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Role Of Il-27 And Tcr Stimulation In Inhibitory Receptor Expression

Abstract
The adaptive immune response is necessary for control of pathogen burden in a wide range of infections.
However, in the absence of active regulatory mechanisms, this protective response can lead to immune
pathology. The cytokine interleukin (IL)-27 is required for control of exaggerated immune responses during
toxoplasmosis and other infections and autoimmune settings. Multiple regulatory pathways have been found
to be controlled by IL-27. However, there are gaps in our knowledge of the mechanisms by which IL-27 limits
T cell responses. The present work focuses on the ability of IL-27 to promote expression of inhibitory
receptors on T cells. The studies presented here establish that TCR and cytokines have distinct and
complementary roles in promoting inhibitory receptor expression. In vitro, IL-27, type I IFN, and IFN-g
induced expression of PD-L1 and Sca-1 on naïve murine CD4+ and CD8+ T cells in the absence of TCR
stimulation. TCR stimulation induced expression of multiple inhibitory receptors and IL- 27 combined
synergistically with TCR stimulation to further upregulate Ly6C, LAG-3, CTLA-4, TIGIT and TIM-3. This
IL-27-mediated inhibitory expression was STAT1- dependent. The response to TCR stimulation was graded
and thus a stronger TCR stimulus resulted in greater inhibitory receptor expression. In vivo, during infection
with Toxoplasma gondii, IL-27 was required for full expression of Ly6C, PD-L1, LAG-3, CTLA-4, and TIGIT
by parasite-specific T cells in the lung, a local site of infection, but not in the spleen. STAT1 was also required
for full expression of LAG-3, CTLA-4, and TIGIT at local sites of infection. Taken together, these studies
suggest a model in which inhibitory receptor expression on T cells is a graded regulatory pathway that is
upregulated by exposure to increasing levels of TCR stimulation and cytokines present at sites of
inflammation.
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ABSTRACT 
 

ROLE OF IL-27 AND TCR STIMULATION IN INHIBITORY RECEPTOR 

EXPRESSION 

Jonathan Howard DeLong 

Christopher A. Hunter 

 

The adaptive immune response is necessary for control of pathogen burden in a wide 

range of infections. However, in the absence of active regulatory mechanisms, this 

protective response can lead to immune pathology. The cytokine interleukin (IL)-27 is 

required for control of exaggerated immune responses during toxoplasmosis and other 

infections and autoimmune settings. Multiple regulatory pathways have been found to be 

controlled by IL-27. However, there are gaps in our knowledge of the mechanisms by 

which IL-27 limits T cell responses. The present work focuses on the ability of IL-27 to 

promote expression of inhibitory receptors on T cells. The studies presented here 

establish that TCR and cytokines have distinct and complementary roles in promoting 

inhibitory receptor expression. In vitro, IL-27, type I IFN, and IFN-g induced expression 

of PD-L1 and Sca-1 on naïve murine CD4+ and CD8+ T cells in the absence of TCR 

stimulation. TCR stimulation induced expression of multiple inhibitory receptors and IL-

27 combined synergistically with TCR stimulation to further upregulate Ly6C, LAG-3, 

CTLA-4, TIGIT and TIM-3. This IL-27-mediated inhibitory expression was STAT1-

dependent. The response to TCR stimulation was graded and thus a stronger TCR 
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stimulus resulted in greater inhibitory receptor expression. In vivo, during infection with 

Toxoplasma gondii, IL-27 was required for full expression of Ly6C, PD-L1, LAG-3, 

CTLA-4, and TIGIT by parasite-specific T cells in the lung, a local site of infection, but 

not in the spleen. STAT1 was also required for full expression of LAG-3, CTLA-4, and 

TIGIT at local sites of infection. Taken together, these studies suggest a model in which 

inhibitory receptor expression on T cells is a graded regulatory pathway that is 

upregulated by exposure to increasing levels of TCR stimulation and cytokines present at 

sites of inflammation.  
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Chapter 1: Introduction 

Abstract 

The adaptive immune response is necessary for control of pathogen burden in a 

wide range of infections. However, in the absence of active regulatory mechanisms, this 

protective response can cause immune pathology. The parasite Toxoplasma gondii 

provides a well-characterized model to study immune regulation because it is a natural 

mouse pathogen, and infection with this parasite induces a protective type I response that 

becomes lethal in the absence of appropriate immune regulation. Therefore, 

toxoplasmosis has been utilized to understand immunoregulatory mechanisms that are 

broadly applicable to inflammatory processes. Indeed, studies from this laboratory have 

highlighted that the cytokine IL-27 is required for control of CD4-mediated 

immunopathology during toxoplasmosis. There are gaps in our knowledge about the 

mechanisms by which IL-27 limits T cell responses, and the present work focuses on the 

ability of IL-27 to promote T cell expression of inhibitory receptors to limit the immune 

response. The sections below will review 3 main topics: the protective and pathological 

response to T. gondii, the biology of IL-27, and what was known of the biology of 

inhibitory receptors at the time these studies were initiated. 

1.1 Immune response to toxoplasmosis 

Pathogenesis of Toxoplasma gondii and impact on human health 

 Toxoplasma gondii is an intracellular protozoan parasite capable of infecting any 

warm-blooded vertebrate. In the chronic phase of infection, the parasite forms cysts in 
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muscle and brain tissue that are controlled but not cleared by the host immune system. 

Consumption of these tissue cysts allows transmission of infection from a chronically 

infected animal to a new host (Kean et al., 1969). The parasite also undergoes sexual 

reproduction in infected feline hosts and is shed as highly infectious oocysts in cat feces 

(Frenkel et al., 1970). After infection, tissue cysts and oocysts convert into a quickly 

replicating tachyzoite form of the parasite, which can infect any nucleated cell. Following 

a systemic phase of the infection, immune pressure forces the parasites to convert to the 

slowly-replicating bradyzoite stage of their life cycle that once again form tissue cysts 

(Hunter and Sibley, 2012).  

 Approximately 60 million people in the USA are infected with T. gondii, which is 

a Class B Biodefense pathogen and an NIAID Emerging/Re-emerging Pathogen that is a 

major cause of food-borne mortality (Mead et al., 1999). Toxoplasmosis is relevant to 

human health due to congenital transmission and its adverse impact on fetal development 

(Ajzenberg, 2012; Torgerson and Mastroiacovo, 2013), as well as ocular disease in 

immunocompetent individuals (Carme et al., 2002; Desguerre et al., 1993; Glasner et al., 

1992; McLeod et al., 2006; Montoya and Liesenfeld, 2004; Pappas et al., 2009). 

Additionally, patients with acquired defects in T cell function have increased 

susceptibility to reactivation of this chronic infection (Gaines et al., 1973; Israelski et al., 

1993; Israelski and Remington, 1993; Slavin et al., 1994; Young and McGwire, 2005). 

Therefore, there is a longstanding interest in understanding the role of inhibitory 

receptors in limiting the T cell response to this infection. 

 The mouse is a natural host for T. gondii that has provided many clinically 

relevant insights into the pathogenesis of infection (Beaman et al., 1994; Hunter and 
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Remington, 1994; Khan et al., 1999; Leiva et al., 1998; Luft and Remington, 1988; 

Reichmann et al., 2000; Suzuki et al., 1996; Wilson and Hunter, 2003; Wilson et al., 

2010). For example, the increased susceptibility of T cell-deficient patients to 

toxoplasmosis (Pappas et al., 2009) tells us that T cells are important for resistance to 

infection, and studies in mice demonstrate that T cells are required for survival during 

toxoplasmosis primarily due to their role in production of IFN-γ. In addition, CD4+ T 

cells promote Ig antibody class switching, and CD8+ T cells are responsible for perforin-

mediated killing of infected cells (Bhadra et al., 2011; Denkers et al., 1997; Hunter and 

Sibley, 2012; Johnson, 2002). However, as discussed below, active mechanisms of 

immune regulation are required to prevent the dominant Th1-type response from 

becoming pathological (Aliberti, 2005; Gazzinelli et al., 1996; Villarino et al., 2003).  

 

Early immune response to T. gondii 

 Infection of mice with T. gondii leads to production of IL-12 by a range of 

myeloid cells (Dupont et al., 2012), but BATF3+ DC1 cells are a particularly important 

source during toxoplasmosis (Mashayekhi et al., 2011). The mechanisms by which the 

immune system initially detects T. gondii are not fully defined, but the adapter protein 

MyD88 downstream of multiple TLRs is required for production of IL-12 and control of 

parasite burden (Scanga et al., 2002). Other studies have shown that TLR11 recognizes a 

profilin-like protein that T. gondii produces during infection and promotes IL-12 

production (Yarovinsky et al., 2005). This IL-12 induces NK cells and T cells to produce 

IFN-γ, which is critical for resistance to T. gondii. Thus, when mice deficient in IFN-γ or 

IL-12 are infected with T. gondii, they rapidly succumb to this challenge, dying 7-10 days 
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after infection due to overwhelming parasite burden (Gazzinelli et al., 1994; Suzuki et al., 

1988). These types of studies were important in helping to understand the role of IL-12 

and IFN-γ in resistance to many intracellular pathogens. 

 

Balance between resistance and tolerance during toxoplasmosis 

 While a strong Th1 immune response is required for resistance to many 

intracellular infections and control of parasite replication, multiple active regulatory 

pathways are necessary to prevent this immune response from becoming pathologic. 

Indeed, infection of WT mice with T. gondii leads to systemic inflammation and weight 

loss, and in some cases this can lead to the development of severe CD4+ T cell dependent 

immune pathology (Liesenfeld, 1996; Liesenfeld et al., 1997). Our group and others have 

identified multiple regulatory mechanisms (discussed below) involving regulatory T 

cells, IL-10, IL-27, and PD-1 that promote tissue tolerance during toxoplasmosis. In 

doing so, these mechanisms allow for persistence of the parasite but limit 

immunopathology, which promotes host survival. This balance allows a detente between 

a largely asymptomatic infection and immune hyperactivity (Figure 1.1). The broader 

relevance of the mechanisms that regulate immunopathology during toxoplasmosis is 

illustrated by the role of IL-10 and IL-27 in limiting the immune response in diverse 

settings such as the MRL/lpr model of lupus, respiratory syncytial virus, collagen-

induced arthritis (CIA), experimental autoimmune encephalomyelitis (EAE), and colitis 

(Batten et al., 2006; Bettelli et al., 1998; Fitzgerald et al., 2007; Muallem et al., 2017; 

Persson et al., 1996; Sugiyama et al., 2008; Yin et al., 2002; Zhu et al., 2018; Zhu et al., 

2016). 



5 
 

 

Regulatory T cells in toxoplasmosis 

 During acute infection with T. gondii, the numbers of CD4+ FoxP3+ regulatory T 

cells (Tregs) collapse, due partially to a decrease in IL-2 production (Oldenhove et al., 

2009). This likely contributes to the development of immunopathology in these mice, but 

infection of DEREG mice, which lack Treg cells entirely, reveal that the remaining Tregs 

contribute to immune suppression in this system (Hall et al., 2012a). Tregs suppress the 

immune response by a range of mechanisms that include production of IL-10, 

sequestration of IL-2 through expression of the high-affinity IL-2 receptor, and the 

expression of inhibitory receptors that suppress the immune response by multiple 

mechanisms (Josefowicz et al., 2012). Recent studies have found that Treg cells can be 

subsetted into populations that roughly mirror the T helper cell subsets. Treg counterparts 

have been described for Th1 (Hall et al., 2012a; Koch et al., 2009), Th2 (Zheng et al., 

2009), Th17 (Chaudhry et al., 2009), and Tfh (Chung et al., 2011; Linterman et al., 2011; 

Wollenberg et al., 2011) cells, and Tregs are specialized to suppress the T helper cells 

they most closely resemble. For example, a CXCR3+ T-bet+ Treg population is found to 

limit the development of Th1-mediated inflammatory disease in mice (Koch et al., 2009). 

IL-27 promotes the generation of this CXCR3+ T-bet+ Treg population during 

toxoplasmosis (Hall et al., 2012a), suggesting that IL-27 can limit immunopathology 

through differentiation of Tregs optimized to limit the Th1 response. IL-27 also causes 

Tregs to produce IL-10 (Stumhofer et al., 2007), a cytokine necessary for limiting 

immunopathology during toxoplasmosis 
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Cytokines that limit immunopathology during toxoplasmosis 

 IL-10 is central to limit immunopathology in multiple infectious systems. During 

toxoplasmosis, T cells are an essential source of IL-10, but IL-10 is also produced by NK 

cells, monocytes, and macrophages (Hedrich and Bream, 2010; Perona-Wright et al., 

2009; Roers et al., 2004; Wagage et al., 2014). IL-10 limits myeloid cell production of 

IL-1, IL-12, and TNF-α, which all contribute to production of IFN-γ and control of 

toxoplasmosis. Therefore, IL-10 was initially expected to be a factor that would allow 

parasite persistence and it was initially a surprise to find that during acute toxoplasmosis, 

IL-10-/- mice develop lethal CD4+ T cell-mediated immunopathology characterized by 

high expression of IFN-γ, IL-12, and TNF-α (Gazzinelli et al., 1996; Neyer et al., 1997). 

Blockade of CD28 and CD40 rescues IL-10-/- mice during toxoplasmosis, demonstrating 

that costimulation is required for this immunopathology (Villegas et al., 2000). It is 

notable that IL-10 can limit productive immune responses, as loss of IL-10 leads to 

improved parasite control in SCID mice, and during chronic infection neutralization of 

IL-10 enhances control of parasite burden in the CNS (Deckert-Schluter et al., 1997; 

Neyer et al., 1997). However, IL-10-/- mice that are treated with sulfadiazine to allow 

them to progress to chronic infection develop CD4+ T cell-mediated immunopathology in 

the CNS during chronic toxoplasmosis (Wilson et al., 2005). These studies demonstrate 

that while IL-10 can promote parasite replication and persistence in some circumstances, 

it is essential to prevent the development of immunopathology. 

 TGF-β has long been regarded as immunoregulatory, and TGF-β and IL-2 

promote Treg responses. In addition, TGF-β limits production of IFN-γ by NK cells 

during toxoplasmosis and inhibits control of parasite burden in SCID mice, in which NK 
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cells are required for IFN-γ production (Hunter et al., 1995). It also limits production of 

TNF-α by macrophages and prevents their effective control of the parasite (Langermans 

et al., 2001). Treatment with exogenous TGF-β decreases IFN-γ levels in the cerebral 

spinal fluid and limits T cell recruitment to the brain, which is accompanied by outgrowth 

of cysts in the brain and increased mortality (Schluter et al., 1998). However, the 

suppressive effects of TGF-β produced by intraepithelial lymphocytes were found to limit 

the development of ileitis during oral toxoplasmosis (Buzoni-Gatel et al., 2001). Thus, 

like IL-10, production of TGF-β can promote parasite persistence but can also have a host 

protective activity. 

1.2 The Immunobiology of Interleukin-27 

 IL-27 is an IL-6/IL-12 family cytokine that acts on lymphocytes to modify the 

immune response in pleiotropic ways. It can promote T cell survival and proliferation, 

but also upregulates production of IL-10 and differentiation of Th1-like Tregs. It has been 

found to be essential in limiting immunopathology in diverse inflammatory contexts. This 

section will describe the components involved in IL-27 signaling and its role in 

modulating the immune response during toxoplasmosis and other infections. 

 

Structure, sources, receptor, signaling 

 IL-27 is a heterodimeric cytokine composed of Epstein Barr Virus-Induced gene 3 

(EBI-3) and p28. The EBI-3 subunit was first described as a secreted protein that was 

predicted to have a role in immune signaling due to its homology with IL-12p40 

(Devergne et al., 1996). The p28 subunit was identified by a computational sequence 



8 
 

alignment algorithm in an attempt to identify novel IL-6-related cytokines (Pflanz et al., 

2002). IL-27 was identified by a computational approach that predicted the interaction of 

EBI-3 with p28 (Pflanz et al., 2002). Monocytes, macrophages, and dendritic cells are 

considered to be the primary source of IL-27 (Hall et al., 2012a; Pflanz et al., 2002). 

Expression of IL-27 in these myeloid populations is induced by a range of microbial 

stimuli: LPS, poly(I:C), CpG, and gram-negative bacteria (Hashimoto et al., 2000; Liu et 

al., 2007; Smits et al., 2004; Wirtz et al., 2005). Type I IFN and IFN-γ also promote 

expression of IL-27 (Pirhonen et al., 2007; Remoli et al., 2007; Sonobe et al., 2005; van 

Seventer et al., 2002). This upregulation of IL-27 by inflammatory stimuli allows it to be 

upregulated and limit immunopathology at sites of inflammation.  

 IL-27 signals through a heterodimeric cytokine receptor composed of gp130 and 

IL-27Rα. gp130 was first identified in a screen of glycoproteins upregulated on activated 

T cells (Andersson et al., 1978), but it is expressed by diverse hematopoietic and non-

hematopoietic populations (Taga and Kishimoto, 1997). The gp130 chain serves as a 

common receptor chain for other cytokines, such as IL-6, oncostatin M (OSM), IL-11, 

leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), and cardiotrophin 

(CT)-1 (Heinrich et al., 1998). The IL-27 receptor α-chain (IL-27Rα) was identified in a 

search for class I cytokine receptors with DNA sequence similarity to that of gp130 

(Sprecher et al., 1998). IL-27Rα is also known as TCCR (T cell cytokine receptor) and 

WSX-1, in reference the C-terminus WSXWS sequence motif it contains, which is 

conserved among class I cytokine receptors. IL-27Rα is expressed primarily by T cells, B 

cells and NK cells (Pflanz et al., 2004). Its expression is upregulated on T cells when they 

are activated but is high on NK cells and is down regulated when they are activated 
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(Villarino et al., 2005). Signaling through the IL-27 receptor results in phosphorylation of 

STAT1, STAT3, p38 MAPK and ERK1/2 (Owaki et al., 2006; Pflanz et al., 2004).  

