkg,CU ,θbkg,CC , : spurious signal systematics for each category.

• θstatnorm,uu,θstatnorm,uc, θ
stat
norm,cu,θstatnorm,cc : uncertainty on the normalization of each Drell-

Yan component due to limited statistics in the computation of the template. Since this

computation is done independently for each component, the errors are assumed to be

uncorrelated. It takes also into account the systematic effect of the variation of the mass

window used to compute the electron fake rate around the Zmass.

• θmatnorm,uu,θmatnorm,uc, θ
mat
norm,cu,θmatnorm,cc : uncertainty on the normalization of each Drell-

Yan component due to systematic effects of the material. In principle those nuisance

parameters could be considered as correlated since coming from the same source. But

since part of this systematics could be of statistical origin due to the limited size of the

samples, it was considered safer to consider them as uncorrelated.

• θgennorm,uu,θgennorm,uc, θ
gen
norm,cu,θgennorm,cc : uncertainty on the normalization of each Drell-Yan

component due to systematic effects of using the Sherpa generator instead of Powheg.

The errors are assumed to be uncorrelated.

• θBSpeak,uu,θBSpeak,uc, θ
BS
peak,cu,θBSpeak,cc, θ

BS
sigma,uu,θBSsigma,uu, θBSsigma,uc, θ

BS
sigma,cu,θBSsigma,cc, θ

BS
ALo,uu,θBSsigma,uc,

θBSALo,cu,θBSALo,cc, θ
BS
AHi,uu,θBSAHi,uc, θ

BS
AHi,cu : uncertainty on the parameters of the Double-

sided Crystal-Ball used as model of each Drell-Yan component computed with a boot-

strap method (see Section 5.7). Since this computation is done independently for each

component, the errors are assumed to be uncorrelated.
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• θmatpeak,DY , θmatsigma,DY : uncertainty on the peak position and width of each Drell-Yan

component due to systematic effects of the material description. These effects are as-

sumed to be correlated between Drell-Yan components, so are described as a function

of a single nuisance parameters

• θgenpeak,DY , θgensigma,DY : systematic uncertainty on the shape of the Drell-Yan components

of using the Sherpa generator instead of Powheg. These effects are assumed to be

correlated between Drell-Yan components.

The quantity NX,c represents the number of events for the new resonance, described as

the product of the total number of events (proportional to σfid) and the category fractions.

This allows σsig to be directly extracted from the fit.

The number of Drell-Yan events in each category is defined as

Ni = N0
i exp(σstatnorm,iθ

stat
norm,i) exp(σmatnorm,iθ

mat
norm,DY ) exp(σgennorm,iθ

gen
norm,DY )

for each component (i = uu, uc, cu, cc), where N0
i is the normalization of the DY template and

σstatnorm,i, σ
mat
norm,i and σgennorm,i are the systematic uncertainties on the template normalization

due to statistical and systematic effects (material description and alternative generator). The

nuisance parameters are described above.

The PDF of each Drell-Yan component is described with double-sided Crystal Ball shape,

fi(Mγγ ,xi(θi)), where the xi(θi) are the parameters of the PDF and the θi refer to the

nuisance parameters on the Drell-Yan peak position and shape. The nominal values of the

PDF parameters are obtained by fitting the nominal templates obtained in Section 5.7. The

shape uncertainties have three sources: the uncertainty coming from the combined effect

of limited statistics in the MC and data samples and the background subtraction used to

get the template (referred as the “Bootstrap” BS, uncertainty) ; the uncertainty coming
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from the detector material description ; the uncertainty on the MC generator. The material

uncertainties on the shape are obtained by fitting the up/down distorted templates for each

of the two shape uncertainties and linearly interpolating the PDF parameters between the

”down”, ”nominal” and ”up” values (corresponding respectively the values -1, 0, and 1 of the

θmatpeak,DY and θmatsigma,DY parameters). The effect of the two shape variations are assumed to

be independent. The generator uncertainties on the shape are similarly described with the

θgenpeak,DY and θgensigma,DY parameters.

The continuum background PDF fbkg(Mγγ , c) is described by the function chosen for each

category in Section 5.6.3.

5.10.2 Partial Unblinding

It was decided during the approval process that the background model, especially the DY

one, would be validated using 10% of the data, corresponding to an integrated luminosity of

8 fb−1, where the events are picked up randomly. A background-only fit and a p-value scan

are run and shown in Figure 5.76a and the pulls of the fits are checked carefully, as shown in

Figure 5.77.

A small excess with a local significance of 2.4σ is observed at a mass of 90 GeV. This

corresponds to a slight deviation of the nuisance parameter θmatnorm,uc, in the systematic on the

normalization of the DY background, arising from the detector material description, for uc

events. After several checks nothing wrong could be found. In particular most of the excess

comes from the cu events, as can be seen in Figure 5.76b.



5. Low Mass Diphoton 148

60 70 80 90 100 110 120

E
v
e

n
ts

 /
 1

 G
e

V

0

2000

4000

6000

8000

10000

12000

ATLAS  internal

γγ →X 

1 = 13 TeV, 8 fbs

Data

Backgroundonly fit

 [GeV]γγm

60 70 80 90 100 110 120

D
a

ta
 

 f
it
te

d
 b

a
c
k
g

ro
u

n
d

200−

0

200

400

600

800

Figure 5.75: Data distributions of Mγγ overlaid with background-only fits, computed with
10 % of the total dataset.
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(a) mX = 65 GeV
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(b) mX = 90 GeV
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(c) mX = 105 GeV

Figure 5.77: Pulls of the constrained nuisance parameters obtained for a signal mass hypothesis
of (a) 65 GeV, (b) 90 GeV, (c) 105 GeV, computed with 10 % of the total dataset.
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5.10.3 Distributions of Invariant Mass in Data

5.10.3.1 Prefit distributions

The data distribution with the full dataset is compared to the background template described

in Sections 5.6.2 and 5.7 before any fits are applied in Figure 5.78. One can see that before

the fit there is already a good agreement between data and the background template within

uncertainties. A small excess of data can still be noticed in the DY region, but covered by

the systematic uncertainties on the normalization of the DY background.

5.10.3.2 Postfit distributions

The data distribution with the full dataset is shown in Figure 5.79, as well as the bkg-only

fits. The DY peak is clearly visible, and no structure is seen in the residuals. The small excess

of events in the DY region of the UC category is still visible post-fit This is related to the

pull distributions in Figure 5.82b discussed below.

5.10.4 Discovery p-value

The p-value scan with the full dataset is shown in Figure 5.80. No excess is seen on data.

