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Design Principles Of Mammalian Transcriptional Regulation

Abstract
Transcriptional regulation occurs via changes to different biochemical steps of transcription, but it remains
unclear which steps are subject to change upon biological perturbation. Single cell studies have revealed that
transcription occurs in discontinuous bursts, suggesting that features of such bursts like burst fraction (what
fraction of time a gene spends transcribing RNA) and burst intensity could be points of transcriptional
regulation. Both how such features might be regulated and the prevalence of such modes of regulation are
unclear. I first used a synthetic transcription factor to increase enhancer-promoter contact at the β -globin
locus. Increasing promoter- enhancer contact specifically modulated the burst fraction of β -globin in both
immortalized mouse and primary human erythroid cells. This finding raised the question of how generally
important the phenomenon of burst fraction regulation might be, compared to other modes of regulation. For
example, biochemical studies have suggested that stimuli predominantly affect the rate of RNA polymerase II
(Pol II) binding and the rate of Pol II release from promoter-proximal pausing, but the prevalence of these
modes of regulation compared to changes in bursting had not been examined. I combined Pol II ChIP-seq and
single cell transcriptional measurements to reveal that an independently regulated burst initiation step is
required before polymerase binding can occur, and that the change in burst fraction produced by increased
enhancer-promoter contact was caused by an increased burst initiation rate. Using a number of global and
targeted transcriptional regulatory perturbations, I showed that biological perturbations regulated both burst
initiation and polymerase pause release rates, but seemed not to regulate polymerase binding rate. Our results
suggest that transcriptional regulation primarily acts by changing the rates of burst initiation and polymerase
pause release.
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ABSTRACT 
 

DESIGN PRINCIPLES OF MAMMALIAN TRANSCRIPTIONAL REGULATION  
Caroline R. Bartman 

Gerd A. Blobel 

Arjun Raj 

Transcriptional regulation occurs via changes to different biochemical steps of transcription, but it 

remains unclear which steps are subject to change upon biological perturbation. Single cell 

studies have revealed that transcription occurs in discontinuous bursts, suggesting that features 

of such bursts like burst fraction (what fraction of time a gene spends transcribing RNA) and burst 

intensity could be points of transcriptional regulation. Both how such features might be regulated 

and the prevalence of such modes of regulation are unclear. I first used a synthetic transcription 

factor to increase enhancer-promoter contact at the β -globin locus. Increasing promoter-

enhancer contact specifically modulated the burst fraction of β -globin in both immortalized 

mouse and primary human erythroid cells. This finding raised the question of how generally 

important the phenomenon of burst fraction regulation might be, compared to other modes of 

regulation. For example, biochemical studies have suggested that stimuli predominantly affect the 

rate of RNA polymerase II (Pol II) binding and the rate of Pol II release from promoter-proximal 

pausing, but the prevalence of these modes of regulation compared to changes in bursting had 

not been examined.  I combined Pol II ChIP-seq and single cell transcriptional measurements to 

reveal that an independently regulated burst initiation step is required before polymerase binding 

can occur, and that the change in burst fraction produced by increased enhancer-promoter 

contact was caused by an increased burst initiation rate. Using a number of global and targeted 

transcriptional regulatory perturbations, I showed that biological perturbations regulated both 

burst initiation and polymerase pause release rates, but seemed not to regulate polymerase 

binding rate. Our results suggest that transcriptional regulation primarily acts by changing the 

rates of burst initiation and polymerase pause release. 
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CHAPTER 1: Introduction 
 
 My graduate work focused on the broad question of how cells can change their state in 

response to stimuli. The cells of a eukaryotic organism all share the same genome; however, they 

differentiate from a single zygote into many different cell types that carry out different functions 

mediated by the expression of cell-type-specific suites of proteins. A major focus of biological 

science has been to understand how cells with the same genome can induce and maintain such 

divergent functional states. Relatedly, eukaryotic cells must be able to respond quickly to certain 

stimuli by changing protein expression: canonical examples of such stimuli include heat shock or 

inflammatory signals. Both cell-type identity and functional responses to signaling are chiefly 

governed at the level of DNA transcription into RNA, though other processes like protein post-

translational modification and degradation also play important roles. Thus, understanding how 

eukaryotic cells induce and maintain the transcription of a set of genes is critical to understanding 

the function, health, and disease of eukaryotic organisms. Below, I will review the key aspects of 

transcriptional regulation of higher eukaryotes that have formed the basis for my graduate work. 

Figure 1.1 shows a schematized outline of this Introduction. 

 

 

Figure 1. 1: Schematic of the events of RNA polymerase II transcription in mammalian cells, 

highlighting steps that will be reviewed in this Introduction. 
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1.1 Transcription Factors Orchestrate Cell Function 

 RNA transcription is a complex process which is governed at multiple levels, but arguably 

the prime movers in this process are transcription factors. Transcription factors are proteins that 

bind cognate target sequences in genomic DNA in order to induce or repress transcription. These 

factors can be sufficient to determine cellular function: for example, expressing certain sets of 

transcription factors can overwrite a cell’s initial transcriptional program, and reprogram cells into 

a new cell type including dedifferentiating cells into fully pluripotent embryonic stem cells1. 

Conversely, transcription factors can also be necessary to establish cell type identity: certain 

transcription factors are absolutely required for differentiation of a given cell type, such as GATA-

1 in erythroid cells2, which will be further described at the end of this section. 

 Broadly, each transcription factor carries out its function using two modular domains: a 

DNA binding domain and a transcriptional transactivation domain3. The DNA-binding domain 

mediates sequence-specific binding to DNA. Many different families of conserved binding 

elements have been crystallized, and each structure confers a stereotypical type of DNA 

sequence recognition4–6. The quality and stringency of sequence specificity varies widely 

depending on the transcription factor, ranging from short motifs around 6-10 base pairs long with 

a wide range of degeneracy permitted to highly specific motifs up to 20 base pairs long in the 

case of CTCF7–9 . Such transcription factor recognition sequences have been identified both 

using in vitro protein-DNA binding assays and by measuring binding in cells to plasmids or 

genomic DNA using methods such as chromatin immunoprecipitation (ChIP)7. Transcription 

factors bind to influence transcription of genes at two main types of locations in the genome: 

proximal to the transcriptional start site, in the region known as the gene promoter, or at distal 

regulatory regions known as enhancers (both discussed in detail below).  

However, motif recognition is not sufficient to predict genome-wide transcription factor 

binding: many factors fail to bind the majority of their consensus motifs in the genome8 . Beyond 
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direct sequence recognition, transcription factor binding is also influenced by the local sequence 

context surrounding its recognition motif. For example, clusters of binding sites serve to give a 

region a higher avidity for a transcription factor, and thus can raise the likelihood of transcription 

factor binding to a region10. The spacing between such binding motif sites may also influence the 

likelihood of transcription factor binding11–13. Binding of different transcription factors nearby can 

also promote transcription factor binding14–17. Such cooperative binding can be mediated by direct 

protein-protein interactions (for example in the case of GATA-1 and Tal1, described below), or by 

one factor helping to displace nucleosomes away from a second factor’s binding site7 .There is 

also evidence that factors can promote each other’s binding indirectly via bending of DNA18–20.  

 However, even sequence context is often not sufficient to predict genome-wide 

transcription factor binding patterns, due to other factors that influence binding. For example, 

genomic DNA in eukaryotic cells is wrapped around protein octamers known as nucleosomes, 

and nucleosome binding can block transcription factor binding21–24. However, certain transcription 

factors, known as ‘pioneer factors’, possess the ability to recognize partial cognate sites on 

nucleosome-bound DNA23,25. These factors can recruit nucleosome remodelers such as the 

Swi/SNF complex, which can remove nucleosomes to allow further non-pioneer factors to bind 

their cognate sites23,25. Such pioneer properties are thought to be critical in allowing regions of 

DNA to transition from the heterochromatinized state to a transcriptionally-accessible state, in 

which even transcription factors can access their cognate binding sites. Such a property is likely 

critical for cellular transdifferentiation, and also likely in normal cellular differentiation26,27. Given 

the complex interplay between transcription factor motif, nearby sequence context, and 

nucleosome occupancy, an open area of study addresses how to combine multiple types of data 

to predict transcription factor binding with better accuracy, to ultimately be able to reconstruct the 

mechanisms driving gene regulation in a given cell type17,28.  

 Once a transcription factor successfully binds a cognate site, it must then carry out its 

function of transcriptional activation or suppression mediated by its transactivation domain. 

Transactivation domains are often characterized by an abundance of acidic residues3,29. These 
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domains can mediate their function by recruiting activating or repressive complexes, which can 

post-translationally modify surrounding histones with repressive or activating marks or can 

remodel nucleosomes to promote transcription factor binding and transcription itself7,30. For 

example, the interferon-beta enhancer supports the binding of multiple transcription factors, which 

ultimately results in the recruitment of acetyltransferases such as CBP/p300 to promote 

transcription of the interferon gene20. On the other hand, many zinc-finger transcription factors 

use their repressive KRAB domains to recruit a complex which imposes histone-3 lysine-9 

trimethylation to silence transcription of a target region31. However, such black and white cases 

as repressive zinc fingers may be the exception rather than the rule: in many cases, the same 

transcription factor domain can recruit either activating or repressing complexes in a context 

dependent manner: GATA-1 described below is one such example7,30. Thus, neighboring factor 

binding can influence both the DNA binding and the transactivation properties of a given factor. 

Transactivating domains have been more challenging to study structurally than DNA-

binding domains of transcription factors, since many of these domains are disordered and thus 

elude crystallization4. Currently, there is a resurgence of interest in these disordered domains 

because of these same physical properties: some have hypothesized that such disordered 

protein domains may be able to drive transcription via ‘condensation’ of protein complexes using 

a phase separation mechanism18,32–34. Phase separation is the phenomenon that many weak 

cooperative interactions between multivalent molecules can bring together clusters of proteins 

that appear to behave similarly to liquid droplets, displaying properties like excluding outside 

proteins and flowing18,33. Such phase-separation interactions can be promoted by post-

translational modifications of disordered protein domains, such as the phosphorylation of the C-

terminal domain of Pol II itself and phosphorylation of other transcription factors18,35,36. This type 

of condensation-based interaction is proposed to drive the nucleation of the clusters of 

transcription factors and of Pol II that have recently been observed by high-resolution imaging in 

live cells37,38. Phase separation control of transcription will be a very exciting area of study, but it 

is challenging to disentangle the role of the physical properties conferred by such disordered 
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regions of transcription factors from more conventional mechanisms of interaction with and 

recruitment of protein partners.  

 

1.1a: The GATA-1 transcription factor 

In my work and in other studies from the Blobel lab, we have taken advantage of the 

requirement for the transcription factor GATA-1 in the red blood cell transcriptional program in 

order to differentiate red blood cells in an inducible manner. GATA-1 was the first-discovered 

member of the GATA transcription factor family, members of which bind to a (A/T)GATA(A/G) 

motif in the genome39–41. GATA-1 was first isolated due to its binding to the beta-globin locus in 

red blood cells41,42. Its induction in granulocyte-monocyte progenitors drives differentiation of 

precursors into red blood cells and megakaryocytes41. As a result of its necessity in these cellular 

programs, embryonic stem cells lacking GATA-1 can contribute to every tissue in mice except red 

blood cells and megakaryocytes43,44, and mice lacking GATA-1 die at embryonic day 10.5 as a 

result of severe anemia2. GATA-1 is highly conserved from mice to humans, and humans with 

GATA-1 mutations display anemia and thrombocytopenia45,46.  

GATA-1 is an example of a transcription factor which both induces some genes and 

represses others in a context-dependent manner. Other transcription factors binding near GATA-

1 at a specific binding site seem to govern whether activating or repressive complexes are 

recruited to a GATA-1 binding site47. For example, when Tal-1 and GATA-1 bind together, this 

combination tends to produce transcriptional activation due to direct protein-protein interaction 

between the factors; indeed, mutations of the surface of GATA-1 where it contacts Tal-1 reduces 

its ability to activate transcription 46. However, at the majority of its sites GATA-1 mediates 

transcriptional repression, and thus it helps red blood cells to globally shut down transcription 

during their differentiation41. At such repressive binding sites, GATA-1 tends to bind alone in the 

absence of the Tal-1/SCL complex47. Such repression is mediated by the recruitment of the 

NuRD histone deacetylase complex by the GATA-1 binding partner FOG-147,48. 
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Taking advantage of GATA-1’s necessity and sufficiency for erythroid differentiation, 

Weiss and colleagues knocked out this factor in a mouse erythroid precursor cell line thus 

blocking differentiation, and then re-inserted a GATA-1-estradiol receptor fusion transgene, 

creating the ‘G1E-ER4’ cell line49–51. Upon treatment with estradiol, GATA-1 protein is stabilized 

and induces a highly reproducible differentiation cascade similar to red blood cell differentiation in 

vivo49–51. G1E-ER4 cells exposed to estradiol undergo terminal differentiation similarly to red 

blood cells in vivo, inducing transcription of genes typical of the erythroid lineage including the 

Slc4a1 (Band3) anion channel, the Slc25a37 iron transport channel, and the alpha- and beta-

globin subunits of hemoglobin52–54. This suite of proteins ultimately causes these cells to 

hemoglobinize and turn red, allowing visual tracking of their differentiation55, and to suppress 

transcription of almost all genes, although cells do not fully progress to enucleation unlike their in 

vivo counterparts. These G1E-ER4 cells also repress stem-cell associated proteins that maintain 

pluripotency and the stem-cell transcriptional program, including the Gata2 and Myc transcription 

factors, and the Kit cytokine receptor for stem cell factor cytokine53,54. This cell culture system 

thus represents a useful tool to study how a transcription factor can drive differentiation of a 

lineage and has been extensively previously characterized. I took advantage of these properties 

in my graduate work to compare this body of knowledge to the single-cell transcriptional 

properties produced by GATA-1 induction in these cells to better understand the regulation of 

transcriptional bursting.  

 

1.2 Transcriptional regulatory regions: promoters  

 Transcription factors exert their effects at promoters, near the beginning of genes, and at 

enhancers, or distal regulatory regions. In bacteria, promoters consist of highly conserved 

sequence motifs that directly recruit polymerase in order to drive transcription of genes56,57. 

Therefore, promoters were the first studied regulatory regions in eukaryotes, and at first were 

assume to completely govern transcription as in bacteria58. However, in higher eukaryotes, the 
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sequences of promoters were found to be quite variable between organisms and between 

different genes in the same organism56,59,60. Higher eukaryotes display some conserved 

categories of promoter motifs shared by multiple promoters, such as the TATA box and the 

Initiator (Inr) element, but such motifs are short (less than 10 base pairs on average) and 

relatively degenerate58,60. Higher eukaryotic promoters fall into two broad categories based on 

their transcriptional activating patterns: CpG promoters are rich in C and G nucleotides and tend 

to initiate transcription in a broader region and are often associated with housekeeping genes, 

while ‘narrow’ promoters which often have a TATA box drive transcription starting from a more 

focused location in the genome21,58,60. Promoters also typically display the histone 3 lysine 4 

trimethylation mark56. Promoters, especially ‘narrow’ promoters, also often include a well-placed 

nucleosomes at the transcription start site, which must be displaced in order for transcription to 

occur21,56. Due to the multiple categories of promoters with short and relatively degenerate motifs, 

higher eukaryotic promoters are difficult to identify using sequence alone: the gold standard 

techniques for promoter identification are experimental approaches that capture the 5’ starting 

end of transcripts with high sensitivity, such as GRO-seq or CAGE56,61. Eukaryotic promoters 

serve as the assembly point for the polymerase initiation complex, a highly orchestrated process 

that will be discussed further below. 

 

1.3 Transcriptional regulatory regions: enhancers  

 In higher eukaryotes, transcription factors binding at distal regulatory regions is critical to 

the establishment and maintenance of cell identity, perhaps as a result of the requirement for 

more complex spatial and temporal regulation associated with higher eukaryotic development 4. 

Distal regulatory elements acting in mammalian cells were first identified in the SV40 virus62. In 

mammalian systems, enhancers are typically a few hundred base pairs in length (though this can 

be altered depending on the approach used to define enhancers, as discussed below) 8. 

Enhancers can be located up to around a megabase from their target gene63–65 or can be quite 
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close to their target gene, although it becomes difficult within around a kilobase to definitionally 

distinguish an ‘enhancer’ from an extended promoter region. Enhancers can also typically 

function independent of their orientation with respect to their target gene66. These two properties, 

transcriptional activation at a distance and orientation independence, are the canonical defining 

characteristics of enhancers66.  

Enhancers consist of multiple transcription factor binding sites, often including sites for 

multiple different factors. A given enhancer is often active only in certain developmental and cell-

type contexts, in those contexts in which transcription factors are able to bind. In some situations, 

the assembly of this group of factors seems to occur in a specific order, and small sequence 

changes to the enhancer can abrogate all activating function8,67. However, in other cases, binding 

sites appear to drive transcription in a more additive manner, where different factors bind 

independent of each other to the same enhancer and each promotes enhancer activity68,69. A 

given gene can be controlled by different enhancers in different cellular contexts, such as in the 

case of the Myc gene63,64. The same gene can also be controlled by multiple distal regulatory 

regions, though whether these are considered to be separate enhancers or components of a 

massive ‘superenhancer’ can be somewhat semantic (discussed below)70,71 . 

Once transcription factors bind an enhancer, this complex must then activate 

transcription of the target gene by communicating to the promoter in some way. Enhancers are 

thought to promote transcription by transferring activating complexes to promoters or by 

increasing the local concentration of such activators. Transcriptional activators recruited by 

enhancers and brought to promoters include the CBP/p300 histone acetyltransferase complex 

and perhaps Pol II itself4. It has also been suggested that enhancers can transfer factors that help 

clear nucleosomes from promoters, or alternatively that enhancers can help promote promoter-

proximal pause release of Pol II8,72,73. However, the mechanisms of how enhancers confer 

transcriptional activity to promoters are still somewhat murky, since it is difficult to specifically 

perturb recruitment of complexes to specific sites in a targeted manner. 
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Different models of enhancer-promoter communication have been proposed: for 

example, that activating factors tracked linearly along the genome from an active enhancer to its 

target gene, or alternatively that the enhancer transfers activating factors directly by looping to its 

target gene66,74,75. The latter looping-type mechanisms have been supported by findings from 

chromatin conformation capture techniques, which use covalent cross-linking methods to 

sequence distal regions of DNA that contact each other in the nucleus76–78. Moreover, the Blobel 

lab showed that enhancer-promoter looping can be sufficient to cause transcriptional activation at 

the beta-globin locus79. Conversely, in several systems, transcription factor mutations or deletions 

that abrogate enhancer-promoter contact also reduce transcription, although in such cases the 

causative role of looping is unclear52,80,81. At other gene loci however enhancers contact 

promoters prior to transcriptional activation, suggesting that a further event independent of 

enhancer-promoter looping may be necessary for transcription82,83. More complexity is conferred 

by high-resolution imaging studies that showed that in some systems, enhancers and promoters 

were actually farther away (‘decondensed’) during active transcription compared to a 

developmental stage with no transcription84. In general, it has been extremely difficult to 

experimentally uncouple the role of promoter-enhancer contact from other events that occur 

during transcription. Live-imaging approaches (described more extensively below) may be key to 

at least revealing the dynamics and sequence of events in transcription, if not their causative 

roles, though achieving the resolution required to visualize transcriptional events in intact loci is 

an ongoing challenge38,85. 

