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Mechanosensing By The Nuclear Lamina: From Embryonic
Development To Aging

Abstract
‘Nuclear mechanosensing’ encompasses a wide range of biophysical pathways that are emerging as key
processes in the regulation of cell function and fate. Many of these mechanisms involve the main structural
protein of the nucleus, lamin-A, which is abundant in stiff and mechanically stressed tissues such as striated
muscle, but is comparatively low in soft tissues such as the brain. Lamin-A’s increase with tissue stiffness
correlates strongly with elevated levels of collagen-I fibers in the extracellular matrix (ECM), but mechanisms
and functional consequences of any matrix-nucleus interplay remain unclear. Here, in the first set of studies,
we show that lamin-A and collagen-I exhibit tightly coupled mechano-sensitivity in the first functional
vertebrate organ, the beating embryonic heart, following a mechanism for tension-suppressed turnover that
confers mechano-protection against DNA damage. Lamin-A and collagen-I increase together as the heart
stiffens daily in embryogenesis, but their levels are found here to be modulated within 1-2 hours by rapid and
reversible perturbations of actomyosin contractility or ECM mechanics. In both intact hearts and in isolated
cardiomyocytes, suppression of lamin-A – combined with high contractile stress – results in i) increased
nuclear envelope rupture, ii) cytoplasmic mis-localization of DNA repair factors, and iii) accumulation of
DNA damage, which ultimately causes arrythmia. Embryonic cardiomyocytes on stiff collagen-coated gels
show increased lamin-A levels compared to those on soft gels, suggesting a cell-intrinsic protective mechanism
against DNA damage. Interphase phosphorylation of lamin-A emerges as a key posttranslational modification
that gives rise to such mechano-sensitivity, as phosphorylation and subsequent degradation of lamin-A are
suppressed with myosin-II-dependent cell spreading. This mechanism of tension-suppressed turnover is
further examined in a second set of studies, which focuses on the aging-associated lamin-A mutant, ‘progerin’.
Using a novel mass spectrometry-based workflow, we find that progerin phosphorylation in patient iPS-
derived cells is lower and less mechanosensitive compared to normal lamin-A and C, suggesting that a loss in
the nucleus’ ability to dynamically remodel in response to stress could contribute to genome instability and
aging. Mechanosensing by lamin-A is thus critical not only in embryonic development, but also in disease and
aging of mature tissues.
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ABSTRACT 
 

MECHANOSENSING BY THE NUCLEAR LAMINA:  

FROM EMBRYONIC DEVELOPMENT TO AGING 

Sangkyun Cho 

Dennis E. Discher 

 

‘Nuclear mechanosensing’ encompasses a wide range of biophysical pathways that are emerging 

as key processes in the regulation of cell function and fate. Many of these mechanisms involve 

the main structural protein of the nucleus, lamin-A, which is abundant in stiff and mechanically 

stressed tissues such as striated muscle, but is comparatively low in soft tissues such as the 

brain. Lamin-A’s increase with tissue stiffness correlates strongly with elevated levels of collagen-

I fibers in the extracellular matrix (ECM), but mechanisms and functional consequences of any 

matrix-nucleus interplay remain unclear. Here, in the first set of studies, we show that lamin-A 

and collagen-I exhibit tightly coupled mechano-sensitivity in the first functional vertebrate organ, 

the beating embryonic heart, following a mechanism for tension-suppressed turnover that confers 

mechano-protection against DNA damage. Lamin-A and collagen-I increase together as the heart 

stiffens daily in embryogenesis, but their levels are found here to be modulated within 1-2 hours 

by rapid and reversible perturbations of actomyosin contractility or ECM mechanics. In both intact 

hearts and in isolated cardiomyocytes, suppression of lamin-A – combined with high contractile 

stress – results in i) increased nuclear envelope rupture, ii) cytoplasmic mis-localization of DNA 

repair factors, and iii) accumulation of DNA damage, which ultimately causes arrythmia. 

Embryonic cardiomyocytes on stiff collagen-coated gels show increased lamin-A levels compared 

to those on soft gels, suggesting a cell-intrinsic protective mechanism against DNA damage. 

Interphase phosphorylation of lamin-A emerges as a key posttranslational modification that gives 

rise to such mechano-sensitivity, as phosphorylation and subsequent degradation of lamin-A are 

suppressed with myosin-II-dependent cell spreading. This mechanism of tension-suppressed 

turnover is further examined in a second set of studies, which focuses on the aging-associated 
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lamin-A mutant, ‘progerin’. Using a novel mass spectrometry-based workflow, we find that 

progerin phosphorylation in patient iPS-derived cells is lower and less mechanosensitive 

compared to normal lamin-A and C, suggesting that a loss in the nucleus’ ability to dynamically 

remodel in response to stress could contribute to genome instability and aging.  Mechanosensing 

by lamin-A is thus critical not only in embryonic development, but also in disease and aging of 

mature tissues. 
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GLOSSARY 

Acronym  Full term/name 

AGN Antagonist to retinoic acid 

BSA Bovine serum albumin 

CM Cardiomyocyte 

Col’ase Collagenase 

DCM Dilated cardiomyopathy 

ECM Extracellular matrix 

EM Electron microscopy 

ER Endoplasmic reticulum 

FCH Familial cardiac hypertrophy 

FEA-MS Fine excision-alignment mass spectrometry 

GFP Green fluorescent protein 

HCC Hepatocellular Carcinoma 

HCM Hypertrophic cardiomyopathy 

HGPS Hutchinson-Gilford progeria syndrome 

IF Immunofluorescence 

INM Inner nuclear membrane 

iPS Induced pluripotent stem cell 

LINC Linker of nucleoskeleton and cytoskeleton 

MMP Matrix metalloprotease 

MS (LC-MS/MS) Mass spectrometry (liquid chromatography-tandem mass spectrometry) 

MSC Mesenchymal stem cell 

ONM Outer nuclear membrane 

PBS Phosphate buffered saline 

pSer Phosphorylated serine 

PTM Post-translational modification 

RA Retinoic acid 

ROCK Rho-associated protein kinase 

SRF Serum response factor 

SUN1/2 SUN domain-containing protein 1/2 

TGM Transglutaminase 

YAP/TAZ Yes-associated protein / transcriptional coactivator with PDZ-binding motif 

 
Table 1. Glossary of terms and abbreviations 
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CHAPTER 1  
Mechanosensing by the nucleus:  
from pathways to scaling relationships 
 

This chapter appears in Journal of Cell Biology 10.1083/jcb.201610042 (2017),  
and in Annual Reviews of Biophysics 46:295-315 (2017) 
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Abstract 

The nucleus is linked mechanically to the extracellular matrix (ECM) via multiple polymers that 

transmit forces to the nuclear envelope and into the nuclear interior. Here, we review some of the 

emerging mechanisms of nuclear mechanosensing, which range from changes in protein 

conformation and transcription factor localization to chromosome reorganization and membrane 

dilation up to rupture. Nuclear mechanosensing encompasses biophysically complex pathways 

that often converge on the main structural proteins of the nucleus, the lamins. We also perform 

meta-analyses of public transcriptomics and proteomics data, which indicate that some of the 

mechanosensing pathways relaying signals from the collagen matrix to the nucleus apply to a 

broad range of species, tissues, and diseases. 
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1.1 Introduction 

The physical properties of tissues depend on the cells that comprise them and seem to be 

affected by tissue use. For example, muscle, cartilage, and bone when suitably exercised 

generate or resist mechanical forces that can be many times their own weights, and so it is 

understandable that these tissues and their cells require some stiffness or rigidity to maintain their 

form under high stress. Brain and marrow, in contrast, are protected from external stress by bone, 

and so perhaps one reason they are soft is that they simply do not need to be stiff to resist stress. 

It is now reasonably well-established that cells have the ability to sense and respond to 

mechanical forces of varying magnitude, direction, and frequency (Ingber, 2006). Since the 

largest organelle of a cell is its nucleus, it is also plausible that the nucleus has a similar ability to 

‘mechanosense’ the tissue microenvironment. Forces and resistance external to nuclei are 

increasingly understood to affect processes ranging from protein conformation and assembly, to 

localization of transcription factors, chromosome organization, and nuclear envelope dilation up to 

rupture – all of which might affect gene expression (Figure 1.1). 

Tissue stiffness is molecularly determined by the most abundant proteins in vertebrates, 

the helical fibrillar collagens of the extracellular matrix (ECM). Cells interact physically with the 

ECM as the cytoskeleton exerts stress on the ECM via adhesions, and this stress is sufficient to 

alter the morphologies of cells (Discher et al., 2005; Marganski et al., 2003) and their nuclei (Dahl 

et al., 2008; Khatau et al., 2009; Kim et al., 2014a; Kim et al., 2015; Versaevel et al., 2012). With 

soft ECM, most normal cell types downregulate their actin-myosin contractile machinery and exert 

much less tension than with stiff ECM. Importantly, cytoskeleton-induced stresses on matrix 

outside of the cell puts an equal-but-opposite cytoskeletal stress on the nucleus inside (Alam et 

al., 2015; Chancellor et al., 2010; Lovett et al., 2013) – as if the nucleus is just a spheroidal 

inclusion of ECM anchored within the cell by factors and assemblies that are functionally 

analogous to focal adhesions (which are well-known to be mechanosensitive). Indeed, much like 

the plasma membrane and cortex at the cell-ECM boundary, the nuclear envelope is a dynamic, 

force-sensitive interface between the cytoplasm and the chromatin. The nuclear envelope’s main 

structural ‘cortex’ is the lamina, composed of the helix-rich fibrillar lamin proteins (Goldman et al., 
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2002) that assemble just below the inner nuclear membrane (INM) (Gruenbaum et al., 2005). A-

type (lamin-A & C) and B-type (lamin-B1 & B2) lamins tether the nucleus to the cytoskeleton via 

the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex (Crisp et al., 2006). The nuclear 

envelope harbors many other proteins (Korfali et al., 2012; Schirmer et al., 2003), and some such 

as those of the LEM family (LAP2α, emerin, and MAN1) specifically associate with the lamins. 

Heterochromatin at the nuclear periphery (Paddy et al., 1990; Solovei et al., 2013) and a wide 

range of transcription factors (Lloyd et al., 2002; Margalit et al., 2005; Rodriguez et al., 2010; 

Wilson and Foisner, 2010) also interact with the lamina. The nuclear envelope and its lamina are 

thus well-positioned within the cell to serve as a multiplexing interface that can 

mechanotransduce in its regulation of the cell’s genome. 

Recently, new approaches that range from biophysical methods for probing nuclear 

mechanics to mass spectrometry (MS)-based characterization of protein modifications have 

expanded our understanding of nuclear mechanosensing. We start the review by discussing the 

recent insights these new technological advances have provided, in particular in the assessment 

of the direct physical effects that external force has on nuclear protein conformation and 

phosphorylation states. This is followed by summaries of stress-induced changes in localization 

of transcription factors, chromosome conformation and organization, nuclear envelope dilation, 

and finally, rupture. Links to embryonic development, disease, and aging are discussed, 

particularly in the context of the many ‘nuclear envelopathies’ that result from mutations in 

structural components of the nucleus. Lastly, a ‘big picture’ analysis of public transcriptome and 

proteome data for diverse tissues helps to establish stiffness-dependent scaling of key 

mechanosensory proteins as a broad, polymer physics foundation for nucleus mechanosensing. 
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1.2 Mechanosensing mechanisms and pathways 

1.2.1 Force-induced changes in protein conformation and phosphorylation 
states  

Mechanical stress exerted on or by the cell can deform proteins, and in some cases the stress-

induced conformational changes regulates the activity of enzymes acting on the protein. In the 

ECM, tension stabilizes collagen-I fibrils against enzymatic degradation by matrix 

metalloproteinase (Flynn et al., 2010). Given the primary role of collagen in maintaining the 

mechanical integrity of tissue, such resistance with stress seems reasonable. In the cytoskeleton, 

the Cas substrate domain protein p130Cas unfolds upon mechanical stretching, exposing cryptic 

tyrosine residues for subsequent phosphorylation by Src-family kinases (Sawada et al., 2006). In 

isolated nuclei, at least one domain of lamin-A/C unfolds when nuclei are sheared, as evidenced 

by increased reactivity of a cryptic cysteine residue (Cys522) (Swift et al., 2013). MS analyses 

further reveal that, in intact cells cultured on soft collagen-coated gels versus stiff gels, lamin-A/C 

phosphorylation increases at all of four different sites in either the head domain (Ser22) or tail 

domain (Ser390, Ser404, Thr424) (Swift et al., 2013). Importantly, culturing cells on soft gels 

results in rounded cells with wrinkled nuclei – as if there is excess membrane compared to cells 

grown on stiff gels that promote cell spreading and nuclear flattening. Total lamin-A/C levels 

ultimately reach lower steady-state levels (by about 50% or more) in cells cultured on soft gels 

(without affecting lamin-B1/B2), suggesting that low tension in the cell and nucleus destabilizes 

the lamin-A/C coiled-coil dimers, favoring phosphorylation by constitutive kinase(s) and promoting 

subsequent degradation (Figure 1.1A). Increased turnover is evident in highly phosphorylated, 

low molecular weight bands in immunoblots (Buxboim et al., 2014). ‘Stress-strengthening’ thus 

seems to apply to lamin-A/C as well as collagen-I, which are both fibrous assemblies of helical 

multimers. 

Interphase phosphorylation of nuclear lamins – as with cytoskeletal intermediate filament 

(IF) proteins (Chang and Goldman, 2004) – is thought to be a major mechanism responsible for 

regulating filament assembly and localization. Another recent study identified 20 phospho-sites 

within the lamin-A/C protein, eight of which were high phosphate-turnover sites located within 
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three ‘hot spot’ regions (Kochin et al., 2014). Imaging of phospho-mimetic mutants in interphase 

cells revealed that Ser22 and Ser392 (and to a lesser degree Ser390, Ser404, and Ser407) 

dominated the regulation of lamin assembly and dynamics. Phosphorylation favors dissociation 

from the lamina into the nucleoplasm and enhances nucleoplasmic mobility (Kochin et al., 2014) 

– although degraded forms of these constructs should be considered (Buxboim et al., 2014). 

Even the precursor prelamin-A degrades more upon Akt-mediated phosphorylation at Ser404 

(Figure 1.1A) (Bertacchini et al., 2013). Mitotic phosphorylation of lamins is a key driver of 

nuclear envelope disassembly in cells rounded for division (Gerace and Blobel, 1980; Heald and 

McKeon, 1990) and is 10-20 fold higher than during interphase (Buxboim et al., 2014). The higher 

phosphorylation of lamin-A/C (and lower total lamin-A/C levels) observed in cells cultured on soft 

gels is consistent with such cells being more rounded under low stress, although key kinases that 

are upregulated in mitosis (eg. CDK1) are unlikely to have a role in interphase (Buxboim et al., 

2014). These results collectively suggest that matrix stiffness-derived cell and nuclear tension 

induces conformational changes in lamin coiled-coil dimers (analogous to a rope being stretched 

from either side) (Fig. 1A & a), which sterically hinders access of kinases including Cdks, PKC, 

and Akt (Buxboim et al., 2014). This mechanism of tension-inhibited phosphorylation provides the 

biophysical basis for a ‘lose it or use it’ model (Dingal and Discher, 2014), whereby lamin-A/C is 

degraded under low-stress conditions but stabilized under high-stress conditions.  

Tensile forces can also alter phosphorylation states of emerin (Guilluy et al., 2014), 

another nuclear envelope protein that mediates the mechanical communication between the 

nucleus and the cytoplasm (Figure 1.1B&b). With isolated nuclei, application of sequential 

mechanical tension using magnetic tweezers on nesprin-1 antibody-coated beads led to stress-

stiffening and an increase in phosphorylation of emerin at Tyr74 and 95 by Src kinase. Mutation 

of these residues abolished the stiffening effect, indicating the importance of these phospho-sites 

for emerin mechanosensitivity. Intact cells on stiff substrates showed high emerin phosphorylation 

that was reduced with myosin-II inhibition by blebbistatin treatment. These results confirm nuclear 

regulation of signaling by intracellular tension. However, contrary to lamin-A/C, lower expression 

of emerin stiffens the nucleus, and stress application increases emerin phosphorylation. Indeed, 
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non-phosphorylatable mutants of Tyr74 and Tyr95 in intact cells led to fewer stress fibers, 

reduced migration, decreased nuclear localization of the transcription co-activators YAP/TAZ, and 

decreased transcription by the transcription factor serum response factor (SRF) that is a master 

regulator of numerous actin cytoskeletal proteins. Detailed mechanisms of how emerin 

phosphorylation initiates these downstream changes remain unclear, but these findings confirm 

the crucial role of nuclear envelope proteins not only in sensing mechanical stress but also in 

regulating cell behavior and phenotype. 

 

1.2.2 Nuclear localization of mechanosensitive transcription factors 

Cell tension modulates nuclear translocation of mobile regulators (e.g. transcription factors), at 

least in cellular mechanotransduction, if not direct mechanosensing by the nucleus (Figure 

1.1C&c) (Halder et al., 2012; Ho et al., 2013). Perhaps the best characterized 

mechanotransducing transcriptional regulators are YAP/TAZ, which influence growth in the 

canonical Hippo pathway and tend to localize to the nucleus in high-tension cells cultured on stiff 

substrates (Dupont et al., 2011). Although there have been many reports of exceptions and 

complexity in YAP/TAZ responses (Chopra et al., 2014; Swift et al., 2013), nuclear entry of 

YAP/TAZ can induce a wide range of downstream signaling cascades mediating complex cellular 

processes including differentiation (Dupont et al., 2011; Sun et al., 2014) and even contribute to 

storage of mechanical ‘memory’ of past ECM interactions (Yang et al., 2014a). Conversely, at 

least one transcription factor, NKX-2.5, enters the nucleus in response to low tension, and in the 

nucleus it functions as a ‘mechano-repressor’ to repress expression of genes contributing to high 

tension states (e.g. α-smooth muscle actin, ACTA2) (Dingal et al., 2015). Translocation in and out 

of the nucleus can be regulated by a variety of mechanisms including phosphorylation (of YAP1 

(Murphy et al., 2014)), but whether YAP/TAZ or NKX-2.5 interact directly or even indirectly with 

mechanosensitive factors in the nucleus or at the nuclear envelope remains unclear. 

Translocation into the nucleus can indeed result from stresses affecting specific 

interactions with nuclear envelope proteins (Ho et al., 2013; Swift et al., 2013). Stiff substrates 

drive translocation of the transcription factor RARγ (retinoic acid receptor gamma) into the 
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nucleus, a nuclear receptor modulated by retinoic acid agonists and antagonists, and entry drives 

lamin-A/C transcription (Figure 1.1D&d) (Swift et al., 2013). Immunoprecipitation followed by MS 

(IP-MS) identified several binding partners of RARγ including SUN2, which shuttles between the 

ER (endoplasmic reticulum) and the INM (inner nuclear membrane) (Figure 1.1A). 

Overexpression of SUN2 floods the ER with protein and results in rounded nuclei with decreased 

lamin-A/C levels and increased cytoplasmic RARγ. Conversely, high lamin-A/C effectively 

stabilizes nuclear retention of SUN2 and RARγ so that lamin-A/C ultimately regulates its own 

transcription. This feedback mechanism between the level of a protein, as regulated by tension 

on the nucleus, and the level of its transcript is illustrative of a ‘mechanobiological gene circuit’ 

(Swift et al., 2013). Additionally, lamin-A/C as well as emerin modulate nuclear actin 

polymerization, which controls nuclear localization and transcriptional activity of MKL1 as a co-

factor for the transcription factor SRF (Ho et al., 2013; Vartiainen et al., 2007).  Perinuclear actin 

polymerization increases with stress (Shao et al., 2015), which could influence the state of 

nuclear actin and SRF regulation.  High SRF drives expression of the actin-myosin cytoskeleton, 

which stresses ECM only up to a roughly constant strain in the matrix (Discher et al., 2005; 

Marganski et al., 2003), with excess actin-myosin turning over and thereby limiting SRF as well 

as nuclear tension, lamin-A/C, and nuclear RARγ. This current understanding suggests a tight 

coupling between a mechanobiological gene circuit for lamin-A/C and another for the actin-

myosin cytoskeleton – at least above a baseline level of cytoskeleton expression and tension that 

is independent of lamin-A/C (Buxboim et al., 2014). 

  

1.2.3 Stress-induced changes in chromatin organization and conformation 

Although considerable force (e.g. in the nanoNewton (nN) range) is typically required to 

significantly deform the nucleus in adherent mammalian cells (Neelam et al., 2015), recent 

reports show that even weak forces in the picoNewton range can affect histone acetylation states 

(Li et al., 2011), chromatin dynamics (Hampoelz et al., 2011), and protein-protein interactions 

(e.g. coilin-SMN complexes) in the nucleus (Poh et al., 2012). Physical stress could also cause 

global or local rearrangement of chromosomes (Figure 1.1E&e), affecting the distinct ‘territories’ 
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that chromosomes occupy (Cremer and Cremer, 2001). Transcriptionally active euchromatin 

largely resides in the center (and near nuclear pores) and transcriptionally repressed 

heterochromatin typically anchors to the lamina at the nuclear periphery, but also around nucleoli 

(Solovei et al., 2013). The organization of such domains is believed to influence differentiation; 

embryonic stem cells (ESCs) have no heterochromatin and exhibit more random and 

hyperdynamic arrangement of chromosome territories compared to differentiated cells (Maharana 

et al., 2016). Key chromatin proteins such as histones immobilize with differentiation (Meshorer et 

al., 2006), supporting the notion that chromosome arrangement becomes increasingly stabilized 

as cells commit to a lineage-specific fate. However, stresses that distort the nuclear envelope can 

directly re-organize chromosome domains, affecting transcriptional activity without any 

biochemical intermediates: in cell/nuclear flattening, for example, chromosome territories are 

seen to intermingle and overlap (Maharana et al., 2016). One possible explanation is that 

heterochromatin is tethered to nuclear envelope components which undergo structural 

remodeling in response to stress. Epitope masking in immunostaining of nuclear envelope 

components has long been a concern (Tunnah et al., 2005), and confocal imaging of cells in 

culture show that cell/nuclear compression induces basal-to-apical polarization of immunostained 

lamin-A/C (but not B-type lamins) (Ihalainen et al., 2015; Kim and Wirtz, 2015). This polarization 

could have its origins in the higher mobility of lamin-A/C relative to B-type lamins (Dahl et al., 

2006) combined perhaps with a stress-driven increase in lamin-A/C multimerization at the basal 

nuclear envelope (Ihalainen et al., 2015). Extrinsic mechanical strain has also been shown to 

enrich emerin and non-muscle myosin-IIa at the outer nuclear membrane (Le et al., 2016). 

Corresponding loss of emerin at the INM associates with altered global histone modification 

states, coupled to defective heterochromatin anchorage to the lamina.  

Single cell studies in culture have elegantly probed strain propagation into engineered 

chromatin from the cell surface (using magnetic beads) using a large GFP-tagged transgene.  

The transgene has been seen to stretch when the bead is pulled, which upregulates 

transcriptional activity (Figure 1.1E&e) (Tajik et al., 2016). Stress-induced extension of chromatin 

depended on the direction of the applied stress as well as acto-myosin contractility and the 
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presence of nuclear envelope proteins (e.g. lamins and LINC components). In addition, 2 min of 

17.5 Pa stress at the cell surface increased transgene expression 20%, whereas knockdown of 

lamins, SUNs, or emerin only gave 5% more expression or less (LBR knockdown had no effect in 

these cells), and basal expression of the transgene depended on acto-myosin contractility. 

Physical forces propagating to the nuclear envelope can thus cause global and local 

rearrangements of chromosome to affect transcriptional activity of genes. Similar results for some 

native loci within cells in native tissues – perhaps exploiting CRISP methods – could be extremely 

interesting. 

 

1.2.4 Nuclear envelope dilation and rupture 

Large changes in nuclear shape or increases in nuclear volume are expected to increase tension 

in the nuclear envelope. In zebrafish, tissue damage induces osmotic nuclear swelling, which 

causes dilation of the nuclear membrane and accumulation of cytosolic phospholipase A2 

(cPLA2) from the nucleoplasm to the INM (Enyedi et al., 2016). Activation of cPLA2 initiates lipid 

signaling, which results in the release of proinflammatory eicosanoids that play important roles in 

tissue damage repair. Perinuclear F-actin and the nuclear lamina help mediate this process, 

suggesting cPLA2 translocation and activation indeed depend on mechanical tension at the 

nuclear envelope. 

If lamin-A/C is compromised through knockdown or mutation, cells on stiff 2D substrates 

can apply sufficient tension to strain and even rupture the nuclear envelope transiently during 

interphase (Figure 1.1F) (De Vos et al., 2011; Tamiello et al., 2013; Vargas et al., 2012). Rupture 

has been seen to regulate localization of transcription factors (e.g. RELA, and OCT1) as well as 

constructs of GFP-NLS (nuclear localization sequence). Importantly, rupture is suppressed by 

culturing cells on soft gels (Tamiello et al., 2013) where cell tension is low (Discher et al., 2005; 

Marganski et al., 2003). Cell migration in 3D through narrow, rigid pores (~3 μm in diameter) can 

likewise stress the nucleus sufficiently to disrupt the lamina (Harada et al., 2014) and to increase 

DNA damage throughout the nucleus based on quantitation of repair foci of gH2AX  and 

phosphorylated ATM kinase as well as single cell electrophoreses (comet assays) (Irianto et al., 
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2016c). Transient rupture of GFP-NLS into the cytoplasm and local accumulations of the DNA 

repair factor GFP-53BP1 in the nucleus (Denais et al., 2016; Raab et al., 2016) has led to 

speculation that constitutive nucleases leak into the nucleus to cleave DNA during envelope 

rupture events. Alternatively, repair factors have been seen to leak into the cytoplasm after 

constricted migration (Irianto et al., 2016a; Irianto et al., 2016c), which is consistent with rupture-

induced loss of nuclear factors from lamin-A defective cells cultured on rigid substrates. For the 

latter cells, at least some DNA repair factors exhibit low steady state levels attributable to their 

degradation, and the slow repair of DNA damage caused by ionizing radiation can be rescued by 

overexpression of 53BP1 (Gonzalo 2014). Migration-induced DNA damage could be similar but 

more transient and could also involve additional mechanisms.  For example, the mobile DNA 

repair factors always segregate away from DNA which is squeezed and aligned in a pore (Irianto 

et al., 2016a). In addition, live-imaging of a chromatin locus in constricted nuclei demonstrated 

stretching by more than 10-fold (Irianto et al., 2016b), which could modulate repair of pre-existing 

breaks.  Regardless of mechanism, constricted migration of cancer cell clones has been shown 

by genotype and phenotype analyses to cause heritable changes affecting cell shape (Irianto et 

al., 2016c). 

Transient ruptures are not selective for entry/exit of specific proteins, but 

mechanosensitive factors that are already ‘primed’ to favor entry into the nucleus under high-

stress conditions (e.g. YAP1, RARγ, SRF) might bind accessible loci and accumulate more 

readily upon rupture than other factors. Subsequent upregulation of major structural and 

cytoskeletal genes might thus better equip a cell for resisting large mechanical strains, as seen 

with RARγ nuclear entry driving up LMNA expression to produce a stiffer nucleus (Swift et al., 

2013). Further kinetics-focused studies are required to assess whether such protective responses 

can indeed be observed in different contexts, especially with cells such as those of the immune 

system that undergo repetitive constrictive events throughout their lifetime. 
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1.3 Nuclear mechanosensing in development, disease, and 
 aging 

Early embryos are uniformly soft and compliant, with correspondingly low levels of collagenous 

ECM (Majkut et al., 2013). Nuclei of embryonic stem cells are likewise very soft with low lamin-

A/C (Eckersley-Maslin et al., 2013; Pajerowski et al., 2007). However, from an initial embryonic 

disk stiffness of ~0.3 kiloPascal (kPa, which is 100-fold softer than a gummy bear), the embryonic 

chick heart stiffens every day by ~0.3 kPa/day largely because of accumulation of collagenous 

ECM made by cardiac fibroblasts (Majkut et al., 2013). The brain, on the other hand, remains 

throughout life as soft and as low in collagen as the embryo. Surprisingly, Lmna-knockout mice 

survive the tissue stiffening of embryogenesis and generate all tissues, but fail to grow after birth 

(small skeleton) and die within weeks due to chronic injury and dystrophy in cardiac and skeletal 

muscle among other stiff tissues (Jahn et al., 2012; Kubben et al., 2011; Sullivan et al., 1999). 