In order to compute the fluctuation we could except in the search range, one can use the

approximate formulas to compute the global significance, since the average peak fluctuation

is given by finding the value of the local significance Zlocal which gives Zglobal = 0:

pglobal = 1− (1− plocal)Ntrials

Ntrials = 1 +
√
π/2 ·Nindep · ZlocalNindep =

scan range

peak width

(5.27)

which gives the following formula for Zglobal = 0:

(1− Φ(Zlocal))
1+
√
π/2·Nindep·Zlocal = 0.5 (5.28)
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Figure 5.78: Data distributions of Mγγ overlaid with the background template, for (a) the
UU category, (b) the UC category and (c) the CC category. The γγ contribution is taken
from the Sherpa MC samples, the γj/jj contribution from data-driven control regions, and
the Z → ee contribution from the data-driven template. The bottom panels correspond to the
ratio between data and the fit, with the total uncertainty in grey and the DY normalization
uncertainty in red.

The search range is 45 GeV while the width the signal is around 1.5 GeV, which gives that we

expected a 2.4σ fluctuation on average.

Figures 5.81 and 5.82 show the pulls of the constrained nuisance paramters. They do

appear to have any particular structure. The pulls of the DY normalization are a bit pulled

by almost 1σ.
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Figure 5.79: Data distributions ofMγγ overlaid with background-only fits, for (a) the inclusive
selection (b) the UU category, (c) the UC category and (d) the CC category. The bottom
panels correspond to the difference between data and the the fit.

5.10.5 Limit on the fiducial cross-section

The expected and oberved limits are shown in Figure 5.83.
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Figure 5.80: Observed p-value for the background-only hypothesis, p0, in (a) logarithmic and
(b) linear scale, as a function of the resonance mass mX .
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(a) (S+B) fit, mX = 65 GeV
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(b) B-only fit, mX = 65 GeV

Figure 5.81: Pulls of the constrained nuisance parameters obtained for a signal mass hypothesis
of 65 GeV, for the (a) S+B fit and (b) the background-only fit.
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(a) (S+B) fit, mX = 90 GeV
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(b) B-only fit, mX = 90 GeV

Figure 5.82: Pulls of the constrained nuisance parameters obtained for a signal mass hypothesis
of 90 GeV, for the (a) S+B fit and (b) the background-only fit.
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Figure 4: The (a) compatibility, in terms of local p-value (solid line), with the background-only hypothesis as a
function of the assumed signal mass mX , the dotted-dashed lines correspond to the standard deviation quantification
�; and the (b) upper limit on the fiducial cross-section times branching ratio B(X ! ��) as a function of mX ,
where the solid (dashed) line corresponds to the observed (expected) limit and the green (yellow) band corresponds
to one (two) standard deviation from the expectation.

10

Figure 5.83: Expected and observed limits on the fiducial production cross-section
σfid.BR(X → γγ) of a narrow resonance as a function of the resonance mass mX in the
65-110 GeV mass range. The green and yellow bands show the ±1σ and ±2σ uncertainties
on the expected limit.
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5.11 Conclusion

In this analysis we performed a search for narrow diphoton resonances in the range 65-110

GeV. No significant excesses were and a limit is set on the fiducial cross section between

80 fb and 40 fb. This analysis is limited by systematics and limited by the spurious signal

systematic particularly. It is clear from figure 5.74 that the largest improvements to be made

to this analysis can be made in the non-resonant background description. The spurious signal

test requires large amounts of MC in order to perform well and it is no longer feasible for

these samples to be produced. A new method needs to be found before the next round of

analyses.



Chapter 6

Gaussian Process For Modeling
Backgrounds

Many of the analysis and statistical methods used on ATLAS, and high energy experiments

in general, are based on methods used in previous experiments where computing resources

were far more limited than they are now. Although many newer methods have found their

way into ATLAS, the breadth of the so called ”machine learning” techniques remain relatively

unexplored when compared with computer science and the data science industry. This is not

completely surprising as we in the physics field tend to make much more precise measurements,

and need a far greater understanding of systematic uncertainties and biases, than does the data

science industry. With more complicated methods also comes more difficulty in explaining, in

understanding, and in using these methods. However, the ever increasing size of the ATLAS

dataset, and the requirements for better and better modeling of the data, are forcing us to

increasingly turn toward these more complicated and computationally intensive methods to

meet our needs.

In this chapter I will discuss Gaussian Process Regression (GPR) and an investigation into

how it might be used in the low-mass diphoton analysis. Because of the very short timescale

I am on to graduate, I will not be able to see GPR used in the results of the analysis, so

156
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my intention is to document my work exploring this method. I will attempt to make this

chapter as useful as possible to a student looking for an introduction to using GPR for a

modeling task in their analysis. In my experience with GPR, conceptual understanding of

the method has been difficult despite the quite simple mathematics of actually applying the

method. Although there are many others that are much more expert in GPR than I am, I

hope to be able to give a good introductory explanation that can help the reader develop a

solid intuition for the mechanics of the technique. The algorithmic simplicity of GPR along

with its robustness against assumptions put into a model, I think, make it a great candidate

to be used for many regression problems that analysis groups face on ATLAS.

Much of this chapter is drawn from Gaussian Process for Machine Learning by Rasmusen

and Williams, which is available online for free [66].

6.1 Gaussian Process Regression

There are two main viewpoints that are taken to describe the Gaussian Process, the weight-

space view, and the function-space view. I find the function space view to be more intuitive

and also more in line with the way we think about modeling in ATLAS, so I will concentrate on

this. I am going to start with a review of some properties of multivariate Gaussian distrbutions

and some definitions before moving into their relationship to GPR.

6.1.1 Introduction to GPR

A multivariate Gaussian (MVG) is simply a high dimension representation of a Gaussian or

normal distribution. A one-dimensional Gaussian is given by equation 6.1 where µ is the

mean of the distribution and σ is the width, or standard deviation. Often, this is written as
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N (µ, σ).