 While the focus of this thesis is on IL-27, the EBI-3 and p28 proteins have also 

been described to have functions distinct from their role as subunits of IL-27. EBI-3 has 

been reported to bind IL-12p35 and form the cytokine IL-35 (Collison et al., 2007), while 

the p28 molecule functions in the absence of EBI-3 as a receptor antagonist of gp130 that 

blocks signaling by IL-27 and IL-6. Thus, IL-27p28 has been shown to limit the 

development of germinal center B cells and the production of class-switched antibody 

after immunization (Stumhofer et al., 2010), limit Th1 and Th17 responses during 

experimental autoimmune uveitis (EAU) and experimental autoimmune 

encephalomyelitis (EAE) (Chong et al., 2014), and prolong survival of cell grafts into 

muscle (Shimozato et al., 2009). While several studies highlight the role of p28 as a 

receptor antagonist for gp130, there are reports that p28 alone is able to transduce a signal 

through this receptor (Airoldi et al., 2016; Petes et al., 2018). 

 Additional functions have also been described for the IL-27Rα subunit of the IL-

27 receptor. For example, there are reports that IL-27Rα can complex with gp130 and 

CNTFRa to form a receptor for Humanin that limits neuronal cell death associated with 

Alzheimer’s disease (Hashimoto et al., 2009). IL-27Rα also complexes with gp130 and 

IL-6Rα to from a receptor for a p28-CLF heterodimer that modulates the function of NK 

cells and T cells (Crabe et al., 2009). Additionally, IL-27Rα can be shed by T and B cells 

into the blood and functions as an endogenous antagonist to IL-27 by binding and 

preventing it from signaling (Dietrich et al., 2014). However, the phenotypes seen in 

Il27ra-/- mice have largely been found to phenocopy those seen in Il27p28-/- and Ebi3-/- 
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mice (Hall et al., 2012a; Liu et al., 2017; Muallem et al., 2017; Villarino et al., 2003), 

suggesting that the primary role of these molecules in these systems is as subunits of IL-

27 or the IL-27 receptor. 

 

Roles of IL-27 in the immune response 

 When IL-27 was first described, it was found to promote NK and T cell 

proliferation and production of IFN-γ in vitro (Pflanz et al., 2002). Subsequent studies 

found IL-27 capable of promoting expression of CXCR3, T-bet, and the IL-12Rα in T 

cells, which increases IFN-γ production when cells are cultured with IL-12 (Lucas et al., 

2003; Takeda et al., 2003; Yoshida et al., 2001). In addition to the homology of IL-27 to 

IL-6 and IL-12, and its ability to phosphorylate STAT1 and STAT3, these findings led to 

the conclusion that the primary role of IL-27 was to promote Th1 responses (Murphy and 

Reiner, 2002). 

 

IL-27 and toxoplasmosis 

 During toxoplasmosis, IL-27 is produced primarily by monocytes, peaking at day 

4-8 of infection (Kugler et al., 2013; Stumhofer et al., 2010). A study published in 2003 

established a role for IL-27 in limiting the development of immunopathology during 

toxoplasmosis (Villarino et al., 2003). IL-27Rα-deficient mice were found to succumb to 

toxoplasmosis after only 2 weeks of infection. Parasite burden in Il27ra-/- mice was low, 

serum levels of IFN-γ were high, and depletion of CD4+ T cells rescued the mice, leading 

to the conclusion that the increased susceptibility of Il27ra-/- mice was due to CD4+ T 

cell-mediated immunopathology. This system has been used to identify multiple 
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mechanisms by which IL-27 limits the immune response: it suppresses production of 

IFN-γ (Villarino et al., 2003) and IL-2 (Villarino et al., 2006), limits the differentiation of 

Th17 cells (Stumhofer et al., 2006), promotes IL-10 production by Tregs and Tr1 cells 

(Awasthi et al., 2007; Fitzgerald et al., 2007; Stumhofer et al., 2007), and promotes the 

generation of T-bet+ CXCR3+ Tregs that are specialized for suppressing Th1 responses 

(Hall et al., 2012a; Koch et al., 2009) (Figure 1.2). While these studies are informative, 

there are still gaps in our understanding of the mechanisms controlling these regulatory 

pathways and as discussed below, inhibitory receptors might provide a link between the 

roles of IL-27, IL-10 and IL-17 during toxoplasmosis. 

  

IL-27 limits immunopathology in other infections 

 IL-27 has been found to limit immunopathology in several other infection 

systems. It limits IFN-γ production during infection with Plasmodium berghei, 

Leishmania donovani, and Mycobacterium tuberculosis (Findlay et al., 2010; Holscher et 

al., 2005; Rosas et al., 2006), limits IL-4 during Trichuris muris and L. donovani 

infection, and limits both IFN-γ and IL-4 during infection with Trypanosoma cruzi (Artis 

et al., 2004a; Artis et al., 2004b; Hamano et al., 2003). CD4+ T cell depletion reduces the 

immunopathology in Il27ra-/- mice during infection with P. berghei and L. donovani, 

similar to what is seen during toxoplasmosis. In the context of Sendai virus infection, IL-

27 deficiency leads to immunopathology in the lungs, associated with influx of 

eosinophils and alternatively activated macrophages (Muallem et al., 2017). This is 

accompanied by a decrease in CD4+ T cells that coproduce IFN-γ and IL-10 and an 

increase in CD4+ T cells that coproduce IFN-γ and IL-13 or IL-17. IL-27 also limits 
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immunopathology in the lung during respiratory syncytial virus infection (Pyle et al., 

2017). Depletion of IL-27 is associated with increased numbers of virus-specific CD4+ 

and CD8+ T cells, increased production of IFN-γ, and decreased production of IL-10. 

Deficiency of the EBI-3 subunit of IL-27 results in T cell and macrophage infiltration 

into the CNS during infection with coronavirus (Tirotta et al., 2013), which is associated 

with increased IFN-γ production and lethal encephalomyelitis. While these studies 

demonstrate a broad role for IL-27 in limiting immunopathology, its common role in 

these diverse infections is to prevent the activation and cytokine production of CD4+ and 

CD8+ T cells from becoming dysregulated.  

1.3 Inhibitory receptors and infection  

 A robust immune response is required to limit the survival and spread of 

infectious organisms, and primary or acquired immunodeficiencies are generally 

associated with increased susceptibility to infection. However, active suppressive 

mechanisms are required to ensure that this protective response does not cause collateral 

damage. In the absence of appropriate regulation, immune responses can become 

pathologic during acute infection, during chronic infection - such as in leprosy and 

Chagas disease - and even after resolution of infection, as in Guillain-Barre syndrome. As 

discussed above, some mechanisms include IL-27, IL-10, and regulatory T cells, and in 

recent years there has been an increased appreciation of the role of a wide variety of cell 

surface molecules expressed by immune cells in limiting the immune response. The term 

“inhibitory receptor” has been used to describe these molecules functionally, not by 

structural or sequence homology with each other, and they utilize a broad range of 
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mechanisms to modulate the immune system (Chen and Flies, 2013). Inhibitory receptors 

(IR) can function cell intrinsically, inhibiting the cell on which they are expressed, or 

they can inhibit target cells in a cell extrinsic fashion as they often function to inhibit 

signaling by antigen receptors or costimulatory molecules. In current models, TCR 

stimulation transiently upregulates the expression of multiple inhibitory receptors by T 

cells, while repeated TCR stimulation upregulates their expression during chronic 

infection or cancer and gives rise to an “exhausted” phenotype. A broad overview of IR 

function in diverse inflammatory environments has been reviewed elsewhere (Chen and 

Flies, 2013); this section will focus on those receptors that have well-defined roles in 

limiting the immune response during infection. 

 

Role of inhibitory receptors during infection 

 During chronic inflammation in response to tumors or infection, T cells are found 

to develop an exhausted phenotype. This has been most thoroughly described on CD8+ T 

cells during infection with the clone 13 strain of LCMV.  This chronic infection causes 

virus-specific CD8+ T cells to upregulate PD-1 and other inhibitory receptors, lose their 

ability to proliferate, and decrease production of IFN-γ and TNF-α (Wherry et al., 2007). 

The significance of these pathways is illustrated by the finding that PD-L1-deficient mice 

control infection with the clone 13 strain of LCMV but succumb to infection after 6-12 

days due to immunopathology (Barber et al., 2006; Mueller et al., 2010). Antibody 

blockade of PD-L1 restores the ability of CD8+ T cells to produce cytokines and control 

viral titers without resulting in overt immunopathology (Barber et al., 2006). Exhausted 

CD8+ T cells also upregulate LAG-3 and TIM-3 during LCMV and coblockade of PD-L1 
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and LAG-3 or PD-1 and TIM-3 reverses exhaustion more effectively than blockade of 

any of these inhibitory receptors alone, leading to increased degranulation, IFN-γ 

production, and control of virus burden (Blackburn et al., 2009; Jin et al., 2010). These 

principles are applicable to a range of murine and clinical settings, including human 

immunodeficiency virus (HIV) (Day et al., 2006; Jones et al., 2008; Kaufmann et al., 

2007), hepatitis C virus (HCV) (Urbani et al., 2006) and hepatitis B virus (HBV) (Boni et 

al., 2007). 

 T cell exhaustion is also characteristic of chronic infection with intracellular 

parasites. At the chronic stage of toxoplasmosis, CD8+ T cells upregulate PD-1 and begin 

to lose the ability to produce IFN-γ and granzyme B and to kill infected cells (Bhadra et 

al., 2012; Bhadra et al., 2011; Wilson et al., 2009). Antibody blockade of PD-L1, a ligand 

for PD-1, reinvigorates the function of parasite-specific polyfunctional CD8+ T cells, 

prevents recrudescence of the parasite, and leads to improved survival. During acute 

infection with Leishmania donovani, T cell responses are amplified with blockade of 

CTLA-4 and during chronic L. donovani infection, exhausted T cells are reinvigorated 

with PD-L1 blockade (Joshi et al., 2009; Murphy et al., 1998). During blood-stage 

Plasmodium falciparum infection, CD4+ T cells express LAG-3 and PD-L1 and have 

limited ability to produce IFN-γ, TNF-α, and IL-2. Co-blockade of LAG-3 and PD-L1 

restores CD4+ T cell cytokine production and decreases parasitemia (Butler et al., 2011).  

 In other infectious systems, blockade of IR function results in immunopathology. 

Infection of mice with Plasmodium berghei ANKA results in cerebral malaria associated 

with T cell expression of CTLA-4 and PD-1. Blockade of CTLA-4 and PD-L1 increases 

migration of CD8+ T cells to the brain and results in increased incidence of cerebral 
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malaria and decreased survival (Hafalla et al., 2012). Blockade of the inhibitory receptor 

CD200R during infection with influenza virus results in increased IFN-γ production by T 

cells and immunopathology in the lung, which delays resolution of infection and worsens 

outcome (Snelgrove et al., 2008). A complementary study examined the role of CD200R 

by treatment with CD200-Fc, which binds CD200R agonistically. During herpes simplex 

virus infection, which typically results in immunopathology in the cornea, CD200-Fc 

treatment limits production of IL-12 and IFN-γ, and limits infiltration of inflammatory 

cells into the cornea, ameliorating disease. (Sarangi et al., 2009). These studies 

demonstrate that inhibitory receptors can limit both protective and pathological immune 

responses in diverse infectious settings. 

  

Regulation of inhibitory receptor expression 

 Given the ability of IRs to limit immunopathology, limit productive immune 

responses, and promote T cell exhaustion, it is important to understand the signals that 

regulate their expression. At the time that the studies described here were initiated, the 

induction of IRs was thought to be primarily controlled by TCR stimulation. Indeed, as 

shown in Chapter 2 and 3, TCR stimulation induces expression of diverse IRs on T cells. 

During chronic inflammation, repeated TCR stimulation results in further upregulation of 

inhibitory receptors in the phenomenon of immune exhaustion that is seen during chronic 

infection and cancer (Wherry and Kurachi, 2015). Other studies have found that 

expression of inhibitory receptors by T cells is not only a result of TCR stimulation, but 

depends on the cytokine milieu present when the T cell is activated. Studies largely 

performed in vitro have found a role for Type I IFN, IL-2, IL-7, IL-15, IL-21, and IL-27 
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in driving the expression of PD-1, PD-L1, LAG-3, TIM-3, and TIGIT by a variety of T 

cell populations (Boivin et al., 2015; Bruniquel et al., 1998; Chihara et al., 2018; Kinter 

et al., 2008). Fewer studies have been performed during infection, but IL-2 was found to 

promote PD-1 expression by CD4+ and CD8+ T cells in HIV patients (Kinter et al., 2008).  

 Inhibitory receptors are also expressed by diverse cell lineages beyond T cells and 

multiple signals have been found that upregulate their expression by myeloid cells. 

Stimulation of human monocytes with LPS or the TLR7/8 agonist R848 early in 

differentiation upregulates PD-L1 and PD-L2 and results in tolerogenic immature DCs 

that produce IL-6 and IL-10 (Wolfle et al., 2011). Stimulation with poly(I:C) or LPS 

upregulates PD-L1 on peripheral blood DCs as well (Karakhanova et al., 2010).  Studies 

performed in non-infectious systems have found that that IFN-β, IL-2, IL-7, IL-15, IL-21, 

and IL-27 have roles in promoting PD-1 or PD-L1 in myeloid populations (Karakhanova 

et al., 2011; Kinter et al., 2008; Schreiner et al., 2004). While less thoroughly studied, 

non-hematopoietic cell inhibitory receptor expression has also been identified that 

regulates the immune response. IFN-γ drives expression of PD-L1 on endothelial cells, 

tumor cell lines, and retinal pigment epithelium, limiting NK cell killing and T cell 

infiltration into sites of inflammation (Bellucci et al., 2015; Eppihimer et al., 2002; Ke et 

al., 2010).  

1.4  Summary 

 The immune system utilizes multiple active regulatory mechanisms to limit the 

collateral damage that can accompany a strong immune response. Infection of mice with 

T. gondii provides a sensitive system to examine these pathways, as several of them (IL-
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10, IL-27, TGF-β) have been found to be required to avoid lethal immunopathology 

during toxoplasmosis. Therefore, this system has been useful to identify mechanisms by 

which IL-27 limits the immune response. The following chapters describe the impact of 

IL-27 on T cell expression of multiple IR, a class of molecules that could link multiple 

immunoregulatory pathways during toxoplasmosis. 
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Figures 

 

 

 

Figure 1.1 Balance of parasite resistance and tissue tolerance during toxoplasmosis. 

In response to infection with T. gondii, myeloid cells produce IL-12, which induces 

production of IFN-γ by NK cells and T cells as part of a Th1 immune response required 

to control parasite replication. However, several active regulatory mechanisms, namely 

IL-27, IL-10, PD-1 and regulatory T cells, help limit this immune response and prevent it 

from becoming pathological. 
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Figure 1.2 Role of IL-27 during toxoplasmosis. During toxoplasmosis, IL-27 is 

produced by inflammatory monocytes and dendritic cells. It promotes differentiation of 

T-bet+CXCR3+ Tregs that are specialized for controlling Th1 inflammation. It also 

promotes upregulation of PD-L1 on T cells, which limits Th17 differentiation. IL-10 also 

promotes differentiation of Tr1 cells, which produce IL-10. IL-10 limits activation of 

myeloid cells and is necessary for limiting immunopathology during toxoplasmosis. 
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Chapter 2: Cytokine- and TCR-mediated regulation of T cell 
expression of Ly6C and Sca-1  

Abstract 

Ly6C and Sca-1 (Ly6A/E) are Ly6 family GPI-anchored surface molecules that 

are differentially expressed by multiple immune populations. Ly6C expression has been 

used to distinguish short-lived effector CD4+ T cells from memory precursor effector 

cells, whereas Sca-1 has been used in the identification of stem-like memory T (Tscm) 

cells. The present study examines the expression patterns of these molecules and 

establishes that, in vitro, IL-27, type I IFN and IFN-g are potent inducers of Ly6C and 

Sca-1 in naïve murine CD4+ and CD8+ T cells, while TGF-b limits their expression. The 

induction of Ly6C and Sca-1 by IL-27 and IFN-g is dependent on STAT1, but not 

STAT3 or T-bet. In vivo, at homeostasis, Ly6C and Sca-1 expression was not restricted to 

effector cells, but was also found at various levels on naïve and memory populations. 

However, in response to infection with Toxoplasma gondii, pathogen-specific T cells 

expressed high levels of these molecules and in this context, endogenous IL-27 and IFN-g 

were required for the expression of Ly6C but not Sca-1. Together, these findings 

highlight the TCR-dependent and cytokine-mediated signals that modulate T cell 

expression of Ly6C and Sca-1 in vitro and in vivo during infection.   

Introduction 

The T cell response to infection or immunization involves the generation of 

minimally differentiated memory cells as well as highly differentiated effector cells 
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(Joshi and Kaech, 2008). Effector T cells produce the cytokines, granzymes, and other 

molecules necessary for immediate pathogen control, while central memory T cells are 

long-lived and can differentiate into effector cells upon rechallenge (Joshi and Kaech, 

2008; Kaech and Cui, 2012; Murali-Krishna and Ahmed, 2000). The identification of 

surface molecules that distinguish effector and memory T cell populations has allowed 

researchers to track the expansion, evolution and contraction of the T cell response during 

infection and has provided insights into how these cells operate. For example, central 

memory cells upregulate CD44 and express CD62L, which keeps them localized to 

lymphoid organs. Effector cells are also CD44hi but lose expression of CD62L, allowing 

them to home to sites of inflammation. While these definitions have proven useful to 

define naïve, effector and memory T cells, additional markers, including KLRG1, 

CXCR3 and Ly6C have been used to further sub-divide these populations (Chu et al., 

2016; Gerlach et al., 2016; Hand et al., 2007; Marshall et al., 2011; Peters et al., 2014). In 

current models, a subset of highly-differentiated, short-lived effector cells (SLECs), 

which for CD8+ T cells are often identified by expression of KLRG1 (Hand et al., 2007), 

are specialized to control acute infection. These cells produce high levels of cytokines 

and granzymes and survive poorly upon adoptive transfer to naïve hosts. Less-

differentiated CD8+ T cells, identified during acute toxoplasmosis as CXCR3+KLRG1–, 

exhibit the longevity, proliferative capacity and differentiation potential typical of 

memory cells (Chu et al., 2016). 