The lack of a strict need for a robust nucleus during the earliest stages of development is 

understandable for ultra-soft embryonic tissue that does not generate or bear large mechanical 

stresses while protected inside the womb. In normal development, however, lamin-A/C is 

expressed following tissue differentiation and the timing of initial expression varies depending on 

the tissue considered in both chick embryos (Lehner et al., 1987) and mouse embryos (Rober et 

al., 1989). Interestingly, the lamin-B receptor (LBR) tends to show an opposite expression pattern 

from lamin-A/C, with either one able to control chromatin tethering at the envelope (Solovei et al., 

2013). One plausible model is that LBR is progressively displaced by lamin-A/C as tissue-specific 

stiffening in the embryo drives the expression of lamin-A/C. This mechano-regulation of lamin-A/C 

in the embryo is likely maintained throughout tissue maturation, until steady-state levels are 

reached in adulthood (Swift et al., 2013). 

Defects in nuclear mechanosensory proteins are linked to a large number of post-natal 

progressive diseases. Nearly all of these diseases affect stiff tissues including heart and skeletal 

muscle, as well as cartilage and bone, which generate and/or sustain considerable mechanical 

stress, but fat can also be affected as it has intermediate levels of collagens, and this suggests it 

bears some stress (Swift et al., 2013). Cardiomyopathies are common (Narula et al., 2012), with 

12 
 



more than 120 different LMNA mutations linked to dilated cardiomyopathy (DCM), characterized 

by progressive thinning of the ventricular wall and weakened cardiac contractility. Mutant forms of 

other nuclear envelope proteins including emerin, nesprins-1/2, Lap2α, and LUMA (Bengtsson 

and Otto, 2008; Bione et al., 1994; Taylor et al., 2005) also cause DCM and various forms of 

Emery-Dreifuss muscular dystrophy (EDMD) (Bengtsson and Otto, 2008; Bione et al., 1994; 

Bonne et al., 1999; Isermann and Lammerding, 2013; Zhang et al., 2007). Impaired 

mechanotransduction (Lammerding et al., 2005) and nuclear envelope fragility (with low lamin-

A/C levels (Narula et al., 2012)) are often considered to be part of the disease pathogenesis 

mechanism. The large number of different genetic diseases caused by mutations in nuclear 

envelope proteins (Worman, 2012) reflects the importance of nuclear mechanosensing in normal 

cell function. 

An inability of the nucleus to respond dynamically to mechanical stress might also 

contribute to normal and accelerated aging. In HGPS (Hutchinson-Gilford Progeria Syndrome), a 

rare premature aging disorder, a farnesylated mutant product of the LMNA gene called progerin 

causes the nucleus to be more brittle and ‘solid-like’ (as opposed to a viscous or ‘fluid-like’ 

lamina) (Dahl et al., 2006). FRAP (fluorescence recovery after photobleaching) experiments 

confirm that progerin is immobile compared to lamin-A/C (Dahl et al., 2006), consistent with an 

inability to flow and remodel dynamically in response to mechanical stress. Phosphorylation of 

progerin might also be lower than that of normal lamin-A/C (Moiseeva et al., 2016), supporting the 

notion that farnesylated lamins (i.e. prelamin-A, progerin, and B-type lamins) are more tightly 

anchored to the membrane and less soluble. HGPS cells also exhibit elevated levels of DNA 

damage (Burtner and Kennedy, 2010; Gonzalez-Suarez et al., 2009a; Liu et al., 2005; Liu et al., 

2006), which again suggests a mechanistic link between the mechanical properties of the nuclear 

envelope and the accumulation of DNA breaks. Indeed, other premature aging disorders that are 

also pan-tissue (e.g. Werner syndrome) result from mutations in DNA repair factors. Consistent 

with a shift from lamin-A/C to a more lamin-B-like progerin, the accelerated aging phenotype in 

HGPS patients and progeria mouse models is like that of lamin-A/C deficient mice in that they 

exhibit more pronounced effects on stiff tissues such as heart and skeletal muscle with 
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increasingly fibrotic, collagen-rich ECM and, for progeria mice, death in 3-8 months (Osorio et al., 

2011). Extrinsic feedback with ECM stiffness is likely to be defective and could be key to disease. 

Indeed, a mosaic mouse model in which 50% of cells in all tissues express farnesylated prelamin-

A is normal and long-lived which is surprising given that the homozygous mouse dies in weeks 

like other progeria and lamin-A null mice (de la Rosa et al., 2013b). Since culture studies further 

showed that ECM can rescue the proliferative defects of prelamin-A expressing fibroblasts (de la 

Rosa et al., 2013b), soft ECM could be suppressing nuclear stress, DNA damage, and the 

senescence that can result. Consistent with such outside-in signals, the same group also 

reported a mouse knockout for a collagenolytic protease (MMP14) that exhibits a progeria-like 

course of disease, including anomalous lamin-A/C, in which premature death was delayed by 

administration of retinoic acid (Gutierrez-Fernandez et al., 2015). Understanding the interplay of 

collagenous matrix stiffness and mechanosensitive lamin-A/C expression as modulated by 

retinoic acid is thus beginning to impact therapeutic approaches to aging-related diseases. 

 

1.4 ‘Universal’ stiffness-dependent scaling of lamin-A/C and 
 other nuclear envelope proteins 

1.4.1 Introduction 

Tissue microelasticity or ‘stiffness’ Et is measured in units of stress (kPa) and is largely 

determined by the concentration of collagens and other ECM components (Figure 1.1) (Brower et 

al., 2006). At the scale of a cell, the magnitude of Et spans at least two logs from soft brain or 

marrow to the very stiff osteoid that osteoblasts calcify to bone (Discher et al., 2009). Identifying 

log-scale variations is crucial to recognizing any potential polymer physics-based trends (Gennes, 

1979), and recent MS-based studies of adult mouse tissue proteomes (Swift et al., 2013) indeed 

indicate a power-law scaling relationship over several orders of magnitude between tissue 

stiffness (Et; units of kPa) and the molar concentration of collagen-I:  
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Et ~ [Collagen-I]n   with n ≈ 0.67  (Eq.1) 

 

where n is the scaling exponent, i.e. the slope that results from a log-log plot of the two quantities. 

Of course, such scaling expressions leave out proportionality factors (in units of kPa/Molarn) and 

ignore small offsets (e.g. critical concentrations to percolate a network), but they make clear that 

high levels of fibrillar collagen are found in stiffer tissues (e.g., cardiac/skeletal muscle or osteoid). 

Indeed, direct perturbation of collagens in intact tissue, either by enzymatic degradation or cross-

linking, generally changes tissue stiffness even for a soft embryonic heart (Majkut et al., 2013). 

As the most abundant proteins in our bodies, comprising more than 30% of all proteins present 

and 90% of the ECM (Shoulders and Raines, 2009; van der Rest and Garrone, 1991), it should 

not be surprising that tissue stiffness exhibits power-law scaling with the concentration of this 

prominent structural biopolymer. Scaling is seen for the stiffness of gels made from purified 

collagen-I (Yang et al., 2009) and is generally found for the physical properties of polymer 

networks (Gennes, 1979).  

In addition to collagenous ECM, MS-based proteomic profiling of ~100 of the most 

abundant structural proteins in adult mouse tissues (Swift et al., 2013) revealed that the molar 

concentration of A-type lamins scales over several orders of magnitude with tissue stiffness Et:  

 

[Lamin-A] ~ Et m   with m ≈ 0.7 (Eq.2) 

 

where m denotes the scaling exponent. This scaling expression quantifies upregulation of A-type 

lamins (by 30-fold from soft brain to rigid bone) in response to tissue stiffness, rather than 

indicating that nuclei contribute to tissue stiffness. B-type lamin levels remain relatively constant: 

for lamin-B1, m ~ 0.2, and for lamin-B2, m ~ 0.0. Thus, whereas collagens and other ECM 

proteins set the stiffness of the tissue, lamin-A/C at the nuclear envelope responds (as shown in 

Figure 1.1) to resist cell tension that is matrix-driven. Importantly, rearrangement of the equations 

above gives the following correlation between the concentrations of collagen and lamin-A: 
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[Lamin-A] ~ [Collagen-I]α   with α Lmna = m x n ≈ 0.45 

 

(Eq.3) 

where αLmna denotes the scaling exponent obtained by combining Eq. 1 and 2. Causality must be 

established of course by in-depth cell biological studies such as those reviewed and summarized 

schematically in Figure 1.1, but emerging trends might at least be sought in publicly available, 

standardized ‘-omics’ datasets. 

 

1.4.2 Meta-analysis of public –omics data 

As an example of a broad meta-analysis in today’s big data era (Figure 1.2), we focused on heart 

tissue. First, the heart offers the largest number of normal and diseased transcriptomic and/or 

proteomic datasets relevant to mechanosensation. Open-access datasets are available for 

normal development and aging, as well as fibrosis, myocardial injury, and hypertrophy. Second, 

datasets span a wide range of species, including mouse, human, rat, boar, dog, zebrafish (Barrett 

et al., 2013; Vizcaino et al., 2016). Once a dataset is selected, a first check on quality is provided 

by collagen-I’s two stoichiometric subunits (Figure 1.3): if collagen alpha-1(I) increases or 

decreases in level then collagen alpha-2(I) should do the same in proportion. Changes in 

collagen alpha-1(I) between samples in a dataset could be due to normal variation, experimental 

perturbation, or even perhaps experimental noise in other components of analysis.  However, 

provided one finds for a given dataset an exponent (α Col1a2) close to 1 and a reasonable fit (R2 > 

0.85) of the form:  

 

[Collagen alpha-2(I)] ~ [Collagen alpha-1(I)]α    with   α Col1a2  = 1.0 ± 0.2 (Eq.4) 

 

then the dataset passes a first validation. Of course it should be noted here that, while collagen-I 

seems a reasonable surrogate for tissue stiffness, most tissues in the body exhibit some 

heterogeneity in their mechanical properties (Koser et al., 2016), and other ECM proteins could 
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add complexity to rheology measurements. Therefore, in order to take into account different 

sources of variation, a large number of datasets should be carefully analyzed for a diversity of 

tissue samples and disease models before we can begin developing broad hypotheses.  

For illustration, transcript data for genes of interest from a mouse model of familial 

cardiac hypertrophy and fibrosis (Rajan et al., 2006) is plotted in log-log form versus Col1a1 

(Figure 1.4A). A statistically robust positive correlation between Col1a2 and Col1a1 (Pearson 

coefficient, r = 0.93), with a suitable slope (αCol1a2  ≈ 1.0) and goodness of fit (R2 = 0.87), provides 

some validation for further analysis. In comparison, Lmna increases more weakly (αLmna  ≈ 0.22; 

R2=0.81), but this is factor-of-two consistent with the proteomics-based scaling above (αLmna ≈ 

0.45) and thus supports the model wherein increased deposition of collagenous ECM results in 

correspondingly higher lamin-A/C levels. One might expect an increase in contractility (per Fig.1), 

and indeed non-muscle myosin-IIa (Myh9) and smooth muscle actin (Acta2) exhibit similar 

positive correlations. Not everything changes: Lmnb1 and Lmnb2, showed little to no correlation 

with collagen-I (r = 0.012 and 0.21, respectively), which is consistent with constant B-type lamin 

levels quantified for adult mouse tissue proteomes (Swift et al., 2013).  

Based on more than 20 datasets for heart, the scaling exponent for Lmna vs Col1a1 

converges to: αLmna = 0.3 ± 0.04 (Figure 1.4B). The majority of the highly diverse datasets 

(different species and perturbations) showed the expected collagen-I scaling of αCol1a2  ≈ 1.0, and 

were therefore included in the best estimate of αLmna. The implied stiffness-dependent scaling of 

lamin-A/C thus appears to be a highly conserved phenomenon, perhaps generalizable to a 

broader range of cell types and tissue/organ systems. Phylogenetic analyses have indeed 

indicated that lamins are the most ancient of the IF proteins (Dittmer and Misteli, 2011), and so it 

is sensible that, in animals, lamins have evolved and maintained a shared ability to 

mechanosense.  

Other nuclear envelope proteins that interact closely with lamins do not show the same 

scaling relationships with collagen-I (Figure 1.4C). For example, Sun1 and Sun2 remain constant 

in most datasets, with average scaling exponents of αSun1 = -0.05 and αSun2 = -0.007. The results 

for Sun2 message are consistent with past analyses that further showed the nuclear fraction of 
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Sun2 protein does scale with tissue stiffness (Swift et al., 2013); thus the mRNA understandably 

reflects the overall level of a factor in a cell, whereas proteins that partition between ER and 

nucleus (Sun’s) or between cytoplasm and nucleus (perhaps DNA repair factors) can exhibit 

nuclear fractions that are more revealing of mechanosensitivity. Emerin (Emd) correlates 

inversely with collagen-I (p < 0.05). This seems consistent with lower emerin expression in a 

stiffer nucleus (Guilluy et al., 2014). However, transcripts of ECM crosslinkers (e.g. LOX) (Figure 

1.5), Acta2 and Myh9 (readouts for basal cytoskeletal contractility), as well as Rarg 

(transcriptional regulator of Lmna) and (most weakly) Yap1 all scaled with collagenous ECM. 

Such positive scaling of transcripts does not prove causality – as emphasized above – but 

nonetheless supports the general model of mechanotransduction from ECM to nucleus, involving 

contractile strain as well as transcriptional activation (Figure 1.2C). The larger exponents in these 

datasets are likely to be the easiest to demonstrate as significant by cell biology methods. 

Conversely, if one discovers a relationship between transcripts in vitro that is not evident in such 

meta-analyses of real, 3D tissues, then many questions should be asked about the culture 

systems as well as the source(s) of the datasets. 

Proteomics datasets are currently less standardized than transcriptomics datasets, but 

two proteomics datasets for diverse adult tissues were examined. Both show the expected linear 

scaling of collagen subunits over many logs and are therefore reasonable for further meta-

analysis. For mouse (Swift et al., 2013), LMNA protein scales linearly with COL1A1 protein for 

softer tissue with low collagen, whereas for a larger range of higher collagen-I: α Lmna ≈ 0.3 (Figure 

1.4D). The unexpectedly low amount of lamin-A/C is most evident in brain, which is notable for 

having abundant miR-9 that represses lamin-A/C expression (Jung et al., 2012). However, the 

transition to weaker scaling suggests the miR-9 mechanism does not apply to stiffer tissues, 

although this requires deeper investigation. Additionally, because the weaker scaling in stiffer 

tissues applies to a larger range of data, an overall exponent of α Lmna = m x n ≈ 0.45 is close to 

the weighted average. For the one human dataset (Kim et al., 2014b), the lamin-A/C data is much 

noisier but yields a similar result: αLMNA ≈ 0.3. These results are thus reasonably consistent with 

transcriptomics analyses of heart, and therefore suggest some universality and robustness to the 

18 
 



stiffness-dependent scaling of lamin-A/C protein and message levels. Of course, all of this 

analysis of protein and mRNA levels in tissues merely motivates molecularly detailed cell 

biological studies of nuclear mechanosensing by the lamins among other nuclear components. 

 

1.5 Conclusions 

Many recent studies now demonstrate that the nuclear envelope as well as chromatin itself can 

sense and respond to mechanical forces exerted on or by the cell’s cytoskeleton. Nuclear 

mechanosensing is achieved via several pathways, including stress-induced changes in protein 

conformation (interaction with binding partners, e.g. enzymes), translocation of transcriptional 

regulators, chromosome conformation and organization, and membrane dilation and/or rupture. 

An -omics based meta-analysis suggests that at least some of these mechanosensitive 

processes, particularly those pertaining to the nuclear lamina, are applicable to a broad range of 

species, tissues, and diseases. Deeper insight into downstream effects will likely improve our 

basic understanding of how our cells and tissue are shaped by mechanical cues and might also 

potentiate novel approaches to therapy for the large number of disease linked to mutations of 

genes encoding part of the nuclear envelope. 
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Figure 1.1. Nuclear mechanosensing. 
Left and right sides indicate relaxed (soft) and mechanically stressed nuclei, respectively. (A & a) 
High nuclear tension may induce conformational changes in lamin coiled-coil dimers, leading to 
steric inhibition of access by kinases (Buxboim et al., 2014; Swift et al., 2013). In a relaxed 
nucleus, lamins are hyper-phosphorylated and solubilized into the nucleoplasm (as during cell 
division). Phospho-solubilized lamins may ultimately become degraded (Bertacchini et al., 2013). 
Tension-inhibited turnover of lamins is similar to that of collagen-I (Flynn et al., 2010), and is an 
example of structural proteins exhibiting ‘stress-strengthening’ properties. (B & b) Pulling on 
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nesprin-1 leads to phosphorylation of emerin by Src kinases (Guilluy et al., 2014), and results in 
stress-stiffening of the nucleus. Emerin phosphorylation is high in cells cultured on stiff substrates 
and regulates many downstream mechano-responses including formation of stress fibers, 
migration, localization of YAP/TAZ, and SRF transcription. (C & c) Mechanosensitive transcription 
factors such as YAP/TAZ translocate into the nucleus under stress to modulate gene expression 
(Dupont et al., 2011). (D & d) Mechanical stress leads to nuclear localization of RARγ, which 
directly regulates LMNA transcription. Nuclear translocation of RARγ is facilitated by its 
interactions with SUN2 as well as lamin-A/C, suggesting a feedback mechanism wherein the 
protein product lamin-A/C regulates its own transcription (Swift et al., 2013). (E & e) Application of 
mechanical force may lead to changes in chromatin conformation (e.g., local stretching of genes), 
thereby altering transcriptional activity (Tajik et al., 2016). Mechanical perturbation can also affect 
the global arrangement of chromosome ‘territories’ (Maharana et al., 2016). (F) High tension can 
induce membrane dilation and in extreme cases may lead to transient ruptures, allowing for the 
exchange (and possible mislocalization) of nucleoplasmic and cytoplasmic content.  
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Figure 1.2. Tissue-based hypothesis development and testing in the Big Data Era. 
(A) Beginning with an idea rooted in biophysics, such as tissue stiffness increasing with tissue 
levels of the abundant biopolymer collagen-I, one can query publicly available ’omics data sets for 
three-dimensional (3D) tissue and seek out other factors that correlate with collagen-I. Such data 
sets are standardized and provide relative concentrations or sequence information, or both. 
Scaling relations as power laws in log–log plots would be particularly sensible for relationships 
between polymers, given collagen as an implicit expression of stiffness. The sketched plot 
illustrates, for example, a gene expression data set in which two genes increase in relative level 
when plotted against the relative level of a third gene, whereas one gene remains relatively 
constant. Self-generated ’omics data or other public data sets, or both, can provide a test of the 
scaling relationship. (B) Reproducible correlations across ’omics analyses might agree, for 
example, with an increase in lamin-A (LMNA) from soft tissue (brain) to stiff tissue (heart), 
whereas the B-type lamins (LMNB1 and LMNB2) remain constant, as detected by quantitative 
mass spectrometry (Swift et al., 2013). (C) To understand molecular mechanisms for such 
relationships, reductionist approaches include low dimensionality and sparse cultures on 2D gels 
of controlled stiffness that are coated equally with collagen-I for cell adhesion.With such systems, 
studies of mesenchymal stem cells show that lamin-A increases (in relative intensity) from soft 
gels to stiff gels, with mechanisms involving cytoskeletal stress on the nucleus stabilizing lamin-A 
against phosphorylation and degradation (Buxboim et al., 2014).  
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Figure 1.3. Scaling of collagen-I and lamin-A proteins with cell-scale tissue stiffness 
compared with transcriptome data mined for similar scaling relationships. 
(A,B) As measured with a variety of microtools at the scale of cells, tissue microelasticity or 
stiffness increased by two orders of magnitude for various species tested (see references in 
(Swift et al., 2013)). For bones such as femur and skull, the stiffness of precalcified bone (called 
osteoid) is plotted. As a reference, a gummy bear is approximately 70 kPa. Quantitative mass 
spectrometry done on mouse tissue was used to determine the relative amounts of collagen-I 
subunits. The two subunits exhibited similar scaling on the log–log plot because they form a 
stoichiometric complex as they assemble into collagen-I fibers. The average level for heart and 
brain tissue was defined as 100%. For the lamins quantified in the same studies, lamin-A (LMNA) 
is normalized to the B-type lamins (LMNB1 and LMNB2) that remain relatively constant across 
tissues. Nuclear stiffness increases with lamin-A and, hence, with tissue stiffness. (C) A screen 
snapshot from the public transcriptome database GEO (Gene Expression Omnibus, accessible 
via the US National Institutes of Health at https://www.ncbi.nlm.nih.gov/geo/) shows the 
expression of Col1a2 (top) in nine different mouse hearts and Col1a1 (middle) in the same hearts. 
A similar pattern of expression is evident between these two, whereas Cd47 (bottom) is a 
miscellaneous gene that exhibits a very different pattern of expression among samples. (D) Plots 
of Col1a2 against Col1a1 for such data sets reveal a linear scaling consistent with stoichiometric 
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association at the protein level. Lamin-A transcript (Lmna) also scales with Col1a1, but the 
scaling is much weaker with a log–log slope of approximately 0.3 across these two data sets from 
mouse hearts. Such weak scaling of mRNA is consistent with the weak scaling of protein, as can 
be deduced from panels A and B. 
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Figure 1.4. Meta-analysis of universal stiffness-dependent scaling of lamin-A/C and other 
nuclear envelope proteins. 
Published –omics datasets of relevance were collected from various open-access databases 
(Barrett et al., 2013; Vizcaino et al., 2016), and as a first simple check for quantitative reliability, 
log-log plots of Col1a1 vs Col1a2 were generated for each dataset, since the two should in 
principle correlate well with each other as components of collagen’s stoichiometric structure. Only 
those datasets which gave Col1a2 scaling exponents (=slopes on a log-log plot) of αCol1a2 = 1 ± 
0.2, with high R2 >0.85 were selected for analysis, with the assumption that a robust correlation 
between Col1a1 and Col1a2 indicates minimal error arising from sample preparation and/or 
normalization. Such pre-processing of data provides an added advantage in that type I collagen 
content becomes a proxy for tissue stiffness (Swift et al., 2013). Once reliable datasets were 
identified, other proteins of interest (e.g. nuclear lamins) were plotted against Col1a1 to determine 
scaling exponents relative to that of Col1a2. (A) Representative transcriptomics dataset for 
mouse model of familial cardiac hypertrophy (FCH) (Rajan et al., 2006) illustrating robust scaling 
between Col1a1 and Col1a2 (αCol1a2 = 0.95). Lmna and Myh9, among many other key 
mechanosensory proteins/genes also correlate with Col1a1, while Lmnb1 and Lmnb2 remain 
constant. Samples were parsed into three groups: “normal”, “limited”, and “severe” hypertrophy. 
(B) The average scaling exponent for Lmna (αLmna) normalized to that for Col1a2 (αCol1a2) 
obtained from ~25 transcriptomics datasets is equal to <αLmna> = 0.3. Datasets span embryonic, 
fetal, and adult cardiac tissue samples from six different species (human (h), mouse (m), rat (r), 
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zebrafish (z), boar (b), dog (d)) and at least five different disease models including DCM, 
hypertrophy, fibrosis, and myocardial injury. Datasets which are deemed most quantitatively 
reliable with 0.8 < αCol1a2 < 1.2 & R2 > 0.85 are in red. (C) Average scaling exponents (αy) of 
several key proteins involved in nucleus mechanosensing. Col1a2, Lmna, Emd, Acta2, Myh9, 
Rarg, and Yap1 have statistically non-zero exponents. (***p<0.0001, **p<0.01, *p<0.05). (D) 
Mass-spectrometry based profiling of mouse (upper panel) and human (lower panel) tissue 
proteomes show comparable scaling of LMNA with collagen-I over several orders of magnitude 
(αLMNA ~ 0.3), consistent with αLmna determined for heart transcriptomes above. 
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Figure 1.5. Average scaling exponents (vs Col1a1) of ECM crosslinkers, MMPs, 
cytoskeleton, nuclear envelope proteins, and transcription factors 
Col1a2 scales most strongly with Col1a1 (αCol1a2 ~ 1), as expected for an obligate heterotrimer 
triple helix. Matrix crosslinkers including various Lox isoforms also scale with Type-I collagens. 
Cytoskeletal components such as Acta2 and Myh9 generally follow slightly weaker scaling, as 
does Lmna (αLmna ~ 0.3).  
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CHAPTER 2  
Mechanosensing to protect the genome during 
development 
 

The work presented in this Chapter is currently in preparation for submission. 
 
Preliminary imaging of nuclear deformation was performed by Dr. Stephanie Majkut. 
Confocal imaging of hearts was done by Dr. Jerome Irianto and Dr. Ben Prosser. 
Embryonic heart / CM isolation and culture were performed by Amal Abbas, Kenneth Vogel, and 
Manasvita Vashisth. 
A549 phsphomimetic mutant work was performed by Manasvita Vashisth. 
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Abstract 

Stiff adult tissues such as striated muscle bear high mechanical stress and have an abundance of 

collagen-I fibers in the extracellular matrix (ECM) and lamin-A filaments in the nucleus, but 

mechanisms and functional consequences of any matrix-nucleus interplay remain obscure. Here, 

lamin-A and collagen-I exhibit tightly coupled mechano-sensitivity in the first vertebrate organ, the 

heart, with a ‘use it or lose it’ mechanism for tension-suppressed turnover that confers mechano-

protection against DNA damage. Lamin-A and collagen-I levels increase in parallel as the heart 

stiffens progressively in embryonic development, but their levels adapt within hours to rapid and 

reversible perturbations of actomyosin contractility or ECM mechanics. In both intact hearts and 

in human iPS-derived cardiomyocyte cultures, low lamin-A nuclei rupture with high contractile 

stress, with cytoplasmic mis-localization of DNA repair factors and accumulation of DNA damage 

– which causes aberrant beating. Embryonic cardiomyocyte cultures show interphase 

phosphorylation and subsequent turnover of lamin-A are suppressed with myosin-II-dependent 

cell/nuclear spreading on stiff collagen-I-coated gels, compared to those cultured on soft gels. 

Inhibition of actomyosin stress conversely results in increased phosphorylation of lamin-A, 

favoring its nucleoplasmic solubilization and degradation by intracellular matrix-

metalloproteinase-2 (MMP2). Nuclear stress-sensing by lamin-A thus mechano-protects the 

genome. 
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2.1 Introduction 

In culture, matrix elasticity (or ‘stiffness’, in units of kPa) regulates cell spreading and actomyosin 

forces within a few hours of cell attachment and eventually affects a variety of nucleus-dependent 

processes (Choquet et al., 1997; Engler et al., 2006; Paszek et al., 2005; Pelham and Wang, 

1997; Trichet et al., 2012; Wang and Ingber, 1994). Mechano-sensitive proteins drive many of 

such responses, exhibiting dynamic changes in conformation (Sawada et al., 2006; Swift et al., 

2013), post-translational modification (PTM) states (Buxboim et al., 2014; Guilluy et al., 2014), 

subcellular localization (Dingal et al., 2015; Dupont et al., 2011; Elosegui-Artola et al., 2017; Ho et 

al., 2013), and even protease-driven turnover (Dingal and Discher, 2014; Flynn et al., 2010) with 

increased or decreased mechanical load. Within native tissues, however, whether and how ECM, 

cells, and nuclei respond to microenvironment mechanics remains poorly studied, in part due to a 

lack of model organ systems with readily tunable mechanical phenotypes.  