N (µ, σ) =
1√

(2πσ2)
e−

(x−µ)2

σ2 (6.1)

In the multivariate case, we just extend this to more dimensions. The x and µ become

vectors of dimension D which is also the dimension of the MVG, and σ becomes a matrix

of size D × D (often called the covariance matrix). We then write this as N (x,Σ), with

bold letters representing vectors and bold capitals representing matrices. MVGs have some

very convenient properties, the most important of which is that the marginal distribution of

a Gaussian is a Gaussian. This means that if we were to take a 2-D Gaussian and slice it

along a line in the 2-D plane, the distribution along the slice would be a 1-D Gaussian. This

is also true of high dimension MVGs where slices produce a Gaussian distribution of lower

dimension. Figure 6.1 shows a multivariate Gaussian with D = 2 and three different marginal

distributions corresponding to slicing the 2-D distribution along constant values of the x axis.
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Figure 6.1: A 2-D Gaussian distribution with the marginalized 1-D Gaussian distributions
shown projected on the left plot (a) and on their own in the right plot (b). The purple, green
and yellow lines correspond to marginalization along the y axis given x values of 0, -1, -2,
respectively.

Notice that depending on where we slice the 2-D distribution we get 1-D distributions with

different values of µ and σ. We would like to be able to calculate the µ and σ for the marginal
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distributions given the parameters for the 2-D distribution. Luckily for Gaussians this is easy.

Continuing with the setup shown in figure 6.1, we make make some more concrete definitions

for the 2-D Gaussian in eq.6.2.

fx
fy

 = N


µx
µy

 ,
Σxx Σxy

Σyx Σyy


 (6.2)

Now we have defined this Gaussian as having dimension 2 with axes labeled x and y. We

would like to find the mean and width of the marginal distributions along one axis, lets say

y, given a value of the other axis, x, written as µy|x and Σy|x respectively. Eq.6.3 shows these

results without proof. This is a well known result and can be found in many standard texts.

µy|x = µy + ΣxyΣ
−1
xx (x− µx)

Σy|x = Σyy − ΣT
yxΣ

−1
yy Σyx

(6.3)

µy here is the y-component of the MVG mean. Often, this will be taken as 0 when used

in GPR (more on this later). We will take the mean to be 0 for now (N (µ, σ)→ N (0, σ))

One more point we need to make before moving on is the difference between a continuous

function represented by a functional form, and a binned function that can be represented by a

vector. We are used to referring to functions defined as a functional form e.g. f(x) = x2 + 1.

This is defined for all values of x in R1. When talking about binned data, it can be more

convenient to describe a function as a vector fn = {x0, x1, ..., xn}. Any functional form can be

described this way for a specified number of bins, but this has the advantage that any arbitrary

function, including one that may not have a closed functional form, may also be represented
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this way. This can be used interchangeably with the functional form when considering binned

distributions. Instead of a continuous dependent variable, the index of the vector is used in

its place.

With the tools in equation 6.3 we can begin to discuss how this can be used in GPR.

As a simple example we can consider the set of data points with no uncertainty as shown

in figure 6.2. To start with GPR we need to construct a multivariate Gaussian distribution

where the number of dimensions is the number of data points in your data set (6 in the case

of figure 6.2).
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Introduction
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2

Rob Roy Fletcher (UPenn) GP Regression Penn Group Meeting
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Figure 6.2: Example data points with no uncertainty.

For this early example we will take the mean of this MVG, µ, to be 0. For the covariance

matrix we will need a 6 × 6 matrix. To fill out this matrix we will use a covariance function

k(x, x′), where x and x′ are two points on the x-axis. The function k(x, x′) is also called the

’kernel’. With 5 data points the covariance matrix will have dimension 6 × 6. The role the

covariance function plays is to tell the MVG distribution how each of its axes, and in turn each

data point, are related to one another. The behavior that we would like this function to have

is that the closer two data points are together on the x-axis, the closer we would like them to

be along the y-axis. Loosely, this gives us some sense of smoothness of the data points. The

covariance function that we will use is the squared exponential shown in equation 6.4. This is
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often called the Radial Basis Function (RBF) in machine learning litterature. This kernel has

2 parameters, σf and l. Because these are parameters of the model and not the function or

distribution they are commonly called hyperparameters. These allow us to adjust the behavior

of the covariance matrix. Roughly speaking, σf is the maximum allowed covariance between

close points, and l is the distance at which points along the x axis become decorrelated. I will

go into more detail on hyperparameters and selecting their values later. For now, let’s assume

we have chosen reasonable values for σ and l.

k(x, x′) = σf exp

(
− (x− x′)2

2l2

)
(6.4)

I will denote the matrix of these k(x, x′) values as K. We now have everything we need to

construct our MVG distribution, N (0,K). We can now begin to make predictions at values

along the x axis. This is done by marginalizing the distribution along the axis corresponding

to the x value we would like to predict at (remember there is one dimension per point on the

x-axis). At this point, this isn’t very interesting as the only x values we have in our matrix

are the 5 points in our data. Since we are not considering any uncertainty on the points yet,

this marginalization will just return the y value of the point in question (it’s easy to check

this for yourself). We would like to be able to make predictions at new points on the x axis.

Extending the covariance matrix to 6 dimensions will allow us to do this. The new entries in

the matrix will be denoted K∗ = [k(x∗, x1), k(x∗, x2), ..., k(x∗, xn)] where n is the number of

data points and K∗∗ = k(x∗, x∗) with the * entries being the new x location and are added

to the MVG as in equation 6.5.

y

y∗

 = N

0,

K KT
∗

K∗ K∗∗


 (6.5)
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Repeating this process for many x values, we can construct a high dimensional MVG with

fine enough binning along the x axis to look like a smooth function. For example, if we were

to use 1000 equally spaced x values we will get a 1000 dimension MVG where each point in

this space defines one curve in our x−y plane. This is the prior distribution. Figure 6.3 shows

10 random points drawn from the prior MVG distribution.

Figure 6.3: 10 random draws from the prior distribution construced with the squared expo-
nential kernel.

It should now be clear that every point in this MVG space represents a function whose

functional form is not explicitly specified (its represented as a vector of numbers). This also

means that this MVG can be interpreted as a prior probability distribution over functions.

To perform regression, what we really want is the posterior distribution. This will be a

distribution over likely functions that describe the data that the MVG is conditioned on. To

get the posterior distribution, we can return to equation 6.3. This is easy to extend to more

than two dimensions to cover our example case. This is shown in equation 6.6 for the mean

and variance of the posterior distribution along the x∗ axis.

y∗ = K∗K
−1y

var(y∗) = K∗∗ −K∗K
−1KT

∗

(6.6)

Now we are able to get the marginalized distribution along an axis of the MVG corre-
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sponding to any value of the x axis in our data. To say this another way, at any x value in

our data, the MVG defines a Gaussian distribution that the value of y(x) is distributed along.

Figure 6.4 shows 10 random draws from the posterior distribution that have been conditioned

on the example data points using 1000 points along the x axis.