Ly6C and Sca-1 (Ly6A/E) are members of a family of 21 Ly6-like proteins in 

mice, with 20 Ly6 family homologues in humans (Kong and Park, 2012). Expression of 

Ly6C has been used to identify highly differentiated effector CD4+ T cells (Hu et al., 
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2015; Marshall et al., 2011; Walunas et al., 1995). Among virus-specific effector CD4+ T 

cells, Ly6C+ cells produced more cytokines and effector molecules than Ly6C– cells (Hu 

et al., 2015; Marshall et al., 2011). Conversely, Sca-1, in combination with the IL-2R 

beta chain (CD122) and Bcl-2, has been used to identify mature CD8+ T cells with stem-

like properties, termed stem cell memory (Tscm) cells (Gattinoni et al., 2011; Gattinoni et 

al., 2009; Zhang et al., 2005).  

The finding that Ly6C is preferentially expressed by CD4+ SLECs during acute 

infection suggests that identification of the factors that modulate Ly6C expression could 

yield insights into the signals that control the development of memory and effector 

populations. For example, sustained TCR signals have been found to skew T cells toward 

terminal differentiation and away from memory development (Joshi and Kaech, 2008; 

Lanzavecchia and Sallusto, 2002), while multiple cytokines influence the development of 

effector and memory populations (Obar et al., 2011). Relevant to this report, type I 

interferons, IFN-g, and IL-27 have previously been implicated in promoting Ly6C+ and 

Sca-1+ populations in CD4+, CD8+ and regulatory T cells (Dumont et al., 1986; Hall et 

al., 2012a; Liu et al., 2013; Schlueter et al., 2001; Zhu et al., 2016). However, previous 

studies have not been able to distinguish whether these stimuli induce Ly6C and Sca-1 

expression or simply promote the outgrowth of Ly6C+ or Sca-1+ populations. 

Furthermore, extant reports have not examined how these cytokines intersect with TCR 

signaling to impact Ly6C and Sca-1 expression and what roles these signals play in 

modulating the expression of these molecules in vivo. In utilizing sorted Ly6C–Sca-1– 

populations, the present study was able to show that TCR stimulation alone induces Sca-1 
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on CD4+ and CD8+ T cells but is not sufficient to induce Ly6C on CD4+ T cells. The 

cytokines IL-27, IFN-g and type I IFN were found to broadly promote the expression of 

Ly6C and Sca-1, while TGF-b inhibited this expression. This cytokine-mediated 

induction of Ly6C and Sca-1 was largely STAT1-dependent and is not dependent on 

STAT3 or T-bet. A survey of naïve and antigen-experienced T cells in a range of 

differentiation states found that Ly6C expression is not restricted to effector cells and that 

Sca-1 expression is not limited to naïve/memory-like cells. Furthermore, in vivo studies 

during infection with Toxoplasma gondii identified a role for endogenous IL-27 and IFN-

g in promoting effector cell expression of Ly6C. Together, these studies provide new 

insights into the signals that modulate the development of Ly6C+ and Sca-1+ T cell 

populations but indicate caution in the use of these molecules as markers of highly-

differentiated effector cells (Ly6C) and minimally-differentiated stem cell memory cells 

(Sca-1).  

Results 

IL-27 promotes expression of Ly6C and Sca-1 on CD4+ and CD8+ T cells 

Given previous studies that implicated IL-27 in the regulation of Ly6C on Treg 

cells (Hall et al., 2012a) and Sca-1 on CD8+ T cells in vitro and CD4+ T cells in vivo (Liu 

et al., 2013; Zhu et al., 2016), initial experiments were performed to determine the 

relationship between IL-27 signaling and TCR stimulation in modulating expression of 

these molecules. Multiple experiments using bulk CD4+ or CD8+ splenocyte cultures 

showed that IL-27 in combination with TCR potently promotes T cell expression of 
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Ly6C and Sca-1 (Fig 2.S1). Because subpopulations of splenic CD4+ and CD8+ T cells 

express Ly6C and/or Sca-1, these experiments were repeated with sort-purified Ly6C–

Sca-1– naïve (CD44loCD62L+) T cells (>90% purity). Cells were then labeled with CFSE 

and cultured in the presence or absence of plate-bound anti-CD3 and soluble anti-CD28 

stimulation (henceforth referred to as TCR stimulation) with IL-2, IL-27, and neutralizing 

anti-IFN-g and anti-IL-4 antibodies (Fig 2.1A). After three days of culture in the absence 

of TCR stimulation or IL-27, the cells did not express Ly6C. Culture of CD4+ or CD8+ T 

cells with IL-27 alone induced modest Ly6C expression. TCR stimulation on its own 

induced robust proliferation (as seen by CFSE dilution) but did not induce expression of 

Ly6C on naïve CD4+ T cells, and induced Ly6C on a small percentage of CD8+ T cells. 

However, when naïve CD4+ and CD8+ T cells were provided TCR stimulation combined 

with IL-27, there was a synergistic effect on Ly6C expression, which was apparent even 

during early divisions. It is notable that among CD4+ T cells, TCR stimulation alone did 

not induce Ly6C expression, even in those cells that had proliferated. These results 

demonstrate that Ly6C is not a general activation marker on CD4+ T cells, but in these 

experiments requires TCR activation in the presence of IL-27. 

When the role of IL-27 and TCR stimulation in the regulation of Sca-1 was 

examined, each stimulus alone was sufficient to promote high expression of Sca-1 by 

CD4+ and CD8+ T cells (Fig 2.1B). However, TCR stimulation in the presence of IL-27 

resulted in further induction of Sca-1 expression, which was upregulated in early 

divisions and maintained as cells divided. We previously reported that IL-2 

downregulates the IL-27 receptor (Villarino et al., 2005), raising the possibility that the 
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exogenous IL-2 used in these cultures might limit the effect of IL-27. However, 

exogenous IL-2 did not limit expression of Ly6C and Sca-1 by CD4+ T cells and 

enhanced their expression by CD8+ T cells (Fig 2.S2). These results demonstrate that IL-

27 has a major impact on Sca-1 and Ly6C expression, and that Sca-1 is more readily 

induced by these stimuli than Ly6C. 

 

Expression of Ly6C and Sca-1 is modulated by multiple cytokines  

Given the impact of IL-27 on Ly6C and Sca-1, studies were performed to assess 

whether other cytokines (IFN-g, type I IFN, IL-6, IL-12, IL-4, IL-10, IL-7, IL-15, and 

TNF-a) modulate expression of these molecules. Ly6C–Sca-1– naïve (CD62L+CD44lo) T 

cells were sort purified as described above and were given TCR stimulation in the 

presence of the different cytokines for 72 hours before being assayed for expression of 

Ly6C or Sca-1. Across multiple experiments, IFN-g, type I IFN, and IL-12 induced 

expression of Ly6C on naïve Ly6C– CD4+ T cells, though not as robustly as IL-27 (Fig 

2.2A). For naïve CD8+ T cells, both IFN-g and type I IFN induced expression of Ly6C 

but type I IFN was consistently the strongest inducer of Ly6C in these experiments (Fig 

2.2B). Stimulation of naïve CD4+ or CD8+ T cells with TCR alone induced high 

expression of Sca-1, but this was not further upregulated by cytokines (data not shown). 

IL-4, IL-10, IL-7, IL-15 and TNF-a did not modulate expression of Sca-1 or Ly6C on 

CD4+ or CD8+ T cells (Fig 2.2, bar charts). Although there is variation in the impact of 

individual cytokines on different T cell populations, when taken together, these data 
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identify two groups of related cytokines (the interferons and the IL-6 family members) 

that utilize similar signaling pathways that promote T cell expression of Ly6C and Sca-1.  

 

Requirements for IL-27-mediated upregulation of Ly6C and Sca-1 

There are several common elements to the signaling pathways used by the 

cytokines that most robustly induced expression of Ly6C and Sca-1, specifically the 

ability to activate STAT1 and to upregulate expression of T-bet (Hall et al., 2012b; 

Lazarevic et al., 2013; Platanias, 2005). We previously reported that Ly6C expression is 

T-bet-dependent in vivo during toxoplasmosis (Harms Pritchard et al., 2015), but culture 

of T-bet-/- T cells demonstrated that T-bet is not required for IL-27-mediated induction of 

Ly6C and Sca-1 in vitro (Fig 2.S3A, B). These findings agree with an earlier study that 

found that stimulation with anti-CD3/28 antibodies overcomes the need for T-bet in the 

induction of Ly6C (Sullivan et al., 2003). A single experiment using T cells from 

STAT3fl/fl x CD4-Cre mice suggested that STAT3 is not required for IL-27-mediated 

expression of Ly6C or Sca-1 on CD4+ or CD8+ T cells (Fig 2.S3C, D). In contrast, when 

naïve CD8+ Ly6C–Sca-1– T cells from STAT1-/- mice were given TCR stimulation in the 

presence of IL-27 or IFN-g, the induction of Ly6C was found to be almost entirely 

STAT1-dependent (Fig 2.3A), as was the induction of Sca-1 (Fig 2.3B). However, the 

type I IFN-mediated induction of Ly6C and Sca-1 was not STAT1-dependent in this 

system (Fig 2.3A, B). Similar results were seen for CD4+ T cells (Fig 2.3C, D). These 

results demonstrate a key role for STAT1 in IL-27 and IFN-g-mediated induction of 

Ly6C and Sca-1. 
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TGF-b antagonizes Ly6C and Sca-1 expression 

While multiple cytokines promote expression of Ly6C and Sca-1, this screening 

process revealed that TGF-b was a potent inhibitor of the expression of these molecules. 

The addition of TGF-b reduced IL-27-mediated expression of Ly6C on CD4+ T cells (Fig 

2.4A, C) and CD8+ T cells (Fig 2.4B, C), which is similar to results from a previous study 

that used P14 cells in the context of LCMV infection (Casey et al., 2012). Addition of 

TGF-b also limited proliferation of CD4+ and CD8+ T cells, as illustrated by the reduced 

dilution of CFSE (Fig 2.4A, B, D, E). This was true in the presence and absence of IL-27 

and is consistent with the ability of TGF-b to limit the proliferation and differentiation of 

naïve T cells into terminally-differentiated effector cells (Gorelik and Flavell, 2002). 

Addition of TGF-b also reduced TCR-mediated induction of Sca-1 on CD4+ T cells (Fig 

2.4D, F) and on CD8+ T cells (Fig 2.4E, F), but did not affect the expression of Sca-1 in 

the presence of IL-27. The relatively modest effect that TGF-b has on IL-27-mediated 

expression of Sca-1 is consistent with the data in earlier figures that Sca-1 is more 

robustly expressed than Ly6C, and also indicates that the inhibitory effects of TGF-b is 

most closely associated with reduced TCR signaling.  

 

Analysis of Ly6C and Sca-1 expression on diverse T cell populations  

Ly6C has been used to identify terminally-differentiated effector CD4+ T cells 

during infection (Hu et al., 2015; Marshall et al., 2011; Walunas et al., 1995), but its 

expression during homeostasis is not well described. To determine which T cell 
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populations express Ly6C under homeostatic conditions, a survey of uninfected SPF mice 

was conducted. The expression of high levels of CD44 was used to identify antigen-

experienced cells (Budd et al., 1987) and CD62L was used to identify cells that home to 

lymph nodes, which are primarily naïve and central memory cells (Lefrancois, 2006). In 

this setting, 20% of naïve (CD62L+CD44lo) and 10% of memory (CD62L+CD44hi) CD4+ 

T cells expressed Ly6C and only 10% of CD4+ T cells with an effector phenotype 

(CD62L–CD44hi) were Ly6C+ (Fig 2.5A). For CD8+ T cells, 20% of naïve 

(CD44loCD62L+) CD8+ T cells expressed Ly6C, while approximately 30% of 

CD44hiCD62L– CD8s and 90% of CD44hiCD62L+ cells expressed Ly6C. Thus, Ly6C 

expression was concentrated on the antigen-experienced cells, but further subsetting 

based on T cell expression of CD25, KLRG1, CD127, CD69 or CD49d indicated that 

Ly6C expression is not restricted to a particular effector/memory T cell population (data 

not shown). However, it is notable that in this survey, the majority of CD122+ CD8+ T 

cells expressed Ly6C, regardless of their expression of CD62L and CD44 (Fig 2.S4). 

CD122 is the beta subunit of the IL-2 and IL-15 receptors and along with CD44 and 

Ly6C, is upregulated on T cells undergoing homeostatic proliferation (Cho et al., 2000; 

Goldrath et al., 2000; Murali-Krishna and Ahmed, 2000).  

When a similar survey was performed to assess the expression of Sca-1 on naïve, 

effector, and memory T cells in SPF mice, 20% of naïve (CD44loCD62L+) CD4+ T cells 

expressed Sca-1, while 80% of CD44hiCD62L– effector CD4+ T cells were Sca-1+ (Fig 

2.5B). Similarly, minimal Sca-1 expression was seen in CD44loCD62L+ CD8+ T cells, 

while the highest Sca-1 expression by CD8+ T cells (15%) was seen in the 

CD44hiCD62L– population (Fig 2.5B). These findings indicate that Sca-1 was enriched 
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on CD44hi CD4+ and CD8+ T cells, but in this survey was not exclusively expressed by 

any particular effector/memory population examined. 

 

Ly6C and Sca-1 are upregulated on pathogen-specific T cells during toxoplasmosis 

The above survey utilized established surface markers to distinguish antigen-

experienced and naïve cells, but in this setting, it is difficult to determine how expression 

of Ly6C or Sca-1 correlates with previous antigen exposure. To examine an effector 

population with a well-defined history, mice were infected with T. gondii and the 

expression of Ly6C and Sca-1 on parasite-specific T cells during acute toxoplasmosis 

was examined. Mice were infected intraperitoneally with T. gondii and spleens and 

peritoneal exudate cells (PECs) were harvested 10 days post-infection. Toxoplasma-

specific T cells were identified by staining with parasite-specific MHCI or MHCII 

tetramers in combination with high expression of LFA-1 (Dupont et al., 2014). At day 10 

post infection, the majority of parasite-specific CD4+ and CD8+ T cells in the peritoneum 

expressed Ly6C, demonstrating that toxoplasmosis promotes Ly6C expression by 

parasite-specific T cells (Fig 2.6A). 

A recent study (Chu et al., 2016) proposed that during toxoplasmosis, minimally-

differentiated memory CD8+ T cells that are CXCR3+KLRG1– give rise to an 

intermediate CXCR3+KLRG1+ population that in turn downregulates CXCR3 when it 

differentiates into terminally-differentiated effector cells. Consistent with this previous 

report, at day 10 of infection, 20% of splenic parasite-specific CD8+ T cells were 

CXCR3+KLRG1–, 60% were CXCR3+KLRG1+ and less than 10% were CXCR3–

KLRG1+. This analysis was extended to CD4+ T cells, in which 20% were 
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CXCR3+KLRG1–, 30% were CXCR3+KLRG1+ and 30% were CXCR3–KLRG1+ (Fig 

2.6B). 70% of parasite-specific CD4+ T cells expressed Ly6C (Fig 6A). When the cells 

were subsetted by expression of CXCR3 and KLRG1, Ly6C was expressed by 60% of 

CXCR3+KLRG1–, 75% of CXCR3+KLRG1+, and 70% of CXCR3+KLRG1– parasite-

specific CD4+ T cells. Similar results were seen for CD8+ T cells, as Ly6C was expressed 

by 90% of CXCR3+KLRG1–, 95% of CXCR3+KLRG1+, and 85% of CXCR3–KLRG1+ 

parasite-specific CD8+ T cells. Therefore, Ly6C expression on these individual subsets 

was not exclusive to the KLRG1+CXCR3– population for CD4+ or CD8+ T cells, 

demonstrating that Ly6C and KLRG1 are not interchangeable markers of differentiation 

(Fig 2.6C).  

When a similar analysis was performed for Sca-1, 85% of parasite-specific CD4+ 

and CD8+ T cells expressed Sca-1 (Fig 2.6D). When these cells were subsetted by their 

expression of KLRG1 and CXCR3, approximately 90% of the CXCR3+KLRG1– and 

CXCR3+KLRG1+ populations expressed Sca-1 in both CD4+ and CD8+ T cells. 70% of 

CXCR3–KLRG1+ CD4+ T cells and 60% of CXCR3–KLRG1+ CD8+ T cells expressed 

Ly6C, indicating that Sca-1 is present at a lower frequency on more highly differentiated 

cells. Nonetheless, Sca-1 is more widely expressed during toxoplasmosis than KLRG1 or 

CXCR3, and does not enable the ready differentiation of distinct antigen-experienced T 

cell populations in this experimental system. 

 

IL-27 and IFN-g promote T cell expression of Ly6C during toxoplasmosis 
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IL-27 and IFN-g are key cytokines during toxoplasmosis (Suzuki et al., 1988; 

Villarino et al., 2003) and are two of the strongest inducers of Ly6C and Sca-1 in vitro. 

To determine the contribution of IL-27 and IFN-g signaling to the expression of Ly6C 

and Sca-1 during infection, WT and IL-27 receptor (Il27ra)-deficient mice were infected 

with T. gondii. Mice were also treated with an isotype antibody or a neutralizing anti-

IFN-g antibody on day 3 and 6 of infection. When peritoneal tetramer-positive T cells 

were examined at day 9 of infection, the percentage of parasite-specific CD4+ T cells 

expressing Ly6C was substantially lower in Il27ra-deficient mice than in WT mice. 