De novo identification of genomic regions that serve as enhancers is an ongoing 

challenge. The gold standard, more practical now given the development of CRISPR, is enhancer 

deletion or mutation in cells or organisms and measurement of resulting alteration of target gene 

transcription (for example,70,86 ). However, this approach is relatively cumbersome and low-

throughput. The next best type of approach measures enhancer activity using a reporter system, 

a type of experiment that can be highly multiplexed87,88. However, there is some evidence that 

such assays may not always report faithfully on endogenous enhancer activity89. Approaches to 
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enhancer identification that don’t directly measure transcriptional activity are the least costly and 

most efficient, but any individual criterion to identify putative enhancer regions has not been 

perfectly reliable90: such approaches include identifying evolutionarily conserved distal regions, 

measuring transcription factor binding of one or multiple factors using ChIP, mapping locations of 

histone-3 lysine-27 acetylation, of histone-3 lysine-4 monomethylation, of DNAse-I 

hypersensitivity distal to transcription start sites, or of Pol II binding distal to transcription start 

sites, or measuring transcription of distal regions themselves using a method like PRO-seq 

(described below)66,91,92 . Hybrid approaches combine multiple of these markers and give more 

faithful information than any individual marker alone93; hopefully as data from genetic enhancer 

manipulation accumulates, such algorithms to identify enhancers will be optimized to help identify 

regulatory regions de novo in cell types and diseases of interest.  

 A great deal of enthusiasm in recent years has been devoted to the concept of 

‘superenhancers’: large enhancer regions that function as more than the sum of their constituent 

regions94–96. These regions were proposed to not only be more powerful than the sum of their 

constituent regions, or than shorter ‘typical’ enhancers, but were also thought to be more 

sensitive to perturbation, and additionally to be more likely to direct transcription of important cell-

identity genes like the transcription factors Myc (in several cell types) and Sox2 (in ES cells)96. 

This categorization of enhancers implied that enhancer length and histone-modification density 

should be able to predict enhancer strength. However, careful studies have suggested that the 

existence of a discrete superenhancer category with distinct properties from ‘typical’ enhancers 

perhaps was overstated and not a general rule97: two elegant studies in particular suggested that 

regions of an enhancer might contribute additively to the activity of the whole enhancer71,98.  

Beyond the identification of enhancers which can drive transcription, the field has also 

struggled to identify rules for how an active enhancer selects which target gene to activate. 

Indeed, the initial observation of enhancer activity showed that the SV40 large T antigen 

enhancer could drive the mammalian beta-globin gene, immediately showing that enhancers 

could display some degree of promiscuity62. In some cases, enhancers are exquisitely specific, 
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skipping intervening genes to activate a further away specific target gene. For example, a study 

shows that in embryonic stem (ES) cells, only 2/3 of active promoters genome-wide contact the 

nearest enhancer, while the other genes appear to be controlled by non-neighboring 

enhancers8,99. However, in most transgenic experiments, an enhancer is able to drive a wide 

variety of promoters87,100,101. One simple solution is that in some cases specificity does not seem 

to be critical to biological function: in some cases, enhancer deletion influences multiple genes in 

a region102,103. In a series of elegant high-throughput studies in Drosophila, it was shown that 

though enhancers were not absolutely specific, they had preferences for promoters of the same 

‘type’, i.e. housekeeping gene enhancers promoted the transcription of housekeeping gene 

promoters more strongly, while developmental gene enhancers promoted the transcription of 

developmental gene promoters most strongly88,104. To what extent this discovery of enhancer 

categories applies to mammals is as yet unclear. In some cases, genome organization seems to 

help promote enhancer target specificity: for example, the critical oncogene Myc, driven by 

different strong enhancers in different tissue types, sits in a relatively gene-poor region, perhaps 

to avoid inappropriate activation of the Myc gene, or of other genes by its enhancer63,64. Higher-

order chromatin structure such as the delimitation of so-called ‘topologically associating domains’ 

(TADs) is also important for ensuring enhancer fidelity in some cases105–108, as will be further 

discussed below. Heterochromatinization of stage-inappropriate genes may also prevent 

enhancer activation in some cases26. However, general mechanisms of enhancer specificity 

remain somewhat unclear: perhaps a combination of strong gene repression, and a robustness of 

cells to some inappropriate gene activation, is sufficient to explain how appropriate cell function is 

maintained without a high degree of intrinsic enhancer specificity. 

 

1.3a: The beta-globin locus control region 

One of the key model systems which has allowed a deeper understanding of 

transcriptional control by enhancers is the beta-globin locus in mammalian red blood cells. The 

mammalian beta-globin locus includes several developmentally regulated forms of beta-globin, 
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including embryonic, fetal, and adult forms, spread over around 100 kb109,110. All of these genes 

are regulated in their respective developmental stage by a large enhancer known as the beta-

globin locus control region. This region consists of 5 DNase-I hypersensitive sites, each with 

binding sites for different transcription factors111. In particular, GATA-1 and KLF-1 must bind the 

LCR and mediate clustering of the hypersensitive sites with the promoter in order to promote 

transcription of the stage-appropriate beta-globin gene52,81. Indeed, the Blobel lab showed that 

redirecting this enhancer complex to a developmentally-inappropriate globin gene is sufficient to 

activate that gene: specifically, they were able to increase transcription of the fetal form of beta-

globin in adult erythroid cells112. The LCR generally conforms to the additive model of enhancer 

function: deletion of each hypersensitive site reduces beta-globin transcription, and combined 

deletion of multiple HS sites has stronger effects than individual deletions113. The LCR may 

activate transcription of target genes via several mechanisms: deletion of parts of the LCR 

reduces PIC formation at the promoter, and also may impact promoter-proximal pause 

release72,73. The beta-globin locus has also been an interesting model of how an enhancer may 

drive transcription of multiple genes, and a number of studies have investigated whether the 

enhancer may drive transcription of multiple target genes simultaneously, or whether instead 

promoters compete for the activity of the LCR114,115. In my work, we took advantage of the 

previous thorough characterization of beta-globin locus regulation to investigate single-cell 

transcription and transcriptional bursting regulation in this system. 

 

1.4 Chromatin structure: higher-order organization in transcription 

 One of the main issues raised by the existence of distal regulatory regions is how a 

specific enhancer is coupled to its target promoter, and how it avoids spurious activation of other 

nearby genes. One possible solution to this is specific promoter-enhancer looping, discussed 

above. Another hypothesis is that higher-order conformation of genomic DNA in the nucleus 

helps govern transcriptional fidelity. Historically, the study of DNA organization in the nucleus 
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began with imaging studies such as the first images of chromosomes performed by Boveri, 

leading to studies asking whether there were specific regions for each chromosome, or territories, 

in the nucleus105,116,117. Indeed, genomic regions are much more likely to contact regions within 

their own chromosome than between chromosomes, and there is evidence for some selective 

radial positioning of chromosomes, though chromosome locations are not identical in each cell 

nucleus and may change after a cell divides118.  

The finding of chromosome territories may explain the limitation of enhancer activity to its 

own chromosome; however, if genomic structure governs enhancer action, then finer layers of 

nuclear structure must be responsible to avoid spurious activation of genes nearby on the same 

chromosome. The local ‘domain’ structure of genomic DNA has been enthusiastically studied for 

the past ten years, especially after the advent of high-throughput chromosome conformation 

capture techniques78. Such methods employ formaldehyde crosslinking to capture physical 

contacts between linearly distal regions of DNA; high-throughput versions of these methods, such 

as Hi-C, enable more unbiased analysis of contacts without requiring selection of a single 

candidate region of interest78,119 . Lieberman-Aiden et al. used genome-wide chromosome 

conformation capture to show that the nucleus is partitioned into active (‘A’) and repressed (‘B’) 

domains, and that genomic regions tend to clump like with like78. This ‘compartment’ structure of 

chromosomes in the nucleus may help avoid spurious activation of repressed domains, and may 

help ensure that even if enhancers act somewhat promiscuously on multiple genes, the other 

physically proximate regions are already being actively transcribed rather than suppressed. This 

compartmental clustering of active and of inactive regions has been validated directly by 

imaging120. Moreover, inactive domains are more likely to be excluded from the center of the 

nucleus and instead pushed to the lamina121. This laminar localization can directly disfavor 

transcription in some cases122. However, elegant single cell studies showed that localization to 

the nuclear lamina is non-deterministic, meaning that a lamina-associated region in one cell may 

shift away from the lamina when the cell undergoes division or vice versa123 Thus, evidence 

suggests that compartment structure may help confine enhancer activity to active genes on the 
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same chromosome, but that such compartmentalization is not absolutely deterministic and can 

vary cell to cell. 

A further level of organization thought to promote specificity of transcriptional regulation 

are TADs or topologically associating domains, first characterized in 2012 by several 

groups105,106,124. Satisfyingly, the existence of TADs was more recently confirmed by two 

orthogonal experimental approaches120,125. These regions average around 1 megabase, although 

different groups have used different algorithms to identify them and thus TAD sizes and locations 

vary between publications126. In general, however, TADs are computationally and functionally 

defined as genomic regions which interact more strongly within themselves than with regions 

outside their boundaries105,106,124. Many TADs have binding sites for CTCF, a protein first 

characterized as an ‘enhancer insulator’, at their boundaries, and these CTCF sites are typically 

convergently oriented126,127. CTCF has been shown to form homodimers, and thus such 

convergent binding sites are thought to mediate interactions between CTCF molecules sitting at 

the base of TAD loops 126. It is hypothesized that DNA loop extrusion by the cohesin complex, 

proceeding from the center of TADs until cohesin is blocked by CTCF at the base of each TAD 

loop, establishes and maintains TADs as domains separated from each other128–130. Enhancers 

typically tend not to activate genes outside their TAD108. Moreover, TAD boundaries are relatively 

conserved compared to other intergenic regions, both between different cell types in the same 

organism, and across different mammalian species, and even appear to be somewhat consistent 

in single cells129,131,132. In some cases, mutation of TAD boundaries can lead to mis-activation of 

genes by enhancers from the neighboring TAD, as such a model would predict107,133. Moreover, 

global genome methylation in cancer cells led to enhancer-promoter miswiring in one cell system, 

which the authors suggested was due to the inability of CTCF to bind methylated chromatin134. 

However, in some cases, TAD boundary mutation has negligible effects on transcription135. 

Moreover, transient depletion of CTCF from cells, which dissolves the structure of most TADs, 

has moderate or negligible effects on transcription, depending on the system used136,137. (Note 

that permanent CTCF depletion is toxic for cells, so transient studies were critical to explore the 
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function of CTCF in transcription.) Given these equivocal results, it is likely that TADs may not be 

as critical for governing transcription as the earliest studies may have suggested. In future, 

imaging of TADs in single cells coupled with single cell transcriptional measurements may clarify 

to what extent TADs govern localization and transcription of genes within them. 

 

1.5 The mechanics of transcription: initiation  

 Once a gene has the potential to transcribe due to transcription factor binding at its 

enhancer and promoter and recruitment of activating factors, the mechanics of transcription itself 

come into play. The polymerase initiation complex (PIC) must be assembled at the transcription 

start site, recruited to the degenerate promoter sequences described above58,60 . The mammalian 

PIC consists of more than 40 proteins, including notably TFIIB, C, D, E, F, and H, which 

assemble in a stereotyped sequence and conformation138–141. For example, the TFIID complex 

directly recognizes the TATA box and other promoter motifs and binds DNA, and serves to 

nucleate the assembly of the other factors on DNA139,142. These other proteins act both to unwind 

the DNA at the promoter, a step which specifically requires the helicase activity of TFIIH139,143, 

and to bring Pol II itself to the beginning of the gene. PIC assembly and unwinding of promoter 

DNA has been suggested to be a rate-limiting regulated step in eukaryotic transcription139,144 . 

 Structural studies of the initiation complex have helped reveal the steps involved in PIC 

formation. The large size and numerous components of the PIC historically made it extremely 

challenging to crystallize using conventional methods141,145. However, the development of the 

cryo-EM technique, which applies a newly-developed high-resolution camera and computational 

alignment techniques to identify structural conformation of large multiprotein complexes to several 

angstrom resolution, has been valuable in clarifying the sequence of events involved in PIC 

assembly141,145. While conventional protein crystallization yields a single crystal structure, the 

cryo-EM technique averages together images of individual complexes: therefore, if the complex 

exists in several different conformational states, a single cryo-EM experiment can yield 



16 
 

information on all of these states, which has proved valuable in studying PIC assembly141,145. For 

example, the Nogales group found that TFIID, the factor which directly binds the TATA box of a 

promoter, mediates a sharp bend in promoter DNA when it binds, while the TFIIH complex which 

helps melt the promoter DNA to allow RNA transcription also changes conformation upon binding 

to the promoter146–148. Ultimately, such studies will continue to give us a better understanding of 

the dynamics and steps of transcriptional initiation.  

 

1.6 The mechanics of transcription: promoter-proximal pause release 

 In bacteria, polymerase recruitment is the main checkpoint governing transcriptional 

activation of a gene, and initially this was assumed to be true of eukaryotic genes4. However, 

more recently a second major checkpoint controlling the rate of RNA production by Pol II was 

identified by the Lis lab and others: promoter-proximal pausing61,149 . In this process, Pol II is 

stalled approximately 30 to 50 base pairs downstream of the transcriptional start site149. Elegant 

experiments blocking initiation and measuring the half-life of paused Pol II complexes have 

showed that such paused complexes can be quite stable, in the range of minutes to tens of 

minutes150. In order for polymerase to transcribe full-length RNA, the pTEF-b kinase complex, 

made up of cyclin T1 and CDK9 proteins, must phosphorylate the C-terminal domain of Pol II as 

well as negative elongation factors149. Indeed, direct tethering of pTEF-b in a Drosophila system 

is sufficient to drive transcription of heat shock genes in the absence of stimulus, demonstrating 

that this complex is key to the pause release process151. However, other proteins including BRD4 

and the super-elongation complex also can collaborate in the pause release process152,153. 

Promoter-proximal pause release is globally required at all genes in higher eukaryotes, because 

pharmacological blockade of pTEF-b globally arrests transcription150,154 . The degree of pausing 

at different genes is governed by the promoter elements of that gene155. It remains unclear 

exactly how the rate of pause release is regulated: there must be some gene-specific element to 

this regulation, because certain genes are maintained in the paused state without transcription 
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(for example heat shock genes in Drosophila), while other genes in the same cells undergo 

elongation. In future, live imaging approaches of RNA transcription and of proteins involved in 

pause release perhaps can be applied to help clarify the dynamics and regulation of this process. 

 

Figure 1.2: Experimental methods used to measure transcription. A) Biochemical population-

averaging techniques discussed in section 1.6. B) Imaging-based techniques discussed in section 1.7. 

 Though often polymerase initiation and pause release are considered as independent 

and sequential processes, recent evidence demonstrates that they are interrelated. Specifically, 

the very size of the PIC means that if a polymerase complex is paused in the promoter-proximal 

region of a specific gene copy, no second polymerase molecule is able to initiate at the promoter 

until the first pause polymerase has moved into the gene body156,157. This cross-inhibition of 

initiation and pausing is a critical consideration when modeling the process of transcription in 

higher eukaryotes. Promoter-proximal pausing has also been suggested to be a mechanism by 

which genes can be quickly activated upon stimulus149, however, since only 2-4 molecules of 



18 
 

RNA could be generated per cell by such an approach without further transcriptional initiation 

(depending on the cell cycle status of the cell in question), we suggest that it seems unlikely that 

this mechanism is as quantitatively essential as some have suggested. 

 Biochemical approaches have been used extensively to measure nascent transcription, 

and the choice of technique in large part should be dictated by the experimental question at issue 

(Figure 1.2). The most straightforward approach is total RNA sequencing (since poly-A selection 

will omit most nascent RNA species): the abundance of intronic sequences, which are degraded 

soon after transcription, can serve as a proxy for active transcription158. However this approach is 

needlessly costly since the majority of species sequenced are mature RNA. Thus, methods to 

enrich for nascent RNA can be more practical in measuring nascent transcription. Such 

enrichment approaches include TT-seq, which allows cells to transcribe briefly in the presence of 

4-thiouridine: incorporation of this nucleotide allows biochemical enrichment and sequencing of 

recently transcribed RNAs159. GRO-seq and PRO-seq are other techniques that allow 

biochemical enrichment and sequencing of nascent RNAs61,149,160. PRO-seq and GRO-seq, like 

TT-seq, provide high-resolution information about nascent transcription, which can be critical to 

identify precise transcriptional start sites, and to provide directional information about transcription 

such as in cases of divergent transcription149. A downside of the PRO-seq/GRO-seq techniques 

is that they require transcription to take place in isolated nuclei after the addition of the detergent 

sarkosyl, which might bias results due to the nonphysiological conditions. A final type of approach 

uses chromatin immunoprecipitation to enrich for Pol II, either to measure Pol II binding as a 

proxy of transcription, or to purify Pol II associated RNAs and perform RNA sequencing (NET-

seq)161,162. This approach is lower-resolution than PRO-seq/GRO-seq, not allowing nucleotide-

level information of how much a region has been transcribed, but allows transcription to occur in 

situ in unmanipulated intact cells, and thus may provide the most physiological record of nascent 

transcription. Thus, choice of biochemical technique to measure transcription should be dictated 

by experimental question. Most of these approaches can help measure promoter-proximal 

pausing, with slight variations in the analysis method: the short nascent RNAs transcribed before 
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pausing are quite unstable and very short, so total RNA-sequencing is not a good approach for 

this sort of question. PRO-seq and GRO-seq reveal Pol II that is ‘transcriptionally engaged’ even 

if the RNA is unstable, so pausing will produce a strong promoter-proximal signal in these 

techniques149. Similarly, Pol II ChIP-seq will reveal a strong peak of Pol II if many cells contain 

paused Pol II near the promoter 149. Note that the presence of these pause Pol II signals will be 

influenced by both the number of cells with paused Pol II, and by the average duration of time 

that polymerase remains paused without undergoing elongation at that gene. All such techniques 

average the transcriptional behavior of many cells, and this should be kept in mind while creating 

models based on such data. 