Early chick hearts beat spontaneously for days after isolation from embryos without any 

external pacemaking (Figure 2.1A), and the contractile beating of these hearts has long been 

known to be sensitive to pressure (Rajala et al., 1976), as well as to matrix stiffening (crosslinking 

by transglutaminase) or softening (by collagenase) (Majkut et al., 2013). Sparse cultures of 

cardiomyocytes (CMs) on collagen-coated gels confirm an optimal stiffness for contractile beating 

on collagen-coated gels that match native heart stiffness (Engler et al., 2008; Jacot et al., 2008; 

Majkut et al., 2013), revealing a cell-intrinsic mechanosensitivity consistent with the mathematics 

of force-driven sarcomere registration (Dasbiswas et al., 2015; Friedrich et al., 2011). Substrate 

stiffness further regulates CM differentiation and maturation in vitro (Przybyla et al., 2016; 

Tzatzalos et al., 2016; Yang et al., 2010); however, perturbations to tissue mechanics have no 

known effects on protein levels or states in the intact heart. With the contractile cytoskeleton 

surrounding the nucleus as it does in many cell types (Figure 2.1A), actomyosin forces could 

impact nuclear structure(s) or even DNA, but such effects remain unknown in development.  

Lamin-A filaments in the nuclear lamina surround chromatin (Gruenbaum et al., 2005; 

Shimi et al., 2015; Turgay et al., 2017) and have long been known to be developmentally 

regulated in expression level. While B-type lamins are constitutively expressed across tissues, 
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lamin-A is ‘absent’ in early chick and mouse embryos and increases in a tissue-dependent 

manner (Lehner et al., 1987; Solovei et al., 2013; Stewart and Burke, 1987), with many LMNA 

mutations or deletions resulting in evident ‘laminopathies’ shortly after birth (Hennekam, 2006; 

Worman and Bonne, 2007). In normal adults, lamin-A is most abundant in stiff and mechanically 

stressed tissues such as bone and heart, compared to soft tissues such as brain (Swift et al., 

2013). In culture, lamin-A is likewise higher in cells on stiff collagen-coated gels relative to soft 

gels, as lamin-A filaments become stabilized against degradation under high myosin-II tension 

(Buxboim, et al., 2014). Degradation of lamin-A during interphase depends on its phosphorylation 

and nucleoplasmic solubilization by a CDK1-like kinase among other kinases (Bertacchini et al., 

2013; Buxboim et al., 2014; Kochin et al., 2014; Naeem et al., 2015; Swift et al., 2013; Torvaldson 

et al., 2015), and phosphorylation of lamin-A has been shown to be mediated by mechanical 

stress on the nucleus (Buxboim et al., 2014; Swift et al., 2013). Since the earliest embryo is very 

soft and the embryonic heart stiffens daily with increasing deposition of collagenous ECM (Majkut 

et al., 2013), large increases in lamin-A in development would be consistent with 

mechanosensing in adult cells and should give rise to a stiffer nucleus that better resists stress 

(Dahl et al., 2008; Lammerding et al., 2006; Osmanagic-Myers et al., 2015; Pajerowski et al., 

2007). Early heart and muscle defects in Lmna-knockout neonatal mice (Kubben et al., 2011; 

Sullivan et al., 1999) might indeed be explained by an inability to ‘mechano-protect’ chromatin 

from increasing mechanical load during development – but lamin-A’s primary function in 

embryogenesis remains debated (Burke and Stewart, 2013; Constantinescu et al., 2006), 

perhaps because compensatory processes obscure molecular mechanisms that are best studied 

on short time scales.   

DNA damage is generally implicated in heart failure (Higo et al., 2017) and while damage 

can in principle be repaired over hours by DNA repair factors that are well-characterized in cancer 

(Burma et al., 2001; Soubeyrand et al., 2010), excess accumulation of DNA breaks in early 

embryonic development can result in chromosome instabilities (Vanneste et al., 2009), de novo 

mutations (Peters et al., 2015), as well as tissue malformation (Hales, 2005). DNA damage in 

post-natal hearts also triggers a switch from proliferative regeneration toward senescence 
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(Puente et al., 2014) and is clearly increased in many laminopathies (di Masi et al., 2008; Liu et 

al., 2005) in which cells expressing defective lamin-A likewise undergo premature 

senescence/apoptosis. The effects are surprisingly rescued upon culture on almost any type of 

ECM (de La Rosa et al., 2013a; Hernandez et al., 2010) and by inhibition of cytoskeletal stress 

(Larrieu et al., 2014). Mechanical stress exerted on nuclei reportedly regulates the activity of key 

DNA repair factors (e.g. ATR (Kumar et al., 2014)) – but matrix stiffness, cytoskeletal contractility, 

and lamin-A-based mechanosensing have yet to be considered in relation to DNA damage. Here, 

mechanobiological studies of embryonic hearts reveals lamin-A’s accumulation not only begins 

far earlier in development than previously recognized, but also proves to be mechano-protective 

against DNA damage. Rapid perturbations to beating hearts as well as isolated CMs show lamin-

A protein levels adjust dynamically to myosin-II tension and matrix mechanics, with a surprising 

intracellular role for matrix metalloprotease-2 (MMP2).  

 

 

2.2 Results 
 

2.2.1 Lamin-A effectively stiffens nuclei during development and increases 
with collagen-I 

To first assess within a developing heart what physically happens to the nuclei of CMs, nuclear 

deformations were imaged in beating hearts after isolation at embryonic day-4 (E4, or 

Hamburger-Hamilton stage 23-24 (HH23-24) (Martinsen, 2005)). Transfection of hearts with GFP-

LMNA or mCherry-Histone-H2B facilitated the imaging as each ~1 Hz contraction of heart tissue 

was seen to strain individual CM nuclei by ~5-8% (Figure 2.1B-i,ii). However, GFP-LMNA nuclei 

deformed 2~3-fold less than control (Figure 2.1B-iii), consistent with many in vitro studies 

showing that lamin-A stiffens the nucleus as it confers resistance to nuclear stress (Lammerding 

et al., 2006; Pajerowski et al., 2007). Given that the heart stiffens rapidly during development 

while beating strains remain relatively constant (Majkut et al., 2013), the average stress in CMs 
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and their nuclei likely increases over time, and any accumulation of endogenous lamin-A – if 

expressed at all – would confer greater resistance to nuclear stress.  

 To determine rigorously whether endogenous lamin-A is expressed in the developing 

heart, lysates from various developmental stages (E4, E6, and E10) were separated based on 

molecular weight (MW) by SDS-PAGE, and the MW range spanning lamins (73 ± 10 kDa) was 

analyzed by mass spectrometry (LC-MS/MS; ‘MS’ hereafter). Detection of 29 unique peptides 

across the entire length of lamin-A in E4 hearts removed any doubt of its early expression 

(Figure 2.1C). Many more proteins were detected by MS in the E4, E6, E10 lysates (Figure 

2.1D, Figure A.1A), and when ranked based on fold change relative to mean expression, 

collagen-I (α-1,2) ranked at the top with a >10-fold increase from E4 to E10. MS measurements 

of collagen-I were calibrated with spike-ins of known amounts of purified collagen-I to estimate 

absolute abundance (μg per heart, Figure A.1B). Collagen-I is of course the most abundant 

protein in animals and is a major determinant of tissue stiffness (Shoulders and Raines, 2009), so 

its increase together with a dozen other structural proteins of the ECM (Fig.S1A,B) is consistent 

with heart stiffening in development (Figure A.1C) (Butcher et al., 2007; Lahmers et al., 2004; 

Majkut et al., 2013). Similarly upregulated were mechanosensitive proteins at the interface 

between adhesions and actomyosin cytoskeleton (e.g. paxillin (Zaidel-Bar et al., 2007), vinculin 

(del Rio et al., 2009; Huang et al., 2017; Pasapera et al., 2010), etc.) (Fig.1D, S1A), which 

suggests increased adhesion and contractile stress (Geiger et al., 2009).  

Lamin-A likewise ranked in the top 10% of upregulated proteins while B-type lamins 

remained relatively constant, consistent with lamin-A-specific mechanosensitivity in adult cells 

(Figure A.1D, E) (Swift et al., 2013). The increase in Lamin-A:B ratio from E4 to E10, when 

plotted against MS-calibrated measurements of collagen-I (Figure 2.1E), fit a power-law that also 

goes through E18 data obtained from other studies (Vizcaino et al., 2016), and the best-fit 

exponent α = 0.3 over several orders of magnitude agrees with a similar analysis of diverse tissue 

proteomes (α ~ 0.4) (Cho et al., 2017). Such trends in lamin-A:B were validated by confocal 

immunofluorescence of embryonic heart tissue (Fig.1E, top inset) as well as by immunoblot 

(Figure 2.1F, upper inset; Figure A.1F). Lamin-A:B plotted versus stiffness Et of embryonic 
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hearts measured by micropipette aspiration (Figure 2.1F, lower inset) likewise fit a power-law, 

and the scaling exponent α ~ 0.7 was again consistent with that for adult tissues (α ~ 0.6 (Swift et 

al., 2013)). Measurements of lamin-A:B and stiffness for E10 brain (very soft) and E10 liver 

(moderately stiff) also fit the trends per immunoblot (Figure 2.1F & Figure A.1G). Importantly, 

addition of collagenase to E4 hearts for 45 min softened tissue (by ~40%) and resulted in 

correspondingly lower lamin-A levels, providing the first indication that collagens and lamin-A 

might be causally coupled. 

 

2.2.2 ‘Use it or lose it’ scaling of lamin-A with collagen-I and perturbations 
to scaling 

Equations for a ‘use it or lose it’ mechanism of protein turnover, in which tension suppresses the 

degradation of filamentous proteins, have recently provided working models that fit the time-

dependent increases in myosin-II and collagen-I in chick heart development (Dingal and Discher, 

2014), as well as the steady-state scaling of lamin-A in adult tissues with actomyosin tension and 

tissue stiffness (α ~ 0.7) (Swift et al., 2013). The scaling of lamin-A with collagen-I in developing 

hearts (α = 0.3, Fig.1E) was therefore also reasonably well-fit using the same working model 

(Figure 2.2E, Figure A.2). Various terms in these equations further suggested moderate 

decreases in lamin-A and/or collagen levels upon inhibition of myosin-II tension (e.g. by 

blebbistatin) and with modulation (or not) by drugs affecting collagen matrix, 

transcription/translation, matrix degradation (e.g. by proteases), or lamin-A phosphorylation. 

To assess some of the expected changes in protein levels, broader profiling by MS was 

performed on E4 hearts treated with collagenase (45 min) or blebbistatin (1 h) in combination or 

not with multiple drugs (Figure 2.3A). Heatmaps for a subset of ECM, cytoskeletal, and nuclear 

proteins illustrate responses to collagenase, blebbistatin, and collagenase + blebbistatin that are 

all very similar, with rapid and large decreases in collagen-I subunits, vinculin, and lamin-A (30-

40% as confirmed by immunoblot, Figure 2.3B). Little to no change was observed in most of the 

other detected proteins across the proteome, including matrix-metalloproteinase MMP2, 

cytoskeletal proteins (cardiac myosin-II, MYH7B; vimentin, VIM), B-type lamins, and the DNA 
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repair factor KU70 (XRCC6). Importantly, similar results were seen even with addition of a protein 

translation inhibitor (‘Trx-i': cycloheximide), except for decreases in a few abundant cytoskeletal 

proteins (suggesting these are rapidly regulated by transcription/translation, as reported for β-

actin (Katz et al., 2012)). Decreased collagen-I and lamin-A with blebbistatin and/or collagenase 

were nonetheless robust and strictly a matter of protein dynamics. 

Combining blebbistatin with a broad inhibitor of matrix-metalloproteinases (‘MMP-i': 

GM6001) prevented degradation of collagen-I (per MS of Figure 2.3A), whereas blebbistatin plus 

a CDK inhibitor (‘CDK-i': RO3306 at >3.5 μM doses to inhibit many CDKs) that limits interphase 

phosphorylation of lamin-A (e.g. phosphorylation at serine 22 normalized to total lamin-A: 

‘pSer22/lamin-A’ in Figure 2.3B) rescued the blebbistatin-induced decrease in lamin-A levels. 

Vinculin’s decrease remained consistent with inhibition of actomyosin tension regardless of MMP-

i (Figure 2.3A). Surprisingly, MMP-i treatment also rescued the blebbistatin-induced decrease in 

lamin-A with effects similar to CDK-i (Figure 2.3), suggesting lamin-A’s mechanosensing 

mechanisms might be regulated by collagen-I independent of myosin-II, or by MMPs directly. 

 

2.2.3 Contractility and collagen perturbations rapidly impact beating, 
lamin-A, and DNA breaks 

Before addressing how MMPs might modulate lamin-A levels, we first sought to clarify the 

functional consequences as well as the kinetics of lamin-A mechanosensing. Intact E4 hearts 

were therefore treated with blebbistatin for varying durations of time. Blebbistatin caused hearts 

to stop beating within minutes (Figure 2.4A, Figure A.3A), consistent with rapid inhibition of 

myosin-II contractility. The effects were reversible, however, as beating recovered within minutes 

after washout of drug (Figure 2.4A right inset & Figure A.3A) or upon addition of the cardiac 

myosin-II activator omecamtiv mecarbil (‘OM’; which is in Phase-III clinical trials for treating 

chronic heart failure: #NCT02929329 in clinicaltrials.gov). Lamin-A immunoblots revealed a decay 

constant of ~45 min (Figure 2.4B & C-i) which was consistent with MS quantitation (Figure 2.3A) 

as well as with results for an inhibitor specific for cardiac myosin-II, ‘MYK’ (which is in Phase-II 

clinical trials to treat non-obstructive hypertrophic cardiomyopathy: #NCT02842242 in 
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clinicaltrials.gov). Treated hearts were viable for the full duration of blebbistatin treatment (4.5 h), 

with rapid recovery of beating upon washout of drug (Figure 2.4A). However, recovery of lamin-A 

levels was relatively slow, at >3h with or without OM, suggesting slow synthesis of new lamin-A 

protein.  

 Since lamin-A loss and mutation had been associated with increases in DNA damage in 

post-natal development of stiff tissues (Liu et al., 2005), we hypothesized that the rapid decrease 

in lamin-A in blebbistatin-treated E4 hearts would also associate closely with DNA damage. A 

primary marker for DNA breaks, phospho-histone H2AX (γH2AX) indeed changed in level about 

as rapidly as lamin-A (Figure 2.4C-i,ii), but the decrease in DNA damage which we confirmed by 

electrophoretic comet assays (Figure 2.4D, Figure A.3B) was opposite in trend compared to 

past studies (Gonzalez-Suarez et al., 2009b; Redwood et al., 2011; Singh et al., 2013). We 

hypothesized therefore that an increase in DNA damage requires both high actomyosin tension 

and low lamin-A levels. Since washout of blebbistatin led to rapid recovery of beating (Figure 

2.4A, right inset) but slow recovery of lamin-A (+5% at 1h; Figure 2.4C-i), DNA breaks were 

assayed shortly after washout, and were seen to increase sharply (+50% at 1h; Figure 2.4C-ii, 

right inset). Eventual recovery of lamin-A levels to match the steady-state stress levels appeared 

to suppress the excess in DNA damage, but the transient spike in DNA damage immediately after 

washout reveals the potentially disruptive effects of actomyosin stress on genome integrity.   

Actomyosin contractility has been demonstrated in many contexts to be downstream of 

matrix stiffness (Mih et al., 2012; Ulrich et al., 2009), and so the results above suggested DNA 

damage would likewise respond to acute perturbations of collagen matrix. E4 hearts treated with 

collagenase for 45 min resulted in a sharp decrease in DNA damage as well as lamin-A in a 

dose-dependent manner (Figure 2.5E), consistent with rapid softening of the hearts (Figure 

2.1F). Treatment with tissue transglutaminase (TGM), a cross-linker of ECM which stiffens heart 

tissue (>2-fold within 2h (Majkut et al., 2013)), resulted in a slight increase in lamin-A and γH2AX 

after 3h, both of which could be reversed by collagenase (Figure 2.5E). Taken together with the 

myosin-II perturbation experiments (Figure 2.4A-D), these findings indicate that lamin-A 

decreases quickly or increases slowly in response to matrix stiffness and actomyosin tension in 
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order to somehow limit DNA damage. Providing resistance against nuclear envelope rupture and 

accumulation of DNA breaks (e.g. as in constricted 3D migration (Denais et al., 2016; Harada et 

al., 2014; Irianto et al., 2017; Raab et al., 2016)) suggested one possible mechanism by which 

lamin-A in the heart might mechano-protect the genome (Figure 2.5B) – but the functional impact 

of DNA damage on early embryonic hearts remained unclear. 

 

2.2.4 Excess DNA damage causes aberrant beating 

To test the effects of DNA damage on the beating of E4 hearts, we added etoposide, which 

causes DNA double-strand breaks during replication or transcription (Tammaro et al., 2013), or 

H2O2, which oxidatively stresses multiple processes. Within 1h, etoposide caused a sharp 

increase in γH2AX by >4-fold, and washout of drug eventually reversed the DNA damage (Figure 

2.6A). Kinetics in cultured cancer cells are similar (Irianto et al., 2017; Muslimovic et al., 2009), 

and the results here likewise indicate mechanisms of DNA repair in early cardiogenesis. 

Importantly, 1h etoposide treatment also resulted in many hearts exhibiting aberrant arrhythmic 

beating that could be suppressed by washout (Figure 2.6B-i,ii), while aberrant beating was 

absent for DMSO control and H2O2 treated hearts. Prolonged etoposide treatment progressively 

increased the fraction of arrhythmic hearts (50% of hearts by 12h) and, like H2O2, eventually 

suppressed heart rate and the %-beating hearts (by 60h) (Figure 2.6B-iii,iv). Acute DNA damage 

during early cardiac development can thus impair tissue-level function.  

 

2.2.5 Lamin-A suppression in intact hearts and in human iPS-CMs: nuclear 
rupture & loss of DNA repair factors 

To clarify how increased nuclear stress might cause DNA damage, the integrity of the nuclear 

envelope was first examined in intact embryonic hearts doubly transfected with the DNA repair 

protein, GFP-KU80 (‘XRCC5’), and a cytoplasmic protein that binds DNA, mCherry-cGAS (cyclic 

GMP–AMP synthase) (Figure 2.7A-i). Transfected hearts were treated with blebbistatin, then 

washed with culture medium to perturb actomyosin contractility and lamin-A levels, per Fig.2A-D. 

Blebbistatin treatment halted beating with partial disruption of z-band striation (Figure 2.7A-ii, 
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upper inset) and resulted in a corresponding reduction in lamin-A immunofluorescence signal, 

consistent with immunoblots (Figure 2.4A, C-i). Upon drug washout, however, the rapid recovery 

in contractility (and slow recovery of lamin-A) resulted in an increase in the fraction of GFP+ 

mCherry+ (double positive) cells with cytoplasmic mis-localization of KU80 and concomitant 

formation of cGAS puncta at the nuclear periphery (Figure 2.7A-i, yellow arrow). Given that 

blebbistatin treatment and washout did not affect cell viability (determined by fraction of dead 

cells with fragmented DNA; Figure A.4A), simultaneous mis-localization of both KU80 and cGAS 

suggested the possibility of transient nuclear rupture under high stress, and proved consistent 

with the increase in DNA damage observed with blebbistatin washout (Figure 2.4C-ii, D). 

To further assess the effects of lamin-A suppression on envelope rupture and DNA 

damage, nuclei were examined in human induced pluripotent stem cell-derived CMs (hiPS-CMs) 

cultured on collagen-coated soft or stiff gels. As with intact embryonic hearts, hiPS-CM nuclei 

were seen to ‘beat’ in vitro (Figure A.4B) and expressed lower lamin-A than a typical human cell 

line (e.g. A549 cells (Swift et al., 2013)), indicative of a soft nucleus, with cell morphologies and 

sarcomeric striations resembling those of an embryonic/fetal CM-like phenotype (Burridge et al., 

2012; Yang et al., 2014b). On very stiff gels of 40 kPa, a small fraction of hiPS-CMs again 

exhibited cytoplasmic mis-localization of KU80 (Figure 2.7B), consistent with envelope rupture 

under high nuclear stress (Figure 2.7A). Nuclear blebs, which are typical of ruptured nuclei in vitro 

(Irianto et al., 2017), formed at points of high curvature (along major axis) in such cells, and were 

rich in lamin-A but depleted of lamin-B’s (Figure 2.7BB). Stress-induced nuclear envelope rupture 

was also evident in the rapid and stable accumulation of mCherry-cGAS upon nuclear probing 

with a pointed Atomic Force Microscopy (AFM) tip (<1μm), at forces comparable to those exerted 

by the cell’s own cytoskeleton (~7 nN) (Figure A.4C). Importantly, culturing hiPS-CMs on gels as 

soft as embryos (0.3 kPa) prevented rupture-induced mis-localization of KU80 (Figure 2.8A-i, 

right), suggesting that a soft matrix limits actomyosin stress, and thereby preserves nuclear 

integrity, even with low lamin-A levels. 

To assess whether nuclear rupture would be favored by suppression of lamin-A in hiPS-

CMs on rigid collagen-coated plastic, siLMNA was used to knockdown lamin-A. Knockdown of 
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lamin-A resulted in a 2-fold increase in the fraction of cells with cytoplasmic leakage of KU80 

(Figure 2.8A-i, Figure A.4D-i) as well as an increase in γH2AX foci per nucleus (Figure 2.8A-ii 

& Figure A.4D-ii), indicating that DNA breaks accumulate when repair becomes limiting. 

Although lamin-A levels in hiPS-CMs exhibited similar sensitivity to stiffness as that in intact 

embryonic hearts, blebbistatin treatment in siLMNA-treated cells did not further lower lamin-A 

levels (~40% KD; Figure 2.8A-iii). Blebbistatin did, however, cause nuclei to round up (Figure 

2.8A-iv) and rescued envelope rupture to basal levels (Figure 2.8-i). Relaxation of rigidity-driven 

actomyosin stress could thus limit rupture of the nuclear envelope.  

 KU80 is one repair factor for which immunofluorescence works well in human cells (but 

not chick), and at least two other major repair factors, 53BP1 and RPA2, also simultaneously mis-

localized to the cytoplasm upon lamin-A knockdown (Figure 2.8B). Loss of such repair factors 

from the nucleus was seen to continue for >1 hr in culture, as shown by time-lapse images of 

GFP-53BP1 transduced cells upon siLMNA knockdown (Figure A.4C). Since total KU80 

abundance did not vary across the treatments (Figure A.4F) nor did the abundance of its binding 

partner KU70 (‘XRCC6’) in our MS profiling of drug-perturbed embryonic hearts (Figure 2.5E), 

various repair factors were partially knocked down in hiPS-CMs by treating with siKU80, siRPA1, 

siBRCA1 as well as the combination of the three (‘si-3’). BRCA1 was selected because it is 

implicated in myocardial infarction and ischemia (Shukla et al., 2011), and RPA1 appeared 

abundant and constant in level in our MS profiling (Figure A.4G). DNA damage increased in all 

four repair factor knockdowns and their combined effect seemed additive (Figure 2.8C & Figure 

A.4H). Over-expression of relevant DNA repair factors (with GFP-KU70, KU80, BRCA1) rescued 

only the excess DNA damage in ruptured siLMNA cells compared to non-ruptured cells (Figure 

2.8D). A baseline level of damage in the latter cells was not affected, likely because repair factors 

become limiting only upon rupture or depletion. Some combinations (‘GFP3’) rescued the excess 

damage – but at least one repair factor was clearly ineffective on its own. 

To assess any functional relevance of DNA damage to hiPS-CMs, beating of cultured 

‘organoids’ was challenged with blebbistatin and the DNA damaging drug, etoposide. As shown 

with intact embryonic hearts (Figure 2.4A-D), the coordinated beating of hiPS-CM organoids was 
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reversibly inhibited by blebbistatin (Figure 2.9A). Furthermore, etoposide again caused irregular 

beating within 1h (Figure 2.9B), consistent with DNA damage-induced arrhythmia seen with 

embryonic hearts (Figure 2.6A,B). Such acute, functional effects of DNA damage raised 

questions about the effects of physiological pathways that regulate lamin-A. 

 

2.2.6 Transcriptional repression of LMNA by retinoic acid (RA) increases 
DNA damage 

Retinoic acid (RA) is a vitamin-A derivative that is a major regulator in differentiation and 

embryonic development (Rhinn and Dolle, 2012), and it directly upregulates LMNA transcription 

(Okumura et al., 2000; Swift et al., 2013). Antagonist to retinoic acid (AGN) has the opposite 

effect in adult cells (Ivanovska et al., 2017). Beating E4 hearts incubated with RA and AGN at 

pharmacological doses (1 μM) affected lamin-A protein levels by 72h but not by 3h (Figure 

2.10A-i,ii), consistent with past reports of slow transcriptional modulation (Swift et al., 2013). 

Immunoblots for γH2AX also revealed that DNA damage levels correlate inversely with lamin-A, 

and in particular, RA-treated hearts with lower lamin-A had ~50% more γH2AX signal, while 

AGN-treated hearts with greater lamin-A had less γH2AX (Figure 2.10A-i,ii). Although retinoids 

regulate many genes, the contractility machinery remained seemingly unaffected, with all hearts 

beating normally for up to 3d – until blebbistatin was added to stop the heart (Figure 2.10B). 

Thus, when actomyosin contractility is maintained, transcriptional modulation of lamin-A in intact 

beating hearts results in anti-correlated changes in DNA breaks, consistent with lamin-A’s 

mechano-protective role against nuclear envelope rupture. 

 

2.2.7 In isolated embryonic CMs, lamin-A mechanosenses matrix and 
actomyosin stress 

Given the importance of lamin-A’s mechano-protection of the genome to tissue-level function, we 

next sought to clarify mechanisms of lamin-A’s adaptive response to matrix stiffness and 

actomyosin. CM culture models using gels of controlled elasticity have demonstrated matrix 

stiffness influences CM size, shape, myofibril assembly, and contractility (Engler et al., 2008; 
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Jacot et al., 2008; Ribeiro et al., 2015). As the heart stiffens during development, CMs undergo 

similar hypertrophic growth (with sarcomere assembly) (Figure 2.11A, Figure A.5A-i), 

cell/nuclear elongation (driven in part by stabilization of microtubules (Robison et al., 2016), 

Figure A.5A-ii, S4B), cell-cell alignment (Figure A.5C), and nuclear volume reduction (Figure 

A.5D) (Hirschy et al., 2006). To elucidate matrix-to-nucleus mechanosensing mechanisms at the 

single cell level (Figure A.5E), E4 chick CMs were isolated and cultured for 24h on 

polyacrylamide (PA) gels of controlled stiffness (0.3 - 40 kPa) coated with constant collagen-I 

density (Figure 2.11B). Blebbistatin was added for an additional 2h to some CM cultures. 