Ly6C levels were significantly reduced in CD8+ T cells as well, providing evidence that 

IL-27 promotes the Ly6C+ population in this system (Fig 2.7A, B). Additionally, 

neutralizing IFN-g resulted in less Ly6C expression by CD4+ T cells but in Il27ra-

deficient mice did not result in a complete ablation of Ly6C expression. In contrast, the 

absence of the IL-27 receptor did not limit the expression of Sca-1 by parasite-specific T 

cells. Surprisingly, the blockade of IFN-g increased Sca-1 expression in both WT and 

Il27ra-/- mice, possibly because the absence of IFN-g leads to a marked increase in 

parasite replication and antigen load that might lead to increased T cell activation. 

Together, these studies establish that IL-27 and IFN-g are involved in the regulation of 

Ly6C expression during toxoplasmosis, but in this setting they were not required for 

maximal Sca-1 expression. 
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Discussion 

Studies to understand the functions of Ly6 molecules have been performed since 

the 1970s, but questions still remain about their functions and the factors that influence 

their expression (Shevach and Korty, 1989). The association of Ly6C expression with 

short-lived effector T cells has been reported in multiple experimental systems (Hu et al., 

2015; Marshall et al., 2011) while the combination of Sca-1, CD122 and Bcl-2 can be 

used to identify CD8+ stem cell memory (Tscm) cells (Gattinoni et al., 2011; Gattinoni et 

al., 2009; Zhang et al., 2005). A previous study showed that treatment of mice with IL-27 

promotes the development of a memory precursor population of tumor antigen-specific 

CD8+ T cells, characterized by high expression of Bcl-6, SOCS3, and Sca-1 (Liu et al., 

2013). However, the expression patterns of Ly6C and Sca-1 have not been compared and 

there is a limited appreciation of how cytokine and TCR-mediated signals are integrated 

to promote their expression. The in vitro experiments performed here utilized a defined 

population of naïve Ly6C– CD4+ and CD8+ T cells to address any concerns that the 

stimuli used here might preferentially expand a Ly6C+ population. This approach showed 

quite modest effects of IL-27, the interferons, or TCR alone on Ly6C expression, but the 

combination of cytokine plus TCR synergistically promoted the expression of Ly6C by a 

subset of activated CD4+ and CD8+ T cells. That this activity was STAT1-dependent 

correlated well with the range of cytokines that could modulate Ly6C, while cytokines 

that predominantly utilize STAT3, STAT4 or STAT6 had minimal effects. TGF-b was 

the only signal identified that suppressed the induction of Ly6C and Sca-1, which 
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correlates with its ability to suppress T cell activation and proliferation (Gorelik and 

Flavell, 2000; Kehrl et al., 1986).  

Since Ly6C and Sca-1 have been used as markers to identify T cells at different 

stages of differentiation, it was notable that the expression of these two molecules was 

upregulated by the same cytokine signals, in the same cells. Sca-1 was potently induced 

by either TCR stimulation or cytokine signaling and consequently appeared to be more 

widely expressed than Ly6C. Indeed, a survey to determine if either of these molecules 

could be associated with different effector or memory populations found that it was 

difficult to link them to memory-like or terminally-differentiated effector cells based on 

differential expression of KLRG1 and CXCR3. The ability of these cytokines to induce 

Ly6C and most notably Sca-1 in the absence of TCR stimulation suggest the need for 

caution in using these molecules alone to identify Ag-experienced populations. 

  Infection with T. gondii is dominated by the generation of parasite-specific CD4+ 

and CD8+ T cells that produce IFN-g, but this is also a system in which endogenous IL-27 

is required to limit the inflammatory response (Villarino et al., 2003). While the loss of 

either cytokine signal during infection reduces Ly6C expression, it was relevant to note 

that in the setting of IL-27R-deficiency, there are markedly elevated levels of IFN-g 

(Villarino et al., 2003), but IFN-g blockade did not result in a further reduction in the 

numbers of parasite-specific effectors that expressed Ly6C. The observation that IL-27 

was more important in driving Ly6C in CD4+ T cells than in CD8+ T cells during 

toxoplasmosis is consistent with the larger effect of interferons in promoting Ly6C in 



34 
 

CD8+ T cells seen in vitro. Nevertheless, the in vivo studies presented here indicate that 

IL-27 and IFN-g are not redundant in promoting Ly6C expression during toxoplasmosis. 

While the section above focuses on the regulation of Ly6C, the in vitro and in 

vivo studies identified common pathways that influence expression of Ly6C and Sca-1, 

but also highlighted some notable differences. Again, the ability to utilize a defined, 

naïve, Sca-1– starting population helped establish the profound impact of TCR 

stimulation alone or in combination with cytokines on Sca-1 expression. As seen for 

Ly6C, not every cytokine was a potent inducer of Sca-1 and those that activated STAT1 

seemed dominant, although the use of STAT1-deficient cells does indicate the presence 

of additional pathways that are involved in this process. Potential STAT1-independent 

pathways relevant to the ability of IL-27 and type I IFNs include p38 MAPK and ERK1/2 

(Hall et al., 2012b; Platanias, 2005).  However, unlike Ly6C, Sca-1 expression was not 

attenuated by the loss of IL-27 or IFN-g in in vivo studies. This contrasts with an earlier 

report using a model of colitis, in which in vivo administration of an AAV vector 

encoding IL-27 was associated with reduced inflammation and increased expression of 

Sca-1 by CD4+ T cells (Zhu et al., 2016). This contradiction likely reflects the complexity 

in trying to distinguish a role for endogenous IL-27 or IFN-g in a systemic infection, in 

which many signals including TCR and other cytokines readily promote Sca-1 

expression, versus a dominant signal provided by overexpression of IL-27. 

There have been few studies that have directly addressed the function of Ly6C 

and Sca-1 in the immune response. Ly6C has been proposed to be involved in T cell 

homing to secondary lymphoid organs, possibly through an association with LFA-1 
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(Hanninen et al., 1997; Hanninen et al., 2011; Jaakkola et al., 2003), and ImageStream 

analysis of T. gondii-specific effectors shows co-localization of Ly6C and CD11a (a 

subunit of LFA-1) on the surface of these cells (Harms Pritchard et al., 2015). IL-27 has 

been proposed to modulate T cell homing through upregulation of ICAM-1 and selectin 

ligands on conventional CD4+ T cells (Ebel et al., 2015; Hall et al., 2012a; Owaki et al., 

2005), as well as CXCR3 on Tregs (Hall et al., 2012a). Thus, upregulation of Ly6C may 

be an additional mechanism by which IL-27 and/or interferons modulate T cell 

trafficking. There is also a literature that suggests a regulatory role for Ly6C and Sca-1 in 

limiting the T cell response. A mutation in the promoter of Ly6C reduces its expression 

in NOD, NZB/W and ST mice, which are strains that spontaneously develop autoimmune 

diseases (Philbrick et al., 1990). Moreover, in the context of TCR stimulation, antibodies 

that crosslink Ly6C or Sca-1 on the surface of T cells limit their ability to produce IL-2 

and proliferate (Codias et al., 1992; Fleming and Malek, 1994; Yamanouchi et al., 1998). 

Furthermore, in mice genetically engineered to lack Sca-1 expression, T cells exhibit 

enhanced proliferation in response to TCR stimulation (Stanford et al., 1997). Additional 

evidence for a regulatory function of Sca-1 is the finding that transgenic overexpression 

of Sca-1 limits T cell proliferation (Codias et al., 1992; Fleming and Malek, 1994; 

Henderson et al., 2002) and suppresses lymphoproliferation and autoimmunity in lpr/lpr 

mice (Henderson et al., 2002). Together, these findings suggest that Ly6C and/or Sca-1 

may have a role in limiting T cell responses. A suppressive function for Ly6C and Sca-1 

would complement reports that IL-27 promotes inhibitory pathways including IL-10 and 

LAG-3 (Awasthi et al., 2007; Do et al., 2015; Hirahara et al., 2012; Karakhanova et al., 

2011; Mascanfroni et al., 2013; Moon et al., 2013; Stumhofer et al., 2007), and that IL-27 
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and IFN-g promote expression of PD-L1 (Bellucci et al., 2015; Hirahara et al., 2012; Ke 

et al., 2010). Additional studies are needed to determine whether Ly6C and Sca-1 

primarily function to promote T cell activation and migration, or if any of the shared 

immune-regulatory effects of IL-27 and the IFNs are mediated through the induction of 

Ly6C and/or Sca-1. 



37 
 

Figures 

 

Figure 2.1  IL-27 induces Ly6C and Sca-1 on CD4+ and CD8+ T cells. Naive Ly6C–

Sca-1– CD4+ or CD8+ T cells were sorted and stained with CFSE before a 3 day culture in 

the presence or absence of TCR stimulation and/or IL-27.  A-B. Induction of Ly6C (A) or 

Sca-1 (B) on naive CD4+ or CD8+ T cells. Left, representative flow cytometry plots. 

Right, bar charts summarize the results of four experiments. Error bars indicate SEM. * p 

< 0.05, ** p < 0.01, *** p < 0.001 
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Figure 2.2  Ly6C expression is modulated by multiple cytokines in vitro. Naive Ly6C–

Sca-1– CD4+ or CD8+ T cells were sorted and stained with CFSE before a 3 day culture in 

the presence of TCR stimulation and Type I IFN, IL-6, IL-12, IL-4, IL-10, IL-7, or IL-15.  

A-B. Expression of Ly6C by CD4+ (A) and CD8+ (B) T cells. C. Expression of Sca-1 by 

CD4+ T cells by a panel of cytokines. Left, representative plots for select cytokines. 

Right, bar charts summarize the results of four experiments. Error bars indicate SEM. * p 

< 0.05, ** p < 0.01, *** p < 0.001 
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Figure 2.3  Signaling pathways involved in cytokine-mediated Ly6C and Sca-1 

expression in vitro. WT or STAT1-/- splenocytes were enriched for T cells by negative-

selection bead enrichment before a 3 day culture in the presence or absence of TCR 

stimulation and/or IL-27, IFN-g or Type I IFN. A, B. Expression of Ly6C (A) or Sca-1 

(B) by WT and STAT1-/- CD8+ T cells. C, D. Expression of Ly6C (C) or Sca-1 (D) by 

WT and STAT1-/- CD4+ T cells. Left, representative plots. Right, bar charts summarize 

the results of three experiments. Error bars indicate SEM. * p < 0.05, ** p < 0.01, *** p < 

0.001 

 



42 
 

 

 

D

α-
CD

3/
28

α-
CD

3/
28

+ T
GF

β

A

α-
CD

3/
28

α-
CD

3/
28

+ T
GF

β

IL-
27

E
α-

CD
3/

28

α-
CD

3/
28

+ T
GF

β

B

CF
SE

Ly6C

α-
CD

3/
28

α-
CD

3/
28

+ T
GF

β

CF
SE

Ly6C

CF
SE

Sca-1

CF
SE

Sca-1

IL-
27

IL-
27

IL-
27

CD
4+

CD
8+

0
10

2
10

3
10

4
10

5

0

10
3

10
4

10
5

CF
SE

Ly6C

0.
71
9

0
10

2
10

3
10

4
10

5

0

10
3

10
4

10
5

CF
SE

Ly6C

8.
22

0
10

2
10

3
10

4
10

5

0

10
3

10
4

10
5

CF
SE

Ly6C

1.
65

0
10

2
10

3
10

4
10

5

0

10
3

10
4

10
5

CF
SE

Ly6C

54
.8

0
10

2
10

3
10

4
10

5

0
10

2

10
3

10
4

10
5

CF
SE

Sca-1

37
.5

0
10

2
10

3
10

4
10

5

0
10

2

10
3

10
4

10
5

CF
SE

Sca-1
99
.7

0
10

2
10

3
10

4
10

5

0
10

2

10
3

10
4

10
5

CF
SE

Sca-1

3.
11

0
10

2
10

3
10

4
10

5

0
10

2

10
3

10
4

10
5

CF
SE

Sca-1

81
.7

0
10

2
10

3
10

4
10

5

0

10
3

10
4

10
5

CF
SE

Ly6C

9.
31

0
10

2
10

3
10

4
10

5

0

10
3

10
4

10
5

CF
SE

Ly6C

22
.2

0
10

2
10

3
10

4
10

5

0

10
3

10
4

10
5

CF
SE

Ly6C

0.
53
1

0
10

2
10

3
10

4
10

5

0

10
3

10
4

10
5

CF
SE

Ly6C

9.
43

0
10

2
10

3
10

4
10

5

0
10

2

10
3

10
4

10
5

CF
SE

Sca-1

72
.8

0
10

2
10

3
10

4
10

5

0
10

2

10
3

10
4

10
5

CF
SE

Sca-1

96
.3

0
10

2
10

3
10

4
10

5

0
10

2

10
3

10
4

10
5

CF
SE

Sca-1

25

0
10

2
10

3
10

4
10

5

0
10

2

10
3

10
4

10
5

CF
SE

Sca-1

92
.1

Co
nt

ro
l

Co
nt

ro
l

Co
nt

ro
l

Co
nt

ro
l

% Ly6C+

Contro
l

IL-2
7

Contro
l

IL-2
7

CD
4+

CD
8+

M
ed

M
ed

 + 
TG

F-
β

M
ed

M
ed

 + 
TG

F-
β

Contro
l

IL-2
7

Contro
l

IL-2
7

CD
4+

CD
8+

% Sca-1+

FC

Fi
gu

re
 4

CD4 T
CR

CD4 T
CR + 

IL
-2

7 CD8 T
CR

CD8 T
CR + 

IL
-2

7

0204060

TG
Fb

 g
ro

up
ed

 +
TC

R
 L

y6
C

 n
ai

ve

M
ed

M
ed

 +
 T

G
Fb

C
D

4 
TC

R
:

C
D

4 
TC

R
+I

L-
27

:
C

D
8 

TC
R

:
C

D
8 

TC
R

+I
L-

27
:0.

00
84

97
24

78
62

98
5

0.
00

92
69

70
90

06
25

2

CD4 T
CR

CD4 T
CR + 

IL
-2

7 CD8 T
CR

CD8 T
CR + 

IL
-2

7

02040608010
0

TG
Fb

 g
ro

up
ed

 +
TC

R
 S

ca
-1

 n
ai

ve

M
ed

M
ed

 +
 T

G
Fb

*
*

*
ns

ns
**

ns
*



43 
 

Figure 2.4  TGFβ inhibits induction of Ly6C and Sca-1. Naive Ly6C–Sca-1– CD4+ or 

CD8+ T cells were sorted and stained with CFSE before a 3 day culture with TCR 

stimulation in the presence or absence of IL-27 and/or TGFβ.  A, B. Expression of Ly6C 

by CD4+ (A) and CD8+ (B) T cells after culture. C, D. Expression of Sca-1 by CD4+ (C) 

and CD8+ (D) T cells after culture. Left, representative plots. Right, bar charts summarize 

the results of four experiments. Error bars indicate SEM. * p < 0.05, ** p < 0.01, *** p < 

0.001 
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Figure 2.5  Expression of Ly6C and Sca-1 by naïve, effector and memory 

populations. Splenocytes from WT C57BL/6 mice were harvested and analyzed for 

expression of Ly6C and Sca-1. A. Expression of Ly6C by CD4+ (top) and CD8+ (bottom) 

T cell populations. B. Expression of Sca-1 by CD4+ (top) and CD8+ (bottom) T cell 

populations. Left, representative plots. Right, bar charts summarize the results of three 

experiments. Error bars indicate SEM. * p < 0.05, ** p < 0.01 
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Figure 2.6  Toxoplasmosis upregulates Ly6C and Sca-1 in T cells. WT C57BL/6 mice 

were infected with 20 T. gondii cysts intraperitoneally. Splenocytes were harvested and 

analyzed at day 9 of infection. T. gondii-specific T cells were identified by MHCI and 

MHCII tetramers. A, D. Expression of Ly6C (A) or Sca-1 (D) by CD4+ and CD8+ T cells. 

B. Expression of CXCR3 and KLRG1 by T. gondii-specific CD4+ and CD8+ T cells. C, 

E. Expression of Ly6C (C) or Sca-1 (E) by different populations of T cells, distinguished 

by expression of CXCR3 and KLRG1. Left, representative plots. Right, bar charts 

summarize results from one of two experiments, n = 3-4 mice per experiment. Error bars 

indicate SEM. * p < 0.05, ** p < 0.01 
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Figure 2.7  IL-27 and IFN-g promote expression of Ly6C in vivo during 

toxoplasmosis. WT or Il27ra-/- mice were infected with 20 T. gondii cysts 

intraperitoneally and a subset of mice were treated with anti-IFN-g antibody on day 3 and 

6 of infection. Peritoneal cells were harvested 9 days after infection and T. gondii-

specific cells were identified using MHCI and MHCII tetramers. Ly6C expression by 

tetramer+ CD4+ (A) or CD8+ (B) T cells was examined. Sca-1 expression by tetramer+ 

CD4+ (C) or CD8+ (D) T cells was also examined. Left, representative plots with MFI 

indicated by vertical italic numbers. Right, bar charts show representative results from 

one of two experiments, n = 2-4 mice per group, per experiment. Error bars indicate 

SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Supplementary Figures 

 

 

Figure 2.S1  IL-27 and TCR stimulation promote Ly6C+ and Sca-1+ populations in 

bulk T cell cultures. Spleens and lymph nodes (axillary, brachial, and inguinal) were 

harvested and enriched for T cells using an R&D T cell column and then separated into 

CD4+ and CD4– (primarily CD8+) T cells using the Miltenyi CD4+ T cell enrichment kit. 

The cells were then cultured for 3 days in the presence or absence of anti-CD3/28 

stimulation and/or IL-27. A-B. Expression of Ly6C (A) and Sca-1 (B) on CD4+ and CD8+ 

T cells after culture. Left, representative flow cytometry plots. Right, bar graphs 

summarize the results of three experiments. Error bars indicate SEM. * p < 0.05, ** p < 

0.01  
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Fig 2.S2  IL-2 does not limit Ly6C and Sca-1 induction on T cells. Naive Ly6C–Sca-

1– CD4+ and CD8+ T cells were sorted and stained with CFSE before a 3 day culture in 

the presence or absence of anti-CD3/28 stimulation and/or IL-27 and/or IL-2. A-B. 