 

1.7 Transcription in single cells: transcriptional bursting 

 The biochemical approaches to measuring nascent transcription described above have 

been extremely powerful; however, the advent of imaging studies of nascent transcription 

revealed that some of the complexity of transcription had been occluded by the population-based 

nature of such assays. First, it was observed that cells containing mRNA for highly expressed 

genes did not display active transcription of those genes at all times163–165. Moreover, the 

distribution of mRNAs for a given gene in a population of cells could not be fit by a Poisson 

distribution: this observation suggested that RNA transcription was likely to happen in ‘bursts’ of 

multiple RNAs, and there must be a step upstream of transcription that altered the likelihood of 

RNA production over time166,167. (This distributional argument could be compared to recording the 

number of cars on a stretch of rural highway- with no traffic control, cars are distributed in a 

roughly Poissonian manner- compared to recording the number of cars on a city street- in the 

latter case, clusters of cars are likely to appear, and thus one could infer the presence of a 

stoplight controlling traffic flow even if one couldn’t see the stoplight itself. RNA patterns adhered 

to the latter pattern rather than the former.) Moreover, transcriptional bursting was found to be 

stochastic in the sense that different alleles in the same cell transcribed in an independent and 
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uncoupled manner164,168,169. These initial studies were performed with the single-molecule RNA 

fluorescence in-situ hybridization (FISH) technique (Figure 1.2)163,170 ,which uses multiple 

fluorescently labeled DNA oligonucleotides to hybridize to RNAs of interest and allow direct 

quantitation of RNA counts in single cells. Since the initial observation of bursting in fixed cells 

described above, the RNA FISH technique has been applied to a wide variety of genes, 

organisms, and cell types, demonstrating that transcriptional bursting is an apparently universal 

property of transcription in higher eukaryotes, including in mammalian tissues169,171,172.  

 Direct confirmation of this transcriptional bursting phenomenon was enabled by the 

development of the MS2 stem loop system to label nascent RNA in live cells 173,174. This 

approach uses overexpression of a bacteriophage coat protein fused to a fluorescent protein 

such as GFP in cells or animals; this overexpressed protein binds the stem-loop RNA structure 

originally found in the bacteriophage, so that knocking 12 or 24 repeats of this stem-loop 

sequence into an RNA of interest creates an intense fluorescent signal wherever this RNA 

species is present in a cell.  This MS2 approach revealed that transcription was discontinuous 

through time in Drosophila embryos and mammalian cells, as well as in primary mouse 

cells172,175. Moreover, by applying stimuli to cells and measuring nascent transcription with either 

live or fixed methods, it became clear that properties of these transcriptional bursts could be 

regulated176,177.  

 Since the studies mentioned above directly measured RNA production but were unable to 

visualize protein regulators of this process, mathematical modeling has been applied extensively 

to such datasets to try to infer the regulation of transcriptional bursting. The most commonly used 

model, which fits the data well in many cases, is the so-called random telegraph model163,178,179 : 

this model suggests that two rates regulate a gene’s transcriptional output, the rate of ‘burst 

initiation’ which controls the frequency of transcriptional bursts, and the rate of ‘RNA production’, 

perhaps related to polymerase initiation, which controls the number of RNAs produced per burst, 

or the ’burst intensity’. Some live-imaging studies have found evidence for a third regulated rate, 

upstream of burst initiation, which can produce a so-called refractory period, meaning that there 
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tends to be a period of transcriptional silence between bursts180,181. Other studies have suggested 

yet more complex regulatory architectures, such as one which suggested there are many (more 

than 5) major regulated rates governing transcriptional bursting182. However, it is still unclear how 

these mathematically inferred regulated steps relate to actual molecular regulators of 

transcription, such as those described in previous sections. 

 Most promisingly, in recent years studies have started to apply super-resolution imaging 

approaches to visualize transcription in tandem with proteins that regulate transcription to clarify 

the regulation of the dynamics of transcription37,183. For example, the Cisse group has devised an 

approach to visualize Pol II molecules simultaneously with live imaging of a gene of interest. This 

approach revealed that Pol II clusters around a promoter just before a burst of transcription 

starts38. This clustering behavior has been used to support a model that Pol II is undergoing 

condensation or phase separation at the promoter to drive transcription18,184 , however it is difficult 

to directly assay the physical properties of Pol II in such a system, or to examine the necessity of 

this type of condensation to drive transcription. In another multicolor live imaging approach, the 

Gregor group established a system to enable enhancer and promoter conformation imaging along 

with live imaging of transcription85 (discussed further in the Discussion). In future, it will be 

valuable to visualize more protein players in such a system, perhaps including p-TEFb or the 

polymerase initiation complex components, to learn more about the dynamics of transcription. 

Perhaps such a system could be paired with drug-induced degradation approaches136,137 to 

enable causal dissection of the events taking place during transcription in live cells. Moreover, a 

consistent difficulty in such studies has been the cumbersome genetic engineering required to 

allow both single protein molecules and nascent RNA to be visualized. CRISPR has helped 

ameliorate both these difficulties somewhat by making it easier to knock in stem-loops or tag 

sequences, however still only a limited number of genes and cell systems has been used for live 

imaging, potentially limiting the generalizability of the findings above.  In future, it is likely that 

imaging techniques using Cas9 or other bacterial Cas proteins to bind RNA and DNA may be 

optimized, allowing wider application of such techniques185,186.  



22 
 

 

1.8: Perspective on the field of transcriptional regulation 

 Transcriptional regulation is one of the key processes that allow cells to change or to 

maintain their functional state. A number of themes have emerged from the sixty or more years of 

study devoted to this topic. First, transcriptional regulation in mammals is complex: many 

molecular players and steps are required for transcription of any given gene. Moreover, simple 

and elegant rules do not always generalize easily between different genes and contexts, as 

demonstrated for example by the ongoing difficulties in computational prediction of enhancer 

function. In spite of this complexity, some general patterns have emerged, such as the 

requirement for PIC assembly and promoter-proximal pause release for RNA production to occur, 

as well as the generality of the transcriptional bursting phenomenon. Relatedly, the field has 

benefited from the development and application of multiple orthogonal experimental techniques to 

measure transcription and transcriptional regulation: for example, the development of RNA 

imaging techniques revealed transcriptional bursting behavior that was invisible by bulk 

biochemical techniques. High-resolution imaging allowing tracking of multiple protein, DNA and 

RNA components in live cells are becoming more accessible and hopefully will help deepen 

understanding of the dynamics and spatial characteristics of transcription in single cells 38,187,188. 

Such studies should be coupled with targeted perturbations, to allow dissection of causative 

relationships in transcription. A general technical challenge in this field (as well as many other 

biological questions) is the candidate-based nature of protein measurements: for example, ChIP-

based studies require antibodies, while imaging approaches require engineering of specific 

proteins. Perhaps in future, more sensitive unbiased approaches such as locus pulldown189 single 

cell mass spectrometry190, or antibody-free binding protein design191 might allow unbiased 

identification and functional dissection of proteins involved in the different steps of transcriptional 

regulation. More conceptually, the field has now identified many of the players in transcriptional 

regulation: the next step, difficult so far, is to integrate these pieces of information to predict 
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transcriptional outcomes in a cell type or organism28,93,192,193. It is not clear how the newest 

concepts in the field which generate the most excitement, such as superenhancers or phase 

separation, will help us advance toward this goal of prediction. Rather, such topics of research 

seem to propose alternate mechanisms for transcriptional behaviors for which we already have 

explanations (incomplete though these explanations may be). It will be exciting to watch the field 

hopefully develop better predictive models for how the complexities of eukaryotic development 

are orchestrated in time and space. 
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CHAPTER 2: Enhancer regulation of transcriptional bursting parameters revealed by 
forced chromatin looping 

2.1 Introduction 
 

Transcription of most genes in mammalian cells occurs in bursts interspersed with 

refractory periods of varying lengths, both in cell lines and in tissues 163,164,167,171,173,181,183,194,195 . 

Transcription of a given gene can be increased through modulation of several different burst 

parameters. For instance, the gene could increase in burst fraction (the number of alleles 

transcribing per cell, which is related to how frequently bursts occur), or burst size (the number of 

RNA molecules produced per burst). For example, serum-induced transcription activation of b-actin 

augments both burst frequency and burst size, while serum induction of c-Fos leads to an increase 

in burst frequency without changing burst size176,177. Recent evidence further suggests that 

maintenance of mRNA concentrations in response to changes in cell size are achieved through 

changes in burst size, while gene dosage compensation in the cell cycle is regulated by burst 

frequencies196.  However, the molecular regulation of transcriptional bursts remains unclear.   

Enhancers are distal genetic elements that regulate transcription of their target genes by 

diverse modes, which include altering chromatin structure and histone modifications, recruiting 

basal transcription factors, localizing genes to permissive nuclear compartments, or increasing 

transcriptional elongation8,66 . However, most studies on enhancer function are population based, 

leaving open how enhancers affect transcription dynamics at individual alleles. 

The b-globin locus control region (LCR) is a powerful distal enhancer that is required for 

high level transcription of all b-type globin genes197–199. The LCR engages the embryonic (e-globin), 

fetal (g-globin), and adult type (b-globin) globin genes through looped contacts in a developmentally 

appropriate manner76,77,200. Proposed mechanisms by which the LCR activates transcription include 

recruiting tissue-specific and general transcription factors as well as RNA polymerase II, moving 

the locus towards the center of the nucleus and outside the chromosome territory, as well as 

promoting transcription elongation72,113,198. How these mechanisms impact transcriptional burst size 
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versus fraction is unresolved. A related open question is how the LCR controls bursting in the 

context of multiple active or potentially active b-type globin genes within the locus. 

A landmark study using RNA FISH demonstrated that at a fraction of alleles g-globin and 

b-globin located on the same chromosome can be transcribed during the same developmental 

stage114. This study further provided evidence that the appearance of allelic co-expression of g-

globin and b-globin results from rapidly alternating interactions of these genes with the LCR. 

Subsequent studies that included kinetic experiments provided additional support for the idea that 

LCR-promoter contacts are so dynamic that the appearance of allelic co-transcription is actually 

the result of very rapid transcriptional switches115,201,202. A model in which only one promoter 

interacts with the LCR at any given time would also explain competition among the genes. 

However, none of these studies excluded the possibility that the LCR acts on both genes 

simultaneously. Besides simultaneous LCR-gene contacts, an additional scenario compatible with 

allelic co-expression is that one gene could be transcribed dependently and the other independently 

of the LCR. Indeed, the b-type globin genes are transcribed in the absence of the LCR albeit at 

much lower levels197. The application of quantitative RNA FISH to examine transcriptional bursting 

parameters might allow discrimination between these models.  

 Here, we used quantitative single-molecule RNA FISH170,203  to measure transcriptional 

burst size and burst fraction of the b-globin gene during erythroid maturation. We observed 

increases in both transcriptional burst fraction and size during this process. The enhancing effects 

of the LCR on b-globin transcription are predominantly explained by augmenting burst fraction with 

a modest but significant contribution to burst size, as revealed by LCR deletion experiments. To 

study the relationship between LCR-promoter contact frequencies on bursting parameters we 

applied a forced chromatin looping system. Specifically, forced tethering of the nuclear factor Ldb1 

via designer zinc fingers to a chosen b-type globin gene promoter leads to recruitment of the LCR 

and transcription activation79,112. We found that in murine erythroblasts, engagement of the LCR 

increased b-globin burst frequency but not burst size. Similarly, in primary adult human erythroid 
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cells, redirecting the LCR towards the g-globin genes and away from b-globin genes increased g-

globin burst fraction while lowering b-globin burst fraction. A significant proportion of alleles co-

transcribed b- and g-globin, but allelic co-transcription of b- and g-globin was statistically disfavored. 

Strikingly, the burst size of co-transcribed genes is not reduced compared to singly transcribing 

genes, further supporting the model that promoters compete for LCR activity and that LCR-

promoter looping controls burst fraction. In concert, these results provide new insights into 

mechanisms of enhancer function and highlight the use of targeted alterations of chromatin 

architecture for functional studies of enhancers. 

 

2.2 b-globin transcriptional burst fraction and burst size increase during erythroid 
maturation 
 

An increase in transcription at a given allele can occur through elevated burst fraction, burst 

size or a combination of both (Figure 2.1A). We first measured b-globin transcriptional bursting 

parameters in the G1E-ER4 murine erythroblast cell line during the course of erythroid maturation, 

when b-globin transcription is strongly induced. Maturation of these cells is dependent on the 

hematopoietic transcription factor GATA1, which is expressed in these cells as an estrogen 

receptor fusion protein. Addition of estradiol triggers erythroid maturation and increases contacts 

between the LCR and the b-globin promoter, faithfully reproducing normal terminal erythroid 

maturation49,50,52. We measured transcription of the adult b-globin (Hbb-b1) gene at different time 

points during G1E-ER4 maturation using single-molecule RNA FISH170,203. Transcription sites were 

identified by nuclear colocalization of spectrally distinguishable signals from probes specific for b-

globin introns and exons (Figure 2.1B)168.  

We verified that transcription sites faithfully reported recent transcriptional events by 

blocking transcription with actinomycin D and counting b-globin transcription sites in human 

erythroid cells (Figure A2.1A). This control showed that 90% of transcription sites were lost at 30 

minutes post-drug treatment, and half disappeared by just 10 minutes, validating that our 

transcription site identification faithfully reported ongoing transcription. 
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Both burst fraction and average burst size increased during differentiation (Figure 2.1B-E, 

Figure A2.6), indicating that both parameters contribute to total b-globin production during cell 

maturation. Specifically, the increase in burst fraction from 4 to 24 hours of maturation was 3.4 fold, 

while the change in burst size from 4 to 24 hours was 1.8 fold (Figure 2.1D-E). The burst fraction 

increase corresponded to an increase in the proportion of cells transcribing 1,2, or 3 active b-globin 

alleles (Figure A2.1C). The overall increase in transcriptional output was consistent with the profile 

of RNA polymerase II (Pol II) binding at the b-globin locus, as determined by chromatin 

immunoprecipitation (ChIP) (Figure 2.1F). Moreover, we observed an increase in the fraction of Pol 

II in the gene body relative to the promoter (Figure 2.1G), reflecting an increase in elongating Pol 

II, consistent with the observed increases in burst fraction and size. To address possible variabilities 

in fluorescence intensities between slides and experiments we concurrently measured cyclin A2 

mRNA in the experiments shown in 1B-1E (Figure A2.1B). We found that cyclin A2 mRNA 

intensities were consistent between experiments. The subtle downward trend in cyclin A2 signal 

during erythroid maturation is opposite to that of the b-globin transcription sites (Figure 2.1E), such 

that normalization of β -globin bursting size to cyclin A2 would result in slightly larger changes 

during maturation. 
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Figure 2. 1: b-globin transcriptional burst fraction and burst size increase during erythroid 

maturation. A) Simplified model of how bursts can be modulated during murine erythroid maturation to 

increase b-globin mRNA levels. B) Single-molecule RNA FISH using b-globin intron and exon probes to 

identify transcription sites in G1E-ER4 cells, 4 or 24 hours after estradiol addition (white arrows indicate 

transcription sites, intron and exon channels are set to same intensities across images). C) Representative 

experiment showing fluorescence intensities of β-globin transcription sites in G1E-ER4 cells at indicated time 
points after estradiol addition (tics on x axis=medians for this experiment). D) Mean number of alleles 

transcribing β-globin per cell at time points after estradiol addition. N=3 biological replicates. E) Median 

fluorescence intensities of β-globin transcription sites in G1E-ER4 cells following estradiol addition. N=3 
biological replicates. F) Anti-RNA polymerase II ChIP in G1E-ER4 cells at indicated times after estradiol 

addition in the globin locus normalized to input. Primer pairs targeting distinct regions of the gene are listed 

on the x-axis. The silent CD4 locus served as a negative control. N=3 biological replicates. G) Ratio of RNA 
polymerase II ChIP signal at β-globin exon 2 to β-globin promoter. N=3 biological replicates.  Error bars 

represent SEM. See also Figures A2.1 and A2.6. 
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One question raised by this analysis is whether the variation in burst size might be strongly 

regulated by global transcriptional differences between cells (‘extrinsic noise’)204, as opposed to 

allele-level differences (‘intrinsic noise’). If, for example, transcription factor concentrations between 

cells varied widely, and if this variation were to determine differences in burst size, then two alleles 

bursting in the same cell should tend to have similar burst sizes. To quantify the contribution of 

extrinsic noise to burst size, we measured whether the sizes of bursts were correlated in cells that 

displayed two transcriptional bursts at various stages of maturation. We found that the correlation 

was not strong (maximum R2=0.293) and therefore differences between cells do not strongly 

determine individual burst sizes as measured by RNA FISH (Figure A2.1D-F). The correlation was 

slightly weaker at 9 hours of maturation compared to later time points, suggesting that cell-to-cell 

variability may play a slightly larger role in determining burst size variation later in differentiation. 

We note however that staggered initiation timing of bursts, as well as technical noise, can contribute 

to apparent intrinsic noise in this system. 

To test whether global changes during erythroid maturation might nonspecifically alter the 

measurements of bursting parameters, we examined transcription of Gata2, a gene that is active 

in erythroid precursors but silenced during maturation205. We found that the burst size and burst 

fraction of Gata2 are both reduced during maturation, suggesting that both parameters are 

regulated in a gene-specific manner (Figure A2.2). 