Myosin-II dependent cell spreading, striation, and elongation increased on stiff gels (10 kPa) 

relative to soft gels (0.3 kPa) (Figure 2.11C), consistent with in vivo morphodynamics (Figure 

2.11A, Figure A.5A-i,ii). Gels that mimic the stiffness of E4 heart tissue (1-2 kPa) were optimal for 

cell and nuclear beating (Figure A.6A), as shown in past studies (Engler et al., 2008; Majkut et 

al., 2013). Nuclear ‘beating strain’ in the well-separated CMs (Figure A.6A-i, B-i) was also similar 

in magnitude to that seen in tissue (5-8%, as measured by △AR/ARref) (Figure 2.1B). Surprisingly, 

however, lamin-A:B intensity ratio did not show such an optimum: it instead increased 

monotonically with gel stiffness, in parallel with myosin-II-dependent cell and nuclear elongation 

(AR) and with cell spreading (Figure 2.11C, 4D-i,ii, Figure A.6G-ii). Sensitivity to gel stiffness at 

the single-cell level could be further extrapolated to collagen-coated rigid plastic (~1 GPa), and 

the distinct trend from optimal beating on gels merely highlights the fact that very stiff and rigid 

substrates cannot physically contract but nonetheless allow for an isometric tension that 

increases with matrix stiffness as in other cell types (e.g. (Engler et al., 2006)). Importantly, 

myosin-II inhibition with blebbistatin or MYK eliminated all actomyosin contractility and caused 

nuclei to round up and lamin-A:B to decrease to basal levels (Figure 2.11D-i & Figure A.6H) as 

cells became dendritic with disrupted sarcomeres (Figure 2.11C).  

Since the myosin-II dependent increase in lamin-A:B with gel stiffness for isolated E4 

CMs (Figure 2.11D) aligned well with lamin-A:B’s increase with heart stiffness during 

development (Figure 2.2B-D), we assessed the mechanosensitivity of lamin-A phosphorylation in 

CMs cultured on gels. Immunofluorescence of phosphorylated serines 22 (‘pSer22’) and 390 
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(‘pSer390’, a highly mechano-sensitive site based on our previous MS studies) indeed proved 

consistent with the proposed pathway of tension-suppressed lamin-A phosphorylation and 

turnover: compared to CMs on stiff gels, cells on soft gels showed higher nucleoplasmic 

phospho-signal, as did cells on stiff gels treated with blebbistatin (Figure 2.11E-i). Phospho-

signal normalized to total lamin-A (‘pSer/LMNA’) was also 2~3-fold higher in CMs on soft gels 

compared to stiff gels (Figure 2.11E-ii). Blebbistatin-treated cells on stiff gels again showed 

increased pSer/LMNA for both phospho-sites (Figure 2.11E-iii). Such changes in interphase cells 

were 10~20 fold lower than in the rare mitotic CMs (Fig.4E-ii, inset: yellow arrow). Reduction of 

nuclear stress by soft matrix or actomyosin inhibition thus favors lamin-A interphase 

phosphorylation, nucleoplasmic solubilization, and subsequent turnover – but the specific 

protease(s) involved in degradation of phospho-solubilized lamin-A remained unclear. 

Given the surprising observation that the pan-MMP inhibitor MMP-i (GM6001) rescued 

lamin-A levels in blebbistatin-treated embryonic hearts (Figure 2.3A), we hypothesized that one or 

more MMPs could play a key role in degradation of nucleoplasmic lamin-A. Intracellular/nuclear 

localization and activity of at least one MMP isoform, MMP2, is well-documented for many cell 

types including CMs (Xie et al., 2017; Yang et al., 2010), and recent reports suggest lamin-A (but 

not B-type lamins) is a potential proteolytic target of MMP2, although proteolysis has not yet been 

demonstrated in intact cells or tissues (Baghirova et al., 2016). Isolated E4 CMs on rigid plastic 

were thus treated with the pan-MMP inhibitor MMP-i as well as an MMP2-specific inhibitor, 

‘MMP2-i’ (ARP100) + blebbistatin. Indeed, inhibition of MMP2 by either MMP-i or MMP2-i rescued 

the blebbistatin-induced ~50% decrease in lamin-A:B (Figure 2.11D-i), despite no significant 

effect on striation, cell morphology, or gel stiffness. The findings confirm at the single cell level 

our MS profiling of embryonic hearts treated with MMP-i + blebbistatin (Figure 2.3A), and finally 

remove any confounding effect of collagen changes. Other MMP isoforms could have a similar 

role, including MMP9 which regulates myoblast proliferation (Zimowska et al., 2013), but the 

results here suggest MMP2 is a key isoform in CMs and in intact embryonic hearts. 
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2.2.8 Lamin-A is phospho-solubilized into the nucleoplasm and degraded 
by MMP2 under low nuclear stress 

Given the surprising effects of MMP2 on lamin-A levels in vitro, we next sought to clarify 

mechanisms in the intact embryonic heart. Beating E4 hearts were treated with MMP-i or MMP2-i 

± blebbistatin. Consistent with our gel culture results and with MS quantitation (Figure 2.3A), 

MMP2-i again rescued the blebbistatin-induced decrease in lamin-A, as did MMP-i (Figure 

2.12A-i). Immunoblots using a custom-made antibody for phosphorylated serine 390 (‘pSer390’) 

further revealed an increase in pSer390 on intact lamin-A (at ~73 kDa) upon blebbistatin 

treatment (Figure 2.12A-ii, ‘pSer390intact/LMNAintact’). More dramatic was the suppression by 

MMP2-i and MMP-i (regardless of blebbistatin) of pSer390 signal on a ~42 kDa lamin-A fragment 

(‘pSer390fragm./pSer390intact’) that matches the predicted degradation by MMP2 (Barrett, 2004; 

Song et al., 2012) (Figure 2.12A-iii). This ~42 kDa fragment is likely a transient intermediate 

(Figure 2.12B), because similar perturbations in vitro produce many more low-MW degradation 

fragments that are highly phosphorylated (Buxboim et al., 2014). MS confirmed the trend for the 

42 kDa fragment range (>6 detected LMNA peptides) in hearts treated with blebbistatin or 

collagenase (Figure 2.12C).  

Importantly, blebbistatin treatment did not affect MMP2’s overall abundance (as 

determined by MS; Fig.1H) or its catalytic activation (‘cleaved/pro-MMP2’ ratio as measured by 

immunoblots, Figure 2.12D, Figure A.8A). Immunofluorescence with anti-MMP2 (against both 

pro- and active forms) revealed that MMP2 is indeed present in the cytosol as well as the nucleus 

– mostly the nucleoplasm – of embryonic chick CMs, and that localization is unaffected by 

actomyosin inhibition (Figure 2.12E). Abundant nucleoplasmic signal suggested MMP2 is in the 

right place for degradation of phosphorylated, nucleoplasmic lamin-A (Kochin et al., 2014). MMP2 

abundance and activity in CM nuclei thus appear independent of mechanical stress, while MMP2 

degradation of lamin-A is downstream of lamin-A phosphorylation and suppressed by actomyosin 

tension (Figure 2.12B).  

 To further assess whether increased phosphorylation and solubilization of lamin-A indeed 

favors its degradation, cultured cells (human A549s) were transduced with phosphomimetic 
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mutants (GFP-S22A & GFP-S22E). Nucleus-specific GFP fluorescence of ‘non-phosphorylatable’ 

GFP-S22A was ~2x higher than ‘phosphorylated’ GFP-S22E (Figure A.8B), which suggests 

faster steady-state degradation of GFP-S22E relative to GFP-S22A. GFP-S22A was found to be 

clearly more lamina-associated than nucleoplasmic, but the opposite was true for GFP-S22E 

(Figure A.8B-i,ii). Inhibition of protein synthesis by Trx-i did not affect localization (Figure A.9A-

i,ii) but did decrease overall GFP intensities by <10% (Figure A.8B-i,iii). Immunoblots against 

lamin-A and GFP also revealed multiple low-MW fragments for GFP-S22E (including ~40 kDa 

and many <30 kDa) but not for GFP-S22A (Figure A.8C, green arrows). MMP2-i treatment in 

GFP-S22E expressing cells resulted in an increase in intact lamin-A (as determined by GFP 

fluorescence signal (Figure A.8D)), consistent with inhibition of MMP2-degradation.  

To assess the effects of MMPs on DNA damage, intact E4 hearts were treated with both 

MMP-i and blebbistatin. The combination maintained lamin-A at levels comparable to control (per 

Fig.1H, 6A) but had no effect on γH2AX relative to blebbistatin alone (Figure 2.12F). Treatment 

with a high dose of CDK-i (RO3306), on the other hand, reduced γH2AX by ~50% in addition to 

maintaining high lamin-A in blebbistatin-treated hearts. CDK-i inhibits phospho-solubilization of 

lamin-A (Figure 2.3B), similar to the S22A construct, and thereby stiffens and stabilizes the 

nucleus based on micropipette aspiration of nuclei in cultured cells (Buxboim et al., 2014). Thus, 

low actomyosin stress – combined with high non-phosphorylated lamin-A maintained at the 

nuclear periphery – minimizes DNA damage in the intact embryonic heart.   

 

2.3 Discussion 
The ‘use it or lose it’ model in which tension stabilizes filaments against turnover has been shown 

to apply rigorously to purified collagen gels with added MMP (Flynn et al., 2010) and, based on 

studies of cell cultures, has been inferred to also apply to phosphorylated lamin-A (Dingal and 

Discher, 2014) and phosphorylated myosin-II (Shin et al., 2014). Accumulation of such proteins is 

thus favored by a given mechanical stress, with any synthetic excess soon degraded. While early 

embryos are soft and have minimal collagen (Rozario and DeSimone, 2010), as the heart forms 

and pumps to perfuse the growing embryo, the increasing pressure favors accumulation of 
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collagen-I and stiffening of the developing heart. The increasing stiffness and stress necessitate 

an adaptive mechanism to protect against nuclear stress, and lamin-A mechanosensing fulfills 

this role by also accumulating (Figure 2.2) – unless actomyosin stress is inhibited (Figure 2.3A). 

Lamin-A thus maintains nuclear integrity and helps retain DNA repair factors in the nucleus (10A-

C), and thereby prevents excessive accumulation of DNA damage in stiff microenvironments 

and/or under conditions of high actomyosin contractility (Figure 2.13). Remarkably, MMPs that 

degrade and remodel collagen-I matrix within hours or less also directly regulate lamin-A of the 

nuclear matrix (Figure 2.3A, Figure 2.13), which suggests a surprising inside-outside symmetry to 

the ‘use it or lose it’ mechanism. While nuclear MMPs are not new (Xie et al., 2017), tension 

regulation of the substrates for these enzymes seems unprecedented. 

Lamin-A is found here to be expressed in the heart far earlier than previously reported 

(Stewart and Burke, 1987), but early expression is consistent with the progressive stiffening of the 

heart and tight coupling in levels to what eventually becomes the most abundant protein in adult 

animals, collagen-I. Calibrated measurements of collagen amounts (Figure 2.2C) agree with past 

reports for soluble collagen content in developing chick hearts (Woessner et al., 1967), but 

dividing by reported myocardium volumes (Kim et al., 2011) gives collagen-I densities far lower 

than those used in studies of collagen-I gels (Yang et al., 2009), suggesting lower densities are 

needed for a stiffness in the kPa range as measured for heart (Figure 2.2D). Nonetheless, 

collagen-I digestion resulted in softer tissue and decreased lamin-A consistent with scaling trends 

(Figure 2.2F), which indicates the physical insight gained from a scaling approach with 

concentration. Surprisingly, the scaling exponent of α = 0.3 (in lamin-A ~ collagen-Iα; Figure 

2.2C,E) in embryonic development matches that obtained from meta-analyses of 25 

transcriptomics datasets analyzed for a wide range of normal and diseased hearts spanning five 

species (Figure A.9A), which indicates potential feedback to gene expression (Figure A.2), as 

suggested by past studies (Swift et al., 2013). The scaling is also reasonably consistent with that 

across proteomes of diverse chick embryonic tissues at E18 (Figure A.9B) as well as adult 

mouse tissues (α = 0.4) (Cho et al., 2017), and underscores the potential universality of the 

mechanism. Indeed, the tissue-dependent timing of detectable lamin-A expression (Lehner et al., 
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1987; Rober et al., 1989; Solovei et al., 2013) correlates well with the stiffness that a given tissue 

eventually achieves in adult (Figure A.9C; adapted from (Rober et al., 1989; Swift et al., 2013)).  

 The findings might help explain why defects in lamin-A cause disease through cell-

extrinsic mechanisms (de La Rosa et al., 2013a). Indeed, mosaic mice in which 50% of the cells 

express defective lamin-A maintain a normal lifespan, whereas mice with 100% defective cells die 

within weeks of birth. The same cells (and similar cell types (Hernandez et al., 2010) cultured on 

rigid plastic undergo premature senescence/apoptosis, as is common with excess DNA damage, 

but the defects are surprisingly rescued upon culture on almost any type of ECM. Soft matrix 

certainly reduces cytoskeletal stress and suppresses nuclear rupture and DNA damage in CMs 

with low lamin-A (Figure 2.8A). The effects are further consistent with the observation that 

laminopathies largely affect stiff and mechanically stressed adult tissues such as muscle or bone 

while sparing soft tissues such as brain, independent of lineage or developmental origin (Cho et 

al., 2018; Worman, 2012).  

 The progressive stiffening of embryonic tissues during development is further 

accompanied by frequent constricted migration events and dynamic contractile pulses that drive 

morphogenesis (Bone and Starr, 2016; Gjorevski et al., 2015; Krieg et al., 2008; Munjal et al., 

2015; Wang et al., 2017; Wozniak and Chen, 2009) which could, in principle, undermine genome 

stability in cells with low or defective lamin-A. In the beating embryonic heart, normal lamin-A is 

found here to adjust dynamically in response to perturbations of actomyosin stress (Figure 2.4A-

D). Importantly, such mechanosensing by lamin-A occurs in interphase nuclei (Figure 2.11E) 

independent of cell cycle changes (which may result from actomyosin or matrix perturbations in 

neonatal/larval myocytes (Wang et al., 2018; Yahalom-Ronen et al., 2015)). Our studies of 

isolated CMs on soft/stiff gels further demonstrate that steady-state lamin-A levels are determined 

primarily by a basal tone related to average morphologies of cells and nuclei, as opposed to 

dynamic contractions that intermittently strain the nucleus (Figure 2.11D, Figure A.6B). Studies 

using 3D cardiac microtissue constructs indeed demonstrate that a stiffer matrix with higher 

collagen density results in a significant increase in ‘static’ isometric tension, but not necessarily 

higher ‘dynamic’ stress (Boudou et al., 2012). On the other hand, both basal and dynamic strain 
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might contribute to a ‘tension-time integral’ model (based on cumulative time spent under high 

tension) that also predicts hypertrophic versus dilated cardiomyopathy disease fates (Davis et al., 

2016).  

Suppression of lamin-A by siRNA knockdown (Figure 2.8) or by treatment with RA (Figure 2.10A) 

resulted in increased DNA damage, suggesting that lack of protection by lamin-A compromises 

genome integrity when actomyosin stress is kept high. Conversely, inhibition of contractile stress 

and lamin-A phosphorylation (by blebbistatin & CDK-i co-treatment; Figure 2.12F), or 

transcriptional upregulation of lamin-A by AGN (Figure 2.10A), led to a reduction in DNA damage, 

consistent with enhanced mechano-protection of the genome. These results, however, raise a 

fundamental question as to why cells do not simply maintain high lamin-A levels at all times. 

Although lamin-A does exhibit stress-stiffening behavior with large nuclear strains over short time-

scales (Stephens et al., 2017), one possible explanation for why its levels need to be optimally 

regulated could be that an overly rigid ‘nucleoskeletal matrix’ with excess lamin-A disrupts 

sarcomere assembly and/or contractility, analogous to defects seen with rigid fibrotic ECM. 

Lamin-A further regulates a wide range of cytoskeletal genes (e.g. ACTA2) via the MKL1/SRF 

pathway (Table 2,  

Figure A.10) (Buxboim et al., 2014; Ho et al., 2013), contributes to chromatin 

organization (Guelen et al., 2008; Harr et al., 2015; Poleshko et al., 2017; Uhler and 

Shivashankar, 2017), and interacts with various regulatory factors at the nuclear periphery (e.g. 

lamin-B receptor, LBR ((Buxboim et al., 2017), lamina-associated polypeptide 2alpha, LAP2α 

(Gotic et al., 2010)) (Serebryannyy and Misteli, 2017). Thus, constitutively high lamin-A levels to 

protect the genome may compromise lamin-A’s fine-tuning of downstream processes in 

differentiation and maturation. A tension-mediated ‘use it or lose it’ mechanism would help 

prevent such excessive accumulation by ensuring optimal lamin-A levels are achieved in close 

coordination with the changing mechanical environment. 

Failure to appropriately protect against the increasing mechanical loads of the stiffening 

heart appears to have severe consequences on cardiac function and survival. Mutations in LMNA 

or other nuclear proteins that cause defective post-translational processing (Bergo et al., 2004) or 
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aberrant assembly of lamin-A to the nuclear periphery (as with nucleoplasmic aggregates seen in 

some DCM phenotypes (West et al., 2016)) could therefore result in increased DNA damage, in 

turn affecting transcription (Shanbhag et al., 2010) and tissue-level function. Recent iPS-CM 

models of LMNA cardiomyopathies (e.g. R225X which causes DCM) indeed report significant 

nuclear blebbing (Lee et al., 2017), focal loss of nuclear membrane (perhaps indicative of rupture) 

(Siu et al., 2012), cytoskeletal defects (Bollen et al., 2017), and fibrosis (Captur et al., 2018), all of 

which increase with electrical stimulation and enhanced contractility. Furthermore, arrhythmias 

and broader conduction defects that are common for many cardiac laminopathies (Fatkin et al., 

1999; Muchir et al., 2000) provide additional evidence of a potential causal link between DNA 

damage and the coordinated contractions of CMs (Figure 2.6). Thus, mechanosensing by lamin-A 

to protect the genome is not only critical during embryonic development, but also has potential 

clinical implications for a broad range of adult musculoskeletal diseases.  

 

 

2.4 Materials and Methods 

2.4.1 Embryonic chick heart isolation 

White Leghorn chicken eggs (Charles River Laboratories; SPF Fertilized eggs, premium) were 

incubated at 37˚C with 5% CO2 and rotated once per day until the desired developmental 

stage.  Embryos were extracted at room temperature (RT) by windowing eggs, carefully removing 

extra-embryonic membranes with sterile forceps, and cutting major blood vessels to the 

embryonic disc tissue to free the embryo. The extracted embryo was then placed in a dish 

containing pre-warmed PBS and quickly decapitated. For early E2‐E5 embryos, whole heart 

tubes were extracted by severing the conotruncus and sino venosus. For older (>E5) embryos, 

embryonic discs were extracted by windowing the egg, cutting out the embryo with the overlying 

vitelline membrane intact, lifting out the embryo adherent to the vitelline membrane and placing in 

a dish of pre-warmed PBS. Extra-embryonic tissue was carefully cut away using dissection 

scissors and the embryo was teased away from the vitelline membrane using forceps. Whole 

hearts (>E5) were extracted by severing the aortic and pulmonary vessels. The pericardium was 
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carefully sliced and teased away from the ventricle using extra‐fine forceps. E10 brain and liver 

tissue were collected from the presumptive midbrain and hepatic diverticulum, respectively. All 

tissues were incubated at 37˚C in pre‐warmed chick heart media (α‐MEM supplemented with 10 

% FBS and 1% penn‐strep, Gibco, #12571‐063) until ready for use.    

 

2.4.2 Whole heart tube transfection 

Lipofectamine/plasmid complexes were prepared as described by the manufacturers 

(Lipofectamine 2000, Invitrogen).  In particular, 3‐4 μg of plasmid  (mCherry-Histone H2B or GFP-

LMNA) and 10 µL Lipofectamine were each diluted to total volumes of 50 µL in Opti‐MEM (Gibco, 

31985‐070) and incubated at RT for ~15 min. Both solutions were combined to make the 1 mL 

final transfection solution which was incubated for an additional 25 min. Heart tubes were pre-

incubated in 0.9 ml pre‐warmed chick heart media during lipofectamine/plasmid complex 

formation. The lipofectamine/plasmid complex was then added to the heart tubes in heart media 

and the heart tubes were incubated at 37˚C and 5% CO2 for 8‐12 hours. Transfection media was 

replaced with pre-warmed chick heart media and the hearts were incubated until use in 

subsequent imaging.   

 

2.4.3 Quantification of beating strain 

Transfected E4 chick hearts were video-imaged using an Olympus I81 at 4x magnification, with a 

CCD camera. Procedures described by Taber et al. (Taber et al., 1994) were followed to 

calculate 2D tissue beating strain. Briefly, ≥3 groups of 3 cells located within 20 microns of each 

other were selected as fiduciary markers along the outer walls of ventricular tissue. A custom 

Matlab program was written to track their displacements and compute trace of the tissue strain 

tensor (Taber et al., 1994). Alternatively, for higher throughput quantification of contractility 

changes (n>10 hearts per sample, e.g. following blebbistatin treatment), morphological 

measurements (projected 2D area, aspect ratio (AR), circularity, perimeter, etc.) of beating whole-

hearts were traced with time. Morphology measurements were normalized to baseline reference 
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values, and peak-to-valley ‘amplitudes’ were averaged over >5 beats to quantify beating strain 

(e.g. △AR/ARref). Similar methods were used to quantify nuclear deformations: the projected 2D 

area and aspect ratio (AR) of transfected nuclei (e.g. expressing GFP-LMNA, see Whole heart 

tube transfection section above) were traced with time, and the normalized amplitudes were 

measured and compared across experimental conditions to quantify differences in beating strain 

on the nucleus. 

 

2.4.4 Isolation of embryonic CMs 

To isolate embryonic CMs from tissue, whole hearts were diced to sub-millimeter size and 

digested with Trypsin/EDTA (Gibco, 25200‐072). Approximately 1 ml of Trypsin per E4 heart was 

added and incubated for 13 min at 37˚C with gentle shaking, then placed upright for 2 min to let 

large tissue pieces settle to the bottom. The supernatant was carefully removed and replaced 

with an equal volume of fresh Trypsin for a second round of 15 min incubation at 37˚C. Digestion 

was blocked by adding an equal volume (1:1) of chick heart media. Isolated cells were plated 

onto collagen-I-coated polyacrylamide (PA) gels (see Synthesis of soft and stiff polyacrylamide 

(PA) gels for cell culture) and were allowed to adhere for >4h. Spontaneously beating CMs were 

imaged using an Olympus I81 microscope with a 40x air objective configured for phase contrast 

after 24 hrs in culture. As with intact hearts, a custom Matlab program was used to segment CMs 

and track cell area and AR. For each cell, normalized amplitudes were averaged over >5 beats to 

quantify beating strain (e.g. △AR/ARref), and results for >10 cells were pooled for each 

experimental condition.  

 

2.4.5 Mass spectrometry (LC-MS/MS) of whole heart lysates 

Mass spectrometry (MS) samples were prepared using the same procedures outlined in Swift et 

al. (Swift et al., 2013). Briefly, ~1 mm3 gel sections were excised from SDS–PAGE gels and were 

washed in 50% 0.2 M ammonium bicarbonate (AB), 50% acetonitrile (ACN) solution for 30 min at 

37°C. The washed slices were lyophilized, incubated with a reducing agent (20 mM TCEP in 25 

50 
 



mM AB solution), and alkylated (40 mM iodoacetamide (IAM) in 25 mM AB solution). The gel 

sections were lyophilized again before in-gel trypsinization (20 mg/mL sequencing grade modified 

trypsin, Promega) overnight at 37°C with gentle shaking. The resulting tryptic peptides were 

extracted by adding 50% digest dilution buffer (60 mM AB solution with 3% formic acid) and 

injected into a high-pressure liquid chromatography (HPLC) system coupled to a hybrid LTQ-

Orbitrap XL mass spectrometer (Thermo Fisher Scientific) via a nano-electrospray ion source. 

 Raw data from each MS sample was processed using MaxQuant (version 1.5.3.8, Max 

Planck Institute of Biochemistry). MaxQuant’s built-in Label-Free Quantification (LFQ) algorithm 

was employed with full tryptic digestion and up to 2 missed cleavage sites. Peptides were 

searched against a FASTA database compiled from UniRef100 gallus gallus (chicken; 

downloaded from UniProt), plus contaminants and a reverse decoy database. The software’s 

decoy search mode was set as ‘revert’ and a MS/MS tolerance limit of 20 ppm was used, along 

with a false discovery rate (FDR) of 1%. The minimum number of amino acid residues per tryptic 

peptide was set to 7, and MaxQuant’s ‘match between runs’ feature was used for transfer of peak 

identifications across samples. All other parameters were run under default settings. The 

MaxQuant output tables were then fed into its custom bioinformatics suite, Perseus (version 

1.5.2.4), for protein annotation and sorting.  

 

2.4.6 Mechanobiological gene circuit model for tension-suppressed 
turnover 

Protein (lower case: l, m, c) and mRNA transcript (upper case: L, M, C) circuitry for lamin-A, 

myosin-II, and collagen-I is illustrated schematically in Fig.S1H. Expression kinetics are described 

by a system of coupled rate equations adapted from Dingal et al. (Dingal and Discher, 2014). For 

simplicity, RNA translation and degradation were assumed linear in transcript concentration. 

Lamin-A protein (l) is a weak regulator of serum response factor (SRF), which enhances myosin-

II transcription (with rate constant ). Our previous studies suggest mechanical regulation of 

protein phosphorylation and turnover, and so we describe l, m, c protein degradation with suitable 

Hill functions (with rate constants , , , respectively) to incorporate the stabilizing effects of 
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tension (K). Specifically, lamin-A and collagen-I protein (l and c) turnover are dictated by 

 and , respectively, for some x and z that dictate sensitivity of degradation to 

myosin-generated tension. Myosin-II protein (m) turnover in turn depends on matrix elasticity E 

which correlates strongly with collagen-I (c), such that  for some y that represents the 

affinity for myosin degradation. Collagen mRNA (C) production is assumed to be proportional to 

the population of cardiac fibroblasts, which is ultimately limited by tissue stiffness imparted by 

ECM density. The rate equations were solved numerically using a custom Matlab code. 

 

2.4.7 Micropipette aspiration of tissue 

Micropipettes were pulled from 1 mm glass capillaries (World Precision Instruments, Sarasota, 

FL) using a Flaming‐Brown Micropipette Puller (Sutter Instrument, Novato, CA). Pulled pipettes 

were scored with the tapered base of another pulled pipette and broken such that the final inner 

diameters were 35‐45 μm. Pipettes were then filled with PBS and attached to a 

manometer‐double reservoir set‐up. Tissue samples were aspirated at RT in PBS supplemented 

with 3% BSA, without Ca2+ to suppress beating. Prior to each aspiration experiment, pipette tips 

were incubated in PBS/BSA solution for ≥20 min to minimize tissue sticking to the inner walls of 

the pipette. During aspiration, ≥ 3 different pressures were applied from 0.5 – 1.4 kPa for brain 

tissue and 0.5‐20 kPa for heart and liver tissue. Aspiration of samples was video-recorded using 

a Nikon TE300 microscope with a 20x air objective and CCD camera. The effective Young’s 

modulus Et of the tissue was obtained based on the linearity between the pressure differential 

(between inside and outside, △P) and strain L/Rp:  , where L is the length of tissue 

aspirated from the mouth of the pipette, Rp is the pipette’s inner radius, and φo is a shape factor 

~2 (Theret et al., 1988). 
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2.4.8 Ex vivo drug perturbations 

For actomyosin perturbation experiments, E4 heart tissue was incubated in 25 µM blebbistatin 

(EMD Millipore, #203390, stock solution 50 mg/ml in DMSO), 1 µM Omecamtiv Mecarbil (OM, 

Cytokinetics)  or 0.3 - 1 µM MYK-581 (gift from MyoKardia) in heart media at 37˚C. Drug-treated 

hearts were compared to a control sample treated with an equal concentration of vehicle solvent 

DMSO in heart media. Drug solutions were gently washed out with pre-warmed chick heart media 

x3 for recovery experiments. For collagen matrix perturbations, E4 heart tissue was incubated in 

0.3 - 1 mg/ml concentrations of collagenase (Sigma, #C7657) for ~45 min, or 20 mg/mL 

transglutaminase (Sigma, T5398) for up to 3 hrs at 37˚C. Enzyme activity was blocked by 

replacing with chick heart media containing 5% BSA. For MMP inhibition during blebbistatin 

treatment, hearts were incubated with 10 µM GM6001 (EMD Millipore, #CC1010) or with 30 µM 

of ARP100 (Santa Cruz, CAS 704888-90-4). 1 µM cycloheximide (CHX, Sigma, C7698-1G) was 

added to block protein synthesis during actomyosin and/or matrix perturbations. For 

transcriptional modulation of LMNA using retinoid compounds, hearts were incubated with 1 µM 

retinoic acid (RA, Fisher Scientific) or antagonist to retinoic acid (AGN-193109, Santa Cruz), for 

short (3 hrs) or long (72 hrs) treatment times. At least 8 E4 hearts were treated and pooled per 

lysate/experimental condition. 