Figure 6.4: 10 random draws from the posterior distribution constructed with the squared
exponential kernel and conditioned on the example data points. The red dashed line is the
function used to sample the data from.

Figures 6.3 and 6.4 show that the Gaussian Process can be thought of a distribution

over functions whose correlations are defined by the kernel K(x, x′). When we then consider

some data, this has the effect of down-weighting parts of the posterior distribution that are not

consistent with this data. In the end we are not really interested in the distribution of functions

around the data, but a prediction for the most likely value that a function describing the data

will take. Plotting the mean and 2σ variance at each point for the data gets us figure 6.5

The function that the data points are taken from is shown by the red dashed line. We

can see that our prediction for the mean is quite close to this function despite only having a

few data points to fit. It is worth noting a few things here. No assumptions were made on

the functional form or the shape we expect in the data beyond using the squared exponential
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Figure 6.5: The mean (blue line) and 2σ variance (blue shaded region) of the posterior distri-
bution constructed with the squared exponential kernel and conditioned on the example data
points. The red dashed line is the function used to sample the data from.

kernel. We can also see that the variance on our distribution grows when we get further away

from data.

In this example we have also not considered any uncertainty on the data points. This is

reflected in the prediction made by the GP which you can see because the mean passes exactly

through the data points and the variance goes to 0 at the points as well. We are unlikely to

run into a situation where there is no uncertainty on our data points. For GPs the uncertainty

is easy to model. In the case of the squared exponential kernel, we simply need to add the

uncertainty on our measurements to the diagonal of the covariance matrix. This will make

the kernel look like equation 6.7

k(x, x′) = σ2
f exp

(
− (x− x′)2

2l2

)
+ σ2

nδ(x, x
′) (6.7)

where δ(x, x′) is the Kronecker delta. As you can see, this will mean that the diagonal of

the matrix will be σ2
f + σ2

n. To illustrate this situation, figure 6.6 shows the same generating
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function as the above plots but with some random noise put in. For this simple example, a

random shift away from the function is added as well as an error bar. The uncertainty on

the points represented by the error bars are then added into the covariance function as in

equation 6.7. More points have been added to this plot as it makes the example more clear.

These points are still taken from the same underlying distribution.

Figure 6.6: The mean (blue line) and 2σ variance (blue shaded region) of the Gaussian Process
prediction to noisy data. The points have been randomly shifted away from their generating
function (red dashed line) and uncertainty has been added.

The mean now is not required to pass exactly through the data points and the variance

on the prediction also reflects this by staying non-zero, even close to measured values.

6.1.2 Kernel Hyperparameters

Just about any kernel you choose will have some number of hyperparameters in them. Our

example of the squared exponential kernel had two, σf , the amplitude, and l, the length scale.

Previously we had just assumed that we had reasonable choices made for these two, but now

we will discuss the ways that we can select values for the hyperparameters.
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To illustrate the effect that the length scale can have on the GP prediction, figure 6.7

shows the data from the previous example with l fixed to a value that is fixed to values away

from the optimal value (more on what optimal means later). Setting the length scale too short

results in the prediction being allowed to fluctuate up and down a lot in between the data,

where as too long gives an oversmoothed prediction.

(a) (b)

Figure 6.7: GP prediction on the data with l = 0.3 (a) and l = 6 (b).

These examples highlight the need to select appropriate values for these hyperparameters.

One way to do this is to maximize the probability P (θ|x,y) where θ are our hyperparameters.

In the case of two hyperparameters we have θ = {σf , l}, but these could be any hyperparam-

eters associated with your chosen kernel. Now, Bayes theorem tells us that maximizing this

corresponds to maximizing P (y|x,θ). Because we are making the assumption that our prior

probability distributions are Gaussian distributed, this is exactly our definition of the MVG

space we are using for the GP (normalized to unity to make it a probability of course). The

multivariate form of a normal distribution written out is

N (µ,K) =
1√

(2π)n|K|
exp

(
−1

2
(y − µ)TK−1(y − µ)

)
(6.8)
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where n is the dimension (the number of data points) and µ is the mean of the MVG which

we have been setting to 0. For convenience we can take the logarithm of this distribution, and

we arrive at what is called the log marginal likelihood (LML),

logP (y|x,θ) = −1

2
yTK−1y − 1

2
log|K| − n

2
log2π (6.9)

where I have set µ = 0. The contour plot of the log marginal likelihood for our example

data set is shown in fig.6.8. We can then use our favorite minimizer to find where this

distribution is extremized, and this will give us good starting values for our hyperparameters.

We can see that the first term in equation 6.9 is the only one that depends on the input

data points. This term will decrease the LML with increasing length scale as the GP model

becomes less and less flexible and therefore less able to describe the data. The second term is

often referred to as the complexity penalty. This term only depends on the covariance kernel

and will increase the LML with increasing length scale. Just as the name implies, this term

penalizes the likelihood for selecting more complex models with shorter length scale. See [66]

for a detailed discussion of hyperparameter selection.

The values obtained this way are a great place to start, but there are a few considerations

we should make when ultimately determining what values to use. One of the big advantages

of the GP is that we can use the kernel and the hyperparameters to inject knowledge of our

model into the prediction. As an example, let’s consider the length scale hyperparameter.

Even before we go through the process of maximizing the log marginal likelihood, we may

have some understanding of what we expect the behavior of our data to be. Even though

our data might fluctuate up and down quite a bit, which in some cases would cause the

maximization to tend toward a shorter length scale, we may know that we only expect bumps

or structure beyond some characteristic length scale. We can then set a minimum value in
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Figure 6.8: The log marginal likelihood contours as function of the amplitude σf , and the
length scale l.

the optimization of this hyperparameter to ensure that the GP is fitting with some level of

smoothness that we expect. This is extremely valuable in cases where you know ahead of time

some of the features about the physical process you are modeling, or perhaps the response of

your measurement apparatus. Selecting the correct hyperparameters can allow a lot of control

over the way your GP performs while still remaining flexible enough to let the data speak for

itself.

In addition to hyperparameter selection the choice of kernel can also have a similar impact

on the performance of the Gaussian Process. In cases where you would like to model specific

behavior, you may need to choose a kernel that has more hyperparameters, or one whose

covariance has specific characteristics. As an example, consider a RBF kernel like we have

used here, but instead of a single value for the length scale l, we could allow the length scale

to vary along the x-axis l(x). In the case where the length scale is a linear function, you get a

covariance known as the Gibbs kernel. The process of choosing or designing a kernel is often

referred to as kernel engineering. Reference [66] contains a lot of useful detail and discussion
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on several common kernels used for various regression and classification tasks.