In sum, b-globin burst fraction and burst size increase during erythroid maturation. This 

finding raises the question of how these bursting parameters are governed, and whether burst 

fraction and burst size are governed independently of each other. 
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Figure 2. 2: Deletion of the LCR predominantly impairs β-globin burst fraction. A) GATA1 

ChIP-Seq browser track view of the b-globin locus. Peaks demarcate the b-globin promoter and DNase I 

hypersensitive sites of the LCR.  Guide RNA placements for Cas9-mediated LCR deletions are indicated. B) 

Single-molecule RNA FISH using b-globin intron and exon probes to identify transcription sites in wild-type 

and LCR-deleted G1E-ER4 cells 24 hours after estradiol addition (white arrows indicate transcription sites, 

intron channel is set to same intensities across images). C) Mean number of alleles transcribing β-globin per 

cell in G1E-ER4 wild-type and LCR-deleted cells, treated with estradiol for 24 hours. N=3 biological replicates. 
D) Fluorescence intensity of β-globin transcription sites in G1E-ER4 parental and LCR-deleted cells, exposed 

to estradiol for 24 hours. Wilcoxon non-parametric t-test, pooling the two LCR-edited clones, p=1.54e-10. Data 

from 3 biological replicates pooled. Error bars represent SEM. See also Figures A2.2 and A2.7. 
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2.3 Enhancer deletion by genome editing decreases β-globin burst fraction and size 
 

 Relatively little is known about the molecular control of bursting parameters. In particular, 

it is unknown how distal regulatory elements influence burst fraction and burst size. Previous 

studies that the LCR influences both burst fraction and size113. To quantify the contributions of the 

LCR to these parameters via single molecule RNA FISH, we generated two distinct G1E-ER4 cell 

lines with homozygous deletions of the LCR using different guide RNA pairs (Figure 2.2A, Figure 

A2.3A-G). Cells were induced with estradiol for 24 hours to examine the effect of the LCR in its 

most active state. The b-globin burst fraction LCR deleted cells is greatly reduced (311-fold and 

194-fold in line 1 and line 2, respectively, Figure 2.2B-C, Figure A2.7) when compared to control 

cells. For measurements of burst size we had to examine a large number of cells (8216 cells total 

between all conditions and replicates) given the strong reduction in burst frequencies in cells 

lacking the LCR. Moreover, we pooled across biological replicates and both clones in order to gain 

the number of transcription sites necessary to make a statistical comparison of burst size. Burst 

size was reduced approximately 3-fold in cells lacking the LCR- compared to parental G1E-ER4 

cells (3-fold for each clone, Figure 2.2B and 2.2D). We note that we measured an equal number of 

transcription sites from each clone, and the means of both populations were the similar, justifying 

the pooling the two clones in the final analysis. These results suggest that the LCR predominantly 

controls burst fraction with a lesser but significant impact on burst size. 
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Figure 2. 3 Forcing LCR-promoter contacts increases β-globin burst fraction independent 

of burst size. A) Schematic of the forced looping strategy in murine G1E cells lacking GATA1. B) Mean 

number of alleles transcribing β-globin per cell infected with empty vector or vector expressing mZF-SA. N=3 

biological replicates. C) Fluorescence intensity of β-globin transcription sites. Wilcoxon non-parametric test 
comparing control and mZF-SA intensities, p=0.42. Data were pooled from 3 biological replicates. D) 

Schematic of the forced looping strategy in murine G1E-ER4 cells induced for 9 hours with estradiol. E) Mean 

number of alleles transcribing β-globin per cell in G1E-ER4 cells infected either with control vector or mZF-
SA, 9 hours after estradiol addition. N=3 biological replicates. F) Representative experiment showing 

fluorescence intensity of β-globin transcription sites in G1E-ER4 cells, infected either with control vector or 

vector expressing mZF-SA, 9 hours after estradiol addition. G) Median fluorescence intensity of β-globin 
transcription sites in G1E-ER4 cells infected either with control vector or mZF-SA, 9 hours after estradiol 

addition. N=3 biological replicates. Error bars represent SEM. See also Figures A2.3 and A2.8. 
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2.4 Forced enhancer-promoter contacts increase b-globin transcriptional burst fraction 
but not burst size 
 

The LCR forms looped contacts with the promoters it regulates. Since the LCR influences 

both burst fraction and size, we set out to test whether these two effects are both controlled by 

LCR-promoter contact frequencies or whether they are mechanistically separable. We used a 

recently developed strategy to force LCR-promoter contacts that involves tethering of the self-

association domain (SA) of nuclear factor Ldb1 by a designer zinc finger (ZF) to the b-globin gene 

promoter, which leads to recruitment of the LCR and transcription activation (Figure 2.3A)79. The 

unique advantage of this system is that it allows targeted formation of enhancer-promoter contacts 

without otherwise perturbing the locus or cell state. G1E cells lack GATA1 and as a result have few 

if any LCR-promoter contacts. G1E cells expressing a ZF-SA fusion protein specific for the murine 

b-globin promoter (mZF-SA) exhibit LCR-promoter contact frequencies approximating those of 

GATA1 replete cells. We infected G1E cells with a control retroviral vector or a derivative 

expressing mZF-SA as part of an IRES-GFP construct, followed by fluorescence-activated cell 

sorting (FACS) to enrich for infected cell populations. Increasing LCR-promoter contacts by mZF-

SA significantly increased b-globin burst fraction compared to controls (Figure 2.3B, Figure A2.8). 

Surprisingly, burst size was unchanged by mZF-SA expression (Figure 2.3C). 
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Figure 2. 4 Effects of maturation and forced LCR-promoter contacts on transcriptional 

bursting parameters in human erythroid cells. A) Mean number of alleles transcribing β-globin per 

cell, and B) median fluorescence intensity of β-globin transcription sites at 0 or 3 days of maturation induction. 

N=3 human donors. C) Schematic of forced LCR-γ-globin promoter loop strategy in primary human erythroid 

cells. D) Single-molecule RNA FISH of g- and β-globin in human primary erythroid cells infected with hZF-SA 

expressing vector or control vector. E) Mean number of alleles transcribing g-globin per cell in hZF-SA 

expressing cells or control cells, normalized to proportion transcribing in the control vector condition. Wilcoxon 

paired t-test, p=0.016. N=5 human donors. F) Mean number of alleles transcribing β-globin per cell normalized 

to control vector condition. Wilcoxon paired t-test, p=0.42, or p=0.2 excluding outlier. N=5 human donors. G) 
Median fluorescence intensities of -globin transcription sites cells infected with control vector or hZF-SA vector, 

normalized to proportion transcribing in the control vector condition.  Wilcoxon paired t-test, p=0.84. N=5 

human donors. H) Median fluorescence intensities of β-globin transcription sites in cells infected with control 
vector or hZF-SA vector, normalized to proportion transcribing in the control vector condition.  Wilcoxon paired 

t-aest, p=0.09. N=5 human donors. Error bars represent SEM. See also Figures A2.4 and A2.9. 
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Since the LCR contains numerous GATA1 binding sites, its activity in G1E cells is 

compromised. Therefore, we carried out similar experiments under conditions in which GATA1 

activity was partially restored. We retrovirally introduced mZF-SA and control constructs into G1E-

ER4 cells and exposed them to estradiol for 9 hours, which results in partial differentiation and 

activation of b-globin transcription (Figure 2.3D). Similar to in the G1E system, mZF-SA increased 

b-globin burst fraction, but did not alter burst size (Figure 2.3E-G). b-globin transcription was 

confirmed to be increased by qPCR (Figure A2.4A). Together these results suggest that enhancer-

promoter contacts augment the likelihood for a burst to occur, but that they do not determine burst 

size. The use of the mZF-SA reagent thus enabled the uncoupling of enhancer looping from other 

potential enhancer functions that might impact on the b-globin locus. 

2.5 b-globin transcriptional burst fraction and size increase during human erythroid 
maturation 
 

In order to investigate whether the regulation of b-globin transcriptional bursting during 

erythroid maturation is conserved between mice and humans, we examined primary human 

erythroblasts. Human CD34+ hematopoietic precursors from peripheral blood were expanded and 

differentiated towards the erythroid lineage using a previously described two-phase liquid culture 

system206. We measured adult type b-globin (HBB) burst size and fraction before and after 3 days 

of erythroid differentiation induction. During this process we observed an increase in both burst size 

and fraction of the b-globin gene, similar to our observations in maturing murine erythroid cells 

(Figure 2.4A-B). The increases in burst fraction (1.7 fold) and average burst size (1.6 fold) are 

comparable in magnitude and thus are both likely to contribute to increased b-globin production 

during erythroid maturation.  

 

2.6 Forced switching of enhancer contacts between two promoters reciprocally alters 
burst fraction 
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To examine whether the human LCR regulates bursting in the same manner as the murine 

LCR, we employed a forced looping strategy (Figure 2.4C)112. The human b-globin locus spans 

several globin genes, including the adult type b-globin and a fetal form called g-globin (HBG). We 

reported previously that expression of a ZF-SA construct targeting the g-globin promoter (hZF-SA) 

in human primary erythroid cells increased LCR contacts with the g-globin gene at the expense of 

the b-globin gene with corresponding changes in transcription, consistent with a mechanism in 

which these genes compete for LCR function. An advantageous feature of the human system is 

that perturbations of LCR looping leave unaltered endogenous nuclear factors, the LCR per se, 

and the maturation state of the cells. 

We infected primary human cultures with lentiviral vectors expressing either GFP (control) 

or hZF-SA, purified infected cells by FACS, and quantified bursting parameters by RNA FISH. We 

observed that erythroblasts from different donors expressing control vector produced between 5 

and 35% g-globin and 65-95% b-globin. The variation between samples is presumably due to 

differences among donors or the way blood samples were obtained and processed. Forced 

enhancer-promoter looping between the LCR and g-globin promoter increased the burst fraction of 

g-globin transcription sites per cell, and decreased the burst fraction and size of b-globin sites 

slightly (Figures 2.4D-H, Figure A2.9), suggests the two genes compete for LCR activity. 

Furthermore, formation of g-globin-LCR contacts increased g-globin burst fraction without affecting 

g-globin burst size, consistent with the results from the murine cell line (Figures 2.4E-H). Changes 

in burst fraction corresponded to changes in mRNA levels in the same samples: g-globin mRNA 

increases with hZF-SA, while  b-globin trends downward (Figure A2.4B-C). The human LCR thus 

governs burst fraction of target genes via enhancer-promoter contact, while governing burst size 

through another independent mechanism.  
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Figure 2. 5: b- and g-globin promoters compete for enhancer activity when positioned in 

cis. A) Representative image of a primary human erythroid cell co-transcribing b- and g-globin from the same 

allele. B) Model of how allelic b- and g-globin transcription was quantitated using RNA FISH data. C) Example 

quantification of cellular b- and g-globin transcription for one donor. Fisher exact test odds ratio=0.66, p-

value=0.13. D) Fisher exact test odds ratio and 95% confidence interval for 4 human samples for cis-

competition of globin alleles, estimating 3.2 alleles per cell. E) Fluorescence intensity of β-globin transcription 

sites in primary human cells, either non-colocalized transcription sites or those colocalized with γ-globin 

transcription sites. p=0.4, Wilcoxon paired rank-sum t-test, N=4 donors. F) Fluorescence intensity of b- and g-

globin transcription sites for each co-transcriptional transcription site, Pearson R2=0.003, N=4 donors. See 

also Figures A2.5 and A2.10. 
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2.7 Allelic but not cellular co-transcription is disfavored in primary human erythroblasts  
 

We observed co-transcription of b- and g-globin on the same chromosome in a fraction of 

cells, as shown by colocalized g-globin and b-globin intron RNA FISH signals, suggesting that 

competition between different globin genes might be not absolute (Figure 2.5A). Similar co-

transcription of globin genes had been previously observed in murine systems114,115,201,202. Allelic 

co-transcription could mean (1) that the LCR switches rapidly between the b-globin and g-globin 

genes to alternately trigger bursts, (2) that the LCR acts on both genes simultaneously, or that (3) 

occasional transcription of one or both genes occurs in an enhancer-independent manner. If the 

LCR truly switched rapidly (Model 1), co-transcriptional events should be less frequent than 

expected than if the two genes were transcribing independently. 

To test whether co-transcription is indeed statistically disfavored, we first examined 

whether b- and g-globin are transcribed independently in the same cell, regardless of whether the 

two genes are transcribed from the same chromosome or not.  We quantified cells transcribing b-

globin, g-globin, both or neither, and then performed a Fisher exact test for independence of their 

transcription (Figure A2.5A-C). The null hypothesis is that a cell transcribing b-globin has the same 

likelihood of transcribing g-globin as a cell NOT transcribing b-globin. This is represented by an 

odds ratio of one. Alternatively, an odds ratio less than one would show negative correlation 

between transcription of the two genes in a single cell, potentially suggesting some trans regulation 

mediating competition between the genes. We found that the odds ratio was not consistently 

greater or less than 1 in our analysis of the cells of 4 donors (Figure A2.5C). This suggests that on 

a cellular level, transcription of b- and g-globin is independent. 

Next, we investigated whether co-transcription on a single allele copy of g- and b-globin 

was independent, treating all alleles as a pool irrespective of which cell they were in. This analysis 

required estimating the number of non-transcribing alleles in the population, which is not 

measurable by RNA FISH. We thus performed cell cycle analysis of cultured human cells using 

RNA FISH: cells with histone 4 mRNA are in S-phase, cells without histone 4 mRNA with a small 
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nucleus are in G1, while cells without histone RNA with a larger nucleus are in G2 (Padovan-Merhar 

et al., 2015). Using this method, we found that 40% of cells were in G1, 31% in S, and 29% in G2 

(Figure A2.5D). Since the b-globin locus is early-replicating in erythroid cells207  we conservatively 

assumed that each S and G2 cell had 4 copies, resulting in an average of 3.2 copies per cell (40% 

of 2 alleles + 60% of 4 alleles =3.2 alleles). However, we also carried out calculations with different 

possible numbers of alleles: 2.6 alleles (which assumes that globin is replicated at the end of S 

phase) and 3 alleles (if globin is replicated near the middle of S) (Figure A2.5E-F). 

Using this estimate for allele number, we quantified allelic transcription in cells from four 

human donors. Cotranscription in cis represented 1.1% to 3.0% of total globin locus copies 

depending on the donor (example shown in Figure 2.5C). We then measured the relationship 

between transcription of  b- and g-globin in cis using the Fisher exact test (Figure 2.5B-D, Figure 

A2.10). The results suggest that allelic co-transcription of b- and g-globin is mutually inhibitory, with 

odds ratios ranging from 0.39 to 0.76 depending on the donor (Figure 2.5B-D). Note that this was 

the most conservative measurement of the odds ratio of allelic b- and g-globin co-transcription. If 

the globin locus were not replicated at the very beginning of S phase in all cells, then the average 

number of alleles per cell would be less than 3.2. Estimating either 3.0 or 2.6 globin alleles per cell 

on average reduces the odds ratios for each donor, and decreases all p-values below p=0.05 

(Figure A2.5E-F). This analysis therefore supports the model that the LCR rapidly switches 

between promoters to allow co-transcriptional events to occur. In contrast, if the LCR could act on 

both genes at once or if one gene could transcribe without LCR contact (Models 2 and 3), we would 

expect to see cotranscription occurring at a higher rate.  

Strikingly, we found that the average burst sizes of genes that are co-transcribing are not 

significantly different from those genes that are not, consistent with the model of dynamic enhancer 

switching (model 1) and the finding above that changing enhancer-promoter contacts does not alter 

burst size (Figure 2.5E). 

If the LCR switches dynamically between genes (model 1) a further prediction would be 

that g-globin burst sizes would not be correlated with b-globin burst sizes because bursts detected 
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by FISH appear largest in the middle of the bursting interval and dimmer during the beginning and 

end of the burst. In contrast, model 2 (simultaneous contacts of the LCR with both globin genes) 

would predict a positive correlation in the burst sizes since LCR activity on a target gene increases 

burst size. We observed a lack of correlation between allelic g- and b-globin burst sizes, consistent 

with transcription of the two genes occurring in a staggered fashion and lending further support for 

model 1 (Figure 2.5F).  

In sum, all our results agree with a model in which the LCR interactions with the �-globin 

gene disfavor those with the b-globin gene and vice versa, accounting for competition between the 

two genes. Definitive evidence for this model would require direct imaging of LCR-promoter 

contacts in live cells, which is not yet possible.  

 

2.8 Discussion 
 

We employed single-molecule RNA FISH to quantify transcriptional bursting parameters at 

the murine and human b-globin loci during cellular differentiation and following targeted changes 

to LCR-promoter contacts. During erythroid maturation both b-globin burst fraction and burst size 

increase. Deletion of the LCR dramatically reduces burst fraction with comparatively modest effects 

on burst size. In order to selectively interrogate the influence of LCR-promoter contacts on bursting 

parameters, looped contacts were forged via targeted tethering of the self association domain of 

Ldb1. Forced enhancer-promoter contacts increased burst fraction without affecting burst size. In 

concert, these findings suggest a connection between enhancer-promoter contact frequencies and 

burst fractions. The g-globin and b-globin genes positioned in cis can be co-expressed but compete 

for LCR contacts and tend not to be initiated simultaneously, consistent with rapidly alternating and 

highly flexible looped enhancer promoter contacts.  

The finding that the LCR influences both the increase in burst fraction and size is consistent 

with a previous report113. However, single molecule RNA FISH experiments in the present study 

enabled a more quantitative assessment of burst parameters, revealing that augmenting burst 
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fraction is the predominant mechanism by which the LCR enhances b-globin transcription. To 

bypass potential secondary effects of LCR deletion and to examine the consequences specifically 

of LCR-promoter contact frequency on bursting parameters, we employed a forced LCR-promoter 

looping approach. Notably, the looping inducing construct ZF-SA triggered increases burst 

frequency to the same extent as did GATA1-induced maturation but without modulating burst size. 

We saw essentially the same behavior in primary human cells under conditions in which the LCR 

associated protein complexes and cell maturation stage are presumed to be largely unperturbed. 

This confirms that the major regulatory function of the LCR is to increase the likelihood of the b-

globin genes to be actively transcribed. These conclusions are in line with observations made with 

live cell imaging, which showed that increasing levels of transcription factor binding to a reporter 

construct predominantly increased burst fraction with little effect on burst size or duration208. 

These data beg the question of how exactly enhancer looping governs burst occurrence. 

Is enhancer-promoter contact required only to initiate a transcriptional burst or does it have to 

persist for the duration of the burst? Solving this issue definitively would require both live imaging 

of transcription as well as measuring the duration of enhancer-promoter contacts in live cells, the 

latter of which is technically difficult. The observation that cotranscriptional spots of g-globin and b-

globin only persist for a few minutes after cessation of transcription, suggests that enhancer-

promoter contacts and the resulting transcriptional burst are indeed very dynamic on a scale of 

minutes in the case of this locus. We acknowledge that temporal inferences on LCR promoter-

contact oscillations and burst lengths are limited by the half-life of the intron used to image 

transcription. Therefore, it remains possible that either the contacts durations and/or the burst 

lengths are even shorter than our measurements allow.  

It remains unclear how regulatory elements such as the LCR contribute to burst size during 

cell maturation, although our data suggests that the mechanism is independent of enhancer-

promoter contact. One possibility is that increases in transcription factor occupancy at the locus or 

progressive changes in histone modifications that accompany maturation promote RNA 

polymerase density or processivity209–211. LCR deletion may block such maturation-induced 
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changes: LCR deletion in G1E-ER4 cells led to reduced occupancy at the promoter by GATA1 

(unpublished observation). However, loss of the LCR in whole animals left chromatin accessibility, 

histone acetylation and transcription factor occupancy at the promoters largely intact52,80,198,199. The 

LCR may also contribute to burst size by stimulating transcription elongation via physical contacts 

with the gene body212–214. Our forced looping approach predominantly facilitates enhancer contacts 

with the promoter, while increasing gene body contacts less than GATA1 induced maturation 

does79. An increase in elongation rate could allow more polymerase molecules to traverse the gene 

body in quick succession, thus increasing burst size. Therefore, decreased GATA1 occupancy, 

reduced LCR-gene-body contacts, or related consequences of LCR deletion likely account for the 

reduction in transcriptional burst size. However, we also acknowledge inherent technical limitations 

to the ability to distinguish burst size and fractions under conditions in which transcription is 

extremely rare, such as in the LCR-deficient cells.  

Co-expression in cis of g-and b-globin genes could result from simultaneous contacts of 

the LCR with both genes; or from rapidly alternating contacts of the LCR to the two genes such that 

one interaction disfavors the other. Our results clearly support the latter model since active 

transcription of one gene lowers the probability of transcription of the other gene. Additional support 

for alternating LCR-gene contacts derives from the lack of correlation in burst sizes between g- and 

b-globin genes co-transcribed in cis. Prior experiments involving pharmacologic transcription 

elongation blockage followed by release into productive elongation showed that reappearance of 

co-transcriptional FISH signals for globin genes in cis re-appeared slower than signals from 

individually transcribing genes115.Together with experiments showing that the LCR promotes 

phosphorylation of RNA polymerase II and elongation72,80, the simplest model accommodating prior 

and current findings is that the LCR forms looped contacts with the promoters to increase the 

probability of paused RNA polymerase to convert into the actively elongating form.  