Expression of Ly6C (A) and Sca-1 (B) on CD4+ T cells after culture.  
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Fig 2.S3  Requirement for T-bet and STAT3 in Ly6C and Sca-1 expression in vitro. 

(A, B) Spleens and lymph nodes (axillary, brachial, and inguinal) from WT or T-bet-/- 

mice were harvested, enriched for T cells using an R&D T cell column and then 

separated into CD4+ (A) and CD4– (primarily CD8+) (B) T cells using the Miltenyi 

CD4+ T cell enrichment kit. The cells were then cultured for 3 days in the presence or 

absence of anti-CD3/28 stimulation and/or IL-27. (C, D) Spleens from STAT3fl/fl x 

CD4-Cre mice or littermate controls were harvested, enriched for T cells using an R&D T 

cell column and then separated into CD4+ (C) and CD4– (primarily CD8+) (D) T cells 

using the Miltenyi CD4+ T cell enrichment kit. The cells were then cultured for 3 days in 

the presence or absence of anti-CD3/28 stimulation and/or IL-27.  
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Fig 2.S4. Expression of Ly6C and Sca-1 by naïve, effector and memory populations. 

Splenocytes from WT C57BL/6 mice were harvested and analyzed for expression of 

Ly6C and Sca-1. CD122+ CD8+ T cells express high levels of Ly6C.  
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Chapter 3: IL-27 and TCR stimulation promote T cell 
expression of multiple inhibitory receptors 

Abstract 

 Inhibitory receptors (IR) are a diverse group of cell surface molecules that 

modulate T cell function in response to inflammatory stimuli, but there are gaps in our 

knowledge of the cell extrinsic factors that regulate their expression during infection. The 

present study found that in vitro, IL-27 alone induced expression of PD-L1 but 

synergized with TCR stimulation to enhance LAG-3, CTLA-4, and TIGIT and this 

activity was STAT1-dependent. Other cytokines, most notably IL-12 and type I IFN 

alone could also promote PD-L1, but their impact on TCR-mediated effects was less 

apparent. In vivo, infection with Toxoplasma gondii resulted in parasite-specific effector 

T cells present in the spleen and at sites of infection that expressed high levels of IR. The 

absence of IL-27 did not affect IR expression by parasite-specific CD4+ and CD8+ 

effector T cells in the spleen, but at local sites of infection was required for maximal PD-

L1, LAG-3, CTLA-4, and TIGIT expression. These findings indicate a role for IL-27 in 

bystander and pathogen-specific T cell expression of multiple IR at local sites of 

inflammation. 

Introduction 

 Inhibitory receptors (IR) are a diverse group of cell surface molecules expressed 

by T cells and other immune populations that are defined functionally, by their ability to 

limit the immune response (Chen and Flies, 2013). These diverse receptors are spread 
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across the immunoglobulin, TNF and Ly6 families of proteins and limit immune function 

by a variety of mechanisms. Numerous studies have demonstrated the importance of 

inhibitory receptors such as PD-L1, PD-1, LAG-3, and CTLA-4 to limit T cell function in 

the context of chronic infection, anti-tumor immunity, and other inflammatory responses 

(Blackburn et al., 2009; Odorizzi and Wherry, 2012; Pardoll, 2012). In the setting of 

parasitic infection, blockade of these molecules has been used to augment CD8+ and 

CD4+ T cell responses during leishmaniasis, toxoplasmosis, and malaria, leading to 

improved cytokine production, cytotoxicity, and control of parasite burden (Bhadra et al., 

2011; Butler et al., 2011; Murphy et al., 1998).  This strategy has also been used to 

reinvigorate the CD8+ T cell response and promote anti-tumor immunity, leading to 

durable reductions in tumor burden in model systems and clinical disease (Pardoll, 2012). 

 While there are many examples that illustrate the impact of inhibitory receptors 

on effector T cell responses, there remains a knowledge gap about the factors that 

influence T cell expression of these molecules during infection. Studies of T cell 

exhaustion have demonstrated that repeated stimulation through the TCR is one 

mechanism that induces expression of these IR by T cells (Agata et al., 1996, Fourcade et 

al., 2010, Golden-Mason et al., 2009, Huang et al., 2004, Petrovas et al., 2007). In vitro 

studies have found that during T cell activation, IFN-β promotes TIM-3 expression by 

murine CD4+ T cells (Boivin et al., 2015), and that IL-2, IL-7, IL-15, and IL-21 promote 

PD-1 and PD-L1 on human CD4+ and CD8+ T cells (Kinter et al., 2008). There remain 

significant gaps in our understanding of which cytokines affect the ability of different T 

cell subsets to express different combinations of IR and the significance of these 

pathways in vivo, during infection. 
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 IL-27 is an IL-12-family cytokine that signals through STAT1 and STAT3 and 

can limit the intensity and duration of the T cell response in a variety of infectious and 

inflammatory conditions (Yoshida and Hunter, 2015). For example, in parasitic systems, 

IL-27 limits Th1, Th2, and Th17 responses by promoting production of IL-10 and 

differentiation of Th1-like Tregs (Anderson et al., 2009; Artis et al., 2004b; Bancroft et 

al., 2004; Hall et al., 2012a; Hamano et al., 2003; Stumhofer et al., 2006; Stumhofer et 

al., 2007; Villarino et al., 2003). Consistent with its ability to promote Treg activity, IL-

27 upregulates LAG-3 on Tregs in vitro and has been implicated in the regulation of 

LAG-3 in a murine model of colitis (Do et al., 2015).  For conventional CD4+ and CD8+ 

T cells, IL-27 has been found to promote expression of PD-L1, LAG-3, TIM-3, Ly6C, 

and Sca-1 in vitro (DeLong et al., 2018; Hall et al., 2012a; Hirahara et al., 2012; Liu et 

al., 2013; Ma et al., 2017; Zhu et al., 2015; Zhu et al., 2016). It remains unclear if IL-27 

or other cytokines have a broad ability to promote effector T cell expression of multiple 

IR such as LAG-3, PD-1, TIGIT, and CTLA-4, and how TCR and cytokine signals are 

integrated to modulate IR expression during infection. 

 Previous studies from this laboratory examining the transcriptome of Treg cells 

stimulated in the presence of IL-27 highlighted its ability to enhance expression of 

several IR (Hall et al., 2012a). To distinguish whether this activity was broadly relevant 

to different T cell subsets, in vitro, studies using Treg cells and naive CD4+ and CD8+ T 

cells confirmed that IL-27 alone could induce PD-L1 expression but its effects on LAG-

3, CTLA-4, and TIGIT were TCR-dependent and these effects were STAT1-dependent. 

Other cytokines, notably IFN-γ, type I IFN and IL-12 also upregulated expression of 

some inhibitory receptors but were not as potent as IL-27. To assess the impact of 
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endogenous IL-27 on these pathways, IR expression was examined in IL-27p28-deficient 

mice during acute toxoplasmosis. This infection resulted in the generation of effector T 

cells that expressed multiple inhibitory receptors, but neither IL-27 nor STAT1 was 

required for their expression in the spleen. However, IL-27 and STAT1 were required for 

optimal IR expression by parasite-specific T cells at sites of parasite replication and 

inflammation. Together, these findings highlight the ability of IL-27 to upregulate 

multiple IR during T cell priming and establish a role for endogenous IL-27 in promoting 

T cell expression of multiple IR in peripheral sites of infection during toxoplasmosis. 

Results 

IL-27 promotes expression of inhibitory receptors by T cells in vitro  

 Previous studies from this laboratory using transcriptional profiling of Treg cells 

stimulated with IL-27 highlighted its ability to enhance transcripts of a variety of IR (Hall 

et al., 2012a). To distinguish whether this activity was broadly relevant to different T cell 

subsets, naïve (CD44loCD62L+Ly6C-Sca1-) CD4+ or CD8+ T cells were sort-purified, 

stained with CFSE to assess proliferation, and cultured with or without anti-CD3 and 

anti-CD28 antibody stimulation in the presence or absence of IL-27. IL-27 alone 

upregulated PD-L1 on CD4+ T cells while IL-27 combined with TCR stimulation 

synergized to upregulate LAG-3, TIGIT, and TIM-3 (Fig 3.1). IL-27 did not increase 

activation-induced expression of CTLA-4 or PD-1 (Fig 3.1 and data not shown). Similar 

results were seen with FoxP3+ regulatory T cells (Fig 3.S1). Similarly, for naive CD8+ T 

cells, IL-27 induced expression of PD-L1 in the absence of anti-CD3/28 simulation and 

further enhanced anti-CD3/28-induced expression of LAG-3, CTLA-4, TIGIT, and TIM-



59 
 

3 but not PD-1 (Fig 3.2 and data not shown). The most prominent and robust effects of 

IL-27 in this assay were on conventional CD4+ and CD8+ T cell and their expression of 

PD-L1, LAG-3, and CTLA-4, while induction of TIGIT and TIM-3 was modest and there 

was no impact on PD-1. In the absence of TCR stimulation, STAT1 was required for IL-

27-mediated expression of PD-L1 in CD8+ T cells (Fig 3.S3). In the presence of TCR 

stimulation, STAT1 was found to contribute to the expression of LAG-3, CTLA-4, 

TIGIT, and TIM-3. These data suggest a key role for STAT1 in promoting IL-27-

mediated inhibitory receptor expression. 

 Because of the observed synergy between anti-CD3/28 and IL-27 stimulation, 

studies were performed to assess whether varying the strength of the TCR signal 

impacted IR expression. To examine this, naïve CD8+ T cells were cultured in the 

presence of soluble anti-CD28 with increasing concentrations of plate-bound anti-CD3. 

Cells were then assessed for expression of PD-L1, LAG-3, and CTLA-4. Stimulation 

with 0.1 �g/mL anti-CD3 was sub-optimal and did not result in T cell proliferation or 

inhibitory receptor expression (Fig 3.3A-C). 1�g/mL anti-CD3 upregulated expression of 

each inhibitory receptor, as shown in Fig 1. Increasing anti-CD3 to 10 �g/mL did not 

further increase expression of PD-L1 (Fig 3.3A, open circles), but there was enhanced 

expression of LAG-3 and CTLA-4 (Fig 3.3B-C), indicating that the expression of these 

IR correlates with the strength of TCR signal. In the presence of IL-27, three different 

patterns of expression were observed. As expected, IL-27 induced PD-L1 in T cells that 

had not received anti-CD3 stimulation, but it is noteworthy that in the context of TCR 

stimulation, PD-L1 expression is lowest in cells that had most diluted CFSE (Fig 3.3A). 

In contrast, IL-27 upregulated expression of LAG-3 at both 1�g/mL and 10 �g/mL of 
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anti-CD3 stimulation. A third pattern was seen for CTLA-4: IL-27 upregulated CTLA-4 

at 1 �g/mL anti-CD3, but at 10 �g/mL anti-CD3, IL-27 was not required for maximal 

CTLA-4 expression. Therefore, the ability of IL-27 to promote IR expression varies 

depending on the level of TCR stimulation and the inhibitory receptor in question. 

 

Coexpression of inhibitory receptors in vitro 

 The finding that IL-27 upregulates expression of inhibitory receptors on some but 

not all cells in vitro led us to examine whether inhibitory receptor expression is 

stochastically upregulated across these cells, or if a subset of cells co-expresses a 

disproportionately high number of inhibitory receptors. To examine this, we first used the 

expression of each inhibitory receptor to calculate the amount of coexpression that would 

be predicted if the molecules were independently expressed (Fig 3.S2A). For example, if 

60% of the cells in a given sample express Protein A and 20% express Protein B, 12% of 

the cells (60% x 20%) will express both Protein A and Protein B if these proteins are 

independently regulated. We then used boolean analysis in Flowjo to determine the actual 

coexpression of these molecules in our samples. Cells cultured without IL-27 or α-

CD3/28 stimulation expressed few inhibitory receptors and had correspondingly low 

predicted inhibitory receptor coexpression (Fig 3.S2B, gray bars). Stimulation with α-

CD3/28 upregulates individual IR and IL-27 further augments this upregulation, leading 

to an increase in the predicted coexpression of these molecules (Fig 3.S2B, gray bars). 

However, we found that the actual coexpression of these molecules is much higher than 

would be predicted if these molecules were independently expressed (Fig 3.S2B, black 

bars). For example, in cells stimulated with anti-CD3/28 + IL-27, stochastic distribution 
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of inhibitory receptors would result in 6% of cells expressing all 6 inhibitory receptors, 

while in these cultures, 29% of cells were expressing all 6 inhibitory receptors. This 

analysis demonstrates that in this system, IR expression is not distributed stochastically 

among cells, but stimulation with TCR and IL-27 results in a disproportionate 

concentration of IR on a subset of cells and suggests that this process is coordinated. 

 

Multiple cytokines modulate inhibitory receptor expression in vitro 

 Given the impact of IL-27 on IR expression, a survey was performed to examine 

the ability of the related type I cytokines IFN-γ, type I IFN, IL-6 and IL-12 to modulate 

IR expression by naive CD8+ T cells. In the absence of anti-CD3/28 stimulation, IFN-γ, 

type I IFN, and IL-12 (but not the closely-related IL-6) upregulated PD-L1 expression 

similar to IL-27 in CD8+ T cells (Fig 3.4A). However, in the presence of anti-CD3/28 

stimulation, only IL-12 upregulated expression of LAG-3 in CD8+ T cells and none of the 

other cytokines had any discernible effect on expression of CTLA-4, TIGIT, TIM-3 or 

PD-1 (Fig 3.4B and data not shown). This screening process also revealed that in cells 

stimulated with anti-CD3/28, TGF-β limited expression of PD-L1 (Fig 3.4C).  Similarly, 

in cells stimulated with anti-CD3/28 in the presence of IL-27, TGF-β limited expression 

of LAG-3, CTLA-4, TIGIT, and TIM-3, but not PD-L1. As PD-L1 is the only inhibitory 

receptor in this panel induced by IL-27 in the absence of anti-CD3/28 stimulation, these 

findings are consistent with reports that suggest that TGF-β has a role in limiting TCR-

mediated signaling (Chen et al., 2003; Robinson and Gorham, 2007). 

 

IL-27 promotes expression of PD-L1, LAG-3, CTLA-4 and TIGIT during toxoplasmosis 
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 In the absence of IL-27, infection with T. gondii results in increased levels of T 

cell activation and high circulating levels of IFN-γ (Villarino et al., 2003; Villarino et al., 

2006). It was uncertain whether these aberrant T cell responses would be associated with 

increased expression of IR as overall indicators of T cell activation or if IL-27 would be 

required for IR expression. Therefore, to examine an effector population with a well-

defined history, mice were infected with T. gondii and inhibitory receptor expression was 

examined on parasite-specific T cells from the spleens and lungs 10-12 days post 

infection. T. gondii-specific T cells were identified by staining with MHCI or MHCII 

tetramers in combination with high expression of LFA-1 (Dupont et al., 2014). In 

uninfected mice (thin lines), splenic Tregs (Fig 3.5A), CD4+ T cells (Fig 3.5B) and CD8+ 

T cells (Fig 3.5C) expressed low levels of each of the inhibitory receptors examined with 

the exception of CTLA-4, which was basally expressed by Tregs in uninfected mice. At 

day 10 post infection, expression of PD-L1, LAG-3, CTLA-4, and TIGIT were 

upregulated by each of these T cell populations (Fig 3.5A-C, thick lines).  

 A recent study (Chu et al., 2016) proposed that during toxoplasmosis, minimally-

differentiated memory CD8+ T cells that are CXCR3+KLRG1– give rise to an 

intermediate CXCR3+KLRG1+ population that in turn downregulates CXCR3 when it 

differentiates into terminally-differentiated effector cells. At day 10 of infection, splenic 

CD8+ T cells were analyzed by their expression of KLRG1 and CXCR3 (Fig 3.5D). 

Inhibitory receptor expression was examined on these different populations and the 

highest inhibitory receptor expression was seen on the less-differentiated KLRG1-

CXCR3+ and the intermediate KLRG1+CXCR3+ cells. The highly-differentiated 

KLRG1+CXCR3- cells were consistently the population with the lowest expression of 
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inhibitory receptors (Fig 3.5E, dashed line). This finding indicates that during 

toxoplasmosis, inhibitory receptors are upregulated early after T cell priming, but that as 

cells differentiate into terminally-differentiated effector cells, they downregulate these 

molecules.  

 To determine if endogenous IL-27 contributes to T cell expression of inhibitory 

receptors, WT and Il27p28-/- mice were infected with T. gondii as above and inhibitory 

receptor expression was assessed on T cells from the spleen and lung at day 11-12 of 

infection. In the spleen, IR expression between WT and Il27p28-/- mice was largely 

comparable, although decreased expression of CTLA-4 was detected in Il27p28-/- CD4+ T 

cells (Fig 3.S5). In the lung, expression of PD-1 and TIM-3 were also comparable in WT 

and Il27p28-/- mice (data not shown). However, in the lung, expression of PD-L1, CTLA-

4 and TIGIT was decreased on tetramer+ Il27p28-/- CD4+ T cells compared to WT cells 

(Fig 3.6A). Expression of LAG-3 was not significantly lower on Il27p28-/- CD4+ T cells. 

Among parasite-specific CD8+ T cells in the lung, expression of PD-L1, LAG-3, and 

TIGIT was lower on Il27p28-/- cells than on WT cells. Expression of CTLA-4 was not 

significantly lower on Il27p28-/- CD8+ T cells. These results suggest that IL-27 

contributes to expression of PD-L1, LAG-3, CTLA-4 and TIGIT in vivo, during 

toxoplasmosis.  