6.2 Gaussian Process in Low Mass Diphoton

As described in Chapter 5, there are some challenges to modeling the backgrounds in the

diphoton resonance search. One major challenge is the non-resonant background shape. This

is currently modeled with a function that is selected by using the spurious signal test on a

high statistics sample of Monte Carlo. In order to get good results from the spurious signal

test, the amount of Monte Carlo that needs to be produced must increase with the amount

of data collected. Already the number of events needed has become infeasible due to the

high luminosity of the LHC. In addition, the turn-on curve at low invariant mass caused by

the trigger requirements make appropriate functional forms difficult to find. They are also

limited to only being able to model a small portion of this shape that can be described by the

relatively simple functions that can be used. As we collect more data, it is becoming more

clear that we are not able to easily select a non-biased description of the background. These

are areas where the Gaussian Process (GP) can improve our background description.

When we first began discussing using a GP to model the diphoton non-resonant back-

ground, we took an approach similar to what another group on ATLAS uses to smooth and

interpolate distributions. The dijet+ISR group looks for resonances in the dijet invariant mass

spectrum in events with large initial state radiation. This group has recently begun to use

GP to smooth a distribution, known as a transfer factor that is used to estimate a number of

events in a signal region of the data based on a control region [67]. This factor is defined on

a 2-D plane. Points of this 2-d plane are calculated in a grid and are then fit using a 2-D GP.

In their case, to avoid the GP fitting any signal that might exist in the sample, they remove

points in a window around where they are currently fitting for the transfer factor. This allows



6. Gaussian Process 170

them to fit across the window and not be biased by anything in the window.

For our first attempt at using the GP in diphoton, we removed a window around the search

mass from the background distribution in data, similar to the dijet+ISR group’s strategy. This

allowed us to fit across the window. If a signal bump exists in data, then we don’t run the

risk of absorbing that into our background description since it would be completely removed.

Figure 6.9 shows an example of a diphoton background distribution with a 10 GeV window

removed around 125 GeV where a signal is injected. Note, this distribution has different limits

than the low-mass diphoton analysis discussed earlier. During this early stage of testing there

were no low-mass samples yet available. In the bottom panel the ratio of the data points to

the fit shows that the signal bump injected into the sample appears to be recovered as the GP

is fit only on the sidebands of the distribution where there is no signal. Although this method

recovers the injected signal, it could possibly induce biases if there are effects that could cause

one side of the window to move away from the background. For example, if there were two

signal bumps near each other. This could cause one side of the window to be dragged upward,

and even though the window is centered on a real signal, the GP would absorb a portion of

it, causing a loss in sensitivity. Having two as yet unknown signals near each other in this

way is very unlikely (and the kind of problem physicists would love to have), but we decided

to try to leverage some of the properties of the GP to eliminate this problem.

As mentioned in the previous section, the hyperparameters can give you quite a bit of

input to how you would like you GP to behave. In particular the length scale parameter of

the squared exponential covariance function in equation 6.7 will be useful here. It is useful

to note at this point that the length scale has units of the x-axis of the distribution you are

fitting which in this case is GeV. This hyperparameter allows for the control of the scale at

which structure in the GP is fit. This means that if we set an appropriate lower limit on this

parameter, we should be able to cause the GP to ignore narrow bumps. In this case we have
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Figure 6.9: An example of removing a window around a search point for GP fitting. The red
points are diphoton MC with DSCB signal injected at 125 GeV, the blue points are the same
MC with a 10 GeV window removed centered at 125 GeV, the black points are the GP fit to
the blue points. The bottom panel shows the ratio of the red data points over the GP fit.

a narrow resonance of ∼ 8 GeV for the signal and a broad, smoothly falling background. As

long as the length scale is set longer than 8 GeV, we should not need to worry about the signal

being absorbed in the fit. This is an example of one large advantage of using GPs. Something

as simple as bounding the length scale can encode quite a bit of relevant information about

the types of signals you expect to see. The procedure that we settled on in the end was to

optimize the hyperparameters using the method described in Section 6.1.2 where the input

used is background-only Monte Carlo. Since there is no signal in this sample, the length

scale will tend toward longer values associated with the broad, smooth background. These

hyperparameters can then be used in the kernel in order to perform a GP fit directly on data.

As one of the biggest problems with the spurious signal test is Monte Carlo statistics;

we would like to check that this procedure of obtaining hyperparameters from MC is robust

against statistics. Figure 6.10 shows distributions of the length scale obtained from optimizing

on 1000 toy data sets with different numbers of events. Figure 6.10a corresponds to 1 million
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events per toy and figure 6.10b to 10 million events per toy. The vertical red line at length

scale∼ 72 GeV corresponds to the value of the length scale obtained from the optimization on

the full statistics MC sample of ∼ 100 million events. As can be seen, with lower statistics the

length scale tends to optimize to a lower value. This is due to the larger fluctuations. Even

with ∼ 1% of the statistics we are still able to get reasonable numbers for the length scale and

we should not have to worry about signal being absorbed into the background description.
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Figure 6.10: The length scale distribution found through LML optimization for 1000 toys.
6.10a has 1 million events per toy, 6.10b has 10 million events per toy. The red line at l ∼ 72
GeV is the value obtained when optimized on the full MC sample with ∼ 100 million events.

6.2.1 RooGP Software Development

Every analysis on ATLAS needs a statistical framework to calculate results of measurements.

There are many frameworks in place, but they are all based upon the RooFit and RooStats

packages [68][69]. In order be able to use Gaussian Process in the context of searches on

ATLAS, a toolkit must be built that is able to interact with these frameworks. The RooFit

package uses models based on classes that represent probability distribution functions (PDFs)

and provides a language for constructing, composing, and minimizing parameters of them.

How this is normally done is that a PDF for the signal portion and background portions are



6. Gaussian Process 173

constructed separately and then summed into a full-model PDF. In the case of a search, one

can then fit this PDF to the data and extract the normalization for the signal component of

the PDF (we will call this nSig). Because with a GP the prediction needs to be completely

refit for every value of the signal normalization that is taken, we need to treat these PDFs

slightly differently than the normal RooFit treatment.