If two genes in cis compete for LCR function in a mutually exclusive manner no co-

transcription should be detected, yet co-transcription appears at approximately 1.1% to 3.0% of 

alleles. However, RNA FISH experiments are limited in their temporal resolution by the half life of 
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the introns under investigation. In our experiments, duration of RNA FISH signals was measured 

to average ~10 minutes following transcription inhibition. Thus, any fluctuations in LCR-gene 

contacts at a time scale below 10 min would appear as co-transcription even if LCR-promoter 

contacts are entirely mutually exclusive. However, we cannot not rule out rare simultaneous LCR 

contacts or occasional enhancer-independent firing that might lead to truly concurrent transcription. 

Addressing such possibilities might be feasible once live imaging techniques have reached the 

required spatial and temporal resolution. 

Future studies will examine the generality of enhancer effects on transcriptional bursting. 

The LCR is a well-studied example, but distinct modalities of enhancer actions are a likely 

possibility. Moreover, different drug treatments or transcription factor perturbations may alter 

bursting in other ways that may help understand the molecular underpinnings of transcriptional 

control. 

2.9 Experimental Procedures 
  

Murine cell culture, infection and sorting 

G1E cells and G1E-ER4 cells were cultured and differentiated as described (Weiss 1997). 

Cells were infected with the MIGR-1 retrovirus expressing only GFP or mZF-SA followed by an 

IRES element and GFP79. Infections were performed as described47. Cells were expanded for two 

days and sorted using a BD FacsAria to purify GFP+ infected cells from control and mZF-SA 

samples. Finally, estradiol was added for 9 hours and transcription was measured by FISH or 

qPCR. 

  

Human primary cell culture, infection and sorting 

Human peripheral blood mononuclear cells were obtained from de-identified healthy blood donors 

after informed consent by the University of Pennsylvania Stem Cell Core.  CD34+ hematopoietic 

precursor cells were isolated from peripheral blood mononuclear cells using CD34+ magnetic bead 

positive selection. Cells were expanded in SFEM media (StemCell) with 10-6M hydrocortisone 
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(Sigma Aldrich), 100 ng/ml SCF, 5ng/ml IL-3, 100ng/ml erythropoietin (Peprotech), protocol 

adapted from206,215,216 . For FISH studies measuring co-transcription, cells were examined after 9-

12 days of expansion. 

For hZF-SA experiments, cells were infected after 8-11 days of expansion. hZF-SA was expressed 

in a lentivirus driven by the ankyrin promoter, and coupled to IRES-GFP. The control vector 

expressed only GFP112. Infections were carried out as described112. The expansion phase was 

extended for 7 more days, and then cells were sorted and examined. 

For human erythroid maturation experiments, cells were expanded for 11 days after isolation, then 

cells were differentiated for 3 days in SFEM with 3U/ml erythropoietin without other cytokines such 

that d0 and d3 (as in Figure 2.4A-B) correspond to day 11 and d14 of total culture respectively. 

Actinomycin D treatment was performed by adding 1 microgram/ml of actinomycin D to human cells 

for the stated period of time, after 8-11 days of expansion of cells. 

 

Generation of enhancer-deleted G1E-ER4 cells 

Cas9 and guide RNA plasmids were transiently co-transfected into G1E-ER4 cells using an 

Amaxa Nucleofector 2b (Lonza, program G-016, reagent kit R). Transfected single cells were 

sorted into a 96 well plate using a FACS Aria II (BD Biosciences). Single cell clones were 

expanded and screened by PCR, followed by DNA sequencing.  

 

Chromatin Immunoprecipitation 

We performed ChIP as previously described217, using the N-20 Pol II antibody (Santa Cruz sc899). 

ChIP-qPCR was performed with Power SYBR Green (Invitrogen).  

  

RT-qPCR 

We isolated RNA using TRIzol (Life Technologies). Reverse transcription was performed with 

iScript (Bio-Rad). qPCR was performed with Power SYBR Green (Invitrogen).  
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Single-molecule RNA FISH imaging 

We performed single-molecule RNA FISH as described previously203. Briefly, we fixed cells in 

1.85% formaldehyde for 10min at room temperature, and stored them in 70% ethanol at 4 degrees 

C until imaging. FISH probes consisted of oligonucleotides conjugated to fluorescent dyes.  We 

hybridized pools of FISH probes to samples, followed by DAPI staining and wash steps performed 

in suspension. Samples were cytospun onto slides for imaging on a Nikon Ti-E inverted 

fluorescence microscope. 

  

Image Analysis 

We manually segmented boundaries of cells from bright field images and localized RNA spots using 

custom software written in MATLAB, with subsequent analyses performed in R. Transcription sites 

for mouse b-globin, Gata2, and human g-globin are identified by co-localization of spots in the intron 

and exon channels for a given mRNA, and for human b-globin by bright nuclear intron spots. Alleles 

co-transcribing human g-globin and b-globin are identified by colocalization of transcription sites. 

Fluorescence intensities of transcription sites were determined by 2D Gaussian fitting on processed 

image data.  

  

Plotting and graphics 

We used R packages dplyr and ggplot2 to produce nearly all figures, followed by cosmetic 

adjustments in Adobe Illustrator. Several figures were produced using Graphpad Prism. 
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CHAPTER 3: Transcriptional burst initiation and polymerase pause release are key 
control points of transcriptional regulation 

3.1 Introduction 
 

Since I showed that increasing enhancer-promoter contact increased burst fraction at the 

b-globin locus in human and mouse cells (Chapter 2), I next asked how generally important this 

mode of transcriptional regulation might be. To address this question, I examined multiple genes 

and perturbations to see whether bursting regulation or other types of transcriptional regulation 

were more prevalent. 

Studies using sequencing-based biochemical assays have suggested that transcriptional 

regulation primarily tunes two transcriptional steps: RNA polymerase II (Pol II) binding to a gene’s 

promoter and the release of Pol II from promoter-proximal pausing 1,5,25.  Both polymerase 

binding and polymerase pause release are required to produce RNA, and studies have 

extensively characterized the proteins involved in facilitating both these steps.  

However, given the data that bursting properties are regulated in some contexts (Chapter 

2), I asked whether the fluctuations between transcriptional activity and inactivity, which I will call 

burst initiation and termination, might be regulated along with the steps of polymerase binding 

and polymerase pause release. The transitions between the transcriptionally-active state and the 

transcriptionally-inactive state are typically slower than the time required for polymerase binding 

and polymerase pause release (hours vs. tens of minutes)37,38,150,166,180,218 . Therefore, changes to 

burst initiation and burst termination may form an independent layer of regulation superimposed 

on top of polymerase binding and polymerase pause release: each time a burst is initiated, 

multiple RNAs can be made by repeated cycles of polymerase binding and release. If burst 

initiation and termination are regulated, it is unclear how those steps relate to the steps of 

polymerase binding and pause release: either burst initiation could permit polymerases to bind to 

facilitate transcription of multiple RNAs quickly during a burst, or burst initiation could instead 

facilitate transcription by permitting bound polymerases to release from pausing. It is also unclear 
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whether regulation of bursting, polymerase binding and pause release are all equally important to 

mediate changes in gene expression. 

To identify which of these steps of transcription are tuned, we first need to determine how 

polymerase binding and pause release fit together with bursting; specifically, whether polymerase 

binding occurs in bursts or if polymerase pause release occurs in bursts. It has proven difficult to 

distinguish these possibilities in part because single cell and population-averaging biochemical 

measures of transcription give different types of information: only single cell methods such as 

nascent transcript RNA FISH can be used to measure bursting properties such as burst fraction 

and intensity, while biochemical methods like Pol II ChIP-seq have been used to measure 

polymerase binding and pause release. We hypothesized that combining these methods could 

clarify how bursts relate to polymerase binding and pause release, and could thereby allow us to 

identify which transcriptional steps are regulated by perturbations. Nascent transcript RNA FISH 

uses probes specific to introns of a gene of interest to measure transcription of that gene in single 

cells, thus measuring average changes in burst frequency and amplitude163,170,219. In contrast, Pol 

II ChIP-seq (and similar approaches like NET-seq and PRO-seq) measures average changes in 

polymerase occupancy and pause release61,150,154,155,220,221. Using both these types of methods to 

simultaneously measure changes in bursting properties as well as polymerase occupancy and 

pause release should allow us to clarify whether either polymerase binding occurs in bursts or 

polymerase pause release occurs in bursts. 

To determine which steps of transcription are changed by biological perturbations, we 

first constructed several possible models of transcription that fit together bursting with polymerase 

binding and pause release steps, including one framework where burst initiation permits 

polymerase to bind (‘polymerase binding occurs in bursts’) and another where burst initiation 

permits release of bound polymerases (‘polymerase pause release occurs in bursts’). Each 

framework made distinct predictions for how nascent transcript RNA FISH and Pol II ChIP-seq 

measurements should change in response to perturbations. We then performed both nascent 

transcript RNA FISH and Pol II ChIP-seq in the presence of a number of global and gene-specific 
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perturbations, and compared the results to the models’ predictions. This approach revealed that 

polymerase binding can only occur after a burst is initiated, and excluded the possibility that burst 

initiation permits pause release of pre-bound polymerase. We then used our experimental data 

with this ‘polymerase binding occurs in bursts’ model of transcription to show that the alteration of 

burst initiation and polymerase pause release rates accounted for the majority of changes in the 

overall rate of transcription. In contrast to what was previously expected58,138, most perturbations 

that we examined seemed not to greatly change the rate of polymerase binding in our system. 

Our study supports a model of transcription in which polymerase binding occurs in bursts, and it 

implicates transcriptional burst initiation and polymerase pause release as critical control points in 

transcriptional regulation. 

 

3.2 Identifying the regulated steps of transcription requires selection of a model of 
transcription 
 

In order to ultimately identify which steps of transcription are regulated by complex 

biological perturbations, we first needed to clarify how transcriptional bursting regulation fits 

together with polymerase binding and pause release regulation. We built quantitative models of 

transcription, each with a different configuration of the processes of burst initiation, polymerase 

binding, and pause release (Figure 3.1A). In each, we used simulations to determine what the 

experimental outcomes would be for changing the rates of specific processes, with the hypothesis 

that changing different rates would lead to a distinct set of experimental changes, ultimately 

allowing us to determine which rates were changing in complex biological perturbations. A key 

feature required of our models was that transcription occur in a bursting pattern (given that all 

genes we have examined show this behavior, Figure A3.1A). In one model, this bursting occurs 

because polymerase binding only occurs during transcriptionally active periods (‘polymerase 

binding occurs in bursts’). In the other model, polymerase binding could happen any time, 

irrespective of whether the gene is active or not, and instead it is pause release that only occurs 

during transcriptionally-active periods (‘polymerase pause release occurs in bursts’). 
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To determine the experimental predictions of these two models of transcriptional 

regulation, we used Gillespie stochastic simulations to model a thousand gene copies that over 

time proceeded through the steps in a model framework: burst initiation, polymerase binding, 

polymerase pause release, and burst termination222. We then used the molecular events 

occurring over time in each thousand-gene-copy simulation to predict the resulting Pol II ChIP-

seq and nascent transcript RNA FISH outcomes as follows. The mean polymerase binding along 

all gene copies was averaged to create a simulated Pol II ChIP-seq profile. We used this 

predicted Pol II ChIP-seq profile to calculate the Pol II traveling ratio: the ratio between gene body 

and promoter-proximal polymerase, which has been used to measure changes in pause release 

rate (although we note that experimentally, promoter-proximal Pol II includes both paused and 

early-transcribing polymerase61,155,220,221 ). Next, we used the number of polymerases that 

underwent pause release and produced nascent RNA over time for each gene copy to predict 

measurements from nascent transcript RNA FISH, a method that measures recent transcription in 

single cells using fluorescent probes specific to introns (Figure 3.1C, Figure A3.1B).  Nascent 

transcript RNA FISH probes bind to nascent RNA to create a fluorescent spot near a gene’s 

location in the nucleus (a ‘transcription site’) if a gene has transcribed recently (Figure 3.1C). We 

predicted the average number of active transcription sites per cell (the proportion of gene copies 

active at a time) and the mean transcription site fluorescence intensity (which measures the 

average number of RNAs recently transcribed by a single gene copy). We then repeated such 

simulations while changing the value of each rate parameter one at a time (Figure A3.3E). Thus 

our simulations generated predictions for how changing specific rates of transcriptional steps 

would change both Pol II ChIP-seq (population) and nascent transcript RNA FISH (single cell) 

measurements of transcription.  

In this way, we made predictions for the effects of changing specific rates on the fold 

change in experimental measurements for both models of transcriptional regulation (Figure 3.1B, 

Figure A3.2A, Figure A3.6; see Figure A3.3 for other models examined). For each model, we 

found that changes to the rates of burst initiation, polymerase binding or pause release each 
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resulted in a distinct signature of experimental outcomes. Moreover, these signatures revealed a 

critical distinction between the two models: we predicted that altering the burst initiation rate 

would change the Pol II traveling ratio in the ‘polymerase pause release occurs in bursts’ model, 

but not in the ‘polymerase binding occurs in bursts’ model. 

 

3.3 Combining nascent transcript RNA FISH and Pol II ChIP-seq reveals that 
polymerase binding occurs in bursts 
 

Based on our simulations, by changing each step of transcription experimentally we 

should be able to first verify the shared experimental signatures of the two models, and then we 

could change the rate of burst initiation to select between the two models using the behavior of 

the Pol II traveling ratio (Figure 3.1B). We first changed the rate of polymerase pause release, 

with both the ‘polymerase binding occurs in bursts’ and ‘polymerase pause release occurs in 

bursts’ models predicting that all transcriptional measures should decrease: transcription sites per 

cell and transcription site intensity measured by nascent transcript RNA FISH, and Pol II traveling 

ratio measured by Pol II ChIP-seq (Figure 3.1A-B). Intuitively, if pause release occurred less 

frequently, a gene would be associated with nascent RNA for a lower fraction of the time (less 

transcription sites per cell), each time a gene is actively transcribing there would be fewer RNA 

molecules at a time (lower transcription site intensity), and Pol II would be released into the gene 

body less frequently (lower Pol II traveling ratio). We used flavopiridol to reduce the rate of pause 

release; flavopiridol inhibits the p-TEFb kinase complex150,218,223. As predicted by both models, we 

found decreased transcription sites per cell, decreased transcription site intensity, and decreased 

Pol II traveling ratio. Pol II traveling ratio was calculated using genes that maintained detectable 

Pol II occupancy after drug treatment (gene properties shown in Figure A3.1C), and was robust to 

choice of 3’ Pol II binding region used as the numerator for the traveling ratio (Figure A3.1F). 

(Importantly, though some publications have applied high-dose flavopiridol to block new pause 

release and then have immediately measured transcription, in order to examine the properties of 

the receding wave of elongating Pol II, in our experiments we used lower drug doses and 
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measured transcription only after 60 minutes, so we could instead measure a new steady state of 

transcription with a reduced pause release rate218.) 

Note this experiment also eliminated the commonly used telegraph model model of 

transcription (Figure A3.3A). The telegraph model does not include an independently regulated 

pause release step. Thus, it has been sufficient to predict the distribution of mRNA levels in a cell 

population, but it cannot distinguish the effects of changing polymerase pause release versus 

polymerase binding rates163,178,181,208. The fact that changing the pause release rate changed the 

Pol II traveling ratio is inconsistent with the telegraph model (Figure A3.3A). 

We next tested the predictions of our two models for the effect of changing the 

polymerase binding rate. Both the ‘polymerase binding occurs in bursts’ and the ‘polymerase 

pause release occurs in bursts’ models predicted that reducing polymerase binding would reduce 

transcription sites per cell and transcription site intensity but, unlike reducing the pause release 

rate, would leave Pol II traveling ratio unchanged. (The reason that transcription sites per cell are 

decreased is because of the period of time the gene is active, the percentage of that time during 

which there is a nascent transcript from an active polymerase would be less as the polymerase 

binding rate decreased.) We treated G1E-ER4 cells with triptolide to reduce the polymerase 

binding rate by inhibiting the helicase activity of TFIIH (Figure 3.1E)150,218,224–226. As predicted, 

triptolide treatment decreased both the transcription sites per cell and the transcription site 

intensity, while leaving the Pol II traveling ratio unchanged (Figure 3.1E, Figure A3.1D). This 

experiment supported the predictions of the two models and confirmed that we could 

experimentally distinguish a change in polymerase binding rate from a change in polymerase 

pause release rate. Together, these two experiments supported the predictions of both our 

models. 

We then sought to change the burst initiation rate to determine whether transcriptional 

regulation was more consistent with the ‘polymerase binding occurs in bursts’ or the ‘polymerase 

pause release occurs in bursts’ model (Figure 3.1B). Both models predicted that changing burst 

initiation should change transcription sites per cell and should not change transcription site 
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intensity but they disagreed on the effect on Pol II traveling ratio. The ‘polymerase binding occurs 

in bursts’ model predicted no change in Pol II traveling ratio, while the ‘polymerase pause release 

occurs in bursts’ model predicted that increasing burst initiation should also increase the Pol II 

traveling ratio (Figure 3.1B). The molecular underpinnings of burst initiation are unclear, and there 

is no known pharmacological inhibitor of this transcriptional step. However, we previously showed 

that increasing enhancer-promoter contact for the Hbb-b1 gene using a synthetic looping factor 

increased transcription sites per cell without changing transcription site intensity227 . Both models 

predicted that such a result could only occur if forced enhancer-promoter looping changed the 

burst initiation rate. Therefore, we repeated this perturbation to see whether the Pol II traveling 

ratio changed or remained constant. We found that increasing promoter-enhancer contact did not 

alter the Pol II traveling ratio for Hbb-b1, suggesting that polymerase binding rather than pause 

release occurs in bursts for this gene. Thus our experimental data was most consistent with a 

framework in which a burst initiation step was required to permit polymerase binding to a gene 

(the ‘polymerase binding occurs in bursts’ model, Figure 3.1B). A caveat of the looping factor 

experiment was that we could only modulate burst initiation for one gene, but in Figure 3.2A we 

will show that erythroid differentiation changed burst initiation rate for the housekeeping gene 

Prdx2 in addition to Hbb-b1, arguing for the generalizability of the ‘polymerase binding occurs in 

bursts’ model. In sum, changing three steps of transcription experimentally demonstrated that the 

‘polymerase binding occurs in bursts’ model was most consistent with our data, providing a set of 

predictions we will subsequently use to identify transcriptional steps changed by complex 

perturbations.  

We also evaluated several other possible model structures, but none of these models 

were more consistent with our experimental data than the ‘polymerase binding occurs in bursts’ 

model (Figure A3.3B-D). A model in which there was no independent burst initiation step and only 

polymerase binding and pause release rates could be regulated (Figure A3.3B) was inconsistent 

with the experimental data in Figure 3.1F because it could never predict a change in transcription 

sites per cell independent of changes in transcription site intensity and Pol II traveling ratio. We 
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also considered a modified ‘polymerase binding occurs in bursts’ model, in which some 

proportion of polymerases drop off from the pause site rather than undergoing elongation (Figure 

A3.3D)150,228. This modification did not change the model’s predictions for the experimental 

effects of changing burst initiation, polymerase binding, or polymerase pause release rates. We 

also tested a model in which a refractory period of transcriptional silence occurred after each 

burst (Figure A3.3C). (Some live imaging studies have found evidence for refractory periods but 

some have not181,208 .) This model predicted that modulating the rate of escape from the 

refractory period escape would change transcription sites per cell but would not change 

transcription site intensity or Pol II traveling ratio, similar to the experimental result in Figure 3.1F. 