 To examine the role of STAT1 in inhibitory receptor expression in vivo, during 

toxoplasmosis, STAT1fl/fl x CD4-Cre mice were utilized in order to eliminate STAT1 

signaling from T cells. These mice were infected with T. gondii as above and peritoneal 

exudate cells, spleens and lungs were examined for inhibitory receptor expression at day 

7 of infection. LFA-1hi CD4+ T cells were examined due to low numbers of tetramer+ 
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CD4+ T cells. As seen in Il27p28-/- mice, inhibitory receptor expression was intact on 

parasite-specific T cells in the spleen. However, on LFA-1hi CD4+ T cells from the 

peritoneum, expression of LAG-3, CTLA-4, and TIGIT was decreased in the STAT1-

deficient population (Fig 3.S4A). Similarly, on peritoneal tetramer+ CD8+ T cells, 

expression of LAG-3 and TIGIT was lower in STAT1-deficient cells (Fig 3.S4B). In the 

lung, STAT1-deficient parasite-specific CD4+ and CD8+ T cells were sometimes found to 

express decreased levels of LAG-3, CTLA-4 and TIGIT, but this trend was not consistent 

across experiments (data not shown). These findings demonstrate a role for one or more 

STAT1-signaling cytokines in upregulating inhibitory receptor expression during acute 

toxoplasmosis. 

Discussion 

 The present study found that, in vitro, IL-27 promoted T cell expression of PD-

L1, similar to previous reports (Hirahara et al., 2012), but synergized with TCR signals to 

promote LAG-3, CTLA-4, TIGIT and TIM-3 on T cells. This is consistent with previous 

work that found that IL-27 caused CD4+ and CD8+ T cells to upregulate Ly6C and Sca-1, 

molecules ascribed IR functions (DeLong et al., 2018; Liu et al., 2013; Zhu et al., 2016). 

The present study found that PD-L1, LAG-3, CTLA-4, and TIGIT were upregulated 

during acute toxoplasmosis and that IL-27 was required for maximal IR expression in the 

lung, a peripheral site of infection, but not in the spleen. Therefore, while our in vitro 

results demonstrated that IL-27 is able to upregulate IR expression in naive cells during 

priming, the in vivo results suggest an additional role for IL-27 and STAT1 in modulating 

IR expression in effector cells in the periphery. These effects of IL-27 on IR expression 
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during infection can also be seen in other experimental systems. IL-27-Fc administration 

promoted Treg expression of PD-1 and CTLA-4 in vivo during collagen-induced arthritis 

(Moon et al., 2013). IL-27 was also found to be required for maximal expression of PD-1, 

LAG-3, TIGIT, and TIM-3 on CD4+ and CD8+ T cells in the context of B16F10 

melanoma (Chihara et al., 2018). In agreement with the present study, these authors 

found that IL-27 did not promote PD-1 expression in vitro. Induction of inhibitory 

receptors by IL-27 could help explain previous studies reporting better tumor control in 

IL-27-deficient mice (Sauer et al., 2008; Zhu et al., 2015).  

 Heterogeneity was noted in these in vitro cultures and the examination of 

inhibitory receptor coexpression gave insights into possible causes for this. Inhibitory 

receptor expression was found to not be upregulated stochastically, but was concentrated 

on a subset of cells. It is possible that heterogeneity in the initial cell populations results 

in some cells being more responsive to stimulation with α-CD3/28 and IL-27. It is also 

possible that signaling molecules, such as STAT1, bind regulatory elements for multiple 

inhibitory receptors so signals that drive one inhibitory receptor will also promote 

upregulation of other inhibitory receptors. This could also give insight into the high 

coexpression of inhibitory receptors seen in other systems (Blackburn et al., 2009). Post-

hoc analysis of ChIP-Seq data from a study examining the effect of IL-27 on anti-

CD3/28-stimulated T cells (Hirahara et al., 2015) indicated that STAT1 binds to the gene 

region or directly upstream of the genes for PD-L1, LAG-3, CTLA-4, TIGIT, TIM-3, 

Ly6C and Sca-1 (data not shown). Culture with IL-27 appeared to increase STAT1 

binding to each of these genes except for PD-L1. It is therefore possible that STAT1 
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binding to these gene regions is responsible for the high degree of inhibitory receptor 

coexpression we see in cells stimulated through the TCR in the presence of IL-27.  

 The finding that inhibitory receptor expression is further upregulated with 

increasing TCR stimulation demonstrates that induction of this regulatory pathway is 

graded. This is supported by the finding that cytokines present at sites of inflammation 

further upregulate inhibitory receptor expression, suggesting that inhibitory receptor 

expression is finely tuned to prevent highly activated, pathogen-specific cells at sites of 

infection from causing pathologic collateral damage. This suggests a model in which 

inhibitory receptors are a mechanism of negative feedback, expressed on the most highly 

activated T cells to prevent them from becoming pathologic. 

 The expression of IR has been most prominently described in the context of CD8+ 

T cell exhaustion during chronic infection (Blackburn et al., 2009; Wherry et al., 2007) 

and their expression patterns during acute infection are less well characterized. In the 

present study, Il27p28-/- and CD4-Cre x STAT1fl/fl mice displayed deficient IR expression 

in peripheral sites of infection, where we know IL-27 is produced, and not in the spleen, 

suggesting that cytokines control inhibitory receptor expression primarily at peripheral 

sites during toxoplasmosis. Future studies will examine whether the upregulation of these 

inhibitory receptors is a pathway by which IL-27 limits immunopathology. 

 Inhibitory receptor blockade has been found to increase T cell cytokine 

production, cytotoxicity, and control of parasite burden during toxoplasmosis, 

leishmaniasis, and malaria (Bhadra et al., 2011; Butler et al., 2011; Joshi et al., 2009), 

infections in which IL-27 plays a key role in limiting immunopathology (Findlay et al., 

2010; Hafalla et al., 2012). Therefore, it is possible that IL-27 limits immunopathology in 
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these systems through induction of inhibitory receptors. Recombinant, Fc-tagged 

inhibitory receptors are a powerful tool for elucidating the roles of IR in vivo. It is notable 

that in IL-27Rα-deficient mice, CTLA-4-Ig limits T. gondii-induced immunopathology 

(Stumhofer et al., 2006). These results must be interpreted with care, but they support a 

model in which IL-27 limits immunopathology through upregulation of CTLA-4. Similar 

experiments utilizing LAG-3-Fc, PD-L1-Fc and TIGIT-Fc could examine the ability of 

these IR to reverse immunopathology in IL-27-deficient mice. 

 IL-27 regulates dendritic cell function by multiple pathways. It promotes T cell 

expression of IL-10 (Awasthi et al., 2007; Pot et al., 2009; Stumhofer et al., 2007), which 

in turn limits DC production of IL-12 (Couper et al., 2008). IL-27 can also directly limit 

DC maturation, as well as upregulate DC expression of CD39, which decreases 

extracellular ATP and limits T cell differentiation (Mascanfroni et al., 2013). T cells 

expressing LAG-3 and CTLA-4 limit the ability of DCs to upregulate CD80/86 and 

prime T cells. (Bayry et al., 2007; Huang et al., 2004; Liang et al., 2008; Qureshi et al., 

2011; Wing et al., 2008). CTLA-4 can function through induction of IDO-expressing 

tolerogenic DCs or through blockade of CD28-B7 interactions (Bluestone et al., 2006; 

Grohmann et al., 2002). The present findings, that IL-27 promotes expression of LAG-3, 

and CTLA-4, highlight the ability of IL-27 to coordinate multiple inhibitory functions 

within a single T cell.  This activity may endow T cells with multiple mechanisms that 

limit DC activities and help to explain the potent suppressive effects of IL-27 in multiple 

disease settings.   

 In humans, checkpoint blockade has been found to improve the anti-tumor 

response and blockade of PD-L1, PD-1 and CTLA-4 are now FDA approved cancer 
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therapies. The finding that cytokines upregulate multiple IRs suggests that modulation of 

cytokine signaling could be an additional approach for manipulating inhibitory receptor 

expression. The IL-27 receptor signals through JAK1, JAK2, STAT1 and STAT3. The 

finding that STAT1 contributes to expression of multiple inhibitory receptors suggests 

that this pathway could be targeted to modulate inhibitory receptor expression. Janus-

activated kinases (JAKs) are part of the STAT signaling cascade of IL-27, IL-12, IFN-g, 

and type I IFN signaling and JAK molecules are readily druggable. JAK inhibitors have 

shown efficacy in limiting the immune response during autoimmunity (Schwartz et al., 

2017). It is possible that in another disease context, such as cancer, inhibiting JAK 

signaling could limit IR expression and enhance the T cell response. 
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Figures 

 

Figure 3.1  IL-27 induces expression of multiple inhibitory receptors by CD4+ T 

cells. Naïve, Ly6C–Sca-1– CD4+ and T cells were sort purified and cultured in the 

presence or absence of α-CD3/28, in the presence or absence of IL-27. After an 85-hour 

culture, cells were analyzed for expression of PD-L1, PD-1, LAG-3, and CTLA-4. 

Representative FACS plots (left). Bar charts (right) show combined results from 4 

independent experiments. Error bars indicate SEM. Statistical significance was 

determined by using Student’s ratio t test. ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 

0.001
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and	cultured	in	the	presence	or	absence	of	α-CD3/28,	in	the	presence	
or	absence	of	IL-27.	After	an	85-hour	culture,	cells	were	analyzed	for	
expression	 of	 PD-L1,	 PD-1,	 LAG-3,	 and	 CTLA-4.	 Representative	 FACS	
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Figure 3.2  IL-27 induces expression of multiple inhibitory receptors by CD8+ T 

cells. Naïve, Ly6C–Sca-1– CD8+ and T cells were sort purified and cultured in the 

presence or absence of α-CD3/28, in the presence or absence of IL-27. After an 85-hour 

culture, cells were analyzed for expression of PD-L1, PD-1, LAG-3, and CTLA-4. 

Representative FACS plots (left). Bar charts (right) show combined results from 4 

independent experiments. Error bars indicate SEM. Statistical significance was 

determined by using Student’s ratio t test. ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 

0.001 
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Fig	3.2	 IL-27	 induces	expression	of	multiple	 inhibitory	 receptors	by	
CD8+	 T	 cells.	 Naïve,	 Ly6C–Sca-1–	 CD8+	 and	 T	 cells	were	 sort	 purified	
and	cultured	in	the	presence	or	absence	of	α-CD3/28,	in	the	presence	
or	absence	of	IL-27.	After	an	85-hour	culture,	cells	were	analyzed	for	
expression	 of	 PD-L1,	 PD-1,	 LAG-3,	 and	 CTLA-4.	 Representative	 FACS	
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Figure 3.3  Role of IL-27 in expression of PD-L1, LAG-3 and CTLA-4 depends on 

strength of α-CD3/28 signaling. Naïve Ly6C– Sca-1– CD8+ T cells were sorted and 

cultured in the absence of α-CD3/CD28 or stimulated with 0, 0.1ug/mL, 1ug/mL or 

10ug/mL plate-bound α-CD3 and 1μg/mL soluble α-CD28 for 84 hours. Cells were 

assessed for expression of PD-L1 (A), LAG-3 (B) and CTLA-4 (C). Representative flow 

plots (left). Graphs display the results of 3-5 independent experiments (right). Error bars 

indicate SEM. Statistical significance of differences between IL-27-treated and non-IL-

27-treated cells was determined using a paired Student’s t test. * p < 0.05, ** p < 0.01, 

*** p < 0.001
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expression	of	PD-L1	 (A),	 LAG-3	 (B)	and	CTLA-4	 (C).	

Representative	flow	plots	(left).	Graphs	display	the	

results	 of	 3-5	 independent	 experiments	 (right).	
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Figure 3.4  Modulation of inhibitory receptors by multiple cytokines. (A) Sorted 

naive CD8+ T cells were cultured with the indicated cytokines and assessed for 

expression of PD-L1. (B) Sorted naive CD8+ T cells were cultured with anti-CD3/28 

stimulation and the indicated cytokines and were assessed for expression of LAG-3. 

Representative flow plots for control, IL-27 and IL-12 conditions (left). Summary bar 

charts (right). (C) TGF-β inhibits IL-27-mediated inhibitory receptor expression in naïve 

CD8+ T cells.  Bar charts summarize results of 1-4 independent experiments. Error bars 

indicate SEM. Statistical significance determined by paired Student’s t test. ns p > 0.05, * 

p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure 3.5  Inhibitory receptor expression is upregulated during toxoplasmosis. (A-

C).  Inhibitory receptor expression by splenic LFA-1hi Tregs (A), tetramer+ CD4+ T cells 

(B) or tetramer+ CD8+ T cells (C) at day 10 of infection (thick lines) compared to 

corresponding LFA-1lo cells from uninfected mice (thin lines). (D) Expression of CXCR3 

and KLRG1 by tetramer+ CD8+ T cells. (E) Expression of PD-L1, PD-1, LAG-3 and 

CTLA-4 by WT splenic tetramer+ CD8+ T cells. 
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Fig	3.5	Inhibitory	receptor	expression	is	upregulated	during	toxoplasmosis.	(A-C).	 	Inhibitory	receptor	expression	
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Figure 3.6  IL-27 contributes to inhibitory receptor expression by lung T cells 

during toxoplasmosis. A-B. WT and Il27p28-/- mice were infected with 20 Me49 cysts 

i.p. for 11-12 days. Inhibitory receptor expression by WT and Il27p28-/- lung tetramer+ 

CD4+ (A) and CD8+ (B) T cells. 4-5 mice per group, data representative of four 

independent experiments. Error bars indicate SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Supplemental Figures 

 

 

Figure 3.S1  IL-27 induces expression of multiple inhibitory receptors by regulatory 

T cells. Naïve, Ly6C–Sca-1– CD4+ and T cells were sort purified and cultured in the 

presence or absence of α-CD3/28, in the presence or absence of IL-27. After an 85-hour 

culture, cells were analyzed for expression of PD-L1, PD-1, LAG-3, and CTLA-4. 

Representative FACS plots (left). Bar charts (right) show combined results from 4 

independent experiments. Error bars indicate SEM. Statistical significance was 

determined by using Student’s ratio t test. ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 

0.001
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Figure 3.S2  TCR stimulation in the presence of IL-27 leads to high coexpression of 

inhibitory receptors in vitro. (A) Hypothetical data to explain the approach. If the 

expression of two molecules is entirely independent, knowledge of the fraction of cells 

expressing each molecule enables prediction of the fraction of cells expressing 0, 1, or 

both molecules. If the experimental results do not match this prediction, this is evidence 

that expression of these molecules is not independent. (B) Bulk CD4+ splenocytes were 

cultured for 84 hours in the indicated conditions and the cells were assessed for 

expression of PD-L1, LAG-3, CTLA-4, TIGIT, PD-1, and Ly6C by flow cytometry. 

Predicted coexpression of the 6 inhibitory receptors in these conditions was made based 

on the expression of individual inhibitory receptors (gray bars). The actual coexpression 

of these molecules was determined using a boolean analysis in Flowjo (black bars). 
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Figure 3.S3  STAT1 contributes to IL-27-mediated inhibitory receptor expression in 

vitro. Requirement for STAT1 for cytokine-mediated inhibitory receptor expression in 

sorted naive Ly6C- Sca-1- CD8+ T cells. Results representative of 3 independent 

experiments. 
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Figure 3.S4  STAT1 contributes to IL-27-mediated inhibitory receptor expression in 

vivo, during toxoplasmosis. Stat1fl/fl x CD4Cre mice or Control (Stat1fl/fl x Wt, Stat1wt/wt x 

CD4Cre, or Stat1fl/wt x CD4Cre) mice were infected with 20 Me49 cysts i.p. for 10-11 days. 

Inhibitory receptor expression was examined on LFA-1hi CD4+ T cells (A) and tetramer+ 

CD8+ T cells (B), from the peritoneum. Bar charts display the data from one experiment 

with 5 mice. Error bars indicate SEM. * p < 0.05, ** p < 0.01 
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Figure 3.S5  IL-27 not required for splenic inhibitory receptor expression during 

toxoplasmosis. A-B. WT and Il27p28-/- mice were infected with 20 Me49 cysts i.p. for 

11-12 days. Inhibitory receptor expression by WT and Il27p28-/- splenic tetramer+ CD4+ 

(A) and CD8+ (B) T cells. 4-5 mice per group, data representative of four independent 

experiments. Error bars indicate SEM. 
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Chapter 4: Discussion and future directions 

Abstract 

 IL-27 modulates the immune response in diverse ways. At the time these studies 

were initiated, little was known about the role of IL-27 in promoting inhibitory receptor 

(IR) expression, although it was known that IL-27 could promote PD-L1 on bystander T 

cells, independently of TCR signals (Hirahara et al., 2012). The studies presented here 

establish that TCR stimulation and cytokine signaling have distinct and complementary 

roles in promoting IR expression (Fig 4.1), which aids in our understanding of the role of 

IL-27 and other cytokines in promoting IR expression. The role of co-stimulation in IR 

induction was not evaluated in these studies, but is likely to be important, as co-

stimulation enhances TCR signal strength and signals through TCR-independent 

pathways. A better understanding of the signaling networks required for IR induction will 

help better understand why IL-27 appears more potent than closely-related cytokines like 

IL-6 and IL-12. The implications of these findings extend beyond infection and highlight 

that additional studies are needed to determine if Ly6 molecules function as IRs in vivo. 

The contribution of IR to IL-27-mediated suppression of pathologic or protective immune 

responses should be examined as well during acute infection and other inflammatory 

conditions. Finally, the finding that IL-27 and STAT1 contribute to IR expression in vitro 

and in vivo suggest that strategies that target cytokine signaling could modulate IR 

expression, which may be useful therapeutically.  
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4.1 Roles of inhibitory receptors in modulating inflammation 

The role of Ly6C in the immune response 

 The Ly6 family of proteins is ancient, with homologous proteins found in mice 

and humans, and related proteins found in species as distantly related as squid (Gumley et 

al., 1995; Williams et al., 1988). Sca-1 is one of 23 Ly6-like molecules encoded on 

chromosome 15 in the mouse (Loughner et al., 2016) and at least three of these 

molecules, Ly6C, Ly6G and Ly6A, are highly expressed by hematopoietic cells. Ly6C is 

widely used to identify different populations of cells, for example, as a marker of short-

lived effector cells during acute viral infection (Hu et al., 2015; Marshall et al., 2011). 