A large portion of the work I have contributed to implementing GPs in the low-mass search

has been in the development of the RooGP tool that allows RooFit to use GPs in its fitting

procedure. This tool is largely designed to be an interface between the RooFit package and the

Gaussian Process Regression library in the scikit-learn python package [70] using the Python

language. Because of the way that RooFit performs minimization and the fact that we need

to completely refit the GP at every step, the best way to perform a signal plus background

(S+B) fit is to directly incorporate the signal model into RooGP. The fit procedure that the

package follows is this:

• For each step in the minimization process (tested value of nSig):

– Construct signal function containing nSig events (a DSCB in the low-mass diphoton

case)

– Subtract this signal from the data distribution.

– Fit the GP on this signal subtracted data.

– Add the signal function for nSig back into the result of the GP fit (modified GP).

– Calculate the negative log likelihood (−log(L)) of the modified GP given the data.

• Repeat until a minimum of the −log(L) is found for nSig. This corresponds to the best

fit value of the number of signal events.
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Figure 6.11 illustrates this procedure on a background only MC sample. For these plots only

a single step of the minimization process is shown. The nSig value chosen is 2000 events

which is a number far from where we would expect the result because this is a background

only sample (we expect close to 0). This choice is simply to make the process easy to see.

Figure 6.11c shows the result of the process. You can see that when a value for nSig that is

far from 0 is chosen, the fit does not agree well with the data. The minimizer will then move

to the next step in the process, moving down the gradient in −log(L). If we imagine the case

where the signal portion of the fit is set to have 0 events, (its normalization is 0), then we

subtract nothing in the first step, add nothing in the last step and it amounts to fitting the

MC sample.

The RooGP class works through a Python class which inherits from RooFit::RooAbsPdf.

The base class needs only to have overloaded a constructor responsible for setting all parame-

ters, and a function RooAbsPdf::evaluate which calculates the value of the PDF given values

of its parameters. The RooGP class operates on histograms and handles all selection of hyper-

parameters internally. Training and fit histograms can be supplied separately in order to tune

hyperparameters on a background only sample. Currently the signal model used internally

by the library only supports a double-sided Crystal Ball function (DSCB) (see section 5.4) as

mainly this is being developed for low-mass diphoton. Future improvements can add support

for arbitrary function or the use of template histograms.

6.2.2 Tests with Gaussian Process

The RooGP class also supports use of a prior mean. This can be passed to the class in the

form of a ROOT::TF1 or a histogram. In all of the previous examples, the mean was taken to

be 0. In general the GP is very robust against this choice. Taking the prior mean to be 0

means that the prior probability distribution has a central value corresponding to a line at 0
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Figure 6.11: Illustration of the procedure for fitting nSig with RooGP. These show one step
of the minimization process with nSig = 2000. Black points are background only MC. (a)
The blue line is the MC with the DSCB signal function subtracted. (b) The green line is the
GP fit to the blue line. (c) The red line is the GP fit with the DSCB added back in. The red
line and black points do not agree well indicating that the point nSig = 2000 is far from the
minimum of −log(L). Here myy is the diphoton invanriant mass.

on the fit axes, or equivalently a MVG with mean 0. When the GP is conditioned on data,

this line is pulled away from 0 to the posterior prediction. In some cases the GP will perform

better if the prior distribution is closer to the data distribution that will be fit. An interesting

feature of the prior mean in the GP is that with increasing length scale, the prediction of

the GP approaches the prior mean. In equation 6.7 and 6.3 we can see that as l gets larger,

the components of the covariance matrix get smaller and the term depending on the kernel

gets smaller leaving just the prior mean. Figure 6.12 shows this effect by using a first order
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polynomial as the prior mean. The three plots correspond to an length scale optimized on

the data, a length scale longer than that, and one that is much longer. You can see that the

prediction tends toward the prior mean. The downward bump in the fit is due to the signal

portion of the fit.
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Figure 6.12: The GP prediction plus a DSCB function shown in blue using a first order
polynomial as the prior mean shown in red. The black points are the data being fit. (a) is
the fit with the length scale optimized on the data. (b) has the length scale fixed to 250. (c)
has the length scale fixed to 500. Here myy is the diphoton invariant mass.

Figure 6.13 shows just how flexible the Gaussian Process is for fitting complicated shapes.

This is the full-range low-mass distribution showing the complicated trigger turn-on curve.

In the low-mass analysis the fit is started at 60 GeV due to the difficulty in describing the

turn-on shape. As you can see, the GP can easily fit complicated shapes such as this with
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Figure 6.13: A fit of the GP is shown with the red line, to the full low mass invariant mass
spectrum shown with black points.

almost no prior assumptions. This fit is done by taking the prior mean as 0 and allowing the

hyperparameters to be optimized on the data.

A logical comparison to make when considering this property of the prior mean is to com-

pare it to the results of the functional form used in the spurious signal test from Chapter 5.6.3.

For the UU category, the functional form selected was a Landau + exponential. If we just use

this function as the prior mean, the GP will effectively model the residuals of the data around

this function, thereby improving the prediction. If we increase the length scale used in the

covariance matrix, we should see the GP approach the Landau + exponential prior. Because

with the functional form we test the spurious signal, that will be a good comparison here.

Figure 6.14 shows the spurious signal at 90 GeV as a function of length scale of a background-

only sample fit with a GP using a prior mean function. The dashed line corresponds to the

value of the spurious signal obtained using a Landau+Exp functional form fit. The sample

used is the MC background template used for the low-mass analysis in the UU category.

You can clearly see that as the length scale increases the spurious signal value approaches the
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Figure 6.14: Spurious signal (SS) of the GP prediction on background only MC as a function
of the length scale with a signal mass at 90 GeV. The red points correspond to a GP with a
Landau+exp prior mean with the red dashed line showing the spurious signal value for the
Landau+exp functional form.

result obtained with the functional form. This means that as long as our length scale is long

enough to not absorb signal and not so long as to be near this asymptote, the GP outperforms

a functional form fit when measured with a spurious signal.

When choosing a functional form to describe the background distribution, we know that

the function does not represent the underlying function that is generating the data. The

function will have some bias in it. The purpose of the spurious signal test is to try to get an

estimate on the size of the bias. GPs are much more flexible than a functional form and should

be much less biased. We can test the bias by generating toy distributions and evaluating the

distribution of spurious signal calculated for each. 2000 toys are generated and the spurious

signal calculated for each in a background MC sample with a GP fit from 50 GeV to 200 GeV.

The spurious signal is extracted at 125 GeV.

When there is no signal present in the data, we know that a GP can fit the shape well.