Our data is not inconsistent with this model, but our data also cannot show whether genes in our 

system transcribe with refractory periods. If indeed our genes transcribe with refractory periods, 

any change we herein ascribe to a change in burst initiation rate could also be achieved by a 

change in refractory period escape rate—either way, though, it is the effective rate at which the 

gene is reactivated that is subject to regulation. Thus, the possible regulation of refractory periods 

should be examined in future studies. This issue does not alter our ultimate conclusion that 

polymerase pause release and burst initiation/refractory period escape, and not polymerase 

binding, are the key regulated steps of transcription. 
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Figure 3. 1: Combining RNA FISH and Pol II ChIP-seq reveals that polymerase binding 

occurs in bursts A) Structure of the ‘polymerase binding occurs in bursts’ model and the ‘polymerase 
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pause release occurs in bursts’ model. B) Predictions of the models for how changing individual 

transcriptional rates should change nascent transcript RNA FISH and Pol II ChIP-seq measurements. See 
Figure A3.2A-B for the quantitative predictions that are summarized here. C) Schematics of nascent 

transcript RNA FISH and Pol II ChIP-seq. D) Top, representative images from nascent transcript RNA FISH 

and Pol II ChIP-seq after 60 minutes 100nM flavopiridol treatment of G1E-ER4 cells. Bottom, data 
summarizing nascent transcript RNA FISH and Pol II ChIP-seq after 0,10,100, or 1000 nM flavopiridol 

treatment for 60 minutes of G1E-ER4 cells that had been differentiated for 24 hours with 100nM estradiol to 

stabilize the GATA1-ER fusion protein expressed by the cells. n=3 biological replicates of nascent transcript 
RNA FISH (49-172 cells per gene per treatment per replicate, see Figure A3.1E, error bars display SEM) 

and n=3 biological replicates of Pol II ChIP-seq. For all figures, transcription sites per cell was measured by 

counting mean transcription sites, transcription site intensity was calculated as the mean fluorescence 

intensity of those sites calculated by 2D Gaussian fitting, and Pol II traveling ratio was calculated as (the Pol 
II density from the gene end to 1500bp past the gene end) divided by (the Pol II density 750 bp upstream to 

750 bp downstream of the transcription start site), although effects were robust to choice of 3’ region, see 

Figure A3.1F. For this figure, ChIP-seq data for ‘selected genes’ represents data for 5 genes corresponding 
to FISH experiments (Hbb-b1, Prdx2, Slc25a37, Slc4a1, and Tal1) and all genes represents 1416 genes still 

transcribed after drug treatment, see Figure A3.1C for characterization of genes. E) Nascent transcript RNA 

FISH and Pol II ChIP-seq after 0 or 300 nM triptolide was applied for 60 minutes to G1E-ER4 cells  that had 
been differentiated for 24 hours with 100nM estradiol. n=3 biological replicates of nascent transcript RNA 

FISH (81-202 cells per gene per treatment per replicate, error bars display SEM) and n=3 biological 

replicates of Pol II ChIP-seq. For this figure, ChIP-seq data for ‘selected genes’ represents data for 5 genes 
corresponding to FISH experiments (Hbb-b1, Prdx2, Slc25a37, Slc4a1, and Tal1) and all genes represents 

1416 genes still transcribed after drug treatment, see Figure A3.1C for characterization of genes. F) Nascent 

transcript RNA FISH and Pol II ChIP-qPCR after overexpression of looping factor or GFP-expressing empty 
vector control in G1E-ER4 cells that had been differentiated for 9 hours. n=3 biological replicates of nascent 

transcript RNA FISH (124-249 cells per treatment per replicate) and n=3 replicates of Pol II ChIP-qPCR. For 

this figure subsection, traveling ratio was calculated as (input-normalized ChIP-qPCR signal from the 3’ 
gene region) divided by (input-normalized ChIP-qPCR signal from the transcription start site region). 
 

 

3.4 Erythroid differentiation changes both burst initiation and polymerase pause release 
rates  
 

Having established that the ‘polymerase binding occurs in bursts’ model could 

successfully predict experimental outcomes of changing transcriptional steps, we next sought to 

apply this model to identify which steps of transcription are regulated by more complex biological 

perturbations. To investigate the transcriptional effects of erythroid differentiation, we 



56 
 

differentiated G1E-ER4 erythroid cells49  and performed both nascent transcript RNA FISH and 

Pol II ChIP-seq at several timepoints during differentiation. We expected that a complex biological 

process like erythroid differentiation would be associated with changes to multiple steps of 

transcription, but first we looked for the simplest type of scenario: genes where we could 

conclusively identify changes in individual steps of transcription. 

Early in differentiation, after 4 hours, both the Hbb-b1 gene, encoding an erythroid-

specific subunit of hemoglobin, and the Prdx2 gene, encoding a broadly-expressed antioxidant 

enzyme, had increased transcription sites per cell while their transcription site intensities and Pol 

II traveling ratios were unchanged (Figure 3.2A). According to the ‘polymerase binding occurs in 

bursts’ model, only a change in burst initiation could change transcription sites per cell without 

altering transcription site intensity or Pol II traveling ratio. Thus, we concluded that early erythroid 

differentiation specifically changes burst initiation for these genes. (Moreover, these data 

provided further support for the ‘polymerase binding occurs in bursts’ model and against the 

‘polymerase pause release occurs in bursts’ model: in the latter framework, transcription sites per 

cell cannot be changed without also changing either Pol II traveling ratio or transcription site 

intensity, Figure 3.1B.)  

Later in differentiation, after 13 hours, Hbb-b1 and Prdx2 had increased transcription 

sites per cell, transcription site intensity, and Pol II traveling ratio, which made it impossible to 

isolate just one specific rate as having changed at this timepoint for these genes (Figure 3.2B). 

Our model suggested that only a change in polymerase pause release rate could change Pol II 

traveling ratio, so erythroid differentiation must change at least polymerase pause release rate for 

these genes. (Other genes such as Gata2 and Myc also displayed changes in Pol II traveling ratio 

and thus pause release rate as we will discuss below, Figure 3.3B). However, we could not 

exclude additional changes in other rates beside pause release rate: for example, if pause 

release rate and polymerase binding rate both increased after 13 hours of differentiation, the 

‘polymerase binding occurs in bursts’ model would still predict increases in all three experimental 

measures: transcription sites per cell, transcription site intensity, and Pol II traveling ratio. So far 
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we concluded that erythroid differentiation changed both burst initiation (at 4 hours) and 

polymerase pause release rates (at 13 hours), and possibly other rates.  

 
Figure 3. 2: Erythroid differentiation changes both burst initiation and polymerase pause 

release rates. A) Nascent transcript RNA FISH and Pol II ChIP-seq after 4 hours of differentiation with 

100nM estradiol of G1E-ER4 cells for Hbb-b1 and Prdx2 genes. n=3 biological replicates of nascent 

transcript RNA FISH (274-534 cells per gene per treatment per replicate), n=2 biological replicates of Pol II 

ChIP-seq. B) Nascent transcript RNA FISH and Pol II ChIP-seq after 13 hours of erythroid differentiation 
with 100nM estradiol of G1E-ER4 cells for Hbb-b1 and Prdx2 genes, n=3 biological replicates of nascent 

transcript RNA FISH (84-665 cells per gene per treatment per replicate) and n=3 replicates of Pol II ChIP-

seq. 
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3.5 Combining modeling and experimentation suggests that erythroid differentiation does 
not greatly change polymerase binding rate 
 

Above, we identified which steps of transcription were changed in erythroid differentiation 

by measuring experimental changes one gene at a time, and comparing those data to qualitative 

model predictions for individual rate changes. However, we found that this logic fell short if 

multiple transcriptional rates changed simultaneously. The ‘polymerase binding occurs in bursts’ 

model, however, also makes predictions for how changing transcriptional rates affects the 

quantitative relationship between changes in nascent transcript RNA FISH and Pol II ChIP-seq. 

By measuring experimental changes across many genes, we sought to observe quantitative 

relationships between experimental changes to statistically identify which rates were most likely 

to be changing in the genes as a group. 

Specifically, the quantitative relationship between transcription site intensity and Pol II 

traveling ratio changes allowed us to distinguish changes in multiple rates. To step through this 

logic, changes in different individual rates were predicted to result in distinct relationships 

between transcription site intensity and Pol II traveling ratio changes (Figure 3.3A, left). Each 

point in Figure 3.3A represents the increase or decrease in experimental measurements 

predicted to result from either an increase or decrease in the indicated rate, with all the points 

displayed demonstrating a 1000 fold range of rate values. If polymerase pause release rate 

changed, both Pol II traveling ratio and transcription site intensity were predicted to change in a 

correlated manner (Figure 3.3A, top left): if a perturbation like differentiation increased pause 

release rate, both Pol II traveling ratio and transcription site intensity should increase.  A change 

in polymerase binding rate would instead change transcription site intensity but not change Pol II 

traveling ratio, resulting in a vertical line relationship (Figure 3.3A, middle left). (A similar outcome 

would result if burst termination rate was changed, Figure A3.4A). Finally, if burst initiation rate 

were changed, neither transcription site intensity nor Pol II traveling ratio were predicted to 

change greatly (Figure 3.3A, bottom left).  
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Figure 3. 3 Combining modeling and experimentation suggests that erythroid 

differentiation does not greatly change polymerase binding rate 
a. Predictions of the ‘polymerase binding occurs in bursts model’ for how changing one or multiple 

rates of transcription affects changes in transcription site intensity and Pol II traveling ratio. Each figure 
represents changing the indicated rates from intermediates value up or down, with a total 1000-fold range of 

possible values represented for each rate (See Figure A3.3E for parameter values tested).  

b. Fold change in transcription site intensity and Pol II traveling ratio for 7 genes after 13 hours of 
differentiation with 100nM estradiol of G1E-ER4 cells, n=3 biological replicates each of nascent transcript 

RNA FISH (84-665 cells per gene per treatment per replicate) and n=3 biological replicates of Pol II ChIP-

seq. Error bars display SEM. 
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Similarly, changes in different combinations of rates were predicted to result in distinct 

quantitative relationships between transcription site intensity and Pol II traveling ratio changes. 

Examination of individual genes above (Figure 3.2) showed that erythroid differentiation could 

change both burst initiation and pause release rates; if these were the only rates altered, the 

model predicted that Pol II traveling ratio and transcription site intensity would change in a highly 

correlated manner (Figure 3.3A top right, R2=0.95), with a relationship of approximately log(fold 

change transcription site intensity)= 0.55*log(fold change traveling ratio), although the slope of 

relationship depends somewhat on model parameters (Figure A3.4C).  This pattern of 

transcriptional changes is produced because changing the polymerase pause release rate 

produces a log y=0.55*log x relationship, while burst initiation rate has little effect on either x or y 

axis values (Figure 3.3A left). However, if polymerase binding rate were changed in addition to 

burst initiation and pause release rates, the model predicted that if we measured the effect of 

differentiation on number of genes, the changes in traveling ratio and transcription site intensity 

should NOT be strongly correlated (R2=0.39) (Figure 3.3A, bottom right). (Similarly if termination 

rate changed along with burst initiation and pause release rate, the changes in traveling ratio and 

transcription site intensity would also not be strongly correlated, Figure A3.4B.) Note that if two or 

more rates change, a range of behaviors can occur: a gene could display large changes in both 

rates, or a large change in the first and small change in the second, or vice versa, so multiple 

genes must be examined to characterize the whole range of experimental behaviors. 

With this prediction in hand, we examined how 13 hours of erythroid differentiation 

affected the quantitative relationship between Pol II traveling ratio and transcription site intensity 

changes (Figure 3.3B). We found that the changes in transcription site intensity and Pol II 

traveling ratio were strongly correlated (R2=0.88): for example, both Prdx2 and Hbb-b1 genes 

had increased transcription site intensity and Pol II traveling ratio, while both Myc (encoding a 

broadly-expressed transcription factor controlling proliferation) and Gata2 (encoding a 

hematopoietic stem cell transcription factor) genes had decreased transcription site intensity and 

Pol II traveling ratio. Moreover, this quantitative relationship fell near the log y= 0.55* log x 
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relationship predicted if only burst initiation and pause release were changed, with a slope of 

0.62. Taken together, experimental data for these genes suggest that polymerase binding rate 

was not greatly changed in erythroid differentiation. (We can similarly exclude a large change in 

burst termination rate, by comparing to Figure A3.4B). Thus we conclude that burst initiation and 

polymerase pause release are the main rates changed by erythroid differentiation. 

While our analysis suggested changes to mainly burst initiation and pause release in 

differentiation, the degree to which these rates changed is different for different genes. One 

hypothesis was that promoter accessibility could correlate to differential transcriptional changes, 

so we analyzed publicly available data to see whether the change in promoter DNAse sensitivity 

could predict the change in transcriptional measurements in response to differentiation (Figure 

A3.4D). We found no strong correlations. Further studies will be required to examine why different 

genes experience different transcriptional changes in response to erythroid differentiation. 

 

3.6 BET inhibition changes both burst initiation and polymerase pause release rates 
 

Given that previous literature had identified polymerase binding rate as a key target for 

transcriptional regulation, it was surprising that erythroid differentiation seemed not to greatly 

affect this rate. We thus examined several more complex biological perturbations to see whether 

they too chiefly affected burst initiation and polymerase pause release rates. 

We next asked which rates of transcription were changed by BET inhibitor treatment. 

BET inhibitor treatment blocks the transcriptional activator proteins BRD2, BRD3 and BRD4 from 

binding to chromatin, and may inhibit multiple facets of gene regulation including polymerase 

pause release and enhancer activity55,229,230. We first looked for genes where we could identify 

individual transcriptional rate changes produced by BET inhibitor treatment. Acute BET inhibitor 

treatment reduced mean transcription sites per cell for the Hbb-b1 gene without changing 

transcription site intensity or Pol II traveling ratio, showing that burst initiation was specifically 

reduced for this gene (Figure 3.4A). In contrast, for the genes Tal1, Slc25a37, and Slc4a1 (which 

encode an erythroid transcription factor and two solute channels highly expressed in erythroid 
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cells), all three RNA FISH and Pol II ChIP-seq measures were reduced (Figure 3.4B). Thus for 

these genes, at least polymerase pause release rate was changed but potentially also other 

rates. So by using an approach of identifying single rate changes gene by gene, we found that 

BET inhibition can change both burst initiation rate and polymerase pause release rate, and might 

potentially change other rates.  

 

3.7 Combining modeling and experimentation suggests that BET inhibition does not 
greatly change polymerase binding rate 
 

We next sought to distinguish whether BET inhibition might alter polymerase binding rate, 

or if mainly burst initiation and pause release rates were changed. We again measured nascent 

transcript RNA FISH and Pol II ChIP-seq changes in multiple genes in response to BET inhibitor 

treatment (12 genes in this case), and examined the quantitative relationship between changes in 

transcription site intensity and Pol II traveling ratio. 

If only burst initiation rate and polymerase pause release rate were altered by BET 

inhibition, the ‘polymerase binding occurs in bursts’ model predicted that Pol II traveling ratio and 

transcription site intensity would change in a highly correlated manner (R2=0.95), with a 

relationship of approximately log(transcription site intensity)= 0.55*log(traveling ratio) (Figure 

3.3A, upper right); while if polymerase binding rate were also changed, changes in traveling ratio 

and transcription site intensity should not be strongly correlated (R2=0.39, Figure 3.3A lower 

right). Examining 12 genes, including both the important erythroid genes shown in Figure 3.4 as 

well as housekeeping genes such as Pabpc1 and Hnrnpl, we found that BET inhibition produced 

a strongly correlated relationship between changes in Pol II traveling ratio and transcription site 

intensity (R2=0.77) falling near the log(transcription site intensity)= 0.55*log(traveling ratio) line 

(Figure 3.5A), with a slope of 0.41. We thus concluded that BET inhibitor treatment did not greatly 

change polymerase binding rate. 
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Figure 3. 4: BET inhibitor treatment changes both burst initiation and polymerase pause 

release rates. A) Representative and summary nascent transcript RNA FISH and Pol II ChIP-seq after 60 

minutes of JQ1 BET inhibitor treatment of G1E-ER4 cells differentiated for 24 hours with 100nM estradiol for 

the Hbb-b1 gene, n=3 biological replicates of nascent transcript RNA FISH (72-306 cells per replicate per 

experiment) and n=3 replicates of Pol II ChIP-seq. B) Nascent transcript RNA FISH and Pol II ChIP-seq after 

60 minutes of JQ1 BET inhibitor treatment of G1E-ER4 cells differentiated for 24 hours with 100nM estradiol 
for Slc25a37, Tal1, and Slc4a1 genes, n=3 biological replicates of nascent transcript RNA FISH (94-195 

cells per replicate per experiment)  and n=3 biological replicates of Pol II ChIP-seq. Top, representative RNA 

FISH and Pol II ChIP-seq data. 
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This analysis raised the question of why different genes experienced changes in rates of 

different transcriptional steps in response to BET inhibitor treatment. We analyzed publicly 

available data to see whether Histone 3 lysine 27 acetyl levels at gene promoters could affect the 

change in transcriptional measurements in response to BET inhibition, since BET proteins bind to 

acetylated histones. We found that promoter H3K27ac weakly correlated to change in 

transcription sites per cell in response to BET inhibition (Figure A3.5B), but not to changes in 

other transcriptional measurements. Further studies will be required to examine why different 

genes experience different transcriptional changes in response to this perturbation. 

Some previous studies had suggested that BET inhibition might alter transcriptional 

elongation rate, a rate that was held constant in the ‘polymerase binding occurs in bursts’ model. 

To exclude this possibility, we blocked transcriptional pause release using DRB, and then allowed 

transcriptional elongation to resume in the presence or absence of BET inhibitor. By measuring 

the time it took to transcribe from an early to a late region of the nascent RNA using RNA FISH, 

we calculated the effect of BET inhibitor on elongation rate (Figure A3.5A). We found for the 

Zfpm1 gene that BET inhibitor did not affect the elongation rate greatly, and that our calculated 

estimate for the elongation rate, 2.0 kilobases per minute, was similar to that from previous 

studies, (2-5 kilobases per minute98,218,231 ). 

 

3.8 Combining modeling and experimentation suggests that Slc25a37 enhancer 
mutation does not greatly change polymerase binding rate 
 

We also used the ‘polymerase binding occurs in bursts’ model to examine what rates 

were changed by enhancer mutagenesis of the lineage-specific Slc25a37 (mitoferrin-1) enhancer. 