 

2.4.9 Alkaline Comet assay 

Comet assays was performed according to manufacturer’s protocol (Cell Biolabs). 

Briefly, cells were trypsinized, mixed with liquefied agarose at 37°C, placed drop-wise 

onto the supplied glass slide, and incubated for 15 min at 4°C for the agarose to gel. 

Lysis buffer from the kit was then added to the solidified gel and incubated for 45 min, 

followed by an additional 30 min incubation with alkaline solution. Electrophoresis was 

performed at 300 mA for 30 min followed by a 70% ethanol wash, before samples were 
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air dried overnight. Finally, DNA dye in the kit was added to each sample for 15 minutes, 

followed by epifluorescence imaging as described above. 

 

2.4.10 Transduction of GFP-phosphomimetic mutants S22A and S22E 

GFP-Lamin-A S22A and S22E plasmids were constructed by standard site directed mutagenesis 

(Stratagene). Phosphomutant constructs were packed into a lentiviral delivery system and 

transduced into lamin-A knockdown A549s. Transduction efficiencies ranged from 60-90%. 

Transduced A549 cells were treated with cycloheximide at a concentration of 500 μM diluted in 

Ham’s F-12 nutrient media (Thermo Fisher) for 3 hours. MMP-2 inhibitor ARP-100 was used at 30 

μM concentration for 3 hours as well. DMSO added to media in equal volume as the drug, was 

used as control in both cases. The cells were then washed in PBS and fixed with 4% 

formaldehyde (Sigma-Aldrich) in PBS for 10 min at RT followed by washing in 0.1% BSA diluted 

in PBS 3X for 5 min. Blocking was performed in 5% BSA in PBS. Lamin-A/C (4C11) Mouse mAb 

(Cell Signaling) was used as the primary antibody. It was diluted 1:500 from stock concentration 

and incubated overnight at 4°C followed by washing in 0.1% BSA diluted in PBS 3X. Donkey 

secondary antibody was used at 1:500 dilution (Alexa Fluor dye 647) in 1% BSA diluted in PBS, 

along with Hoechst diluted at 1:2000. Imaging for quantitative immunofluorescence of lamin-A, 

GFP was performed using an inverted microscope (IX-71; Olympus) with either 20X (Olympus, 

NA-0.75) or 40X (NA-0.60) objectives, and a cooled CCD camera (Cascade; Photometrics) and 

image acquisition performed with Fiji ImageJ software. 

 

2.4.11 siRNA knockdown and GFP-repair factor rescue 

All siRNAs used in this study were purchased from Dharmacon (ON-TARGETplus SMARTpool; 

siBRCA1, L-003461-00; siBRCA2, L-003462-00; siKu80, L-010491-00; siRPA1, L-015749-01; 

siLMNA, L-004978-00 and non-targeting siRNA, D-001810-10). GFP-KU70 and GFP-KU80 were 

gifts from Dr. Stuart L Rulten from University of Sussex, Brighton, UK (Grundy et al., 2013), and 

GFP-53BP1 was a gift from Dr. Roger Greenberg from University of Pennsylvania (Cho et al., 

54 
 



2014). U2OS cells were plated 24 hours prior to transfection. Lipofectamine/nucleic acid 

complexes were prepared according to the manufacturer’s instructions  (Lipofectamine 2000, 

Invitrogen), by mixing siRNA (25 nM) or GFPs (0.2-0.5ng/ml) with 1 µg/ml Lipofectamine 2000. 

Final solutions were added to cells and incubated for 3 days (for siRNAs) or 24 hours (for GFPs) 

in corresponding media containing 10% FBS.  

 

2.4.12 Human iPS-CM differentiation and culture 

Normal human iPS cells (gift from Dr. Joseph Wu, Stanford CVI Biobank) were cultured following 

the protocol provided. Briefly, Matrigel (BD Matrigel, hESC qualified: #354277) was suspended in 

cold DMEM/F12 medium 1:200 dilution (DMEM/F12 medium #10-092-CM-Fisher), mixed gently, 

and 1ml of this suspension was added to one 6-well plate (Corning Catalog #353046) and 

incubated for 1hr at RT to allow Matrigel to coat the surface. The solution was gently aspirated 

and small aggregates of human iPS cells were added to each well in mTesr1 medium containing 

10 μM of ROCK inhibitor (Y27632, 2HCl – 50 mg: #50-863-7-Fisher). Culture medium was 

replaced daily (no ROCK inhibitor) until the cells reached ~85% confluency.   

 hiPS cells were differentiated into cardiomyocytes (hiPS-CMs) using the “Cardiomyocytes 

differentiation and maintenance kit’ from Stem Cell technologies (#05010 & #05020). The 

differentiation process was followed as described by the manufacturer’s protocol. Briefly, the 

mTesr1 medium with ROCK inhibitor (10 μM) was replaced with differentiation medium A, 

cultured for 2 days (Day 0), then subsequently to medium B for 2 days (Day 2) and again 

switched to medium C twice (Day 4 & 6). From Day 8 onwards, maintenance medium (Day 8) 

was added/refreshed every 2 days until spontaneous CM beating was observed through imaging.  
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Figure 2.1. Nuclear ‘beating’ in isolated hearts is suppressed by forced overexpression of 
lamin-A 
(A) Embryonic chick hearts isolated from day 4 (E4) embryos beat at 1-2 Hz ex vivo for up to 5 
days in culture medium. Red and cyan indicate snapshots of diastole and systole, respectively. 
A=atrium, V=ventricle, OFT=outflow tract. (B) (i) Representative snapshots of beating E4 tissue 
with GFP-LMNA transfection. Right: Trace of tissue strain tensor quantified using transfected 
nuclei as fiduciary markers, as detailed in (Taber et al., 1994). (ii) Snapshots of individual nuclei 
‘beating’ ex vivo. Nuclear strain quantified by tracing nuclear area and aspect ratio (AR) with time 
reveals precise synchrony with tissue-level contractions. (iii) Stiffer nuclei overexpressing GFP-
LMNA deform less than those transfected with mCherry-H2B control. Scale bar = 5 μm. 
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Figure 2.2. Lamin-A expression begins early, increases with collagen-I & with stiffening of 
embryonic heart, and fits a 'use it or lose it' model 
(A) LC-MS/MS of E4 whole heart lysates detect 29 peptides unique to lamin-A. (B) Heatmap of all 
proteins detected by MS, ranked by the fold-change relative to the average. Collagen-I and lamin-
A rank among the top proteins upregulated from E4 to E10, while lamins-B1 and B2 remain 
comparatively constant. (C) Lamin-A:B ratio determined by MS fits power-law scaling versus MS-
calibrated collagen-I (μg per heart) (R2 = 0.9997), with a scaling exponent α ~ 0.3 comparable to 
that found for diverse adult tissue proteomes (α ~ 0.4) (Cho et al., 2017; Swift et al., 2013). *E18 
datapoint obtained from the PRoteomics IDEntifications (PRIDE) database (Vizcaino et al., 2016) 
fits the trend within the 95% confidence interval, but was excluded from curve-fitting. Upper inset: 
Confocal immunofluorescence images of lamin-A and B1/B2 in embryonic hearts. Scale bar = 10 
μm. (D) Lamin-A:B ratio in developing hearts exhibits power-law scaling versus tissue 
microelasticity Et (or ‘stiffness’) measured by micropipette aspiration (lower right inset), with a 
scaling exponent α ~ 0.7 again consistent with that for adult tissue (α ~ 0.6) (Swift et al., 2013). 
Blue: brain and liver tissue measurements at E10. Cyan: ex vivo tissue softening by collagenase 
treatment results in a corresponding reduction in lamin-A. Upper left inset: Immunoblot 
densitometry measurement of lamin-A and B in embryonic heart lysates at E4, E6, and E10 (n>6 
hearts per lysate). (E) ‘Use it or lose it’ model of tension-inhibited protein turnover (Dingal and 
Discher, 2014) fits steady state lamin-Ass vs collagen-Iss scaling (α = 0.3) in heart development. 
Lamin-A turnover is dictated by Kl ~ mx/nl, for some x that represents sensitivity of lamin-A 
degradation to myosin-generated stress. 
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Figure 2.3. Lamin-A mechanosensitivity is maintained even with inhibition of protein 
synthesis, but lost w/ inhibition of phosphorylation or of MMPs 
(A) Proteomic profiling of ex vivo drug perturbations. Responses for proteins of interest in the 
extracellular matrix (ECM), cytoskeleton, and nucleus are shown as a heatmap based on MS 
intensity fold-change relative to DMSO control. ‘Trx-’' = inhibitor of protein transcription/translation 
(cycloheximide, CHX); ‘MMP-i' = broad spectrum pan-MMP inhibitor (GM6001); ‘CDK-i' = CDK 
inhibitor (RO3306, at >3.5 μM doses to inhibit many CDKs). (B) Immunoblot validation of lamin-A 
trends seen in MS profiling of drug perturbations (n>6 hearts per lysate). Additional immunoblot 
against phosphorylated Ser22 shows that normalized phosphorylation (‘pSer22/LMNA’) increases 
with blebbistatin-inhibition of actomyosin stress or with collagenase-softening of tissue, but 
decreases with CDK-i treatment. (*p<0.05, ** p<0.01, ***p<0.001) 
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Figure 2.4. Myosin-II inhibition results in rapid 1-2h lamin-A turnover & suppression of 
DNA damage in intact hearts 
(A) Beating strain of E4 hearts quantified by tracing changes in aspect ratio (AR). Myosin-II 
inhibition by blebbistatin or MYK causes hearts to stop beating within 30 min. Effects are rapidly 
reversible upon washout of drug, with or without OM. (B) Immunoblot of E4 hearts treated with 
blebbistatin for varying durations (0.5 - 4.5h), followed by a short (1h) or long (3h) rescue by 
washout, with or without OM. Arrows indicate time points at which hearts were harvested and 
lysed for immunoblots. (C) (i) Immunoblot densitometry analysis reveals lamin-A decreases 
rapidly (half life ~ 45 min) upon inhibition of actomyosin stress (n=8 hearts per lysate). In contrast, 
lamin-A recovery upon washout is slow (>3h). (ii) Inhibition of actomyosin contractility also results 
in a reduction in DNA damage as measured by γH2AX. Light blue highlights: rapid recovery in 
contractility upon washout of blebbistatin (A, right) results in a sharp increase in DNA damage (at 
t=5.5h) (ii), while lamin-A remains low (i). Right bar graph inset indicates fractional increase 
relative to t=4.5h (pre-washout)). Bottom right inset: MYK treatment for 1.5 h at two different 
doses show consistent effects on both lamin-A and γH2AX. (*p<0.05, ** p<0.01). (D) 
Electrophoretic Comet assay of myosin-perturbed hearts validate γH2AX immunoblot quantitation 
of DNA damage trends ((C-ii)). Gamma-ray irradiation (‘DMSO + IR’) was used as a positive 
control for DNA damage.  
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Figure 2.5. Matrix softening by collagenase & crosslinking by TGM impact lamin-A levels & 
DNA damage 
(A) Immunoblot of hearts treated with collagenase and transglutaminase (TGM) (n=8 hearts per 
lysate). Matrix softening by collagenase causes a rapid reduction in lamin-A and γH2AX 
consistent with low stress, while cross-linking by TGM leads to a slower increase only after >3h. 
TGM effects on lamin-A and γH2AX are reversible upon degradation collagens. (*p<0.05). (B) 
Schematic diagram of proposed mechanosensing pathway.  

 

 

 

 

 

 

 

 

 

 

 

 

60 
 



 

 

Figure 2.6. Acute DNA damage causes aberrant beating and subsequent heart failure 
(A) 1h etoposide treatment in embryonic hearts induces a marked ~4x increase in DNA damage, 
which is reversed with 12h washout of drug (n=8 hearts per lysate). (*p<0.05). (B) Acute DNA 
damage by etoposide results in arrhythmia (top: representative ‘ΔAR/ARref’ beating curve). (i,ii) % 
arrhythmic hearts increases significantly within 1h upon etoposide treatment and continues to rise 
until 72h. (iii,iv) Continued exposure results in a decrease in beating rate (iii) and premature 
heart failure compared to DMSO control (iv). Oxidative stress induced by H2O2 also causes 
arrhythmia but with distinct kinetics. (*p<0.05, ** p<0.01, ***p<0.001) 
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Figure 2.7. Nuclei in intact embryonic hearts and hiPS-CMs on stiff matrix show rupture 
with cytoplasmic leakage of DNA repair factors 
(A) (i) Confocal images of E4 hearts doubly transfected with GFP-KU80 and mCherry-CGAS. 
Yellow arrow: representative cell with low lamin-A and ruptured nuclear envelope, as indicated by 
cytoplasmic mis-localization of GFP-KU80 and formation of mCherry-cGAS puncta at the nuclear 
envelope. Scale bar = 10 μm. (ii) Confocal images of z-disc striation (α-actinin-2) in E4 hearts 
treated with blebbistatin (2h), before and after washout (+1h). %-Ruptured GFP+mCherry+ 
(double positive) nuclei decreases with inhibition of contractility, but increases upon washout of 
blebbistatin while lamin-A remains low. (B) Human iPS-derived cardiomyocytes (‘hiPS-CMs’) 
cultured on stiff 40 kPa matrices for 24h. On stiff substrates, a small fraction of hiPS-CMs exhibit 
cytoplasmic mis-localization of the DNA repair factor, KU80. Nuclei of cells with cytoplasmic 
KU80 also have lamin-A-rich, lamin-B-devoid blebs along the long axis, at points of high 
curvature (white arrows). Scale bar = 10 μm. 
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Figure 2.8. siLMNA knockdown increases rupture & DNA damage, dependent on myosin-II. 
Overexpression of repair factors rescues excess DNA damage in ruptured nuclei 
(A) (i,ii) hiPS-CM culture on soft 0.3 kPa matrices greatly reduces the fraction of cells with 
cytoplasmic mis-localization of KU80, consistent with a decrease in nuclear stress. siLMNA 
knockdown (~40% (iii)) on rigid plastic, on the other hand, increases %-ruptured nuclei with mis-
localized KU80 (i) and DNA damage by γH2AX foci count (right inset images) (ii). Myosin-II 
inhibition by blebbistatin causes nuclei to become more rounded (iv) and rescues frequency of 
nuclear rupture (i) and γH2AX foci down to basal levels (ii), consistent with trends observed for 
soft matrix. (B) Cytoplasmic mis-localization is not limited to KU80, but applicable to other DNA 
repair factors including 53BP1 and RPA2 (top: immunofluorescence images, bottom: intensity 
profiles along white dashed line). Scale bar = 10 μm. (C) siRNA KD of various repair factors 
(KU80, BRCA1, RPA1, and a combination of the 3 (‘si3’)) result in significant increases in γH2AX 
foci count, consistent with partial loss from the nucleus. (*p<0.05, ** p<0.01, ***p<0.001). (D) 
Over-expression of relevant DNA repair factors (GFP-KU70, KU80, BRCA1) rescue only the 
excess DNA damage in siLMNA cells, comparing ruptured nuclei vs non-ruptured nuclei. Closed: 
non-ruptured nuclei; Open: ruptured nuclei. 
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Figure 2.9. Acute DNA damage in hiPS-CM organoids causes aberrant beating 
(A) Kymograph of beating hiPS-CM organoids generated by tracing length along yellow line with 
time. Blebbistatin treatment results in reversible inhibition of contractility. (B) Etoposide-induced 
DNA damage causes arrhythmia in hiPS-CM organoids with irregular short (green) and long (red) 
contractions.  
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Figure 2.10. Transcriptional regulation of LMNA by retinoids results in anti-correlated 
changes in γH2AX after 72 hrs 
(A) (i) Retinoic acid (RA) and antagonist to retinoic acid (AGN) treatment in intact embryonic 
hearts have no observable effect on lamin-A levels or DNA damage (γH2AX) at 3h. (n=6 hearts 
per condition). (ii) Significant changes in lamin-A and γH2AX are detectable only after 72h 
treatment, consistent with slow transcriptional modulation. A reduction in lamin-A upon RA 
treatment (72h) is accompanied by an increase in DNA damage as measured by γH2AX, while 
AGN treatment leads to an upregulation of lamin-A coupled to suppression of DNA damage. 
(*p<0.05). (B) RA and AGN treatment does not significantly affect contractility of hearts even after 
72h of treatment. 
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Figure 2.11. Lamin-A in isolated embryonic CMs is sensitive to substrate stiffness and 
actomyosin stress 
(A) Confocal Airyscan images of embryonic heart tissue at E4 and E11. CMs undergo significant 
spreading, cell/nuclear elongation, sarcomere assembly, and anisotropic alignment during 
development. Scale bar = 10 μm. (B) Schematic diagram illustrating isolated E4 CMs cultured on 
polyacrylamide (PA) gels of varying stiffness (0.3 -40 kPa), coated with an equal concentration of 
collagen-I ligand. (C) Representative images of well-separated E4 CMs cultured for 24h on 
collagen-I-coated PA gels. As seen in developing tissue (A), isolated CMs exhibit increased 
spreading, elongation, and sarcomere striation order with increasing stiffness. Addition of 
blebbistatin on rigid plastic causes CMs to become either rounded or dendritic, with significant 
disruption of sarcomeric striations. MMP inhibitors have no effect on morphology. Scale bar = 10 
μm. (D) (i) Lamin-A:B intensity ratio increases monotonically with gel stiffness. Blebbistatin 
treatment abolishes lamin sensitivity to matrix stiffness (red), but effects are rescued by MMP2-i 
or MMP-i. Datapoints for ‘Blebb. + MMP-i’ and ‘Blebb. + MMP2-i’ on rigid plastic (~1 GPa) were 
separated from ‘DMSO ctrl’ for better depiction of individual points. (ii) Cell and nuclear AR (inset) 
likewise increase monotonically as CMs become more polarized and elongated on stiffer gels. 
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Blebbistatin causes a reduction in cell/nuclear AR, but MMP-i and MMP2-i do not affect 
morphology. (E) (i) Lamin-A immunofluorescence signal is more nucleoplasmic in CMs cultured 
on soft (0.3 kPa) compared to stiff (40 kPa) matrices. Addition of blebbistatin to CMs on stiff 
matrices (‘Stiff + Blebb.’) also results in higher nucleoplasmic signal, as seen with soft matrix. 
Scale bar = 10 μm. (ii) Histogram of normalized phosphorylation (‘pSer/LMNA’) for two phospho-
sites, pSer22 and pSer390. pSer/LMNA is higher in CMs cultured on soft gels (‘Soft’, grey) and 
blebbistatin-treated CMs on stiff gels (‘Stiff + Blebb.’, red). pSer/LMNA for rare mitotic CMs 
(yellow) are typically 10~20-fold higher than in interphase cells (cyan). (iii) Average pSer/LMNA 
ratios quantified separately for pSer22 and 390.  
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Figure 2.12. Nuclear MMP2 degrades lamin-A upon myosin-II inhibition, unless lamin-A 
phosphorylation is inhibited in intact heart 
(A) Immunoblots of intact embryonic hearts treated with blebbistatin and MMP inhibitor drugs, 
probed for lamin-A (upper) and phosphorylated Ser390 (‘pSer390’; lower immunoblot). Lower 
pSer390 immunoblot shows visible bands not only at the intact lamin-A MW (73 kDa), but also at 
42 kDa, consistent with fragment bands reported in the literature (Baghirova et al., 2016; Prudova 
et al., 2010) and predicted in silico (Song et al., 2012). (i) The rapid decrease in lamin-A induced 
by blebbistatin is rescued upon MMP inhibition, consistent with MS quantitation (Fig.1H) (n=6 
hearts per lysate). ARP100 (an MMP2-specific inhibitor) replicates the effects of the pan-MMP 
inhibitor, GM6001 (upper immunoblot). (ii) Blebbistatin inhibition of actomyosin stress causes an 
increase in normalized phosphorylation at Ser390 (‘pSer390intact/LMNAintact’): pSer390 signal 
(blue) normalized to total lamin-A (magenta) at 73 kDa. (iii) However, blebbistatin does not 
significantly affect pSer390 signal ratio between the fragment 42 kDa band (orange) and intact 73 
kDa band (magenta) (‘pSer390fragm./pSer90intact’). pSer390fragm./pSer90intact is only lowered upon 
inhibition of MMP2. (*p<0.05, ** p<0.01). (B) Proposed two-step reaction scheme for lamin-A 
protein dynamics. Actomyosin tension on the nucleus inhibits lamin-A phosphorylation and 
subsequent degradation by MMP2. Lower right schematic plot illustrates hypothesized time-
dependent changes in the fractional abundance of each species including intermediates. (C) MS 
validation of lamin-A degradation. MS detects with high abundance multiple (>6) peptides unique 
to lamin-A in the 42 kDa fragment range (‘Slice 2’) in both blebbistatin and collagenase-treated 
hearts. (D) Neither blebbistatin nor MMP-i affect catalytic activation of MMP2, as determined by 
immunoblot quantitation of ‘cleaved / pro-MMP2’ ratio. (E) Immunofluorescence shows high 
nucleoplasmic MMP2 signal in embryonic CMs. Nuclear vs cytoplasmic localization is unaffected 
by actomyosin contractility (blebbistatin treatment). Scale bar = 10 μm. (F) MMP inhibition 
rescues the blebbistatin-induced decrease in lamin-A, but does not further suppress γH2AX 
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levels (n=6 hearts per lysate). γH2AX is further decreased upon co-treatment with CDK-i, which 
inhibits lamin-A phosphorylation (similar to GFP-S22A mutant). (*p<0.05, ** p<0.01)  
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Figure 2.13. Lamin-A mechanosensing protects the genome from stress-induced loss of 
DNA repair factors, hence excess DNA damage 
Schematic diagram summarizing lamin-A’s mechanosensing circuit, with a ‘use it or lose it’ 
mechanism of tension-inhibited turnover also applicable to collagen-I. 
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CHAPTER 3  
Progerin phosphorylation in interphase is lower and 
less mechanosensitive than lamin-A,C in  
iPS-derived mesenchymal stem cells  
 

This chapter appears in Nucleus, 9(1), 230-245 (2018). 
 
HGPS patient-derived iPS-MSCs were differentiated and cultured by Dr. Manorama Tewari. 
Immunoblots of late passage HGPS iPS-MSCs were performed by Amal Abbas. 
Transwell migration experiments were performed by Yuntao Xia and Dr. Jerome Irianto. 
Portions of retinoid experiments were done by Dr. Irena L. Ivanovska. 
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Abstract 

Interphase phosphorylation of lamin-A,C depends dynamically on a cell's microenvironment, 

including the stiffness of extracellular matrix. However, phosphorylation dynamics is poorly 

understood for diseased forms such as progerin, a permanently farnesylated mutant of LMNA 

that accelerates aging of stiff and mechanically stressed tissues. Here, fine-excision alignment 

mass spectrometry (FEA-MS) is developed to quantify progerin and its phosphorylation levels in 

patient iPS cells differentiated to mesenchymal stem cells (MSCs). The stoichiometry of total A-

type lamins (including progerin) versus B-type lamins measured for Progeria iPS-MSCs prove 

similar to that of normal MSCs, with total A-type lamins more abundant than B-type lamins. 

However, progerin behaves more like farnesylated B-type lamins in mechanically-induced 

segregation from nuclear blebs. Phosphorylation of progerin at multiple sites in iPS-MSCs 

cultured on rigid plastic is also lower than that of normal lamin-A and C. Reduction of nuclear 

tension upon i) cell rounding/detachment from plastic, ii) culture on soft gels, and iii) inhibition of 

actomyosin stress increases phosphorylation and degradation of lamin-C > lamin-A > progerin. 

Such mechano-sensitivity diminishes, however, with passage as progerin and DNA damage 

accumulate. Lastly, transcription-regulating retinoids exert equal effects on both diseased and 

normal A-type lamins, suggesting a differential mechano-responsiveness might best explain the 

stiff tissue defects in Progeria. 
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3.1 Introduction 

Hutchinson-Gilford Progeria Syndrome (‘HGPS’ or ‘Progeria’) is a premature aging disease that 

resembles normal aging in many key respects (Burtner and Kennedy, 2010; Gonzalo et al., 2017; 

Gordon et al., 1993). Shared defects include atherosclerosis, stiffening of skin, muscle attrition, 

weakening of bones, and fibrosis across many solid tissues (Gordon et al., 1993). However, 

tissues most severely affected by Progeria are those which are mechanically stressed and stiff, 

whereas soft tissues including brain, bone marrow, and blood appear unaffected (Worman, 2012) 

(Figure 3.1A). This stiff versus soft dichotomy seems independent of lineage and developmental 

origin, and raises the question of whether a defective mechanical response contributes to the 

pathology of Progeria. 

 Progeria is typically caused by a point mutation in one allele of LMNA that activates a 

cryptic splice site to produce ‘progerin’, a C-terminal mutant that lacks 50 amino acids (Eriksson 

et al., 2003; Vidak and Foisner, 2016) and thereby retains a farnesyl group that is cleaved off in 

normal lamin-A (Davies et al., 2009) (Figure 3.1B). Farnesylation favors binding to the inner lipid 

leaflet of the nucleus (Capell et al., 2005) and, consistent with membrane viscosity impeding 

diffusion (Goodwin et al., 2005), the permanently farnesylated B-type lamins show very low 

molecular mobility (as GFP-fusions) (Dahl et al., 2006; Moir et al., 2000) similar to prelamin-A and 

progerin. In contrast, mature lamin-A and its truncated spliceform, lamin-C, are both mobile and 

exchange dynamically between the lamina and the nucleoplasm (in ‘3D’) (Dahl et al., 2006). 

Movement along or within the lamina (in ‘~2D’) is relatively hindered; however, interphase 

phosphorylation of lamin-A/C at multiple residues clearly enhances mobility in either 

direction/mode by promoting rapid disassembly of filaments and solubilization into the 

nucleoplasm (Kochin et al., 2014). In particular, phosphorylation at serines 22, 390, and 392 near 

the head and tail domains has been shown to exert dominant effects on nucleoplasmic 

localization. While the precise functions of phosphorylated, nucleoplasmic lamin-A/C during 

interphase are still unclear (Naetar et al., 2017; Torvaldson et al., 2015), phospho-solubilization 

promotes lamin-A/C interaction with several key regulatory factors (e.g. LAP2α (Dechat et al., 

2000)) and significantly alters the mechanical properties of the nucleus (Buxboim et al., 2014). 
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Given the many structural and protective functions of the lamins at the nuclear periphery (Aebi et 

al., 1986; Cho et al., 2017; Dahl et al., 2008; Gruenbaum and Foisner, 2015; Turgay et al., 2017), 

regulation of mobility and assembly dynamics by such post-translational modifications (PTMs) 

suggests some mechanical relation to the stiff tissue defects seen in Progeria.  