Using the RooGP class we would like to test whether or not it can accurately extract the signal
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Figure 6.15: The bias of the GP is tested by fitting the GP on 2000 toys generated from
background MC in the range 50-200 GeV (a). The spurious signal is extracted for each toy
at 125 GeV and is shown in figure (b). (c) shows the pull distribution of the spurious signal.
The bias in the spurious signal for the GP is ∼ 6% of the statistical uncertainty and the width
of the pull distribution is ∼ 1.

portion of a fit if there were signal. We can do this with signal injection tests. For this I take

the background templates used to model the background in the low-mass diphoton analysis.

On top of these templates I inject a signal by randomly generating events according to a DSCB

distribution with parameterization described in section 5.4. I then use the RooGP class and

fit the signal + background GP to it and extract the signal part of the fit. Figure 6.16 shows

the results of 1000 signal toys where the number of injected signal events is subtracted from

the number of extracted signal events for three different signal sizes of 500 events, 1500 events,

and 3000 events. The three plots in figure 6.16 correspond to different mass points that the
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Figure 6.16: Signal is injected to the UU background template used in low-mass diphoton.
∆nSig here is the number of signal events extracted by the GP minus the injected number of
signal events. The black, red and blue lines are the results for 500, 1500, and 3000 injected
events, respectively. (a) Corresponds to a signal injected at 70 GeV, (b) at 90 GeV, and (c)
at 105 GeV.

signal is injected at, 70 GeV, 90 GeV, and 105 GeV. This is to test the signal extraction across

the background range. These distributions all have mean near 0 which is what we expect if

the GP is able to extract close to the correct number of signal events. The RMS for these

test are approximately 25 for the case with 500 events and approximately 50 for the case with

3000 events which correspond to ∼ 5% and ∼ 1% error respectively. This shows that the GP

is not significantly biased when fitting a signal + background distribution.
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6.3 Conclusions

Gaussian Process is a method for regression that has found wide use in the data science

and machine learning industries. It is now beginning to see use in the ATLAS community as

some simpler methods of modeling are no longer accurate enough, or computationally feasible.

GP’s ability to take very broad assumptions about the data that is to be modeled while still

remaining flexible enough to be unbiased make it a useful tool to have for various tasks. I

have begun work on implementing a GP based package that can help to solve the problems

presented by the spurious signal technique currently used on the low-mass diphoton analysis.

It is now impossible for the previous methods to be used on this analysis and I believe GP

presents a way to move forward.

There are still several studies and refinements to be done to fully validate and prepare the

GP for use in the low-mass diphoton analysis. Investigation into different kernels could be

a particularly useful study. Although the GP should be a very unbiased estimation method,

the use of a different kernel, one that is possibly more motivated by the actual underlying

physics or detector response, could be less likely to be biased or, at the very least, can have

its motivation tied directly to the physics making its use easier to justify.

Checking the bias of the GP fitting on the background distribution in the way that I have

done it is very time intensive. It requires many toy MC samples to be created and the GP fit to

each. I have done this for a few mass points, but in order to fully understand the performance

of the method, the bias should be tested at every mass point used in the low-mass search

(65-110 GeV). It may be that toys are the best way to do this, but a faster method would be

very useful in the long run.

Many analyses on ATLAS make use of statistics packages derived from RooFit and RooSt-

ats but do not directly use either of these. In the case of low-mass diphoton, a package called
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HistFitter is used. This package is built in C++ and uses input datacards to define the sta-

tistical models to be used in the analysis. At the time of writing this, there was only one

C++ based Gaussian Process Regression library that I could find and its functionality was

quite limited. The python language, on the other hand, has several high quality libraries with

GP implementations. This language mismatch represents a technical hurdle to be overcome

in fully implementing the a GP in an ATLAS analysis. Also, at the time of writing this,

a group of students in the Diana-HEP group (http://diana-hep.org/) have been writing a

python implementation of the HistFactory statistics package called PyHF [71]. This package

can be used to fully implement the statistical model used in the low-mass diphoton group
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A.1 2x2D Sideband Method

Each photon candidate is classified as belonging to a category TI, T Ī, T̄ I or T̄ Ī depending on

whether it fails or passes the identification and isolation criteria. A pair of candidates therefore

can belong to one out of 16 categories, labeled from TITI to T̄ ĪT̄ Ī, based on the categories

of both photon candidates. Neglecting the photon-photon and photon-jet correlations, the

number of events in each category can be written as:

NTITI = WL′L′

γγ εI1εT1εI2εT2

+ WL′L′

γj εI1εT1fI2fT2

+ WL′L′

jγ εI2εT2fI1fT1

+ WL′L′

jj f ′I1f
′
T1f

′
I2f
′
T2ξIjj (A.1)

NTIT Ī = WL′L′

γγ εI1εT1 (1− εI2) εT2

+ WL′L′

γj εI1εT1 (1− fI2) fT2

+ WL′L′

jγ fI1fT1 (1− εI2) εT2

+ WL′L′

jj f ′I1f
′
T1 (1− f ′I2ξIjj) f ′T2 (A.2)
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NT ĪTI = WL′L′

γγ (1− εI1) εT1εI2εT2

+ WL′L′

γj (1− εI1) εT1fI2fT2

+ WL′L′

jγ (1− fI1) fT1εI2εT2

+ WL′L′

jj (1− f ′I1ξIjj) f ′T1f
′
I2f
′
T2 (A.3)

NT ĪT Ī = WL′L′

γγ (1− εI1) (1− εI2) εT1εT2

+ WL′L′

γj (1− εI1) (1fI2) εT1fT2

+ WL′L′

jγ (1− εI2) (1− fI1) εT2fT1

+ WL′L′

jj (1− f ′I1 − f ′I2 + f ′I1f
′
I2ξIjj) f

′
T1f

′
T2 (A.4)

NTIT̄ I = WL′L′

γγ εI1εT1εI2 (1− εT2)

+ WL′L′

γj εI1εT1fI2 (1− fT2)

+ WL′L′

jγ fI1fT1εI2 (1− εT2)

+ WL′L′

jj f ′I1f
′
T1f

′
I2 (1− f ′T2) ξIjj (A.5)

NT̄ ITI = WL′L′

γγ εI1 (1− εT1) εI2εT2

+ WL′L′

γj εI1 (1− εT1) fI2fT2

+ WL′L′

jγ fI1 (1− fT1) εI2εT2

+ WL′L′

jj f ′I1 (1− f ′T1) f ′I2f
′
T2ξIjj (A.6)
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NTIT̄ Ī = WL′L′

γγ εI1εT1 (1− εI2) (1− εT2)

+ WL′L′

γj εI1εT1 (1− fI2 − fT2 + fI2fT2)