The Xu group70  previously created a series of G1E-ER4 cell lines with partial and full deletions of 

the large Slc25a37 enhancer region which reduced the RNA output of the target gene (encoding 

an erythroid-specific mitochondrial iron transporter) to varying degrees (Figure A3.5C-D). We 

performed nascent transcript RNA FISH and Pol II ChIP for Slc25a37 in the three partial-

enhancer-deletion and one full-deletion cell lines to examine which rates are changed. The 
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enhancer-deletion cells had correlated reductions of Pol II traveling ratio and transcription site 

intensity (R2=0.89) falling near the log(transcription site intensity)= 0.55*log(traveling ratio) line, 

with a slope of 0.70 (Figure A3.5E). (Our modeling suggests that these enhancer mutations likely 

also reduce burst initiation rate, due to the strong reduction produced in Pol II promoter 

occupancy.) Thus, mutation of the Slc25a37 enhancer reduced polymerase pause release rate, 

but appeared not to greatly change polymerase binding rate.  

 

Figure 3. 5: Combining modeling and experimentation suggests that BET inhibitor 

treatment does not greatly change polymerase binding rate. A) Fold change in transcription 

site intensity and Pol II traveling ratio for 12 genes after 60 minutes of 250nM JQ1 BET inhibitor treatment of 

G1E-ER4 cells differentiated for 24 hours with 100nM estradiol, n=3 biological replicates of nascent 

transcript RNA FISH (72-306 cells per gene per replicate per experiment) and n=3 biological replicates of 
Pol II ChIP-seq. Error bars display SEM. 
 

 

In sum, we developed a modeling and experimental approach to identify changes in 

transcriptional steps caused by complex perturbations. Surprisingly, we found that no 

perturbations aside from the targeted inhibitor triptolide seemed to strongly alter polymerase 

binding rate, while the main regulated steps of transcription were burst initiation and polymerase 

pause release. 



66 
 

 

3.9 Discussion 
 

We sought to determine which steps of transcription are biologically regulated. To this 

end, we combined both single cell and bulk biochemical measures of transcription in order to 

measure changes to rates of bursting as well as rates of polymerase binding and pause release 

upon various regulatory stimuli. This approach revealed that polymerase binding, rather than 

polymerase pause release, is confined to active transcriptional periods, clarifying how bursting fits 

together with biochemical steps of transcription. We then applied a number of biological 

perturbations and found that burst initiation and polymerase pause release were the main 

regulated steps of transcription. Polymerase binding rate was not altered by the perturbations we 

examined except by triptolide, which is a known inhibitor of polymerase binding. We note 

however that such experiments should be also performed with other genes and in other systems 

to confirm the generality of these conclusions. 

Importantly, this study showed that both Pol II ChIP-seq and nascent transcript RNA 

FISH were required to uniquely map changes in transcriptional steps to experimental changes. 

Nascent transcript RNA FISH distinguished between a change in polymerase binding rate and a 

change in burst initiation rate (using transcription site intensity), while Pol II ChIP-seq could not 

(Figure 3.1E-F). On the other hand, Pol II ChIP-seq but not RNA FISH could distinguish between 

changes in polymerase binding and polymerase pause release rates (Figures 3.1D-E). Therefore 

combining bulk and single-cell transcriptional measures is critical to determine which step of 

transcription was changed in a perturbation with unknown effects. 

Our results point primarily to burst initiation rate and polymerase pause release rate as 

key regulated steps in response to the various biological perturbations of our experiments. 

Polymerase binding rate appeared not to be subject to regulation by the biological perturbations 

we examined, but this does not mean that polymerase binding is not rate limiting. Indeed, 

polymerase binding rate was in fact rate limiting in the context of triptolide treatment. The finding 

that polymerase binding rate is not typically altered by biological perturbations corresponds well 
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to recent single molecule imaging studies of Pol II: the authors found that even when a gene was 

lowly transcribed, many molecules of polymerase clustered near its promoter37,38 . Since only one 

polymerase can bind a promoter at a time156, it is possible that polymerase binding typically 

occurs with a very high rate in all conditions. It would be interesting in future to examine whether 

each gene has its own consistent polymerase binding rate, and whether this could be encoded by 

gene promoters. 

Given that our study and others85,177,232  have revealed the key role that control of 

transcriptional bursting plays in gene regulation, it will be essential in future to better characterize 

the biochemical underpinnings of transcriptional bursting. An intriguing hypothesis with some 

experimental support is that burst initiation is related to enhancer-promoter looping85,227,232. Here, 

we have shown that for Hbb-b1, increasing enhancer-promoter contact specifically increases 

burst initiation, consistent with other studies that have isolated looping from other potential 

enhancer activities. It is possible that each time an enhancer contacts a promoter, the gene 

undergoes burst initiation. This hypothesis is supported by a recent paper showing that enhancer-

promoter looping occurs before every transcriptional burst85. Burst initiation could also be 

controlled by events independent from enhancer-promoter contact, such as transcription factor 

binding to the promoter or nucleosome remodeling. We believe that the ability to perform more 

biochemical assays in single cells will be required to understand the mechanistic basis of 

transcriptional bursts. 

Our experiments with BET inhibitor treatment show that BET proteins can regulate both 

burst initiation rate and polymerase pause release rate. Many papers in the literature have 

suggested that a chief transcriptional effect of BET inhibition was to inhibit polymerase pause 

release, and we also found that this is a dominant effect221,233–235 . However, we also observed 

significant effects of BET inhibitors on burst initiation rate: for example, BET inhibition of Hbb-b1 

only altered burst initiation rate and did not change polymerase pause release rate. Thus roles of 

BET proteins beyond just influencing polymerase pause release are likely to also be important for 

modulating gene expression55,229,230. Relatedly, an important future direction will be to explore 
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why different genes experienced changes in different rates of transcription in response to the 

same perturbation. 

Some studies have raised the possibilities of other forms of transcriptional regulation not 

included in the ‘polymerase binding occurs in bursts’ model, such as refractory periods between 

bursts181,236 or faster polymerase reinitiation after prior transcription237 . We tested a model 

including refractory periods (Figure A3.3C), which corresponded to our data equally as well as the 

‘polymerase binding occurs in bursts’ model. If there are refractory periods in our system, this 

modeling could suggest that the role we here attributed to burst initiation could be shared by the 

rate of escape from refractory period (i.e., early erythroid differentiation could regulate the rate of 

escape from a refractory period for Hbb-b1 and Prdx2, see Figure 3.2A). The data shown here 

does not require a refractory period as part of the transcriptional framework to explain the data, 

and we could not observe a refractory period using these methods, but our data also cannot 

exclude a role for refractory period regulation. However, some live imaging studies seem to 

exclude the presence of a refractory period173,183,208. Therefore, it is possible that more rates may 

be regulated in which we were not able to detect changes (e.g. refractory period escape or 

independent polymerase re-binding rate). 

Our study more generally demonstrates the utility of a model-based approach to 

identifying regulated transcriptional steps. In particular, previous studies of the burst initiation and 

termination phases have been largely phenomenological, characterized primarily by observables 

like burst frequency and transcription site intensity177,180,238,239. It has, however, proven difficult to 

discern any general rules or principles from these studies. Our study suggests that this may be 

due to the fact that these experimental observables can be convolved in counterintuitive ways; 

indeed, there is no reason a priori to believe that such observables map one-to-one to particular 

biological processes. For example, our study suggests that transcription site intensity was not 

independently regulated; rather, transcription sites per cell and transcription site intensity were 

both altered when polymerase binding or polymerase pause release are changed (Figure 3.1). By 

using a model-based approach informed by a combination of data types, we were instead able to 
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interpret these observables in terms of parameters of a simple model of transcription, thus 

revealing a more consistent underlying picture over a variety of perturbations.  

 

3.10 Experimental Procedures 
  
Murine cell culture, infection and sorting    

G1E cells were previously derived through deletion of GATA1 in mouse embryonic stem 

cells, followed by in vitro differentiation49. We cultured a subline of G1E cells, G1E-ER4, in which 

GATA-1-ER was transduced by retrovirus(Weiss et al., 1997). G1E-ER4 cells were induced to 

mature by the addition of 100nM estradiol to culture media. 

For differentiation experiments (Figures 3.2 and 3.3), cells were treated with estradiol for 4 or 13 

hours as noted in the figure. For flavopiridol experiments (Figure 3.1D), the noted concentration of 

flavopiridol (either 10nM, 100nM, or 1uM) was added for 60 minutes to cells differentiated for 24 

hours. For triptolide experiments (Figure 3.1E, Figure A3.1D), the noted concentration of 

flavopiridol (either 10nM, 100nM, 300nM, or 1uM) was added for 60 minutes to cells differentiated 

for 24 hours. For BET inhibition experiments (Figures 3.4 and 3.5), 250nM JQ1 was added for 60 

minutes to cells differentiated for 24 hours. For forced looping experiments (Figure 3.1F), cells were 

infected with the MIGR-1 retrovirus expressing only GFP or expressing mZF-SA followed by an 

IRES element and GFP79. Cells were infected, expanded for two days and sorted using a BD 

FacsAria to purify GFP+ infected cells from control and mZF-SA samples, estradiol was added for 

9 hours and transcription was measured by RNA FISH or ChIP-qPCR. For DRB transcriptional 

blocking to measure nascent transcript RNA FISH half-life (Figure A3.1B), 75uM DRB was added 

for 0, 10 or 60 minutes to cells differentiated for 24 hours. 

For experiments examining the Slc25a37 enhancer region (Figure A3.5), control and 4 

enhancer deletion G1E-ER4 cell lines created previously were kindly provided by the Jian Xu lab 

70. Cells were differentiated for 24 hours using estradiol and transcription was measured by RNA 

FISH or ChIP-qPCR. 
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For experiments to measure the Pol II elongation rate (Figure A3.5A), 75uM DRB was added to 

cells differentiated 21 hours. After 3 hours (24 hours differentiation), DRB was removed by washing 

and cells were fixed at 10-minute intervals after DRB removal. 

  

Chromatin Immunoprecipitation 

We performed ChIP as previously described217 , using the N-20 Pol II antibody (Santa 

Cruz sc899). For ChIP-sequencing, library construction was performed using Illumina’s TruSeq 

ChIP sample preparation kit (Illumina, catalog no. IP-202-1012) according to manufacturer’s 

specifications with the addition of a size selection using SPRIselect beads (Beckman Coulter, 

catalog no. B23318) prior to PCR amplification. Library size was determined (average ~340 bp) 

using the Agilent Bioanalyzer 2100, followed by quantitation using real-time PCR using the KAPA 

Library Quant Kit for Illumina (KAPA Biosystems catalog no. KK4835). Libraries were then pooled 

and sequenced on the Illumina NextSeq 500 using Illumina sequencing reagents according to 

manufacturer’s instructions.   

For perturbations in which only one gene was expected to change, forced enhancer-

promoter looping and Slc25a37 enhancer deletion, ChIP-qPCR was used to measure traveling 

ratio changes rather than ChIP-sequencing (Figure 3.1F, Figure A3.5C-E). Primers were tiled 

along Hbb-b1 and Slc25a37 respectively, and the ratio of TES-proximal to TSS-proximal 

promoter signal were used as traveling ratio, after normalizing to ChIP input. 

 

ChIP-sequencing analysis 

All Pol II ChIP-seq data was generated for this study, except the 0 and 13h G1E-ER4 differentiation 

(Figures 3.2 and 3.3), which was from240. We used bcl2fastq2 to convert and demultiplex the reads. 

We also applied fastQC to get read stats, Bowtie (0.12.8) to map reads to the mm9 genome 

(multiple and unique mappings), Samtools to convert SAM to BAM and get stats, MACS (1.3.7.1) 

to make wiggle files, and used wigToBigWig to convert wiggle files to bigWig files. 
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 We then performed bigWigAverageOverBed to find Pol II binding signal at transcription 

start site (TSS) region (750 bp upstream of transcription start site to 750 bp downstream), and 

transcription end site (TES) region (transcription end site to 1500 bp downstream of transcription 

end site), and calculated the Pol II traveling ratio for TES/TSS Pol II signal. (In Figure A3.1F, we 

instead calculated the Pol II traveling ratio by (gene body)/TSS, where gene body included 750 bp 

downstream of TSS to 1500 bp downstream of TSS.) We displayed data from only the genes with 

detectable Pol II binding in all regions in all experimental conditions, so that we could avoid 

examining genes that aren’t transcribed in one condition, by setting arbitrary cutoff values on the 

bigWigAverageOverBed results, and results were robust to changes in cutoff. To display Pol II 

ChIP-seq tracks in figures (e.g. Figure 3.1D), we displayed tracks normalized by number of aligned 

reads per sample.  

 For analysis of promoter DNAse hypersensitivity (Figure A3.4D), data was taken from 

(Hsiung et al. 2015). DNAse promoter sensitivity was determined using bigWigAverageOverBed in 

the TSS region (750 bp upstream to 750 bp downstream of TSS).  

 For analysis of promoter H3K27ac density (Figure A3.5B), data was taken from240 .DNAse 

promoter sensitivity was determined using bigWigAverageOverBed in the TSS region (750 bp 

upstream to 750 bp downstream of TSS). This same dataset was used for the H3K27ac track 

displayed in Figure A3.5C. 

 

Single-molecule RNA FISH imaging 

We performed single-molecule RNA FISH as described previously170,203 .. All probes used were 

complementary to introns of gene of interest (except the exon-targeted probe measures of mRNA 

shown in Figures A3.1A and A3.5C). All intron probes were approximately evenly spaced along 

length of RNA (except the transcriptional elongation rate measurements in Figure A3.5A, in which 

probes were placed at 5’ or 3’ end of Zfpm1). 

Briefly, we fixed cells in 1.85% formaldehyde for 10min at room temperature, and stored them in 

70% ethanol at 4 degrees C until imaging. We hybridized pools of FISH probes to samples, followed 
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by DAPI staining and wash steps performed in suspension. Samples were cytospun onto slides for 

imaging on a Nikon Ti-E inverted fluorescence microscope using a 100x Plan-Apo objective 

(numerical aperture of 1.43), a cooled CCD camera (Pixis 1024B from Princeton Instruments), and 

filter sets SP102v1 (Chroma), SP104v2 (Chroma), and 31000v2 (Chroma) for Cy3, Cy5, and DAPI, 

respectively. Custom filter (Omega) was used for Alexa594. We took 45 optical z-sections at 

intervals of 0.35 microns, spanning the vertical extent of cells, with 1s exposure time for Cy3, Cy5, 

and Alexa594, and 35ms for DAPI. 

  

Image Analysis 

We manually segmented boundaries of cells from bright field images and localized RNA spots using 

custom software written in MATLAB with subsequent analyses performed in R. Transcription sites 

were identified by bright nuclear intron spots.  Fluorescence intensities of transcription sites 

were determined by 2D Gaussian fitting on processed image data. 

  

Mathematical modeling 

Mathematical models were constructed and simulations were performed in Matlab using Gillespie’s 

stochastic simulation algorithm222. For the ‘polymerase binding occurs in bursts’ model, genes 

could be in three states (closed, open, polymerase bound). A gene in the closed (off, non-burst 

initiated) state transitions to the open (bursting) state at the burst initiation rate, while a gene in the 

open state can have polymerase bind the promoter with the polymerase binding rate. Once a 

polymerase is bound, that polymerase can be released to elongation with the rate of polymerase 

release from pausing, and the promoter thus returns to the open and unbound state. From either 

the open unbound or open polymerase bound state, the gene can transition to the off state with the 

rate of burst termination. We varied each of these rates through a 1000 fold range of values (as 

shown in Figure A3.3E). Other model variations (‘polymerase pause release occurs in bursts’, 

telegraph, ‘bind-release’, ‘polymerase binding occurs in bursts with refractory period’, and 
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‘polymerase binding occurs in bursts with possibility of termination from pause release site’) had 

different transition possibilities dictated by the frameworks displayed in Figures A3.2 and A3.3. 

For every set of rates in a given model, we simulated 1000 gene copies, which were allowed to 

proceed through 2000 changes in state. We recorded the state of each gene copy at 1500 time 

intervals. The simulation equilibrated away from the initial condition (every gene copy started in the 

‘off’ state) for every property within this time window, typically after ~100-200 time steps, and the 

value at which it converged was used for the following analyses. Each time a gene underwent the 

pause release (or RNA production) step, we allowed that polymerase to produce 1 RNA and 

elongate along the gene body for a short, fixed amount of time, and then for the polymerase to fall 

off the gene body and the nascent RNA to no longer be detected by RNA FISH. We then used the 

above information to calculate: transcription sites per cell (proportion of gene copies with at least 1 

polymerase elongating in the gene body at a given time); transcription site intensity (average 

number of elongating polymerases on one gene for gene copies with at least 1 polymerase 

elongating in the gene body at a given time), polymerase binding signal at promoter (proportion of 

gene copies in the pol2 bound state), polymerase binding signal at gene body (average number of 

Pol molecules in the gene body). We calculated Pol II traveling ratio as gene body polymerase 

signal divided by promoter polymerase signal. (Note that none of these measures rely on identifying 

the beginning and end of a ‘burst’: if bursts are frequent enough, they will run together, leading to 

all gene copies being transcribed (maximum of 2 gene copies per cell) and leading to increased 

transcription site intensity). 

  

Figure generation, plotting and graphics 

We used R packages dplyr and ggplot2 to produce nearly all figures, followed by cosmetic 

adjustments in Adobe Illustrator. All code to perform modeling, data analysis and figure generation 

is available in Dropbox 

(https://www.dropbox.com/sh/ti5lfcn0e71p45i/AAD64o4EM6v3_1Gw3_88XuBza?dl=0). 
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CHAPTER 4: Discussion 
 

4.1 The goal of my thesis work: using the lens of transcriptional bursting to improve our 

model of transcriptional regulation 

In my graduate work, I asked how the phenomenon of transcriptional bursting might change 

the field’s understanding of transcriptional regulation. Transcriptional bursting was first described 

relatively recently163,203, when the field of transcriptional regulation was well-established, and this 

surprising observation provided the field new information about how transcription operates. 

However, there has been a lack of studies re-examining our previous long-standing and 

mechanistic understanding of transcription in light of these new developments. 

Many of the first studies examining transcriptional bursting mainly addressed how the observed 

properties of bursting, such as burst frequency and intensity, were modulated in different cell 

types in response to different stimuli. Such studies clearly demonstrated that the properties of 

bursting could be regulated, but failed to address how bursting was regulated on a molecular 

level. Conversely, biochemical-based studies of transcription typically ignored the finding of 

transcriptional bursting when trying to advance our understanding of transcriptional regulation. 

Some studies seemed to recognize this gap between the observation of transcriptional bursting 

and our previous models of transcriptional regulation: studies sometimes alluded to the 

phenomenon of bursting, and suggest that it related to their findings156,241, but in many cases this 

was a theoretical discussion, without actual experimental examination of bursting in their system. 