 Contributions to disease from cell-extrinsic factors such as ‘tissue stiffness’ is consistent 

with surprising conclusions from mosaic mouse models (de la Rosa et al., 2013b): mice with 50% 

of cells expressing farnesylated lamin-A in all tissues maintain a normal lifespan, while mice with 

100% of cells expressing farnesylated lamin-A die within weeks of birth. Conventional cultures of 

these cells on rigid tissue culture plastic leads to premature senescence and/or apoptosis, as is 

also observed with related progeroid cells having low amounts of normal lamin-A/C (Hernandez 

et al., 2010), but the in vitro phenotype is rescued by cultures on almost any type of extracellular 

matrix (ECM) (Csoka et al., 2004; Hernandez et al., 2010), which is typically softer than plastic by 

many orders of magnitude. Furthermore, with cells depleted of lamin-A/C, migration through small 

rigid pores has shown that nuclear stress induces apoptosis (Harada et al., 2014). Failure to 

dynamically remodel the nuclear envelope and protect the nucleus from mechanical stress might 

thus provide some explanation for why defects in HGPS patients are limited to stiff tissues.   

Soft tissues (e.g. marrow) as well as stiff tissues (e.g. muscle) almost always have within 

a perivascular niche a population of mesenchymal stem cells (MSCs), which are key contributors 

to fibrosis (Kramann et al., 2015). Fibrosis is in turn a mechanosensitive process that affects MSC 

nuclei (Dingal et al., 2015; Li et al., 2017), and is major a hallmark of both normal and premature 

aging of solid tissues. Understanding MSC responses to microenvironmental properties can 

therefore provide fundamental insight into processes of relevance to many tissues and organs 

affected in disease or not. In standard cultures, MSCs (and closely related vascular smooth 

muscle cells (Liu et al., 2011)) that are differentiated from HGPS patient-derived iPS cells (HGPS 

iPS-MSCs) exhibit the highest levels of progerin, nuclear abnormalities, and DNA damage (Zhang 

et al., 2011). However, any effect of matrix stiffness or mechanical stress remains unknown.  

Cytoskeletal tension on the nucleus suppresses interphase phosphorylation of normal A-

type lamins (Buxboim et al., 2014; Swift et al., 2013), which otherwise promotes their 
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solubilization into the nucleoplasm and subsequent degradation(Bertacchini et al., 2013; Buxboim 

et al., 2014; Dingal and Discher, 2014; Naeem et al., 2015). In particular, lamin-A/C 

phosphorylation is low in cells on rigid surfaces that lead to stress fibers (such as tissue culture 

plastic), but increases rapidly (<1 hr) upon enzymatic detachment which disrupts the cytoskeleton 

and leads to cell and nuclear rounding (as seen during mitosis) (Sen and Kumar, 2009). Soft 

ECM similarly causes cell/nuclear rounding and increases phosphorylation of lamin-A and C. 

Whether the presence of a C-terminal farnesyl group can affect mechanosensitive phospho-

solubilization of A-type lamins is unclear, but de-farnesylation is reportedly required for 

phosphorylation at serine 22 (Moiseeva et al., 2016). Here, we develop a new mass spectrometry 

(MS)-based method for quantitation of intact lamins and their phosphorylation states in HGPS 

iPS-MSCs that are exposed to different mechanical environments. 

 

3.2 Results 

3.2.1 Stoichiometries of lamins in HGPS-derived iPS-MSCs are quantified 
by FEA-MS 

Progerin is the product of one of two alleles and might naively be expected to compose half of all 

A-type lamin protein, but past immunoblots of human progeria cells or tissues show 

disproportionately less progerin compared to normal lamin-A/C (McClintock et al., 2007; Scaffidi 

and Misteli, 2005). Quantitative immunoblotting for protein levels is of course extremely powerful, 

but precise measurements of protein stoichiometry can be a particular challenge unless an 

antibody binds with equal affinity to each protein band. We therefore developed a label-free mass 

spectrometry (MS)-based method for simultaneous quantitation of progerin, the normal lamins, 

and their phosphorylation states in HGPS patient-derived iPS-mesenchymal stem cells (HGPS 

iPS-MSCs). Briefly, fine-excision alignment mass spectrometry (FEA-MS) exploits molecular 

weight differences (ΔMW) between A-type lamins (Fig.1B, upper right box) by sectioning SDS-

PAGE gels into narrow slices (<1 mm3) along the electrophoresis direction (Figure 3.2A). A 

custom device with equally spaced blades allows for precise sectioning of the gel into seven or 

more slices per lane spanning the lamin MW range (60~80 kDa) (Fig.2A). Known amounts of 
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synthetic phospho-peptides (each containing a phosphorylated serine residue: ‘pSer22’ and 

‘pSer390’) and their non-phosphorylated forms (‘Ser22’ and ‘Ser390’) are injected into samples 

from adjacent replicates (Fig.2A, upper right), which adds precision to MS peak alignment and 

calibrated quantitation (see Materials and Methods). FEA-MS sample lanes are flanked by 

replicate lanes for immunoblotting. 

Isoform-specific peptides (Fig.1B, lower right Venn diagram) were used to generate 

separate intensity plots for lamin-A (‘LA’), progerin (‘P’), and lamin-C (‘LC’) in slices 2-6 (Figure 

3.2B & Figure B.1A). Signal-to-noise ratios calculated for isoform-specific peptides proved 

highest at the respective peaks (Figure B.1B). Summed MS intensities gave A-type lamin 

isoform stoichiometries of (LA : P : LC) = (1 : 0.5 : 1.7) in HGPS iPS-MSCs (Figure 3.2C; Figure 

B.1C,D), in agreement with densitometry of Western blots (Figure 3.2D,E). We showed 

previously that the iPS-MSCs studied here have a normal karyotype (Irianto et al., 2017) with one 

allele expressing normal (LA + LC) and one expressing progerin (P), and so normal-to-diseased 

protein ratios of (2.7 : 0.5) likely suggest differences in protein or mRNA stability. 

The total MS intensity of A-type lamins was also 8-fold greater than that of B-type lamins 

(lamin-B1, ‘LB1’, plus lamin-B2, ‘LB2’) (Figure 3.2F & G-i, Figure B.1E), such that lamin-A:B ~ 

8:1. Normal primary bone-marrow derived human MSCs (hMSCs) have a similar lamin-A:B ~ 

10:1 (Swift et al., 2013), which is consistent with iPS differentiation toward MSCs. On the other 

hand, expression of progerin in these HGPS iPS-MSCs effectively decreased the (non-

farnseylated : farnesylated) lamin ratio to ~3:1 (Figure 3.2G-ii). Since lamin-A:B is a key 

determinant of nuclear response to mechanical stress (Harada et al., 2014; Swift et al., 2013), the 

latter stoichiometry raised questions of how progerin responds to various mechanobiological 

perturbations. 

 

3.2.2 Progerin and lamin-B’s are both depleted from mechanically-induced 
nuclear blebs 

To assess whether C-terminal farnesylation causes progerin to respond differently to mechanical 

stress, HGPS iPS-MSCs were seeded onto transwell membranes for migration through 3 μm 
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pores (Figure 3.3A), which are typical of pores in stiff tissues25. Despite the well-documented 

reduction in motility and disrupted nucleus-cytoskeleton connections in Progeria cells (Booth-

Gauthier et al., 2013; Haque et al., 2010; Wang et al., 2012), the patient-derived iPS-MSCs were 

fully capable of migrating through narrow constrictions. The cells that migrated to the bottom of 

the transwells (~40% of cells in 48h) further exhibited nuclear blebs that are typical of 

mechanically-induced nuclear envelope rupture (Harada et al., 2014; Irianto et al., 2017) (Figure 

3.3B). With these cells, however, progerin could not be easily distinguished from normal LA and 

LC due to antibody cross-reactivity. Human A549 lung carcinoma cells with a low LMNA 

background (via shLMNA) were therefore transfected with GFP-LA or GFP-progerin and seeded 

onto the same transwell membranes to assess any differences in their migration-induced 

response. LMNA knockdown in A549s resulted in a higher number of cells that migrated 

compared to wild type (‘WT’) (Figure B.2A), consistent with past studies demonstrating that a 

soft nucleus facilitates migration through narrow pores(Harada et al., 2014). Migrating cells as 

(fraction of cells migrating to bottom) was rescued to baseline upon transfection with WT GFP-LA, 

but was further reduced with expression of GFP-progerin (Figure B.2A).  

As with the patient-derived iPS-MSCs, the GFP-LA expressing A549s that managed to 

migrate to the bottom of the transwells exhibited mechanically-induced nuclear blebs (Figure 

3.3C). Blebs were again depleted of B-type lamins but were enriched in lamin-A/C 

immunofluorescence signal, which accounts for endogenous LA & C as well as transfected GFP-

LA (Figure 3.3D). No such enrichment was seen however with GFP fluorescence (accounting for 

LA only), suggesting that the ~3-fold enrichment in anti-lamin-A/C might be a result of preferential 

accumulation of endogenous LC (Figure 3.3D, immunoblot inset). Nuclear blebs in the shLMNA + 

GFP-progerin cells showed progerin depletion as well as a dominant negative effect on LA and 

LC (Figure 3.3C,D). Progerin’s absence from blebs suggested that it responds more similarly to 

lamin-B’s than LA or LC upon nuclear constriction and/or rupture. Permanent C-terminus 

farnesylation is one possible explanation, but the mobility and localization of A-type lamins can 

also be regulated dynamically by interphase phosphorylation, which promotes solubilization of 

filaments from the lamina into the nucleoplasm (Kochin et al., 2014). Confocal 
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immunofluorescence with an anti-phospho-LA/C-Ser22 antibody (‘pSer22’) indeed revealed 

significant nucleoplasmic signal, but the localization and overall levels of phosphorylated A-type 

lamins were unaffected by constricted migration (Figure 3.3E,F) regardless of DNA content (‘2N’ 

vs ‘4N’, Fig.3F upper inset). Migration resulted in a decrease in % 4N cells (Figure B.2B), 

consistent with recent reports showing pore migration suppresses late cell cycle (G2) (Pfeifer et 

al., 2017), and the same cells showed slightly higher pSer22 as expected(Akopyan et al., 2014). 

Due to the cross-reactivity of the pSer22 antibody, however, any differences in phosphorylation 

responses of progerin relative to normal LA/C remained unclear and were best assessed by FEA-

MS and immunoblots.  

 

3.2.3 Basal phosphorylation of progerin and lamin-A is 2-fold lower than 
that of lamin-C 

To clarify any isoform-specific differences in interphase phosphorylation of A-type lamins 

including endogenous progerin, we examined HGPS iPS-MSCs on rigid culture plastic. The iPS-

MSCs were first analyzed by immunofluorescence, which again revealed characteristic nuclear 

blebs that were enriched in A-type lamins and depleted of B-type lamins (Figure 3.4A), 

consistent with images after pore migration of both iPS Progeria cells and normal A549 cells 

(Figure 3.3). Phosphorylated A-type lamins were again found mostly in the nucleoplasm (Figure 

3.4A-i) and appeared capable of diffusing into lamin-B-depleted nuclear blebs (Figure 3.4A-ii). 

Nucleoplasmic signal in the vast majority of the population was clearly attributable to interphase 

phosphorylation, as very few cells (<1%) were mitotic with the expected cytoplasmic distributions 

of lamin-A/C and pSer22 (Figure 3.4B).  

 For more rigorous quantitation of phosphorylation of the three A-type lamin isoforms, we 

then calibrated our FEA-MS analysis with synthetic versions of tryptic peptides that have well-

documented phospho-serines at Ser22 and Ser390, which are near the head and tail domains of 

lamin-A/C, respectively (Torvaldson et al., 2015). Injections of known amounts of both 

phosphorylated (‘pSer22’ and ‘pSer390’) and non-phosphorylated (‘Ser22’ and ‘Ser390’) peptides 

into adjacent replicate lanes (Figure 3.2A) allowed for MS peak alignment and transfer of 
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identifications from the ‘spike-in’ lanes to the ‘endogenous’ sample lane containing no synthetic 

peptide. Intensities of injected synthetic peptides exhibited robust linearity versus spike-in 

amounts over several orders of magnitude (all R2 > 0.97 in slices #3-5;  

Figure B.3A), which provides confidence in MS quantitation.  

Analysis by FEA-MS revealed that progerin (P) phosphorylation is slightly lower than that 

of intact LA, and is ~2-fold lower than that of intact LC in HGPS iPS-MSCs (Figure 3.4C). All 

three A-type lamin isoforms exhibited phosphorylation stoichiometries (‘% phosphorylation’) of 

0.5~10% (Figure 3.4D). This was determined by three different normalization methods: the ratio 

of phosphorylated peptide intensity divided by 1) the intensity of its non-phosphorylated 

counterpart (e.g. ‘pSer22/Ser22’), 2) the mean intensity of all lamin-A/C peptides (e.g. 

‘pSer22/LMNAmean’), and 3) the median of all lamin-A/C peptides (e.g. ‘pSer22/LMNAmedian’) ( 

Figure B.3B). All three normalization methods produced consistent trends showing 

phosphorylation of LC > LA ≥ P (Fig.4B, inset). In addition to the Ser22 and Ser390 spike-in sites, 

FEA-MS also detected a doubly phosphorylated peptide with ‘pSer404&407’, which followed 

similar trends as Ser390, a neighboring tail-domain phospho-site (Figure 3.4C,D;  

Figure B.3B-iii). LC having the highest phosphorylation is consistent with LC being the 

most mobile and mechanosensitive A-type isoform in vitro (Broers et al., 2005; González-Cruz et 

al., 2018; Pugh et al., 1997). On the other hand, phosphorylation of LB1 and LB2 at analogous 

sites was not detected (Table S1) despite abundant signal from the non-phosphorylated control 

peptides. Undetectably low phosphorylation of the B-type lamins is consistent with the hypothesis 

that C-terminal farnesylation somehow suppresses phosphorylation and solubilization of lamins, 

as likewise suggested by progerin and LB1/B2’s depletion from mechanically-induced nuclear 

blebs (Fig.3B,C). 

Western blots for anti-pSer22 validated the above FEA-MS trends, showing the highest 

normalized phosphorylation of LC (anti-pSer22 densitometry signal divided by that of total anti-

lamin-A/C: ‘pSer22/LMNA’), followed by LA, then P (Figure 3.4E,F). Low MW bands (30-40 kDa) 

that immunostained for lamin-A/C also stained intensely with anti-pSer22 (as plotted for the 

lowest band at ~30 kDa, purple box; Figure 3.4F); this is consistent with previous studies of 
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interphase phosphorylation favoring degradation into smaller fragments (Bertacchini et al., 2013; 

Buxboim et al., 2014; Dingal and Discher, 2014; Naeem et al., 2015). Since phosphorylation of A-

type lamins increases upon release of cytoskeletal tension on the nucleus (Buxboim et al., 2014; 

Swift et al., 2013), these measurements raised questions of whether responses to mechanical 

perturbations are also isoform-dependent. 

 

3.2.4 Phosphorylation of A-type lamins increases with low tension but 
mechanosensitivity is lost with passage of iPS-MSCs 

To assess whether the difference in baseline phosphorylation levels across A-type lamin isoforms 

influence their responses to mechanical stress, well-spread HGPS iPS-MSCs on rigid plastic 

were treated with low concentrations of trypsin for tens of minutes to induce cell rounding and 

detachment from the substrate (Figure 3.5A). In culture, lamin-A/C levels in adult cells including 

primary hMSCs decrease rapidly (<1h) upon cell rounding, with increased phosphorylation and 

turnover of lamin-A/C dependent on actomyosin contractility (Buxboim et al., 2014). Lower 

mechanical tension on the nucleus (e.g. cell/nuclear rounding) increases phosphorylation and 

solubilization of lamin-A/C into the nucleoplasm, which in turn favors its degradation (Bertacchini 

et al., 2013; Buxboim et al., 2014; Naeem et al., 2015). Intact A-type lamins in early passage (P2) 

HGPS iPS-MSCs likewise decreased in level upon cell rounding and detachment by trypsinization 

(up to 45 min), with correspondingly higher phosphorylation at Ser22 (Figure 3.5A-i). Low MW 

(~40 kDa and lower) degradation fragment bands were again clearly visible and increased in 

intensity with cell/nuclear rounding (Figure 3.5A-i, immunoblot), correlating with elevated pSer22 

signal but anti-correlating with the decrease in intact lamins. Effects were most pronounced once 

again for LC > LA > P. However, the rapid response to cell rounding was lost at high passage 

(>P7) (Figure 3.5A-ii).  

Cell and nuclear rounding can also be achieved and sustained for days by culturing cells 

on soft gels as opposed to stiff gels which promote cell spreading per conventional cultures on 

glass or plastic. Quantitative immunoblotting of P7 iPS-MSCs cultured on soft or stiff collagen-

coated gels showed decreases in LC > LA > P on soft gels relative to stiff (Figure 3.5B &  
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Figure B.4A), and a ~40 kDa fragment band was evident only in cells on soft gels, 

consistent with degradation under these sustained low tension conditions. Immunofluorescence 

showed normal primary hMSCs are more mechano-responsive, at least at low passage (Figure 

3.5B: gray bar, adapted from Dingal et al. (Dingal et al., 2015)) and likewise showed a clear 

mechano-response in lower passage iPS-MSCs ( 

Figure B.4B). 

To further clarify the effects of tension on lamin phosphorylation and degradation, low-

passage (P2) iPS-MSCs on rigid culture plastic were treated for 2h with the myosin-II inhibitor, 

blebbistatin, and analyzed by immunofluorescence (Figure 3.5C). Treatment with blebbistatin 

caused nuclear rounding (smaller projected area, Figure 3.5D) and significantly reduced the 

fraction of nuclei with blebs (Figure 3.5C and Figure 3.5E-i,ii), consistent with inhibition of 

actomyosin tension. Reduced actomyosin stress also caused a rapid decrease in A-type lamin 

levels (but not B-type lamins) (Figure 3.5F), concomitant with an increase in normalized 

phosphorylation (in both ‘2N’ and ‘4N’ cells) (Figure 3.5G-i). Furthermore, the fraction of 2N vs 

4N cells remained unaffected with blebbistatin treatment (Figure 3.5G-ii), removing the possibility 

of any confounding effects of cell cycle shift. Once again, higher passage (P7) iPS-MSCs were 

unaffected ( 

Figure B.4C).  

Loss of sensitivity with passage coincided with (i) an increase in cell and nuclear area 

(Figure 3.5H,I), (ii) accumulation of progerin (Figure 3.5J, top), and (iii) a greater number of cells 

with γH2AX foci, which is a marker of DNA damage (Figure 3.5H,J-bottom). The findings thus 

suggest that regulation of the intact A-type lamins (LC > LA > P) by tension-mediated 

phosphorylation and turnover diminishes with passage number and possibly with cell 

senescence, which has been shown in many contexts to be accelerated with accumulation of 

progerin (Benson et al., 2010; Cao et al., 2011; Wheaton et al., 2017). The rapid and distinct 

mechano-responses at the level of protein for the normal and diseased A-type lamin isoforms 

raised questions of whether or not they also respond differently to transcriptional regulation. 
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3.2.5 Lamin-A, progerin, and lamin-C respond equally to transcriptional 
regulation by retinoids 

Progerin protein levels measured by FEA-MS were clearly below the levels expected from allele 

ratios (Figure 3.1B), and were also found to be less mechanosensitive than normal LA/C after 

both acute and sustained perturbations (Figure 3.5A-G). It is conceivable that through some 

allele-specific mechanisms (such as positioning the mutated sequence more in heterochromatin) 

progerin expression occurs at an unperturbable, low level similar to lamin-B1/B2 in the MSCs.  It 

is also conceivable that splicing mechanisms are differentially regulated (Figure 3.1B). HGPS 

iPS-MSCs were therefore cultured on soft or stiff collagen-coated gels and treated with retinoid 

compounds that are known to regulate LMNA gene expression. All-trans retinoic acid (‘RA’) and 

CD1530 are retinoid agonists that repress LMNA promoter activity (Ivanovska et al., 2017; Swift 

et al., 2013), while antagonist (‘AGN’) and CD2665 upregulate LMNA promoter activity. RA is a 

vitamin-A metabolite with potent effects in differentiation that is normally ~10 nM in serum. 

Treatment of early passage (P2) HGPS iPS-MSCs with 1 μM CD1530 or CD2665 revealed 

significant changes in LMNA expression on stiff gel cultures but not on soft (Figure 3.6A), 

consistent with recent reports demonstrating that a stiff matrix is required in order to sensitize 

cells to these compounds (Ivanovska et al., 2017). Quantitative densitometry of A-type lamins in 

RA/AGN treated cells cultured on rigid plastic further revealed that regulation by retinoids is not 

isoform-specific in these early passage (P2) HGPS iPS-MSCs (Figure 3.6B &  

Figure B.4D): LA, P, and LC all responded equally, resulting in ~30% repression with RA and up 

to ~10% upregulation with AGN. These results agree with recent reports (Lo Cicero et al., 2016) 

and suggest that regulatory perturbations of the mutated LMNA gene and transcript are similar to 

the normal allele, with effects likely independent of phospho-degradation ( 

Figure B.4E). Nonetheless, as seen with mechano-regulation (Figure 3.5A-E), sensitivity to 

retinoids diminished with passage (Figure 3.6C), indicating that expression responses to both 

soluble and insoluble microenvironmental cues are blunted over time. 
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3.3 Discussion 

FEA-MS complements and extends antibody-based methods for quantifying stoichiometries of 

lamins and phosphorylation states in HGPS patient-derived cells that are differentiated to MSCs 

with abundant lamin-A. Additional steps in the workflow could improve quantitation (e.g. injection 

of synthetic peptides unique to each isoform), but our measurements of LA : P : LC (1: 0.5 : 1.7) 

and %-phosphorylation (0.5-10%) proved consistent with immunoblot trends (Figure 3.2B-E, 

Figure 3.3A-C) and with total lamin-A:B stoichiometry in primary MSCs (Figure 3.2G). New 

phospho-specific antibodies should be useful for further assessments, including degradation 

involving pSer404 ( 

Figure B.4E). The ratio of normal : mutant A-type lamins, (LA + LC) : P, was found to be far below 

1:1 despite the iPS-MSCs having a normal karyotype (Irianto et al., 2017), suggesting differences 

in mRNA stability (Rodriguez et al., 2009) and/or inefficiencies in the activation of the cryptic 

progerin splice site(Reddel and Weiss, 2004). Progerin protein also interacts more strongly with 

the proteasome (Kubben et al., 2010) and is suggested to be a selective target of autophagy (as 

is prelamin-A) (Cenni et al., 2011; Dou et al., 2015; Pellegrini et al., 2015), which could favor a 

basal rate of degradation. However, intact progerin was found here to be least responsive in its 

dynamic mechanosensitive phosphorylation and degradation (Figure 3.7). These molecular 

observations in a model cell type found in most organs begin to provide some insight into why 

Progeria(Gordon et al., 1993) primarily afflicts tissues that we pointed out are normally stiff and 

more stressed mechanically (Figure 3.1A), whereas soft tissues including brain, bone marrow, 

and blood are unaffected (Worman, 2012).  

Mechanically induced nuclear blebs after constricted migration were depleted of progerin, 

which appeared to behave more like B-type lamins rather than LA or LC (Figure 3.3C,D). This 

observation is consistent with nuclear blebs seen in HGPS cells in culture (Goldman et al., 2004; 

Taimen et al., 2009) (Figure 3.4A,B). GFP-progerin also prevented the enrichment of endogenous 

LA and LC to nuclear blebs, suggesting a dominant negative effect on lamin mobility and 

remodeling dynamics. The findings are consistent with reports showing decreased nucleoplasmic 

localization of A-type lamins in HGPS fibroblasts (Vidak et al., 2015). Super-resolution imaging 
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suggests A-type lamins form distinct filament networks (Shimi et al., 2015; Xie et al., 2016), but 

the dominant negative effect seen here could reflect interactions between progerin and LA/C that 

are stronger than those between A-type and B-type lamins; in addition to ‘hetero-filaments’ of 

mixed LA-P or LC-P filaments, shared binding partners (Haque et al., 2006; Wilson and Foisner, 

2010) might also suppress mobility under mechanical perturbations.  

 Consistent with low mobility of progerin, its steady state phosphorylation in iPS-MSCs on 

rigid culture plastic proved slightly lower than that of intact LA and far lower than that of LC. 

Turnover of progerin also exhibited lower sensitivity to mechanical perturbations than that of LA 

or LC: upon cell/nuclear rounding in early passage iPS-MSCs (Figure 3.5A&G), all three A-type 

isoforms decreased in level with increased phosphorylation at Ser22. Of the three isoforms, intact 

LC was again most responsive to the reduction in nuclear stress, consistent with its highest 

baseline phosphorylation (Figure 3.4C-F), followed by LA, then P. One appealing explanation for 

progerin’s lower sensitivity to mechanical regulation is that farnesylation limits stress-induced 

conformational changes in lamin dimers that increase their affinity for modifying enzymes 

(Buxboim et al., 2014; Swift et al., 2013). It is also clear from studies of Ser22Asp that such a 

phospho-mimetic is more nucleoplasmic and soluble than WT LMNA (Kochin et al., 2014), and 

results in a significantly softer nucleus (Buxboim et al., 2014). The low MW phospho-bands could 

therefore derive from intact LA/P/LC. Determining which A-type lamin yields such degradation 

peptides will be a challenge but is essential to clarifying the LC > LA > P mechanosensitive 

dynamics of the intact proteins. 

 Sensitivity of all A-type isoforms to matrix stiffness in 2D adhesion and 3D migration as 

well as to retinoid compounds (soluble transcriptional regulators) was blunted by passage, 

consistent with loss of mechano-sensitivity reported for primary MSCs (Dingal et al., 2015). A 

dampened response to extracellular inputs is consistent with an increasingly senescent 

phenotype that correlates with progerin accumulation, DNA damage, and enlargement of cells 

and nuclei in higher-passage MSCs (Figure 3.5C-E). Given that progerin is known to reduce force 

propagation to the nuclear interior (Booth et al., 2015), interfere with mitosis (Cao et al., 2007), 

compromise stem cell differentiation potential (Scaffidi and Misteli, 2008), and induce senescence 
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(Benson et al., 2010; Cao et al., 2011; Wheaton et al., 2017), these findings point to a potential 

positive feedback loop in which progerin drives a cell into premature senescence, which in turn 

favors further accumulation of progerin by limiting its sensitivity to upstream regulatory factors. 

The findings also imply that therapeutic efforts to modulate progerin levels in vivo (e.g. with 

farnesyl transferase inhibitors (Gordon et al., 2012)) could become increasingly ineffective over 

time, which provides further motivation and rationale for early and accurate diagnosis and 

intervention. 

 

 

3.4 Materials and Methods 

3.4.1 Differentiation and maintenance of patient-derived iPS-MSCs 

Induced pluripotent stem cell (iPSC) lines derived from primary fibroblasts were obtained from 

‘The Progeria Research Foundation Cell & Tissue Bank’, University of Ottawa. Differentiation of 

the iPSCs into mesenchymal stem cells (iPSC-MSCs) was achieved as described in Zou et al 

(Zou et al., 2013). Briefly, iPS culture medium was replaced with MSC medium (low glucose 

Dulbecco’s modification of Eagle’s medium (DMEM, Invitrogen) with 10% fetal bovine serum 

(FBS, Sigma Aldrich) and 1% penicillin/streptomycin) three days after splitting. The MSC culture 

medium was refreshed every 2 days. After 14 days of culture, the cells were trypsinized (0.25% 

trypsin/1 mM EDTA, Difco-Sigma) and expanded in MSC medium on 0.1% gelatin coated dishes 

(BD). Upon confluency (typically 3-5 days), cells were trypsinized (0.025% trypsin-EDTA) and 

regularly passaged at ~1:3 ratio. A morphologically homogeneous population of fibroblast-like 

cells became evident typically after the third passage, at which point the cells were assessed for 

MSC phenotypic characteristics and differentiation potential. 