+ WL′L′

jγ fI1fT1 (1− εI2) (1− εT2)

+ WL′L′

jj f ′I1f
′
T1 (1− ξIjjf ′I2 − f ′T2 + f ′I2f

′
T2ξIjj) (A.7)

NT̄ ĪT I = WL′L′

γγ (1− εI1) (1− εT1) εI2εT2

+ WL′L′

γj (1− εI1) (1− εT1) fI2fT2

+ WL′L′

jγ (1− fI1 − fT1 + fI1fT1) εI2εT2

+ WL′L′

jj (1− f ′I1ξIjj − f ′T1 + f ′I1f
′
T1ξIjj) f

′
I2f
′
T2 (A.8)

NT ĪT̄ I = WL′L′

γγ (1− εI1) εT1εI2 (1− εT2)

+ WL′L′

γj (1− εI1) εT1fI2 (1− fT2)

+ WL′L′

jγ (1− fI1) fT1εI2 (1− εT2)

+ WL′L′

jj (1− f ′I1ξIjj) f ′T1f
′
I2 (1− f ′T2) (A.9)

NT̄ IT Ī = WL′L′

γγ εI1 (1− εT1) (1− εI2) εT2

+ WL′L′

γj εI1 (1− fI2) (1− εT1) fT2

+ WL′L′

jγ fI1 (1− εI2) (1− fT1) εT2

+ WL′L′

jj f ′I1 (1− f ′T1) (1− f ′I2ξIjj) f ′T2 (A.10)
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NT̄ IT̄ I = WL′L′

γγ εI1 (1− εT1) εI2 (1− εT2)

+ WL′L′

γj εI1 (1− εT1) fI2 (1− fT2)

+ WL′L′

jγ fI1 (1− fT1) εI2 (1− εT2)

+ WL′L′

jj f ′I1f
′
I2 (1− f ′T1 − f ′T2 + f ′T1f

′
T2) ξIjj (A.11)

NT ĪT̄ Ī = WL′L′

γγ (1− εI1) εT1 (1− εI2) (1− εT2)

+ WL′L′

γj ((1− εI1) εT1 (1− fI2 − fT2 + fI2fT2)

+ WL′L′

jγ (1− fI1) fT1 (1− εT2) (1− εI2) (A.12)

+ WL′L′

jj f ′T1 (1− f ′I2 − f ′T2 − f ′I1 + f ′I2f
′
T2 + f ′T2f

′
I1 + f ′I2f

′
I1ξIjj − f ′I1f ′I2f ′T2ξIjj)

NT̄ ĪT Ī = WL′L′

γγ (1− εI1) (1− εT1) (1− εI2) εT2

+ WL′L′

γj (1− εI1) (1− εT1) (1− fI2) fT2

+ WL′L′

jγ (1− fI1 − fT1 + fI1fT1) (1− εI2) εT2 (A.13)

+ WL′L′

jj (1− f ′I1 − f ′T1 − f ′I2 + f ′I1f
′
T1 + f ′T1f

′
I2 + f ′I1f

′
I2ξIjj − f ′I1f ′T1f

′
I2ξIjj) f

′
T2

NT̄ IT̄ Ī = WL′L′

γγ εI1 (1− εT1) (1− εI2) (1− εT2)

+ WL′L′

γj εI1 (1− εT1) (1− fI2 − fT2 + fI2fT2)

+ WL′L′

jγ fI1 (1− fT1) (1− εI2) (1− εT2) (A.14)

+ WL′L′

jj f ′I1 ((1− f ′T1) (1− f ′I2ξIjj)− f ′T2 (1− f ′T1) (1− f ′I2ξIjj))
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NT̄ ĪT̄ I = WL′L′

γγ εI2 ((1− εT2) (1− εI1)− εT1 (1− εT2) (1− εI1))

+ WL′L′

γj fI2 ((1− εI1) (1− fT2)− εT1 (1− εI1) (1− fT2))

+ WL′L′

jγ εI2 ((1− εT2) (1− fI1)− fT1 (1− fI1) (1− εT2)) (A.15)

+ WL′L′

jj ((1− f ′T2) (1− f ′I1ξIjj)− f ′T1 (1− f ′T2) (1− f ′I1ξIjj)) f ′I2

NT̄ ĪT̄ Ī = WL′L′

γγ [1− εT1 − εT2 + εT1εT2 + εI2(1− εT1 − εT2 + εT1εT2)

+ εI1(−(1− εI2)(1− εT1) + εT2(1− εI2)(1− εT1))]

+ WL′L′

γj [1− εT1 − fT2 + εT1fT2 + fI2(1− εT1 − fT2 + εT1fT2)

+ εI1((1− εT1)(1− fI2) + fT2(1− fI2)(1− εT1))]

+ WL′L′

jγ [1− εT2 − fT1 + εT2fT1 + εI2(1− fT1 − εT2 + εT2fT1)

+ fI1((1− εI2)(1− fT1) + εT2(1− εI2)(1− fT1))] (A.16)

+ WL′L′

jj [1− f ′T1 − f ′T2 + f ′T1f
′
T2 + f ′I2(1− f ′T1 − f ′T2 + f ′T1f

′
T2)

+ f ′I1(−(1− f ′I2ξIjj)(1− f ′T1) + f ′T2(1− f ′I2ξIjj)(1− f ′T1))]

In those 16 equations we have 19 unknowns, six of which are inputs or are fixed:

• εT1 and εT2 are the tight identification efficiencies for the leading and subleading

photons respectively. Their values are determined from Monte Carlo simulation of the

diphoton signal.

• εI1 and εI2 are the isolation efficiencies for the leading and subleading photons respec-

tively, also determined with Monte-Carlo.
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The other 13 unknowns are outputs from the extended 2D sideband method, namely:

• WL′L′

γγ , WL′L′

γj , WL′L′

jγ and WL′L′

jj are the yields for the four categories of event after the

loose’ preselection.

• fT1 and fT2 are the tight identification fake rates for the leading and subleading jets

in γ-jet and jet-γ events.

• f ′T1 and f ′T2 are the tight identification fake rates for the leading and subleading jets in

jet-jet events. Those fake rates are fixed to be equal to fT1 and fT2 respectively, as the

difference between the prime and non-prime identification fake rates are much smaller

than their precision.

• fI1 and fI2 are the isolation fake rates for the leading and subleading jets in γ-jet and

jet-γ events.

• f ′I1 and f ′I2 are the isolation fake rates for the leading and subleading jets in jet-jet

events.

• ξIjj is the correlation between the isolation of the jets in the jj component.
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