However, as shown in Chapter 2, Ly6C is also expressed by naïve and central memory T 

cells. Thus, its expression is not restricted to the short-lived effector population and the as 

yet unclear function of Ly6C is likely relevant for broader populations of T cells than just 

terminally-differentiated effector cells.  

 As discussed in Chapter 2, there is a literature that suggests that Ly6C functions 

as an IR on T cells (Codias et al., 1992; Fleming and Malek, 1994; Yamanouchi et al., 1998), 

but Ly6C is a GPI-anchored protein with no intracellular domain. If it does transduce a 

signal, it does so through association with another cell surface molecule, likely as part of 

a lipid raft (Jaakkola et al., 2003). I found in Chapter 3 that IL-27 and TCR stimulation, 

signals that upregulate Ly6C, promote expression of multiple well characterized IRs. 

This is consistent with a model in which Ly6C is one member of a cassette of IRs 

upregulated by T cells in response to these stimuli. Studies to examine the function of 

Ly6C have utilized antibodies to block its interaction with potential ligands or to 
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crosslink it and transduce a signal (Fleming and Malek, 1994; Hanninen et al., 1997; 

Hanninen et al., 2011; Jaakkola et al., 2003). These studies have yielded valuable 

information, but the field would benefit from the generation of a mouse with a targeted 

deletion of Ly6C.  

Spontaneous mutations that limit expression of Ly6C are present in NOD, 

NZB/W, and ST/bJ mice, strains that spontaneously develop autoimmune diseases 

(Philbrick et al., 1990). It is tempting to speculate that the absence of Ly6C might 

promote autoinflammatory responses. However, other mutations, particularly those at 

MHC loci, are critical for disease development in these mice, making it difficult to isolate 

the contribution of Ly6C (Pearson et al., 2016; Perry et al., 2011). Two adjacent genes, 

Ly6c1 and Ly6c2, encode the Ly6C protein and are both transcribed (Heng et al., 2008), 

so both genes will need to be targeted in order to eliminate expression of the protein. One 

useful approach would be to delete one gene and flox the other gene to make a 

conditional knockout mouse. Breeding this mouse with mice that express Cre 

recombinase by cell populations of interest would enable investigation of the function of 

Ly6C on different immune populations that include inflammatory monocytes and T cells. 

This would reveal whether loss of Ly6C expression by a particular cell population results 

in the development of autoimmune disease, affects tolerance to infection, or has another 

immune function. 

 The finding in Chapter 2 that IL-27 drives expression of Ly6C initially suggested 

that IL-27 might support the generation of Ly6C+ short-lived effector CD4+ T cells, 

reminiscent of the cells described in vivo during infection with LCMV (Marshall et al., 

2011). However, preliminary examination of T cells after culture with IL-27 revealed that 
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Ly6C+ T cells did not produce more cytokines than Ly6C- T cells (data not shown). This 

observation indicates that Ly6C in isolation may not be an effective marker of short-lived 

effector cells. KLRG1 and CXCR3 have been used to distinguish specific differentiation 

stages of CD8+ T cells during toxoplasmosis (Chu et al., 2016). The least differentiated 

parasite-specific cells in this model are CXCR3+KLRG1-. These differentiate into a 

CXCR3+KLRG1+ intermediate population that forms a proliferative pool that feeds a 

terminally-differentiated CXCR3-KLRG1+ effector population. When parasite-specific 

CD4+ and CD8+ T cells were separated by expression of KLRG1 and CXCR3, Ly6C was 

not enriched on any of these subpopulations (Chapter 2). The finding that there is no clear 

correlation between expression of KLRG1 and/or CXCR3 and Ly6C highlights the 

requirement for multiple markers in the identification of different stages of T cell 

differentiation. Nevertheless, further studies will be necessary to determine the 

significance of Ly6C expression in different contexts. Ly6C expression aids in 

identification of short-lived effector cells in two viral infections, but it is not known what 

populations express Ly6C in other contexts such as Th2-skewed inflammation. Our 

finding that Ly6C is expressed by diverse T cell populations during toxoplasmosis 

suggests that its utility as a marker of SLECs may be restricted to distinct inflammatory 

contexts. 

   

The role of Sca-1 in the immune response 

 Similar to Ly6C, the role of Sca-1 (Ly6A/E) in the immune response is unclear, 

although antibody-mediated cross-linking of Sca-1 on T cells limits cell proliferation and 

production of IL-2, consistent with the idea that Sca-1 functions as an IR on T cells 
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(Codias et al., 1992; Fleming and Malek, 1994). Further support for this idea is provided 

by a report that Sca-1-deficient T cells proliferate at a higher rate when stimulated with 

anti-CD3 antibodies or allogeneic cells (Stanford et al., 1997). In vivo, Sca-1-deficient 

mice have dysregulated development of certain hematopoietic populations and Sca-1-

deficient bone marrow is limited in its ability to serially reconstitute lethally irradiated 

mice (Ito et al., 2003). Despite these defects, Sca-1-deficient mice immunized with 

ovalbumin develop normal antibody responses (Jones et al., 2016) and the T cell response 

to LCMV is intact (Whitmire et al., 2009). However, there is still limited information 

about the role of Sca-1 in other models and it is also possible that there is redundancy in 

the function of Ly6 molecules that is masked in the single molecule knockout mouse.  

 Sca-1, in combination with the IL-2Rβ-chain (CD122) and Bcl-2, can be used to 

identify mature CD8+ T cells with stem-like properties, termed memory stem cells (Tscm) 

(Gattinoni et al., 2011; Gattinoni et al., 2009; Zhang et al., 2005). These are minimally-

differentiated cells with the ability to survive and differentiate upon adoptive transfer to 

naive recipients. They constitute a very different population of T cells than the short-lived 

effector cells identified by Ly6C expression. It was therefore surprising that we found 

that Sca-1 and Ly6C were upregulated by the same signals in vitro. I also showed in 

Chapter 2 that the vast majority of parasite-specific CD4+ and CD8+ T cells express Sca-1 

during infection, which is inconsistent with studies that describe Sca-1 as a marker of 

Tscm during GVHD (Zhang et al., 2005). These differences suggest that there are signals 

present during infection, such as cytokines, antigen presentation and overall levels of 

inflammation, that differ from those present in this model of GVHD. Again, the 
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discrepancies between these reports highlight the necessity of using multiple markers to 

distinguish stages of T cell differentiation and emphasizes the need to verify these 

markers in different experimental systems. 

 

The role of inhibitory receptors during infection 

 The findings in Chapters 2 and 3 established that IL-27 contributes to the 

expression of CTLA-4, PD-L1, LAG-3, TIGIT, and Ly6C during toxoplasmosis, most 

notably at sites of inflammation. However, the impact of IL-27-mediated IR expression 

on the overall immune response during infection has not been fully elucidated and it is 

not known if the ability of IL-27 to promote IRs contributes to its protective effects. 

Previous studies have shown that treatment with CTLA-4-Ig limits the T cell response 

directly by blocking CD28 co-stimulation, but also as an agonist that upregulates 

indoleamine 2, 3 dioxygenase (IDO) activity in dendritic cells (DC). This pathway 

depletes tryptophan from the microenvironment, which limits T cell activation (Bluestone 

et al., 2006; Grohmann et al., 2002). The Hunter laboratory has shown that administration 

of CTLA-4-Ig reduces the immunopathology that develops during toxoplasmosis in IL-

27Rα-deficient mice (Stumhofer et al., 2006). While this observation must be interpreted 

with care, it supports the hypothesis that upregulation of CTLA-4 by IL-27 is a 

mechanism that limits immunopathology. IL-27Rα-deficient mice also develop 

immunopathology during infection with P. berghei (Findlay et al., 2010) and blockade of 

CTLA-4 and PD-L1 in WT mice increases immunopathology during P. berghei infection 

(Hafalla et al., 2012). A similar pattern is seen in L. donovani infection, in which IL-27 

limits immunopathology and inhibitory receptor blockade results in a more effective 
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immune response (Joshi et al., 2009; Murphy et al., 1998). It is therefore likely that the 

ability of IL-27 to promote IR expression is relevant to other infection models and a 

survey of these other infection systems would be helpful to determine circumstances in 

which IL-27 or other cytokines have a similar role. 

 One of the major themes of studies on IL-27 is that it has diverse, pleiotropic 

effects on the immune response. The Hunter laboratory has reported that it promotes 

several inhibitory pathways during toxoplasmosis including production of IL-10, 

differentiation of Th1-like Tregs, and I have added the expression of multiple IRs. Each 

of these pathways has been found to play a role in limiting the immune response during 

toxoplasmosis, but it can be difficult to parse apart the effects of distinct regulatory 

mechanisms and determine their role within a larger related regulatory network. PD-L1, 

LAG-3, CTLA-4 and TIGIT were upregulated by IL-27 in vitro and their expression was 

impaired in IL-27-deficient mice during toxoplasmosis. Antibody blockade of one or 

more of these molecules during acute toxoplasmosis might reveal the degree to which 

absence of IRs is responsible for the pathological phenotype seen in IL-27-deficient mice. 

A complementary approach would be to attempt to ameliorate immunopathology in IL-

27-deficient mice through treatment with recombinant Fc-tagged inhibitory receptors. As 

described above, we have found that CTLA-4-Fc limits immunopathology in this system, 

and commercially available LAG-3-Fc, PD-L1-Fc and TIGIT-Fc could be used to 

determine whether exogenous IRs would prove sufficient to prevent immune pathology. 

In particular, TIGIT has been found to upregulate IL-10 production by DCs (Yu et al., 

2009) and it would be of interest to determine if TIGIT-Fc promotes IL-10 production 
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during toxoplasmosis. These types of approaches would provide further insight into the 

importance of IL-27-mediated expression of IRs in limiting immunopathology. 

4.2 Factors controlling inhibitory receptor expression 

Signaling pathways involved in inhibitory receptor expression 

 The studies in Chapter 3 demonstrated a role for STAT1 in cytokine-mediated 

inhibitory receptor expression, both in vitro and in vivo during toxoplasmosis. However, 

IFN-g, type I IFN, IL-6, and IL-12 also signal through STAT1 and culture with these 

cytokines did not phenocopy all the effects of IL-27 in these studies. It is therefore likely 

that signaling pathways other than STAT1 are responsible for these differences. For 

example, type I IFN also signals through STAT2, IL-6 signals through STAT3, and IL-12 

signals through STAT4. Multiple studies have been performed to determine the 

contribution of different signaling molecules to IL-27 signaling. In addition to STAT1, 

IL-27 signals through STAT3, ERK1/2, p38 MAPK, T-bet, c-MAF, and Blimp1 

(Heinemann et al., 2014; Owaki et al., 2006; Owaki et al., 2008; Pflanz et al., 2004; Pot 

et al., 2009). These signaling molecules make differential contributions to the various 

effects of IL-27 signaling. STAT1, ERK1/2, p38 MAPK, and T-bet contribute to 

upregulation of IL-12Rb and Th1 differentiation (Owaki et al., 2006). STAT1 

upregulates SOCS3 and thereby limits CD28-mediated IL-2 production (Owaki et al., 

2006), and STAT3 contributes to IL-27-mediated proliferation but is dispensable for IL-

27-mediated Th1 differentiation (Owaki et al., 2008).  

It is not clear from these studies why IL-27 has fundamentally different effects on 

the immune response from other cytokines, such as IL-6, that share signaling pathways 
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with IL-27. A recent study directly addressed this question and found that while STAT3 

was required for genes upregulated by both IL-27 and IL-6, STAT1 was primarily 

required for genes that are uniquely upregulated by IL-27 (Hirahara et al., 2015). These 

results led to the conclusion that STAT1 is required for the different outcomes seen by 

IL-27 and IL-6 signaling. This is consistent with the finding in Chapter 3 that STAT1 is 

required for IL-27-mediated inhibitory receptor expression, as this is an effect of IL-27 

that is not shared by IL-6. Indeed, post-hoc analysis of ChIP-Seq data from a study 

examining the effect of IL-27 on anti-CD3/28-stimulated T cells (Hirahara et al., 2015) 

indicated that STAT1 binds to the gene region or directly upstream of the genes for PD-

L1, LAG-3, CTLA-4, TIGIT, TIM-3, Ly6C and Sca-1. Culture with IL-27 appeared to 

increase STAT1 binding to each of these genes except for PD-L1. It is therefore possible 

that STAT1 binding to these gene regions, alone or as part of a complex, contributes to 

the high degree of coordinate IR expression we see in cells stimulated through the TCR 

in the presence of IL-27. However, this same study found that IL-27 signaling results in 

STAT1 binding directly upstream of Pdcd1 (PD-1), which is not upregulated by IL-27. 

This paradox demonstrates that STAT1 binding is not sufficient to result in IR 

upregulation in response to IL-27 and suggests that other transcription factors are 

required in this process. Indeed, as indicated above, IL-27 signals through Blimp1 and c-

Maf, and in the context of B16F10 melanoma, Blimp1 is required for full expression of 

PD-1, TIM-3, and PROCR, and c-Maf is required for full expression of PD-1, TIM-3, 

TIGIT, and PROCR (Chihara et al., 2018). The finding in Chapter 3 that TGF-b limits 

inhibitory receptor expression supports a role for Blimp1 in this process, as TGF-b limits 
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Blimp1 expression (Neumann et al., 2014). Blimp1 and c-Maf also contribute to IL-10 

production by T cells, suggesting a central role for these transcription factors in the 

coordination of multiple inhibitory pathways (Neumann et al., 2014). 

 

IL-27 impacts T cells in peripheral tissues during toxoplasmosis 

 The in vitro studies presented in Chapters 2 and 3 establish that IL-27 is capable 

of upregulating expression of multiple IRs on naive cells as they are primed by antigen 

presenting cells. In vivo, T cell priming takes place in the spleen, lymph nodes, and local 

secondary lymphoid structures. A report from the Kedl lab found that after immunization 

with a sub-unit vaccine, splenic T cell responses in IL-27Rα-deficient mice are deficient 

7 days after immunization, which is an example of a positive role for IL-27 during T cell 

priming (Pennock et al., 2014). However, at day 10 of intraperitoneal infection with T. 

gondii, IL-27 is produced at higher levels in the lung than in the spleen (data not shown) 

and during oral toxoplasmosis, IL-27 is produced at higher levels in the intestinal lamina 

propria than in the spleen (Hall et al., 2012a). This helps explain findings that the effect 

of IL-27 deficiency on T cell phenotype during toxoplasmosis and other infections such 

as Sendai virus is also more apparent in peripheral sites of infection than in the spleen 

(DeLong et al., 2018; Hall et al., 2012a; Muallem et al., 2017). For example, in Chapter 

2, the effect of IL-27 on Ly6C expression was most obvious in the peritoneum and in 

Chapter 3, the effect of IL-27 on IR expression was most pronounced in the lungs. These 

results are consistent with a model in which IL-27 is capable of upregulating IR 

expression during priming, as demonstrated in the in vitro experiments presented here, 
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but activated T cells in the periphery are also influenced by local levels of IL-27 (Figure 

4.2). 

The finding that IL-27 contributes to IR expression more at peripheral sites of 

infection than in secondary lymphoid organs highlights the need for additional studies to 

examine the factors that control IR expression on antigen-experienced cells. The in vitro 

studies presented here demonstrate that TCR stimulation of naïve T cells is required for 

significant expression of PD-1, CTLA-4, LAG-3, TIGIT, and TIM-3 by naive T cells 

during priming, but it is possible that on antigen-experienced cells, which express 

increased levels of the IL-27 receptor (Villarino et al., 2005), IL-27 is sufficient for 

induction of inhibitory receptors. Indeed, a previous report found that although IL-2, IL-

7, IL-15, and IL-21 have no effect on PD-1 expression by naive T cells, these cytokines 

alone are sufficient to induce PD-1 on antigen-experienced populations (Kinter et al., 

2008). Elucidation of factors that control inhibitory receptor expression on antigen-

experienced cells would help explain the requirement for IL-27 for full inhibitory 

receptor expression in peripheral tissues and would give insight into the importance of 

DC antigen presentation and cytokine production by in this process. 

 There are several approaches to distinguish the role of IL-27 during priming from 

its role in the periphery. For example, adoptive transfer of antigen-experienced splenic T 

cells from acutely-infected mice to infection-matched WT or IL-27-deficient mice would 

elucidate the importance of IL-27 after priming. If IR expression by transferred T cells in 

peripheral sites was found to be IL-27-dependent, that would suggest a role for IL-27 in 

the periphery, after T cell priming. Alternative approaches are available to control IL-27 

signaling temporally, to remove IL-27 signaling after initial T cell priming has taken 
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place. This would help distinguish the effects of IL-27 during priming from those on 

antigen-experienced cells, especially in the periphery. Mice with a floxed IL-27Rα gene 

could be crossed with mice expressing a Cre recombinase-estrogen receptor fusion 

protein. Administration of tamoxifen would then be used to delete the IL-27Rα at day 3-4 

of infection. Alternatively, IL-27-depleting antibodies could be used to neutralize IL-27 

in WT mice after T cell priming has occurred. A complementary approach would be to 

administer IL-27 to IL-27-deficient mice at different time points during infection. These 

studies would need to be interpreted with care, as T cells could recirculate to secondary 

lymphoid organs at later time-points of infection, but these approaches would give insight 

into the role of IL-27 in modulating the T cell response at different stages of infection. 