This gap between the rich history of transcriptional regulation studies, and the young field of 

transcriptional bursting observations, was the gulf that my thesis work set out to address. We 

realized that given the extensive examination of transcriptional regulation in many systems, it was 

likely that molecular players involved in bursting regulation were previously identified in 

biochemical approaches. In effect, transcriptional bursting had always been present in 

biochemical studies of transcription with approaches like ChIP-seq and PRO-seq; such studies 

could not measure this phenomenon due to the averaging effects of combining millions of cells. 
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However, bursting was an inextricable part of transcription: if one could identify a way to reduce 

either the frequency or amplitude of a gene’s bursts to zero, transcription would be blocked, even 

in assays that couldn’t detect bursting at all. Thus, we hypothesized that by separating out which 

molecular processes might regulate bursting, imaging-based studies of transcriptional bursting 

might add information to disentangle how transcription is regulated. 

 

4.2 Perspectives on enhancer regulation of transcriptional burst frequency 

 We reasoned that the best way to identify the regulation of transcriptional bursting was to 

measure transcriptional bursting in a system that was well-characterized from a biochemical 

perspective of transcription, thereby giving us the tools to identify how to connect transcriptional 

bursting to known regulation of transcription. I thus began my Ph.D. by examining the 

transcriptional bursting of the beta-globin locus during erythroid differentiation. Using the zinc-

finger-based forced looping approach previously developed in the Blobel lab79,112, I found that in 

both mouse and primary human erythroblasts, enhancer-promoter contact controlled the fraction 

of time the beta-globin gene transcribed, without changing the transcriptional intensity. This work 

identified a connection between a known biochemically-measurable process required for 

transcription, enhancer-promoter contact, and an isolated property of bursting (schematic in 

Figure 4.1). 

Satisfyingly, an independent study published at the same time in an unrelated system 

confirmed that enhancer-promoter contact modulated burst frequency without changing burst 

size232. In this study, Fukaya and colleagues used the MS2 technology, which enables 

fluorescent labeling of a genetically-tagged nascent RNA in live cells, to measured bursting in 

transgenes in Drosophila melanogaster. They found that either increasing the distance between 

an enhancer and its target transgene, or separating the enhancer and transgene with an insulator 

sequence, decreased the burst frequency of the reporter gene without changing the burst 
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intensity. They confirmed this finding with several different and unrelated enhancer sequences. In 

effect, the main finding of both studies was in agreement. 

 

Figure 4. 1: Schematic of findings in Bartman et al. 2016. Forced enhancer-promoter looping 

increased burst fraction at the beta-globin locus, while erythroid maturation both increased burst fraction and 

burst intensity. 

One interesting inconsistency between our study and Fukaya et al. related to the 

phenomenon of promoter competition for enhancer activity. A longstanding question in the field of 

transcriptional regulation has been whether an enhancer can only drive one gene at a time, and 

thus if driving multiple target genes by the same enhancer would effectively divide the power of 

that enhancer 4,18,114,115. Given the prevalence of enhancers that contact multiple genes detected 

by chromosome conformation capture approaches, and of genes that contact multiple enhancers, 

understanding how such complex regulatory systems work may be important to understanding 

transcriptional regulation in cells99,119,125. Moreover, the phenomenon of bursting could be 

suggested to be a solution to the challenge of regulating multiple target genes with one enhancer: 
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rather than enhancer-promoter networks forming complex rosette-like structures in every cell76,77, 

an alternate possibility was that enhancer-promoter contacts were relatively dynamic, and thus an 

enhancer could switch between driving different promoters on the minutes-to-hours timescale on 

which transcriptional bursts occur. In the human beta-globin system which we studied, the same 

enhancer, known as the globin locus control region (LCR), is required for the transcription of both 

adult and fetal beta-type globins, which in culture can be transcribed in the same cell population. 

We examined the transcription of fetal and adult globin in primary human red blood cell 

precursors, and found that these two genes could be transcribed simultaneously by the same 

gene copy in the same cell (i.e. one of the 2 copies in a G1 cell, 4 copies in a G2 cell). Statistical 

analysis showed that these gene copies were cotranscribed slightly less than would be predicted 

if their transcription was statistically independent. (Moreover, our measurements of transcriptional 

bursts using RNA FISH in fixed cells had by necessity a slight lag, since transcription sites were 

detectable for around 5-10 minutes after transcription was blocked (see Figure A2.1), and thus 

true cotranscription of the two genes was likely less than what we measured by RNA FISH.) We 

concluded that we could observe a slight effect of promoter competition for enhancers. In 

dramatic contrast, Fukaya and colleagues found that when they created a transgene where an 

enhancer was placed equidistant between two promoters, these promoters were actually highly 

likely to transcribe simultaneously. This same group went on to show that, in fact, an enhancer 

could drive simultaneous transcription between target promoters on different chromosomes in 

Drosophila, one promoter on the same chromosome as the enhancer and one on the 

homologous chromosome. This observation was very surprising, and different from our findings in 

mouse and human systems. Moreover, this observation has been cited extensively to support a 

phase-separation model of transcription in which active enhancers and promoters condense 

together (in effect, a fancy modern version of the rosette model), so it may be important to 

investigate this finding further. 

Several possibilities for these different observations of enhancer-multiple-promoter 

transcription exist. The genes in the Fukaya et al. study were artificial transgenes in Drosophila 
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embryos measured in live cells, while ours were endogenous, non-genetically-manipulated loci in 

mammalian systems measured in fixed cells. Drosophila have been previously observed to have 

the ability for enhancers to drive transcription on neighboring chromosomes, known as 

transvection242, while this is probably not common in mammalian systems. Moreover, 

transcription in Drosophila embryos may be qualitatively distinct from mammalian transcription in 

the sense that Drosophila genes are extremely highly transcribed, and rarely have pauses 

between bursts, while in mammalian cell culture most genes are transcribed less than 50% of the 

time168. Moreover, a different imaging-based study in Drosophila did observed promoter 

competition in a reporter system187, suggesting that the finding of coordinated transcription of 

promoters may even be unusual in that species. Further studies will be required to see if this 

simultaneous bursting behavior of promoters driven by the same enhancers is specific to the 

transgene system of Fukaya et al., this developmental stage, or Drosophila in general, or 

alternatively whether other mammalian loci might exhibit such simultaneous bursting behavior 

and beta-globin is simply an exception. 

The finding that enhancer-promoter looping controls burst frequency, the main conclusion of 

our study and the study of the Levine group, has been further investigated in the two years since 

these studies were published. One beautiful study in the Drosophila system supported this finding 

and in fact illustrated it more directly: they were able to use genetic engineering and multicolor 

live imaging to visualize the DNA regions of the enhancer and the promoter of a Drosophila 

transgene, as well as nascent RNA from the transgene85. Using this system, they found that 

enhancer-promoter contact controlled transcriptional burst frequency, and indeed they saw 

directly that transcription could only occur after the enhancer had contacted the promoter, and 

then transcription halted when the enhancer region moved away from the promoter in the 

nucleus. However, other studies have shown conflicting findings. Notably, one preprint that 

imaged the Sox2  enhancer region, its target gene and the gene’s nascent RNA in embryonic 

stem cells found that transcriptional bursts occurred without the enhancer approaching the 

promoter243. One possibility is that the regulation of this locus and the beta-globin locus are 
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fundamentally different in their regulation; a more interesting possibility is that enhancer-promoter 

looping could be correlated with, but not required for, a different event that is the proximal cause 

of burst initiation. Such a second event could be nucleosome remodeling, recruitment of Mediator 

or other activation proteins, or another event. Future work in our lab, described below, will 

hopefully help disentangle how exactly a transcriptional burst is begun. 

 

4.3 Perspectives on transcriptional burst initiation as a key control point of transcriptional 

regulation and subsequent studies in the field 

 My first study identified a molecular regulator of an aspect of bursting, namely that 

promoter-enhancer contact at the beta-globin locus controlled burst frequency. But this finding 

raised as many questions as it answered. First, in differentiating erythroid cells, cellular 

differentiation increased enhancer-promoter contact at the beta-globin locus; in contrast, erythroid 

differentiation increased both burst fraction and burst intensity of beta-globin transcription. Thus, it 

was unclear which of the many global or locus-specific changes occurring during erythroid 

differentiation might be responsible for the increase in beta-globin burst intensity. Moreover, we 

wondered how such burst frequency modulation by enhancer contact might fit in with the 

numerous other modes of transcriptional regulation previously characterized4,8,60. Previous 

studies have suggested that enhancers might regulate multiple different aspects of transcription, 

including polymerase recruitment or polymerase pause release4,8,72,73. In effect, identifying that 

enhancer-promoter contact regulated transcriptional burst frequency still failed to clarify exactly 

what was happening at a target gene when a transcriptional burst occurred. Relatedly, some 

studies had theorized that when a transcriptional burst began, it then allowed polymerase to be 

recruited to a gene, while others had hypothesized that bursting could consist of ‘bursts’ of 

promoter-proximal pause release149,156. On the other hand, many studies that imaged 

transcriptional bursts ignored the step of pause release altogether, in spite of evidence that it was 

an important transcriptional checkpoint177. Finally, the majority of transcriptional bursting studies 
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focused on one or a few loci, which often were genetically modified to enable imaging of 

transcription, while we were well-placed to use RNA FISH to measure the transcription of a wide 

variety of intact endogenous loci. We set out to resolve how transcriptional burst regulation fit in 

with polymerase binding and pause release regulation. 

 We sought to reconcile biochemically-measured Pol II dynamics with bursting behaviors 

to create a more holistic model of transcription. To this end, we performed both types of 

measurements on the same cell population. We reasoned that since Pol II ChIP-seq and bursting 

both measured transcription with orthogonal techniques, they would be expected to correlate in 

predictable ways. Moreover, we realized that the patterns of correspondence between the two 

technologies actually provided information about how the underlying transcriptional behavior was 

regulated. In an ideal world, we would be able to perform live imaging of single Pol II molecules 

transcribing RNA on single gene copies, and thus directly measure how polymerase recruitment 

and pause release relate to pulsatile RNA transcription in endogenous, non-genetically-

engineered loci. As a substitute, we used the technologies of Pol II ChIP-seq and nascent 

transcript RNA FISH to infer such dynamics. 

 We first considered how underlying transcription in a population of cells would be 

reflected in both Pol II ChIP-seq and RNA FISH measurements. For example, Pol II ChIP-seq is 

an average of polymerase binding averaged across a population of cells.  On any given gene 

copy, theoretically, we might expect there to be no polymerase at all, or a polymerase paused 

near the promoter, or a polymerase or multiple molecules of polymerase elongating in the gene 

body. (Recent studies have shown that given the size of the Pol II initiation complex, only a single 

Pol II molecule can sit in the promoter-proximal region156,157, so we built this requirement into our 

model.) Thus, if we simulated many copies of a gene in various different transcriptional states, 

averaging all of these together should yield a simulated Pol II ChIP-seq profile. Nascent transcript 

RNA FISH applied to the same population of gene copies would yield a different type of result: 

first, it would be able to measure the state of every gene copy in the 
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Figure 4. 2 Marble raceway schematic of transcriptional models investigated in Bartman et al. 

2018. A) Polymerase binding occurs in bursts model: models are schematized as marble raceways, in 

which each step of transcription is a ‘gate’ that a polymerase has to pass by in order to reach the next step 

and ultimately to elongate through the gene body. Each time a polymerase (marble) passes a final gate and 

rolls to the end, 1 RNA is produced in the model. In this model, the rates of three gates opening can be 

regulated: the blue gate blocks access to the green gate (i.e. burst has to initiated before polymerase can 

bind). This model was consistent with our experimental data. B) Polymerase pause release occurs in burst 

model: in this model, the blue gate is after the green gate but before the red gate (i.e. polymerase can bind 

anytime, but polymerase can only undergo pause release after burst initiation. This model was not 

consistent with our experimental data. C) Binding-release model: polymerase has to bind, and then 

polymerase has to undergo pause release before it can elongate. This model was not consistent with our 

experimental data. 

population, rather than yielding an average. However, both gene copies with no polymerase, or 

gene copies with polymerase paused at the promoter, would yield no signal in this assay. A 
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nascent transcript RNA FISH signal should appear at genes with at least one polymerase 

elongating and producing RNA at the time the cells were fixed, and the fluorescence intensity of 

the FISH signal should correlate to the number of polymerase molecules that had produced 

nascent RNAs in the past 5 minutes or so before fixation.  

 We then used these strictures to create multiple mathematical models of transcription 

(Figure A3.3, Figure 4.1). These models turned out to be critical for our conclusions: we had 

started out trying to make intuitive predictions for how transcriptional steps might have behaved, 

but this became untenable and confusing; in contrast, by setting up models, we had concrete 

predictions we could accept or reject using experimental data. For each model, we varied the 

rates of each included step of transcription, and predicted how each type of transcriptional  

change should be predicted to alter both Pol II ChIP-seq measurements and nascent transcript 

RNA FISH measurements of transcriptional bursting. We found that, depending on the way that 

transcription could be changed by varying different rates in the model, different experimental 

behaviors of these two methods were predicted to appear, suggesting that if we could 

experimentally measure the possible range of transcriptional measurements, we could see which 

mathematical model would line up to those possibilities, and thus we could infer which steps of 

transcription must be regulated in our system. 

 To complement this modeling approach, we performed a number of transcriptional 

perturbations in the mouse erythroid cell line used in the previous study, and measured the 

experimental changes in a number of different genes, in order to try to capture the full range of 

transcriptional behaviors possible in this system. We eventually examined 15 different genes, 

including of housekeeping genes, hematopoietic stem cell genes, and erythroid-specific induced 

genes, and examined their changes in response to a number of perturbations including different 

transcriptional inhibitors and genetic enhancer dissection. The ability to examine such a range of 

genes and perturbations set our study apart from previous studies. 

 We then compared our range of experimental observations to the different possible 

behaviors predicted by our computational models of transcription. Our previous finding, that burst 



83 
 

fraction could be controlled without any change to burst intensity, turned out to be key to this 

analysis, along with several other perturbation-gene pairings we found that resulted in 

independent change in burst fraction (Figure 3.2A, 3.3A). Specifically, previous literature could be 

taken to suggest that polymerase recruitment and polymerase pause release were the main 

regulated steps of transcription4,58. However, a computational model where only these two steps 

could be modulated predicted that burst fraction and burst intensity would always change in 

tandem, and thus such a model was inconsistent with our experimental findings. On the other 

hand, previous discussion had theorized that bursts might appear because polymerase binding 

occurred in a pulsatile manner, or alternatively because polymerase pause release occurred in a 

pulsatile manner156,241. We showed that our data were inconsistent with the latter model. 

Specifically, if polymerase pause release occurred in a pulsatile manner, then burst fraction 

changes would be predicted to move in tandem with the Pol II traveling ratio, or the amount of Pol 

II able to be released from the promoter proximal region, but in contrast, we never saw a change 

in the Pol II traveling ratio in the situations where burst fraction changed without burst intensity 

(see Figures 3.1F, 3.2A, 3.4A). Thus, applying a range of perturbations to a range of genes, and 

then measuring them with two orthogonal experimental approaches, was required for our 

conclusion that burst frequency could be controlled by an independent ‘burst initiation’ step, and 

that burst initiation controlled the ability of polymerase to bind the promoter rather than the ability 

of polymerase to be released from promoter-proximal pausing. 

 The combination of two experimental approaches to measure transcription helped us to 

draw conclusions about the underlying transcriptional behavior; analogously, it enabled us to 

propose explanations for how our conclusions might contrast to previous findings in the field. For 

example, most studies examining transcriptional bursting relied on the ‘telegraph model’ of 

transcription. In this model, the only two regulated steps are burst initiation, and then ‘RNA 

production’, which is an unspecified hybrid step combining polymerase recruitment, polymerase 

pause release, and any other step required to make RNA molecules. This model has been useful 

for the field because it can satisfactorily model the distribution of messenger RNA molecules in a 
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population of cells measured by RNA FISH or RNA live imaging163,166,178. However, we were able 

to show that to understand how stimuli regulate transcription, Pol II ChIP-seq is required also (or 

another similar technique); using such a method revealed that polymerase pause release is a 

dominant mode of transcriptional regulation, a more molecularly specific finding than regulation of 

‘RNA production’. We came to this conclusion by showing that most stimuli including erythroid 

differentiation and BET protein inhibition change Pol II traveling ratio, similar to an inhibitor of 

pause release and consistent with model-predicted effect of changing pause release, and 

inconsistent with experimental or model-predicted changes to polymerase recruitment.  

 Conversely, we showed that an independent burst initiation step upstream of polymerase 

binding rate can be a regulated step of transcription, for example when promoter-enhancer 

contact is modulated. Both modeling predictions and inhibitor experiments confirmed that the 

effect of promoter-enhancer contact was distinct from the effect of changing either polymerase 

recruitment or polymerase pause release. Our modeling showed that, from the standpoint of 

population averaging methods such as Pol II ChIP-seq, changes in burst initiation would be 

indistinguishable from changes in polymerase recruitment. We hypothesize that many studies 

that have pointed to changes in polymerase recruitment using bulk methods may have actually 

been measuring changes to burst initiation. Thus, for studies aiming to disentangle transcriptional 

mechanisms in future it will be important to combine single-cell approaches to distinguish effects 

on burst initiation from effects on polymerase recruitment. 

 

4.4 Future Directions 

 Many unanswered questions related to the regulation of transcriptional bursting persist.  

One interesting future arena concerns the concept of phase separation. There is mounting 

evidence that condensation of proteins, mediated by disordered domains, might be critical to or at 

least correlated with active transcription (discussed in the Introduction)18,34,38. Indeed, the Fukaya 

et al. study showing tandem bursting of promoters controlled by the same enhancer has been 



85 
 

used as support for such a model18. Whether transcription in general, and the control of 

transcriptional bursting in particular, requires such a phase separation mechanism will be difficult 

to disentangle, but perhaps will shed light on new transcriptional mechanisms. 

Another future direction directly proceeding from my studies is the molecular identity of the 

‘burst initiation’ step that must occur upstream of polymerase binding. Our studies of the beta-

globin locus suggested that this step was controlled by promoter enhancer looping, and this idea 

is strongly supported by the Gregor result that enhancer-promoter contact is necessary, 

independent from, and upstream of RNA transcription85. However, the Sox2 study suggests that 

at the very least promoter-enhancer looping may not directly control burst initiation in all 

systems243. Future work in the Raj and Blobel labs will hope to address this issue. The Raj lab 

has developed a technique to sort cells expressing an RNA of interest from a population244. We 

will optimize this technique to allow specific enrichment of actively bursting cells from a population 

of unmanipulated cells, since for even highly expressed genes 50% or less of gene copies are 

actively transcribing at any given time (for example, see Figure 2.1D). This purification method 

will allow us to compare biochemical properties of a gene locus of interest in actively bursting and 

nonbursting cells. For example, we will perform chromatin conformation capture in transcribing 

and nontranscribing cells: if promoter-enhancer contact directly causes burst initiation, then 

promoter-enhancer contact should be strongly elevated in transcribing compared to non-

transcribing cells in a population. Other candidates for burst initiation causation will be examined, 

including nucleosome remodeling, promoter binding by a transcription factor, and histone 

modification. 

More broadly, high resolution live imaging is becoming more advanced to the point where it 

can be informative as to the events regulating transcription38,187. It will be exciting to see such 

techniques advance and be applied to clarify the sequence of events occurring during 

transcription. 
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