 

3.4.2 Fine-excision mass spectrometry (FEA-MS) 

HGPS patient-derived iPS-MSC lysates (see Immunoblotting section) were injected into four 

middle lanes of an SDS-PAGE gel (15-well NuPAGE 4‐12% Bis‐Tris; Invitrogen) and four 
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additional lanes (two on each side) spaced by molecular weight (MW) standards (Fig.1B). Gel 

electrophoresis was run for 10 min at 100 V, then subsequently for >1 hr at 160 V to allow 

maximum possible separation of the lamin MW range (60  - 80 kDa). A custom device made of >8 

equally spaced blades (1 mm apart) was used to excise the SDS-PAGE into 7 narrow slices per 

lane (~1 mm3 in volume) vertically along the direction of electrophoresis. The excised gel slices 

were prepared for LC-MS/MS processing following the protocol outlined in Swift et al. (Swift et al., 

2013). Briefly, the gel slices were washed in 50% 0.2 M ammonium bicarbonate (AB), 50% 

acetonitrile (ACN) solution for 30 min at RT. The washed slices were lyophilized, incubated with a 

reducing agent (20 mM TCEP in 25 mM AB solution), then alkylated (40 mM iodoacetamide (IAM) 

in 25 mM AB solution). The gel sections were lyophilized again before in-gel trypsinization (20 

mg/mL sequencing grade modified trypsin, Promega) overnight at 37°C with gentle shaking. The 

resulting tryptic peptides were extracted by adding 50% digest dilution buffer (60 mM AB solution 

with 3% formic acid). Known concentrations of phosphorylated lamin-A peptide standards 

(GenScript) containing well-documented phospho-serine residues (‘pSer22’ and ‘pSer390’) and 

their non-phosphorylated counterparts (‘Ser22’ and ‘Ser390’) were spiked-into the final tryptic 

peptide solutions (0.001, 0.01, 0.1 μM into lanes #6, 7, 8, respectively), per Fig.1B. Samples were 

injected (~10 nL) into a high-pressure liquid chromatography (HPLC) system coupled to a hybrid 

LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific) via a nano-electrospray ion 

source. 

Raw data from each MS sample was processed separately using MaxQuant (version 

1.5.3.8, Max Planck Institute of Biochemistry). MaxQuant’s built-in Label-Free Quantification 

(LFQ) algorithm was employed with full tryptic digestion and up to 2 missed cleavage sites. 

Peptides were searched against a human FASTA database compiled from UniProt, plus 

contaminants and a reverse decoy database. The software’s decoy search mode was set as 

‘revert’ and a MS/MS tolerance limit of 20 ppm was used, along with a false discovery rate (FDR) 

of 1%. The minimum number of amino acid residues per tryptic peptide was set to 7, and 

MaxQuant’s ‘match between runs’ feature was used for transfer of MS2 peak identifications 

across samples. All other parameters were run under default settings. The MaxQuant output 
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tables were then fed into its custom bioinformatics suite, Perseus (version 1.5.2.4), for protein 

annotation and sorting. 

The LFQ intensity for ‘Prelamin-A/C’ (normalized intensity value incorporating signal from 

all LMNA peptides) was plotted against gel slice # to generate an intensity line profile with two 

distinct peaks at slices 3 and 5, respectively. Isoform-specific peptides (those belonging to lamin-

A only (‘LA’), lamin-A or progerin (‘LA/P’), and lamin-C only (‘LC’) in Fig.S1A; Venn diagram) were 

used to calculate pair-wise intensity ratios for each slice range (e.g. LA:LC ratio in slice #3). The 

pair-wise ratios were then used to generate isoform-specific intensity plots (Fig.S1A, middle plot) 

which, when summed, preserved the total A-type isoform abundance (‘LA / P / LC’ in gray). Final 

adjusted line profiles for each isoform (‘LA*’, ‘P*’, and ‘LC’, Fig.S1A, rightmost plot) were 

generated based on the symmetry of the LA and LC peaks: since LA (~74 kDa) was close to zero 

at all slices except #3 and LC ~ 0 at all slices but #5, progerin was also assumed to have one 

distinct peak at slice #4 with minimal contribution to ‘LA/P’ in slice #3. The ratio of LA signal at 

slice #2 / #3 (LA2/LA3) and that of LC signal at slice #4 / #5 (LC4/LC5) were thus averaged to 

estimate the fractional decrease of progerin signal from slice #4 to #3, to estimate progerin’s 

signal in slice #3, P*3 (which was found to be ~ 0). Isoform stoichiometries were computed by 

summing intensities over all slices (1-7), or alternatively, by integrating the best-fit Gaussian 

functions.  

 

3.4.3 Transwell migration 

Cells were seeded at densities of ~300,000 cells/cm2 onto the top side of transwell filter 

membranes (Corning Inc.) and left to migrate under normal culture conditions for 24 hrs. The 

number of migrated cells on the bottom of the membrane are proportional to the number of cells 

added on the top in a given set of experiments, which allows for comparisons across conditions 

by normalizing to a control sample.  
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3.4.4 LMNA knockdown and overexpression 

A549 cells (a human lung carcinoma cell line) was cultured in Ham’s F12 nutrient mixture (Gibco), 

supplemented with 10% FBS and 1% penicillin/streptomycin (Sigma). Overexpression of lamin-A 

was achieved by transfection with Lipofectamine 2000 (Invitrogen) for 24-hr. GFP-lamin-A and 

GFP-progerin were gifts from David M. Gilbert (Florida State University) and Tom Misteli 

(Addgene plasmid # 17653), respectively. For shRNA knockdown of LMNA, A549 cells were 

infected with lentiviral supernatants targeting lamin-A (TRCN000061833, Sigma) at a multiplicity 

of infection (MOI) of 10 in the presence of 80 μg/mL Polybrene (Sigma) for 24 hours. Transduced 

cells were then selected by treatment with 2 μg/mL puromycin (Sigma) for 30 days. Efficiency of 

knockdown was determined by immunoblot. 
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Figure 3.1. HGPS aging defects are most pronounced in mechanically stressed tissues. 
(A) HGPS disproportionately affects stiff and mechanically stressed tissues (e.g. skeletal/cardiac 
muscle) while soft tissues (e.g. brain, marrow) appear normal, regardless of lineage or 
developmental origin. (B) Post-translational processing of normal lamin-A/C and progerin. The 
truncated mutant, progerin, retains a C-terminus farnesyl group. Upper right box: A-type lamin 
isoforms differ in molecular weight (MW) by ~5 kDa. Lower right: Venn diagram of unique and 
common A-type lamin peptides. The majority of the peptides are shared by all three isoforms, 
with the exception of isoform-specific peptides at the C-terminus. ‘FTase’ = Farnesyl transferase; 
‘RCE1’ = Ras converting CAAX endopeptidase 1; ‘ZMPSTE24’ = Zinc metallopeptidase STE24; 
‘ICMT’ = Isoprenylcysteine carboxyl methyltransferase. 
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Figure 3.2. Quantification of lamin isoform stoichiometries by fine-excision alignment 
mass spectrometry (FEA-MS).   
(A) FEA-MS pipeline. HGPS iPS-MSC lysates (‘PG’) are injected into 4 middle SDS-PAGE lanes. 
Known concentrations of synthetic phospho-peptide standards (each containing a well-known 
serine residue: ‘pSer22’ and ‘pSer390’) and their non-phosphorylated counterparts (‘Ser22’ and 
‘Ser390’) are injected into adjacent lanes to allow for (i) better detection by MS peak alignment, 
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(ii) averaging over replicates, and (iii) calibrated quantitation of peptide/protein concentrations. An 
extended (>1h) SDS-PAGE run achieves sufficient separation of A-type lamin isoforms, allowing 
for excision of the gel into multiple narrow slices along the electrophoresis direction with a custom 
device of equally spaced parallel blades. FEA-MS sample lanes are flanked by 2 additional lanes 
on either side (left and right), which are used for parallel immunoblot analyses. ‘MW’ = molecular 
weight standards. (B) Intensity profiles of lamin-A (‘LA’), progerin (‘P’), and lamin-C (‘LC’) 
determined by FEA-MS and plotted vs slice #. (C) Summation of FEA-MS signal over all gel 
slices (#1-7) quantifies A-type lamin stoichiometries, LA : P : LC ~ 1 : 0.5 : 1.7. (D) Aligned left & 
right (‘L’ & ‘R’) flank Western blots for anti-lamin-A/C show three distinct bands for LA, P, and LC. 
Right inset: line profile plot of immunoblot densitometry signal. (E) Quantification of LA : P : LC by 
densitometry is consistent with that by FEA-MS. (F) Line profile plot of normalized MS intensities 
of B-type lamins (‘B1’ & ‘B2’). (G) Stacked bar graph illustrating summed intensities of each 
isoform across all gel slices. (i) Total A-type lamins are >8-fold more abundant than B-type 
lamins, but (ii) the ratio of non-farnesylated : farnesylated lamins decreases to ~3 with progerin 
expression. 
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Figure 3.3. Farnesylated progerin, as with lamin-B1/B2, is depleted from nuclear blebs 
following constricted migration through narrow pores 
(A) Cartoon illustrating transwell migration of cells. Pore diameter = 3 μm; Polystyrene membrane 
thickness ~10 μm. (B) Confocal images of HGPS iPS-MSCs that migrate to the bottom of narrow 
3 μm pores (~40% of seeded cells migrate to bottom in 48h) show typical nuclear blebs with 
lamin-B1/2 depletion. Scale bar = 10 μm. (C) Representative images of nuclei exhibiting 
characteristic blebs following constricted migration. Lamin-A/C is enriched in sites of nuclear 
blebs (as seen by immunofluorescence and GFP signal), but GFP-progerin is depleted from blebs, 
as are the farnesylated lamins-B1 and B2. Scale bar = 5μm. (D) Quantitation of nuclear bleb/body 
fluorescence intensity ratio. Inset: immunoblot of WT and shLMNA cells showing residual LA and 
LC. (E) Confocal images of WT A549 cells at the top & bottom of the transwell membrane. 
Phosphorylated lamin-A/C (‘pSer22’) is seen in the nucleoplasm of interphase nuclei. Cells that 
migrate to the bottom show nuclear blebs with lamin-A/C enrichment and lamin-B1/B2 depletion 
(yellow arrowheads). Scale bar = 10 μm. (F) While lamin-A/C is phosphorylated ~10-15% higher 
in ‘4N’ vs ‘2N’ cells (inset), normalized phosphorylation (as ‘pSer22/LMNA’) does not change 
significantly before and after migration. 
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Figure 3.4. Progerin and lamin-A phosphorylation in HGPS iPS-MSCs is 2-fold lower than 
that of lamin-C. 
(A) Immunofluorescence images of HGPS iPS-MSCs on rigid culture plastic showing lamin-A/C-
enriched, lamin-B-depleted nuclear blebs (yellow arrowheads). Scale bar = 10 μm. (i) Intensity 
profile (along red line) of pSer22 primarily in the nucleoplasm and lamin-A/C at the nuclear 
periphery. (ii) Intensity profile (along red line) of a nuclear bleb enriched in lamin-A/C and 
depleted of lamin-B. (B) Immunofluorescence images of a dividing cell next to non-dividing cells. 
Bottom histogram illustrates normalized frequency distribution of pSer22/LMNA, with respect to 
DNA content (‘2N’ vs ‘4N’). Pie chart: mitotic cells with hyper-phosphorylated lamin-A/C are 
extremely rare (<1%). Scale bar = 10 μm. (C) Semi-log profile plot of A-type lamin peptide MS 
intensities. Intensities of non-phosphorylated (endogenous) peptides ‘Ser22’ and ‘Ser390’ are 
close to the average and median intensities of all lamin-A/C peptides (gray). (D) Normalized 
phosphorylation stoichiometries (signal of phosphorylated peptide divided by the median signal of 
all lamin-A/C peptides; e.g. ‘pSer22/LMNAmedian’) quantified for Ser22, Ser390, and the doubly 
phosphorylated pSer(404&407). Normalized phosphorylation of lamin-C (slices 5-7) is ~2-fold 
higher than that of LA or progerin (slices 1-4). Inset: average %-phosphorylation normalized to 
slice #4, which corresponds to the progerin peak. *p < 0.05. (E) Left and right SDS-PAGE ‘flank’ 
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lanes cut and analyzed in parallel by Western blot, using anti-lamin-A/C and anti-pSer22 
separately. (F) Quantitation of normalized phosphorylation at Ser22 (densitometry signal of 
pSer22 divided by that of total lamin-A/C; ‘pSer22/LMNA’) is consistent with that by FEA-MS 
(‘pSer22/LMNAmean’). A low MW (~30 kDa) degradation fragment is visible in both blots (purple 
box, C) and is highly phosphorylated at Ser22. 
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Figure 3.5. Low nuclear tension increases A-type lamin phosphorylation and degradation, 
but mechanosensitivity is lost with passage in HGPS iPS-MSCs 
(A) (i) Full-length Western blots of cells rounded and detached from their substrate using low 
concentrations of trypsin, probed with anti-lamin-A/C (left) and anti-pSer22 (right). A-type lamins 
(LA, P, and LC) in the intact MW range (60-80 kDa) decrease with cell rounding, which anti-
correlates with the increase in phosphorylation and the increase in low MW degradation fragment 
bands (≤ 40 kDa). Bottom plot: Normalized phosphorylation (‘pSer22/LMNA’) of intact LA, P, and 
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LC vs rounding time. (ii) Sensitivity to low tension (cell/nuclear rounding) is blunted with cell 
passage (P7). (B) Immunoblot of P7 HGPS iPS-MSCs cultured on stiff vs soft gels. Lower bar 
graph: fold change in densitometry signal (soft/stiff) of LA, P, and LC. Gray bar (right) indicates 
fold change of total A-type lamins in early passage primary hMSCs. (C) Cartoon and 
Immunofluorescence images of HGPS iPS-MSCs on rigid culture plastic treated with blebbistatin 
(25 μM, 2h) or DMSO control. (D) Nucleus 2D projected area decreases with blebbistatin 
treatment. (E) (i) Fraction (%) of cells with nuclear blebs. (ii) Nucleus circularity measurements. 
Nuclei with circularity < ~0.65 (red box) correspond to those with more than one bleb. (F) 
Immunofluorescence measurements of LA/P/LC (A-type lamin) abundance in DMSO vs 
blebbistatin treated iPS-MSCs. LB1/B2 (B-type lamins) remain unaffected by myosin-II inhibition. 
(G) (i) Normalized phosphorylation (as ‘pSer22/LMNA’) measured in DMSO vs blebbistatin 
treated iPS-MSCs. (ii) Fraction (%) of ‘2N’ vs ‘4N’ cells (by DNA content) remain unchanged with 
blebbistatin treatment. (H) Representative immunofluorescence images of LA/C, LB1/2, and 
γH2AX in HGPS iPS-MSCs (P1 and P4) and normal primary hMSCs. Scale bar = 10 μm. (I) 
Lamin-A:B ratio (total A : B-type lamin ratio) and cell/nuclear size increase with higher passage in 
iPS-MSCs. (J) Quantification of progerin intensity (using anti-progerin, top) and % cells with >1 
γH2AX foci (bottom) determined by immunofluorescence. 
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Figure 3.6. Transcriptional regulation of LA, P, and LC by retinoid compounds 
(A) Top: cartoon illustrating HGPS iPS-MSCs on soft/stiff gels treated with retinoid compounds, 
all-trans retinoic acid (RA) and antagonist (AGN). Bottom: immunofluorescence quantitation of 
total A-type lamins after treatment with retinoids CD1530 (agonist) and CD2665 (antagonist) on 
soft or stiff gel cultures. (B) Western blot of early passage (P2) HGPS iPS-MSCs treated with 1 
μM RA or AGN on rigid plastic. (C) Sensitivity to transcriptional regulation by retinoids decreases 
with passage. 
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Figure 3.7. Progerin phospho-degradation is least responsive to mechanical perturbations. 

Cartoon illustrating phosphorylation and turnover of A-type lamins in soft (rounded, low nuclear 
stress) and stiff (well-spread, high nuclear stress) environments. 
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CHAPTER 4  
Conclusions and future work:  
Nuclear mechanosensing in cancer 
 

Part of this Chapter is in preparation for submission to Nucleus. 
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4.1 Conclusions 
 Tissues such as bone, cartilage, and striated muscle are rigid and stiff, making them 

particularly robust to physical exertion during which they are subjected to mechanical stresses of 

varying duration, direction, and magnitude. Tissue-level strains are ‘sensed’ and transmitted into 

the nucleus via the cytokoskeleton, and recent evidence suggests such deformations might even 

be amplified within cells and their nuclei (Henderson et al., 2013). A strong correlation between 

tissue stiffness and the main structural protein of the nucleus, lamin-A, was recently discovered 

for diverse adult mouse tissues (Swift et al., 2013), suggesting a cell-intrinsic mechanosensitivity 

that confers protection against stress. The studies presented here surprisingly demonstrate that 

the lamin-A vs tissue stiffness correlations originate from the earliest stages of life, as soon as 

cells and tissues begin to differentiate in the developing embryo. In particular, in the first 

functional vertebrate organ – the beating embryonic heart – the increasing mechanical load of the 

rapidly stiffening myocardium (Majkut et al., 2013) necessitate an adaptive response to stress, 

and lamin-A fulfills this role by accumulating at the nuclear periphery under elevated mechanical 

tension (Figure 2.2). The increase proves mechano-protective against nuclear envelope rupture 

and DNA damage, which in excess can affect tissue-level function (Figure 2.6). Sensitivity to 

tissue mechanics is achieved by a ‘use it or lose it’ mechanism of tension-suppressed 

phosphorylation and turnover, which allows optimal lamin-A levels to be maintained in close 

coordination with the mechanical microenvironment. Defects in mechanosensitive turnover of 

lamin-A can thus be problematic for stiff and mature tissues that are subject to mechanical wear-

and-tear, and one example is the aging-associated laminopathic mutant, progerin, whose 

phosphorylation-dependent turnover is shown here to be lower and less sensitive to stress 

relative to normal lamin-A and C (Figure 3.4, Figure 3.5). The ability of the nucleus to adaptively 

remodel in response to mechanical strain is thus critical for maintaining gnome integrity not only 

in embryonic development, but also in disease and aging of mature tissues. 
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4.2 Future directions 
 
Given the broad ‘universality’ of lamin-A vs tissue stiffness correlations consistently observed in 

tens of proteomics and transcriptomics data generated by ourselves and by others, a reasonable 

next step is to examine more systematically whether any defects in lamin-A mechanosensing 

contribute to manifestation of specific diseases. Mis-regulation of lamin-A’s response to 

mechanical stress could conceivably favor accumulation of excess DNA damage (perhaps 

beginning from early embryonic development), and thereby contribute to increased cell death, 

premature senescence, de novo mutations, and perhaps even more complex tissue-level 

phenomena such as tumorigenesis. Since lamin-A is also known to regulate a wide range of 

cellular processes including stem cell differentiation and chromatin organization, failure to 

maintain genomic stability might also further complicate defects in lamin-A’s fine-tuning of cell 

fate and maturation.  

 Hundreds of LMNA point mutations to date are known to cause a number of 

cardiomyopathies (the most common being DCM) among many other musculoskeletal diseases 

(Worman and Bonne, 2007), but whether mechanically-induced DNA damage contributes to 

pathology remains unknown. Any detrimental effect of nuclear rupture and excess DNA damage 

would conceivably be accentuated in cardiac laminopathies, given the heart’s limited 

regenerative/remodeling capacity upon acute injury or with mechanical wear-and-tear. Recent 

studies of laminopathic DCM mice have indeed begun to report significant nuclear blebbing (Lee 

et al., 2017), focal ‘breaks’ in the nuclear membrane (as imaged by EM) (Siu et al., 2012), 

cytoskeletal defects (Bollen et al., 2017), and fibrosis (Captur et al., 2018), all of which increase 

with electrical stimulation and enhanced contractility. The observations are consistent with 

envelope rupture under high mechanical strain (Figure 2.8), and so potential defects in lamin-A 

phosphorylation and/or assembly, and perhaps excess DNA damage, might also be expected for 

such blebbed laminopathic nuclei. Whether the blebs seen in these mutants form upon rupture of 

the nucleus (with lamin-A enrichment and lamin-B depletion), and whether the phenotype can be 

reversed to a certain extent with inhibition of cytoskeletal stress (e.g. myosin-II inhibition by 

blebbistatin) remain to be seen. If morphological parameters indeed prove consistent with 
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mechanically-induced rupture, the functional consequences of excess DNA damage and any 

contributions to disease pathology should be assessed.  

 As introduced in Chapter 3, nuclear blebbing and genomic instability are also major 

hallmarks of the premature aging disorder HGPS. Our MS analyses have shown that 

phosphorylation of the truncated mutant progerin is lower and less mechanosensitive than normal 

lamin-A and C, suggesting that the characteristic nuclear blebbing in HGPS cells  (Butin-Israeli et 

al., 2012), as well as the well-documented increase in DNA damage (Liu et al., 2006), might in 

part result from aberrant lamin mechanosensing. Indeed, treatment of patient-derived cells with 

blebbistatin resulted in partial rescue of %-blebbed nuclei (Figure 3.5E), consistent with studies 

which demonstrate apoptosis/senescence defects in progeroid cells can be rescued by culture on 

soft matrix (de La Rosa et al., 2013a). While we have shown by correlation that average γH2AX 

foci count increases with progerin accumulation and with cell passage (Figure 3.5H-J), it remains 

to be seen whether rescue of nuclear morphology by blebbistatin (or perhaps soft matrix) can 

also impact DNA damage in these cells. Various mechanobiological perturbations should be 

performed (as done in the heart study in Chapter 2) to assess rigorously whether modulation of 

stress exerted on the nucleus can indeed help preserve genome integrity and ultimately improve 

cell function and/or survival in these cells. 

 Dramatic changes in nuclear morphology (Dey, 2010; Wolberg et al., 1999), levels of 

nuclear envelope components (Broers et al., 1993; Irianto et al., 2016b; Kaufmann et al., 1991), 

and localization of nuclear factors (Chow et al., 2012) have also been implicated in various types 

of cancers, which raise the question of whether lamin-A mechanosensing also plays a role in 

tumor development and/or metastasis. Given that tumors are typically much stiffer than normal 

adjacent tissue (Chin et al., 2016) with an excess of heavily bundled collagenous matrix, the 

tumor microenvironment presents complex structural and mechanical signals that could impact 

individual nuclei.  A major hallmark and driver of hepatocellular carcinoma (HCC), for example, is 

extensive fibrotic matrix deposition that results in significant tumor stiffening, and in some 

extreme cases, cirrhosis. The increased stiffness of such tumors could in principle drive abnormal 
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accumulation of lamin-A levels, thereby affecting downstream regulation of differentiation, 

proliferation, and apoptosis.  

 To begin to assess whether lamin-A mechanosensing mechanisms would also apply to 

different cancers, we performed preliminary meta-analyses of publicly accessible tumor 

transcriptomes, as done for heart tissue ‘-omics’ data in Chapter 1, Section 1.4. As described 

previously, Col1a1 was used as a surrogate for tissue stiffness, and was again shown to exhibit 

robust scaling with Col1a2 across most datasets, with an average scaling exponent αCol1a2 ~ 1 

(Figure 4.1A-C). The small subset of datasets that showed weak or inconsistent correlations 

between Col1a1 & Col1a2 (αCol1a2 <0.7 or R2<0.5) were once again deemed ‘unreliable’, since the 

two collagen-I transcripts should in principle increase or decrease together as obligate subunits of 

the collagen-I triple helix. Analysis of Lmna levels revealed an average scaling exponent αLmna 

~0.3 that is surprisingly consistent with that found for heart transcriptomes, suggesting lamin-A 

stiffness-sensing (and possible feedback to transcription) might indeed be applied to various 

types of cancer. A representative dataset for HCC tumors and normal adjacent tissue (Figure 

4.1B) illustrates the elevated levels of collagen-I subunits and Lmna in HCC versus normal tissue. 

Similar analyses of other proteins of interest in the cytoskeleton (Myh9, Acta2), B-type lamins 

(Lmnb1 & b2), as well as some known mechanosensitive transcription factors (Yap1, Rarg), also 

exhibited comparable correlations vs Col1a1 as those in the heart -omics data, providing 

additional confidence in the potential ‘universality’ of stiffness-dependent scaling correlations. 

 It is important to note, however, that these tumor transcriptomics datasets exhibited much 

greater ‘noise’ compared to our meta-analysis of heart transcriptomes/proteomes, with error bars 

(SEM) that were often larger than the mean itself (Figure 4.1A). Significant noise likely reflects the 

heterogeneity in the mechanical properties tumors, as well as the numerous transcriptional and 

post-translational changes that could impact steady-state transcript and protein levels found in 

normal tissue. Similar average scaling exponents for Lmna (αLmna ~0.3) nonetheless prompted 

questions of whether such correlations could also be observed at the protein level. Human HCC 

tumor samples and adjacent ‘uninvolved’ liver tissue were thus collected from donors and were 

profiled by mass spectrometry (MS) (Figure 4.2A). MS-based proteomics of tumors revealed a 
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near 5-fold increase in collagen-I subunits COL1A1 and COL1A2, as well as significant increases 

in all other ECM components detected (Figure 4.2B,C). Elevated levels of collagenous matrix 

were also accompanied by an increase in lamin-A/C (Figure 4.2D), suggesting indeed that lamin-

A/C accumulates in the stiffer, fibrotic HCC tumors. As reported previously for HCC (Sun et al., 

2010), lamin-B1 was found to be >4-fold more abundant in the tumors compared to normal tissue 

(Figure 4.2E), possibly hinting at differences in ploidy. A well-documented diagnostic marker for 

HCC, alpha fetoprotein (AFP), was also quantified for validation, and was found indeed to be 

>100-fold more abundant in the HCC tumors versus adjacent tissue (Figure 4.2E). 

 The preliminary MS measurements are overall consistent with trends found for intact 

embryonic hearts (Chapters 1 and 2) and for diverse adult mouse tissues (Swift et al., 2013), and 

provide some initial evidence of lamin-A mechanosensing in at least one type of cancer known to 

be associated closely with fibrotic stiffening of tumors. Taken together with the mechanistic 

studies presented in Chapters 2 and 3, it is plausible that excess deposition of collagenous matrix 

drives abnormal stiffening of the liver, resulting in increased cytoskeletal contractility and steady-

state accumulation of lamin-A/C. However, it remains to be investigated whether the same ‘use it 

or lose it’ mechanism of tension-suppressed turnover applies to HCC, given the abnormal 

increase also seen for lamin-B1, which in most other contexts remains unchanged in expression. 