 

Upregulation of inhibitory receptor expression with increasing TCR stimulation 

 The finding that IR expression is responsive to increasing TCR stimulation 

(Chapter 3) demonstrates that induction of this regulatory pathway is graded and suggests 

that IR expression is concentrated on the most highly stimulated cells. Increasing TCR 

stimulation during T cell priming results in increased chromatin accessibility (Tu et al., 

2017), which likely allows increased transcription of inhibitory receptor genes. This may 

be one way in which T cells can respond to low levels of stimulation with minimal 

inhibition, but as stimulatory signals increase, regulatory signals are coordinately 

elevated in order to prevent T cell hyper-activation.  

 The experiments to address the impact of TCR signal strength in Chapter 3 were 

performed using titrated amounts of anti-CD3 antibodies, which activate the TCR 

signaling cascade in an experimentally useful but artificial manner. It is therefore not 
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clear from these studies if IR expression is influenced by the affinity of individual 

TCR:pMHC interactions, the total avidity of the T cell - DC synapse, the duration of the 

T cell - DC synapse, the number of times a T cell forms a synapse with antigen-

presenting cells, or a combination of these. The affinity of an individual TCR:pMHC 

interaction is not determined by the inflammatory environment, but the avidity and 

duration of the T cell - DC synapse, as well as the number of times a T cell encounters a 

cognate DC, depend to a great extent on the level of inflammation and antigen present 

during an immune response. TLR ligands and cytokines such as IFN-γ promote DC 

maturation, while IL-10 limits DC expression of CD80/86 and MHC molecules. 

Chemokines promote migration of DCs and T cells to lymph nodes, and antigen 

availability impacts the number of pMHC complexes available for T cells to bind. The 

frequency of T cell - DC interactions and the avidity of the T cell synapse therefore 

depend on the cytokines, chemokines and antigen load present during a given infection. 

As such, it is necessary for the immune system to employ regulatory mechanisms that 

limit T cell activation in response to diverse inflammatory signals. Control of IR 

expression through strength of TCR stimulation and cytokine signaling provides graded 

regulation proportional to exposure to these inflammatory stimuli.  

 The role of TCR stimulation in IR expression could be examined in vivo through 

utilization of Nur77 reporter mice (Moran et al., 2011). In T cells, Nur77 expression is 

transiently induced upon TCR stimulation and is not affected by cytokine signaling 

(Ashouri and Weiss, 2017). During toxoplasmosis, if IR expression by parasite specific 

cells in the periphery is concentrated on Nur77-reporting cells, that would indicate the 

need for recent TCR stimulation for full IR expression. If Nur77 expression does not 
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correlate with IR expression, that would indicate that repeated TCR stimulation is not 

required for persistent IR expression in vivo.  

 

Role of co-stimulation in inhibitory receptor expression 

 The studies in Chapter 3 found that inhibitory receptor expression varied with 

modulation of TCR stimulation, and an important focus for future studies will be on the 

role of co-stimulation in this process. The best described co-stimulatory interaction is 

between CD28 and CD80/86. This interaction enhances TCR signal strength and also 

engages signaling pathways distinct from those used by the TCR (Acuto and Michel, 

2003; Boomer and Green, 2010). The studies in Chapter 3 predict that signals that 

modulate TCR signal strength will affect inhibitory receptor expression, which means 

that CD28 signaling is likely important in this process. Additionally, CD28 stimulation 

promotes production of IL-2, and IL-2 has been found to promote inhibitory receptor 

expression (Fraser et al., 1991; Kinter et al., 2008). CTLA-4-Ig is a CD28 antagonist that 

effectively limits T cell co-stimulation in vivo. Treatment with CTLA-4-Ig limits the 

immunopathology that develops during toxoplasmosis in IL-27Ra-deficient mice 

(Stumhofer et al., 2006), indicating that co-stimulation is necessary for development of 

immunopathology in this system. Variations on this experiment could be used to 

elucidate the role of co-stimulation on inhibitory receptor expression during infection and 

other inflammatory environments.  
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4.3 Targets of inhibitory receptors 

IL-27 acts on T cells to limit dendritic cell function 

 IL-27 can limit Th2 and Th17 cell function directly, through inhibition of GATA-

3 and RORγt (Diveu et al., 2009; Lucas et al., 2003), but it can also have indirect effects 

on DCs that limit subsequent T cell activation. Multiple surface-bound and secreted 

products of activated T cells modulate DC phenotype. IFN-γ upregulates DC expression 

of IL-12, MHCII, CD80/86, and CD40, while IL-10 limits expression of these molecules 

and promotes tolerogenic DCs (Bhattacharyya et al., 2004; Boks et al., 2012; De Smedt et 

al., 1997; Sheng et al., 2013). Tregs can limit DC maturation through binding of LAG-3 

and MHCII (Liang et al., 2008). T cells also promote tolerogenic DCs through expression 

of CTLA-4, which stimulates IDO activity (Grohmann et al., 2002; Onodera et al., 2009), 

and TIGIT, which promotes DC production of IL-10 (Yu et al., 2009). IL-27 modulates T 

cell expression of IL-10, IFN-γ and IRs and may thereby modify dendritic cell function 

indirectly, through T cells. Conversely, DCs can modulate T cell responses through 

binding cell surface molecules as well as through production of cytokines such as IL-27. 

An example of the complexity of this system is a study finding that Tregs induce DC 

production of IL-27, which in turn drives differentiation of IL-10-producing Tr1 cells, 

which limit DC activation (Awasthi et al., 2007). My own preliminary in vitro data found 

that culture with IL-27 improved the ability of Tregs to limit DC upregulation of 

CD80/86 and MHCII in response to LPS stimulation (data not shown). These preliminary 

studies are promising, but more work is required to understand the role IL-27 plays in T 

cell-mediated inhibition of DC function.  
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Impact of IL-27 on bystander cells 

 The finding that IL-27 can drive expression of Sca-1 and PD-L1 in the absence of 

TCR stimulation (DeLong et al., 2018; Hirahara et al., 2012) raises the question of what 

role IR expression plays on bystander T cells. Sca-1+ T cells have not been described to 

inhibit target cells, but PD-L1+ CD4+ T cells limit Th17 differentiation of target naïve 

CD4+ T cells (Hirahara et al., 2012). Nonetheless, relatively little is known about the role 

of bystander cells in modulating the immune response during infection. PD-L1 binds two 

ligands: PD-1, which is mainly expressed by T cells, and CD80, which is expressed by 

antigen presenting cells and activated T cells. Exogenous PD-L1 limits T cell 

proliferation and cytokine production directly, by binding CD80 on the T cell (Butte et 

al., 2007). However, dendritic cells also express CD80, and the finding that IL-27 induces 

PD-L1 expression by bystander cells suggests a mechanism by which PD-L1 expression 

could be induced at peripheral sites of infection early, before the full antigen-primed T 

cell response can form. If these PD-L1-expressing T cells bind CD80 and limit dendritic 

cell function at sites of inflammation, this could directly limit T cell responses in the 

periphery and also be a mechanism to shut down antigen presentation in secondary 

lymphoid organs at later time-points of infection, due to reduced activation of the 

dendritic cells that migrate to secondary lymphoid organs from sites of infection. This 

hypothesis could be examined in vivo during infection by treating mice with anti-PD-L1 

antibodies to block interaction of PD-L1 with its ligands, which might increase DC 

activation. Alternatively, administration of PD-L1-Fc could be used to augment PD-L1 

signaling, which might limit DC activation in secondary lymphoid organs and peripheral 
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sites of infection and decrease T cell activation. Similar experiments could be performed 

in vitro with isolated T cells and DCs to control for the influence of other cell 

populations. These studies would help link IL-27, inhibitory receptors, and IL-10 in a 

network of regulatory pathways that limits immune pathology. 

4.4 Therapeutic applications 

Therapies to modulate inhibitory receptor expression 

 As noted at many points in this thesis, IR blockade has been found to improve T 

cell cytokine production, cytotoxicity, and control of parasite burden during 

toxoplasmosis, leishmaniasis, and malaria, leading to improved outcomes in mice 

(Bhadra et al., 2011; Butler et al., 2011; Hafalla et al., 2012; Joshi et al., 2009; Murphy et 

al., 1998). The impact of IR blockade has been extended and has also been found to 

improve the anti-tumor response. This has therapeutic implications, as blockade of PD-

L1, PD-1 and CTLA-4 are now FDA approved cancer therapies. The finding that 

cytokines play an important role in controlling IR expression suggests that modulation of 

cytokine signaling could be an additional approach for manipulating IR expression. 

Induction of IRs by IL-27 could help explain why, in some cancer models, the absence of 

IL-27 leads to enhanced tumor control. In the context of B16F10 melanoma, better tumor 

control in IL-27-deficient mice has been attributed to enhanced CD8+ T cell responses 

and reduced TIM-3 expression (Sauer et al., 2008; Zhu et al., 2015). Subsequent work 

found that, similar to the work presented here, IL-27 promotes expression of LAG-3, 

TIGIT, and TIM-3 on CD4+ and CD8+ T cells in vitro (Chihara et al., 2018). In 

agreement with the findings in Chapter 3, Chihara, et al. found that IL-27 did not promote 
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PD-1 expression in vitro. That study did find that expression of LAG-3, TIGIT and TIM-

3 was deficient in Il27p28-deficient mice in the context of B16F10 melanoma (Chihara et 

al., 2018). It is uncertain whether this is directly relevant to humans, but in principle, 

blockade of IL-27 signaling in humans may provide a way to limit expression of multiple 

IRs simultaneously.  

 Administration of IL-27 has shown therapeutic potential in a variety of pre-

clinical models including colitis, experimental autoimmune encephalomyelitis (EAE), 

and collagen-induced arthritis (CIA). Purified IL-27 has a short biological half-life, so 

pegylation of IL-27 protein has been used to extend its biological half-life and function. 

Gene therapy is another approach and administration of IL-27 expression through 

hydrodynamic transfection of plasmids encoding IL-27 has been shown to induce high 

production of IL-27. Gene therapy with IL-27 can also be administered by adeno-

associated viral vector, which promotes expression of PD-L1 and limits development of 

colitis (Zhu et al., 2016), EAE (Zhu et al., 2018), and CIA (Pickens et al., 2011). 

Administration of IL-27 could therefore upregulate multiple regulatory pathways 

including IR expression to limit inflammation during autoimmune disease. However, in 

other contexts, the overexpression of IL-27 has pro-inflammatory effects and can limit 

growth of B16F10 melanoma directly and through NK cells (Oniki et al., 2006; 

Yoshimoto et al., 2008). The role of IL-27 in modulating disease is therefore context 

dependent, and there are potential therapeutic applications for both augmenting and 

limiting IL-27 signaling. 
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Summary 

 The studies presented here demonstrate distinct and complementary roles for IL-

27 and TCR stimulation in the upregulation of multiple inhibitory receptors. This may be 

a mechanism by which precise modulation of these pathways provides levels of 

regulation that allow for productive immune responses while preventing them from 

becoming pathologic. During toxoplasmosis, IL-27 and STAT1 promote inhibitory 

receptor expression by T cells at peripheral sites of infection. This has important 

therapeutic implications, as inhibitory receptor expression is dysregulated in multiple 

disease contexts and drugs that are currently used to inhibit cytokine signaling could 

affect immune regulation through modulation of inhibitory receptor expression. These 

findings demonstrate a prominent role for IL-27 in a model in which inhibitory receptor 

expression on T cells is a graded regulatory pathway that is upregulated by exposure to 

increasing levels of TCR stimulation and cytokines present at sites of inflammation. 
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Figures 

 

 

 

Figure 4.1  Cytokine- and TCR-mediated induction of inhibitory receptors. The 

studies presented here demonstrate distinct and complementary roles for cytokines and 

TCR signaling in modulating inhibitory receptor expression. IL-27 or other cytokines 

alone are able to upregulate PD-L1 and Sca-1, while TCR signaling upregulates PD-L1, 

Sca-1, PD-1, LAG-3, and CTLA-4. IL-27 and related cytokines augment TCR-mediated 

upregulation of Sca-1, LAG-3, Ly6C, and CTLA-4. 
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Figure 4.2  Proposed model of IL-27-mediated immune regulation during 

toxoplasmosis. The studies presented here demonstrate that during toxoplasmosis, IL-27 

is required for full inhibitory receptor expression in the lung, a peripheral site of 

infection. CTLA-4 and LAG-3 inhibit dendritic cell maturation and TIGIT promotes IL-

10 production in DCs, suggesting that IL-27 can act on antigen-experienced effector T 

cells in the periphery to reduce DC activation and antigen presentation in secondary 

lymphoid organs. 
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infection	
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Chapter 5: Materials and Methods 
 

Maintenance and care of experimental animals 

 Six week-old female C57BL/6 controls were purchased from Taconic. Mice 

deficient in Il27ra/WSX-1 (C57BL/6 background) were generated as described (Yoshida 

et al., 2001) and were originally provided by Amgen (Thousand Oaks, CA, USA). Mice 

deficient in IL-27p28 (C57BL/6 background) were originally provided by Janssen 

Research & Development, LLC (Spring House, PA, USA). STAT1-/- mice (129S6/SvEv-

Stat1tm1Rds) and 129S6 control mice were purchased from Taconic. Mice were housed 

and bred in specific pathogen-free (SPF) facilities in the Department of Pathobiology at 

the University of Pennsylvania in accordance with institutional guidelines. The Me49 

Strain of T. gondii was prepared from chronically infected CBA/ca mice and 

experimental animals were infected intraperitoneally with 20 cysts.  

 

Cell sorting and in vitro cell culture 

 Splenocytes from C57BL/6 mice were obtained by mechanically dissociating the 

spleen, filtering it through a 40 �m nylon strainer, and lysing red blood cells with ACK 

lysis buffer. T cells were enriched using a Mouse CD3+ T Cell Enrichment Column 

(R&D Systems MTCC-25). Cells were then stained with Live/dead fixable Aqua dead 

cell stain (ThermoFisher L34957), anti-CD4 (GK1.5, Biolegend 100447), anti-CD8 (53-

6.7, BD Biosciences 562283), anti-CD44 (IM7, eBioscience 0441-82), anti-CD62L 

(MEL-14, eBioscience 47-0621-82), anti-Ly6C (HK1.4, eBioscience 45-5932-82), and 
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anti-Sca-1 (D7, eBioscience 56-5981-82) antibodies and were sorted on a FACSAria II 

flow cytometer (BD Biosciences). Cells were plated in tissue culture-treated round-

bottom 96-well plates, 1-2 x 105 per well in 200 uL RPMI supplemented with 10% fetal 

bovine serum, 100 U/mL penicillin, 100 U/mL streptomycin, 1 mM sodium pyruvate, 1x 

MEM non-essential amino acids (Gibco), 55 �M 2-Mercaptoethanol. The tissue culture 

plates were precoated with 1 �g/mL anti-CD3 (145-2C11, BioXCell) for 3 hours at 37 

degrees and excess anti-CD3 was rinsed off with PBS. Cells were stimulated in the 

presence of anti-CD28 (37.N.51.1, 1 �g/mL), IL-2 (Proleukin, 100 U/mL), anti-IFN-γ 

(XMG1.2, BioXcell, 1�g/mL) (except when exogenous IFN-γ was tested) and anti-IL-4 

(11B11, BioXcell, 1 �g/mL). Recombinant IL-27 (Amgen) was used at a concentration 

of 50 ng/mL, TGF-β (eBioscience) was used at 5 ng/mL, and Universal type I IFN (PBL 

Assay Science) was used at a concentration of 2000 U/mL. IFN-γ (R&D Systems), IL-6 

(eBioscience), IL-12 (eBioscience), TNF-α (eBioscience), IL-10 (eBioscience), and IL-7 

(Peprotech) were used at 10 ng/mL. IL-15 (Peprotech) and IL-15Ra-Fc (R&D Systems) 

were incubated at 37 degrees for 30 minutes at a ratio of 2:9. The resulting IL-15 

complexes were used at 55 ng/mL (10 ng/mL IL-15, plus 45 ng/mL IL-15Ra).  

 

Flow cytometric analysis 

 Cells were stained with the reagents used for cell sorting, described above, as well 

as antibodies specific for CTLA-4 (UC10-4B9, Biolegend 106306), PD-L1 (10F.9G2, 

Biolegend 124319 or 124314), LAG-3 (C9B7W, Biolegend 125210 or eBioscience 48-

2231-82), PD-1 (29F.1A12, Biolegend 135220 or J43, eBioscience 25-9985-82), TIGIT 

(GIGD7, eBioscience 50-9501-82), and TIM-3 (RMT3-23, Biolegend 119704 or 
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199721). CTLA-4 staining was performed after fixation and permeablization of the cells. 

For analyses after infection, splenocytes were harvested as detailed above and peritoneal 

exudate cells were harvested by intraperitoneal lavage with 7 mL PBS. MHC-I 

monomers loaded with peptide (SVLAFRRL) from the T. gondii protein Tgd-057 were 

kindly provided by E. John Wherry (University of Pennsylvania) and tetramerized by 

incubation with streptavidin-conjugated PE or APC. Some experiments utilized PE- and 

APC-conjugated MHC-I tetramers loaded with the Tgd-057 peptide that were provided 

by the National Institutes of Health Tetramer Facility. PE- or APC-conjugated MHC-II 

tetramers loaded with the AS15 peptide AVEIHRPVPGTAPPS were also provided by 

the National Institutes of Health Tetramer Facility.  

 Cells were collected on an LSRFortessa or LSRFortessa X-20 (BD Biosciences) 

and analysis was performed with FlowJo (TreeStar). Cells were gated on lymphocytes 

(by forward scatter (FSC) and side scatter (SSC)), singlets (by FSC-W vs FSC-H and 

SSC-W vs SSC-H), and live cells (by exclusion of Aqua Dead Cell Stain). CD4+ T cells 

were gated CD4+CD8-FoxP3- and CD8+ T cells were gated CD8+CD4-. 

 

Statistical Analysis 

Statistical significance was determined using GraphPad Prism software, using a 

paired, unpaired, or ratio Student’s t test, as indicated. When the ratio t test was used, 0.1 

was added to zero values to make them non-zero. P values less than 0.05 were considered 

significant. 
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