Lamin-A/C mechanosensing mechanisms might further be mis-regulated in these tumors by 

aberrant transcription, chromosome copy number changes, altered tissue mechanics due to high 

lipid content, and general heterogeneity of the tumor microenvironment. Rigorous reductionist 

studies should be conducted with careful consideration of possible confounding/compensatory 

effects, in order to elucidate mechanisms and any functional consequences of lamin-A 

mechanosensing in cancer.  
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Figure 4.1. Stiffness-dependent Lmna scaling in diverse cancer transcriptomes 
(A) Meta-analysis of >35 tumor transcriptomics datasets reveals average scaling exponent αLmna 
~ 0.3 (from Lmna ~ Col1a1αLmna), consistent with that found for diverse heart transcriptomics 
datasets. (B) Representative log-log plot and (C) average scaling exponents for several 
transcripts of interest vs Col1a1. 
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Figure 4.2. Proteomics reveals higher collagen-I and lamin-A/C levels in human HCC 
tumors vs adjacent tissue 
(A) Proteomics workflow for human HCC tumors and adjacent ‘uninvolved’ tissue. (B & C) MS 
reveals elevated collagen-I levels and all other ECM proteins in human HCC tumors vs adjacent 
‘uninvolved’ tissue. (D) Lamin-A/C is likewise higher in HCC tumors, consistent with increased 
collagenous ECM. (E & F) Lamin-B1 and AFP (a well-documented marker for HCC) are 
significantly elevated, as previously reported for HCC tumors. 
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Figure A.1. Proteomic profiling of embryonic hearts reveals broad increases in proteins of 
the ECM, adhesion complexes, sarcomere/actomyosin assemblies, and the nuclear lamina. 

(A) Heartmap of proteins detected by LC-MS/MS in the ECM, adhesion complexes, sarcomeres, 
and the nuclear lamina. Proteins were ranked based on the fold-change relative to the average. 
(B) MS measurements of collagen-I calibrated with known amounts of purified collagen. (C) Heart 
stiffness measurements by micropipette aspiration plotted against collagen-I MS intensity yield 
power-law scaling comparable to that found for diverse adult tissues (Swift et al., 2013). (D) 
Lamin-A MS intensity scales with heart tissue stiffness with exponent α ~ 0.75 again close to that 
for adult tissue proteomes (Swift et al., 2013). (E) Lamins-B1 & B2 remain comparatively constant 
throughout development and exhibit much weaker scaling (α < 0.25). (F) Immunoblot 
densitometry measurement of lamin-A and B in embryonic heart lysates at E4, E6, and E10 (n>6 
hearts per lysate). Extrapolation reveals initial expression (x-intercept) at ~embryonic day 1 (E1), 
occurring earlier than previous reports of earliest lamin-A expression in whole embryos ~E3 
(Lehner et al., 1987). (*p<0.05) (G) Lamin-A & B immunoblots for E10 brain and liver tissue. 
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Figure A.2. ‘Use it or lose it’ model of tension-inhibited turnover. 
Schematic diagram of a ‘mechanobiological gene circuit’ model that describes the tension-
suppressed turnover of lamin-A, myosin-II, and collagen-I, adapted from Dingal et al. (Dingal and 
Discher, 2014). Squares = genes, circles = protein. Lamin-A and myosin-II protein (l and m) are 
weak regulators of the Serum Response Factor (SRF) pathway, which enhances transcription of 
many cytoskeletal proteins including myosin-II. Lamin-A also upregulates its own transcription 
(via RARγ) in a feedback loop. Lamin-A and collagen-I protein (l and c) turnover are dictated by 

 and , respectively, for some x and z that dictate sensitivity of degradation to 
myosin-generated tension. Myosin-II protein (m) turnover in turn depends on matrix elasticity E 
which correlates strongly with collagen-I (c, Figure 2.2E), such that  for some y that 
represents the affinity for myosin degradation. 
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Figure A.3. Blebbistatin and MYK reversibly inhibit contractility of intact hearts within <1h 
and reduces DNA damage 

(A) (i) Quantification of tissue beating strain ΔAR/ARref and (ii) heart rate (beats / min; BPM) in 
blebbistatin treated hearts. Myosin-II inhibition by blebbistatin rapidly suppresses beating (<30 
min), but effects are reversible such that washout of drug with culture medium (± OM) results in 
near full recovery by 1h. (B) Densitometry quantitation of γH2AX immunoblots correlates well with 
quantitation of DNA breaks by electrophoretic Comet assay (r = 0.944, R2 = 0.8912). 
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Figure A.4. Suppression of lamin-A levels in intact embryonic hearts and in beating hiPS-
CMs increase rupture under high stress, causing prolonged (>1h) loss of repair factors 
from the nucleus and accumulation of DNA damage 

(A) Blebbistatin treatment and washout have no significant effect on cell death/viability, as 
determined by %-transfected cells with fragmented DNA. (B) As seen with nuclei in intact 
embryonic hearts, ‘nuclear beating’ occurs in hiPS-CMs and can be quantified by changes in 
nucleus area and DNA mean intensity (condensation/de-condensation of DNA), which are 
inversely correlated. (C) Time-lapse images of nuclei probed with a pointed (<1 μm) Atomic Force 
Microscopy (AFM) tip (at ~7 nN). Nuclear rupture upon stress is evident in the rapid and stable 
accumulation of a cytoplasmic protein that binds DNA (GFP-cGAS). (D) (i) Nuclear/cytoplasmic 
KU80 immunofluorescence intensity ratio decreases with siLMNA knockdown, and (ii) anti-
correlates with γH2AX foci count. (E) Time-lapse images of siLMNA knockdown cells transduced 
with GFP-53BP1 show that nuclear rupture and cytoplasmic mislocalization occur within minutes, 
and are maintained for at least 1h in culture indicating slow recovery. (F) Total (nuclear + 
cytoplasmic) KU80 abundance is unaffected by siLMNA or blebbistatin treatment. (G) RPA1 
levels are unaffected by drug perturbations (per MS). (H) γH2AX foci count inversely correlates 
with KU80 nuclear immunofluorescence intensity, consistent with limited repair. 
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Figure A.5. Cell-on-gel morphological trends in CM size, shape, contractility, and lamin-A 
mirror those of in vivo hearts 

(A) (i) Projected area of the nucleus relative to that of the cell (‘Nucl./Cyto. Area fraction’) 
decreases (ii) and cells elongate (increased aspect ratio, AR), as the embryonic heart stiffens 
and cells undergo hypertrophic growth and spreading from E4 – E10. Isolated E4 CMs cultured 
on gels likewise exhibit increased cell spreading and elongation on stiffer gels. (B) Two of the 
most abundantly expressed α- and β-tubulin isoforms (TUBA1C, TUBB7) increase in level from 
E4 to E10 and the increase is accompanied by a decrease in TTLL12, which tyrosinates and de-
stabilizes microtubules (Robison et al., 2016). Trends are consistent with increased stiffness as 
well as with polarization/elongation of CMs during development (Fig.4D-ii, Fig.S4A). (C) Axial 
alignment of cells (anisotropy, quantified as 1/COV of the major axes of nuclei) increases from 
early (E4) to late (E11) hearts. Upper left inset: major axis angle distribution of E4 and E11 nuclei. 
(D) Nuclear volume (estimated by confocal Z-stack) decreases in development from E4 to E10. 
(E) Varying matrix stiffness alone in E4 CM cultures is sufficient to recapitulate trends in 
morphology and intracellular organization seen in vivo (from E4 to E11). 
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Figure A.6. Contractile beating of embryonic chick CMs exhibit an optimum on gels that 
match the stiffness of embryonic hearts but the increase in lamin-A levels decouples from 
dynamic nuclear strains 

(A) Normalized cell and nuclear beating strains measured by (i) ‘ΔAR/ARref’ and (ii) 
‘ΔArea/Arearef’, and (iii) %-beating cells all exhibit an optimum on gels mimicking the stiffness of 
embryonic hearts (~2 kPa). Blebbistatin treatment abolishes mechano-sensitivity. (n>10 
cells/nuclei per condition). (B) (i) Nuclear beating strain (‘Nucleus ΔAR/ARref’) correlates well with 
cell beating strain (‘Cell ΔAR/ARref’), (ii) but lamin-A:B ratio does not correlate with dynamic 
beating. Lamin-A:B instead couples to average morphology changes in spreading area and 
elongation that relate to basal isometric tension. (C) Lamin-A:B in cells on rigid plastic decreases 
with MYK inhibition of cardiac myosin contractility (as with blebbistatin treatment), but remains 
unchanged with OM treatment. 
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Figure A.7. Contractile beating in hiPS-CMs exhibit an optimum on 10 kPa gels but lamin-A 
increases monotonically from soft to stiff 
 
(A) %-beating cells and beating strain (quantified using a custom Matlab code) in hiPS-CMs 
exhibit an optimum on 10 kPa gels that match the stiffness of mature adult hearts. (B) Lamin-A 
levels (by immunofluorescence) in hiPS-CMs increases monotonically from soft to stiff gels, 
appearing to decouple from dynamic beating strain. 
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Figure A.8. Phosphorylation of lamin-A favors degradation by MMP2 

(A) Neither the catalytic activation of MMP2 (‘cleaved/pro-MMP2’ fraction, as measured by 
immunoblot, (i)) nor the total abundance of pro-MMP2 (MW ~ 75 kDa, as measured by MS (ii)) 
are significantly affected by drug perturbations to contractility and/or collagen matrix. (B) 
Representative images of cells transduced with phsopho-mimetic mutants GFP-S22A and GFP-
S22E, with or without protein synthesis inhibitor Trx-i. (i,ii) Line profiles across individual nuclei 
reveal ‘non-phosphorylatable’ GFP-S22A signal is far more enriched at the lamina than in the 
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nucleoplasm, compared to ‘constitutively phosphorylated’ GFP-S22E (n>15 nuclei). Treatment 
with Trx-i does not alter nucleoplasm/lamina ratio in either mutant. (iii) Overall fluorescence 
intensity of GFP-S22A is ~50% higher than that of GFP-S22E. Trx-i induces a minor ~10% 
decrease in either case. (C) (i) Immunoblots with anti-lamin-A/C and anti-GFP reveal multiple 
low-MW degradation fragment bands (green triangles) in the GFP-S22E mutant which are absent 
in the S22A mutant. (ii) Line intensity profile of anti-lamin-A/C immunoblot (i, left). Low-MW 
degradation fragments that are present in the GFP-S22E mutant but not in the GFP-S22A mutant, 
are shaded in blue, with green arrows indicating distinct bands. (D) GFP fluorescence intensity of 
GFP-S22E expressing cells increases upon MMP2-i treatment, consistent with inhibition of 
degradation. 
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Figure A.9. Meta-analysis of 25 published transcriptomics datasets of normal and diseased 
hearts reveal possible feedback to gene expression and point to potential universality of 
lamin-A vs collagen-I scaling.   

(A) Representative transcriptomics datasets for normal and diseased hearts. Log-log plots show 
normalized mRNA expression vs Col1a1. As expected for obligate heterotrimer subunits of 
collagen-I, Col1a2 correlates robustly with Col1a1, with scaling exponent (= slope on a log-log 
plot), αCol1a2 ~ 1. Lmna also increases with Col1a1, although with slightly weaker scaling αLmna ~ 
0.3, indicating potential feedback to gene expression. (B) Proteomics dataset for diverse E18 
chick embryonic tissues, adapted from Uebbing et al. (Uebbing et al., 2015). Lmna again 
increases with Col1a1&2, with exponent αLmna ~ 0.3. Right inset: datapoints for heart samples 
plotted separately reveal similar scaling. (C) Tissue-dependent timing of detectable lamin-A 
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expression (embryonic day; adapted from Rober et al. (Rober et al., 1989) and Solovei et al. 
(Solovei et al., 2013)) correlates inversely with stiffness Et that the corresponding tissues 
eventually achieve in adult stages (adapted from Swift et al. (Swift et al., 2013)).  
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Figure A.10. Lamin-A,C phosphorylation feeds back into myosin-IIA level 

Expression of increasing levels of phosphomimetic GFP-S22E-lamin-A in A549 cells with KD of 
endogenous lamin-A,C had minimal effect on myosin-IIA levels. In contrast, expression of an 
nonphosphorylatable S22A construct caused a relatively increased quantity of myosin-IIA [the x 
axis shows total LMNA; S22A data were fit by the hyperbolic function y = abx (1 + bx)21 + c (a = 
1.3; b = 5.5; c = 4.3; R2 > 0.95); each point is averaged data from n > 20 cells; see Figures S4B–
S4D for representative images and analysis of cell morphology]. 
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Table 2. Serum Response Factor (SRF) target genes and cofactors increase in protein level 
from early to late (E4-E10) hearts as lamin-A increases.   
Lamin-A is a weak regulator of the Serum Response Factor (SRF) pathway (Swift et al., 2013). 
Leftmost column indicates average log(cluster scores) obtained from transcription factor (SRF) 
ChIP-Seq data from the ENCODE database. Second column shows fold change in mRNA (non-
treated/knockdown, ‘NT/KD’; by microarray) resulting from LMNA knockdown in mesenchymal 
stem cells (MSCs). Two remaining columns on the right indicate fold change at the protein level in 
developing hearts measured by MS. 
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A.1 Source code for mechanobiological ‘use it or lose it’ model 
of tension-inhibited turnover 

 
function [ fPrime ] = MBGC_odes3( t, f, K ) 
 
fPrime = zeros(6,1); 
  
alpha_1 = K(1); 
alpha_2 = K(2); 
alpha_3 = K(3); 
alpha_4 = K(4); 
  
beta_1 = K(5); 
beta_2 = K(6); 
beta_3 = K(7); 
  
gamma_1 = K(8); 
gamma_2 = K(9); 
gamma_3 = K(10); 
  
delta_1 = K(11); 
delta_2 = K(12); 
delta_3 = K(13); 
  
n_l = K(14); 
n_m = K(15); 
n_c = K(16); 
n_f = K(17);  
  
x = K(18); 
y = K(19); 
z = K(20); 
k_f = K(21); 
F0 = K(22); 
  
%constants and initial conditions 
  
L = f(1); 
l = f(2); 
M = f(3); 
m = f(4); 
C = f(5); 
c = f(6); 
  
fPrime(1) = alpha_1*l - beta_1*L; 
fPrime(2) = gamma_1*L - delta_1*(l.^n_l)/((F0*m).^x + l.^n_l); 
fPrime(3) = alpha_2*m + alpha_3*l - beta_2*M; 
fPrime(4) = gamma_2*M - delta_2*(m.^n_m)/(c.^y + m.^n_m); 
fPrime(5) = alpha_4*(c^(n_f-1))/(k_f.^n_f + c.^n_f) - beta_3*C; 
fPrime(6) = gamma_3*C - delta_3*(c.^n_c)/((F0*m).^z + c.^n_c); 
%put in the equations. fPrime(1) will be dw/dx in this case. 
  
end 
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%% Set up IC's & parameters (constants): 
fI = [0.00005; 0.00005; 0.004; 0.004; 0.004; 0.004]; 
 
K = [3.2;3.6;0;7;   3.3;3;3.1;    1;1.5;3;   7.5;6.5;5.4;  
1.44;1.6;1.14;1.5;  0.27;0.45;0.55;0.89;1]; 
 
total_time = 21; % full time frame or window 
  
figure; 
for i=1:10; 
    for j=1:10; 
        K(18) = 0.1 + 0.01*j; 
        [t,f] = ode45(@(t,f) MBGC_odes3(t,f,K),[0:0.5:total_time],fI); 
        l=f(:,2); 
        c=f(:,6); 
  
        plot(l,c); 
        hold on; 
    end 
    fI(2) = 0.005 + 0.1*i; 
    plot(L,l); 
    hold on; 
end 
    xlabel('L'); 
    ylabel('l'); 
    title('l vs L'); 
  
[t,f] = ode45(@(t,f) MBGC_odes3(t,f,K),[0:0.05:total_time],fI); 
results = [t,f]; 
  
L=f(:,1); 
l=f(:,2); 
M=f(:,3); 
m=f(:,4); 
C=f(:,5); 
c=f(:,6); 
  
figure; 
subplot(3,2,1); 
plot(t,L); 
xlabel('Embryonic age (days)'); 
ylabel('L'); 
title('L vs t'); 
  
subplot(3,2,2); 
plot(t,l); 
xlabel('Embryonic age (days)'); 
ylabel('l'); 
title('l vs t'); 
  
subplot(3,2,3); 
plot(t,M); 
xlabel('Embryonic age (days)'); 
ylabel('M'); 
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title('M vs t'); 
  
subplot(3,2,4); 
plot(t,m); 
xlabel('Embryonic age (days)'); 
ylabel('m'); 
title('m vs t'); 
  
subplot(3,2,5); 
plot(t,C); 
xlabel('Embryonic age (days)'); 
ylabel('C'); 
title('C vs t'); 
  
subplot(3,2,6); 
plot(t,c); 
xlabel('Embryonic age (days)'); 
ylabel('c'); 
title('c vs t'); 
  
e4 = find(t==4); 
e6 = find(t==6); 
e10 = find(t==10); 
e18 = find(t==18); 
  
figure; 
plot(c,l); 
hold on; 
plot(c(e4),l(e4),'MarkerSize',10, 'MarkerEdgeColor','red'); 
plot(c(e6),l(e6),'MarkerSize',10, 'MarkerEdgeColor','red'); 
plot(c(e10),l(e10),'MarkerSize',10, 'MarkerEdgeColor','red'); 
plot(c(e18),l(e18),'MarkerSize',10, 'MarkerEdgeColor','red'); 
xlabel('c'); 
ylabel('l'); 
title('l vs c'); 
hold off; 
  
  
expmt_points = 
[results(e4,:);results(e6,:);results(e10,:);,results(e18,:)]; 
  
filename = 'MBGC_ode_data.xlsx'; 
xlswrite(filename,results,1,'A2'); 
xlswrite(filename,expmt_points,1,'L2'); 
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APPENDIX B  
Supplementary information for Chapter 3 
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Figure B.1. A-type lamin stoichiometries measured by isoform-specific peptide intensity 
profiles 
(A) Profile plot of normalized intensities of A-type lamins obtained from MaxQuant’s LFQ 
algorithm. ‘LA / P / LC’ (grey) corresponds to LFQ intensity of “Prelamin-A/C” (UniProt ID: 
P02545), which quantifies total A-type lamin abundance without distinguishing between isoforms 
(leftmost plot). Line profiles specific for each isoform were constructed based on raw intensities of 
isoform-specific peptides (Figure 3.1B). Pair-wise intensity ratios of the isoform-specific peptides 
across gel slices #1~7 were used to generate adjusted profiles (‘LA*’ and ‘P*’) that account for 
contributions from each isoform at each gel slice range (see Materials and Methods for details). 
(B) MS singal-to-noise ratios of isoform-specific peptides calculated as inverse of standard 
Coefficient of Variance (= 1/COV = mean MS intensity / stdev). Empty grey circles = peptides 
shared by all three isoforms, LA, P, and LC; Isoform-specific peptide sequences: ‘LA1’ = 
SVGGSGGGSFGDNLVTR; ‘LA2’ = ASASGSGAQVGGPISSGSSASSVTVTR; ‘LA/P1’ = 
SVTVVEDDEDEDGDDLLHHHHGSHCSSSGD; ‘LA/P2’ = TVLCGTCGQPADK; ‘C’ = 
SVTVVEDDEDEDGDDLLHHHHVSGSR. (C) Best-fit Gaussian line plots of FEA-MS signal for (i) 
A-type lamin isoforms and (ii) B-type isoforms. (D) A-type lamin stoichiometry (LA : P : LC ~ 1 : 
0.43 : 1.65) quantified by integrating the best-fit Gaussian distribution function for each isoform is 
consistent with that determined by summing MS intensities over all slices. (E) Total A : B-type 
lamin ratio ~ 8 quantified by integrating the best-fit Gaussian distribution function for each isoform. 
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Figure B.2. Constricted migration through narrow pores decreases phosphorylation of A-
type lamins. 

(A) Migration constant (# of cells migrated to the bottom / total # of cells) quantified for WT, 
shLMNA, shLMNA + GFP-progerin, and shLMNA + GFP-LMNA A549 cells. LMNA knockdown 
(by shRNA) facilitates migration through narrow constrictions, but effects are rescued back to 
baseline levels upon transfection with GFP-LMNA. Transwell migration is further inhibited by 
expression of GFP-progerin. *p < 0.05, ** p < 0.01, *** p < 0.001. (B) Fraction (%) of 4N and 2N 
cells before (top) and after (bottom) pore migration. 
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Figure B.3. Quantitation of phosphorylation stoichiometries at multiple serine residues. 

(A) MS intensity of synthetic phospho-peptides ‘pSer22’ and ‘pSer390’ (as well as their non-
phosphorylated counterparts: ‘Ser22 ‘ and Ser390’) exhibit robust linearity vs spike-in 
concentration (μM) over several orders of magnitude (all R2 > 0.97) in slices #3, 4, and 5 
corresponding to LA, P, and C peaks, respectively. (B) Three different normalization methods for 
quantifying ‘% phosphorylation’ at (i) Ser22, (ii) Ser390, and (iii) Ser404&407: the ratio of 
phosphorylated peptide intensity divided by the median of all lamin-A/C peptides (e.g. 
‘pSer22/median’), the intensity of its non-phosphorylated counterpart (e.g. ‘pSer22/Ser22’), and 
the mean intensity of all lamin-A/C peptides (e.g. ‘pSer22/<LMNA>’). 
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Figure B.4. Quantitative densitometry and immunofluorescence of lamin responses to 
matrix stiffness and retinoid compounds. 

(A) Quantitative densitometry analysis of lamin abundance in cells cultured on soft and stiff gels, 
using two different sample loading volumes. Plotting densitometry signal of lamins vs 
housekeeping protein β-actin yields slopes that can be used to compute fold-change in levels. (B) 
Immunofluorescence quantitation of lamin-A:B ratio in early passage (P2) HGPS iPS-MSCs. (C) 
Immunoblot of DMSO vs blebbistatin treated P7 iPS-MSCs. Unlike with early passage (P2) cells, 
blebbistatin treatment does not result in significant changes in (i) LA/P/LC levels or (ii) normalized 
phosphorylation (as ‘pSer22/LMNA’). (D) Quantitative densitometry analysis of lamin abundance 
in cells treated with RA or AGN, using three different sample loading volumes. Comparison of 
slopes (lamin densitometry signal vs housekeeping, β-actin) reveals that retinoid compounds 
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regulate transcription of all isoforms equally. (E) Immunoblot of DMSO vs RA treated human 
A549 cells, probed with two phosphor-serine antibodies: anti-pSer22 (left) and anti-pSer404 
(right). The ‘DMSO’ lane in the pSer404 blot was cut in half (dashed line) for a separate 
immunoblot experiment/analysis, and was therefore whited-out to indicate this. Consistent with 
FEA-MS measurements of phosphorylation in iPS-MSCs, LC phosphorylation in A549s is ~2-fold 
higher than that of LA for both phsopho-sites. Low MW degradation bands are also evident in 
both immunoblots. Transcriptional regulation by RA does not affect phosphorylation and 
degradation of LA/C. 
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Table 3. MS detects multiple phosphorylated lamin-A/C peptides but none for lamin-B1/B2 
at analogous sites 
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APPENDIX C  
Standard laboratory protocols and reagents used 
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C.1 Immunoblotting 
Cell pellets were rinsed with PBS and suspended in ice‐cold 1x NuPAGE LDS buffer (Invitrogen; 

diluted 1:4 in 1x RIPA buffer, plus 1% protease inhibitor cocktail (Sigma), 1% β‐mercaptoethanol 

(Sigma)), and lysed by sonication on ice (10 x 3s pulses using a probe sonicator, at intermediate 

power setting). Lysed samples were then heated to ~80 °C for 10 min and centrifuged at 

maximum RPM for 30 min at 4°C. SDS‐PAGE gels (NuPAGE 4‐12% Bis‐Tris; Invitrogen) were 

loaded with 5 – 15 μL of lysate per lane. Each sample was loaded in duplicates or triplicates (with 

varying loading volumes) for quantitative analysis. Lysates were diluted with additional 1x 

NuPAGE LDS buffer if necessary. Gel electrophoresis was run for 10 min at 100 V and 1 hr at 

160 V. Electrophoresis-separated samples were then transferred to a polyvinylidene fluoride 

membrane using an iBlot Gel Transfer Device (Invitrogen). The membrane was blocked with 5% 

non-fat dry milk in TTBS buffer (Tris‐buffered saline, BioRad; with 0.1% Tween‐20), washed x3 in 

TTBS, then incubated with primary antibodies against: LMNA (CST, #4777), HSP90 (Abcam, 

#ab13495), β-actin (Santa Cruz, #sc-47778), and/or LMNA pSer22 (CST, #2026), LMNA pSer404 

(EMD Millipore, ABT1387) diluted in TBS to final concentrations of ~1 μg/ml and incubated at 4 

°C overnight. After washing x3 with TTBS, the membrane was incubated with 1:2000 diluted 

secondary Ab: anti‐mouse/rabbit HRP‐conjugated IgG (GE Healthcare), at RT for 1.5 hrs. The 

membrane was washed x3 again with TTBS and developed using ChromoSensor (GenScript) for 

~3 min at RT. Immunoblot images were obtained using a HP Scanjet 4850. Quantitative 

densitometry analysis was performed using ImageJ (NIH). 

C.2 Immunofluorescence imaging 
Cells were first rinsed with pre-warmed PBS, fixed with 4% paraformaldehyde (PFA, Fisher) for 

15 min, washed x3 with PBS, and permeabilized with 0.5% Triton-X (Fisher) in PBS for 10 min. 

Fixed and permeabilized cells were then blocked with 5% BSA in PBS for a minimum of 1.5 hrs. 

Samples were then incubated overnight with primary antibody solution in 0.5% BSA solution with 

gentle shaking at 4 °C. The primary antibodies used were: LMNA (1:500, CST, #4777), LMNB 

(1:500, Santa Cruz, #sc-6217), and γH2AX (EMD Millipore, #05-636). Samples were then 
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washed x3 in 0.1% BSA in PBS and incubated with the corresponding secondary antibodies at 

1:500 dilution for 1.5 hrs at RT (Alexa Fluor 488, 546 and 647 nm; Invitrogen). Immunostained 

cells on gels or glass coverslips were mounted with mounting media (Invitrogen ProLong Gold 

Antifade Reagent). Epifluorescence imaging was performed using an Olympus IX71 with a digital 

EMCCD camera (Cascade 512B, Photometrics) and a 40×/0.6 NA objective. Confocal imaging 

was done in Leica TCS SP8 system with either a 63×/1.4 NA oil-immersion or 40×/1.2 NA water-

immersion objective. Image analysis was done with ImageJ. 

C.3 Synthesis of soft and stiff polyacrylamide (PA) gels for cell 
culture 

Circular glass coverslips (Fisher Scientific; 18 mm) were first cleaned in boiling ethanol then 

subsequently in RCA solution (H2O : H2O2 : NH4OH = 2:1:1 by vol.) for 10 min each. The cleaned 

coverslips were then functionalized in ATCS solution (chloroform with 0.1% allytrichlorosilane 

(Sigma) plus 0.1% trimethylamine (Sigma)) for 1 hr. Fresh gel precursor solution for soft-stiff PA 

gels were prepared as previously described (Swift et al., 2013). 1% ammonium persulphate 

(APS, Sigma) and 0.1% N,N,N’,N’-tetramethylethylenediamine (TEMED, Sigma) and  were added 

to the precursor solutions to initiate gel polymerization, and 20 µl of the resulting mixture were 

added to each cleaned coverslip. The solutions were then covered with larger coverslips (Fisher 

Scientific; 25 mm) and incubated to allow for polymerization at RT for ~45 min. Polymerized gels 

were rinsed x3 with PBS and the large coverslips were gently removed. To coat the gel with 

collagen-I, Sulfo-SANPAH cross-linker (50 μg/ml in 50 mM HEPES, G-Biosciences) was applied 

over the whole gel surface and photoactivated under 365nm UV light for 10 min. Excess Sulfo-

SANPAH was washed away with PBS and collagen-I solution (0.2 mg/ml in 50mM HEPES) was 

then added and incubated overnight at RT with gentle shaking. 
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